PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 17/30 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/56230

4 November 1999 (04.11.99)

(21) International Application Number: PCT/US99/09442

(22) International Filing Date: 29 April 1999 (29.04.99)

(30) Priority Data:
60/083,715 30 April 1998 (30.04.98) Us
09/203,925 2 December 1998 (02.12.98) usS

(71) Applicant: EC CUBED, INC. [US/US]; Suite 310, 15 River
Road, Wilton, CT 06897 (US).

(72) Inventors: REDDY, Sathish; 93 Richards Avenue #3810,
Norwalk, CT 06853 (US). RANGARAJAN, Shridhar; 970
Hope Street #2D, Stamford, CT 06907 (US). KAREDDY,
Vidyadhar; 93 Richards Avenue, Norwalk, CT 06854 (US).
HOQUE, Faisal; 96 Glenbrook Road #38, Stamford, CT
06902 (US).

(74) Agent: COHEN, Neil, G.; Cummings & Lockwood, Four
Stamford Plaza, Stamford, CT 06904 (US).

(81) Designated States: CN, IN, JP, RU, European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND SYSTEM FOR STORING METADATA IN A RELATIONAL DATABASE

(87) Abstract

Diclosed herein is a method and system for storing metadata
in a relational database, wherein the metadata describes data in a
flat file. As described in one aspect of the disclosure, the metadata
comprises (i) a header specification describing a general content of
the data stored in the flat file, (ii) a record specification describing
characteristics of a plurality of types of records contained in the
flat file, and (iii) a field specification describing characteristics of
fields of a record. The metadata also has a relation specification
associated therewith indicating a relation between the plurality of
types of records. The method includes creating a relational database
and creating data structures for storing data representing the header
specification, the record specification, the field specification, and
the relation specification in the relational database. The method
also includes storing data representing the header specification,
the record specification, the field specification, and the relation
specification in the data structures.

EDL R/
MAPPER SOFTWARE

204

4 METADATA [

(EDI_M)
SOFTHARE |
FLAT FILE |

METADATA
(7)) |
| 210 +— 140 l
I alo 134 I

FLAT FILE =
| () EDII:IEIEN |
| (EFD) |
| L = |
TRANSLATO 132 COMPUTER N

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Ccz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
iL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
UzZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

15

20

25

WO 99/56230 PCT/US99/09442

METHOD AND SYSTEM FOR STORING
METADATA IN A RELATIONAL DATABASE

CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to United States Provisional Application
Serial Number 60/083,715, filed on April 30, 1998, the disclosure of which is

incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates gencrally to data storage and more
specifically, to the storage of metadata in a relational database, which metadata
describes data stored in a flat file.

Enterprises use electronic commerce (e-commerce) to conduct business
transactions over electronic mediums. The electronic mediums include, for example,
computer networks (e.g., the Internet), telephones, and facsimile machines.

Enterprises usually exchange business documents when conducting
business transactions over a computer network. The business documents may include a
request for bid ("RFB"), request for quote ("RFQ"), purchase order ("PO"), shipping
information, and the like. The business documents are exchanged over the computer
network in an electronic form.

A "flat file" is a data repository that contains information in an
electronic form. There are several different types of flat files. A first type of flat file
is a "fixed-width" flat file, which contains records having fields that are of a fixed-
width. The records in a fixed-width flat file are referred to as "fixed-width records.”
Records in a fixed-width flat file share a common structure that is defined by the fields

of the records.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

A sccond type of flat file is a "delimited" flat file, which contains
records having fields whose widths may vary. The records in a delimited flat file are
referred to as "delimited records.” Delimited records use a field delimiter (e.g., a
predefined character) to separate the fields of a record. Records in delimited flat files
share a common structure that is defined by the fields of the records.

A third type of flat file is a "fixed-block” flat file, which contains two or
more different types of fixed-width records. Each type of fixed-width record is
referred to as a block. In a fixed-block flat file, each type of fixed-width record has its
own structure that is defined by the fields of that type of record. Fixed-block flat files
are the most common types of files used in e-commerce.

