
USOORE49148E

(19) United States
(12) Reissued Patent

Colgrove et al .
(10) Patent Number : US RE49,148 E
(45) Date of Reissued Patent : * Jul . 26 , 2022

(54) RECLAIMING SPACE OCCUPIED BY
DUPLICATED DATA IN A STORAGE
SYSTEM

(58) Field of Classification Search
CPC GOOF 12/0253 ; G06F 12/0261 ; GOOF

12/0269 ; G06F 12/0276
See application file for complete search history .

(71) Applicant : Pure Storage , Inc. , Mountain View , CA
(US)

(56) References Cited

U.S. PATENT DOCUMENTS
(72)

4,989,134 A
5,136,706 A

Inventors : John Colgrove , Los Altos , CA (US) ;
John Hayes , Mountain View , CA (US) ;
Ethan Miller , Santa Cruz , CA (US) ;
Cary Sandvig , Palo Alto , CA (US) ;
Joseph S. Hasbani , Palo Alto , CA
(US) ; Feng Wang , Sunnyvale , CA (US)

1/1991 Shaw
8/1992 Courts

(Continued)
FOREIGN PATENT DOCUMENTS

WO
WO

WO 2013049319 A1 *
WO 2013056220 Al *

4/2013
4/2013

G06F 3/06
GO6F 3/06 (73) Assignee : Pure Storage , Inc. , Mountain View , CA

(US)
OTHER PUBLICATIONS

(*) Notice : This patent is subject to a terminal dis
claimer .

(21) Appl . No .: 15 / 885,500

Debnath , B. , S. Sengupta and J. Li “ ChunkStash : Speeding Up
Inline Storage Deduplication Using Flash Memory ” , Proceedings of
the 2010 USENIX Annual Technical Conference (ATC ’10) , Jun .
23-25 , 2010 , pp . 1-15 . *

(Continued) (22) Filed : Jan. 31 , 2018

Primary Examiner — Luke S Wassum Related U.S. Patent Documents
Reissue of :
(64) Patent No .: 9,251,066

Issued : Feb. 2 , 2016
Appl . No .: 14 / 537,709
Filed : Nov. 10 , 2014

U.S. Applications :
(63) Continuation of application No. 14 / 015,308 , filed on

Aug. 30 , 2013 , now Pat . No. 8,886,691 , which is a
(Continued)

(57) ABSTRACT
A system and method for performing garbage collection . A
system includes a storage medium , a first table including
entries which map a virtual address to locations in the
storage medium , and a second table with entries which
include a reverse mapping of a physical address in a data
storage medium to one or more virtual addresses . A storage
controller is configured to perform garbage collection . Dur
ing garbage collection , the controller is configured to iden
tify one or more entries in the second table which correspond
to a segment to be garbage collected . In response to deter
mining the first table includes a valid mapping for a virtual
address included in an entry of the one of the one or more
entries , the controller is configured to copy data from a first
location identified in the entry to a second location in the
data storage medium , and reclaim the first storage location .

(51) Int . Ci .
G06F 12/02 (2006.01)
G06F 3/06 (2006.01)
G06F 16/174 (2019.01)

(52) U.S. CI .
CPC G06F 3/0688 (2013.01) ; G06F 370608

(2013.01) ; G06F 370641 (2013.01) ; G06F
16/1748 (2019.01) 17 Claims , 31 Drawing Sheets

Receive Read Request
500

Generate key
502

Query Index (es) and cached mappings
504

Yes Hit on
cached

mappings ?
505

Handle Exception
524

No
No

No Hit in the
cached index ?

$ 06
Hit in the

stored indices ?
520

Yes Yes

Access and query page in
the mapping table ,

508
Return Index Entry

522

Retum mapping table entry
510

Perform Storage Acce99
512

US RE49,148 E
Page 2

Related U.S. Application Data
continuation of application No. 13 / 340,119 , filed on
Dec. 29 , 2011 , now Pat . No. 8,527,544 , which is a
continuation - in - part of application No. 13 / 250,570 ,
filed on Sep. 30 , 2011 , now Pat . No. 8,930,307 , and
a continuation - in - part of application No. 13 / 208,094 ,
filed on Aug. 11 , 2011 , now Pat . No. 8,788,788 , and
a continuation - in - part of application No. 13 / 211,288 ,
filed on Aug. 16 , 2011 , now Pat . No. 8,806,160 , and
a continuation - in - part of application No. 13 / 250,579 ,
filed on Sep. 30 11 , now Pat . No. 8,793,467 , and
a continuation - in - part of application No. 13 / 273,858 ,
filed on Oct. 14 , 2011 , now Pat . No. 8,589,640 .

8,930,307 B2 * 1/2015 Colgrove G06F 3/0608
707/610

2004/0039759 Al 2/2004 Detlefs et al .
2004/0078381 A1 4/2004 Blandy et al .
2004/0111445 Al 6/2004 Garthwaite et al .
2004/0111718 A1 6/2004 Detlefs
2004/0128329 Al 7/2004 Ben - Yitzhak et al .
2004/0162860 A1 8/2004 Detlefs
2004/0162861 A1 8/2004 Detlefs
2005/0132374 A1 6/2005 Flood et al .
2005/0149686 A1 7/2005 Bacon et al .
2005/0166028 Al 7/2005 Chung et al .
2005/0198079 Al 9/2005 Heeb
2005/0235120 Al 10/2005 Dussud
2005/0240943 A1 10/2005 Smith et al .
2005/0273567 Al 12/2005 Blandy
2005/0278497 A1 12/2005 Pliss et al .
2006/0059453 Al 3/2006 Kuck et al .
2006/0092161 A1 5/2006 Meeker
2006/0173939 A1 * 8/2006 Yin G06F 12/0253

711 / E12.009
2006/0206658 A1 * 9/2006 Hendel G06F 9/544

711/6
2007/0016633 A1 * 1/2007 Lindholm G06F 12/0269

711/170
2007/0208790 A1 * 9/2007 Reuter G06F 12/0253

707 / 999.206
2008/0155184 Al * 6/2008 Gorobets GO6F 3/0613

711/103
2010/0031000 A1 * 2/2010 Flynn et al . G06F 16/9014

711/216
2011/0231623 Al * 9/2011 Goss G06F 12/0253

711/159
2011/0276780 A1 * 11/2011 Sengupta G06F 12/0862

711/216

(56) References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Agesen et al . , “ Mixed - mode Bylecode Execution ” , Jun . 2000 , 16
pages , Sun Microsystems , Inc. , Mountain View , CA , USA .
Larose et al . , “ A Compacting Incremental Collector and its Perfor
mance in a Production Quality Compiler ” , Proceedings of the 1st
International Symposium on Memory Management , Oct. 1 , 1998 , 9
pages , vol . 34 , Issue 3 , ACM , New York , NY , USA .
“ Garbage Collection ” , Cunningham & Cunningham , Inc. , Sep. 27 ,
2004 , retrieved from < http://c2.com/cgi/wiki?GarbageCollection > ,
pp . 1-7 .

5,355,483 A 10/1994 Serlet
5,551,003 A 8/1996 Mattson et al .
5,561,786 A 10/1996 Morse
5,652,883 A 7/1997 Adcock
5,751,613 A 5/1998 Doty et al .
5,897,664 A * 4/1999 Nesheim G06F 12/0284

711/147
6,081,665 A 6/2000 Nilsen et al .
6,300,962 B1 10/2001 Wishoff et al .
6,470,361 B1 10/2002 Alpern et al .
6,526,422 B1 2/2003 Flood et al .
6,560,619 B1 5/2003 Flood et al .
6,567,905 B2 * 5/2003 Otis G06F 12/0276

707 / 999.202
6,738,875 B1 * 5/2004 Wang G06F 12/0269

707 / 999.202
6,760,815 B1 7/2004 Traversat et al .
6,763,440 B1 7/2004 Traversat et al . GO6F 12/0276

707 / 999.202
6,804,762 B1 10/2004 Dussud et al .
6,823,351 B1 11/2004 Flood et al .
6,826,583 B1 11/2004 Flood et al .
6,839,725 B2 1/2005 Agesen et al .
6,865,585 B1 3/2005 Dussud GOOF 12/0269

711 / E12.011
6,868,488 B2 3/2005 Garthwaite
6,901,587 B2 5/2005 Kramskoy et al .
6,931,423 B2 8/2005 Sexton et al .
6,996,590 B2 2/2006 Borman
7,010,555 B2 3/2006 Blandy et al .
7,016,923 B2 3/2006 Garthwaite
7,017,162 B2 3/2006 Smith et al .
7,024,436 B2 4/2006 Kolodner et al .
7,031,990 B2 4/2006 Garthwaite
7,051,056 B2 5/2006 Rodriguez - Rivera
7,065,617 B2 6/2006 Wang
7,069,280 B2 6/2006 Garthwaite
7,337,201 B1 * 2/2008 Yellin G06F 12/0276

711/118
7,412,466 B1 8/2008 Garthwaite
7,480,782 B2 1/2009 Garthwaite
7,779,054 B1 8/2010 Printezis et al .
8,417,904 B2 * 4/2013 Goss GO6F 12/0253

711/159
8,527,544 B1 9/2013 Colgrove et al . G06F 3/0608

707/791
8,589,640 B2 * 11/2013 Colgrove G06F 3/0608

711/156
8,788,788 B2 * 7/2014 Colgrove G06F 3/0608

711/206
8,793,467 B2 * 7/2014 Colgrove G06F 3/0608

711/206
8,806,160 B2 * 8/2014 Colgrove GO6F 3/0608

711/162
8,886,691 B2 11/2014 Colgrove et al . G06F 3/0608

707/818

Edwards , Daniel J. , “ Artificial Intelligence Project — RLE and MIT
Computation Center ” , Memo 19 - LISP II Garbage Collector , Mar.
1998 , pp . 1-2 .
Abuaiadh et al . , “ An Efficient Parallel Heap Compaction Algo
rithm ” , Proceedings of the 19th Annual ACM SIGPLAN Confer
ence on Object - oriented Programming , Systems , Languages , and
Applications , Oct. 2004 , p . 224-236 , ACM New York , NY , USA .
Agesen et al . , “ An Efficient Meta - Lock for Implementing Ubiqui
tous Synchronization ” , Apr. 1999 , 30 pages , Sun Microsystems ,
Inc. , Mountain View , CA , USA .
Agesen , Ole , “ GC Points in a Threaded Environment ” , Dec. 1998 ,
23 pages , Sun Microsystems , Inc. , Mountain View , CA , USA .
Ben - Yitzhak , et al . , “ An Algorithm for Parallel Incremental Com
paction ” , Proceedings of the 3rd International Symposium on Memory
Management , Jun . 20-21 , 2002 , p . 100-105 , ACM , New York , NY ,
USA .
Appel , Andrew W. , " Simple Generational Garbage Collection and
Fast Allocation ” , Software — Practice & Experience , Sep. 1988 , 16
pages , John Wiley & Sons , Inc. , New York , NY , USA .
Detlefs , et al . “ Inlining of Virtual Methods ” , Proceedings of the 13th
European Conference on Object - Oriented Programming , Jun . 14-18 ,
1999 , 21 pages , Springer - Verlag , London , UK .
Flood , et al . , “ Parallel Garbage Collection for Shared Memory
Multiprocessors ” , Proceedings of the 2001 Symposium on JavaTM
Virtual Machine Research and Technology Symposium , Apr. 2001 ,
10 pages , USENIX Association , Berkeley , CA , USA .

1

US RE49,148 E
Page 3

(56) References Cited

OTHER PUBLICATIONS

Wilson , Paul R. , “ Uniprocessor Garbage Collection Techniques ” ,
Technical Report , University of Texas , Jan. 1994 , 14 pages .
Hallenberg , et al . , “ Combining Region Inference and Garbage
Collection ” , Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation , Jun . 17-19 ,
2002 , pp . 141-152 , ACM , New York , NY , USA .
Hudson , et al . , " Incremental Collection of Mature Objects ” , Pro
ceedings of the International Workshop on Memory Management ,
Sep. 17 , 1992 , 16 pages , Springer - Verlag , London , UK .
Printezis , et al . , “ A Generational Mostly - Concurrent Garbage Col
lector ” , Technical Report , 2000 , 12 pages , Sun Microsystems , Inc. ,
Mountain View , CA , USA .
Lieberman , et al . , " A Real - Time Garbage Collector Based on the
Lifetimes of Objects ” , Communications of the ACM , Jun . 1983 , vol .
26 , No. 6 , pp . 419-429 , ACM , New York , NY , USA .
Detlefs , et al . , “ Garbage - First Garbage Collection ” , Proceedings of
the 4th International Symposium on Memory Management , Oct.
24-25 , 2004 , pp . 37-48 , ACM , New York , NY , USA .
Bacon , et al . , “ The Metronome : A Simpler Approach to Garbage
Collection in Real - Time Systems ” , on the Move to Meaningful
Internet Systems 2003 : OTM 2003 Workshops , Nov. 3-7 , 2003 , pp .
466-478 , vol . 2889 , Springer Berlin Heidelberg .
Sachindran , et al . , “ Mark - Copy : Fast Copying GC with Less Space
Overhead ” , Proceedings of the 18th Annual ACM SIGPLAN Con
ference on Object - oriented Programing , Systems , Languages , and
Applications , Oct. 26-30 , 2003 , 18 pages , ACM , New York , NY ,
USA .

* cited by examiner

Network Architecture 100

Internet 160

U.S. Patent

Client Computer System 110b

Client Computer System 110c

Client Computer System 110a

Switch 140

Network 180

Network

Jul . 26 , 2022

Switch 150

Memory Medium 130

Storage Subsystem 170

Base OS 132

Storage Controller 174

Sheet 1 of 31

RAM 172

Data Storage Array 120a
Data Storage Array 120b

Volume Manager 134

Deduplication 178
Global 10 Scheduler (s) 134

Processor 122

Storage Device 176a
Storage Device 176b

Storage Device 176m

Device Group 173m

Network Interface 124

Device Group 173a

US RE49,148 E

FIG . 1

.

Level 1

Level " N "

Level 2 Page of Page of Mappings Mappings
210h

" H "

Page of Mappings 210k

U.S. Patent

Page of Mappings " K "

??? .
0

8

Fieldo

FieldN

Page of Mappings 210a

0

14

Fieldo

FieldN

2

9

Fieldo

Page of

Page of Mappings

Mappings 2101

Page of Mappings " H + 9 " :

Page of Mappings 210m

Page of Mappings

Jul . 26 , 2022

12

33

Fieldo

FieldN

Key 12
39

Fieldo

Fields

Page of Mappings 210b

14

Fieldo

FieldN

17

Fieldo

Fjelds

Page of Mappings “

Sheet 2 of 31

3

Fieldo

Fields

Page of Mappings 210g

Page of Mappings 2101

:

Page of Mappings

Page of Mappings 2100

Page of Mappings

1 *

Page of Mappings " M "

US RE49,148 E

FIG . 2

U.S. Patent

Primary Index 310
Level 3

Partition 312a

Key Page 0 7 2 58 6 78

Status Status
3

Jul . 26 , 2022

3

Status

Partition

Requester Data Inputs 302

12

4

3

Status

To Pages of Mappings (Mapping Table)

Key Generator 304

Level 3

From Partition " 1 "

Status

Key Page 18 75 19 32 22 28

Partition 312b

3

Status

Page " 28 " , Level " 3 " ; Key " 22 "

Sheet 3 of 31

3

Status

Partition " 1 "

Query Key 306

Key " 22 "

37

21

3

Status

FIG . 3A

US RE49,148 E

Cached , Sorted Primary Index 314

U.S. Patent

. Key Page

Level 22

Partition 316a

Status

2

4

Status

116 184

2

14

Status

Partition

Requester Data Inputs 302

Jul . 26 , 2022

34

12

41

17

Status

TO Merge Logic From Partition

Key Page

Level

1

Key Generator 304

1

Status

Partition 316b

Sheet 4 of 31

a)

16

232

Status

19

Page " 116 " , Level " 4 " : Key 2 "

7

Status

Partition is 15

Query Key 306

Key " 2 "

318

23

Status
4

US RE49,148 E

FIG , 3B

U.S. Patent

Mapping Table 340

Level " f "

Requester Data Inputs 302

Level " N - 2 "

Secondary Index 320

Level " N - 1 "

Level " N "

Primary Index 3100

Primary Index 3101

Key Generator 304

Primary Index 310a

Primary Index 310b

Jul . 26 , 2022

Page of Mappings " H "

Page of Mappings " M "

Page of
Mappings " E *

Page of Mappings " 0 "

Query Key 306

Page of
Mappings " 1 "

Page of Mappings " E + 1 "

Page of Mappings " H + 1 "

Page of Mappings " M + 1 "

Key " 27 "

Index Copies 330

Page of Mappings " D "

Page of Mappings " G "

Sheet 5 of 31

Page of
Mappings " K "

Hit (s) / Miss
Merge Logic 350

Page of Mappings " 32 " ,

Level " 8 " ;
Key " 27 "

Page of
Mappings " P "

Hit (Key * 27 * : Target Pointer XF3209B24)

FIG . 4

US RE49,148 E

U.S. Patent Jul . 26 , 2022 Sheet 6 of 31 US RE49,148 E

Receive Read Request
500

200UX

Generate key
502

Query index (es) and cached
mappings

504

Yes Handle Exception
524

Hit on
cached

mappings ?
505

No
No

Hit in the
cached index ?

506

Hit in the
stored indices ?

520

Yes Yes

Access and query page in
the mapping table .

508
Return Index Entry

522

Return mapping
table entry

Perform Storage Access
512

FIG . 5A

U.S. Patent Jul . 26 , 2022 Sheet 7 of 31 US RE49,148 E

Receive Write Request

Generate hash
540

Create new mapping table entry
532 I

Access Deduplication
Tables
542 Store new entry in association with

cached index
534

Yes Hit in the
dedup table ?

544

Update dedup
table
548

Create new dedup
entry
546 1

man ???? 190 Gas 1990 1919 3130 VRA en AM ????

Perform Write to Storage
536

550

Update Stored Index
538

FIG . 5B

U.S. Patent Jul . 26 , 2022 Sheet 8 of 31 US RE49,148 E

Set target size for
encoded values

560

Set default encodings for
fields
561

Add tuples to list
562

Calculate encoded size of
tuples

No
?

Encoded tuples
exceed target size ?

564

Yes

No New smaller
encoding found ?

565

Yes

Yes New encoding
within target size ?

566

No

Write out tuple (s)
567

FIG . 5C

U.S. Patent Jul . 26 , 2022 Sheet 9 of 31 US RE49,148 E

Encoded page
568

572

576A Header
3

576B
1 4 12

5760
3 5 203
2 0 4927 5502

Original tuples
Encoded tuples

580 (field 1) (ield 2) (field 3)

15 116 4927 3 1,3 582

18 5 6

5502 203 9 1

10 2,7

4927

FIG . 5D

U.S. Patent Jul . 26 , 2022 Sheet 10 of 31 US RE49,148 E

Sort list of unique values to be
encoded

Set b to zero , and k to the
minimum number of bits

necessary
586

Set start of first base to
minimum value

587

Find smallest value that is at
least 2k greater than current

base

Such a value exists ?
589

Set next base to
selected value

594

Calculate total encoded size
including header and encoded

fields
590

New encoding is
smaller than best previous

encoding ?
591

Yes

Remember configuration
592

Decrement k by 1
593

k20 ?
595

FIG . 5E
Use best encoding

identified
596

Node 3602

Node 3600

Node 3600

U.S. Patent

Level N

Newer Mapping Table

Newer Mapping Table 362b

Newer Mapping Table 362c

Shared Tables 380

Level N - 1

Older Mapping Table 364a

Older Mapping Table 364b

Older Mapping Table 3640

Jul . 26 , 2022

Level N - 2

Shared Mapping Table 370a

Shared Mapping Table 3700

Shared Mapping Table 3700

Level N - 3

Shared Mapping Table 372a

Shared Mapping Table 372b

Shared Mapping Table 372c

Sheet 11 of 31

Level 1

Shared Mapping Table

Shared Mapping Table 374b

hared Mapping Table 3740

374a

US RE49,148 E

FIG . 6

U.S. Patent

Requester Data Inputs 302

Secondary Index 320

Level

Key Generator 304

22 22 22

Key Range Page
0 12

7

16 31 232 38 54 36

61

78 171

Partition
Status V 322a

Status Status
Partition Status " 0 "

Jul . 26 , 2022

22

From Partition " O "

Key " 27 "

Query Key 306

21

0

15

4

31

112

21 21

20 32

Status Status Status Status

Partition To Merge Logic

322b

Page " 232 " Level " 22 "

Partition

Page " 98 "

wf

Level " 7 "

60

73

21

68

78

184

Sheet 12 of 31

Key " 27 "

FIG . 7

US RE49,148 E

Requester Data Inputs 302

U.S. Patent

Key Range 78

Partition 0

Partition 332a

Status

86

195

1

Status

202 .

384

2

Status

Tertiary Index 330

Partition

518

3

Status

Key Generator 304

Partition
Key Range 678 684 771

Partition 332b

Jul . 26 , 2022

Status
1

Status

782

964

2

Status

Key " 27 "

980

1093

3

Status

Query Key 306

Partition " 1 "

o

Sheet 13 of 31

Access Partition " 0 "
of Secondary index

Key " 27 "

Level " 18 " , Page " 232 " : Level " 7 " , Page " 98 " Key " 27 "

Secondary Index 320

To Merge Logic

From Partition RE

5

US RE49,148 E

FIG . 8

U.S. Patent Jul . 26 , 2022 Sheet 14 of 31 US RE49,148 E

Receive Read
Request
900

Generate key for
mapping table

908

Generate Key for
1st overlay table

902

Retrieve tuple from
mapping table

910

Retrieve entry from
1st overlay table

Elde
entry in NO entry in Yes
1s overlay

table ?
906

fik overlay
table ?
912

Modify tuple using
values from 1st
overlay table

922

Yes Generate key for 2nd
overlay table

Retrieve entry from
2nd overlay table

Modify
Yes No No Return " no valid

tuple " to requester
918

Elide entry
in 24 overlay

table ?
920

2 * overlay
table ?
924

Yes

Modify tuple using values
from 29 overlay table

Return tuple to
requester

928

G. 9

U.S. Patent

Level " New F "

Level " F - 1 "

Level " F "

Page " 82 " Key Pointer 2 398 4 656

Page “ 316 " Key Pointer 2 398
4

512
6 246 7 423

1 1

7

423

Page " 23 " Key Pointer 4 512 6 246 9 814 12 921

9

388

Page “ 317 " Key Pointer 9 814 11 598 12 921 13 221

Jul . 26 , 2022

Flatten

Page " 24 " Key Pointer
17

Page " 83 " Key Pointer 11 598
12

543
13 221 17 614

436
23

508
26

613 870

Sheet 15 of 31

29

Page " 318 " Key Pointer 17 436 19 493 20 902 23 508

Page " 84 " Key Pointer
19

493
20 902 23 894

711
29

Page “ 319 " Key Pointer 26 613 29 870

FIG . 10

US RE49,148 E

U.S. Patent

Level " +2 "

Level
Ef

Level " Ha estos 1 "

Level " 7 + 1 "

Level " F "

Jul . 26 , 2022

Level " Newf "

Platten

Level " -1 "

Level " F "

Level " F - 2 "

Sheet 16 of 31

5

Level " F - 1 " Level " F - 2 "
S

US RE49,148 E

FIG . 11

U.S. Patent Jul . 26 , 2022 Sheet 17 of 31 US RE49,148 E

Method 1000

Allocate space to support mapping
table and corresponding indexes .

1002

Determine one or more conditions
for flattening levels of the mapping

Access and update both the indexes
and the mapping as new mappings

are found .
1006

Detect
one of the

conditions for
flattening ?

1008

No

Yes

Identify one or more groups of
levels for flattening .

Replace the groups with the new
levels when each node is ready .

Produce a new level for each group
comprising the newest records in

the group .
1012

Coordinate with other nodes to use
the new levels instead of the

groups .

TEKVICHEVEUX UZEEKAWEEKS

FIG . 12

U.S. Patent Jul . 26 , 2022 Sheet 18 of 31 US RE49,148 E

Receive a bulk array task .
Store an indication relating a range
of new keys to a range of old keys ,
wherein both old and new keys

correspond to the request .
1104

Convey a response indicating
completion of the request without

prior access of user data .

Receive
an access request
corresponding to a

new key ?
1110

Set a condition for updating one or
more records in the mapping table
corresponding to the new keys

replacing the old keys .
1108

Yes

the new key
already inserted

in a mapping
table ?
1112

Yes

Access the indexes and the
mapping table with the new key .

1114

Access the indexes and the
mapping table with an old key
corresponding to the new key .

