(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
03 October 2024 (03.10.2024)

(10) International Publication Number

WO 2024/201023 Al

WIPO I PCT

(51) International Patent Classification:
GO6V 10/40 (2022.01) GO6T 5/00 (2024.01)
GOIN 23/2251 (2018.01)

(21) International Application Number:
PCT/GB2024/050814

(22) International Filing Date:
26 March 2024 (26.03.2024)

English

74
(25) Filing Language:

(26) Publication Language: English (81)

(30) Priority Data:

2304469.6 27 March 2023 (27.03.2023) GB

(71) Applicant: THE UNIVERSITY OF LIVERPOOL
[GB/GB]; Foundation Building, 765 Brownlow Hill, Liver-
pool L69 7ZX (GB).

(72) Inventors: BROWNING, Nigel, The University of Liv-
erpool, Foundation Building, 765 Brownlow Hill, Liv-
erpool Merseyside L69 7ZX (GB). CASTAGNA, Jony;
Sci-Tech Daresbury, Keckwick Lane, Daresbury, War-
rington Cheshire WA4 4AD (GB). NICHOLLS, Daniel;
SenseAl, Foundation Building, 765 Brownlow Hill, Liver-

pool Merseyside L69 7ZX (GB). ROBINSON, Alex; The

84

University of Liverpool, Foundation Building, 765 Brown-
low Hill, Liverpool Merseyside L69 72X (GB). WELLS,
Jack; The University of Liverpool, Foundation Building,
765 Brownlow Hill, Liverpool Merseyside L69 72X (GB).
ZHENG, Yalin, The University of Liverpool, Foundation
Building, 765 Brownlow Hill, Liverpool Merseyside L69
772X (GB).

Agent: APPLEYARD LEESIP LLP; 15 Clare Road, Hal-
ifax Yorkshire HX1 2HY (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,

(54) Title: METHOD AND APPARATUS FOR DICTIONARY LEARNING AND FOR RECONSTRUCTING IMAGES USING A

DICTIONARY

52901

Define an N-dimensional patch
for the N-dimensional image data

l

52902

Extract N, data sub-regions
from the N-dimensional image data,
using the N-dimensional patch

v

wo 20247201023 A1 |0 00000 KOO0 000 0 0

Provide the dictionary by sparse dictionary learning
using the extracted N, data sub-regions

52903

Fig. 29

(57) Abstract: We describe a method of providing a dictionary by sparse dictionary learning of N-dimensional image data, wherein N
is a natural number greater than or equal to 3 and the method is implemented by a computer comprising a processor and a memory.
The method comprises defining an N-dimensional patch for the N-dimensional image data; extracting Npach data sub-regions from
the N-dimensional image data, using the defined N-dimensional patch; and providing the dictionary by dictionary learning using the
extracted Mpatcn data sub-regions. We also describe a method of reconstructing images from sparse N-dimensional image data using
such a dictionary.

[Continued on next page]

WO 2024/201023 A /1000000000000 OO

GH, GM, KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ. TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

METHOD AND APPARATUS FOR DICTIONARY LEARNING AND
FOR RECONSTRUCTING IMAGES USING A DICTIONARY

Field

The present invention relates to dictionary learning of images, for example electron microscopy

images and to reconstructing images using dictionaries.

Background to the invention

Over the last few years, methods in Dictionary Learning and/or Image Inpainting have been
successfully applied to many different forms of Electron Microscopy (EM) data. In the context of
these methods, a dictionary of atoms can be used to sparsely represent each overlapping patch
as a linear combination of a small number of dictionary elements and their corresponding
coefficients. The choice of dictionary atoms can be learned from fully-sampled data using
traditional techniques such as K-SVD or directly from subsampled data using Bayesian methods
such as Beta-Process Factor Analysis (BPFA), and the resulting sparse representations can be
used for tasks such as compression, inpainting, denoising, and image classification. Typically,
this target “image” data would be 2-dimensional (2D), such as Z-contrast images from a
Scanning Transmission Electron Microscope (STEM), or in some cases 3-dimensional (3D),
such as RGB images, successive 2D layers of a 3D volume e.g. cryo-FIB, or Energy-Dispersive
X-ray spectroscopy (EDS) maps which use the third dimension for discretised spectral
information. In most historical approaches, for an “image” of shape M = (M,, M;,M,), the
dictionaries used represent a set of (vectorised) elements with a patch shape B defined only in
the first two dimensions — that is, patches with a height (B, « M,) and width (B, K M,), where
the size of the patch in the third dimension spans the entire shape of the target data cube (B, =
M,). For the simple cases of 2D/Greyscale images (M, = 1) and RGB images (M, = 3), this is
a relatively straightforward approach; in fact, in many cases, the patch shape B is defined by a
single integer value b (b = B, = B;) such as b = 10, where patches take the shape of B =
(10,10, M,).

However, there remains a need to improve dictionary learning of image data and/or

reconstruction of sparse image data.

Summary of the Invention

It is one aim of the present invention, amongst others, to provide a method of providing a

dictionary by sparse dictionary learning of N-dimensional image data which at least partially

10

15

20

25

30

35

WO 2024/201023 PCT/GB2024/050814

2

obviates or mitigates at least some of the disadvantages of the prior art, whether identified herein

or elsewhere.

A first aspect provides a method of providing a dictionary by sparse dictionary learning of N-
dimensional image data, wherein N is a natural number greater than or equal to 3, the method
implemented by a computer comprising a processor and a memory, the method comprising:
defining an N-dimensional patch for the N-dimensional image data;

extracting N,,;., data sub-regions from the N-dimensional image data, using the defined N-
dimensional patch; and

providing the dictionary by dictionary learning using the extracted N,,,., data sub-regions.

A second aspect provides a method of reconstructing images from sparse N-dimensional image
data, wherein N is a natural number greater than or equal to 3, the method implemented by a
computer comprising a processor and a memory, the method comprising:

reconstructing an image from the sparse N-dimensional image data using a dictionary, for

example wherein the dictionary is provided according to the first aspect.

A third aspect provides a method of controlling an electron microscope, the method
implemented, at least in part, by a computer comprising a processor and a memory, the method
comprising:

providing parameters of the electron microscopy;

obtaining first sparse N-dimensional electron microscopy data of a sample, wherein N is a
natural number greater than or equal to 3; and

reconstructing a first electron microscopy image of the sample from the first sparse N-

dimensional electron microscopy data, according to the second aspect.

A fourth aspect provides a computer comprising a processor and a memory configured to
implement a method according to any of the first aspect, the second aspect and/or the third
aspect, a computer program comprising instructions which, when executed by a computer
comprising a processor and a memory, cause the computer to perform a method according to
any of the first aspect, the second aspect and/or the third aspect or a non-transient computer-
readable storage medium comprising instructions which, when executed by a computer
comprising a processor and a memory, cause the computer to perform a method according to

any of the first aspect, the second aspect and/or the third aspect.

A fifth aspect provides an electron microscope including a computer comprising a processor and
a memory configured to implement a method according to any of the first aspect, the second
aspect and/or the third aspect.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

Detailed Description of the Invention

According to the present invention there is provided a method of providing a dictionary by sparse
dictionary learning of N-dimensional image data, as set forth in the appended claims. Also
provided is a method of reconstructing an image, a method of controlling an electron microscope,
a computer, a computer program, a non-transient computer-readable storage medium, an
electron microscope and use of a pre-learned dictionary. Other features of the invention will be

apparent from the dependent claims, and the description that follows.

Providing a dictionary

The first aspect provides a method of providing a dictionary by sparse dictionary learning of N-
dimensional image data, wherein N is a natural number greater than or equal to 3, the method
implemented by a computer comprising a processor and a memory, the method comprising:
defining an N-dimensional patch for the N-dimensional image data;

extracting N,,;., data sub-regions from the N-dimensional image data, using the defined N-
dimensional patch; and

providing the dictionary by dictionary learning using the extracted N, ..., data sub-regions.

In contrast to the 2D and 3D examples described in the Background, there are many examples
of higher-dimensional EM data, and more complex tasks such as real-time (frame-by-frame)
reconstructions (see Table 1) that would benefit from variable patch shapes in higher
dimensions. For the case of multi-frame targets such as greyscale and RGB video, this could
represent dictionary elements trained with a higher-dimensional patch shape spanning a few (or
more) frames of the video, i.e. capturing representative signal patterns for the change in pixel
values with respect to time in addition to the spatial dimensions, or conversely, training/inpainting
with a single-channel dictionary for 2D patches across each layer of a multi-channel (e.g. RGB)
data source. For hyperspectral data cubes, it may represent the generation/use of a dictionary
spanning an arbitrary n “steps” (n&M_2) across a discretised spectrum, or a method of frame-
interpolation for data cubes subsampled in the fourth (time) dimension. This much more varied
patch shape also allows for further, more complex scenarios, such as dictionary transfer
between a 2D high-SNR source such as a Back-Scattered Electron (BSE) image and the low-
SNR constituent “layers” of a 3D EDS map, improving the quality of reconstruction results as
well as reducing the complexity (and thus time-to-solution) of the dictionary learning/inpainting
task. The extension of dictionary learning and/or image inpainting algorithms into this N-
dimensional context, especially with the goal of performing on batches of N,,.., arbitrarily
indexed (e.g. programmatically selected) patches/signals from the target data cube necessitates
the development of efficient implementations of signal extraction as well as

reconstruction/recombination (beyond the capabilities of standard “unwrap”/ “wrap” methods

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

4

respectively in most computational libraries). However, with a sufficiently optimised
implementation, it can provide a significant improvement to the speed of realtime
reconstructions on large datasets, a boost to reconstruction quality for low-SNR data, and may
even enable completely new uses of a trained dictionary, such as dictionary transfer between
“layers”, frame-interpolation, and a combination of detector and/or probe subsampling for 4D-
STEM/Ptychography.

The examples described herein relate to the development of software and methods for enabling
real-time ‘live’ subsampled image (or video frame) reconstruction via Bayesian dictionary
learning, aimed at use in commercial Electron Microscopy applications. The potential application
of this invention includes any raster-scan imaging system, such as an Electron Microscope, for
which scanning time is significant; by drastically reducing the quantity of measurements (and

thus time) needed for the formation of a complete image.

While exemplary methods according to the first aspect described herein generally relate to
electron microscopy images of samples, more generally, the method may be applied to any N-
dimensional image data, such as images of samples acquired using other analytical techniques.
Hence, for example, the first aspect provides a method of providing a dictionary by sparse
dictionary learning of N-dimensional image data of a first sample due to interaction of
electromagnetic radiation and/or particles with the sample. It should be understood that the steps
of the method according to the first aspect are implemented mutatis mutandis. In other words,
while the method according to the first aspect may relate to electron microscopy images of
samples, the method may be applied mutatis mutandis to other image methods, for example for
optical and X-ray techniques as well as images of basic physical properties such as band
structure. Hence, more generally, the first aspect provides a method of providing a dictionary
by sparse dictionary learning of N-dimensional image data comprising physical properties of a
chemical, material and/or biological system and images produced of those systems by

interaction with light, X-rays, protons, neutrons and/or electrons or by any other means.

Advantageously, the methods and apparatuses described herein may provide one or more of:

¢ An efficient software implementation of an online (mini-batch) Bayesian dictionary
learning algorithm requiring only subsampled data as its input, applicable to both CPU
and GPU operation.

¢ A novel method for efficient and adaptive sampling of image sub-regions (patches) and
rearrangement into a memory-efficient form appropriate for use in dictionary learning
and/or reconstruction algorithms, capable of being performed on-demand on both
CPU’s and GPU’s.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

5

A novel reconstruction method for displaying a ‘live’ (pre-)view of the reconstructed
image throughout the reconstruction process.

Additional abilities in reconstruction (due to the new method of operating on an image)
— strategic and/or adaptive sampling, multiple simultaneous dictionaries of different
sizes, separation of algorithmic workload across multiple processor nodes (CPU’s
and/or GPU’s)

Additionally: An approach to dictionary specialisation/generation e.g. use of simulated
STEM images for dictionary generation, previous master dictionary approaches, highly-
sampled initial frames (with higher damage) used to impaint further much more
subsampled frames (with minimal damage) i.e. a form of burn-in for the dictionary
learning algorithm as avenues to increase/retain reconstruction quality alongside the

above optimisation methods.

Compared with conventional approaches, the methods and apparatuses described herein may

provide one or more of:

Subsampled / ‘Blind’ Bayesian Dictionary learning provides a method of generating an
optimal dictionary for the given application, producing better quality reconstructions than
off-the-shelf transform dictionaries, wavelets and other previous methods.

A more efficient online implementation of this Dictionary Learning algorithm reduces the
time-to-solution down from hours to seconds/minutes (CPU), enabling its practical
application in the field of compressive sensing electron microscopy.

A novel method for memory-efficient and on-demand signal batch generation (i.e.
programmable access to any set of image sub-regions) allows for many new concepts
in dictionary learning and image reconstruction to be implemented; such as ‘live’
reconstructions, adaptive/strategic sampling of the target image (depending on the
results of the previous iteration) and multiple dictionary learning algorithms (using
dictionaries/sub-regions with different patch sizes) operating simultaneously on the
same image.

“Strategic” Sampling (when combined with a “subject detection” method e.g. particle
detection) allows for the most important sub-regions of an image (where the “subject” is
detected as present) to be reconstructed with higher frequency/priority/computational
time.

“Adaptive” Sampling (when combined with a reasonable quality metric) allows for the
most poorly reconstructed (or in other approaches, the most well reconstructed) regions
of an image to receive a higher priority on each subsequent frame.