A fourth type of flat file is a "delimited-block" file, which contains two
or more different types of delimited records. Each type of delimited record is also
referred to as a block. In a delimited-block flat file, each type of delimited record has
its own structure that is defined by the fields of that type of record. Similar to
delimited flat files, a field delimiter is used to separate the fields of a record in a
delimited-block flat file.

A fifth type of flat file is known as a "general-block" flat file. A
general-block flat file contains both fixed-width and delimited records. The fixed-
width records may be of two or more different types (i.e., have different structures), as
may the delimited records. Thus, a general-blqck file is the most complex type of flat
file becausc it may store records normally contained in fixed-block and delimited-block
flat files. Records of a general-block flat file that have a common structure are
referred to as a block.

FIG. 1 illustrates six records 300(1)-300(6) contained in an exemplary
general-block flat file 300. While each record in a flat file typically appears on a single
line, it is not uncommon for two or more records to appear on the same line, as

illustrated by records 300(5) and 300(6). When two or more records appear on the

8]

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

Same line, a row delimiter (e.g., a predefined character such as a vertical bar 302) is
used to separate the records. Records 300(2)-300(4) are fixed-width records. Records
300(1), 300(5), 300(6) are delimited records having comma 305, semicolon 307, and
semicolon 309 ficld delimiters, respectively.

A flat file typically has a description associated with it that defines the
structure and content of the flat file. This description, which is known as metadata, is
necessary in order to be able to identify and parse the contents of the flat file. The
metadata for two or more flat files may differ depending on the structure and content of
the flat files. For example, the metadata of a purchase order document may differ from
the metadata of a RFQ or a RFB. Additionally, the metadata of the same type of
business document (e.g., two purchase orders) may differ between two enterprises that
use that type of business document. In this latter case, for a second enterprise to read
the purchases order of a first enterprise, the purchase order must be translated into a
form that the second enterprise can parse.

To illustrate, consider the e-commerce architecture illustrated in FIG. 2.
in which a first enterprise E1 desires to submit a purchase order to a second enterprise
E2. Enterprise E1 operates a computer 114 that is able to communicate with computer
network 130 over a communication channel 128. Computer 114 communicates with
Electronic Document Interchange ("EDI") translator/mapper software running on a
computer 106. Enterprise E2 operates a computer 134 that is able to communicate
with computer network 130 over a communication channel 132. Computer 134
communicates with EDI translator/mapper software running on a computer 140. The
computer network 130 may be a local area network ("LAN"), a wide area network
("WAN"), the Internet, an Intranet, or some other communications network that allows
enterprise E1 to communicate with enterprise E2.

Enterprise E1 maintains a flat file F1 that contains the purchase order

information. Flat file F1 is typically stored in a data repository. The purchase order

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 99/56230 PCT/US99/09442

information is stored in one particular format that is described by metadata M1. In this
prior art example, flat file F1 will be translated to an industry-standard document, such
as an EDI flat file EF1, which is described by EDI metadata EDI_M. Asis well
known, industry standards specify the metadata for different types of business
documents to establish a common ground for identifying and parsing these documents
by different enterprises. In the prior art, metadata M1 and EDI metadata EDI_M are
typically stored as flat files in a data repository 118, which causes a number of
problems as will be described below.

To perform the translation, EDI translator/mapper software running on
computer 106 accesses flat file F1, metadata M1, and EDI metadata EDI M. With
regard to the metadata, the software typically has a proprietary module that has been
programmed to access the metadata. The EDI translator/mapper software uses flat file
F1, metadata M1, and metadata EDI_M to translate flat file F1 into EDI flat file EF1
in a well-known manner. Computer 114 receives EDI flat file EF1 from computer 106
and transmits EDI flat file EF1, over computer network 130, to computer 134 residing
in enterprise E2. |

Enterprise E2 will store the purchase order as a flat file F2. The format
of flat file F2 differs from the format in which enterprise E1 maintains the purchase
order. In particular, the format in which enterprise E2 maintains the purchase order is
described by metadata M2, which differs from metadata M1. In order for enterprise
E2 to identify and parse the contents of the purchase order represented by flat file F1
(which was sent to enterprise E2 as EDI flat file EF1), enterprise E2 must transiate
EDI flat file EF1 into flat file F2.