Process the access request with a
pointer corresponding to the new

key .
Process the access request with a
pointer corresponding to the old

key
1120

FIG . 13

U.S. Patent Jul . 26 , 2022 Sheet 19 of 31 US RE49,148 E

Storage
Device
(SD) 176a SD176b SD 1760 SO 1760 SD 1761 SD 1761 SD 176k on

Stripe
1270a

Stripe
1270D

Page
1212

Page
1220

Data 1230 Data 1240

L User Data
Intra - Device
Error Recovery

Data 1250 Data 1260

M is shavity
Inter - Device
Error
Recovery

3 .
99 #dkby Metadata

FIG . 14

U.S. Patent Jul . 26 , 2022 Sheet 20 of 31 US RE49,148 E

Receive Data for Deduplication
1502

Generate fingerprint
1504

Identify fingerprint tables to
search
1506

Yes No
Select table

1508
More Tables ?

1522
Write Data

1524

No Search
current table ?

1510

Yes

No fingerprint
Match ?
1512

Yes Create new
deduplication Entry

1526
No Read

Stored Data ?
1514

Yes

No Data Match ?
1516

Yes

Update Link Table
1518

Update Mapping Table
1520

FIG , 15

U.S. Patent Jul . 26 , 2022 Sheet 21 of 31 US RE49,148 E

Method 1600

Select one or more storage devices
to use in a storage subsystem .

1602

1601
Identify for any given data component

one or more attributes to maintain
1604

wwwwwwwwwwwww

Identify events for updating the one or
more attributes .

1606

-NO
Determine

one of the events has
Occurred ?

1608

Retrieve corresponding attributes .
1610

Make change to fingerprint location
as indicated

1612
Update the attributes .

1614

FIG . 16

U.S. Patent Jul . 26 , 2022 Sheet 22 of 31 US RE49,148 E

Attributes 1700

Attributes Entry 1701 .

Address
1703A

Access Rate
1703B

Total Accesses
17030

Data Age
17030

Data Size
1703E

Device Age
1703E

Total Errors Deduplication Rate
1703G

Total Deduplications
1703H

Error Rate
17031

Status
1703K

FIG . 17

System 1800

Virtual Index 1824
Physical index 1820

U.S. Patent

Status 1828

Read Paih

Entry 1822a

Volume

Physical Index 1829

entry 1822b

Storage 1880

1802 Virtual Address 1804 Snapshot

Virtual Index 1810

Jul . 26 , 2022

Entry 18229 Mapping Table 1820

1806 Sector Number 1808

Control Logic 1860

Write Path

Deduplication Strategy Logic

Sheet 23 of 31

Attribute Table 1830

1862

Attribute Taole 1840

Entry 1832a

Attributes Update Logic 1864

Entry 18422

User Inputs 1850

Entry 18326

Entry 1842b

Table Entries Movement Logic 1866 Mapping Table Update Logic 1868

Entry 18326

Entry 1842

US RE49,148 E

FIG . 18

U.S. Patent Jul . 26 , 2022 Sheet 24 of 31 US RE49,148 E

Deduplication Table 1910

Fingerprint
1922a

Fingerprint
1922b

Fingerprint
Table
1920 Data

Component
1902

Fingerprint
19229 Fingerprint

Table
1930 Fingerprint

Algorithm

Pointer 19362 Status 1938a Fingerprint
1932a

Fingerprint
19320

Fingerprint
1934a

Fingerprint
19346 Pointer 1936b Status 1938

Data
Component
Fingerprint

1906

Fingerprint
19321

Fingerprint
1934 Pointer 19361 Status 19381

Fingerprint
Table
1940

Pointer 1946a Status 1948a Fingerprint
1942a

Fingerprint
1942

Fingerprint
1944a

Fingerprint
1944b

Fingerprint
1945a

Fingerprint Pointer 19466 Status 1948b

Fingerprint
1942m

Fingerprint
19441

Fingerprint
1945m Pointer 1946m Status 1948m

FIG . 19

U.S. Patent Jul . 26 , 2022 Sheet 25 of 31 US RE49,148 E

Method 2000

Determine to use N fingerprint
tables for deduplication

2002

Identify one or more events for changing a storage strategy for
table entries

2006

Identify one or more attributes to
store and maintain for entries

2008

Update attributes as the stored
data components are aged and

accessed
2010

No
Does

one of the
events occur ?

2012

Register , move , promote ,
demote , evict , and / or reinsert

entries based on corresponding
attributes
2016

Inspect attributes of one or more
entries within the tables

2014

FIG . 20

U.S. Patent Jul . 26 , 2022 Sheet 26 of 31 US RE49,148 E

Method 2100

Identify one or more conditions for
evicting an entry from a deduplication

table
2102

No

Are
conditions satisfied for

evicting entry ?
2104

Yes

Mark corresponding data
component as having been

removed .
2106

Remove the given entry from the
table
2108

FIG . 21

U.S. Patent Jul . 26 , 2022 Sheet 27 of 31 US RE49,148 E

Method 2200

Identify one or more conditions for
reviewing data for possible

inclusion in the deduplication
table (DT) .
2202

conditions
satisfied ?
2204

Yes

Inspect corresponding attributes
2206

Does
the data qualify to be

in the DT ?
2208

Yes

Insert the given entry into the table
2210

FIG . 22

System 2300

U.S. Patent

Deduplication Table 1910

Link Table 2310

Data Component 2302

Fingerprint Table 1920

Entry 2320a Entry 2320b

Fingerprint Table 1930

Jul . 26 , 2022

Fingerprint Algorithm 2304

Entry 23200

Fingerprint Table 1940

Data Component Fingerprint 2306

Sheet 28 of 31

Physical Index 2337

Physical Index 2324
Virtual Index 2326a

Virtual Index 23261
Status 2328

US RE49,148 E

FIG . 23

U.S. Patent Jul . 26 , 2022 Sheet 29 of 31 US RE49,148 E

Read Link Table entry
2402

Yes

No Read virtual address
from entry

2404

More
entries in
table ?
2418

Done

Look up virtual address in mapping table
2406

Yes

Virtual
address vald ?

2408

More virtual
addresses

2412
Reclan data block

2416
Write new entry to

link table
2420

Yes
Yes

Update new
link table entry

2410

New
entry empty

2414

FIG . 24

U.S. Patent Jul . 26 , 2022 Sheet 30 of 31 US RE49,148 E

2530 Access link table
2500

Read next link table entry
2502 Yes

Add to sorted list of
entries for this segment

No More link
table entries ?

2506

Position cursor at start of segment
content descriptor table

2503

Read next segment
content descriptor entry

2510
Yes

More seg
Entries ?
2514

Add to sorted list of
entries for this segment

2512

Na

2540
Start at first entry in sorted list

2516

Look up virtual address in
mapping table

2518

Mapping
match ?
2520

Yes

Add entry to list of data to
copy to new segment

2524

More
entries ?
2522

List Done

FIG . 25

U.S. Patent Jul . 26 , 2022 Sheet 31 of 31 US RE49,148 E

2630

Done

Set cursor to first entry in
list

2600
Write out segment (s)

2620

Read entry at cursor
2602

Advance cursor to next
Entry
2018

Last
entry in list ?

2616

2603

Copy data to new data
Segment
2612

Update mapping entry
2614

2640

Can entry be
Deduplicated ?

2604

Yes

Data
already
written ?
2606

Add new link table entry
2610

Copy data to new dedup
data segment

2603

FIG . 26

a

a a

9

a

US RE49,148 E
1 2

RECLAIMING SPACE OCCUPIED BY volume manager or a disk array manager , provide a means
DUPLICATED DATA IN A STORAGE of allocating space on mass - storage arrays . In addition , this

SYSTEM software allows a system administrator to create units of
storage groups including logical volumes . Storage virtual

5 ization provides an abstraction (separation) of logical stor Matter enclosed in heavy brackets [] appears in the age from physical storage in order to access logical storage
original patent but forms no part of this reissue specifica- without end - users identifying physical storage .
tion ; matter printed in italics indicates the additions To support storage virtualization , a volume manager per
made by reissue ; a claim printed with strikethrough forms input / output (I / O) redirection by translating incoming
indicates that the claim was canceled , disclaimed , or held 10 1/0 requests using logical addresses from end - users into new
invalid by a prior post - patent action or proceeding . requests using addresses associated with physical locations

in the storage devices . As some storage devices may include
CROSS - REFERENCE TO RELATED additional address translation mechanisms , such as address

APPLICATIONS translation layers which may be used in solid state storage
15 devices , the translation from a logical address to another

This application is a continuation of U.S. patent applica- address mentioned above may not represent the only or final
tion Ser . No. 14 / 015,308 , entitled “ GARBAGE COLLEC- address translation . Redirection utilizes metadata stored in
TION IN ASTORAGE SYSTEM ” , filed Aug. 30 , 2013 , now one or more mapping tables . In addition , information stored
U.S. Pat . No. 8,886,691 , a continuation of U.S. patent in one or more mapping tables may be used for storage
application Ser . No. 13 / 340,119 , entitled “ GARBAGE COL- 20 deduplication and mapping virtual sectors at a specific
LECTION IN A STORAGE SYSTEM ” , filed Dec. 29 , 2011 , snapshot level to physical locations . The volume manager
now U.S. Pat . No. 8,527,544 , a continuation - in - part of U.S. may maintain a consistent view of mapping information for
patent application Ser . No. 70 , entitled “ METHOD the virtualized storage . However , a supported address space
FOR REMOVING DUPLICATE DATA FROM A STOR- may be limited by a storage capacity used to maintain a
AGE ARRAY ” , filed Sep. 30 , 2011 , and a continuation - in- 25 mapping table .
part of U.S. patent application Ser . No. 13 / 208,094 , entitled The technology and mechanisms associated with chosen
“ LOGICAL SECTOR MAPPING IN A FLASH STORAGE storage disks determines the methods used by a volume
ARRAY ” , filed Aug. 11 , 2011 , now U.S. Pat . No. 8,788,788 , manager . For example , a volume manager that provides
and a continuation - in - part of U.S. patent application Ser . No. mappings for a granularity level of a hard disk , a hard disk
13 / 211,288 , entitled “ MAPPING IN A STORAGE SYS- 30 partition , or a logical unit number (LUN) of an external
TEM ” , filed Aug. 16 , 2011 , now U.S. Pat . No. 8,806,160 , storage device is limited to redirecting , locating , removing
and a continuation - in - part of U.S. patent application Ser . No. duplicate data , and so forth , for large chunks of data . One
13 / 250,579 , entitled “ VARIABLE LENGTH ENCODING example of another type of storage disk is a Solid - State Disk
IN A STORAGE SYSTEM ” , filed Sep. 30 , 2011 , now U.S. (SSD) . An SSD may emulate a HDD interface , but an SSD
Pat . No. 8,793,467 , and a continuation - in - part of U.S. patent 35 utilizes solid - state memory to store persistent data rather
application Ser . No. 13 / 273,858 , entitled “ METHOD FOR than electromechanical devices as found in a HDD . For
MAINTAINING MULTIPLE FINGERPRINT TABLES IN example , an SSD may comprise banks of Flash memory .
A DEDUPLICATING STORAGE SYSTEM ” , filed Oct. 14 , Accordingly , a large supported address space by one or more
2011 , now U.S. Pat . No. 8,589,640 , each of the foregoing mapping tables may not be achieved in systems comprising
applications being incorporated herein by reference in their 40 SSDs for storage while utilizing mapping table allocation
entirety . algorithms developed for HDDs .

One important process related to data storage is that of
BACKGROUND garbage collection . Garbage collection is a process in which

storage locations are freed and made available for reuse by
1. Field of the Invention 45 the system . In the absence of garbage collection , all storage
This invention relates to computer networks and , more locations will eventually appear to be in use and it will no

particularly , to maintaining a mapping structure in a storage longer be possible to allocate storage . Often times , there is
system . significant overhead associated with performing garbage

2. Description of the Related Art collection and overall system performance can be adversely
As computer memory storage and data bandwidth 50 impacted . Consequently , how and when garbage collection

increase , so does the amount and complexity of data that is performed is important .
businesses daily manage . Large - scale distributed storage In view of the above , systems and methods for efficiently
systems , such as data centers , typically run many business performing garbage collection in storage devices are
operations . A datacenter , which also may be referred to as a desired .
server room , is a centralized repository , either physical or 55
virtual , for the storage , management , and dissemination of SUMMARY OF EMBODIMENTS
data pertaining to one or more businesses . A distributed
storage system may be coupled to client computers inter- Various embodiments of a computer system and methods
connected by one or more networks . If any portion of the for performing garbage collection in a data storage system
distributed storage system has poor performance , company 60 are contemplated .
operations may be impaired . A distributed storage system A system is contemplated which includes a storage
therefore maintains high standards for data availability and medium , a first table including entries which map virtual
high - performance functionality . addresses to locations in the storage medium , and a second

The distributed storage system comprises physical vol- table with entries which include reverse mappings of a
umes , which may be hard disks , solid - state devices , storage 65 physical address in a data storage medium to one or more
devices using another storage technology , or partitions of a virtual addresses . A data storage controller in the system is
storage device . Software applications , such as a logical configured to perform garbage collection . During garbage

9

a

a a

a

a

US RE49,148 E
3 4

collection , the controller is configured to identify one or FIG . 11 is a generalized block diagram of another embodi
more entries in the second table which correspond to a ment of a flattening operation for levels within a mapping
segment to be garbage collected . In response to determining table .
the first table includes a valid mapping for a virtual address FIG . 12 is a generalized flow diagram illustrating one
included in an entry of the one of the one or more entries , 5 embodiment of a method for flattening levels within a
the controller is configured to copy data from a first location mapping table .
identified in the entry to a second location in the data storage FIG . 13 is a generalized flow diagram illustrating one
medium , and reclaim the first storage location . embodiment of a method for efficiently processing bulk

In various embodiments , the storage controller creates a array tasks within a mapping table .
sorted list of entries from the second table which is then used 10 FIG . 14 is a generalized block diagram illustrating an
to build a list of data locations in the segment which are embodiment of a data layout architecture within a storage currently in use . Having identified locations which remain in device . use , the controller copies data in these locations to a new FIG . 15 illustrates one embodiment of a method for segment . Reclamation of the storage location may be per 15 performing deduplication . formed at a later time .

FIG . 16 illustrates one embodiment of a method for Also contemplated are embodiments in which the con maintaining fingerprints in a deduplication table . troller deduplicates data corresponding to locations that are
to be copied to a new segment . If the data can be dedupli FIG . 17 is a generalized block diagram illustrating one
cated , a new entry is added to the second table which maps embodiment of a table entry storing attributes .
a virtual address to the new location . If the deduplicated data 20 FIG . 18 is a generalized block diagram illustrating one
has not yet been written , it is first written to a new location . embodiment of a system for maintaining attributes tables for

In some embodiments , data in the first table is organized data components .
as a plurality of time ordered levels . In such embodi nts , FIG . 19 is a generalized block diagram illustrating one
when the controller copies data from the first location to a embodiment of a deduplication table .
second location , it adds a new entry corresponding to the 25 FIG . 20 illustrates one embodiment of a method for
second location to the first table in a newer time - ordered supporting multiple fingerprint tables .
level than that containing the entry corresponding to the first FIG . 21 illustrates one embodiment of a method for
location . In various embodiments , the controller is also eviction from a deduplication table .
configured to detect and correct errors in garbage collected FIG . 22 illustrates one embodiment of a method for
data that is being relocated . 30 inserting an entry into a deduplication table .

These and other embodiments will become apparent upon FIG . 23 illustrates one embodiment of a system for
consideration of the following description and accompany- maintaining reverse address mappings using a link table .
ing drawings . FIG . 24 illustrates embodiment of a portion of a garbage

collection process .
BRIEF DESCRIPTION OF THE DRAWINGS FIG . 25 illustrates embodiment of a portion of a garbage

collection process .
FIG . 1 is a generalized block diagram illustrating one FIG . 26 illustrates embodiment of a portion of a garbage

embodiment of network architecture . collection process .
FIG . 2 is a generalized block diagram of one embodiment While the invention is susceptible to various modifica

of a mapping table . 40 tions and alternative forms , specific embodiments are shown
FIG . 3A is a generalized block diagram of one embodi- by way of example in the drawings and are herein described

ment of a primary index used to access a mapping table . in detail . It should be understood , however , that drawings
FIG . 3B is a generalized block diagram of another and detailed description thereto are not intended to limit the

embodiment of a primary index used to access a mapping invention to the particular form disclosed , but on the con
table . 45 trary , the invention is to cover all modifications , equivalents
FIG . 4 is a generalized block diagram of another embodi- and alternatives falling within the spirit and scope of the

ment of a primary index and mapping table . present invention as defined by the appended claims .
FIG . 5A is a generalized flow diagram illustrating one

embodiment of a method for performing a read access . DETAILED DESCRIPTION
FIG . 5B is a generalized flow diagram illustrating one 50

embodiment of a method for performing a write operation . In the following description , numerous specific details are
FIG . 5C is a generalized flow diagram illustrating one set forth to provide a thorough understanding of the present

embodiment of a method for encoding and storing tuples . invention . However , one having ordinary skill in the art
FIG . 5D illustrates one embodiment of tuple encoding . should recognize that the invention might be practiced
FIG . 5E is a generalized flow diagram illustrating one 55 without these specific details . In some instances , well

embodiment of a method for selecting and encoding scheme . known circuits , structures , signals , computer program
FIG . 6 is a generalized block diagram of one embodiment instruction , and techniques have not been shown in detail to

of a multi - node network with shared mapping tables . avoid obscuring the present invention .
FIG . 7 is a generalized block diagram of one embodiment Referring to FIG . 1 , a generalized block diagram of one

of a secondary index used to access a mapping table . 60 embodiment of a network architecture 100 is shown . As
FIG . 8 is a generalized block diagram of one embodiment described further below , one embodiment of network archi

of a tertiary index accessing a mapping table . tecture 100 includes client computer systems 110a - 110b
FIG . 9 illustrates one embodiment of a method that interconnected to one another through a network 180 and to

utilizes overlay tables . data storage arrays 120a - 120b . Network 180 may be coupled
FIG . 10 is a generalized block diagram of one embodi- 65 to a second network 190 through a switch 140. Client

ment of a flattening operation for levels within a mapping computer system 110c is coupled to client computer systems
table . 110a - 110b and data storage arrays 120a - 120b via network

35

a

a

US RE49,148 E
5 6

190. In addition , network 190 may be coupled to the Internet one or more of the storage devices 176a - 176m may include
160 or otherwise outside network through switch 150 . or be further coupled to storage consisting of solid - state

It is noted that in alternative embodiments , the number memory to store persistent data . In other embodiments , one
and type of client computers and servers , switches , net- or more of the storage devices 176a - 176m may include or be
works , data storage arrays , and data storage devices is not 5 further coupled to storage using other technologies such as
limited to those shown in FIG . 1. At various times one or spin torque transfer technique , magnetoresistive random
more clients may operate offline . In addition , during opera- access memory (MRAM) technique , shingled disks , mem
tion , individual client computer connection types may ristors , phase change memory , or other storage technologies .
change as users connect , disconnect , and reconnect to net- These different storage techniques and technologies may
work architecture 100. Further , while the present description 10 lead to differing I / O characteristics between storage devices .
generally discusses network attached storage , the systems In one embodiment , the included solid - state memory
and methods described herein may also be applied to comprises solid - state drive (SSD) technology . The differ
directly attached storage systems and may include a host ences in technology and mechanisms between HDD tech
operating system configured to perform one or more aspects nology and SDD technology may lead to differences in
of the described methods . Numerous such alternatives are 15 input / output (1/0) characteristics of the data storage devices
possible and are contemplated . A further description of each 176a - 176m . A Solid - State Disk (SSD) may also be referred
of the components shown in FIG . 1 is provided shortly . First , to as a Solid - State Drive . Without moving parts or mechani
an overview of some of the features provided by the data cal delays , an SSD may have a lower read access time and
storage arrays 120a - 120b is described . latency than a HDD . However , the write performance of

In the network architecture 100 , each of the data storage 20 SSDs is generally slower than the read performance and may
arrays 1200-120b may be used for the sharing of data among be significantly impacted by the availability of free , pro
different servers and computers , such as client computer grammable blocks within the SSD .
systems 110a - 110c . In addition , the data storage arrays Storage array efficiency may be improved by creating a
120a - 120b may be used for disk mirroring , backup and storage virtualization layer between user storage and physi
restore , archival and retrieval of archived data , and data 25 cal locations within storage devices 176a - 176m . In one
migration from one storage device to another . In an alternate embodiment , a virtual layer of a volume manager is placed
embodiment , one or more client computer systems 110a- in a device - driver stack of an operating system (OS) , rather
110c may be linked to one another through fast local area than within storage devices or in a network . Many storage
networks (LANs) in order to form a cluster . Such clients arrays perform storage virtualization at a coarse - grained
may share a storage resource , such as a cluster shared 30 level to allow storing of virtual - to - physical mapping tables
volume residing within one of data storage arrays 120a- entirely in memory . However , such storage arrays are unable
120b . to integrate features such as data compression , deduplication
Each of the data storage arrays 120a - 120b includes a and copy - on - modify operations . Many file systems support

storage subsystem 170 for data storage . Storage subsystem fine - grained virtual - to - physical mapping tables , but they do
170 may comprise a plurality of storage devices 176a - 176m . 35 not support large storage arrays , such as device groups
These storage devices 176a - 176m may provide data storage 173a - 173m . Rather , a volume manager or a disk array
services to client computer systems 110a - 110c . Each of the manager is used to support device groups 173a - 173m .
storage devices 176a - 176m uses a particular technology and In one embodiment , one or more mapping tables may be
mechanism for performing data storage . The type of tech- stored in the storage devices 176a - 176m , rather than
nology and mechanism used within each of the storage 40 memory , such as RAM 172 , memory medium 130 or a cache
devices 176a - 176m may at least in part be used to determine within processor 122. The storage devices 176a - 176 may be
the algorithms used for controlling and scheduling read and SSDs utilizing Flash memory . The low read access and
write operations to and from each of the storage devices latency times for SSDs may allow a small number of
1762-176m . For example , the algorithms may locate par- dependent read operations to occur while servicing a storage
ticular physical locations corresponding to the operations . In 45 access request from a client computer . The dependent read
addition , the algorithms may perform input / output (1/0) operations may be used to access one or more indexes , one
redirection for the operations , removal of duplicate data in or more mapping tables , and user data during the servicing
the storage subsystem 170 , and support one or more map- of the storage access request .
ping tables used for address redirection and deduplication . In one example , I / O redirection may be performed by the

The logic used in the above algorithms may be included 50 dependent read operations . In another example , inline dedu
in one or more of a base operating system (OS) 132 , a plication may be performed by the dependent read opera
volume manager 134 , within a storage subsystem controller tions . In yet another example , bulk array tasks , such as a
174 , control logic within each of the storage devices 176a- large copy , move , or zeroing operation , may be performed
176m , or otherwise . Additionally , the logic , algorithms , and entirely within a mapping table rather than accessing storage
control mechanisms described herein may comprise hard- 55 locations holding user data . Such a direct map manipulation
ware and / or software . may greatly reduce I / O traffic and data movement within the

Each of the storage devices 176a - 176m may be config- storage devices 176a - 176m . The combined time for both
ured to receive read and write requests and comprise a servicing the storage access request and performing the
plurality of data storage locations , each data storage location dependent read operations from SSDs may be less than
being addressable as rows and columns in an array . In one 60 servicing a storage access request from a spinning HDD .
embodiment , the data storage locations within the storage In addition , the information within a mapping table may
devices 176a - 176m may be arranged into logical , redundant be compressed . A particular compression algorithm may be
storage containers or RAID arrays (redundant arrays of chosen to allow identification of individual components ,
inexpensive / independent disks) . such as a key within a record among multiple records .

In some embodiments , each of the storage devices 176a- 65 Therefore , a search for a given key among multiple com
176m may utilize technology for data storage that is different pressed records may occur . In various embodiments the
from a conventional hard disk drive (HDD) . For example , search for a given key may be performed without decom

a

10

15

servers .