Multiple dictionaries (with potentially/likely different sub-region/patch sizes) operating
simultaneously (especially when combined with the above) allows for different feature

sizes, attributes etc within an image to be reconstructed in parallel; for STEM, this may

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

6

be different parts of the same material in an image at different focus conditions,
orientations, or depths within the sample — improving reconstruction quality. (OR, using
the same patch sizes, this is a potential method of implementing split dictionary learning
such as high and low frequency features mentioned in the last patent)

¢ A continuous ‘live’ view of the learned dictionary provides insight into the success of the
algorithm as well as a way of optimising hyperparameters for producing the best quality
reconstruction.

¢ A novel method of generating a continuously updating preview of the reconstructed
image provides a means of performing even faster reconstructions by terminating the
algorithm early once an acceptable reconstruction quality has been reached. Previous
approaches typically require a full completion on an ‘epoch’ before any results may be
displayed.

¢ An even more efficient software implementation on a GPU using the same techniques
enables even faster iterations (milliseconds) for real-time ‘live’ STEM video

reconstruction.

Method

The first aspect provides the method of providing a dictionary by sparse dictionary learning of
N-dimensional image data, wherein N is a natural number greater than or equal to 3, the method
implemented by a computer comprising a processor and a memory, the method comprising:
defining an N-dimensional patch for the N-dimensional image data;

extracting N,,;., data sub-regions from the N-dimensional image data, using the defined N-
dimensional patch; and

providing the dictionary by dictionary learning using the extracted N,,,., data sub-regions.

In one example, N is greater than or equal to 2 (i.e. less than 3). In one example, N = 3. In one
preferred example, N = 4. In one example, N > 4, for example wherein N = 5,6,7,8,9,10,11,12

or more.

Dictionary

The method comprises providing the dictionary by dictionary learning using the extracted N, ;.

data sub-regions.

A dictionary of atoms can be used to sparsely represent image patches by representing each
overlapping patch as a linear combination of a small number of dictionary elements and their
corresponding coefficients. This allows for efficient representation and compression of image

data. The choice of dictionary atoms can be learned from the data using techniques such as

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

7

dictionary learning, and the resulting sparse representations can be used for tasks such as

denoising, compression, and image classification.

A typical form of dictionary representation (an underdetermined linear equation system) is shown
in Figure 1, where y represents a column matrix of target signals (image sub-regions), D
represents the dictionary of elements, and a represents a matrix of coefficients (or sparse

encodings for the dictionary of signals).

In one example, an algorithm for dictionary-learning is BPFA (Beta-Process Factor Analysis).
Other algorithms are known. BPFA may be used for subsampled image reconstruction by
exploiting the sparsity of natural images in a learned dictionary of elements. Given a set of
subsampled image patches, BPFA may estimate a set of latent variables that capture the
underlying structure of the data, including the sparse coefficients corresponding to the dictionary
elements. By leveraging a Bayesian framework, BPFA can infer the most likely set of sparse
coefficients that explain the observed data, while also accounting for noise and model

complexity.

Reshaping

In one example, the method comprises reshaping the N-dimensional image data. For example,
a 2D signal may be reshaped into a 1D column vector by appending all sequential columns (or
rows). This process can be extended into 3D, 4D and higher dimensions, thereby providing a
method of transforming higher-dimensional data into a column vector (the format necessary for
dictionary learning and sparse-coding) and a reverse method of returning to the higher-

dimensional shape.

Extracting Patches

The method comprises extracting N, ..., data sub-regions from the N-dimensional image data,

using the defined N-dimensional patch.

Conventionally, in order to perform methods such as dictionary learning and sparse-coding on
sub-regions of an image, a process of “unwrapping” the data would be involved, a method of

generating the entire ¥ matrix with a column for each and every possible overlapping sub-

region of the “image” (or perhaps some crop of it).

In the case of many libraries, such as Arrayfire (GPU Matrix Library in C++), this defaults to non-
overlapping patches, but is easily changed by altering the stride value (in this case, sx and sy).

The result for all of these libraries (C++, Python, Matlab etc) is essentially a very “fat” matrix ¥

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

8

with all of the sub-regions possible in the convolution. If subsets of this full ¥ matrix are needed

for batch operations, they are then extracted or accessed from this full Matrix stored in memory.

While the method of achieving this is a convolution, and so has many efficient implementations,
it quickly becomes very costly in terms of memory usage (for large M, such as 4K+ images or
hyperspectral data with a large number of channels), but also requires a significant amount of
time in computation, especially if expected to be performed in real-time (such as in the case of
live/ frame-by-frame reconstruction of a high-framerate, evolving input (with time). In many
cases, the full Y matrix is therefore not necessary to compute, such as in the intended case of
dictionary learning/sparse coding algorithms like BPFA which only operate on Npgien < Nigtar

overlapping subregions per iteration (i.e. at a given time).

To perform dictionary learning rapidly on many (often thousands) of arbitrary (programmatically
selected) sub-regions of an image, we must first index all possible patches (or sub-regions) and
then determine an efficient method of signal/pixel extraction (using any given set of patch
indices) from a potentially variable input source in order to form the necessary columns of the
signal matrix Y for a given batch. Each column of this matrix represents a vectorised sub-region

of an image to be used in the current dictionary-learning and/or sparse-coding batch/operation.

In the following notation (going forward) M;, B; etc. will refer to the /ength of the shape in the i"

dimension, and m;, b; etc. will refer to the last zero-based index in that dimension.

2D Example

Consider a (2D) arrangement of pixel data for an image of shape M = (M,, M,) and a patch shape
B = (By,B1).

There will be a total of (M, — B, + 1) x (M; — B, + 1) patches.

The patches may be indexed by the (in this case 2D) coordinates of the first contained/origin
pixel, or reduced furtherto a linear index P;,.q for indexing in system memory. All that is needed
to convert between a linear index and coordinates is the total dimensions of the pixel data, and

the shape of the patch/sub-region.

For patch index P (po, p.), the linear index Pjpeqr = (My — By + 1) X p, + py (ordering Column-
Major).

Denoting the patch index coordinates as P (py, p,), indexes (in 2D) therefore range between:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

9

0>py<My—By+1)and0 >p, < (M, —B;+1)
0 2PlinearS (MO_BO+1)X(M1_31+1)

This can be generalised to i dimension, where the index P of any single possible subregion will
lie within the range 0 = p; < M; — B; + 1. The set of all combinations of these valid indices in
each of the i dimensions form the total set of possible data sub-regions. Each patch index P
may also be converted to a pixel index within the full data shape M by using the known data

stride of the source data “cube” in memory.

3D Example

Consider a 3D arrangement of pixel data for an “image: of shape M = (M,, M, M,) and a patch
shape B = (B, , B, B,).

The term “image” here is vague as this third dimension could take multiple forms. Perhaps most

typically, m, can be considered the number of channels an image has, in the case of:

. Greyscale Images/Video (m, = 1 channel)
. RGB Images/Video (m, = 3 channels)
. Hyperspectral Image/Video (m, = nepanners)

But this could be something else entirely, from (m, = n,,..s) different colour space conversions
e.g. CMYK, or indexing of diffraction patterns in 4D-STEM.

For Greyscale, RGB Image and RGB Video, for example, it often (though not always) makes
sense to work with a dictionary with a vectorized column length equal to a patch of shape B
where (B, = M,), i.e. use a patch shape equal to the total number of channels (such as extracting
overlapping RGB patches from an image/video to work with an RGB dictionary). In most typical
implementations of DL / sparse-coding, BPFA, OMP etc., this is what is performed (usually by-
default due to the use of an unwrapping method (as described above) which is often limited to

this behaviour.

However, this will not always be the optimal case, such as for Hyperspectral Image/Video, or
any of the other uses of this dimension where you will (very likely) want to capture dictionary
elements significantly smaller than the total (B, < M,) that traverse the channel dimension in
the same way a 2D window traverses the image (as B, K M, and B; « M,). Therefore, for
generalising the implementation, we can assume (B, < M;) and consider the limited case of

(B, = M,) to be a special case (Figure 13).

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

10

4D Example

Consider a 4D arrangement of pixel data for an image of shape M = (M,, M,, M,, M3) and a patch
shape B = (B,, B;, B», B3).

This 4-th dimension typically represents the time dimension (i.e. frames of a video or live feed).
ms may also vary widely therefore depending on the application, from “buffering” only a few live
frames to storing and/or reconstructing a long video for analysis. Similarly to all of the other
dimensions, we also may want to set (B; « M;3) such that the patch shape along the 4
dimension (B;) is significantly smaller than the total data shape in the 4" dimension (M;), i.e. the
total number of frames available. This will allow for dictionary elements to be sparse-coded /

learned which reach across multiple frames.

For live/on-demand reconstructions (discussed later), this will often be set to (B; == 1), such as
to only reconstruct the current frame, however this may again be treated as a special case within

the implementation.

Generally, the patch index P (py, p1, p2, p3) has patch indices p; with all possible combinations of
the ranges:

0=2p,<sM;—B;+1
and a linear index:

0 >index < [['og3(M; —B;+1)

Extensions beyond 4D are entirely possible (though more challenging in current computational
libraries such as Arrayfire, OpenCV etc.), and would follow the pattern described above for
image shape M = (M,,M,, M, ... M,,_,), patch shape B = (B,, B, B, ... B,_1). and patch indexes
P = (po.P1.P2 -+ Pn-1)-

Extracting Patches in Real Time

In one example, extracting the N,..., data sub-regions from the N-dimensional image data,
using the defined N-dimensional patch comprises extracting the N, .., data sub-regions from
the N-dimensional image data, using the defined N-dimensional patch, in real-time, for example

as described below.

Indexing

In one example, the method comprises generating indices for the N-dimensional patch in the N-

dimensional image data and selecting indices from the generated indices; and

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

11

wherein extracting the N, ..., data sub-regions from the N-dimensional image data, using the
defined N-dimensional patch, comprises extracting the N,,;., data sub-regions from the N-

dimensional image data, using the defined N-dimensional patch, for the selected indices.

In this way, dictionary learning may be accelerated.

In one example, generating the indices for the N-dimensional patch in the N-dimensional image
data comprises generating all possible indices for the N-dimensional patch in the N-dimensional
image data. In this way, the N-dimensional image data is fully indexed for the N-dimensional

patch.

Selecting indices

In one example, selecting the indices from the generated indices comprises programmatically
selecting the indices from the generated indices. In one example, selecting the indices from the

generated indices comprises arbitrarily selecting the indices from the generated indices.

In one example, selecting the indices from the generated indices comprises randomly selecting
indices from the generated indices, shuffling and/or permuting the generated indices and/or

patterning the generated indices.

When it comes to selecting the patch indexes for the next batch operation, a batch operating

dictionary learning / sparse coding implementations may:

¢ Generate random indexes on-the-fly (size Npgecn).

e Shuffle or permute the full list of possible patch indices in some way at the
beginning (either linear or multi-dimensional) and select sequential batch indexes
from sub-sets of that large list (equivalent to a non-replacing draw (repeating) of
Size Npu:cn from all possible indexes).

¢ Use a predetermined/pre-calculated pattern (such as non-overlapping grids)
generated from the image and patch dimensions. (N .., Non-replacing draw,

repeating)

In one example, selecting the indices from the generated indices comprises biasedly selecting
indices from the generated indices.

For the cases of live multi-frame (i.e. video) reconstruction and/or constantly changing data
sources (such as a live feed of a camera, microscope, ...) there is the additional opportunity to

perform strategic selection of the patch indexes, such as:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

12

¢ Preferential selection (i.e. biased selection) of previously under-sampled locations
within a “/ive” Reconstruction

¢ Increased focus (i.e. biased selection) on regions of a reconstruction that appear
incomplete, blurry, poorly served by the dictionary, or are selected specifically as a
focus region by a user.

¢ Automatic reduction of sampling (i.e. biased selection) in areas deemed static, or

background information (such as large uniform and/or dark regions).

The index selection strategy (i.e. biased selection) may be a significant factor in the performance
of dictionary learning algorithms such as BPFA, K-SVD, etc., as well as the Real-Time

Reconstruction method described later.

Extraction Method

In order to efficiently extract n,,.., arbitrarily indexed target subregions of n-dimensional data
(which may be changing in real-time), it is preferable to minimise the amount of data (memory)
copied from the source (pixels contained within the input pixel data) to the destination (column
vectors of the reduced Y matrix for a given batch, i.e. the current step). It is therefore preferable
to determine the largest single unit of contiguous memory (consistent between both the source
and destination) contained within the input data cube. For many applications, especially CPU-
based mathematical libraries, data are stored in Row-Major format (Figure 17, left) (i.e. individual
rows of pixel data are stored as contiguous memory). However, for the case of most GPU-based
libraries, the data are stored as Column-Major, meaning the largest unit of contiguous memory
in the source are the “columns” of pixel data of length m,, and the largest consistent unit of

contiguous memory between the two are “columns” of pixel data of length b,,.

For this reason, the process of extracting a given patch/sub-region is further subdivided
(indexed) by contiguous “columns” of length b, in the source patch each mapping to the specific
rows within their corresponding global patch “column” in Y p4.n- The problem of copying all
required contiguous patch “columns” to the necessary rows within each “column” of Ypacn 1S
then parallelised over the cores/processing units of the target device (e.g. GPU) to maximise the

speed of extracting of all of the required pixel data to form the complete Y., matrix.