US RE49,148 E
7 8

pressing each tuple by comparing the compressed represen- entities (e.g. , LUNs) built upon the storage devices 176a
tation of the key against the compressed information stored 176m within each of the data storage arrays 120a - 120b .
in the relevant fields of the tuple . If a match is found , only Each of the data storage arrays 120a - 120b may be used for
the matching record may be decompressed . Compressing the the sharing of data among different servers , such as the client
tuples within records of a mapping table may further enable 5 computer systems 110a - 110c . Each of the data storage arrays
fine - grained level mapping . This fine - grained level mapping 120a - 120b includes a storage subsystem 170 for data stor
may allow direct map manipulation as an alternative to age . Storage subsystem 170 may comprise a plurality of
common bulk array tasks . Further details concerning effi- storage devices 176a - 176m . Each of these storage devices
cient storage virtualization will be discussed below . 176a - 176m may be an SSD . A controller 174 may comprise

Again , as shown , network architecture 100 includes client logic for handling received read / write requests . A random
computer systems 110a - 110c interconnected through net- access memory (RAM) 172 may be used to batch operations ,
works 180 and 190 to one another and to data storage arrays such as received write requests . In various embodiments ,
120a - 120b . Networks 180 and 190 may include a variety of when batching write operations (or other operations) non
techniques including wireless connection , direct local area volatile storage (e.g. , NVRAM) may be used .
network (LAN) connections , wide area network (WAN) The base OS 132 , the volume manager 134 (or disk array
connections such as the Internet , a router , storage area manager 134) , any OS drivers (not shown) and other soft
network , Ethernet , and others . Networks 180 and 190 may ware stored in memory medium 130 may provide function
comprise one or more LANs that may also be wireless . ality providing access to files and the management of these
Networks 180 and 190 may further include remote direct 20 functionalities . The base OS 132 may be a storage operating
memory access (RDMA) hardware and / or software , trans- system such as NetApp Data ONTAP® or otherwise . The
mission control protocol / internet protocol (TCP / IP) hard- base OS 132 and the OS drivers may comprise program
ware and / or software , router , repeaters , switches , grids , instructions stored on the memory medium 130 and execut
and / or others . Protocols such as Fibre Channel , Fibre Chan- able by processor 122 to perform one or more memory
nel over Ethernet (FCoE) , iSCSI , and so forth may be used 25 access operations in storage subsystem 170 that correspond
in networks 180 and 190. Switch 140 may utilize a protocol to received requests . The system shown in FIG . 1 may
associated with both networks 180 and 190. The network generally include one or more file servers and / or block
190 may interface with a set of communications protocols
used for the Internet 160 such as the Transmission Control Each of the data storage arrays 120a - 120b may use a
Protocol (TCP) and the Internet Protocol (IP) , or TCP / IP . 30 network interface 124 to connect to network 180. Similar to
Switch 150 may be a TCP / IP switch . client computer systems 110a - 110c , in one embodiment , the

Client computer systems 110a - 110c are representative of functionality of network interface 124 may be included on a
any number of stationary or mobile computers such as network adapter card . The functionality of network interface
desktop personal computers (PCs) , servers , server farms , 124 may be implemented using both hardware and software .
work - stations , laptops , handheld computers , servers , per- 35 Both a random - access memory (RAM) and a read - only
sonal digital assistants (PDAs) , smart phones , and so forth . memory (ROM) may be included on a network card imple
Generally speaking , client computer systems 110a - 110c mentation of network interface 124. One or more application
include one or more processors comprising one or more specific integrated circuits (ASICs) may be used to provide
processor cores . Each processor core includes circuitry for the functionality of network interface 124 .
executing instructions according to a predefined general- 40 In addition to the above , each of the storage controllers
purpose instruction set . For example , the x86 instruction set 174 within the data storage arrays 120a - 120b may support
architecture may be selected . Alternatively , the Alpha® , storage array functions such as snapshots , replication and
PowerPC® , SPARC® , or any other general - purpose instruc- high availability . In addition , each of the storage controllers
tion set architecture may be selected . The processor cores 174 may support a virtual machine environment that com
may access cache memory subsystems for data and com- 45 prises a plurality of volumes with each volume including a
puter program instructions . The cache subsystems may be plurality of snapshots . In one example , a storage controller
coupled to a memory hierarchy comprising random access 174 may support hundreds of thousands of volumes ,
memory (RAM) and a storage device . wherein each volume includes thousands of snapshots . In

Each processor core and memory hierarchy within a client one embodiment , a volume may be mapped in fixed - size
computer system may be connected to a network interface . 50 sectors , such as a 4 - kilobyte (KB) page within storage
In addition to hardware components , each of the client devices 176a - 176m . In another embodiment , a volume may
computer systems 110a - 110c may include a base operating be mapped in variable - size sectors such as for write requests .
system (OS) stored within the memory hierarchy . The base A volume ID , a snapshot ID , and a sector number may be
OS may be representative of any of a variety of operating used to identify a given volume .
systems , such as , for example , MS - DOS® , MS - WIN- 55 An address translation table may comprise a plurality of
DOWS® , OS / 2® , UNIX® , Linux® , Solaris® , AIX® , entries , wherein each entry holds a virtual - to - physical map
DART , or otherwise . As such , the base OS may be operable ping for a corresponding data component . This mapping
to provide various services to the end - user and provide a table may be used to map logical read / write requests from
software framework operable to support the execution of each of the client computer systems 110a - 110c to physical
various programs . Additionally , each of the client computer 60 locations in storage devices 1762-176m . A “ physical ”
systems 110a - 110c may include a hypervisor used to support pointer value may be read from the mapping table during a
virtual machines (VMs) . As is well known to those skilled lookup operation corresponding to a received read / write
in the art , virtualization may be used in desktops and servers request . This physical pointer value may then be used to
to fully or partially decouple software , such as an OS , from locate a physical location within the storage devices 176a
a system's hardware . Virtualization may provide an end - user 65 176m . It is noted the physical pointer value may be used to
with an illusion of multiple OSes running on a same machine access another mapping table within a given storage device
each having its own resources and access to logical storage of the storage devices 176a - 176m . Consequently , one or

2

a

a

9

US RE49,148 E
9 10

more levels of indirection may exist between the physical describes the mapping tables as mapping address (e.g. ,
pointer value and a target storage location . virtual to physical addresses) , in other embodiments the

In another embodiment , the mapping table may comprise tables , methods , and mechanisms may be applied to such
information used to deduplicate data (deduplication table that the key can be a file identifier or an object identifier . For
related information) . The information stored in the dedupli- 5 example , in such embodiments the system may be used as a
cation table may include mappings between one or more file server or object server . In various embodiments , the
calculated hash values for a given data component and a methods and mechanisms described here may be used to
physical pointer to a physical location in one of the storage serve blocks , objects , and files , and dynamically move space
devices 176a - 176m holding the given data component . In between them . Numerous such embodiments are possible
addition , a length of the given data component and status 10 and are contemplated .
information for a corresponding entry may be stored in the A key is an entity in a mapping table that may distinguish
deduplication table . one row of data from another row . Each row may also be

Turning now to FIG . 2 , a generalized block diagram of referred to as an entry or a record . A key may be a single
one embodiment of a mapping table is shown . As discussed column , or it may consist of a group of columns used to
earlier , one or more mapping tables may be used for I / O 15 identify a record . In some embodiments , a key may corre
redirection or translation , deduplication of duplicate copies spond to a range of values rather than to a single value . For
of user data , volume snapshot mappings , and so forth . example , a key corresponding to a range may be represented
Mapping tables may be stored in the storage devices 176a- as a start and end of a range , or as a start and length , or in
176m . The diagram shown in FIG . 2 represents a logical other ways . Additionally , the ranges corresponding to keys
representation of one embodiment of the organization and 20 may overlap with other keys , including either ranges or
storage of the mapping table . Each level shown may include individual values . In one example , an address translation
mapping table entries corresponding to a different period of mapping table may utilize a key comprising a volume
time . For example , level “ 1 ” may include information older identifier (ID) , an address such as a logical address or virtual
than information stored in level “ 2 ” . Similarly , level “ 2 ” may address , a snapshot ID , a sector number , and so forth . A
include information older than information stored in level 25 given received read / write storage access request may iden
“ 3 ” . The information stored in the records , pages and levels tify a particular volume , sector and length . A sector may be
shown in FIG . 2 may be stored in a random - access manner a logical block of data stored in a volume . Sectors may have
within the storage devices 176a - 176m . Additionally , copies different sizes on different volumes . The address translation
of portions or all of a given mapping table entries may be mapping table may map a volume in sector - size units .
stored in RAM 172 , in buffers within controller 174 , in 30 A volume identifier (ID) may be used to access a volume
memory medium 130 , and in one or more caches within or table that conveys a volume ID and a corresponding current
coupled to processor 122. In various embodiments , a cor- snapshot ID . This information along with the received sector
responding index may be included in each level for map- number may be used to access the address translation
pings which are part of the level (as depicted later in FIG . mapping table . Therefore , in such an embodiment , the key
4) . Such an index may include an identification of mapping 35 value for accessing the address translation mapping table is
table entries and where they are stored (e.g. , an identification the combination of the volume ID , snapshot ID , and the
of the page) within the level . In other embodiments , the received sector number . In one embodiment , the records
index associated with mapping table entries may be a within the address translation mapping table are sorted by
distinct entity , or entities , which are not logically part of the volume ID , followed by the sector number and then by the
levels themselves . 40 snapshot ID . This ordering may group together different

Generally speaking , each mapping table comprises a set versions of data components in different snapshots . There
of rows and columns . A single record may be stored in a fore , during a lookup for a storage access read request , a
mapping table as a row . A record may also be referred to as corresponding data component may be found with fewer
an entry . In one embodiment , a record stores at least one read operations to the storage devices 176a - 176m .
tuple including a key . Tuples may or may not) also include 45 The address translation mapping table may convey a
data fields including data such as a pointer used to identify physical pointer value that indicates a location within the
or locate data components stored in storage subsystem 170 . data storage subsystem 170 storing a data component cor
It is noted that in various embodiments , the storage subsys- responding to the received data storage access request . The
tem may include storage devices (e.g. , SSDs) which have key value may be compared to one or more key values stored
internal mapping mechanisms . In such embodiments , the 50 in the mapping table . In the illustrated example , simpler key
pointer in the tuple may not be an actual physical address per values , such as “ O ” , “ 2 ” , “ 12 ” and so forth , are shown for
se . Rather , the pointer may be a logical address which the ease of illustration . The physical pointer value may be stored
storage device maps to a physical location within the device . in one or more of the fields in a corresponding record .
Over time , this internal mapping between logical address The physical pointer value may include a segment iden
and physical location may change . In other embodiments , 55 tifier (ID) and a physical address identifying the location of
records in the mapping table may only contain key fields storage . A segment may be a basic unit of allocation in each
with no additional associated data fields . Attributes associ- of the storage devices 176a - 176m . A segment may have a
ated with a data component corresponding to a given record redundant array of independent device (RAID) level and a
may be stored in columns , or fields , in the table . Status data type . During allocation , a segment may have one or
information , such as a valid indicator , a data age , a data size , 60 more of the storage devices 176a - 176m selected for corre
and so forth , may be stored in fields , such as Field0 to FieldN sponding storage . In one embodiment , a segment may be
shown in FIG . 2. In various embodiments , each column allocated an equal amount of storage space on each of the
stores information corresponding to a given type . In some one or more selected storage devices of the storage devices
embodiments , compression techniques may be utilized for 176a - 176m . The data storage access request may correspond
selected fields which in some cases may result in fields 65 to multiple sectors , which may result in multiple parallel
whose compressed representation is zero bits in length . It is lookups . A write request may be placed in an NVRAM
noted that while the following discussion generally buffer , such as RAM 172 , and a write completion acknowl

a

a

a

a

a

a

US RE49,148 E
11 12

edgment may be sent to a corresponding client computer of ments , when a new level is created the number / designation
the client computers 110a - 110c . At a later time , an asyn- given to the new level is greater than numbers given to levels
chronous process may flush the buffered write requests to the that preceded the new level in time . For example , if the most
storage devices 176a - 176m . recent level created is assigned the value 8 , then a newly

In another example , the mapping table shown in FIG . 2 5 created level may be assigned the value 9. In this manner a
may be a deduplication table . A deduplication table may temporal relationship between the levels may be established
utilize a key comprising a hash value determined from a data or determined . As may be appreciated , numerical values
component associated with a storage access request . The need not be strictly sequential . Additionally , alternative
initial steps of a deduplication operation may be performed embodiments may reverse the numbering scheme such that
concurrently with other operations , such as a read / write 10 newer levels have smaller numerical designations . Further ,
request , a garbage collection operation , a trim operation , and other embodiments may utilize non - numerical designations
so forth . For a given write request , the data sent from one of to distinguish between levels . Numerous such embodiments
the client computer systems 110a - 110c may be a data stream , are possible and are contemplated . Each next older level has
such as a byte stream . As is well known to those skilled in a label decremented by one from a label integer value of a
the art , a data stream may be divided into a sequence of 15 previous younger level . A separate table not shown may be
fixed - length or variable - length chunks . A chunking algo- used to logically describe the mapping table . For example ,
rithm may perform the dividing of the data stream into each entry of the separate table may include a given level ID
discrete data components which may be referred to as and a list of the page IDs stored within the given level ID .
“ chunks " . A chunk may be a sub - file content - addressable By creating a new highest level for an insertion of new
unit of data . In various embodiments , a table or other 20 records , the mapping table is updated by appending the new
structure may be used to determine a particular chunking records . In one embodiment , a single level is created as a
algorithm to use for a given file type or type of data . A file's new highest level and each of the new records is inserted
type may be determined by referring to its file name exten- into the signal level . In another embodiment , the new
sion , separate identifying information , the content of the records may be searched for duplicate keys prior to insertion
data itself , or otherwise . The resulting chunks may then be 25 into the mapping table . A single level may be created as a
stored in one of the data storage arrays 120a - 120b to allow new highest level . When a given record storing a duplicate
for sharing of the chunks . Such chunks may be stored key is found , each of the records buffered ahead of the given
separately or grouped together in various ways . record may be inserted into the single level . The new records

In various embodiments , the chunks may be represented may be buffered in a manner to preserve memory ordering ,
by a data structure that allows reconstruction of a larger data 30 such as in - order completion of requests . Then another single
component from its chunks (e.g. a particular file may be level may be created and the remainder of the new records
reconstructed based on one or more smaller chunks of stored may be inserted into this other single level unless another
data) . A corresponding data structure may record its corre- record storing a duplicate key is found . If such a record is
sponding chunks including an associated calculated hash found , then the steps are repeated . Existing records within
value , a pointer (physical and / or logical) to its location in 35 the mapping table storing a same key value as one of the new
one of the data storage arrays 120a - 120b , and its length . For records are not edited or overwritten in - place by the inser
each data component , a deduplication application may be tion of the new records .
used to calculate a corresponding hash value . For example , Although the sizes of the levels are illustrated as increas
a hash function , such as Message - Digest algorithm 5 (MD5) , ing with lower levels being larger than newer levels , the
Secure Hash Algorithm (SHA) , or otherwise , may be used to 40 higher levels may alternate between being larger or smaller
calculate a corresponding hash value . In order to know if a than neighboring levels . The number of newer records to
given data component corresponding to a received write insert into the mapping table may vary over time and create
request is already stored in one of the data storage arrays the fluctuating level sizes . The lower levels may be larger
120a - 120b , bits of the calculated hash value (or a subset of than newer levels due to flattening of the lower levels . Two
bits of the hash value) for the given data component may be 45 or more lower levels may be flattened into a single level
compared to bits in the hash values of data components when particular conditions are detected . Further details are
stored in one or more of the data storage arrays 120a - 120b . provided later .
A mapping table may comprise one or more levels as With no edits in - place for the records stored in the

shown in FIG . 2. A mapping table may comprise 16 to 64 mapping table , newer records placed in higher levels may
levels , although another number of levels supported within 50 override records storing a same key value located in the
a mapping table is possible and contemplated . In FIG . 2 , lower levels . For example , when the mapping table is
three levels labeled Level “ 1 ” , Level “ 2 ” and Level “ N ” are accessed by a given key value , one or more levels may be
shown for ease of illustration . Each level within a mapping found to store a record holding a key value matching the
table may include one or more partitions . In one embodi- given key value . In such a case , the highest level of the one
ment , each partition is a 4 kilo - byte (KB) page . For example , 55 or more levels may be chosen to provide the information
Level “ N ” is shown to comprise pages 210a - 210g , Level “ 2 ” stored in its corresponding record as a result of the access .
comprises pages 210h - 210j and Level " 1 " comprises pages Further details are provided later . In addition , further details
210k - 210n . It is possible and contemplated other partition about the detected conditions for inserting one or more new
sizes may also be chosen for each of the levels within a records into the mapping table and the storage of informa
mapping table . In addition , it is possible one or more levels 60 tion are provided later .
have a single partition , which is the level itself . In one embodiment , entries within a given page may be

In one embodiment , multiple levels within a mapping sorted by key . For example , the entries may be sorted in
table are sorted by time . For example , in FIG . 2 , Level “ 1 ” ascending order according to a key included in the entry .
may be older than Level “ 2 ” . Similarly , Level “ 2 ” may be Additionally , in various embodiments , the pages within a
older than Level “ N ” . In one embodiment , when a condition 65 level may be sorted according to any desired sort order . In
for inserting one or more new records in the mapping table various embodiments , the pages within a level may also be
is detected , a new level may be created . In various embodi- sorted (e.g. , according to key values or otherwise) . In the

a

US RE49,148 E
13 14

example of FIG . 2 , page 210a of Level N includes records primary index may be physically stored in a random - access
sorted according to key value in ascending order . In various manner within the storage devices 176a - 176m .
embodiments , one or more columns may be used to store In one embodiment , the primary index 310 may be
key values . In the example of FIG . 2 , two columns or fields divided into partitions , such as partitions 312a - 312b . In one
are shown in each tuple for storing key values . Utilizing 5 embodiment , the size of the partitions may range from a 4
such key values , the records then may be sorted in a desired kilobyte (KB) page to 256 KB , though other sizes are
order . Sorting may be performed based on any of the key possible and are contemplated . Each entry of the primary
values for a records , or any combination of key values for index 310 may store a key value . In addition , each entry may
the record . In the example shown , the first record stores a store a corresponding unique virtual page identifier (ID) and
key value including 0 and 8 stored in two columns , and the 10 a level ID corresponding to the key value . Each entry may
last record stores a key value including 12 and 33. In this store corresponding status information such as validity

information . When the primary index 310 is accessed with illustrated example , each sorted record in page 210a between a query key value , the entries within the index 310 may be the first and the last record stores a key value between 0 and searched for one or more entries which match , or otherwise 12 in the first column and the records are arranged in a 15 correspond to , the key value . Information from the matching manner to store key values based (at least in part) on the first entry may then be used to locate and retrieve a mapping
column in an ascending order from 0 to 12. Similarly , page which identifies a storage location which is the target of a
210b includes sorted records , wherein the first record stores received read or write request . In other words , the index 310
key values of 12 and 39 and the last record stores key values identifies the locations of mappings . In one embodiment , a
of 31 and 19. In this illustrated example , each sorted record 20 hit in the index provides a corresponding page ID identify
in page 210b between the first and the last record stores a key ing a page within the storage devices 176a - 176m storing
value between 12 and 31 in the first column and the records both the key value and a corresponding physical pointer
are arranged in a manner to store key values in an ascending value . The page identified by the corresponding page ID
order from 12 to 31 . may be searched with the key value to find the physical

In addition to the above , the pages within Level N are 25 pointer value .
sorted according to a desired order . In various embodiments , In the example of FIG . 3A , a received request corresponds
pages within a level may be sorted in a manner that reflects to a key “ 22 " . This key is then used to access index 310. A
the order in which entries within page are sorted . For search of the index 310 results on a hit to an entry within
example , pages within a level may be sorted according to partition 312b . The matching entry in this case include
key values in ascending order . As the first key value in page 30 information such as — page 28 , and level 3. Based upon this
210b is greater than the last key value in page 210a , page result , the desired mapping for the request is found in a page
210b follows page 210a in the sort order . Page 210g would identified as page 28 within level 3 of the mapping tables .
then include entries whose key values are greater than those Using this information , an access may then be made to the
included in pages 210a - 210f (not shown) . In this manner , all mapping tables to retrieve the desired mapping . If an access
entries within a level are sorted according to a common 35 to the primary index 310 requires an access to storage , then
scheme . The entries are simply subdivided into page , or at least two storage accesses would be required in order to
other , size units . As may be appreciated , other sorting obtain a desired mapping . Therefore , in various embodi
schemes may be used as desired . ments as described below , portions of the primary index are

Referring now to FIG . 3A , a generalized block diagram of cached , or otherwise stored in a relatively fast access
one embodiment of a primary index used to access a 40 memory , in order to eliminate one access to the storage
mapping table is shown . A key generator 304 may receive devices . In various embodiments , the entire primary index
one or more requester data inputs 302. In one embodiment , for the mapping tables is cached . In some embodiments ,
a mapping table is an address translation directory table . A where the primary index has become too large to cache in its
given received read / write request may identify a particular entirety , or is otherwise larger than desired , secondary ,
volume , sector and length . The key generator 304 may 45 tertiary , or other index portions may be used in the cache to
produce a query key value 306 that includes a volume reduce its size . Secondary type indices are discussed below .
identifier (ID) , a logical or virtual address , a snapshot ID , In addition to the above , in various embodiments mapping
and a sector number . Other combinations are possible and pages corresponding to recent hits are also cached for at least
other or additional values may be utilized as well . Different some period of time . In this manner , processes which exhibit
portions of the query key value 306 may be compared to 50 accesses with temporal locality can be serviced more rapidly
values stored in columns that may or may not be contiguous (i.e. , recently accessed locations will have their mappings
within the mapping table . In the shown example , a key value cached and readily available) .
of “ 22 ” is used for ease of illustration . Referring now to FIG . 3B , a generalized block diagram of
As described earlier , both a chunking algorithm and / or a one embodiment of a cached primary index used to access

segmenting algorithm associated with the key generator 304 55 a mapping table is shown . Circuit and logic portions corre
may receive data 302 corresponding to a storage access sponding to those of FIG . 3A are numbered identically . The
request . These algorithms may produce one or more data cached primary index 314 may include copies of informa
components and select a hash function to calculate a corre- tion stored in each of the primary indexes 310 for the
sponding hash value , or query key value 306 , for each data multiple levels in a mapping table . The primary index 314
component . The resulting hash value may be used to index 60 may be stored in one or more of RAM 172 , buffers within
the deduplication table . controller 174 , memory medium 130 and caches within
A primary index 310 , as shown in FIG . 3A , may provide processor 122. In one embodiment , the primary index 314

location identifying information for data stored in the stor- may be sorted by key value , though sorting otherwise is
age devices 176a - 176m . For example , referring again to possible . The primary index 314 may also be divided into
FIG . 2 , a corresponding primary index 310 (or portion 65 partitions , such as partitions 316a - 316b . In one embodiment ,
thereof) may be logically included in each of level “ 1 ” , level the size of the partitions 316a - 316b may be a same size as
“ 2 ” and level “ N ” . Again , each level and each corresponding the partitions 312a - 312b within the primary index 310 .

a

2

a

US RE49,148 E
15 16

Similar to the primary index 310 , each entry of the then a corresponding result is returned (e.g. , pointer
primary index 314 may store one or more of a key value , a xF3209B24 in the example shown) . If the key 27 is not
corresponding unique virtual page identifier (ID) , a level ID found within page 32 , then a miss indication is returned .
corresponding to the key value , and status information such This physical pointer value may be output from the mapping
as valid information . When the primary index 314 is 5 table 340 to service a storage access request corresponding
accessed with a query key value 306 , it may convey a to the key value “ 27 ” .
corresponding page ID identifying a page within the storage In one embodiment , the mapping table 340 supports inline devices 176a - 176m storing both the key value and a corre mappings . For example , a mapping detected to have a sponding pointer value . The page identified by the corre
sponding page sufficiently small target may be represented without an ID may be searched with the key value to find 10 actual physical sector storing user data within the storage the pointer value . As shown , the primary index 314 may devices 1762-176m . One example may be a repeating pat have multiple records storing a same key value . Therefore , tern within the user data . Rather than actually store multiple multiple hits may result from the search for a given key
value . In one embodiment , a hit with a highest value of a copies of a repeated pattern (e.g. , a series of zeroes) as user
level ID (or whatever indicator is used to identify a youngest 15 data within the storage devices 176a - 176m , a corresponding
level or most recent entry) may be chosen . This selection of mapping may have an indication marked in the status
one hit from multiple hits may be performed by merge logic information , such as within one of the fields of fieldo to
not shown here . A further description of the merge logic is fieldN in the mapping table , that indicates what data value
provided later . is to be returned for a read request . However , there is no

Turning now to FIG . 4 , a generalized block diagram of 20 actual storage of this user data at a target location within the
another embodiment of a mapping table and primary index storage devices 176a - 176m . Additionally , an indication may
used to access the mapping table is shown . Circuit and logic be stored within the status information of the primary index
portions corresponding to those of FIG . 3A are numbered 310 and any additional indexes that may be used (not shown
identically . Mapping table 340 may have a similar structure here) .
as the mapping table shown in FIG . 2. However , storage of 25 In addition to the above , in various embodiments the
a corresponding primary index 310 for each level is now storage system may simultaneously support multiple ver
shown . A copy of one or more of the primary index portions sions of the data organization , storage schemes , and so on .
310a - 310i may be included in index copies 330 (e.g. , cached For example , as the system hardware and software evolve ,
copies) . Copies 330 may generally correspond to the cached new features may be incorporated or otherwise provided .
index depicted in FIG . 3B . The information in index copies 30 Data , indexes , and mappings (for example) which are newer
330 may be stored in RAM 172 , buffers within controller may take advantage of these new features . In the example of
174 , memory medium 130 , and caches within processor 122 . FIG . 4 , new level N may correspond to one version of the
In the embodiment vn , the information in primary system , while older level N - 1 may correspond to a prior
indexes 310a - 310i may be stored with the pages of map- version . In order to accommodate these different versions ,
pings in storage devices 1762-176m . Also shown is a sec- 35 metadata may be stored in association with each of the levels
ondary index 320 which may be used to access a primary which indicates which version , which features , compression
index , such as primary index 310i shown in the diagram . schemes , and so on , are used by that level . This metadata
Similarly , accessing and updating the mapping table 340 could be stored as part of the index , the pages themselves ,
may occur as described earlier . or both . When accesses are made , this metadata then indi

Mapping table 340 comprises multiple levels , such as 40 cates how the data is to be handled properly . Additionally ,
Level “ 1 ” to Level “ N ” . In the illustrated example , each of new schemes and features can be applied dynamically
the levels includes multiple pages . Level “ N ” is shown to without the need to quiesce the system . In this manner ,
include pages “ 0 ” to “ D ” , Level N - 1 includes pages “ E ” to upgrading of the system more flexible and a rebuild of
“ G ” , and so forth . Again , the levels within the mapping table older data to reflect newer schemes and approaches is not
310 may be sorted by time . Level “ N ” may be younger than 45 necessary .
Level “ N - 1 ” and so forth . Mapping table 340 may be Turning now to FIG . 5A , one embodiment of a method for
accessed by at least a key value . In the illustrated example , servicing a read access is shown . The components embodied
mapping table 340 is accessed by a key value “ 27 " and a in the network architecture 100 and mapping table 340
page ID “ 32 ” . For example , in one embodiment , a level ID described above may generally operate in accordance with
“ 8 ” may be used to identify a particular level (or “ subtable ”) 50 method 500. For purposes of discussion , the steps in this
of the mapping table 340 to search . Having identified the embodiment are shown in sequential order . However , some
desired subtable , the page ID may then be used to identify steps may occur in a different order than shown , some steps
the desired page within the subtable . Finally , the key may be may be performed concurrently , some steps may be com
used to identify the desired entry within the desired page . bined with other steps , and some steps may be absent in
As discussed above , an access to the cached index 330 55 another embodiment .

may result in multiple hits . In one embodiment , the results Read and store (write) requests may be conveyed from
of these multiple hits are provided to merge logic 350 which one of the clients 110a - 110c to one of the data storage arrays
identifies which hit is used to access the mapping table 340 . 120a - 120b . In the example shown , a read request 500 is
Merge logic 350 may represent hardware and / or software received , and in block 502 a corresponding query key value
which is included within a storage controller . In one embodi- 60 may be generated . In some embodiments , the request itself
ment , merge logic 350 is configured to identify a hit which may include the key which is used to access the index and
corresponds to a most recent (newest) mapping . Such an a “ generation ” of the key 502 is not required . As described
identification could be based upon an identification of a earlier , the query key value may be a virtual address index
corresponding level for an entry , or otherwise . In the comprising a volume ID , a logical address or virtual address
example shown , a query corresponding to level 8 , page 32 , 65 associated with a received request , a snapshot ID , a sector
key 27 is received . Responsive to the query , page 32 of level number , and so forth . In embodiments which are used for
8 is accessed . If the key 27 is found within page 32 (a hit) , deduplication , the query key value may be generated using

a

a

a

US RE49,148 E
17 18

a hash function or other function . Other values are possible compressed , and densely packed . Accordingly , reading a
and contemplated for the query key value , which is used to subset of a table's columns , such as within a page , may be
access a mapping table . performed relatively quickly . Column data may be of uni

In block 504 , the query key value may be used to access form type and may allow storage size optimizations to be
one or more cached indexes to identify one or more portions 5 used that may not be available in row - oriented data . Some
of a mapping table that may store a mapping that corre- compression schemes , such as Lempel - Ziv - Welch (LZ) and
sponds to the key value . Additionally , recently used map- run - length encoding (RLE) , take advantage of a detected
pings which have been cached may be searched as well . If similarity of adjacent data to compress . Further , as described
a hit on the cached mappings is detected (block 505) , the more fully below , other compression schemes may encode a
cached mapping may be used to perform the requested 10 value as a difference from a base value , thus requiring fewer
access (block 512) . If there is no hit on the cached mappings , bits to represent the difference than would be required to
the a determination may be made as to whether or not there represent the full value . A compression algorithm may be
is a hit on the cached index (block 506) . If so , a result chosen that allows individual records within the page to be
corresponding to the hit is used to identify and access the identified and indexed . Compressing the records within the
mapping table (block 508) . For example , with the primary 15 mapping table may enable fine - grained mapping . In various
index 310 , an entry storing the query key value also may embodiments , the type of compression used for a particular
store a unique virtual page ID that identifies a single portion of data may be stored in association with the data .
particular page within the mapping table . This single par- For example , the type of compression could be stored in an
ticular page may store both the query key value and an index , as part of a same page as the compressed data (e.g. ,
associated physical pointer value . In block 508 , the identi- 20 in a header of some type) , or otherwise . In this manner ,
fied potion of the mapping table may be accessed and a multiple compression techniques and algorithms may be
search performed using the query key value . The mapping used side by side within the storage system . In addition , in
table result may then be returned (block 510) and used to various embodiments the type of compression used for
perform a storage access (block 512) that corresponds to the storing page data may be determined dynamically at the time
target location of the original read request . 25 the data is stored . In one embodiment , one of a variety of

In some embodiments , an index query responsive to a compression techniques may be chosen based at least in part
read request may result in a miss . Such a miss could be due on the nature and type of data being compressed and / or the
to only a portion of the index being cached or an error expected resource requirements for the compression tech
condition (e.g. , a read access to a non - existent location , nique and the currently available resources in the system . In
address corruption , etc.) . In such a case , an access to the 30 some embodiments , multiple compression techniques will
stored index may be performed . If the access to the stored be performed and the one exhibiting the best compression
index results in a hit (block 520) , then a result may be will then be selected for use in compressing the data .
returned (block 522) which is used to access the mapping Numerous such approaches are possible and are contem
tables (block 508) . On the other hand , if the access to the plated .
stored index results in a miss , then an error condition may 35 If there is a match of the query key value 306 found in any
be detected . Handling of the error condition may be done in of the levels of the mapping table (block 508) , then in block
any of a variety of desired ways . In one embodiment , an 510 , one or more indications of a hit may be conveyed to the
exception may be generated (block_524) which is then merge logic 350. For example , one or more hit indications
handled as desired . In one embodiment , a portion of the may be conveyed from levels “ 1 ” to “ J ” as shown in FIG . 4 .
mapping table is returned in block 510. In various embodi- 40 The merge logic 350 may choose the highest level , which
ments , this portion is a page which may be a 4 KB page , or may also be the youngest level , of the levels “ 1 ” to “ J ”
otherwise . As previously discussed , the records within a conveying a hit indication . The chosen level may provide
page may be sorted to facilitate faster searches of the content information stored in a corresponding record as a result of
included therein . the access .

In one embodiment , the mapping table utilizes traditional 45 In block 512 , one or more corresponding fields within a
database systems methods for information storage in each matching record of a chosen page may be read to process a
page . For example , each record (or row or entry) within the corresponding request . In one embodiment , when the data
mapping table is stored one right after the other . This within the page is stored in a compressed format , the page
approach may be used in row - oriented or row - store data- is decompressed and a corresponding physical pointer value
bases and additionally with correlation databases . These 50 is read out . In another embodiment , only the matching
types of databases utilize a value - based storage structure . A record is decompressed and a corresponding physical
value - based storage (VBS) architecture stores a unique data pointer value is read out . In one embodiment , a full physical
value only once and an auto - generated indexing system pointer value may be split between the mapping table and a
maintains the context for all values . In various embodi- corresponding target physical location . Therefore , multiple
ments , data may be stored by row and compression may be 55 physical locations storing user data may be accessed to
used on the columns (fields) within a row . In some embodi- complete a data storage access request .
ments , the techniques used may include storing a base value Turning now to FIG . 5B , one embodiment of a method
and having a smaller field size for the offset and / or having corresponding to a received write request is shown . Respon
a set of base values , with a column in a row consisting of a sive to a received write request (block 530) , a new mapping
base selector and an offset from that base . In both cases , the 60 table entry corresponding to the request may be created
compression information may be stored within (e.g. , at the (block 532) . In one embodiment , a new virtual - to - physical
start) of the partition . address mapping may be added (block 534) to the mapping

In some embodiments , the mapping table utilizes a col- table that pairs the virtual address of the write request with
umn - oriented database system (column - store) method for the physical location storing the corresponding data com
information storage in each page . Column - stores store each 65 ponent . In various embodiments , the new mapping may be
database table column separately . In addition , attribute val- cached with other new mappings and added to a new highest
ues belonging to a same column may be stored contiguously , level of the mapping table entries . The write operation to

?

a

a

a

a

a

US RE49,148 E
19 20

persistent storage (block 536) may then be performed . In for all of the tuples accumulated to this point in order to
various embodiments , writing the new mapping table entry reduce the total space required for the encoded tuples (block
to the mapping tables in persistent storage may not be 565) . If a smaller encoding is not found (block 565) , then the
performed until a later point in time (block 538) which is most recent tuple is omitted and the remaining tuples are
deemed more efficient . As previously discussed , in a storage 5 written using the current encoding method (block 567) . If a
system using solid state storage devices , writes to storage are smaller encoding is found (block 565) , then it is determined
much slower than reads from storage . Accordingly , writes to whether the new smaller encoding is within the target size
storage are scheduled in such a way that they minimize (block 566) . If the new encoding is not within the target size ,
impact on overall system performance . In some embodi- then the most recently provided tuple may be omitted and
ments , the insertion of new records into the mapping table 10 the remaining tuples are encoded and written to the table
may be combined with other larger data updates . Combining using the current encoding method (block 567) . If a current
the updates in this manner may provide for more efficient tuple under consideration does not cause the currently
write operations . It is noted that in the method of 5B , as with accumulated tuples in the set to exceed the target size
each of the methods described herein , operations are (conditional block 564) , then an attempt to add another tuple
described as occurring in a particular order for ease of 15 may be made (block 562) . Similarly , if a new encoding that
discussion . However , the operations may in fact occur in a meets the requirements is found in conditional block 566 ,
different order , and in some cases various ones of the then an attempt to add another tuple may be made (block
operations may occur simultaneously . All such embodiments 562) .
are contemplated . FIG . 5D illustrates one embodiment of an approach for

In addition to the above , deduplication mechanisms may 20 encoding tuples . In the example , original unencoded tuples
be used in some embodiments . FIG . 5B depicts operations 584 are depicted , and the tuples as encoded 580 in an
550 which may generally correspond to deduplication sys- encoded page 568 are depicted . Generally speaking , the
tems and methods . In the example shown , a hash corre- illustrated example represents each field in the table using
sponding to a received write request may be generated one or two values . The first value is a base value selector that
(block 540) which is used to access deduplication tables 25 is used to select a base value , and the second value is an
(block 542) . If there is a hit (block 544) in the deduplication offset from the selected base value . In one embodiment , the
tables (i.e. , a copy of the data already exists within the base selector includes b bits and the offset includes k bits ,
system) , then a new entry may be added to the deduplication where b and k are integers . The values b and k may be
tables (block 548) to reflect the new write . In such a case , chosen separately for each field , and one or both of b and k
there is no need to write the data itself to storage and the 30 may be zero . For each encoded field , the values of b and k
received write data may be discarded . Alternatively , if there may be stored , along with up to 2 bases , each of which can
is a miss in the deduplication table , then a new entry for the be as many bits as required to represent the base value . If b
new data is created and stored in the deduplication tables is zero , only one base is stored . Each field encoded in this
(block 546) . Additionally , a write of the data to storage is way then requires at most b + k bits to encode . The encoder
performed (block 536) . Further , a new entry may be created 35 can consider different values for b and k to minimize the
in the index to reflect the new data (block 538) . In some total encoded size for the field , with larger values of b
embodiments , if a miss occurs during an inline deduplicaton typically requiring smaller values of k .
operation , no insertion in the deduplication tables is per- FIG . 5D shows a sample of unencoded tuples 584 and the
formed at that time . Rather , during an inline deduplication resulting encoded page 568. The page includes a header 570 ,
operation , a query with a hash value may occur for only a 40 the first two values of which contain the number of fields in
portion of the entire deduplication table (e.g. , a cached each tuple (572) and the number of tuples in the page (574) .
portion of the deduplication table) . If a miss occurs , a new The header 570 then has one table or set of values for each
entry may be created and stored in the cache . Subsequently , field . The table first lists the number of bases for a given field
during a post - processing deduplication operation , such as an and then the number of bits k used to encode the offset from
operation occurring during garbage collection , a query with 45 the base . The page then stores each tuple , encoded using the
a hash value may occur for the entire deduplication table . A information in the header . For example , the first value (572)
miss may indicate the hash value is a unique hash value . in the header 570 indicates that there are 3 fields for each
Therefore , a new entry such as a hash - to - physical - pointer tuple . The second value (574) indicates there are 84 tuples
mapping may be inserted into the deduplication table . Alter- in the page 568. The following three tables 576A - 576C then
natively , if a hit is detected during post - processing dedupli- 50 provide base value and encoding information for each of the
cation (i.e. , a duplicate is detected) , deduplication may be three fields . Table 576A indicates that the first field has 1
performed to eliminate one or more of the detected copies . base , with 4 bits used to encode the offset . The sole base for
As mentioned above , various compression schemes may the first field is 12 (i.e. , b is zero) . The second table 576B

be used for encoding mapping table related data in order to indicates there are 3 bases for the second field , and 3 bits are
reduce the amount of storage required . Turning now to FIG . 55 to be used to encode the offset . The three bases for the
5C , one embodiment of a method for compressing a set of second field 576B are 5 , 113 , and 203. Finally , the third table
tuples is shown . This approach may be used to write entries 576C indicates the third field has 2 bases , and 0 bits are used
to a mapping table or other tables . First , a target size for a to encode the offset .
set of encoded tuples to be stored (block 560) and default Looking at the encoded tuples 580 , the various values
encoding algorithm (block 561) may be selected . Subse- 60 may be determined . In the example shown , a value in a given
quently , tuples are selected for encoding and storage in the row / column of the encoded tuples 580 corresponds to a
table based on the selected size and algorithm (block 562) . value in the same row / column of the original tuples . As may
In such an embodiment , the encoded size of each tuple is be appreciated , the ordering and location of values in the
calculated using the currently selected encoding method . If figure is exemplary only . The actual ordering of values and
a tuple being added would cause the currently accumulated 65 corresponding encoded values may vary widely from what
tuples in the set to exceed the target size (conditional block is depicted . The first field in the first tuple 582 is encoded as
564) , the system may try to find a better encoding algorithm 3 because the value 15 (the unencoded value) may be a

a

US RE49,148 E
21 22

represented as an offset of 3 from the base of 12 (i.e. , ping tables is shown . In the example shown , three nodes
15-12 = 3) . Note in this example there is only one base and 360a - 360c are used to form a cluster of mapping nodes . In
b is zero . Consequently , there are no bits used to encode the one embodiment , each of the nodes 360a - 360c may be
base selector value for this field . The offset value 3 is responsible for one or more logical unit numbers (LUNS) . In
encoded using 4 bits , a substantial reduction over typical 5 the depicted embodiment , a number of mapping table levels ,
encodings that might require 8 , 32 , or 64 bits . The second level 1 - N , are shown . Level 1 may correspond to the oldest
value in the first tuple 582A is encoded as 1,3 . The 1 level , while level N may correspond to the newest level . For
indicates that base 1 is selected in the table 576B (i.e. , select mapping table entries of LUNs managed by a particular base 113) , and the 3 indicates an offset of 3 from the base of
113. The value 1 is encoded in 2 bits (22 is the smallest 10 stored on the node itself . For example , node 360a is shown node , that particular node may itself have newer entries
power of 2 greater than or equal to the number of bases) , and
the value 3 is encoded in 3 bits , for a total of 5 bits . Again , to store mapping subtables 362a and 364a . These subtables
this is much smaller than a naïve encoding of the field . 362a and 362b may correspond to LUNs for which node
Finally , the last field is encoded as an index indicating which 360a is generally responsible . Similarly , node 360b includes
base should be used . In this case no bits are used to represent 15 subtables 362b and 364b which may correspond to LUNS
an offset . The first tuple has a 0 here because the stored value managed by that node , while node 360c includes subtables
is 4927 , which is entry (base) 0 in the table for the field 576C 362c and 364c which may correspond to LUNs managed by
in the header 570. The total encoded space for each tuple is that node . In such an embodiment , these “ newer ” level
thus (0 + 4) + (2 + 3) + (1 + 0 = 10 bits , a large reduction over the mapping table entries are maintained only by their corre
unencoded space required . 20 sponding managing nodes and are generally not found on

In various embodiments , if the maximum size of a field is other nodes .
increased , as may be done to accommodate larger virtual In contrast to the above discussed relatively newer levels ,
addresses or LUN identifiers , there is no need to re - encode older levels (i.e. , levels N - 2 down to level 1) represent
a page . At worst , the header may need to be modified slightly mapping table entries which may be shared by all nodes
to accommodate larger base values , but this requires mini- 25 360a - 360c in the sense that any of the nodes may be storing
mal effort . In addition , it is possible to modify many values a copy of those entries . In the example shown , these older
by a fixed amount , as might be done when a range of blocks levels 370 , 372 , and 374 are collectively identified as shared
is copied to a new location , by simply modifying the base tables 380. Additionally , as previously discussed , in various
without the need to decompress and then re - encode each embodiments these older levels are static — apart from merg
affected tuple . 30 ing or similar operations which are discussed later . Gener

It is noted that there are several different methods to find ally speaking , a static layer is one which is not subject to
optimal , or otherwise desirable , values of b and k for a modification (i.e. , it is “ fixed ”) . Given that such levels are
particular field . FIG . 5E shows one embodiment of a method fixed in this sense , an access to any copy of these lower
for evaluating and selecting an encoding scheme from levels may be made without concern for whether another of
multiple possibilities . In the method shown , each unique 35 the copies has been , or is being , modified . Consequently , any
value to be recorded in the field in the page is recorded in a of the nodes may safely store a copy of the shared tables 380
list (block 585) . To find a more efficient encoding , the and service a request to those tables with confidence the
method starts with a representation where b is zero (one request can be properly serviced . Having copies of the
base) and k is sufficiently large (a minimum number of bits shared tables 380 stored on multiple nodes 360 may allow
necessary) to encode the largest value in the list as a 40 use of various load balancing schemes when performing
difference or offset from the minimum value in the list lookups and otherwise servicing requests .
(block 586) . The encoder then tries successively smaller In addition to the above , in various embodiments , the
values of k , which result in larger values of b (more bases) . levels 380 which may be shared may be organized in a
As each combination of b and k is evaluated , those which manner which reflects the nodes 360 themselves . For
produce encodings deemed better (e.g. , smaller) are retained 45 example , node 360a may be responsible for LUNs 1 and 2 ,
for comparison against further possible encodings . The node 360b may be responsible for LUNS 3 and 4 , and node
algorithm may then select the encoding that results in the 360c may be responsible for LUNs 5 and 6. In various
smallest overall size , including both the table in the header embodiments , the mapping table entries may include tuples
and the total space required for the encoded field in the which themselves identify a corresponding LUN . In such an
tuples . For example , starting with the minimum value as the 50 embodiment , the shared mapping tables 380 may be sorted
base (block 587) , the smallest value in the list that is at least according to key value , absolute width or amount of storage
2 * greater than the current base is found (block 588) . If such space , or otherwise . If a sort of mapping table entries in the
a value exists (conditional block 589) , then that value is levels 380 is based in part on LUN , then entries 370a may
selected as a next base (block 594) . If no such value exists correspond to LUNs 1 and 2 , entries 370b may correspond
(conditional block 589) , then the total encoded size for the 55 to LUNs 3 and 4 , and entries 370c may correspond to LUNs
header and encoded fields is determined using the currently 5 and 6. Such an organization may speed lookups by a given
selected bases and value of k . If this encoding is desirable node for a request targeted to a particular LUN by effectively
(e.g. , the smallest so far) (conditional block 591) , then this reducing the amount of data that needs to be searched ,
encoding is retained (block 592) . Whether the encoding is allowing a coordinator to directly select the node responsible
retained or not , the value of k may be decremented by 1 60 for a particular LUN as the target of a request . These and
(block 593) and if k is greater than or equal to zero other organization and sort schemes are possible and are
(conditional block 595) , then the process may be repeated by contemplated . In addition , if it is desired to move respon
returning to block 587. If decrementing k results in k falling sibility for a LUN from one node to another , the original
below zero , then the process ends and the best encoding node mappings for that node may be flushed to the shared
found thus far is selected (block 596) . 65 levels (e.g. , and merged) . Responsibility for the LUN is then

Referring now to FIG . 6 , a generalized block diagram of transferred to the new node which then begins servicing that
one embodiment of a multi - node network with shared map- LUN .

2

2

a

US RE49,148 E
23 24

Referring now to FIG . 7 , a generalized block diagram of access request . In the illustrated example , the query key
one embodiment of a secondary index used to access a value 27 is within the range of keys 16 to 31. The page IDs
mapping table is shown . As described earlier , requester data and level IDs stored in the corresponding entry are conveyed
inputs 302 may be received by a key generator 304 , which with the query key value to the mapping table .
produces a query key value 306. The query key value 306 is 5 Referring now to FIG . 8 , a generalized block diagram of
used to access a mapping table . In some embodiments , the one embodiment of a tertiary index used to access a mapping
primary index 310 shown in FIG . 3 may be too large (or table is shown . Circuit and logic portions corresponding to
larger than desired) to store in RAM 172 or memory medium those of FIG . 4 are numbered identically . As described
130. For example , older levels of the index may grow very earlier , the primary index 310 shown in FIG . 3 may be too
large due to merging and flattening operations described 10 large to store in RAM 172 or memory medium 130. In
later in FIG . 10 and FIG . 11. Therefore , a secondary index addition , as the mapping table 340 grows , the secondary
320 may be cached for at least a portion of the primary index index 320 may also become too large to store in these
instead of the corresponding portion of the primary index memories . Therefore , a tertiary index 330 may be accessed
310. The secondary index 320 may provide a more coarse prior to the secondary index 320 , which may still be faster
level of granularity of location identification of data stored 15 than accessing the primary index 310 .
in the storage devices 176a - 176m . Therefore , the secondary The tertiary index 330 may provide a more coarse level of
index 320 may be smaller than the portion of the primary granularity than the secondary index 320 of location iden
index 310 to which it corresponds . Accordingly , the second- tification of data stored in the storage devices 1762-176m .
ary index 320 may be stored in RAM 172 or in memory Therefore , the tertiary index 330 may be smaller than the
medium 130 . 20 portion of the secondary index 320 to which it corresponds .