Yoacen NOW forms a reduced Y matrix, capable of serving either a dictionary learning, sparse
coding or reconstruction problem without ever having to calculate or store Y. As mentioned
before, the exact source pixel coordinates for each contiguous “column” are obtained via the

use of the source data stride information as follows:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

13

For an “image” of shape M = (M, M|, M,, M3), the “pixel stride” of the data (in memory) is:

S = (50,51,52,53) = (1, My, (Mg x My), (Mo X M; X M3))
ie. s, =1, i=0

s;=[I5*M;, i>0

For a given “patch” index P = (p,, p1, P2, P3), the corresponding memory pointer*/position (in a

contiguous source data) src” (i.e. the linear pixel index within M) can be calculated as:

S16" = Y (5% P) = (50 X Po) + (51 XP2) + (53 X) + (55 X 3)
In one example, the N,,.., data sub-regions exclude overlapping data sub-regions.

Sparse Coding

In one example, the method comprises sparse coding the extracted N, .., data sub-regions and
optionally, storing results of the sparse coding; and

wherein providing the dictionary by dictionary learning using the extracted N,,.., data sub-
regions comprises providing the dictionary by dictionary learning using the sparse coded Ny ;cn

data sub-regions.

Sparse coding is the process of determining the optimal weights/encodings of the dictionary
elements in D for each “column” of the input Y. This can be achieved with a whole range of
algorithms from BPFA/OMP/other greedy & non-greedy methods, Markov chains, Gibbs
sampling, or even the prediction of a neural network). It is also usually an essential step for most

of the algorithms described.

Dictionary learning steps in algorithms such as BPFA, K-SVD typically occur after a sparse

coding step, providing the source for the input encoding matrix a. Y is extracted as before.

Y is the (now compressed/estimated) solution to the sparse-coding result a with the dictionary

D,ie. Y =Da.

In one example, the dictionary comprises a set of p;, atoms. It should be understood that sparse
coding is a representation learning method which aims at finding a sparse representation of the
input data (also known as sparse coding) in the form of a linear combination of basic elements
as well as those basic elements themselves. These elements are called atoms and they

compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

14

be an over-complete spanning set. This problem setup also allows the dimensionality of the
signals being represented to be higher than the one of the signals being observed. These two
properties lead to having seemingly redundant atoms that allow multiple representations of the
same signal but also provide an improvement in sparsity and flexibility of the representation. In
one example, the set of p, atoms includes p, atoms, wherein p, is in a range from 4 to 4096,
preferably in a range from 16 to 2048, more preferably in a range from 64 to 1024, for example
128, 256 or 512.

Timestamps

In one example, storing results of the sparse coding comprises storing respective timestamps of

the sparse coding.

In many cases, for the purposes of subsequent image reconstruction, it may be very beneficial
to record additional information alongside the results of sparse-coding and dictionary-learning
algorithms. This could be anything, including recording real-time statistics, such as the popularity
of dictionary elements, or the average reconstruction error. Most likely, however, long-term
storage of the sparse coding results a will be required for any subsequent reconstruction of the
current frame. This is achieved by generating (zero-initialised or other) an A matrix, i.e. the full
o (weight/ coefficient) matrix for all possible overlapping regions of an image, now “windowed”
across up to 4-dimensions, and performing a parallel copy function (similar, and simpler) than
the one used for signal extraction, copying the rows of a4, into the rows of A corresponding

to the specific patch index P.

Forthe case of “live” / real-time / frame-by-frame reconstructions in particular, we can also record
another key piece of information, the timestamp at which the result (e.g. the sparse-coding of
each patch) was obtained for all indexes in the batch (in this case matching the rows of A
corresponding to the batch indexes). Whenever an operation is completed, the timestamp values

at the indexes of a list T of length N,,.,; are updated using the system clock (or otherwise).

Real-time Information Decay

In the context of a “live” / real-time / frame-by-frame reconstruction, we can make use of the
timestamps in T by applying a “decay” function with time. Given the timestamp now at the current
time (for any given reconstruction algorithm step), the “age” of the encoded information (in units
of time) for a given patch index P is determined by the time difference between the current

timestamp and the last recorded timestamp for that index:

agep = now —t,

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

15

From this “age” (for example, measured in milliseconds), we can perform any desired function,

to produce a decay value for each corresponding “row” in A, such as a half-life decay function:

agep
14

decay = fuecqy(agep) = G) where vy is a half-life in milliseconds

Or some form of exponential function:
decay = ef*29¢r where £ is any (likely negative) value

These examples are designed to add a “fade-out” to information recovered by all previous results
of sparse-coding iterations according to how long ago the results were obtained (e.g.
independently for each row in a full encoding matrix A). However f,..,, can really be any

arbitrary function to favour/select certain timestamps over others.

Electron microscopy data

In one example, the N-dimensional image data comprises and/or is electron microscopy data.
Reconstructing

The second aspect provides a method of reconstructing images from sparse N-dimensional
image data, wherein N is a natural number greater than or equal to 3, the method implemented
by a computer comprising a processor and a memory, the method comprising:

reconstructing an image from the sparse N-dimensional image data using a dictionary, for

example wherein the dictionary is provided according to the first aspect.

It should be understood that the image is reconstructed (i.e. synthesised, generated, calculated)
using the computer (i.e. in silico) rather than completely acquired, for example using an electron
microscope. In one example, the image comprises and/or is an electron microscopy image of a
sample and hence the image is due to the interaction of electrons with the sample, for example
as defined by obtained parameters of the electron microscopy and/or attributes of the sample.
Electron microscopy is known. Electron microscopy images are known, for example
transmission electron microscopy images, scanning electron microscopy images and electron
diffraction patterns. Typically, images such as electron microscopy images are stored in raw
data formats (binary, bitmap, TIFF, MRC, etc.), other image data formats (PNG, JPEG) or in

vendor-specific proprietary formats (dm3, emispec, etc.). The images may be compressed

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

16

(preferably, lossless compression though lossy compression there used to reduce file size by

5% to 10% while providing sub-2A reconstruction) or uncompressed.

TIFF and MRC file formats may be used for high quality storage of image data. Similar to MRCs,
TIFFs tend to be large in file size with 32-bit MRC and 32-bit TIFF image having similar or
identical file sizes. For TIFFs, the disk space may be reduced using native compression. The
most common TIFF compressions are the Lempel-Ziv-Welch algorithm, or LZW, and ZIP
compression. These strategies use codecs, or table-based lookup algorithms, that aim to reduce
the size of the original image. Both LZW and ZIP are lossless compression methods and so will
not degrade image quality. Two commonly used photography file formats that support up to 24-
bit colour are PNG (Portable Network Graphics) and JPEG (Joint Photographic Experts Group).
Electron micrographs typically are in grayscale so may be better suited to 8-bit file formats, which
are also used in print media. PNG is a lossless file format and can utilize LZW compression
similar to TIFF images. JPEG is a lossy file format that uses discrete cosine transform (DCT) to
express a finite sequence of data points in terms of a sum of cosine functions. JPEG format may
be avoided for archiving since quality may be lost upon each compression during processing.
JPEG has a range of compression ratios ranging from JPEG100 with the least amount of
information loss (corresponding to 60% of the original file size for the frame stack and 27% for
the aligned sum image) to JPEGO000 with the most amount of information loss (corresponding to

0.4% of the original file size for the frame stack and 0.4% for the aligned sum image).

In one example, the image is of size [M x N] pixels, wherein 240 < M,N < 10,000,000,
preferably 1,000 < M, N < 5,000,000, more preferably 2,000 < M, N < 4,000,000.

For example, high resolution electron images may have sizes from [512 x 512] pixels to

[10,000,000 x 10,000,000], depending on the stability of the electron microscope.

In one example, the image is grayscale, for example 8-bit, 16-bit, 24-bit or 32-bit, preferably 8-
bit.

The method is implemented by the computer comprising the processor and the memory.
Generally, the method may be performed using a single processor, such as an Intel (RTM) Core
i3-3227U CPU @ 1.90GHz or better, or multiple processors and/or GPUs. Suitable computers

are known.

It should be understood that the N-dimensional image data is a sparse set, wherein the total
area (and/or number of pixels) of, for example, a set of S sub-images, including a first sub-image
of size [a % b] pixels, is less than the area (and/or number of pixels) of the image of size [M x N]

pixels. In one example, the total area (and/or number of pixels) of the set of S sub-images,

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

17

including the first sub-image of size [a x b] pixels, is in a range from 0.1% to 90%, preferable in
a range from 1% to 75%, more preferably in a range from 10% to 50%, most preferably in a

range from 15% to 35% of the area (and/or number of pixels) of the image of size [M x N] pixels.

It should be understood that S is a natural number. In one example, the set of S sub-images
includes S sub-images, wherein S > 1, preferably wherein 1 < § < 10,000, more preferably
wherein 10 < S < 5,000, most preferably wherein 100 < § < 1,000. In one example, each sub-
image of the set of S sub-images has a size [a x b] pixels. Preferably, the sub-images are the
same size to maximise dispersion of sampling. In one example, each sub-image of the set of S
sub-images has a different size. In one example, the sub-images do not mutually overlap. In one
example, at least some of the sub-images mutually overlap. Preferably, the sub-images do not
mutually overlap since mutual overlapping decreases the efficiency and sparsity. In one
example, the sub-images are not mutually adjacent. In one example, at least some of the sub-
images are mutually adjacent. Preferably, the sub-images are not mutually adjacent since

mutual adjacency decreases the efficiency and sparsity.

Forming a Current (real-time) Reconstruction Frame

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises partially reconstructing the image from the sparse N-dimensional image

data using the dictionary.

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises fully reconstructing the image from the sparse N-dimensional image data

using the dictionary.

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises reconstructing the image from the sparse N-dimensional image data using

the dictionary in real-time.

When it comes to forming a reconstruction frame (at any given time), there are multiple possible

scenarios:

1. A “Full” Reconstruction with access to either a “full” ¥, or D and a “full” A (these are
equivalent as ¥ = DA). This is possible if the results of each a matrix have been stored
into the correct rows of an A matrix at the end of each batch operation. Additionally (as
the results of multiple different batches sparse coded at different times are now expected
to be contained within 4) we may use the timestamp/decay information discussed before

to preferentially display newer information (useful for “live” reconstructions).

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

18

2. A “Partial” Reconstruction which only has access to the current batch of signals Y pqcn
and/or Y., (along with generic shape information, such as patch shape B and the
overall dimensions of the data M). The reconstruction of this type of data will (by
definition) lead to an incomplete image, effectively displaying the live input and/or output
of the current batch operation, providing the most up-to-date information without any

effect (positive or negative) from the accumulation of previous results.

In the case of a “full” reconstruction, the process is analogous to performing a wrap function (in
a standard computational library), the opposite of an unwrap function discussed previously.
However, in all standard implementations of this method, each pixel is generated from an
average of all the values in ¥ that correspond to that coordinate (in effect, each signal / column
of Y is treated equally). This does not allow for the inclusion of a decay function to treat different
columns separately depending on the time of the result. For the case of “partial’ reconstructions,
there is no equivalent function within standard computational libraries, and so a completely

different approach must be devised.

For this reason, a new method of fast/parallel reconstruction was designed which could achieve
both scenarios — instead of transforming and averaging pixels within a ¥ matrix to form one
complete image, the reverse is performed. That is, each pixel coordinate within the output image
is indexed and parallelised over the cores/processes of a host/device (CPU/GPU), for each pixel,
all possible contributing values from the input (Y, ¥, ¥parcn, A, @parcn €1C.) are determined and/or
calculated (e.g. in the scenario where ¥ has not been generated in full, but inferred from D and
A) and potentially scaled by the corresponding decay factor. Once the process for all pixel

coordinates within the reconstruction has terminated, the “frame” is complete.

In one example, reconstructing the image from the sparse N-dimensional image data using the

dictionary comprises scaling contributing values to a pixel using a decay factor.

Determining the Pixel Value

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises determining pixel values, for example using all possible contributing values

from N-dimensional image data.

In one example, reconstructing the image from the sparse N-dimensional image data using the

dictionary comprises determining corresponding locations of pixel values.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

19

For example, for each pixel (in the reconstruction), once a set of valid patch locations (indexed
by P) have been determined, the corresponding pixel locations within each patch may also be

determined.

The z location of given pixel at coordinate x within a patch at coordinate P can therefore be

determined by the difference between P and x (in each arbitrary dimension i) using:
Zp =X —Dbi

And the linear index of z is determined similarly to the pixel indexes used to determine the

column src* location:

Z(SB * Z) = (Spo X 2o) + (Sp1 X 23) + (sp1 X 73) + (Sp3 X 23)
where Sj refers to the “stride” of data of shape B.

Reconstructions without a Y matrix

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises reconstructing the image from the sparse N-dimensional image data using

the dictionary without a Y matrix.

In many cases (such as dictionary learning), it may be necessary to calculate some formofa ¥

matrix (such as ¥,,,.;), usually needed to calculate an error metric:

Rparcn = Ypatch — Ybatcn

Inthese cases, the simplest approach to reconstructions is to use the ¥4, matrix in the manner
described above. However, there are situations (such as reconstructing an image from a pre-
learned dictionary without performing any dictionary learning step) which will never require a full
expansion of ¥, meaning that the time and memory cost of a reconstruction function may be
reduced by continuing to avoid its creation. As previously mentioned, ¥ .., Mmay be calculated
from D and a,.,. traditionally via the matrix multiplication of the two. A reconstruction
performed without access to a Y matrix must therefore perform this matrix multiplication for the
specific “row” of A relating to the patch in question. This can be achieved by stepping through
each value (indexed k = 0 ... K) within the corresponding row of A, if the value (encoding/weight)
is non-zero (i.e. activated), then multiply by the pixel value in the “column” of D indexed by k and

the “row” indexed by z;;,.4 for the given parallel process. The summation of each of these

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

20

coefficients and pixel values from D is equivalent to the (theoretical) pixel value in the ¥ matrix

at the position (Pynear: Ziinear)-

Once the pixel value (for a given P, x and z) in (real or theoretical) ¥ matrix has been determined,
it may then be multiplied by the decay ratio, and combined (summed) with each of the other
proposed pixels fromthe sparse coding of all other patches which contain the pixel at the position
x (each with different z coordinates), this provides the final value for the given pixel in the

reconstruction.