In one embodiment , the secondary index 320 is divided It is noted that each of the primary index 310 , the secondary
into partitions , such as partitions 322a - 322b . Additionally , index 320 , the tertiary index 330 , and so forth , may be stored
the secondary index may be organized according to level in a compressed format . The compressed format chosen may
with the more recent levels appearing first . In one embodi- be a same compressed format used to store information
ment , older levels have lower numbers and younger levels 25 within the mapping table 340 .
have higher numbers (e.g. , a level ID may be incremented In one embodiment , the tertiary index 330 may include
with each new level) . Each entry of the secondary index 320 multiple partitions , such as partitions 332a , 332b and so
may identify a range of key values . For example , the first forth . The tertiary index 330 may be accessed with a query
entry shown in the example may identify a range of key key value 306. In the illustrated example , a query key value
values from 0 to 12 in level 22. These key values may 30 306 of “ 27 " is found to be between a range of key values
correspond to key values associated with a first record and from 0 to 78. A first entry in the tertiary index 330 corre
a last record within a given page of the primary index 310 . sponds to this key value range . A column in the tertiary index
In other words , the entry in the secondary index may simply 330 may indicate which partition to access within the
storage an identification of key 0 and an identification of key secondary index 320. In the illustrated example , a key value
12 to indicate the corresponding page includes entries within 35 range of 0 to 78 corresponds to partition (within the
that range . Referring again to FIG . 3A , partition 312a may secondary index 320 .
be a page and the key values of its first record and its last It is also noted a filter (not shown) may be accessed to
record are 0 and 12 , respectively . Therefore , an entry within determine if a query key value is not within any one of the
the secondary index 320 stores the range 0 to 12 as shown indexes 310-330 . This filter may be a probabilistic data
in FIG . 7. Since remappings are maintained in the levels 40 structure that determines whether an element is a member of
within the mapping table , a range of key values may a set . False positives may be possible , but false negatives
correspond to multiple pages and associated levels . The may not be possible . One example of such a filter is a Bloom
fields within the secondary index 320 may store this infor- filter . If an access of such a filter determines a particular
mation as shown in FIG . 7. Each entry may store one or value is not in the full index 142 , then no query is sent to the
more corresponding unique virtual page identifiers (IDs) and 45 storage . If an access of the filter determines the query key
associated level IDs corresponding to the range of key value is in a corresponding index , then it may be unknown
values . Each entry may also store corresponding status whether a corresponding physical pointer value is stored in
information such as validity information . The list of main- the storage devices 176a - 176m .
tained page IDs and associated level IDs may indicate where In addition to the above , in various embodiments one or
a given query key value might be stored , but not confirm that 50 more overlay tables may be used to modify or elide tuples
the key value is present in that page and level . The secondary provided by the mapping table in response to a query . Such
index 320 is smaller than the primary index 310 , but also has overlay tables may be used to apply filtering conditions for
a coarse - level of granularity of location identification of data use in responding to accesses to the mapping table or during
stored in the storage devices 176a - 176m . The secondary flattening operations when a new level is created . In some
index 320 may be sufficiently small to store in RAM 172 or 55 embodiments , the overlay table may be organized as time
in memory medium 130 . ordered levels in a manner similar to the mapping table
When the secondary index 320 is accessed with a query described above . In other embodiments , they be organized

key value 306 , it may convey one or more corresponding differently . Keys for the overlay table need not match the
page IDs and associated level IDs . These results are then keys for the underlying mapping table . For example , an
used to access and retrieve portions of the stored primary 60 overlay table may contain a single entry stating that a
index . The one or more identified pages may then be particular volume has been deleted or is otherwise inacces
searched with the query key value to find a physical pointer sible (e.g. , there is no natural access path to query this tuple) ,
value . In one embodiment , the level IDs may be used to and that a response to a query corresponding to a tuple that
determine a youngest level of the identified one or more refers to that volume identifier is instead invalid . In another
levels that also store the query key value 306. A record 65 example , an entry in the overlay table may indicate that a
within a corresponding page may then be retrieved and a storage location has been freed , and that any tuple that refers
physical pointer value may be read for processing a storage to that storage location is invalid , thus invalidating the result

a

a ?

a

US RE49,148 E
25 26

of the lookup rather than the key used by the mapping table . youngest record may be retained while the others are not
In some embodiments , the overlay table may modify fields included in the new “ flattened ” level . In such an embodi
in responses to queries to the underlying mapping table . In ment , the newly flattened level will return a same result for
some embodiments , a key range (range of key values) may a search for a given key value as would be provided by a
be used to efficiently identify multiple values to which the 5 search of the corresponding multiple levels . Since the results
same operation (eliding or modification) is applied . In this of searches in the new flattened level do not change as
manner , tuples may (effectively) be “ deleted ” from the compared to the two or more levels it replaces , the flattening
mapping table by creating an " elide " entry in the overlay operation need not be synchronized with update operations
table and without modifying the mapping table . In this case , to the mapping table . In other words , flattening operations
the overlay table may include keys with no associated 10 on a table may be performed asynchronously with respect to
non - key data fields . updates to the table .

Turning now to FIG.9 , one embodiment of a method for As previously noted , older levels are fixed in the sense
processing a read request in a system including mapping and that their mappings are not modified (i.e. , a mapping from A
overlay tables is shown . Responsive to a read request being to B remains unchanged) . Consequently , modifications to
received (block 900) , a mapping table key (block 908) and 15 the levels being flattened are not being made (e.g. , due to
first overlay table key (block 902) corresponding to the user writes) and synchronization locks of the levels are not
request are generated . In this example , access to the overlay required . Additionally , in a node - based cluster environment
and mapping tables is shown as occurring concurrently . where each node may store a copy of older levels of the
However , in other embodiments , accesses to the tables may index (e.g. , as discussed in relation to FIG . 6) , flattening
be performed non - concurrently (e.g. , sequentially or other- 20 operations may be undertaken on one node without the need
wise separate in time) in any desired order . Using the key to lock corresponding levels in other nodes . Consequently ,
generated for the mapping table , a corresponding tuple may processing may continue in all nodes while flattening takes
be retrieved from the mapping table (block 910) . If the first place in an asynchronous manner on any of the nodes . At a
overlay table contains an “ elide ” entry corresponding to the later point in time , other nodes may flatten levels , or use an
overlay table key (conditional block 906) , any tuple found in 25 already flattened level . In one embodiment , the two or more
the mapping table is deemed invalid and an indication to this levels which have been used to form a flattened level may be
effect may be returned to the requester . On the other hand , retained for error recovery , mirroring , or other purposes . In
if the overlay table contains a “ modify ” entry corresponding addition to the above , in various embodiments , records that
to the overlay table key (conditional block 912) , the values have been elided may not be reinserted in to the new level .
in the first overlay table entry may be used to modify one or 30 The above described flattening may , for example , be per
more fields in the tuple retrieved from the mapping table formed responsive to detecting the number of levels in the
(block 922) . Once this process is done , a second overlay mapping table has reached a given threshold . Alternatively ,
table key is generated (block 914) based on the tuple from the flattening may be performed responsive to detecting the
the mapping table (whether modified or not) and a second size of one or more levels has exceeded a threshold . Yet
lookup is done in a second overlay table (block 916) which 35 another condition that may be considered is the load on the
may or may not be the same table as the first overlay table . system . The decision of whether to flatten the levels may
If an “ elide ” entry is found in the second overlay table consider combinations of these conditions in addition to
(conditional block 920) , the tuple from the mapping table is considering them individually . The decision of whether to
deemed invalid (block 918) . If a “ modify ” entry is found in flatten may also consider both the present value for the
the second overlay table (conditional block 924) , one or 40 condition as well as a predicted value for the condition in the
more fields of the tuple from the mapping table may be future . Other conditions for which flattening may be per
modified (block 926) . Such modification may include drop- formed are possible and are contemplated .
ping a tuple , normalizing a tuple , or otherwise . The modified In the illustrated example , the records are shown simply
tuple may then be returned to the requester . If the second as key and pointer pairs . The pages are shown to include four
overlay table does not contain a modify entry (conditional 45 records for ease of illustration . A level “ F ” and its next
block 924) , the tuple may be returned to the requester contiguous logical neighbor , level “ F - 1 ” may be considered
unmodified . In some embodiments , at least some portions of for a flattening operation . Level “ F ” may be younger than
the overlay table (s) may be cached to provide faster access Level “ F - 1 ” . Although two levels are shown to be flattened
to their contents . In various embodiments , a detected elide here , it is possible and contemplated that three or more
entry in the first overlay table may serve to short circuit any 50 levels may be chosen for flattening . In the example shown ,
other corresponding lookups (e.g. , blocks 914 , 916 , etc.) . In Level “ F - 1 ” may have records storing a same key value
other embodiments , accesses may be performed in parallel found in Level “ F ” . Bidirectional arrows are used to identify
and “ raced . ” Numerous such embodiments are possible and the records storing a same key value across the two con
are contemplated . tiguous levels .

Turning now to FIG . 10 , a generalized block diagram of 55 The new Level “ New F ” includes a key corresponding to
one embodiment of a flattening operation for levels within a the duplicate key values found in Level “ F ” and Level
mapping table is shown . In various embodiments , a flatten- " F - 1 ” . In addition , the new Level “ New F ” includes a
ing operation may be performed in response to detecting one pointer value corresponding to the youngest (or younger in
or more conditions . For example , over time as the mapping this case) record of the records storing the duplicate key
table 340 grows and accumulates levels due to insertions of 60 value . For example , each of Level “ F ” and Level “ F - 1 ”
new records , the cost of searching more levels for a query includes a record storing the key value 4. The younger
key value may become undesirably high . In order to con- record is in Level “ F ” and this record also stores the pointer
strain the number of levels to search , multiple levels may be value 512. Accordingly , the Level “ F - 1 ” includes a record
flattened into a single new level . For example , two or more storing the key value 4 and also the pointer value 512 , rather
levels which are logically adjacent or contiguous in time 65 than the pointer value 656 found in the older Level “ F - 1 ” .
order may be chosen for a flattening operation . Where two Additionally , the new Level “ New F ” includes records with
or more records correspond to a same key value , the unique key values found between Level “ F ” and Level

5

US RE49,148 E
27 28

“ F - 1 ” . For example , the Level “ F - 1 ” includes records with “ F ” and Level “ F - 1 ” , may be kept in storage for error
the key and pointer pair of 6 and 246 found in Level “ F ” and recovery , mirroring , or other purposes . In order to maintain
the key and pointer pair of 2 and 398 found in Level “ F - 1 ” . the time ordering of the levels and their mappings , the new
As shown , each of the pages within the levels is sorted by flattened level F is logically placed below younger levels
key value . (e.g. , level F + 1) and above the original levels that it replaces

As noted above , in various embodiments an overlay table (e.g. , level F and level F - 1) . may be used to modify or elide tuples corresponding to key Turning now to FIG . 12 , one embodiment of a method values in the underlying mapping table . Such an overlay 1000 for flattening levels within a mapping table is shown . table (s) may be managed in a manner similar to that of the
mapping tables . For example , an overlay table may be 10 and the mapping table 340 described above may generally The components embodied in the network architecture 100
flattened and adjacent entries merged together to save space .
Alternatively , an overlay table may be managed in a manner operate in accordance with method 1000. For purposes of
different from that used to manage mapping tables . In some discussion , the steps in this embodiment are shown in
embodiments , an overlay table may contain a single entry sequential order . However , some steps may occur in a
that refers to a range of overlay table keys . In this different order than shown , some steps may be performed the 15 way ,
size of the overlay table can be limited . For example , if the concurrently , some steps may be combined with other steps ,
mapping table contains k valid entries , the overlay table and some steps may be absent in another embodiment .
(after flattening) need contain no more than k + 1 entries In block 1002 , storage space is allocated for a mapping
marking ranges as invalid , corresponding to the gaps table and corresponding indexes . In block 1004 , one or more
between valid entries in the mapping table . Accordingly , the 20 conditions are determined for flattening two or more levels
overlay table may used to identify tuples that may be within the mapping table . For example , a cost of searching
dropped from the mapping table in a relatively efficient a current number of levels within the mapping table may be
manner . In addition to the above , while the previous dis- greater than a cost of performing a flattening operation .
cussion describes using overlay table to elide or modify Additionally , a cost may be based on at least one of the
responses to requests from the mapping table (s) , overlay 25 current (or predicted) number of levels in the structure to be
tables may also be used to elide or modify values during flattened , the number of entries in one or more levels , the
flattening operations of the mapping tables . Accordingly , number of mapping entries that would be elided or modified ,
when a new level is created during a flattening operation of and the load on the system . Cost may also include a time to
a mapping table , a key value that might otherwise be perform a corresponding operation , an occupation of one or
inserted into the new level may be elided . Alternatively , a 30 more buses , storage space used during a corresponding
value may be modified before insertion in the new level . operation , a number of duplicate entries in a set of levels has
Such modifications may result in a single record correspond- reached some threshold , and so forth . In addition , a count of
ing to a given range of key values in the mapping table being a number of records within each level may be used to
replaced in the new level) with multiple records each estimate when a flattening operation performed on two
corresponding to a subrange of the original record . Addi- 35 contiguous levels may produce a new single level with a
tionally , a record may be replaced with a new record that number of records equal to twice a number of records within
corresponds to a smaller range , or multiple records could be a next previous level . These conditions taken singly or in any
replaced by a single record whose range covers all ranges of combination , and others , are possible and are contemplated .
the original records . All such embodiments are contem- In block 1006 , the indexes and the mapping table are
plated . 40 accessed and updated as data is stored and new mappings are

Referring now to FIG . 11 , a generalized block diagram of found . A number of levels within the mapping table
an embodiment of a flattening operation for levels within a increases as new records are inserted into the mapping table .
mapping table is shown . As previously discussed , levels may If a condition for flattening two or more levels within the
be time ordered . In the illustrated example , a Level “ F ” mapping table is detected (conditional block 1008) , then in
comprising one or more indexes and corresponding map- 45 block 1010 , one or more groups of levels are identified for
pings is logically located above older Level “ F - 1 " . Also , flattening . A group of levels may include two or more levels .
Level “ F ” is located logically below younger Level “ F + 1 ” . In one embodiment , the two or more levels are contiguous
Similarly , Level “ F - 2 ” is logically located above younger levels . Although the lowest levels , or the oldest levels , may
Level “ F - 1 ” and Level “ F + 2 ” is logically located below be the best candidates for flattening , a younger group may
older Level “ F + 1 " . In one example , levels “ F ” and “ F - 1 " 50 also be selected .
may be considered for a flattening operation . Bidirectional In block 1012 , for each group a new single level com
arrows are used to illustrate there are records storing same prising the newest records within a corresponding group is
key values across the two contiguous levels . produced . In the earlier example , the new single Level “ New
As described earlier , a new Level “ New F ” includes key F ” includes the youngest records among the Level “ F ” and

values corresponding to the duplicate key values found in 55 the Level “ F + 1 ” . In block 1014 , in a node - based cluster , an
Level “ F ” and Level “ F - 1 ” . In addition , the new Level acknowledgment may be requested from each node within
“ New F ” includes a pointer value corresponding to the the cluster to indicate a respective node is ready to utilize the
youngest (or younger in this case) record of the records new levels produced by the flattening operation . When each
storing the duplicate key value . Upon completion of the node acknowledges that it can utilize the new levels , in
flattening operation , the Level “ F ” and the Level “ F - 1 " may 60 block 1016 , the current levels within the identified groups
not yet be removed from the mapping table . Again , in a are replaced with the new levels . In other embodiments ,
node - based cluster , each node may verify it is ready to synchronization across nodes is not needed . In such embodi
utilize the new single level , such as Level “ New F " , and no ments , some nodes may begin using a new level prior to
longer use the two or more levels it replaces (such as Level other nodes . Further , some nodes may continue to use the
“ F ” and Level “ F - 1 ”) . This verification may be performed 65 original level even after newly flattened levels are available .
prior to the new level becoming the replacement . In one For example , a particular node may have original level data
embodiment , the two or more replaced levels , such as Level cached and used that in preference to using non - cached data

a

a

US RE49,148 E
29 30

of a newly flattened level . Numerous such embodiments are be inserted in the mapping table . The keys may be inserted
possible and are contemplated . in a created new highest level as described earlier . For a

Turning now to FIG . 13 , one embodiment of a method move request , one or more old records may be removed
1100 for efficiently processing bulk array tasks within a from the mapping table after a corresponding new record has
mapping table is shown . Similar to the other described 5 been inserted in the mapping table . Either immediately or at
methods , the components embodied in the network archi- a later time , the records in the mapping table are actually
tecture 100 and the mapping table 340 described above may updated .
generally operate in accordance with method 1100. In addi- For a zeroing or an erase request , an indication may be
tion , the steps in this embodiment are shown in sequential stored that a range of key values now corresponds to a series
order . However , some steps may occur in a different order 10 of binary zeroes . Additionally , as discussed above , overlay
than shown , some steps may be performed concurrently , tables may be used to identify key values which are not (or
some steps may be combined with other steps , and some no longer) valid . The user data may not be overwritten . For
steps may be absent in another embodiment . an erase request , the user data may be overwritten at a later

Storing the information in a compressed format within the time when the " freed ” storage locations are allocated with
mapping table may enable fine - grained mapping , which may 15 new data for subsequent store (write) requests . For an
allow direct manipulation of mapping information within the externally - directed defragmentation request , contiguous
mapping table as an alternative to common bulk array tasks . addresses may be chosen for sector reorganization , which
The direct map manipulation may reduce I / O network and may benefit applications executed on a client of the client
bus traffic . As described earlier , Flash memory has a low computer systems 110a - 110c .
" seek time ” , which allows a number of dependent read 20 If the storage controller 174 receives a data storage access
operations to occur in less time than a single operation from request corresponding to one of the new keys (conditional
a spinning disk . These dependent reads may be used to block 1110) , and the new key has already been inserted in the
perform online fine - grained mappings to integrate space- mapping table (conditional block 1112) , then in block 1114 ,
saving features like compression and deduplication . In addi- the indexes and the mapping table may be accessed with the
tion , these dependent read operations may allow the storage 25 new key . For example , either the primary index 310 , the
controller 174 to perform bulk array tasks entirely within a secondary index 320 , or the tertiary index 330 may be
mapping table instead of accessing (reading and writing) the accessed with the new key . When one or more pages of the
user data stored within the storage devices 1762-176m . mapping table are identified by the indexes , these identified

In block 1102 , a large or bulk array task is received . For pages may then be accessed . In block 1116 , the storage
example , a bulk copy or move request may correspond to a 30 access request may be serviced with a physical pointer value
backup of a dozens or hundreds of virtual machines in found in the mapping table that is associated with the new
addition to enterprise application data being executed and key .
updated by the virtual machines . The amount of data asso- If the storage controller 174 receives a data storage access
ciated with the received request associated with a move , request corresponding to one of the new keys (conditional
branch , clone , or copy of all of this data may be as large as 35 block 1110) , and the new key has not already been inserted
16 gigabytes (GB) or larger . If the user data was accessed to in the mapping table (conditional block 1112) , then in block
process this request , a lot of processing time may be spent 1118 , the indexes and the mapping table may be accessed
on the request and system performance decreases . In addi- with a corresponding old key . The storage holding the range
tion , a virtualized environment typically has less total input / of old keys and the range of new keys may be accessed to
output (1/0) resources than a physical environment . 40 determine the corresponding old key value . When one or

In block 1104 , the storage controller 174 may store an more pages of the mapping table are identified by the
indication corresponding to the received request that relates indexes , these identified pages may then be accessed . In
a range of new keys to a range of old keys , wherein both the block 1120 , the storage access request may be serviced with
ranges of keys correspond to the received request . For a physical pointer value found in the mapping table that is
example , if the received request is to copy of 16 GB of data , 45 associated with the old key .
a start key value and an end key value corresponding to the Turning now to FIG . 14 , a generalized block diagram
16 GB of data may be stored . Again , each of the start and the illustrating an embodiment of a data layout architecture
end key values may include a volume ID , a logical or virtual within a storage device is shown . In one embodiment , the
address within the received request , a snapshot ID , a sector data storage locations within the storage devices 176a - 176m
number and so forth . In one embodiment , this information 50 may be arranged into redundant array of independent
may be stored separate from the information stored in the devices (RAID) arrays . As shown , different types of data
indexes , such as the primary index 310 , the secondary index may be stored in the storage devices 176a - 176k according to
320 , the tertiary index 330 , and so forth . However , this a data layout architecture . In one embodiment , each of the
information may be accessed when the indexes are accessed storage devices 176a - 176k is an SSD . An allocation unit
during the processing of later requests . 55 within an SSD may include one or more erase blocks within

In block 1106 , the data storage controller 174 may convey an SSD .
a response to a corresponding client of the client computer The user data 1230 may be stored within one or more
systems 110a - 110c indicating completion of the received pages included within one or more of the storage devices
request without prior access of user data . Therefore , the 176a - 176k . Within each intersection of a RAID stripe and
storage controller 174 may process the received request with 60 one of the storage devices 176a - 176k , the stored information
low or no downtime and with no load on processor 122 . may be formatted as a series of logical pages . Each logical

In block 1108 , the storage controller 174 may set a page may in turn include a header and a checksum for the
condition , an indication , or a flag , or buffer update opera- data in the page . When a read is issued it may be for one or
tions , for updating one or more records in the mapping table more logical pages and the data in each page may be
corresponding to the new keys replacing the old keys in the 65 validated with the checksum . As each logical page may
mapping table . For both a move request and a copy request , include a page header that contains a checksum for the page
one or more new records corresponding to the new keys may (which may be referred to as a “ media ” checksum) , the

a

9

a

a

US RE49,148 E
31 32

actual page size for data may be smaller than one logical diagonal parity (CDP) . The schemes vary in terms of deliv
page . In some embodiments , for pages storing inter - device ered reliability and overhead depending on the manner the
recovery data 1250 , such as RAID parity information , the data 1240 is computed .
page header In addition to the above described error recovery infor be smaller , so that the parity page protects may
the page checksums in the data pages . In other embodi- 5 mation , the system may be configured to calculate a check
ments , the checksum in parity pages storing inter - device sum value for a region on the device . For example , a
recovery data 1250 may be calculated so that the checksum checksum may be calculated when information is written to
of the data page checksums is the same as the checksum of the device . This checksum is stored by the system . When the

information is read back from the device , the system may the parity page covering the corresponding data pages . In
such embodiments , the header for a parity page need not be 10 calculate the checksum again and compare it to the value
smaller than the header for a data page . that was stored originally . If the two checksums differ , the

information was not read properly , and the system may use The inter - device ECC data 1250 may be parity informa other schemes to recover the data . Examples of checksum tion generated from one or more pages on other storage functions include cyclical redundancy check (CRC) , MD5 , devices holding user data . For example , the inter - device 15 and SHA - 1 .
ECC data 1250 may be parity information used in a RAID An erase block within an SSD may comprise several
data layout architecture . Although the stored information is pages . A page may include 4 KB of data storage space . An
shown as contiguous logical pages in the storage devices erase block may include 64 pages , or 256 KB . In other
176a - 176k , it is well known in the art the logical pages may embodiments , an erase block may be as large as 1 megabyte
be arranged in a random order , wherein each of the storage 20 (MB) , and include 256 pages . An allocation unit size may be
devices 176a - 176k is an SSD . chosen in a manner to provide both sufficiently large sized

The intra - device ECC data 1240 may include information units and a relatively low number of units to reduce over
used by an intra - device redundancy scheme . An intra - device head tracking of the allocation units . In one embodiment ,
redundancy scheme utilizes ECC information , such as parity one or more state tables may maintain a state of an allocation
information , within a given storage device . This intra - device 25 unit (allocated , free , erased , error) , a wear level , and a count
redundancy scheme and its ECC information corresponds to of a number of errors (correctable and / or uncorrectable) that
a given device and may be maintained within a given device , have occurred within the allocation unit . In one embodi
but is distinct from ECC that may be internally generated ment , an allocation unit is relatively small compared to the
and maintained by the device itself . Generally speaking , the total storage capacity of an SSD . Other amounts of data
internally generated and maintained ECC of the device is 30 storage space for pages , erase blocks and other unit arrange
invisible to the system within which the device is included . ments are possible and contemplated .

The metadata 1260 may include page header information , The intra - device ECC data 1240 may also be referred to RAID stripe identification information , log data for one or as intra - device error recovery data 1240. The intra - device more RAID stripes , and so forth . In various embodiments , error recovery data 1240 may be used to protect a given 35 the single metadata page at the beginning of each stripe may
storage device from latent sector errors (LSEs) . An LSE is be rebuilt from the other stripe headers . Alternatively , this an error that is undetected until the given sector is accessed . page could be at a different offset in the parity shard so the Therefore , any data previously stored in the given sector data can be protected by the inter - device parity . In one
may be lost . A single LSE may lead to data loss when embodiment , the metadata 1260 may store or be associated
encountered during RAID reconstruction after a storage 40 with particular flag values that indicate this data is not to be
device failure . The term “ sector ” typically refers to a basic deduplicated .
unit of storage on a HDD , such as a segment within a given In addition to inter - device parity protection and intra
track on the disk . Here , the term “ sector ” may also refer to device parity protection , each of the pages in storage devices
a basic unit of allocation on a SSD . Latent sector errors 176a - 176k may comprise additional protection such as a
(LSE) occur when a given sector or other storage unit 45 checksum stored within each given page . The checksum (8
within a storage device is inaccessible . A read or write byte , 4 byte , or otherwise) may be placed inside a page after
operation may not be able to complete for the given sector . a header and before the corresponding data , which may be
In addition , there may be an uncorrectable error - correction compressed . For yet another level of protection , data loca
code (ECC) error . tion information may be included in a checksum value . The

The intra - device error recovery data 1240 included within 50 data in each of the pages may include this information . This
a given storage device may be used to increase data storage information may include both a virtual address and a physi
reliability within the given storage device . The intra - device cal address . Sector numbers , data chunk and offset numbers ,
error recovery data 1240 is in addition to other ECC infor- track numbers , plane numbers , and so forth may be included
mation that may be included within another storage device , in this information as well . This mapping information may
such as parity information utilized in a RAID data layout 55 also be used to rebuild the address translation mapping table
architecture . if the content of the table is lost .