In other words, reconstructing the image may comprise reconstructing a value for each pixel in
the image (i.e. the pixel value in the ¥ matrix) by combining pixel values for the pixel in each of
the N,.., data sub-regions which contain the pixel. Determining a pixel value for the pixel in
each of the N, .., data sub-regions may comprise using a weight matrix A obtained through
sparse coding, wherein the weight matrix comprises a plurality of rows wherein each row
comprises encoding coefficients for one of the N,,;., data sub-regions. Pixel factors may be
obtained by multiplying each of the non-zero elements of the row of the weight matrix which
corresponds to the data sub-region with an element in a corresponding column in a dictionary
matrix D of the dictionary; and summing the obtained pixel factors to determine each pixel value.
That is, the pixel factors may be understood as corresponding to the contribution of each data
sub-region to the (final) pixel value. The element in a corresponding column in the dictionary
matrix may have a column index corresponding to the index of the non-zero element in the
corresponding row of the weight matrix and a row index corresponding to the location of a pixel

within the data sub-region.

The method may comprise for each pixel, determining a location for each of the N, ., data sub-
regions in the image, for example indexed by P as described above. The method may also
comprise determining a location for the pixel in each of the N, ..., data sub-regions, for example

finding the z location of given pixel at coordinate x.

Correcting for Pixel Contributions

In one example, reconstructing the image from the sparse N-dimensional image data using the

dictionary comprises correcting for pixel contributions.

As the pixel values proposed by each patch containing a given pixel are combined (summed)
together, a reconstructed frame must also be corrected for the variance in the count of these
contributions across the image. While most pixels (away from the edges of the image in each

dimension) will have the same number (|B]|) contributions, the leading and trailing edge effects

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

21

mean that pixels within b; pixels of any edge in the i*"* dimension will have a reduced count. In
2-dimensions, this would look as shown in Figure 28 for the given image and patch shapes, with
the integer values at each coordinate determining the number of contributions (i.e. the number
of valid patch indexes P for patches that contain the given pixel).

This contribution matrix can be calculated via only the use of M and B, and so (in the case of
full reconstructions), this correction step may be applied after the reconstruction is complete
(removing artifacts arising from the lower contribution at the edges of the image). However, in
the case of a “partial” or “live” reconstruction, it is not assumed that all possible patches have
contributed to the value returned for each pixel, therefore this contribution matrix must be
calculated during the reconstruction process. This can be achieved (without ever actually
generating the full contribution matrix separately) by adding a step to the parallelised pixel-by-
pixel reconstruction method — after the summation is complete (of all proposed pixel values at
different P locations, and potentially their corresponding decay value), the total is divided
(“averaged”) by the total count of valid patch locations that were determined (and were present

in the source, i.e. the (real or theoretical) Y or ¥yuecn)-

Similarity

In one example, the method comprises calculating a Structural Similarity Index (SSIM), a Peak
Signal-to-Noise Ratio (PSNR) and/or a mean squared error (MSE) of the image calculated with

respect to a fully sampled image.

In one example, a Structural Similarity Index (SSIM) of the image calculated with respect to the
fully sampled image is in a range from 0.01% to 60%, preferably in a range from 0.05% to 50%,
more preferably in a range from 0.1% to 20%, most preferably in a range from 0.5% to 10%.
Generally, the SSIM is a perceptual metric that quantifies the perceptual difference between two
similar images, as described herein in more detail, and thus the perceptual difference between
the reconstructed image and the image used for training the dictionary is relatively large. That

is, these images are perceptually different.

In one example, a Peak Signal-to-Noise Ratio (PSNR) of the image calculated with respect to
the fully sampled image is at most 60%, preferably at most 50%, more preferably at most 20%,
most preferably at most 10%. In one example, a Peak Signal-to-Noise Ratio (PSNR) of the
image calculated with respect to the fully sampled image is in a range from 0.01% to 60%,
preferably in a range from 0.05% to 50%, more preferably in a range from 0.1% to 20%, most
preferably in a range from 0.5% to 10%. PSNR estimates absolute error, as described herein in

more detail, and thus the absolute error between the reconstructed image and the image used

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

22

for training the first pre-learned dictionary is relatively large. That is, these images are

perceptually different.

In one example, a mean squared error (MSE) of the reconstructed image calculated with respect
to the fully sampled image is at most 60%, preferably at most 50%, more preferably at most
20%, most preferably at most 10%. In one example, a mean squared error (MSE) of the image
calculated with respect to the fully sampled image is in a range from 0.01% to 60%, preferably
in a range from 0.05% to 50%, more preferably in a range from 0.1% to 20%, most preferably in
a range from 0.5% to 10%. MSE estimates absolute error, as described herein in more detail,
and thus the absolute error between the reconstructed image and the image used for training

the dictionary is relatively large. That is, these images are perceptually different.

In one example, the method comprises transforming one or more atoms of the set of p, atoms
included in the dictionary. In one example, transforming comprises and/or is rotating, resizing,
translating and/or applying a transformation matrix to the set of p; atoms included in the first pre-

learned dictionary.

Reconstructing the image

In one example, reconstructing the image comprises reconstructing the image according to a
target property and/or a respective threshold thereof.

In one example, the target property of the image is a Structural Similarity Index (SSIM) and the
respective threshold thereof is at least 60%, preferably at least 70%, more preferably at least
80%, most preferably at least 90%. Generally, the SSIM is a perceptual metric that quantifies
the perceptual difference between two similar images, for example image quality degradation
caused by processing such as data compression or by losses in data transmission. As applied
to the method according to the second aspect, the perceptual difference results from
approximation of the reconstruction, according to the obtained respective thresholds of the one
or more target properties of the reconstructed image. The SSIM is a full reference metric that
requires two images from the same image capture: a reference image and a processed image.
As applied to the method according to the first aspect, the reference image is thus an ideal or
quasi-ideal reconstructed image, computed according to the target properties of the
reconstructed image (i.e. exact, without permissible thresholds) or an acquired image while the
processed image is the reconstructed image computed according to the obtained respective
thresholds of the one or more target properties of the reconstructed image. It should be
understood that a reference image is not provided for each reconstructed image; rather,
reference images are provided for representative reconstructed images and the computing

thereof to achieve the respective thresholds of the one or more target properties applied to

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

23

computing of other reconstructed images. In other words, the required computing so as to

achieve the respective thresholds of the one or more target properties is learned.

In one example, the target property of the reconstructed electron microscopy image is a Peak
Signal-to-Noise Ratio (PSNR) and the respective threshold thereof is at least 15 dB, preferably
at least 20 dB more preferably at least 25 dB, most preferably at least 30 dB. PSNR estimates
absolute error. PSNR estimates absolute error. PSNR is usually expressed as a logarithmic
quantity using the decibel scale. PSNR is commonly used to measure the quality of

reconstruction of lossy compression codecs (e.g., for image compression).

In one example, the target property of the reconstructed electron microscopy image is a mean
squared error (MSE) and the respective threshold thereof is at most 0.4, preferably at most 0.3,
more preferably at most 0.2, most preferably at most 0.1. MSE estimates absolute error. MSE
estimates absolute error. As MSE is derived from the square of Euclidean distance, the MSE is
always a positive value with the error decreasing as the error approaches zero. MSE may be
used either to assess a quality of a predictor (i.e. a function mapping arbitrary inputs to a sample
of values of some random variable), or of an estimator (i.e. a mathematical function mapping a

sample of data to an estimate of a parameter of the population from which the data is sampled).

PSNR and MSE both estimate absolute errors. In contrast, SSIM accounts for the strong
interdependencies between pixels, especially closely-spaced pixels. These inter-dependencies
carry important information about the structure of the objects in the image. For example,
luminance masking is a phenomenon whereby image distortions tend to be less visible in bright
regions, while contrast masking is a phenomenon whereby distortions become less visible where

there is significant activity or "texture" in the image. Hence, SSIM is preferred.

Resolution and sensitivity/contrast were previously standard STEM image quality metrics but
are subjective, being dependent on where measured. Hence, PSNR, MSE and SSIM are
preferred. Other quality metrics, including those not requiring a reference, are under

development and may be applied mutatis mutandis.

In one example, the method comprises selecting a subset of p; atoms from the set of p, atoms
included in the dictionary; and

wherein reconstructing the image comprises reconstructing the image from the sparse N-
dimensional image data using, for example only using, the sparse N-dimensional image data

and the selected subset of p; atoms included in the dictionary.

In this way, the method according to the first aspect provides a method of adaptive dictionary

element selection, in which undesired atoms are pruned (i.e. removed) from the dictionary,

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

24

thereby increasing an efficiency of reconstructing the image while not adversely affecting a

quality thereof.

In one example, selecting the subset of p; atoms from the set of p, atoms included in the first
dictionary comprises selecting the subset of p; atoms from the set of p, atoms included in the
dictionary based on residual energies of the respective atoms of the set of p, atoms, for example
wherein respective atoms of the subset of p; atoms have respective energies of at most or of at

least a threshold residual energy.

In this way, the subset of p; atoms are selected from the set of p, atoms based on the residual
energies of the respective atoms of the set of p, atoms, for example to reduce and/or minimise

affecting a quality of the reconstructed image.

Inpainting

In one example, reconstructing the image from the sparse N-dimensional image data using the
dictionary comprises inpainting. For example, an inpainting algorithm may be used to fill in gaps
in the sub-sampled data, with missing information inferred from the sub-sampled data through a
combination of a dictionary learning algorithm and a sparsity pursuit algorithm. A common class
of inpainting algorithms involve sparse dictionary learning. Dictionary learning algorithms
produce a dictionary of basic signal patterns, which is learned from the data, which is able to via
a sparse linear combination with a set of corresponding weights. This dictionary is then used in
conjunction with a sparse pursuit algorithm to inpaint the pixels of each overlapping patch which

when combined form a full image.

When using these techniques, the “dictionary of elements” represents a 2-dimensional matrix D
for which each column represents a single, vectorised (1D) dictionary element (also referred to
as an “atom”). However, the dictionary is typically used to represent data sub-regions of much

higher dimensions, as shown in Table 1.

Example Signal Shape Dimensionality
Spectral Information 1-Dimensional
Greyscale Image 2-Dimensional Height x Width
RGB Image (Figure 3) 3-Dimensional Height x Width x Channels
Greyscale Video 3-Dimensional Height x Width x Frames
e.g. (multi-frame) STEM
BF/ABF/ADF/HAADF data

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

25

RGB Video 4-Dimensional Height x Width x Channels x
e.g. (multi-frame) Frames
combinatorial acquisition /

colourised data

Hyperspectral Video 4-Dimensional Height x Width x Spectrum x
e.g. (multi-frame) Frames
EDS/EELS data

Series of Diffraction 4-Dimensional X % yx Height x Width

Patterns
e.qg. 4D-
STEM/Ptychography, EBSD
data

Table 1: Examples of higher-dimensional EM data types / multi-frame targets and their

corresponding dimensionality.

In the cases of higher dimensions, a method of vectorisation may be used to convert the higher-
dimensional data into a vector, such that it may form the column of a dictionary of elements. In
the simplest case (as shown below) the higher-dimensional data may be reshaped into a column
— however any such method (e.g. tensor decomposition) to form a 1-dimensional representation
of higher-dimensional data would suffice.

Controlling an electron microscope

The third aspect provides a method of controlling an electron microscope, the method
implemented, at least in part, by a computer comprising a processor and a memory, the method
comprising:

providing parameters of the electron microscopy;

obtaining first sparse N-dimensional electron microscopy data of a sample, wherein N is a
natural number greater than or equal to 3; and

reconstructing a first electron microscopy image of the sample from the first sparse N-

dimensional electron microscopy data, according to the second aspect.

In this way, the reconstructed image of the first sample is used to adapt, for example optimise,
the parameters of the electron microscopy in silico before subsequently acquiring the image of
the second sample using the electron microscope. In this way, a duty cycle of the electron
microscope and/or a quality of the acquired image may be enhanced while damage to the

sample reduced.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

26

In one example, the method comprises:

comparing the first electron microscopy image against thresholds of one or more target
properties of the first electron microscopy image;

adapting the parameters of the electron microscopy based on a result of the comparing; and
obtaining second sparse N-dimensional electron microscopy data of the sample, using the

adapted parameters.

In one example, the method comprises comparing the first electron microscopy image against
the thresholds of one or more target properties of the first electron microscopy image, for
example for validation thereof. Validation mitigates aberrations and/or artefacts due to the
electron microscopy, for example due to incorrect parameters of the electron microscopy,
operational errors and/or peculiarities of the sample. Optionally, based on a result of the
comparing, the parameters of the electron microscope are adapted and the second acquired
image of the sample is acquired, using the adapted parameters. That is, the parameters of the
electron microscope are optimised or refined for the sample. In this way a quality of the second

acquired image may be further enhanced while damage to the sample controlled.

In one example, adapting the parameters of the electron microscopy based on a result of the
comparing comprises:

adapting, for example iteratively, recursively and/or repeatedly, the parameters of the electron
microscopy, attributes of the sample and/or respective thresholds of the one or more target
properties of the first electron microscopy image; and

reconstructing the first electron microscopy image of size [M x N] pixels of the first sample using
the updated parameters of the electron microscopy and/or the adapted attributes of the first
sample, according to the updated respective thresholds of the one or more target properties of

the simulated electron microscopy image.