Within each storage device , the intra - device error recov- In one embodiment , each of the pages in the storage
ery data 1240 may be stored in one or more pages . As is well devices 176a - 176k stores a particular type of data , such as
known by those skilled in the art , the intra - device error the data types 1230-1260 . Alternatively , pages may store
recovery data 1240 may be obtained by performing a 60 more than one type of data . The page header may store
function on chosen bits of information within the user data information identifying the data type for a corresponding
1230. An XOR - based operation may be used to derive parity page . In one embodiment , an intra - device redundancy
information to store in the intra - device error recovery data scheme divides a device into groups of locations for storage
1240. Other examples of intra - device redundancy schemes of user data . For example , a division may be a group of
include single parity check (SPC) , maximum distance sepa- 65 locations within a device that correspond to a stripe within
rable (MDS) erasure codes , interleaved parity check codes a RAID layout . In the example shown , only two stripes ,
(IPC) , hybrid SPC and MDS code (MDS + SPC) , and column 1270a and 1270b , are shown for ease of illustration .

a

a

a

a

US RE49,148 E
33 34

In one embodiment , a RAID engine within the storage fingerprint matches , then there may already be a matching
controller 174 may determine a level of protection to use for data component stored on the system . However , in some
storage devices 176a - 176k . For example , a RAID engine embodiments , it is also possible that two non - identical data
may determine to utilize RAID double parity for the storage components have the same fingerprint . Using the generated
devices 176a - 176k . The inter - device redundancy data 1250 5 fingerprint value for a data component , a search may be
may represent the RAID double parity values generated performed to determine if there is another data component
from corresponding user data . In one embodiment , storage already present in the system that has a matching fingerprint
devices 176j and 176k may store the double parity infor- value . In various embodiments , such fingerprint values may
mation . It is understood other levels of RAID parity pro- be stored in one or more fingerprint tables within the system .
tection are possible and contemplated . In addition , in other 10 Accordingly , a determination as to which of the fingerprint
embodiments , the storage of the double parity information tables to search may be made (block 1506) .
may rotate between the storage devices rather than be stored Having established which fingerprint tables are to be
within storage devices 176j and 176k for each RAID stripe . searched , one of the tables is selected (block 1508) and a
The storage of the double parity information is shown to be decision is made as to whether the selected table is searched
stored in storage devices 176j and 176k for ease of illustra- 15 (decision block 1510) . A number of factors may be consid
tion and description . Although each of the storage devices ered when deciding whether to search a given table . For
176a - 176k comprises multiple pages , only page 1212 and example , resource usage and performance issues may be
page 1220 are labeled for ease of illustration . considered . If the table is searched , then a matching finger

Referring now to FIG . 15 , one embodiment of a method print may be found (decision block 1512) . In various
for performing deduplication is shown . The components 20 embodiments , if a matching fingerprint is found , then the
embodied in the network architecture 100 described above corresponding data already stored in the system may be
may generally operate in accordance with method . For identical to the received data . However , the matching fin
purposes of discussion , the steps in this embodiment are gerprint may not be definitive proof that the data itself
shown in sequential order . However , some steps may occur matches . Such might be the case where fingerprints collide
in a different order than shown , some steps may be per- 25 or otherwise . Therefore , if a matching fingerprint is found ,
formed concurrently , some steps may be combined with then a determination may be made as to whether further
other steps , and some steps may be absent in another verification steps are to be performed . Generally speaking ,
embodiment . verifying that data is a match entails reading the stored data

In block 1502 , one or more given data components for an (decision block 1514) and comparing the read data to the
operation are received . Such data components may corre- 30 received data (decision block 1516) . If the stored data is
spond to a received write request , a garbage collection already contained in memory , there is generally no need to
operation , or otherwise . In various embodiments , data sent re - read it from its stored location . If the data matches , then
from one of the client computer systems 110a - 110c may be the received data is deemed redundant and a new link is
in the form of a data stream , such as a byte stream . As is well created between the already existing data (e.g. , as identified
known to those skilled in the art , a data stream may be 35 by a physical address) and the transaction corresponding to
divided into a sequence of fixed - length or variable - length the received data . For example , a new link may be created
data components , or " chunks ” , where a " chunk ” is a sub - file between a write transaction virtual address and the already
content - addressable unit of data . A chunking algorithm may stored data . In one embodiment , both a mapping table and a
perform the dividing of the data stream . In various embodi- link table (to be discussed more fully later) may be used for
ments , a table may be used to map data corresponding to 40 storing such newly identified links .
particular file types to a most appropriate chunking method . At various steps in the process (e.g. , blocks 1510 , 1512 ,
In some cases a file's type may be determined by referring 1514 , and 1516) , verification of a data match has not been
to its file name extension . Alternatively , in cases where a file achieved and a determination is made as to whether the
type corresponding to data is not indicated or otherwise search should continue . As noted above , resource and / or
directly known , guesses as to the type of file to which data 45 performance issues may be considered when making such a
corresponds may be made and used to inform the chunking determination . If more tables are to be searched (decision
algorithm used . For example , a guess as to file type could be block 1522) , then one of the tables may be selected (block
based on the data in the block or the LUN in which the block 1508) , and the process repeated . If verification of a data
is stored . Other methods for ascertaining a file type to which match is not achieved at this time (as in blocks 1516 and
data corresponds are possible and are contemplated . The 50 1518) , then confirmation that the data is redundant is not
chunks later may be stored in one of the data storage arrays made and the received data is written to storage (block
120a - 120b to allow for sharing of the chunks . Numerous 1524) . Additionally , a new deduplication entry may be
such embodiments are possible and are contemplated . created (block 1526) as well as updating other tables (block

Subsequent to receiving the data , a particular fingerprint 1520) such as an address mapping table or otherwise .
algorithm 1504 may be chosen to produce a data component 55 It is noted that while the above discussion describes a
fingerprint value for a given data component . For example , process whereby tables to search are determined (block
a hash function , such as some or all of the output bits from 1506) prior to proceeding , in other embodiments an identi
MD5 , SHA1 , SHA - 256 , cyclic - redundancy code (CRC) , or fication of more than one table may not be made in advance .
otherwise , may be used to calculate a corresponding finger- Rather , identification of a given table for search may be
print . Generally speaking , in order to know if a given data 60 determined one at a time (or only partially) as needed .
component corresponding to a received write request may Alternatively , a combination of such approaches may be
already be stored in one of the data storage arrays 120a- used . All such embodiments are contemplated .
120b , a calculated fingerprint for the given data component In addition to the general method depicted in FIG . 15 ,
may be compared to fingerprints of data components stored additional processes may be included which serve to
in one or more of the data storage arrays 120a - 120b . If there 65 improve the overall deduplication process . In particular ,
is no matching fingerprint , there is no copy of the data various attributes may be maintained which are used to
component already stored on the system . If at least one identify which fingerprint tables might be searched and

a 2

a

a

a

a

US RE49,148 E
35 36

whether to search a given identified table . Further , other accessed before a second fingerprint table . In another
attributes may be maintained that are used to determine into embodiment , the entries of the fingerprint tables may be
which fingerprint table (s) a given fingerprint is stored . For accessed concurrently .
example , as will be described in more detail below , finger As noted above , in various embodiments , attributes may
prints whose data is expected to be deduplicated more 5 be used to determine where a fingerprint value is stored
frequently may be maintained in a fingerprint table which within multiple fingerprint tables of a larger deduplication
has a higher priority for being searched . Alternatively , table . FIG . 16 illustrates one embodiment of a method 1600
fingerprints corresponding to data of a given type may be for using such attributes . Block 1601 generally corresponds
placed in one fingerprint table rather than another . By storing to the establishment of a strategy to be used for the following
fingerprints within the fingerprint tables in such a manner , 10 steps . This strategy may be determined at system startup

and / or dynamically at any time during system operation . In system performance and resource usage may be improved .
It is noted that in various embodiments the access to some cases , a change in strategy may result in a change in

the nature of the attributes which are maintained . Should fingerprint tables shown in FIG . 15 may not be performed ,
such as when a Bloom filter or other mechanism indicates 15 ously maintain data and attributes corresponding to multiple

such a change in strategy occur , the system may simultane
the fingerprint is not present in the fingerprint tables . Addi strategies . For example , a change in strategy may affect only
tionally , in some embodiments , an address to which a write subsequently stored data . In other embodiments , data and
transaction is directed may correspond to an address range attributes maintained according to a prior strategy may be
which has known attributes . For example , a received write rebuilt to conform to a newer strategy . All such embodi
transaction could be directed to a particular volume which is 20 ments are contemplated . In block 1602 , one or more storage
known to store data unlikely to be deduplicated . For devices may be selected for use in a storage subsystem . For
example , data corresponding to a given database may be example , one or more storage devices 176a - 176m within
deemed less likely to be deduplicated , while data corre- one or more of device groups 173-173m may be chosen for
sponding to a virtual machine may be deemed more likely to data storage use . In addition , more than one of the storage
be deduplicated . For example , a fingerprint table corre- 25 data arrays 120a - 120b may be chosen for this data storage
sponding to a volume including data believed to be more use . An amount of storage space and corresponding address
likely to be deduplicated may be larger than would otherwise space may be chosen prior to choosing one or more of the
be the case . In various embodiments , a volume table may storage devices 176a - 176m . The data storage space may be
include attribute related information that may be used in used for end - user applications executing on client computer
such a way . In other embodiments , other tables may be used 30 systems 110a - 110c , corresponding inter - device parity infor
for storing and maintaining such attribute related informa- mation used in a RAID architecture , corresponding intra
tion . In addition to controlling the selection of fingerprint device redundancy information , header and metadata infor
tables to be searche limits on the number of accesses to a mation , and so forth .
given storage medium may be made . In addition to utilizing In block 1604 , one or more corresponding attributes are
various attributes to limit the fingerprint table search , vari- 35 identified for a given data component . Examples of such
ous conditions such conditions as those related to resource attributes include a number of accesses to the given data
usage and performance may be considered when limiting the component , a data component age , a data component size , a
fingerprint table search . total number of times the given data component has been

In one embodiment , a deduplication table may be parti- deduplicated , a number of times the given data component
tioned or otherwise comprise multiple fingerprint tables . 40 has been deduplicated for a given entry in a deduplication
Each entry within a given table has an associated probability table , an amount and / or type of compression used for the
or a range of probabilities of a corresponding data compo- data component , and so forth . In various embodiments , these
nent being deduplicated . In one example , for a received attributes may be maintained and updated over time . For
write request , an in - line deduplication operation may access example , the attributes for a given data component may be
a first fingerprint table with computed fingerprint values 45 updated responsive to an access of the given data compo
corresponding to one or more data components . If the nent . In some embodiments , the granularity with which such
computed fingerprint values are not found within the first attributes are maintained and / or updated may vary . For
fingerprint table , then the in - line deduplication operation example , rather than updating attributes on a per data
may stop and allow a data component to be written to one component basis , attributes corresponding to an identifiable
of the storage devices 1762-176m . In another example , 50 group of data components such as a volume or subvolume
according to a strategy based on the associated attributes , if may be updated . As described earlier , these maintained
the computed fingerprint values are not found in the first attributes may affect storage efficiency .
fingerprint table , then a subsequent access of a second In block 1606 , one or more events for updating the one or
fingerprint table may occur . If the computed fingerprint more attributes are identified . Examples of such events may
values are not found in the second fingerprint table , then the 55 include a deduplication operation , receiving a read or a write
in - line deduplication operation may finish for a given data request , a garbage collection operation , a trimming opera
component and allow the given data component to be tion , a secure erase operation , an update of attributes cor
written to one of the storage devices 1762-176m . In one responding to neighboring data components , reaching a
embodiment , both the first and the second fingerprint tables given time threshold , and so forth . If a given event of the
may be concurrently accessed . Data components written to 60 identified events occurs (decision block 1608) , one or more
the storage devices 176a - 176m may be deduplicated during attributes corresponding to the given event may be retrieved
a later post - process deduplication operation . In one embodi- (block 1610) . For example , deduplication of a data compo
ment , although a post - process deduplication operation may nent may be detected . In response , attributes associated with
be performed concurrently with a garbage collection opera- the data component may be retrieved (block 1610) . If the
tion , the accesses for the post - process deduplication opera- 65 current algorithm indicates a change in location for a fin
tion may occur similarly as for an in - line deduplication gerprint , then such a change may be made (block 1612) . For
operation . For example , the first fingerprint table may be example , if a successful deduplication of a data component

a
a

US RE49,148 E
37 38

results in the number of successful deduplications for that attributes associated with a given block of data and / or
block reaching or exceeding a given threshold , then the corresponding fingerprint may be used for a variety of
block may move from being deemed a low (er) deduplicating purposes , including where a corresponding fingerprint (s) is
block to a high (er) deduplicating block . Such a change may to be stored in the deduplication tables . For example , as
in turn lead to entering the fingerprint into a table with a 5 discussed above , if a given data component is determined or
higher deemed probability of deduplication , and potentially predicted to be highly deduplicated , its fingerprint may be
removing the fingerprint from the table in which it is stored in a fingerprint table used for more highly dedupli
currently stored . This may be referred to as “ promoting ” the cated data . Similarly , data deemed less likely to be dedu
fingerprint (entry) . Alternatively , an entry corresponding to plicated has its fingerprint stored in a lower probability
a block may be “ demoted ” if deduplication of the block falls 10 fingerprint table . It is noted that attributes associated with a
below a given threshold . In such a case , a corresponding given fingerprint may be stored anywhere within the system .
fingerprint may be removed from its current table and For example , such attributes may be stored in association
entered into one which is used for fingerprints having a with corresponding data on a LUN . Additionally , such
lower (predicted) probability of deduplication . For example , attributes may be stored in deduplication tables , copies may
if a given fingerprint table contains the 5 % of the total 15 be maintained in a variety of locations in the system , and
number of stored data components that have the highest otherwise .
probability of being deduplicated , and it is determined (or As shown in the example , entry 1701 may hold an address
predicted) that the likelihood of the data corresponding to 1703A which may be a virtual address or a physical address .
the entry being deduplicated is not in the top 5 % , then the In various embodiments , address 1703A may refer to a
entry may be moved out its current fingerprint table to a 20 single address , or it may refer to a range of addresses . The
different fingerprint table . In addition to making any changes entry 1701 may be accessed by a pointer value that matches
(block 1612) , the associated attributes may be updated the information stored in the address field 1703A . The
(block 1614) . It is noted that movement of entries between information stored in the remaining fields may correspond to
fingerprint tables need not be based on determined prob- a given data component corresponding to a physical location
abilities of deduplication . Any desired algorithm for deter- 25 in the storage devices 1762-176m or a virtual address used
mining which fingerprint table an entry is to be stored may by one of the client computer systems 110a - 100c . For a
be used . given physical or virtual address the table entry 1701 may

In addition to moving fingerprints between tables , infor- store an access rate 1703B , a total number of accesses
mation stored in a given entry may be removed from all 1703C , a data component age 1703D , a data component size
fingerprint tables within a deduplication table . This eviction 30 1703E , a corresponding storage device age 1703F , a dedu
of an entry may occur if the entry is determined from its plication rate 1703G , a total number of deduplications
associated attributes to not be a probable candidate for 1703H , an error rate 17031 and a total number of errors
deduplication or if the block to which the entry refers is no 1703J for the given component . In ad ion , a status field
longer valid . For example , an entry that has not been 1703K may store an indication of valid data within a
deduplicated for a given amount of time may be evicted 35 respective entry . For a given physical or virtual address ,
from the deduplication table . This eviction reduces the total other attributes may be included such as a total number of
size of the deduplication table by removing entries corre- deduplications for an associated volume and a total number
sponding to a data component that have a relatively low of accesses for an associated volume . Although the fields
probability of having a duplicate stored in one of the data 1703-1712 are shown in this particular order , other combi
storage arrays 120a - 120b . It is noted that an entry may be 40 nations are possible and other or additional fields may be
removed from the deduplication table even if that entry is the utilized as well . The bits storing information for the fields
target of multiple virtual block pointers , since such removal 1703-1712 may or may not be contiguous .
may only preclude future deduplications and will not affect Referring now to FIG . 18 , a block diagram illustrating one
deduplications that have already occurred . embodiment of a system 1800 configured to maintain attri

In one embodiment , when an entry is evicted from the 45 butes related to deduplication is shown . In one embodiment ,
deduplication table , an indication of the eviction may be an attribute table 1830 may store attribute information that
written to a corresponding physical location within one of is used to determine how much effort is put into deduplica
the data storage arrays 120a - 120b . For example , a physical tion for a received write transaction (e.g. , such as discussed
location within one of the storage devices 176a - 176m that in relation to FIGS . 15 and 3) . Attribute table 1840 may store
currently stores or is going to store a corresponding data 50 attribute information that is used to determine where a given
component may be written with the indication . In one fingerprint is stored within the system's fingerprint tables
embodiment , both the eviction from the deduplication table (e.g. , as discussed in FIG . 3) . For example , each of the
and the marking with a corresponding indication in a data entries 1842a - 1842j in table 1840 may comprise the infor
physical storage location may occur during a write request , mation shown in attributes table entry 1701. In the example
a garbage collection operation , a trim operation , a secure 55 shown , attribute tables 1830 and 1840 are shown as two
erase operation , and so forth . In such cases , both the entries distinct tables for ease of illustration . However , it is noted
in the fingerprint tables and the data components stored that the attributes described therein may be stored in any
within the storage devices 176a - 176m may be already manner within the system and may be spread across multiple
moving or updating during these operations . Therefore , the locations . In various embodiments , copies of such attributes
marking of the indication may not introduce a new write 60 may also be cached or otherwise stored in different levels
operation . within a storage hierarchy such that multiple copies of

Turning now to FIG . 17 , a generalized block diagram attribute information may exists simultaneously .
illustrating one embodiment of an entry storing attributes In the embodiment shown , two paths (a read path and a
1700 is shown . It is noted that while FIG . 4 depicts all of the write path) through various components of the system may
attribute data as being stored as part of a single entry , in 65 generally be traversed depending on the type of transaction
various embodiments the attribute data may in fact be received . In the example shown , a key 1810 corresponding
distributed over multiple locations . In various embodiments , to a received transaction may be used for further processing

9

US RE49,148 E
39 40

in the system . In one embodiment , the key 1810 may In one embodiment , a physical index 1829 may be read
comprise a volume identifier (ID) 1802 , a logical or virtual from the mapping table 1820 during a lookup operation
address 1804 , a snapshot ID 1806 , a sector number 1808 , corresponding to a received read request . The physical index
and so forth . In various embodiment , each of the previously 1829 may then be used to locate a physical location within
discussed storage controllers 170 within the data storage 5 the storage devices 176a - 176m . In some cases , a read
arrays 120a - 120b may support storage array functions such request may include a length that spans multiple sectors .
as snapshots , replication and high availability . In addition , Therefore , there may be multiple parallel lookups performed
each of the storage controllers 170 may support a virtual on the mapping table 1820. In addition , there may be
machine environment that includes a plurality of volumes multiple read operations sent to the storage devices 176a
with each volume including a plurality of snapshots . In one 10 176m to complete a received read request from one of the
example , a storage controller 170 may support hundreds or client computer systems 110a - 110c .
thousands of volumes , wherein each volume includes thou- In addition to the above , the key 1810 may correspond to
sands of snapshots . In one embodiment , a volume may be a received write request and may follow a write path as
mapped in fixed - size sectors , such as a 4 - kilobyte (KB) page shown . In the example shown , the key 1810 may be con
within storage devices 1762-176m . In another embodiment , 15 veyed to either (or both) of attribute table 1830 and control
a volume may be mapped in variable - size sectors . In such logic 1860. In one embodiment , attribute table 1830 stores
embodiments , the volume ID 1802 , snapshot ID 1806 , and attribute information regarding the storage environment
sector number 1808 may be used to identify a given volume . and / or data stored within the system . In some embodiments ,
Accordingly , a given received read or write request may attribute table 1830 may correspond to a volume table . The
identify a particular volume , sector and length . Although the 20 attribute table 1830 may comprise a plurality of entries
fields 1802-1808 are shown in this particular order , other 1832a - 1832h , wherein each entry holds attributes associated
combinations are possible and other or additional fields may with a virtual address , addresses , or range of addresses .
be utilized as well . The bits storing information for the fields Generally speaking , attributes may be maintained for a
1802-1808 may or may not be contiguous . subset of addresses in the system . However , maintaining

In one embodiment , the key 1810 corresponding to a read 25 attributes for all addresses is contemplated .
transaction may generally follow a read path , while a key When a write request is received , control logic 1860 may
1810 that is part of a write transaction may follow a write receive or otherwise access associated attributes from the
path . As shown , during a read , the key 1810 may be used to table 1830. In addition , control logic 1860 may receive user
index a mapping table 1820. The mapping table 1820 may inputs 1850. Received write requests may be placed in a
comprise a plurality of entries 1822a - 1822g , wherein each 30 buffer upon receipt , such as a buffer within a non - volatile
entry holds a virtual - to - physical mapping for a correspond- random access memory (NVRAM) . When the received
ing data component . In this manner , the mapping table 1820 write request is buffered , an acknowledgment may be sent to
may be used to map logical read requests from each of the the corresponding one of the client computer systems 110a
client computer systems 110a - 110c to physical locations in 110c . At a later time , an asynchronous process may flush the
storage devices 176a - 176m . It is noted that in various 35 buffered write operations to the storage devices 176a - 176m .
embodiments , identified physical locations (e.g. , represented However , deduplication may occur both prior to sending
by a physical address) may be further remapped by storage write requests from the DRAM to the NVRAM and prior to
1880. As shown , each of the entries 1822a - 1822g may hold sending write requests from the NVRAM to the storage
a virtual index 1824 , a corresponding physical index 1826 , devices 176a - 176m . In cases where inline deduplication
and status information 1828. Similar to the fields 1802-1808 40 detects a copy of the received write data already exists in the
within the key 1810 , the fields 1824-1828 are shown in a system , the received write data may be discarded .
particular order . However , other combinations are possible The user inputs 1850 may include identification of par
and other or additional fields may be utilized as well . The ticular application and corresponding volumes that may
physical index 1826 may generally be an identifier (e.g. , a have a high probability of deduplication during the execu
physical pointer or address) used to identify a given physical 45 tion of the identified particular applications . The identified
location within the storage devices 176a - 176m . As described applications may include storage backup operations , given
earlier , the physical index 1826 may include sector numbers , virtual machine support applications , development software
data chunk and offset numbers , track numbers , plane num- producing a particular type of development data , and so
bers , a segment identifier (ID) , and so forth . In addition , the forth . The user inputs 1850 may include identification of a
status information 1828 may include a valid bit which may 50 range or a pattern of virtual addresses used to identify
be used to indicate the validity of a corresponding mapping . corresponding data components with an associated virtual

In one embodiment , the entries 1822a - 1822g within the index that satisfies the range or pattern with respect to a
mapping table 1820 may be sorted such that the sorting is virtual index of a current read / write request . For example , a
done first by the volume ID 1802 , then by the sector number given data component may have a high probability of
1808 , and then by the snapshot ID 1806. This sorting may 55 deduplication if the given data component is located near a
serve to group the entries 1822a - 1822g corresponding to data component that is currently being deduplicated . A stride
different versions of data components within different snap- may be used to identify corresponding virtual data compo
shots together . Such an arrangement may lead to fewer read nent indexes . In addition , the user inputs 1850 may include
operations to find a given data component during a lookup administrative settings .
operation for a read request . During a garbage collection 60 Control logic 1860 may comprise deduplication strategy
operation , the operation may arrange the data components logic 1862 , attributes update logic 1864 , table entries move
within the storage devices 176a - 176m in a sorted manner , ment logic 1866 , and mapping table update logic 1868
wherein the sorting is done first by the volume ID 1802 , then which is configured to update mapping table 1820 (e.g. , as
by the snapshot ID 1806 , and then by the sector number described in step 1520 of FIG . 15) . The deduplication
1808. This may serve to group the data components in 65 strategy logic 1862 may determine , for a search of a dedu
storage devices 176a - 176m that are logically adjacent into plication table , a number of lookup operations to use for a
physically adjacent locations . search for both an inline and a post - process deduplication

a

2

US RE49,148 E
41 42

operation . In addition , the deduplication strategy logic 1862 tion of redundant data . The read operations and the com
may determine a number of lookup operations to use for parison operations add processing time to a deduplication
each given storage medium used to store information cor- operation .
responding to the deduplication table . Further details are Switching between a first and a second fingerprint algo
provided later . 5 rithm of multiple fingerprint algorithms may occur when a