In this way, the second electron microscopy image is optimised since the parameters of the
electron microscopy, the attributes of the sample and/or the respective thresholds of the one or
more target properties of the electron microscopy image are updated, for example iteratively,
recursively and/or repeatedly, so as to improve the quality of the second electron microscopy
image within the respective thresholds of the one or more target properties and/or within a

computer resource budget, as described previously.

It should be understood that the acquired image of the sample is a measured image, for example

acquired using a detector of the electron microscope.

In one example, the method comprises:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

27

reconstructing a second electron microscopy image of the sample from the second sparse N-

dimensional electron microscopy data, according to the second aspect.

Parameters of electron microscopy

The method comprises obtaining parameters (also known as settings or acquisition parameters)
of the electron microscopy. In this way, the simulated electron microscopy image is computed
to correspond with an acquired electron microscopy image of the sample. In one example, the
parameters include: accelerating voltage, circle aberration coefficient Cs (which determines
beam size), ADF detector or equivalent. Other parameters are known. In one example, the
parameters additionally and/or alternatively include: condenser lens parameter (for example
source spread function, defocus spread function and/or zero defocus reference) and/or objective
lens parameters (for example source spread function, defocus spread function and/or zero
defocus reference). It should be understood that particular electron microscopes implement

particular parameters, subsets and/or combinations thereof.

Aftributes of sample

Generally, the attributes are and/or represent physical and/or chemical characteristics of the
sample. In one example, the attributes include chemical composition, structure, crystallography,
lattice parameters, thickness, orientation with respect to electron beam and/or microstructure.
Other attributes are known. For example, examples of other attributes include, but are not limited
to, regional intensity maxima, edges, periodicity, regional chemical composition, or combinations
thereof. For example, intensity maxima in the image data may represent peaks associated with
particles, molecules, and/or atoms. Edges in the image data may represent particle boundaries,
grain boundaries, crystalline dislocations, stress/strain boundaries, interfaces between different
compositions/crystalline structures, and combinations thereof. Periodicity in the image data may
be related to crystallinity and/or patterned objects. Computational analysis may be performed
on the image data including, but are not limited to, a theoretically optimal sparsifying transform
technique, an edge detection technique, a Gaussian mixture regression technique, a summary
statistics technique, a measures of spatial variability technique, an entropy technique, a matrix
decomposition information technique, a peak finding technique, or a combination thereof.
Typically, the sample has a thickness of 1 to 20 unit cells. Generally, a patch is at least 2x2
pixels. In one example, the sample is crystalline. In one example, the sample is non-crystalline

e.g. amorphous. Non-crystalline samples may be simulated mutatis mutandis.

Computer, computer program, non-transient computer-readable storage medium

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

28

The fourth aspect provides a computer comprising a processor and a memory configured to
implement a method according to any of the first aspect, the second aspect and/or the third
aspect, a computer program comprising instructions which, when executed by a computer
comprising a processor and a memory, cause the computer to perform a method according to
any of the first aspect, the second aspect and/or the third aspect or a non-transient computer-
readable storage medium comprising instructions which, when executed by a computer
comprising a processor and a memory, cause the computer to perform a method according to
any of the first aspect, the second aspect and/or the third aspect.

Electron microscope

The fifth aspect provides an electron microscope including a computer comprising a processor
and a memory configured to implement a method according to any of the first aspect, the second

aspect and/or the third aspect.

Definitions

Throughout this specification, the term “comprising” or “comprises” means including the
component(s) specified but not to the exclusion of the presence of other components. The term
“consisting essentially of” or “consists essentially of’ means including the components specified
but excluding other components except for materials present as impurities, unavoidable
materials present as a result of processes used to provide the components, and components
added for a purpose other than achieving the technical effect of the invention, such as

colourants, and the like.

The term “consisting of” or “consists of” means including the components specified but excluding

other components.

Whenever appropriate, depending upon the context, the use of the term “comprises” or
“‘comprising” may also be taken to include the meaning “consists essentially of’ or “consisting
essentially of’, and also may also be taken to include the meaning “consists of’ or “consisting
of”.

The optional features set out herein may be used either individually or in combination with each
other where appropriate and particularly in the combinations as set out in the accompanying
claims. The optional features for each aspect or exemplary embodiment of the invention, as set
out herein are also applicable to all other aspects or exemplary embodiments of the invention,
where appropriate. In other words, the skilled person reading this specification should consider

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

29

the optional features for each aspect or exemplary embodiment of the invention as

interchangeable and combinable between different aspects and exemplary embodiments.

Brief description of the drawings

For a better understanding of the invention, and to show how exemplary embodiments of the
same may be brought into effect, reference will be made, by way of example only, to the
accompanying diagrammatic Figures, in which:

Figure 1 shows a typical form of dictionary representation (an underdetermined linear equation
system), where y represents a column matrix of target signals (image sub-regions), D represents
the dictionary of elements, and a represents a matrix of coefficients (or sparse encodings for the
dictionary of signals).

Figure 2 shows the system of linear equations needed to be solved in the image inpainting
process (for simplicity, the binary ‘mask’ ¢; for the given patch i is shown as an elementwise
multiplication upon x;).

Figure 3 shows a representation of RGB pixel data.

Figure 4 shows reshaping of a 2D signal into a 1D column vector.

Figure 5 shows reshaping of a 3D signal into a 2D column vector.

Figure 6 shows reshaping of a 4D signal into a plurality of 2D column vectors, according to an

exemplary embodiment.

Figure 7 shows unwrap explanation from the Arrayfire Library Docs.

Figure 8 shows a very “fat” matrix Y with all of the sub-regions possible in the convolution.

Figure 9 schematically depicts 2D pixel data and a 2D patch, according to an exemplary

embodiment.

Figure 10 schematically depicts indexing of the 2D pixel data for the 2D patch of Figure 8,

according to an exemplary embodiment.

Figure 11 schematically depicts 3D pixel data, according to an exemplary embodiment.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

30

Figure 12 schematically depicts RGB pixel data, according to an exemplary embodiment.

Figure 13 schematically depicts indexing of the 3D pixel data of Figure 11, according to an

exemplary embodiment.

Figure 14 schematically depicts 4D pixel data, according to an exemplary embodiment.

Figure 15 schematically depicts indexing (first patch) of the 4D pixel data of Figure 13, according
to an exemplary embodiment. An illustration of a 4D patch of shape B = (By, B,, B2, B;) within
a 4D target data source of shape M = (My,M,, M,, M;) where 0 < B; < M, (for each dimension
i). Lower case variables m; denote the last (zero-based) index in the i*" dimension. Cells shown
in grey signify valid patch indexes (indexed by the location of the first contained cell) for the

given patch shape (shown in blue).

Figure 16 schematically depicts indexing (last patch) of the 4D pixel data of Figure 13, according

to an exemplary embodiment.

Figure 17a schematically depicts extracting for CPU data, according to an exemplary

embodiment.

Figure 17b schematically depicts extracting for GPU data, according to an exemplary

embodiment.

Figure 18 schematically depicts a 3D patch, according to an exemplary embodiment.

Figure 19 schematically depicts sparse coding, according to an exemplary embodiment.

Figure 20 schematically depicts dictionary learning, according to an exemplary embodiment.

Figure 21 schematically depicts reconstructing a 2D image, according to an exemplary

embodiment.

Figure 22 schematically depicts reconstructing a 2D image (leading edge case), according to an
exemplary embodiment.

Figure 23 schematically depicts reconstructing a 2D image (trailing edge case), according to an

exemplary embodiment.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

31

Figure 24 schematically depicts reconstructing a 2D image (determining pixel value), according

to an exemplary embodiment.

Figure 25 schematically depicts reconstructing a 2D image (determining pixel value), according

to an exemplary embodiment.

Figure 26 schematically depicts reconstructing a 2D image, according to an exemplary
embodiment.

Figure 27 schematically depicts reconstructing without a Y matrix, according to an exemplary

embodiment.

Figure 28 schematically depicts correcting for pixel values, according to an exemplary

embodiment.

Figure 29 schematically depicts a method according to an exemplary embodiment.

Figure 30 schematically depicts a method according to an exemplary embodiment.

Figure 31 shows a block diagram for implementing methods according to exemplary

embodiments.

Detailed Description of the Drawings

Dictionary Representations

A dictionary of atoms can be used to sparsely represent image patches by representing each
overlapping patch as a linear combination of a small number of dictionary elements and their
corresponding coefficients. This allows for efficient representation and compression of image
data. The choice of dictionary atoms can be learned from the data using techniques such as
dictionary learning, and the resulting sparse representations can be used for tasks such as

denoising, compression, and image classification.

The typical form of dictionary representation (an underdetermined linear equation system) is
shown in Figure 1, where y (also termed a y matrix) represents a column matrix of target signals
(image sub-regions), D represents the dictionary of elements, and a represents a matrix of

coefficients (or sparse encodings for the dictionary of signals).

WO 2024/201023 PCT/GB2024/050814

10

15

20

32

An example of an algorithm for dictionary-learning is BPFA (Beta-Process Factor Analysis),
which can be used for subsampled image reconstruction by exploiting the sparsity of natural
images in a learned dictionary of elements. Given a set of subsampled image patches, BPFA
can estimate a set of latent variables that capture the underlying structure of the data, including
the sparse coefficients corresponding to the dictionary elements. By leveraging a Bayesian
framework, BPFA can infer the most likely set of sparse coefficients that explain the observed

data, while also accounting for noise and model complexity.

For each target signal (i.e. column of y, shown as a vector v; in Figure 2) the inpainting problem
may be represented as shown in Figure 2. The vector v; may also be termed a subsampled
patch i. Figure 2 shows that the matrix D has dimensions of n=b? by K with each column of the
matrix labelled do, d1, ... , dk. Each column a; of the matrix a contains K coefficients labelled ao,
a1, ..., ak There is also a binary patch mask djand a noise matrix g/ for each vector v;. The
matrix D multiplied by the column a; generates a fully sampled patch i which is represented by

vector x;.

When using these techniques, the “dictionary of elements” represents a 2-dimensional matrix D
for which each column represents a single, vectorised (1D) dictionary element (also referred to
as an “atom”). However, the dictionary is typically used to represent data sub-regions of much
higher dimensions, as shown in Table 1.

Example Signal Shape Dimensionality
Spectral Information 1-Dimensional
Greyscale Image 2-Dimensional Height x Width
RGB Image (Figure 3) 3-Dimensional Height (Mo) x Width (M1) x
Channels (M2)
Greyscale Video 3-Dimensional Height x Width x Frames
e.g. (multi-frame) STEM
BF/ABF/ADF/HAADF data
RGB Video 4-Dimensional Height x Width x Channels x
e.g. (multi-frame) Frames

combinatorial acquisition /

colourised data

Hyperspectral Video 4-Dimensional Height x Width x Spectrum x
e.g. (multi-frame) Frames
EDS/EELS data

Series of Diffraction 4-Dimensional X % yx Height x Width

Patterns

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

33

e.qg. 4D-
STEM/Ptychography, EBSD
data

Table 1: Examples of higher-dimensional EM data types / multi-frame targets and their

corresponding dimensionality.

In the cases of higher dimensions, a method of vectorisation may be used to convert the higher-
dimensional data into a vector, such that it may form the column of a dictionary of elements. In
the simplest case (as shown below) the higher-dimensional data may be reshaped into a column
— however any such method (e.g. tensor decomposition) to form a 1-dimensional representation
of higher-dimensional data would suffice.

2D Example

As shown in Figure 4, any 2D signal (height bo, width b1 and elements (a, b, ¢, ...0)) may be
reshaped into a 1D column vector by appending all sequential columns (or rows). In other words,
the second column of the 2D signal (d, e, f) is appended to the first column (a, b, ¢), the third
column (g, h, i) is appended after the second column and so on for all five columns. The choice
of appending column-wise in this case is for compatibility with GPU libraries, discussed later,

however both approaches are valid and equivalent (given an appropriate reverse transform).

2D & 3D Examples

This process can be extended into 3D (Figure 5), and 4D (Figure 6), providing a method of
transforming higher-dimensional data into a column vector (the format necessary for dictionary
learning and sparse-coding) and a reverse method of returning to the higher-dimensional shape.
In Figure 5, the 3D patch has dimensions (height bo, width b1 and depth bz). In this example, the
height and depth are equal to two and the width is equal to four so there are elements and
elements (a, b, ¢, ...v, w, X). In Figure 6, the fourth dimension is the use of multiple 3D patches
and each 3D patch is similar to those shown in Figure 5. Thus, there are 24 elements (a, b, c,
...V, w, X) in the first patch, 24 elements (y, z, ab, ..., at, au, av) in the second patch, and 24

elements (aw, ax, ay, ..., br, bs, bt) in the third patch.

Extracting Patches (4D)

Traditionally, in order to perform methods such as dictionary learning and sparse-coding on sub-

regions of an image, a process of “unwrapping” the data would be involved (Figure 7), a

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

34

method of generating the entire ¥ matrix with a column for each and every possible overlapping

sub-region of the “image” (or perhaps some crop of it).

In the case of many libraries, such as Arrayfire (GPU Matrix Library in C++), this defaults to non-
overlapping patches, but is easily changed by altering the stride value (in this case, sx and sy).
The result for all of these libraries (C++, Python, Matlab etc) is essentially a very “fat” matrix ¥
with all of the sub-regions possible in the convolution (Figure 8). As shown in Figure 8, the matrix
Y contains relatively small vectorised patch length |B| compared to image size although |B]| is
typically much larger than K. There are many (1: 100s: 1000s) thousands of patches. A
represents the full weight/coefficient matrix for all possible overlapping regions of an image
(using a 2D sliding window). If subsets of this full ¥ matrix are needed for batch operations,

they are then extracted or accessed from this full Matrix stored in memory.

While the method of achieving this is a convolution, and so has many efficient implementations,
it quickly becomes very costly in terms of memory usage (for large M, such as 4K+ images or
hyperspectral data with a large number of channels), but also requires a significant amount of
time in computation, especially if expected to be performed in real-time (such as in the case of
live/ frame-by-frame reconstruction of a high-framerate, evolving input (with time). In many
cases, the full Y matrix is therefore not necessary to compute, such as in the intended case of
dictionary learning/sparse coding algorithms like BPFA which only operate on Nygien & Niorar

overlapping subregions per iteration (i.e. at a given time).

To perform dictionary learning rapidly on many (often thousands) of arbitrary (programmatically
selected) sub-regions of an image, we must first index all possible patches (or sub-regions) and
then determine an efficient method of signal/pixel extraction (using any given set of patch
indices) from a potentially variable input source in order to form the necessary columns of the
signal matrix Y for a given batch. Each column of this matrix represents a vectorised sub-region

of an image to be used in the current dictionary-learning and/or sparse-coding batch/operation.

2D Example

In the following notation (going forward) M;, B; etc. will refer to the /ength of the shape in the i"

dimension, and m;, b; etc. will refer to the /ast zero-based index in that dimension.

e.g.Mi=10,mi=Mi_1=9

Consider the (2D) arrangement of pixel data for an image of shape M = (M,, M,) (Figure 9). In
this case, M = (10 x 10). For the patch shape (Figure 9), B = (B, , B,). In this case, B = (3, 4).

10

15

20

25

30

35

WO 2024/201023 PCT/GB2024/050814

35

There will be a total of:
(My—By+1)x (M, —B,+1) patches = (10—-3+1)x (10—-4+ 1) = 56 patches.

The patches may be indexed by the (in this case 2D) coordinates of the first contained/origin
pixel, or reduced furtherto a linear index Py, .4, for indexing in system memory. All that is needed
to convert between a linear index and coordinates is the total dimensions of the pixel data, and

the shape of the patch/sub-region.

For patch index P (po, p.), the linear index Pjpeqr = (My — By + 1) X p, + po (ordering Column-

Major) is shown in Figure 10.

Denoting the patch index coordinates as P (py, p,), indexes (in 2D) therefore range between:

0>py<My—By+1)and0 >p, < (M, —B;+1)
0 2PlinearS (MO_BO+1)X(M1_31+1)

In this case, the last possible patch index is therefore (7,6) and the corresponding linear index
is [55].

This can be generalised to i dimension, where the index P of any single possible subregion will
lie within the range 0 = p; < M; — B; + 1. The set of all combinations of these valid indices in
each of the i dimensions form the total set of possible data sub-regions. Each patch index P
may also be converted to a pixel index within the full data shape M by using the known data

stride of the source data “cube” in memory.

3D Example

Consider the 3D arrangement of pixel data shown in Figure 11 for an “image: of shape M =
(M,, M, M,) and a patch shape B = (B, ,B,, B,).

The term “image” here is vague as this third dimension could take multiple forms. Perhaps most

typically, m, can be considered the number of channels an image has, in the case of:

. Greyscale Images/Video (m, = 1 channel)
. RGB Images/Video (m, = 3 channels)
. Hyperspectral Image/Video (m, = N uanneis)

But this could be something else entirely, from (m, = n,4,,..s) different colour space conversions
e.g. CMYK, or indexing of diffraction patterns in 4D-STEM.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

36

For Greyscale, RGB Image (Figure 12) and RGB Video, it often (though not always) makes
sense to work with a dictionary with a vectorized column length equal to a patch of shape B
where (B, = M,), i.e. use a patch shape equal to the total number of channels (such as extracting
overlapping RGB patches from an image/video to work with an RGB dictionary). In most typical
implementations of DL / sparse-coding, BPFA, OMP etc., this is what is performed (usually by-
default due to the use of an unwrapping method (as described above) which is often limited to

this behaviour.

However, this will not always be the optimal case, such as for Hyperspectral Image/Video, or
any of the other uses of this dimension where you will (very likely) want to capture dictionary
elements significantly smaller than the total (B, < M,) that traverse the channel dimension in
the same way a 2D window traverses the image (as B, < M, and B, « M,). This is shown in
Figure 13 which shows the first and last 3D patch with each patch having dimensions (B, , By, B,).
Therefore, for generalising the implementation, we can assume (B, « M,) and consider the

limited case of (B, = M,) to be a special case.

4D Example

Consider the 4D arrangement of pixel data for an image of shape M = (M,, M;,M,, M) and a
patch shape B = (B,, By, B,, B3) (Figure 14).

This 4-th dimension typically represents the time dimension (i.e. frames of a video or live feed).
my may also vary widely therefore depending on the application, from “buffering” only a few live
frames to storing and/or reconstructing a long video for analysis. Similarly to all of the other
dimensions, we also may want to set (B; « M;3) such that the patch shape along the 4
dimension (B;) is significantly smaller than the total data shape in the 4" dimension (M), i.e. the
total number of frames available. This will allow for dictionary elements to be sparse-coded /

learned which reach across multiple frames.

For live/on-demand reconstructions (discussed later), this will often be set to (B; == 1), such as
to only reconstruct the current frame, however this may again be treated as a special case within

the implementation.

Generally, (Figure 15 and Figure 16) the patch index P (p,, p,,p,,p3) has patch indices p; with
all possible combinations of the ranges:

0=2p;<M;—B;+1
and a linear index:

0 >index < [[ios(M; —B; +1)

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

37

Extensions beyond 4D are entirely possible (though more challenging in current computational
libraries such as Arrayfire, OpenCV etc.), and would follow the pattern described above for

image shape M = (M,,M, M, ... M,,_,), patch shape B = (B,,B,,B, ... B,_;). and patch indexes
P = (Po,p1, P2, - Pn—1)-

Real-Time Signal Extraction

Programmatic Patch Indexing

When it comes to selecting the patch indexes for the next batch operation, a batch operating

dictionary learning / sparse coding implementations may:

. Generate random indexes on-the-fly (size Nyg;cn)-

. Shuffle or permute the full list of possible patch indices in some way at the beginning
(either linear or multi-dimensional) and select sequential batch indexes from sub-sets of that
large list (equivalent to a non-replacing draw (repeating) of size N, ., from all possible
indexes).

. Use a predetermined/pre-calculated pattern (such as non-overlapping grids) generated

from the image and patch dimensions. (Npq:cn NON-replacing draw, repeating)

For the cases of live multi-frame (i.e. video) reconstruction and/or constantly changing data
sources (such as a live feed of a camera, microscope, ...) there is the additional opportunity to

perform strategic selection of the patch indexes, such as:

. Preferential selection of previously under-sampled locations within a “/ive” reconstruction
. Increased focus on regions of a reconstruction that appear incomplete, blurry, poorly
served by the dictionary, or are selected specifically as a focus region by a user.

. Automatic reduction of sampling in areas deemed static, or background information

(such as large uniform and/or dark regions).

The index selection strategy is a significant factor in the performance of dictionary learning
algorithms such as BPFA, K-SVD, etc., as well as the Real-Time Reconstruction method
described later.

Extraction Method

In order to efficiently extract n,,.., arbitrarily indexed target subregions of n-dimensional data

(which may be changing in real-time), it is preferable to minimise the amount of data (memory)

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

38

copied from the source (pixels contained within the input pixel data) to the destination (column
vectors of the reduced Y matrix for a given batch, i.e. the current step). It is therefore preferable
to determine the largest single unit of contiguous memory (consistent between both the source
and destination) contained within the input data cube. For many applications, especially CPU-
based mathematical libraries, data are stored in Row-Major format (Figure 17a) (i.e. individual
rows of pixel data are stored as contiguous memory). However, for the case of most GPU-based
libraries, the data are stored as Column-Major (Figure 17b), meaning the largest unit of
contiguous memory in the source are the “columns” of pixel data of length m,, and the largest

consistent unit of contiguous memory between the two are “columns” of pixel data of length b,.

For this reason, the process of extracting a given patch/sub-region is further subdivided
(indexed) by contiguous “columns” of length b, in the source patch each mapping to the specific
rows within their corresponding global patch “column” in Yp...n. The problem of copying all
required contiguous patch “columns” to the necessary rows within each “column” of ¥ p4.0p iS
then parallelised over the cores/processing units of the target device (e.g. GPU) to maximise the

speed of extracting of all of the required pixel data to form the complete Y., matrix.
Yoaten NOW forms a reduced Y matrix, capable of serving either a dictionary learning, sparse
coding or reconstruction problem without ever having to calculate or store Y. As mentioned
before, the exact source pixel coordinates for each contiguous “column” are obtained via the
use of the source data stride information as follows:
For an “image” of shape M = (M, M|, M,, M3), the “pixel stride” of the data (in memory) is:

S = (50,51,52,53) = (1, Mo, (Mo X My), (Mo X My X M3))

ie. s5; =1, i=0

s;=[I5*M;, i>0

For a given “patch” index P = (py, p1, P2, P3), the corresponding memory pointer*/position (in a

contiguous source data) src” (i.e. the linear pixel index within M) can be calculated as:
sre’ = Z(S # P) s {5 ma) & (st) 4 08y i (o Xopg)

3D Example
Figure 18 shows the case of a 3D patch of shape:

B = (bO'bl'bZ) = (3;4;2)

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

39

Each column (region of contiguous memory) is denoted by a different colour, representing the
regions of memory that may be copied in a single memcpy call (C++/CUDA copy command).

(In practice, b, is much larger than this diagram, and represents a much more efficient length
relative to the full shape of the patch, increasingly so as the patch shape increases in the first

dimension)

Parallel Signal Extraction Logic (in Theory)

For patch index P.

For contiguous column ¢ within the patch:

e Determine src* from P and ¢
e Copy “column” of length b, from src* to destination rows in Y, ..., “‘column’

determined by P

Parallel Signal Extraction Logic (in Practice)

For global core/processing index 8 (optimised for device-specific performance):

e Determine P and ¢ from 8
e Determine src* from P and ¢
o Copy “column” of length b, from src* to destination rows in ¥4, “column’”

determined by P

The Results of Batch Operations

Sparse Coding

Sparse coding is the process of determining the optimal weights/encodings of the dictionary
elements in D for each “column” of the input Y. This can be achieved with a whole range of
algorithms from BPFA/OMP/other greedy & non-greedy methods, Markov chains, Gibbs
sampling, or even the prediction of a neural network). It is also usually an essential step for most

of the algorithms described.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

40

Any typical batch operation of sparse coding (Figure 19) therefore typically takes in a Y matrix
(in this case Y1) and a D matrix (dictionary), producing the approximate/ optimised encoding

matrix a (i.e. aparen)-

Dictionary Learning

Dictionary learning steps in algorithms such as BPFA, K-SVD typically occur after a sparse

coding step, providing the source for the input encoding matrix a. Y is extracted as before.

Y is the (now compressed/estimated) solution to the sparse-coding result a with the dictionary

D,ie. Y =Da.

Any typical batch operation of dictionary learning (Figure 20) therefore typically takes in a Y
matrix, usually a ¥ matrix, and the result of a batch of sparse coding a, and returns an improved

suggestion for the dictionary matrix D.

Storing the Results for a Time-Dependent Reconstruction

In many cases, for the purposes of subsequent image reconstruction, it may be very beneficial
to record additional information alongside the results of sparse-coding and dictionary-learning
algorithms. This could be anything, including recording real-time statistics, such as the popularity
of dictionary elements, or the average reconstruction error. Most likely, however, long-term
storage of the sparse coding results a will be required for any subsequent reconstruction of the
current frame. This is achieved by generating (zero-initialised or other) an A matrix, i.e. the full
o (weight/ coefficient) matrix for all possible overlapping regions of an image, now “windowed”
across up to 4-dimensions, and performing a parallel copy function (similar, and simpler) than
the one used for signal extraction, copying the rows of a,,,., into the rows of A corresponding

to the specific patch index P.

Forthe case of “live” / real-time / frame-by-frame reconstructions in particular, we can also record
another key piece of information, the timestamp at which the result (e.g. the sparse-coding of
each patch) was obtained for all indexes in the batch (in this case matching the rows of A
corresponding to the batch indexes). Whenever an operation is completed, the timestamp values

at the indexes of a list T of length N,,,,, are updated using the system clock (or otherwise).

Real-time Information Decay

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

41

In the context of a “live” / real-time / frame-by-frame reconstruction, we can make use of the
timestamps in T by applying a “decay” function with time. Given the timestamp now at the current
time (for any given reconstruction algorithm step), the “age” of the encoded information (in units
of time) for a given patch index P is determined by the time difference between the current

timestamp and the last recorded timestamp for that index:
agep = now — tp

From this “age” (for example, measured in milliseconds), we can perform any desired function,

to produce a decay value for each corresponding “row” in A, such as a half-life decay function:

agep
decay = fuecqy(agep) = (%) ¥ where y is a half-life in milliseconds

Or some form of exponential function:

decay = ef* %3¢ where £ is any (likely negative) value

These examples are designed to add a “fade-out” to information recovered by all previous results
of sparse-coding iterations according to how long ago the results were obtained (e.g.
independently for each row in a full encoding matrix A). However f;..,, can really be any

arbitrary function to favour/select certain timestamps over others.