The attributes update logic 1864 within the control logic strategy for deduplication changes . In one embodiment ,
1860 may determine which entries in the tables 1830 and attributes such as those discussed above may be used by
1840 may be updated during an identified event , such as the control logic to determine a strategy and changes to a
events listed above corresponding to block 414 of method strategy for deduplication . For example , a first strategy that
400. The table entries movement logic 1866 may determine 10 utilizes less storage space for fingerprint values , but results
how entries within a deduplication table (e.g. , fingerprint in more collisions , may be chosen . At a later time , a second
tables corresponding to the deduplication table) are stored strategy may be chosen to replace the first strategy . The
and moved within the table . In addition , the logic 1866 may second strategy may utilize more storage space for finger
determine a manner for storage and movement of stored data print values resulting in fewer collisions . The later time for
in physical locations in storage devices 176a - 176m . Simi- 15 such a change in strategy for deduplication may occur
larly , the logic 1866 may determine how virtual - to - physical during a given identified event , such as the events described
mappings are performed . For example , the logic 1866 may earlier in FIG . 3 , or otherwise .
perform mappings to group together deduplicated data com- Deduplication table 1910 may comprise entries for all or
ponents . It is noted that while FIG . 17 (and other figures) only a portion of the data components stored in one or more
depicts selected arrows as being bidirectional and others as 20 of data storage arrays 120a - 120b . In one embodiment , the
unidirectional , this is not intended to be limiting . In various deduplication table 1910 may not be complete and therefore
embodiments , communication may occur in either or both may not have an entry for each stored data component . Also ,
directions between any of the components in the system . one or more entries within the deduplication table 1910 may

Referring now to FIG . 19 , a generalized block diagram be evicted as further described later . In one embodiment , the
illustrating one embodiment of a logical representation of a 25 fingerprint tables 1920-1940 together comprise some or all
deduplication table 1910 is shown . The information stored in of a deduplication table depending on a chosen implemen
the deduplication table 1910 may provide a fast location tation . In other embodiments , the fingerprint tables 1920 and
identification of data components stored in the data storage 1930 store copies of information stored in fingerprint table
arrays 120a - 120b . The information stored in the deduplica- 1940. Further , the fingerprint table 1940 may be stored in
tion table 1910 may include mappings between one or more 30 volatile and / or non - volatile storage within the system (e.g. ,
calculated fingerprint values for a given data component and such as storage devices 1762-176m , RAM 172 , processor
a physical pointer to a physical location in one of the storage cache (s) , etc.) .
devices 176a - 176m holding the given data component . In In one embodiment , a lookup operation into the dedupli
addition , a length of the given data component and status cation table 1910 may be controlled by control logic in a
information for a corresponding entry may be stored in the 35 storage controller . For example , attribute information may
deduplication table 1910 . be used to determine how many of the fingerprint tables
As described earlier , a chunking / partitioning algorithm 1920-1940 to search . In addition , a type of a storage medium

may produce a given data component 1902 from data storing a given fingerprint table may determine how many
corresponding to a received request . A fingerprint algorithm input / output (I / O) accesses may be used to search a given
1904 of multiple fingerprint algorithms may then be selected 40 fingerprint table . For example , a search determined to have
and used to produce a data component fingerprint 1906. The a limited amount of time for lookup may access fingerprint
resulting fingerprint value may then be used to access the tables stored in a processor cache or a non - persistent storage ,
deduplication table 1910. In various embodiments , one or but not access any fingerprint tables stored in persistent
more fingerprint algorithms may be supported and one storage . Alternatively , a limited number of I / O accesses may
fingerprint algorithm may be more complex to perform than 45 be allowed to persistent storage . In addition , a lookup may
another fingerprint algorithm . Accordingly , the given fin- access only particular portions of the deduplication table
gerprint algorithm may consume more computation time 1910 based on an estimated probability of success .
than another . Additionally , some fingerprint algorithms may Each entry in the fingerprint table 1940 may comprise one
produce larger fingerprints than others and consume more or more calculated fingerprint values corresponding to a
storage space . For example , an MD5 type fingerprint algo- 50 given data component , such as fingerprints 1942a - 1945a in
rithm may be more complex to perform than a CRC32C a first entry . Additionally , each of the fingerprints 1942a
fingerprint algorithm . However , there may be fewer colli- 1945a may be calculated from a different fingerprint algo
sions , or false matches , associated with the first algorithm . rithm . The pointer 1946a may be a physical pointer or
In another example , the result of the fingerprint algorithm address for a given physical location within the storage
may be determined by keeping only some of the bits 55 devices 176a - 176m . In addition , each entry may comprise
generated by a function such as MD5 or CRC32C . Keeping status information , such as the status field 1948a in the first
more bits requires more space , but may also reduce the entry . The status information may include a valid bit , a flag
likelihood of a collision . A collision may cause a read of data to indicate whether or not a corresponding data component
stored in persistent storage , such as the storage devices is a candidate for deduplication , a length of the correspond
176a - 176m , for a subsequent comparison operation . The 60 ing data component , and so forth .
comparison may be performed to verify whether a match Similar to the storage arrangement in the fingerprint table
found in the deduplication table 1910 corresponds to data 1940 , each entry in the fingerprint table 1930 may comprise
stored in persistent storage that matches the value of the one or more calculated fingerprint values corresponding to a
given data component 1902. In addition , read operations for given data component , such as fingerprint values 1932a
both data and attributes followed by comparison operations 65 1934a in a first entry . In some embodiments , the fingerprint
may be performed to determine which one of multiple tables may be inclusive such that some of the fingerprint
matches may remain in persistent storage during deduplica- values 1932a - 1934a stored in the fingerprint table 1930 may

a

a

a

US RE49,148 E
43 44

be copies of one or more of the fingerprint values 1942a- write data is stored . In both cases , a new virtual to physical
1945a , 1942b - 1945b , 1942m - 1945m , and so forth , stored in mapping table entry (e.g. , in table 1820) may be created for
the fingerprint table 1940. In other embodiments , fingerprint the write as previously discussed .
values stored in one table are exclusive of those stored in In one embodiment , the deduplication table 1910 may
another . All such embodiments are contemplated . 5 store multiple entries for a given data component . For

In one embodiment , the fingerprint table 1930 holds a example , the deduplication table 1910 may store an entry for
smaller number of entries than a number of entries in the a given 4 KB page as well as a separate entry for each 1 KB
fingerprint table 1940. In addition , each entry in the finger- block within the given 4 KB page . Alternatively , a lookup
print table 1930 holds less information than an entry in the into the deduplication table 1910 may occur at a granularity
fingerprint table 1940. Similarly , the fingerprint table 1920 10 of a 512 - byte block . If a match is found and a duplicate copy
may hold a smaller number of entries than a number of of data stored in one of the data storage arrays 120a - 120b is
entries in the fingerprint table 1930 and each entry in the found and verified , a subsequent lookup of the next con
fingerprint table 1920 may hold less information than an tiguous 512 bytes may be performed . If a fingerprint value
entry in the fingerprint table 1930. In other embodiments , match is found for this data block and a duplicate copy of
fingerprint table 1930 may not hold a smaller number of 15 data stored in one of the data storage arrays 120-120b is
entries than that of fingerprint table 1940. Rather , fingerprint found and verified , a subsequent lookup of the next con
table 1930 could hold more entries , and each entry could tiguous 512 bytes may be performed . This process may be
hold more information . Similarly , fingerprint table 1920 repeated until no match is found . Therefore , deduplication of
could be larger than one or both of fingerprint table 1930 and data components may be found at a finer granularity while
fingerprint table 1940. Although the fields 1922a - 1948m 20 also still maintaining table entries in the deduplication table
within the fingerprint tables 1920-1940 are shown in a 1910 for larger sized data components .
particular order , other combinations are possible and other For a deduplication table 1910 that supports a finer
or additional fields may be utilized as well . The bits storing granularity of sizes for data components , more fingerprint
information for the fields 1922a - 1948m may or may not be value hits may be produced during a lookup operation for a
contiguous . 25 given received write request . For a deduplication table 1910

While fingerprint tables 1920-1940 are shown as tables , that supports a more coarse granularity of sizes for data
the tables 1920-1940 may be data structures such as a binary components , a higher storage efficiency may be achieved
search tree , or an ordered binary tree , comprising a node- and fewer fingerprint value hits may be produced during a
based data structure . In addition , while three fingerprint lookup operation for a given received write request . In some
tables 1920-1940 are shown , different numbers of finger- 30 embodiments , a deduplicated data component may have
print tables are possible and contemplated . Further , one or neighboring data components that have also been dedupli
more filters such as a Bloom filter may be included in the cated . For example , a given 512 - byte data component may
deduplication table 1910. In such an embodiment , the filter have a neighboring 512 - byte deduplicated component ; thus
may be accessed to quickly determine whether a calculated forming a 1 KB deduplicated block . In such a case , an entry
data component fingerprint 1906 is within one or more of the 35 may be added to the deduplication table 1910 associated
fingerprint tables . For example , a filter may be configured to with the deduplicated 1 KB block . In this manner , data
definitively indicate that a data component is not stored in a components and their corresponding entries are effectively
data table . If the filter does not rule out its presence , coalesced to form larger blocks . Alternatively , a table entry
deduplication processing may continue or the data compo- within the deduplication table 1910 corresponding to a
nent may be stored in the data table . 40 larger data size may be divided to produce multiple table
As described earlier , a chosen fingerprint algorithm may entries with corresponding smaller data sizes . Such a divi

be used to calculate the data component fingerprint 1906 . sion may produce more fingerprint value hits during a
Subsequently , the data component fingerprint 1906 may be lookup into the deduplication table 1910 .
used to access the deduplication table 1910. The chosen Both a fingerprint algorithm and a data size or length
fingerprint algorithm may be also used to determine which 45 corresponding to a table entry within the deduplication table
fingerprint values stored in the fingerprint tables 1920-1940 1910 may be reconsidered . Such reconsideration may occur
to compare to the data component fingerprint 1906. For periodically , during identified events as described earlier in
example , the fingerprint table 1920 may store fingerprint FIG . 3 , or at any other desired time . As may be appreciated ,
values corresponding to data components predicted to have making changes to the algorithm (s) used and / or data sizes
a relatively high probability of being deduplicated . In one 50 used may result in changes to calculation times and may
embodiment , fingerprint table 1920 may store information alter the probability of a collision . For example , increased
corresponding to the 5 % of the total number of stored data data collisions may incur additional read operations of a
components that have the highest probability of being dedu- persistent storage data location for a data comparison .
plicated . The probability of deduplication for a given data Changes in the supported data size may result in more
component may be based , at least in part , on the attributes 55 deduplications of smaller blocks or fewer deduplications of
stored in the attributes table 640 . larger blocks . All such ramifications should be taken into
The data component fingerprint 1906 may access one or account when making such changes .

more tables within deduplication table 1910. If no matching In one embodiment , one or more entries within the
fingerprint is found , then the corresponding data may be deduplication table 1910 may store a first fingerprint value
scheduled to be written to one of the storage devices 60 for a corresponding data component . A second fingerprint
176a - 176m . If a matching fingerprint is found , then the data value may be stored with the corresponding data component
corresponding to the matching fingerprint may be retrieved in one of the storage devices 176a - 176m . In various embodi
from storage and compared to the received write data . If the ments , the first fingerprint value is a different and smaller
data is determined to be identical , then a new link for the fingerprint value than the second fingerprint value . Different
stored data is created and the write data discarded . If the 65 fingerprint algorithms may be used to compute the first
retrieved data is not identical to the write data or no fingerprint value and the second fingerprint value . In another
matching fingerprint for the write data is found , then the example , the first fingerprint value is a function of the

a

a

9

a

a

a

15

US RE49,148 E
45 46

fingerprint value (e.g. , a subset of bits of the fingerprint matching value for a corresponding data component .
value) and the second fingerprint value is also a function of Numerous such embodiments are possible and are contem
the same fingerprint value (e.g. , some or all of the remaining plated .
bits of the fingerprint value) . During a lookup into the Referring now to FIG . 20 , one embodiment of a method
deduplication table 1910 , when a subset or an entire value of 5 2000 for supporting multiple fingerprint tables is shown . In
the data component fingerprint 1906 matches a first finger various embodiments , the components discussed above ,
print value in a given table entry , such as fingerprint 1932j such as network architecture 100 , deduplication table 1910
in the fingerprint table 1930 , a corresponding data storage and fingerprint table (s) 1920 described above may generally
location may be read . In embodiments in which the first operate in accordance with method 2000. For purposes of
fingerprint value is a subset of bits of the fingerprint value , 10 discussion , the steps in this embodiment are shown in
a second fingerprint value may be stored in this data location sequential order . However , some steps may occur in a

different order than shown , some steps may be performed in addition to a corresponding data component . Either a
second fingerprint value different from the data component concurrently , some steps may be combined with other steps ,

and some steps may be absent in another embodiment . fingerprint 1906 or a subset of the data component finger In block 2002 , a number N (where N is an integer) of print 1906 may be compared to the stored second fingerprint fingerprint tables are determined to be supported and store
value . If there is a match , then a comparison may be values , such as fingerprint values , corresponding to stored
performed between the stored data component and a data data components . Each of the N fingerprint tables may have
component value corresponding to a received read / write an associated probability for corresponding data compo
request , a garbage collection operation , or otherwise . 20 nents to be deduplicated . One or more of the N fingerprint

In one embodiment , the deduplication table 1910 may be tables may be stored on a separate storage medium from the
partitioned in a manner to allow one or more nodes in a other fingerprint tables . One or more of the N fingerprint
cluster to process lookup operations for a given partition of tables with the higher associated probabilities of deduplica
the table . Therefore , deduplication may occur across mul- tion may be stored in a higher level of a memory hierarchy
tiple nodes to reduce storage space on a given node . A 25 than the remainder of the fingerprint tables . For example ,
virtual - to - physical mapping table , such as the mapping table one or more of the N fingerprint tables may be stored in
1820 , may refer to data components across multiple nodes RAM 172 , whereas the remainder of the N fingerprint tables
for increased storage efficiency . The deduplication table may be stored in persistent storage in storage devices
1910 may still be stored across storage devices within a 176a - 176m . In some embodiments , copies of one or more of
cluster in the cluster and may be repartitioned without 30 the N fingerprint tables may be stored in a higher level of the
moving any of the stored data . A smaller portion of the storage hierarchy . Therefore , there may be two copies of the
deduplication table 1910 , such as the fingerprint tables one or more N fingerprint tables on separate storage media .

In block 2006 , one or more events are identified for 1920-1930 may be stored on each node while a larger changing (or reevaluating) a storage strategy or arrangement
portion , such as the fingerprint table 1940 , may be parti- 35 for entries within the N fingerprint tables . Examples of such
tioned . Each time a node joins or leaves a given cluster , the events may include a garbage collection operation , a prun deduplication table 1910 may be repartitioned among the ing / trimming operation , a secure erase operation , a recon
current nodes in the given cluster . The deduplication table struct read operation , a given stage in a read / write pipeline
1910 may support one deduplication address space across for a received read / write request , a received batch operation
one or more volumes and snapshots on one or more nodes 40 that accesses physical locations within persistent storage , a
in the given cluster . In various embodiments , the dedupli- received batch operation that transforms or relocates data
cation table 1910 may be divided among several nodes to components within the persistent storage .
increase the effective cache storage efficiency for a finger- In block 2008 , one or more attributes corresponding to
print lookup operation . This division of the deduplication data components stored in the persistent storage are identi
table 1910 may occur by fingerprint value , by fingerprint 45 fied for storage . The attributes may be used to change a
algorithm , by an estimated probability of success , by a storage strategy or arrangement for entries within the N
storage strategy , by a random process , or otherwise . fingerprint tables . Examples of such attributes include at

In one embodiment , an entry is allocated , or registered , least those discussed above in relation to FIG . 17. In block
within the deduplication table 1910 when a fingerprint 2010 , one or more of the stored attributes may be updated as
lookup operation into the deduplication table 1910 results in 50 data components are aged or accessed . In one embodiment ,
a miss . This miss may occur during an inline deduplication a given period of time and each data storage access may be
operation or a post - process deduplication operation . Addi- included as an event with the events described regarding
tionally , as previously discussed in FIG . 15 , on a hit a link block 2006. If one of the identified events occurs (decision
table may be updated that stores links for deduplicated data . block 2012) , then in block 2014 one or more of the attributes
For example , responsive to successfully deduplicating 55 corresponding to one or more stored data components are
received write data , a new entry is created in the link table . read for inspection . In block 2016 , based on the attributes
In some embodiments , new table entries may be registered that are read , one or more entries within the N fingerprint
during a post - process deduplication operation . In other tables may be moved from one fingerprint table to another .
words , during an inline deduplication operation , a miss Additionally , entries may be reordered within a given fin
during a fingerprint lookup into the deduplication table 1910 60 gerprint table based on their corresponding attributes . For
does not produce registration of a table entry . During a example , the entries may be sorted by one or more stored
post - process deduplication operation , a miss during a fin- fingerprint values for ease of lookup . One or more entries
gerprint lookup into the deduplication table 1910 does may be promoted from a lower - level fingerprint table to a
produce registration of a table entry . In one embodiment , a higher - level fingerprint table , wherein entries within the
duplicate copy is verified during deduplication by a match- 65 higher - level fingerprint table correspond to stored data com
ing fingerprint value . In another embodiment , a duplicate ponents that have a higher probability of being deduplicated
copy is verified by both a matching fingerprint value and a based on their attributes .

a

a

a

a

US RE49,148 E
47 48

In addition to the above , one or more entries within the N may be deallocated (block 2108) . A stored indication may
fingerprint tables may be evicted from the fingerprint table allow for reevaluation at a later time of a given evicted data
1920 altogether . This eviction of one or more entries may component .
occur when a determination is made based on associated Turning now to FIG . 22 , one embodiment of a method
attributes that the one or more entries correspond to stored 5 2200 for inserting an entry into a deduplication table is
data components with a low probability of being dedupli shown . In block 2202 , one or more conditions are identified
cated . In addition , based on associated attributes , entries for reviewing a data component which does not currently
within the N fingerprint tables may be evicted in order to have an entry in the deduplication table . In one embodiment ,
prevent deduplication among data components with a large one condition for performing such a review may be initiation
number of references , to remove entries that cause false 10 of a garbage collection operation . Other examples of con
matches , or collisions , during a deduplication operation , and ditions may include the occurrence of events identified in

block 1606 in method 1600 , the conditions discussed in to remove entries that no longer have a valid physical relation to method 2000 , or otherwise . The timing of such a address for the data component to which they refer . review may be set in a manner to minimize or otherwise As described earlier , for each entry that is evicted , in one 15 reduce the impact on other system operations .
embodiment , an indication of the eviction may be written to If conditions are satisfied for reviewing a data component a corresponding physical location within one of the data (decision block 2204) , then corresponding attributes for the
storage arrays 120a - 120b . In another embodiment , an indi given data component may be read and inspected (block
cation of the eviction may be written in an associated entry 2206) . For example , one or more attributes such as those
of another data structure . A stored indication may allow for 20 discussed above may be used to determine whether insertion
reevaluation at a later time of a given evicted data compo- may occur . In various embodiments , metadata within the
nent . The associated attributes may be read and used to system indicates whether a corresponding data component
determine whether the evicted data component may does or does not have a corresponding entry in the dedu
now have a probability of being deduplicated above a given plication table . A given data component / entry may qualify
threshold . If it is determined the given evicted data compo- 25 for insertion in the deduplication table when one or more
nent has a probability of being deduplicated above a given conditions for its exclusion are no longer valid , such as the
threshold , then a corresponding entry may be allocated in conditions described above regarding block 2102 of method
one of the N fingerprint tables . 2100. The attributes of a corresponding data component may

Referring now to FIG . 21 , one embodiment of a method change over time and allow the data component to have an
2100 for eviction from a deduplication table is shown . In 30 associated entry in the deduplication table again .
block 2102 , one or more conditions are identified for evict If a given evicted entry qualifies to be reinserted in the

deduplication table (decision block 2208) , then an entry in ing an entry from a deduplication table . Here , eviction refers the deduplication table is allocated for a corresponding data to removing information stored in a given entry from the
entire deduplication table . If a deduplication table includes component (block 2210) and any markings that indicate the

35 data component does not have an entry in the deduplication multiple fingerprint tables , such as tables 1920-1940 , infor table may be removed or invalidated . mation stored within a given entry may be removed and no Referring now to FIG . 23 , a generalized block diagram longer be stored in any of the fingerprint tables . In various illustrating one embodiment of a system 2300 for maintain
embodiments , data that is deemed to have a relatively low ing reverse address mappings using a link table 2310 is
probability of being deduplicated may have its entry 40 shown . As described above , virtual - to - physical mapping
removed from the deduplication table (s) . This eviction may information may be stored in mapping table 1820. In addi
in turn reduce the size of the deduplication table and reduce tion , address - mapping information may be stored in each
an amount of effort required to maintain the table . page of data within each of the storage devices 176a - 176m .

In the example shown , the identified conditions for use in Each of the data storage arrays 120a - 120b supports multiple
determining eviction may include one or more of a size of 45 virtual addresses in requests from each of the client com
the deduplication table reaching a given threshold , a given puter systems 110a - 110c referencing a same , single physical
data component has a predicted probability of being dedu- address . For example , a first virtual address corresponding to
plicated that falls below a given threshold , a given data client 110a and a second virtual address corresponding to
component has a history of being deduplicated that falls client 110b may reference a same data component or a same
below a given threshold , a given data component with an 50 data block identified by a same given physical address . In
associated large number of references is identified as being this example , the first virtual address may have a value of
removed from a deduplication operation , a given data com- “ VX ” . The second virtual address may have a value of
ponent reaches a given threshold for a number of false “ VY ” . The same given physical address may have a value of
matches (collisions) , and a given data component does not “ PA ” . These values are arbitrary and chosen to simplify the
have a valid physical address . One or more attributes , such 55 illustrated example . The mapping table 1820 may store
as the attributes discussed above may be used to determine mapping information such as “ VX - to - PA ” and “ VY - to - PA ” .
whether eviction may occur and to identify one or more Over time , the first virtual address , “ VX ” , may later be
entries within a deduplication table for eviction . In various included in a write request from client 110a with modified
embodiments , eviction may also occur during garbage col- data . The new modified data may be written to one or more
lection operations . 60 of the storage devices 176a - 176m . The new information for

If conditions are satisfied for evicting a given entry in a the physical block may be stored in a physical location
deduplication table (decision block 2104) , then a corre- identified by a new physical address different from the given
sponding data component may be marked as being removed physical address . For example , the new physical address
from the table (block 2106) . In one embodiment , an indi- may have a value “ PB ” , which is different from the value
cation of the eviction may be written to a corresponding 65 “ PA ” of the given physical address . A new virtual - to
physical location within one of the data storage arrays physical mapping may be stored in a mapping table 1820 ,
120a - 120b , and the given entry in the deduplication table such as “ VX - to - PB ” . The given physical address , “ PA ” , still

a

a

a

a

9

a

a

?