Forming the Current (real-time) Reconstruction Frame

When it comes to forming a reconstruction frame (at any given time), there are multiple possible

scenarios:

1. A “Full” Reconstruction with access to either a “full” ¥, or D and a “full” A (these are
equivalent as ¥ = DA). This is possible if the results of each a matrix have been stored
into the correct rows of an A matrix at the end of each batch operation. Additionally (as
the results of multiple different batches sparse coded at different times are now expected
to be contained within 4) we may use the timestamp/decay information discussed before

to preferentially display newer information (useful for “live” reconstructions).

2. A “Partial” Reconstruction which only has access to the current batch of signals Y qcn
and/or Y., (along with generic shape information, such as patch shape B and the
overall dimensions of the data M). The reconstruction of this type of data will (by

definition) lead to an incomplete image, effectively displaying the live input and/or output

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

42

of the current batch operation, providing the most up-to-date information without any

effect (positive or negative) from the accumulation of previous results.

In the case of a “full” reconstruction, the process is analogous to performing a wrap function (in
a standard computational library), the opposite of an unwrap function discussed previously.
However, in all standard implementations of this method, each pixel is generated from an
average of all the values in ¥ that correspond to that coordinate (in effect, each signal / column
of Y is treated equally). This does not allow for the inclusion of a decay function to treat different
columns separately depending on the time of the result. For the case of “partial’ reconstructions,
there is no equivalent function within standard computational libraries, and so a completely

different approach must be devised.

For this reason, a new method of fast/parallel reconstruction was designed which could achieve
both scenarios — instead of transforming and averaging pixels within a ¥ matrix to form one
complete image, the reverse is performed. That is, each pixel coordinate within the output image
is indexed and parallelised over the cores/processes of a host/device (CPU/GPU), for each pixel,
all possible contributing values from the input (Y, ¥, ¥parcn, A, @parcn €1C.) are determined and/or
calculated (e.g. in the scenario where ¥ has not been generated in full, but inferred from D and
A) and potentially scaled by the corresponding decay factor. Once the process for all pixel

coordinates within the reconstruction has terminated, the “frame” is complete.

2D Example

Consider the following example (Figure 21) in 2-dimensions for an image of shape M (My, M,) =
(10,10) and a patch shape B (B,, B,) = (3,4). Available to the reconstruction algorithm (in this

example) is a “full” ¥ matrix, containing the sparse coding results for every possible B, x B,

window of the data indexed by the (top left) starting pixel location P = (py, p1)-

Selecting the pixel coordinate x = (x,,x;) = (4,4) to reconstruct, we see that the theoretical set

of P (patch) indexes that contain the pixel are in the range:

Xo—by Spo<x 4-2(=2)<p, <4

xp—b Ep1<x; 4-3(=1D<p,<4

i.e. this set would be P(2,1) : P (4,4):

{P@2,1), P@3,1), P(4,1), P(2,2), P(3,2), P(4,2), P(2,3), P(3,3), P(4,3), P(2,4), P(3,4), P(4,4) }

Edge Cases

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

43

The above is an example for a typical pixel (within the “middle” of the image), however there are

of-course edge-cases where not all of these coordinates will be valid.

Leading Edge Case

For the case of a pixel coordinate x within b; of the leading edge (for each of the dimensions i),
such as (in the above example) x = (x,,x,) = (1,2), certain patch indexes P that would lie

outside of the data cube (i.e. p; < 0) are not possible (Figure 22).

For each dimension, we therefore place a limit on the set of possible indexes, with a minimum
value of 0.

max(0, x; — b)) <p;

Trailing Edge Case

Similarly, for the case of a pixel coordinate x within b; on the frailing edge (for each of the
dimensions i), such as (in the above example) x = (x,,x;) = (8,10), certain patch indexes P

that would lie outside of the data cube (i.e. p; > m; — b;) are also not possible (Figure 23).

For each dimension, we therefore place another limit on the set of possible indexes, with a
maximum value of m; — b;.

p; < min(x;, m; — by)

Therefore, for the reconstruction of any given pixel at coordinate x, the set of all possible patch
indexes P is determined by all possible combinations of (zero-based) integers for each
dimension i in the range(s):

max (0, x; — b;) <p; < min(x;, m; — b;)

Determining the Pixel Value

For each pixel (in the reconstruction), once the set of valid patch locations (indexed by P) have
been determined, the corresponding pixel locations within each patch must also be determined.
Consider the following case (Figure 24, a 2D example) of a pixel at coordinate x = (x,x,),
contained within a valid patch at location P = (py,p,). Each possible patch coordinate P
corresponds to a patch with the given pixel (at x) in a different location z = (z,, z;) within the 2-

dimensional patch/window.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

44

For a patch location P = (py,p,1) = x = (x¢,%,), this corresponds to a patch with the given pixel
in the first coordinate z = (0,0) or linear index 0. The last possible z location (inside the patch)
corresponds to a patch located at P = (po,p1) = (xo — by, x, — by) where z = (by, b)) = (2,4)

and a linear index (in this 2D case) of B, x B, = 14.

The z location of given pixel at coordinate x within a patch at coordinate P can therefore be

determined (Figure 25) by the difference between P and x (in each arbitrary dimension i) using:
Zp =X —Di

And the linear index of z is determined similarly to the pixel indexes used to determine the

column src* location:

Z(SB * Z) = (Spo X Zp) + (Sp1 X 25) + (Spy X 23) + (Sp3 X z3)
where Sj refers to the “stride” of data of shape B

Full Example
For the example shown in Figure 26:

¢ Image Shape M= M, xM)=(10x10)
¢ Patch Shape B =(ByxBy)=(3x%5)
¢ Pixel Coord x = (x9,%,) = (4,4) [44]
e Patch Coord P = (po,p1) = (3,3) [33]

The z coordinate is calculated as z=x —b...
z=(z0,2z,) = (xg —bo,x; = b)) =(4—3,4-3) = 11

With a linear index of...
Ziinear = Z(SB *7Z) = (spoX2p) +(5p1 X2) =(1x1)+(Bx1)=4

Thus, the suggested pixel value, calculated for the patch at coordinate P, for the pixel at
coordinate x (at the location z within the patch) can be found at the (real or theoretical) ¥ matrix
in the Pjieq = 55" “column” and the zj;,,.,, = 4 “row”. Using the known patch shape B, we
can determine that the “column” length of Y is equal to |B| = (B, x B; X B, X B3), and therefore

obtain the position (in memory) of that pixel as:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

45

src* = Prnear X |B| + Zjinear = 55 X 15 + 4 = 829" pixel within ¥

If working with a (reduced) ¥ parcn, Plinear IN the above equation must be replaced with the linear
(batch) index of the patch corresponding to the coordinate P within the set of Ny, indexes
defining the batch.

Reconstructions without a Y matrix

In many cases (such as dictionary learning), it may be necessary to calculate some formofa ¥

matrix (such as ¥ ,4.5), usually needed to calculate an error metric (Figure 27):

Rparcn = Ypatch — Ybatcn

Inthese cases, the simplest approach to reconstructions is to use the ¥4, matrix in the manner
described above. However, there are situations (such as reconstructing an image from a pre-
learned dictionary without performing any dictionary learning step) which will never require a full
expansion of ¥, meaning that the time and memory cost of a reconstruction function may be
reduced by continuing to avoid its creation. As previously mentioned, ¥ .., Mmay be calculated
from D and a,.,. traditionally via the matrix multiplication of the two. A reconstruction
performed without access to a Y matrix must therefore perform this matrix multiplication for the
specific “row” of A relating to the patch in question. This can be achieved by stepping through
each value (indexed k = 0 ... K) within the corresponding row of A, if the value (encoding/weight)
is non-zero (i.e. activated), then multiply by the pixel value in the “column” of D indexed by k and
the “row” indexed by z;;,.4 for the given parallel process. The summation of each of these
coefficients and pixel values from D is equivalent to the (theoretical) pixel value in the ¥ matrix

at the position (Pynear: Ziinear)-

Once the pixel value (for a given P, x and z) in (real or theoretical) ¥ matrix has been determined,
it may then be multiplied by the decay ratio, and combined (summed) with each of the other
proposed pixels from the sparse coding of all other patches which contain the pixel at the position
x (each with different z coordinates), this provides the final value for the given pixel in the

reconstruction.
Correcting for Pixel Contributions
As the pixel values proposed by each patch containing a given pixel are combined (summed)

together, a reconstructed frame must also be corrected for the variance in the count of these

contributions across the image. While most pixels (away from the edges of the image in each

10

15

20

25

30

35

WO 2024/201023 PCT/GB2024/050814

46

dimension) will have the same number (|B]|) contributions, the leading and trailing edge effects
mean that pixels within b; pixels of any edge in the i*"* dimension will have a reduced count. In
2-dimensions, this would look as shown in Figure 28 for the given image and patch shapes, with
the integer values at each coordinate determining the number of contributions (i.e. the number

of valid patch indexes P for patches that contain the given pixel).

This contribution matrix can be calculated via only the use of M and B, and so (in the case of
full reconstructions), this correction step may be applied after the reconstruction is complete
(removing artifacts arising from the lower contribution at the edges of the image). However, in
the case of a “partial” or “live” reconstruction, it is not assumed that all possible patches have
contributed to the value returned for each pixel, therefore this contribution matrix must be
calculated during the reconstruction process. This can be achieved (without ever actually
generating the full contribution matrix separately) by adding a step to the parallelised pixel-by-
pixel reconstruction method — after the summation is complete (of all proposed pixel values at
different P locations, and potentially their corresponding decay value), the total is divided
(“averaged”) by the total count of valid patch locations that were determined (and were present

in the source, i.e. the (real or theoretical) Y or ¥yuecn)-

Figure 29 schematically depicts a method according to an exemplary embodiment.

The method is of providing a dictionary by sparse dictionary learning of N-dimensional image
data, wherein N is a natural number greater than or equal to 3, the method implemented by a
computer comprising a processor and a memory, the method comprising:

defining an N-dimensional patch for the N-dimensional image data (S2901);

extracting N,,.., data sub-regions from the N-dimensional image data, using the defined N-
dimensional patch (82902); and

providing the dictionary by sparse dictionary learning using the extracted N, ;. data sub-regions
(52903).

The method may include any of the steps described with respect to the first aspect.

Figure 30 schematically depicts a method according to an exemplary embodiment.

The method is of reconstructing images from sparse N-dimensional image data, wherein N is a
natural number greater than or equal to 3, the method implemented by a computer comprising
a processor and a memory, the method comprising:

reconstructing an image from the sparse N-dimensional image data using a dictionary, for

example wherein the dictionary is provided according to the first aspect (S3001).

10

15

20

25

30

35

WO 2024/201023 PCT/GB2024/050814

47

The method may include any of the steps described with respect to the first aspect and/or the

second aspect.

Figure 31 is a block diagram of a system for implementing any of the methods described with
respect to the first, second and/or third aspects. The system comprises an electron microscope
102 comprising an integrated computer 104. The computer 104 comprises a processor 106 and
memory 108. The computer 104 may be configured to implement a method according to any of
the first, second and/or third aspects above. Specifically, the processor 106 may be configured
to provide a dictionary by sparse dictionary learning, reconstruct images from sparse N-
dimensional image data and/or to control an electron microscope in accordance with the
methods described above.

The system may further comprise an external computer 120 comprising a processor 122 and
memory 124. The external computer 120 is arranged externally to the electron microscope 102.
That is, the external computer 120 is not integrated within the electron microscope 102 itself.
The external computer 120 may communicate with the electron microscope via any suitable
communication channel, such as via a wired connection or via a wireless connection. The
system 100 may be alternatively configured such that the external computer 120 is configured
to implement a method according to any of the first, second and/or third aspects above, instead
of the computer 104. In other words, the electron microscope 102 may transmit image data
(including N-dimensional image data, sparse N-dimensional image data) to the external
computer 120 via the communication channel, such that the external computer 120 is able to

carry out the aforementioned methods, rather than the integrated computer 104.

GLOSSARY OF TERMS

ABF: Annular Bright-Field. A method of imaging samples in STEM using bright-field
detectors in which an image formed using a ring-shaped detector by low-angled
forward scattered electrons, not including the most central part of the transmitted
beam.

CS-STEM: Compressive-Sensing (driven) Scanning Transmission Electron Microscopy.
The acquisition and subsequent reconstruction of a full image of a given sample
using only subsampled measurements.

DCT: Discrete Cosine Transform. A transform of a signal or image from the spatial
domain to the frequency domain using sinusoidal functions (in this context,
discretised into a set of dictionary elements)

HAADF: High-Angle Annular Dark-Field. A method of imaging samples in STEM by
collecting scattered electrons with an annular dark-field detector lying outside of

the path of the transmitted electron beam.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

48

K-SVD: Dictionary Learning algorithm performing generalised K-Means clustering via
Singular Value Decomposition (alternating between a sparse coding step and

updating individual dictionary atoms to better fit the data).

lo Norm: The count of the total number of non-zero elements of a given vector.
lello=)" Cled®)
i
Iy Norm: The sum of the magnitudes of all elements in a given vector.
lelly = > Cled™)
i
MOD: Method of Optimal Directions. One of the first sparse dictionary learning

algorithms developed in, alternating between a sparse coding step and updating
the dictionary via matrix pseudo-inverse calculations

OMP: Orthogonal Matching Pursuit.

PSNR: Peak-Signal-to-Noise-Ratio. An image quality metric measuring the ratio
between the maximal power of a signal and the power of corrupting noise, as
measured against a reference image.

SSIM: Structural Similarity Index. An image quality metric measuring the visible

structural similarity (between two images).