US RE49,148 E
49 50

has a link to one virtual address , which is the second virtual physical address “ PA ” . Therefore , a count of links to the
address corresponding to client 110b , or “ VY - to - PA ” stored physical address “ PA ” is erroneously determined to be zero .
in the table 1820. Subsequently , the second virtual address , The garbage collector may then deallocate the physical
“ VY ” , may later be included in a write request from client location identified by the physical address “ PA ” . Conse
110b with modified data . Again , the new modified data may 5 quently , the link corresponding to the mapping “ VY - to - PA ”
be written to one or more of the storage devices 1762-176m . is broken and data corruption may have occurred .
The new information for the physical block may be stored in In order to avoid the above problem without scheduling a
a physical location identified by a new physical address data write request to the storage devices 176a - 176m , a link
different from the given physical address . For example , the table 2310 may be used . Although scheduling a write request
new physical address may have a value “ PC ” , which is 10 to update the mapping information from (“ VX - to - PA ”) to
different from the value “ PA ” of the given physical address . (“ VX - to - PA ” , “ VY - to - PA ”) stored in the physical location
A new virtual - to - physical mapping may be stored in a identified by the physical address “ PA ” may prevent broken
corresponding table 1820 , such as “ VY - to - PC ” . The given links , the benefit of the inline deduplication operation would
physical address , “ PA ” , now has no links to it . A garbage be reduced and write amplification of SSDs may be
collection operation may deallocate the physical block cor- 15 increased . Therefore , in order to address at least these issues ,
responding to the given physical address “ PA ” due to a count the link table 2310 may be utilized to hold reverse mapping
of zero currently valid links and / or other corresponding information . The link table 2310 may comprise a plurality of
status information . entries 2320a - 2320g . Each of the entries 2320a - 2320g may
A problem may occur during garbage collection if inline include a physical index 2324 that identifies a physical

deduplication causes no update of mapping information . For 20 location in the storage devices 176a - 176m . In addition , one
example , when a write request from client 100a to virtual or more virtual indexes 2326a - 2326j may be included to
address VX occurs , no matching fingerprint value 2306 may provide reverse mapping information . The status informa
be found in the fingerprint table 1920 during an inline tion 2328 may indicate whether a corresponding entry stores
deduplication operation . Consequently , mapping may be one or more valid reverse mappings .
stored in the mapping table 1820 , such as “ VX - to - PA ” , and 25 In one embodiment , the link table 2310 has an entry
a physical data block may be scheduled to be written to the allocated or updated when an inline deduplication operation
physical address “ PA ” . In addition , the mapping information determines a duplicate copy exists in storage for a corre
“ VX - to - PA ” may be written with the data in the physical sponding data component 2302. A corresponding physical
location identified by physical address “ PA ” . Alternatively , index 2337 found during the inline deduplication operation
the mapping information may be stored in a corresponding 30 may be used to update the link table 2310. Referring to the
log in a storage device , wherein the log corresponds to above example , the link table 2310 may be updated with the
multiple physical locations such as the location identified by reverse mapping information “ PA - LO - VY ” during processing
the physical address A. In one embodiment , at this me , an of the write request from client 110b virtual address
entry may be registered in the deduplication table 1910 “ VY ” . When the garbage collector is executed , it may
corresponding to this write request . In another embodiment , 35 inspect both the physical location identified by the physical
an entry may be registered in the deduplication table 1910 address “ PA ” , the mapping table 1820 and the link table
corresponding to this write request during a post - process 2310. The garbage collector may find the mapping informa
deduplication operation . Regardless of when an entry is tion , “ VX - to - PA ” , stored in the corresponding page identi
registered in the deduplication table 1910 , a corresponding fied by the physical address “ PA ” . A valid corresponding
entry may exist in the deduplication table 1910 when a write 40 entry in the table 1820 storing the same mapping informa
request is received from client 110b to virtual address VY . tion , " VX - to - PA ” , may not be found . However , the garbage
When the write request from client 100b to virtual address collector may access the link table 2310 with the physical

“ VY ” is received , a matching fingerprint value 2306 may be address “ PA ” and find a valid entry with the reverse mapping
found in the deduplication table 1910 corresponding to information “ PA - to - VY ” . Therefore , a count of links to the
physical address PA and a match of the data verified . In such 45 physical address “ PA ” is one , or nonzero . Accordingly , the
a case , a mapping may be stored in the table 1820 , such as garbage collector does not deallocate the physical location
“ VY - to - PA ” . As a write of the data is not performed , the identified by the physical address “ PA ” and the problem
mapping information “ VY - to - PA ” not written with the discussed above is avoided . In another embodiment , the data
data in the physical location identified by physical address corresponding to “ PA ” is stored in one location and the
“ PA ” . Subsequently , a later write request from client 100a to 50 mapping information “ VX to PA ” and “ VY to PA ” stored in
virtual address “ VX ” may occur with new modified data . No another location . In yet another embodiment , the data cor
matching fingerprint value 2306 may be found in the dedu- responding to “ PA ” is stored in one location and the map
plication table 1910 during an inline deduplication opera- pings “ VX to PA ” and “ VY to PA ” are stored in a link table ,
tion , and a corresponding mapping stored in the table 1820 , but not adjacent to one another . Instead , they may be stored
such as “ VX - to - PB ” . In this case , the mapping information 55 in a table with a structure similar to that described in FIG .
“ VX - to - PB ” may be written with the data in the physical 4 , with the key for both mapping entries being the physical
location identified by the physical address “ PB ” . address “ PA ” (or based at least in part on the “ PA ”) . For
When the garbage collector is executed , the application example , in such a table , “ VX to PA ” may be stored in Level

may inspect both the physical location identified by the N - 2 and “ VY to PA ” stored in Level N. A lookup of “ PA ”
physical address “ PA ” and the table 1820. The garbage 60 in the table would then return both mappings .
collector may find the mapping information , “ VX - to - PA ” , In addition to the above , during garbage collection the
stored with (or otherwise in association with) the corre- physical location identified by the physical address “ PA ”
sponding page identified by the physical address “ PA ” . may be updated with the mapping information “ VY - to PA ”
However , no valid corresponding entry in the table 1820 due to the valid entry in the link table 2310. Given such an
storing the same mapping information “ VX - to - PA ” is found . 65 update , the entry in the link table 2310 may be deallocated .
In addition , no other valid links to the physical address “ PA ” If the table 1820 is ever lost , the mapping information stored
may be found , although virtual address “ VY ” is referencing in the physical locations in the storage devices 176a - 176m

a

a

US RE49,148 E
51 52

and the reverse mapping information stored in the link table the current link table entry (decision block 2414) . If the new
2310 may be used to rebuild the table 1820. In one embodi- entry is empty , then the currently allocated block corre
ment , the deduplication table 2310 , or a portion of the table sponding to the current link table entry may be reclaimed
2310 , may be organized in a same manner as that of the (block 2416) . Otherwise , the new entry is written to the link
mapping table 1820. Additionally , the link table 2310 may 5 table (block 2420) . If there are more link table entries to
also be organized in a same manner as the mapping table examine (decision block 2418) , then the process may pro
1820 . ceed with block 2402. In addition to reclaiming storage , this
As described above , when an inline deduplication opera- process may serve to consolidate link table mapping entries

tion determines a duplicate copy of data is stored in the into fewer entries .
system , corresponding mapping information may be stored 10 Turning now to FIG . 25 and FIG . 26 , further embodi
in each of the table 1820 and the link table 2310 with no ments and details regarding a garbage collection mechanism
write of the data to storage . These steps coordinate with are described . Generally speaking , the following describes a
garbage collection that frees physical locations in the per- garbage collection method whereby log entries and content
sistent storage . The coordination may be relatively coarse blocks are examined . Blocks which are identified as still
since freeing physical locations may be performed later and 15 being in use are written to a new segment , while the
batched separately from garbage collection migrating physi- remaining blocks are reclaimed . For each block in the
cal blocks within a corresponding one of the storage devices segment , we see if there are any valid logical or virtual
176a - 176m . Since migration may occur prior to deallocation addresses that reference it . This is done by reading the link
of physical locations during garbage collection , when a table and looking up each virtual address to see if it's still a
physical block is moved a new physical location for data 20 valid reference . If so , the reference is added to a list of valid
may have stored mapping information updated with its own references for this block . We also check the " direct " map
physical address and updates stored in the mapping table ping entry that we get from the log entries in the segment
1820. Both corresponding log areas and page header infor- itself . Again , if this virtual address mapping is still valid , we
mation may be updated . Afterward , the table 1820 may be add it to the list of valid pointers for this block .
updated with the new physical addresses . Following this , the 25 In addition to the above , the garbage collector can (op
deduplication table 1910 and then the link table 2310 may be tionally) attempt to find more duplicates for this block
updated with the new physical addresses . This update elsewhere in the system by referencing deduplication tables .
removes links to the old physical addresses . If any are found , the logical addresses for them are added to

If the deduplication table 1910 or the link table 2310 the list of valid references . FIG . 25 depicts one embodiment
contains old references , then the corresponding physical 30 of a method for identifying blocks which are still in use . In
locations may be cleaned once more before it is freed . The the example shown , a list of currently valid blocks is
deduplication table 1910 may not be as compressible as the generated by examining link table entries and mapping table
table 1820 , since the fingerprint value and physical pointer entries . The upper block 2530 shown in FIG . 25 corresponds
pairs may be random or more random than the entries in the to examination of the link table and segment content
table 1820. Further , the deduplication table 1910 may be less 35 descriptor table , while the lower block 2540 corresponds to
cacheable , since the fingerprint values may be random and examination of the mapping table .
table 1910 is indexed by fingerprint values . Regarding the In various embodiments , the segment content descriptor
table 1820 , entries corresponding to idle data , such as in idle table for a given segment includes mappings which refer to
volumes , may be kept out of caches . Such factors result in blocks within the given segment . In various embodiments ,
more read operations for a deduplication operation . There- 40 the segment content descriptor table is accurate at the time
fore , the multiple fingerprint tables 1920-1940 are used and the segment is written . However , after the segment is
allow one or more smaller tables to be cached . In one written , writes to virtual addresses corresponding to blocks
embodiment , the tables corresponding to data components that are stored in the segment may be received and the new
with a higher probability being deduplicated may be write data stored in a segment other than the given segment .
accessed during inline deduplication . The other tables may 45 These new writes in turn cause new entries to be added to the
be accessed during post - process deduplication , such as dur- mapping table (e.g. , table 340 or table 1820) for those virtual
ing garbage collection . addresses . These newer entries in the mapping table will

FIG . 24 illustrates one embodiment of a portion of a supercede the previous entries . While the mapping table is
garbage collection process that may , for example , be used in updated to reflect these new writes , the segment content
a storage system that supports deduplication . In the example 50 descriptor table for the original segment is not updated .
shown , an entry in the link table is read (block 2402) and a Rather , the segment content descriptor table for the new
virtual address read from the entry (block 2404) . Using at segment which stores the new write data reflects the new
least a portion of the virtual address , an access of the mapping . Consequently , there will now exist multiple seg
mapping table is performed (block 2406) and a determina- ment content descriptor tables which include a mapping for
tion made as to whether there exists a valid address mapping 55 a given virtual address . However , as will be discussed in
for the virtual address (decision block 2408) . If there is a greater detail below , during garbage collection an access to
valid mapping , then a new link table entry is updated to the mapping table may be used to identify that the mapping
include the mapping (block [2406] 2410) , and a determina- in the original segment content descriptor table is out of
tion made as to whether there are further virtual addresses to date .
check in the current link table entry (decision block [2408] 60 In this example , garbage collection is performed by going
2412) . If so , then the process continues with block [2410] through segments in the log data which contains mapping
2406. If there is no valid mapping for the virtual address entries and content blocks (which may be compressed)
(decision block 2408) , the process continues with block themselves . The mapping entries in the log may include
2412. Once there are no further virtual addresses to check mapping table entries , deduplication table entries , and link
for the current link table entry (decision block 2412) , then a 65 table entries . In the embodiment of FIG . 25 , the method
determination is made as to whether the new entry is empty includes building a sorted list of link table entries for a
(i.e. , no valid mappings have been found that correspond to segment . As shown , the method begins with an access to the

a

9

a

US RE49,148 E
53 54

link table (block 2500) , link table entries are read from the process . As will be discussed below , in such an embodiment
link table (block 2502) , and added to a sorted list of entries current blocks are first deduplicated before being written to
for the given segment (block 2504) . If more link table entries a new segment .
remain (conditional block 2506) , the process continues at In block 2600 of FIG . 26 , a cursor is set to a first entry in
block 2502 by adding more entries to the sorted list . In 5 the list created as described above in FIG . 25 and the first
various embodiments , the link table is ordered by segment entry read (block 2602) . As discussed above , the list
number and then logical address , and content blocks within includes an identification of blocks which are in use and are a segment are ordered by logical address . Consequently , the to be written to a new segment . Further , as noted above , content blocks in the segment may be traversed in the same
order as they occur in the link table . In alternative embodi- 10 than a database type cursor . In an embodiment in which various embodiments may utilize other control structures
ments , the system may scan several segments and order the multiple segments were scanned in block 2530 , the system list of entries by logical address . may maintain multiple cursors (e.g. , one cursor per seg When it is determined that there are no further link table
entries to be processed for the current segment (conditional ment) . In an embodiment in which deduplication is not
block 2506) , examination of the content descriptor table is 15 performed as part of the garbage collection process , pro
initiated (block 2508) . In various embodiments , processing cessing may proceed (as shown by the dashed line) from
may include utilization of a control structure such as a block 2602 to block 2612 where the identified block is
database type cursor for traversing records in the table . In copied to the new data segment (block 2612) and a new
such an embodiment , the cursor may be positioned at the mapping table entry created (block 2614) . However , in
start of the segment content descriptor table (block 2508) . 20 embodiments in which deduplication is performed , process
Those skilled in the art will appreciate other methods for ing proceeds from block 2602 to block 2604 .
traversing such content are possible , utilizing different types In conditional block 2604 , the currently identified block is
of control structures . Such alternative methods for traversal deduplicated . Deduplication may be performed as described
are contemplated herein . above . If no duplicates are identified , then processing may

Subsequent to positioning the cursor at the beginning of 25 proceed with block 2612 where the data is copied to the new
the content descriptor table , the next segment content data segment . However , if it determined that the current
descriptor entry is read (block 2510) , which is then added to block can be deduplicated , then a further determination may
the sorted list of entries for the segment (block 2512) . If be made (conditional block 2606) as to whether the corre
there are more segment content descriptor entries (condi- sponding data has already been written (i.e. , this is not the
tional block 2514) , then the next entry is read (block 2510) . 30 first instance of the data seen during this process 2640. If the
If there are no further segment content descriptor entries data has not yet been written , then the data is written to a
(conditional block 2514) , the sorted list to be used in further new data segment . In various embodiment , data which is
processing may be deemed complete , and processing con- deduplicated as part of the garbage collection process may
tinues in lower block 2540 . be written to a different segment than data which is not

While the steps in block 2530 are shown as operating on 35 deduplicated . However , it is noted that such segregation is
a single segment , alternative embodiments may scan mul- not required . Subsequent to writing the data to a new
tiple segments using similar steps , and combine the results segment (block 2608) , a new link table entry is created to
into a single sorted list to be processed in lower block 2540 . map the data's new location to a virtual address (block
Lower block 2540 begins by examining the sorted list 2610) , and the mapping table updated to include a corre

created by upper block [2540] 2430. In the embodiment 40 sponding virtual to physical address mapping entry (block
shown , the first entry in the sorted list is accessed (block 2614) . If in conditional block 2606 it is determined that
2516) . A virtual address included in the list entry is then used deduplicated data has already been written to a new data
as part of a query to the mapping table (e.g. , mapping table segment , then processing bypasses block 2608 and proceeds
1820 of FIG . 18) . If a valid mapping is identified for the with the new link table entry creation (block 2610) . New
virtual address in the mapping table (conditional block 45 entries written to the link table and mapping table may
2520) and the mapping corresponds to the data in the current supercede existing entries in those tables .
segment , then the corresponding block is determined to be Subsequent to updating the mapping table (block 2614) ,
in use and the entry is added to a list of entries which identify a determination is made as to whether this is the last entry
blocks to be copied to a new segment (block 2524) and in the list of blocks to be copied to a new segment (block
processing continues at block 2522. If there is no match 50 2616) , if so then segments built as part of the process (es)
found in the mapping table (conditional block 2520) , then 2630 and 2640 are written to storage (block 2620) . In an
the entry is not added to the list of blocks to be copied , and alternative embodiment , an output segment is queued to be
processing continues at block 2522. If there are more entries written as soon as it is full , rather than waiting until all of the
to be processed in the list (conditional block 2522) , then the entries in the list are processed . If there are further entries to
next virtual address is used in a query to the mapping table 55 process , then the cursor is advanced to the next entry (block
(block 2520) . Once there are no further entries to process 2618) , and the next entry read (block 2602) . Blocks identi
(conditional block 2522) , the list of current blocks which fied in FIG . 25 and FIG . 26 as not being in use may be
will be copied to a new segment is complete . reclaimed . The method of FIG . 25 and FIG . 26 may be

Having identified those blocks which remain in use , the repeated for all of the blocks in the segment (s) being garbage
reclamation process may proceed as depicted in FIG . 26. In 60 collected . Alternatively , garbage collection may combine
the embodiment of FIG . 26 , an upper block 2630 and lower multiple segments in block 2530 and process the combined
block 2640 are shown . Generally speaking , the upper block result in blocks 2540 , 2630 , and 2640 .
2630 depicts the process of writing current blocks to a new In various embodiments , old segments (the ones that were
segment . In various embodiments , the upper block 2630 garbage collected) are resubmitted to a queue for garbage
may be performed without the lower block 2640. Lower 65 collection . They aren't necessarily marked as being invalid
block 2640 illustrates an embodiment in which deduplica- at this time . Rather , a segment may be marked as invalid
tion may be performed as part of the garbage collection when the review of the segment reveals no valid informa

a

2

a

US RE49,148 E
55 56

tion . Under normal circumstances , this may happen when an computer infrastructure is delivered as a service . In such a
already - cleaned segment is submitted to a cleaner . case , the computing equipment is generally owned and

It is noted that if garbage collection does not run to operated by the service provider . In the PaaS model , soft
completion (e.g. , crashes in the midst of a garbage collection ware tools and underlying equipment used by developers to
process) , garbage collection may be run again on a partially- 5 develop software solutions may be provided as a service and
collected segment . Blocks from an old segment that were hosted by the service provider . SaaS typically includes a written out to a new segment will not be garbage collected service provider licensing software as a service on demand . again , since they are no longer valid in the old segment . The service provider may host the software , or may deploy
Blocks that were not written out , but should have been , will
be garbage collected as normal . Accordingly , a separate 10 Numerous combinations of the above models are possible the software to a customer for a given period of time .
process is not needed to determine if there has been an error and are contemplated . in garbage collection , and a “ roll back ” of garbage collection
will not be needed . Instead , the same process for garbage Although the embodiments above have been described in
collection considerable detail , numerous variations and modifications may be run on segments that may have few valid
blocks , and a segment marked as invalid when an entire 15 will become apparent to those skilled in the art once the
census finds no currently valid information in the segment . above disclosure is fully appreciated . It is intended that the

It is also noted that in various embodiments multiple following claims be interpreted to embrace all such varia
segments may be garbage collected concurrently . Such an tions and modifications .
approach may permit blocks from multiple segments to be
sorted into fewer new segments , and possibly create mul- 20 What is claimed is :
tiple “ new ” segments in order to group related blocks 1. A [computing] storage system comprising :
together in different segments . “ Related ” blocks could be , [a data storage medium] one or more storage devices ;
for example , related in that they compress well when com- [a data storage controller] the storage system configured [
pressed together or they are likely to be accessed together . to :
As noted above , deduplicated blocks may be placed in a 25 determine that a current segment within the [data
separate segment because such blocks will typically live storage medium] one or more storage devices is in
longer than blocks that aren't referenced multiple times . use by identifying a valid mapping of a location in

Still further , garbage collection may be used for other the current segment to one or more virtual addresses ,
processes at the same time as eliminating unreferenced data including :
blocks . For example , it may be used to change segment 30 creating a sorted list of potentially valid entries from
geometry by creating larger or smaller segments , segments a first table comprising entries mapping an
spread across a different number of drives , or otherwise . address of a location in the one or more storage
This may be accomplished by having the destination seg devices to one or more virtual addr ses ; and
ment be a different “ shape ” from the source segment (s) . creating a list of valid entries using the sorted list of
Garbage collection may also be used to rebuild segments 35 potentially valid entries and a second table com
that have been damaged by media failure . For example , prising entries mapping a virtual address to a
when an attempt to read a damaged block fails , the block location in the one or more storage devices ;
may be rebuilt using redundancy in the original segment . copy data from the location in the current segment to a

In various embodiments , garbage collection may be opti new storage location in the [data storage medium)
mized in a variety of ways . First , selection of a segment to 40 one or more storage devices ; and
submit for garbage collection may be optimized . In one reclaim the location in the current segment .
embodiment , it is not necessary to scan an entire segment to 2. The storage system as recited in claim 1 , wherein [the
determine if it is a good candidate . Rather , the process may data storage controller is further configured to] identifying
use the log entries at the front of the segment and see what the valid mapping of a location in the current segment to one
fraction are still valid . An estimate of how many dedupli- 45 or more virtual addresses further comprises :
cated blocks are in the segment can be made by traversing identifying one or more entries in [a] the first table
a small range of the link table . In both cases , this may [comprising a plurality of entries , wherein each of the
provide an estimate of how many blocks may be recovered one or more entries of the first table comprises a reverse
if garbage collection is run . It is possible to remember the mapping of an address of a location in the data storage
result of multiple runs of this kind of scan and project how 50 medium to one or more virtual addresses ; determine
full a segment is likely to be at some future time . that the first table includes a valid mapping for a virtual

It is noted that the above - described embodiments may address] ; and
comprise software . In such an embodiment , the program [determine) determining the mapping is valid responsive
instructions that implement the methods and / or mechanisms to determining the first table includes at least one valid
may be conveyed or stored on a computer readable medium . 55 mapping for a virtual address .
Numerous types of media which are configured to store 3. The storage system as recited in claim 1 , wherein the
program instructions are available and include hard disks , [data storage controller] storage system is further configured
floppy disks , CD - ROM , DVD , flash memory , Program- to maintain [a] the second table [comprising a plurality of
mable ROMS (PROM) , random access memory (RAM) , and entries , wherein each of the plurality of entries of the second
various other forms of volatile or non - volatile storage . 60 table maps a virtual address to a location in the data storage

In various embodiments , one or more portions of the medium] using multi - level shared tables .
methods and mechanisms described herein may form part of 4. The storage system as recited in claim 1 , wherein prior
a cloud - computing environment . In such embodiments , to copying the data from the location to the new location ,
resources may be provided over the Internet as services [the method further comprises deduplicating] the data is
according to one or more various models . Such models may 65 deduplicated .
include Infrastructure as a Service (IaaS) , Platform as a 5. The storage system as recited in claim 4 , wherein the
Service (PaaS) , and Software as a Service (SaaS) . In IaaS , [data storage controller] storage system is configured to copy

a

a

.

5

a

10

15

20

US RE49,148 E
57 58

the data from the location to the new location in further 13. A non - transitory computer readable storage medium
response to determining the data has not yet been copied to [comprising] with program instructions stored thereon ,
the new location . wherein said program instructions are executable to : 6. The storage system as recited in claim 1 , wherein the determine that a current segment within [a data storage first table is organized as a plurality of time ordered levels , medium] one or more storage devices is in use by each level comprising a plurality of entries .

7. A method for use in a [computing] storage system that identifying a valid mapping of a location in the current
includes one or more storage devices , the method compris segment to one or more virtual addresses , including :
ing : creating a sorted list of potentially valid entries from a

determining that a current segment within [a data storage first table comprising entries mapping an address of
medium] the one or more storage devices is in use by a location in the one or more storage devices to one
identifying a valid mapping of a location in the current or more virtual addresses ; and
segment to one or more virtual addresses , including : creating a list of valid entries using the sorted list of creating a sorted list of potentially valid entries from a potentially valid entries and a second table compris first table comprising entries mapping an address of ing entries mapping a virtual address to a location in a location in the one or more storage devices to one the one or more storage devices ; or more virtual addresses ; and
creating a list of valid entries using the sorted list of copy data from the location in the current segment to a

potentially valid entries and a second table compris new storage location in the [data storage medium] one
ing entries mapping a virtual address to a location in or more storage devices ; and
the one or more storage devices ; reclaim the location in the current segment .

copying data from the location in the current segment to 14. The non - transitory computer readable storage medium
a new storage location in the [data storage medium] one as recited in claim 13 , wherein [said program instructions
or more storage devices , and are further executable to] identifying the valid mapping of a reclaiming the location in the current segment .

8. The method as recited in claim 7 , [further comprising] 25 addresses further comprises : location in the current segment to one or more virtual
wherein identifying the valid mapping of a location in the
current segment to one or more virtual addresses further identifying one or more entries in [a] the first table

[comprising a plurality of entries , wherein each of the comprises :
identifying one or more entries in [a] the first table one or more entries of the first table comprises a reverse

[comprising a plurality of entries , wherein each of the mapping of an address of a location in the data storage
one or more entries of the first table comprises a reverse medium to one or more virtual addresses ; determine
mapping of an address of a location in the data storage that the first table includes a valid mapping for a virtual
medium to one or more virtual addresses ; address] ; and

determining that the first table includes a valid mapping [determine) determining the mapping is valid responsive
for a virtual address] ; and to determining the first table includes at least one valid

determining the mapping is valid responsive to determin mapping for a virtual address .
ing the first table includes at least one valid mapping for 15. The non - transitory computer readable storage medium
a virtual address . as recited in claim 14 , wherein said program instructions are

9. The method as recited in claim 8 , further comprising further executable to maintain [a] the second table [com
maintaining [a] the second table [comprising a plurality of prising a plurality of entries , wherein each of the plurality of
entries , wherein each of the plurality of entries of the second entries of the second table maps a virtual address to a
table maps a virtual address to a location in the data storage location in the data storage medium] using multi - level

shared tables . medium] using multi - level shared tables .
10. The method as recited in claim 8 , wherein the first 16. The non - transitory computer readable storage medium

table is organized as a plurality of time ordered levels , each 45 tions are further executable to organize the first table as a as recited in claim [14] 13 , wherein said program instruc
level comprising a plurality of entries .

11. The method as recited in claim 7 , wherein prior to plurality of time ordered levels , each level comprising a
copying the data from the location to the new location , the plurality of entries .
method further comprises deduplicating the data . 17. The non - transitory computer readable storage medium
12. The method as recited in claim 11 , further comprising 50 the location to the new location , the program instructions are as recited in claim 13 , wherein prior to copying the data from

copying the data from the location to the new location in
further response to determining the data has not yet been further executable to deduplicate the data .
copied to the new location .

a
30

a

35 a

40

a