Although a preferred embodiment has been shown and described, it will be appreciated by those
skilled in the art that various changes and modifications might be made without departing from

the scope of the invention, as defined in the appended claims and as described above.

At least some of the example embodiments described herein may be constructed, partially or
wholly, using dedicated special-purpose hardware. Terms such as ‘component’, ‘module’ or ‘unit’
used herein may include, but are not limited to, a hardware device, such as circuitry in the form
of discrete or integrated components, a Field Programmable Gate Array (FPGA) or Application
Specific Integrated Circuit (ASIC), which performs certain tasks or provides the associated
functionality. In some embodiments, the described elements may be configured to reside on a
tangible, persistent, addressable storage medium and may be configured to execute on one or
more processors. These functional elements may in some embodiments include, by way of
example, components, such as software components, object-oriented software components,
class components and task components, processes, functions, attributes, procedures,
subroutines, segments of program code, drivers, firmware, microcode, circuitry, data,
databases, data structures, tables, arrays, and variables. Although the example embodiments
have been described with reference to the components, modules and units discussed herein,
such functional elements may be combined into fewer elements or separated into additional
elements. Various combinations of optional features have been described herein, and it will be

appreciated that described features may be combined in any suitable combination. In particular,

10

15

20

25

WO 2024/201023 PCT/GB2024/050814

49

the features of any one example embodiment may be combined with features of any other
embodiment, as appropriate, except where such combinations are mutually exclusive.
Throughout this specification, the term “comprising” or “comprises” means including the

component(s) specified but not to the exclusion of the presence of others.

Attention is directed to all papers and documents which are filed concurrently with or previous
to this specification in connection with this application and which are open to public inspection
with this specification, and the contents of all such papers and documents are incorporated

herein by reference.

All of the features disclosed in this specification (including any accompanying claims, abstract
and drawings), and/or all of the steps of any method or process so disclosed, may be combined
in any combination, except combinations where at least some of such features and/or steps are

mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims, abstract and
drawings) may be replaced by alternative features serving the same, equivalent or similar
purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each

feature disclosed is one example only of a generic series of equivalent or similar features.

The invention is not restricted to the details of the foregoing embodiment(s). The invention
extends to any novel one, or any novel combination, of the features disclosed in this specification
(including any accompanying claims, abstract and drawings), or to any novel one, or any novel

combination, of the steps of any method or process so disclosed.

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

50

CLAIMS

1. A method of providing a dictionary by sparse dictionary learning of N-dimensional image data,
wherein N is a natural number greater than or equal to 3, the method implemented by a computer
comprising a processor and a memory, the method comprising:

defining an N-dimensional patch for the N-dimensional image data;

extracting N, ..., data sub-regions from the N-dimensional image data, using the defined
N-dimensional patch; and

providing the dictionary by dictionary learning using the extracted N, data sub-regions.

2. The method according to any previous claim, comprising generating indices for the N-
dimensional patch in the N-dimensional image data and selecting indices from the generated
indices; and

wherein extracting the N, .., data sub-regions from the N-dimensional image data, using the
defined N-dimensional patch, comprises extracting the N,,.,, data sub-regions from the N-

dimensional image data, using the defined N-dimensional patch, for the selected indices.

3. The method according to claim 2, wherein selecting the indices from the generated indices
comprises randomly selecting indices from the generated indices, shuffling and/or permuting the

generated indices and/or patterning the generated indices.

4. The method according to any of claims 2 to 3, wherein selecting the indices from the generated

indices comprises biasedly selecting indices from the generated indices.

5. The method according to any previous claim, wherein the N, ., data sub-regions exclude

overlapping data sub-regions.

6. The method according to any previous claim, comprising sparse coding the extracted N, ;.
data sub-regions and optionally, storing results of the sparse coding; and

wherein providing the dictionary by dictionary learning using the extracted N,,., data sub-
regions comprises providing the dictionary by dictionary learning using the sparse coded Ny ;cn

data sub-regions.

7. The method according to claim 6, wherein storing results of the sparse coding comprises

storing respective timestamps of the sparse coding.

8. The method according to any previous claim, wherein extracting the N, .., data sub-regions

from the N-dimensional image data, using the defined N-dimensional patch comprises extracting

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

30

35

51

the N, data sub-regions from the N-dimensional image data, using the defined N-

dimensional patch, in real-time.

9. The method according to any previous claim, wherein the N-dimensional image data

comprises and/or is electron microscopy data.

10. A method of reconstructing images from sparse N-dimensional image data, wherein N is a
natural number greater than or equal to 3, the method implemented by a computer comprising
a processor and a memory, the method comprising:

reconstructing an image from the sparse N-dimensional image data using a dictionary, for

example wherein the dictionary is provided according to any previous claim.

11. The method according to claim 10 wherein reconstructing the image comprises
reconstructing a value for each pixel in the image by combining pixel values for the pixel in each

of the N, ..., data sub-regions which contain the pixel.

12. The method according to claim 11, further comprising, for each pixel in the image,
determining a location for each of the N, ., data sub-regions in the image, and

determining a location for the pixel in each of the N, .., data sub-regions.

13. The method according to claim 12 comprising determining a pixel value for the pixel in
each of the N, data sub-regions using a weight matrix obtained through sparse coding,
wherein the weight matrix comprises a plurality of rows wherein each row comprises encoding

coefficients for one of the N, ., data sub-regions.

14. The method according to claim 13 comprising determining a pixel value for the pixel in
each of the N, ., data sub-regions by

obtaining pixel factors by multiplying each of the non-zero elements of the row of the
weight matrix which corresponds to the data sub-region with an element in a corresponding
column in a dictionary matrix of the dictionary; and

summing the obtained pixel factors to determine each pixel value.

15. The method according to claim 14 wherein the element in a corresponding column in the
dictionary matrix has a column index corresponding to the index of the non-zero element in the
corresponding row of the weight matrix and a row index corresponding to the location of a pixel

within the data sub-region.

16. A method of controlling an electron microscope, the method implemented, at least in part,

by a computer comprising a processor and a memory, the method comprising:

WO 2024/201023 PCT/GB2024/050814

10

15

20

25

52

providing parameters of the electron microscopy;

obtaining first sparse N-dimensional electron microscopy data of a sample, wherein N is a
natural number greater than or equal to 3; and

reconstructing a first electron microscopy image of the sample from the first sparse N-

dimensional electron microscopy data, according to any one of claims 10 to 15.

17. The method according to claim 16, comprising:

comparing the first electron microscopy image against thresholds of one or more target
properties of the first electron microscopy image;

adapting the parameters of the electron microscopy based on a result of the comparing; and
obtaining second sparse N-dimensional electron microscopy data of the sample, using the

adapted parameters.

18. The method according to claim 17, comprising:
Reconstructing a second electron microscopy image of the sample from the second sparse N-

dimensional electron microscopy data, according to any one of claims 10 to 15.

19. A computer comprising a processor and a memory configured to implement a method
according to any of claims 1 to 18, a computer program comprising instructions which, when
executed by a computer comprising a processor and a memory, cause the computer to perform
a method according to any of claims 1 to 18 or a non-transient computer-readable storage
medium comprising instructions which, when executed by a computer comprising a processor

and a memory, cause the computer to perform a method according to any of claims 1 to 18.

20. An electron microscope including a computer comprising a processor and a memory

configured to implement a method according to any of claims 16 to 18.

WO 2024/201023 PCT/GB2024/050814

1/19

i
N
N
§
&

Fig. 1

RGB Pixel Data

Fig. 3

WO 2024/201023 PCT/GB2024/050814

2/19

W g

Fig. 2

Tkl nmsgriess paiicind {reconatosssing)

Sussmeapied Pavdiyf Bivowry P20 sk

PCT/GB2024/050814

WO 2024/201023

e - % 2% % 1 B2 #u %5 & 5 o ta o @

3/19
Fig. 4

Fig. 5

£ = 3

P ooy
Y
R

4 i %

RS R R

PCT/GB2024/050814

WO 2024/201023

4/19

OB P3SUCIOBA

\\\\\\\\\\\\ _
.

.

\ \\\

ysied 0%

WO 2024/201023 PCT/GB2024/050814

5/19

AR .- Nt
A
T innntnit \
)

Hlnigk N

N

llllll ‘ _ j;.\\\\‘\\\t

R R
TN R TR
A Nt
AR T s
N \\\\\\ N

N

\ N
¥ | N
: N

Fig. 7

Y D A

- Né‘otai
K =

¥

Fig- 8

PCT/GB2024/050814

N

AN
N

N

.
.

W

N\
X
N

.
NN

7

X
N

Last 20 Patch
M

L
A

N

N\
.

NN
.
L
DN

NN
\\
\%
N
N
\\

-

\
y

\\§
X
-

_

WO 2024/201023

6/19

i

X

213 Pixel Data

Fig. 9

First 2D Patch
My

by

my

Fig. 10

WO 2024/201023

7/19

LG

F¥ Pivel Baata

.

PCT/GB2024/050814

NN

/

\§

.

R \\

.

WO 2024/201023 PCT/GB2024/050814

8/19

N
Nt
A]] E] .
ZHnig R T r’hn*.
N
/ X

Last 213 Patoh

=

.
| \\\x \\

-
Fig. 13

.

NN\
\(\ S R PR

-

AL TN

X
X
X

Firgt 213 Paich

WO 2024/201023

4D Pixel Data

PCT/GB2024/050814

9/19

Fig. 14

N

N _ \\\

O
N \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Y
\ xR §
hS
&

_

WO 2024/201023 PCT/GB2024/050814

10/19

First 4D patch

Mk

BT

AR AR
.

s
\‘ \\\Q

NI \
b o .
. & L
. \\§§\ . B
.
™ Fig. 15

Last 4D patch

//V

/
-

X

X
R

2
7

WO 2024/201023 PCT/GB2024/050814

11/19

CPU Data (OpenCV) GPU Data (ArrayFire/ CUDA)

Row Major Column Major

Fig- 17a Fig.17b

N
=

ba

Fig. 18

WO 2024/201023 PCT/GB2024/050814

12/19

k

4"‘“’///
.
i

e

I
o
P
g
yoron
%

L3

.

input

PCT/GB2024/050814

WO 2024/201023

13/19

T

abeiaansy oMid OF

12 ‘b1

$uni
By,

.

e
&

2bemACT 9Xd 7

abeiaacd BXId 07

WO 2024/201023 PCT/GB2024/050814

14/19

2D Leading Edge

Fig. 22

Mal ¢

by

2D Trailing Edge

M

Fig. 23

WO 2024/201023 PCT/GB2024/050814

15/19

2D First Location 2D Last Location

by , b

e
o

& 43 2

.

ba

Fig. 24

2D Pixel Location
by

ba

Fig. 25

PCT/GB2024/050814

Fig. 26

16/19

M1

: N
N R N
A 0 & R \\Q
N

fop

¥

WO 2024/201023

My

B

3

b

PCT/GB2024/050814

WO 2024/201023

17/19

2D Pixel Contributions

28

Fig.

WO 2024/201023 PCT/GB2024/050814

18/19

Define an N-dimensional patch
for the N-dimensional image data
S2901

l

Extract N, data sub-regions
from the N-dimensional image data,
using the N-dimensional patch
S2902

'

Provide the dictionary by sparse dictionary learning
using the extracted N, .., data sub-regions

S2903

Fig. 29

Reconstruct an image from the sparse N-dimensional
image data using a dictionary
S3001

Fig. 30

WO 2024/201023 PCT/GB2024/050814

19/19

100

Electron microscope 102

Integrated computer
104

Processor(s) 106

Memory 108

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2024/050814

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06V10/40 GO01N23/2251 GO6T5/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6vV GO6T GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X NIGEL D. BROWNING: "The advantages of
sub-sampling and Inpainting for scanning
transmission electron microscopy",

APPLIED PHYSICS LETTERS, [Onlinel]

vol. 122, no. 5,

30 January 2023 (2023-01-30), XP093154524,
2 Huntington Quadrangle, Melville, NY
11747

ISSN: 0003-6951, DOI: 10.1063/5.0135245
Retrieved from the Internet:
URL:https://pubs.aip.org/aip/apl/article-p
df/doi/10.1063/5.0135245/18145675/050501_1
_5.0135245 . pdf>

[retrieved on 2024-04-23]

abstract

Section II

Section III;

table 1

Section IV

-/—

|__K| Further documents are listed in the continuation of Box C. |:| See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international wyr
filing date

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Beoltz,

cited to establish the publication date of another citation or other """ document of . . - - -
. b particular relevance;; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
23 April 2024 03/05/2024
Name and mailing address of the ISA/ Authorized officer

Sylvain

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2024/050814

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X DANIEL NICHOLLS: "Sub-Sampled Imaging 1-20
for STEM: Maximising Image Speed,
Resolution and Precision Through
Reconstruction Parameter Refinement",
ULTRAMICROSCOPY, [Online]

vol. 233, 7 December 2021 (2021-12-07),
page 113451, XP093154629,

NL

ISSN: 0304-3991, DOI:
10.1016/j.ultramic.2021.113451
[retrieved on 2024-04-23]

abstract

Section 2

Section 3

A Hanbaek Lyu: "Online nonnegative 1-20
CP—-dictionary learning for Markovian
data",

JMLR,

1 May 2022 (2022-05-01), pages 1-50,
XP093154727,

Ithaca

DOI: 10.48550/arxiv.2009.07612

Retrieved from the Internet:
URL:https://www. jmlr.org/papers/volume23/2
1-0419/21-0419.pdf

[retrieved on 2024-04-23]

abstract

Section 2.2

Section 4

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - wo-search-report
	Page 75 - wo-search-report