To do so, enterprise E2 stores metadata M2 and metadata EDI_M as flat
files in data repository 146. Again, as will be described below, the storage of metadata
in flat files causes a number of problems in the prior art. EDI translator/mapper

software running on computer 140 accesses flat file EF1, metadata M2, and EDI

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 99/56230 PCT/US99/09442

metadata EDI_M. With regard to the metadata, the software typically has a proprietary
module that has been programmed to access the metadata. The EDI translator/mapper
software uses flat file EF1, metadata M2, and metadata EDI M to translate flat file

EF1 into flat file F2 in a well-known manner. The output of the EDI translator/mapper
software is flat file F2. Thus, the purchase order information represented by flat file
F2 is in a format that enterprise E2 can use.

The prior art techniques that store metadata in flat files suffer from
number of problems. In particular, the structure of the flat files used to store metadata
may be quite complex. Thus, special, non-standard, proprietary translator/mapper
software is required to access and use the metadata. In some circumstances, such as
when metadata is used to describe delimited-block and/or general-block files, such
software is not known to the inventors as having been developed.

Further, data repositories (e.g., 118 and 146) that store the metadata
may not be persistent. Thus, the time taken to access the information in the data
repositories may be long, which may hinder performance.

Still further, the data repositories that store the metadata are not always
secure. Therefore, the security of the information contained in these data repositories
may be severely compromised.

In view of the foregoing, what is needed is a method and system that
stores and permits quick and secure access to metadata that describes even the most

complex flat files.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

SUMMARY OF THE INVENTION

A first aspect of the present invention is directed to a method for storing
metadata in a relational database, wherein the metadata describes data in a flat file. The
metadata comprises (i) a header specification describing a general content of the data
stored in the flat file, (ii) a record specification describing characteristics of a plurality of
types of records contained in the flat file, and (iii) a field specification describing
characteristics of fields of a record. The metadata also has a relation specification
associated therewith indicating a relation between the plurality of types of records.

The method comprises creating a relational database and creating data
structures for storing data representing the header specification, the record specification,
the field specification, and the relation specification in the relational database. The
method also includes storing data representing the header specification, the record
specification, the field specification, and the relation specification in the data structures.

A second aspect of this invention relates to a method for storing metadata
in a relational database, wherein the metadata describes data in a flat file. The metadata
comprises (i) a header specification describing a general content of the data stored in the
flat file, (i) a record specification describing characteristics of a plurality of types of
records contained in the flat file, and (iii) a field specification describing characteristics of
fields of a record. The metadata has a relation specification associated therewith
indicating a relation between the plurality of types of records.

The method includes creating a first data structure for storing data
representing the header specification and storing the data representing the header
specification in the first data structure. The method also includes creating a second data
structure for storing data representing the record specification and storing the data
representing the record specification in the second data structuré:. The method further
includes creating a third data structure for storing data representing the field specification

and storing the data representing the field specification in the third data structure. Still

SUBSTITUTE SHEET (RULE 26)

10

20

25

WO 99/56230

PCT/US99/09442

further, the method includes creating a fourth data structure for storing data representing
the relation specification and storing the data representing the relation specification in the
fourth data structure.

A third aspect of the present invention is directed to a method for storing
metadata in a relational database, wherein the metadata describes data in a flat file. The
metadata includes (i) a header specification describing a general content of the data stored
in the flat file, (ii) a record specification describing characteristics of a plurality of types
of records contained in the flat file, and (iii) a field specification describing characteristics
of fields of a record. The metadata has a relation specification associated therewith
indicating a relation between the plurality of types of records, and the relational database
has a database enginc associated therewith.

The method includes obtaining data representing the header specification,
constructing a first database query relating to the data representing the header
specification, and passing the first database query to the database engine for execution so
that the header specification can be stored in the relational database. The method also
includes obtaining data representing the record specification, constructing a second
database query relating to the data representing the record specification, and passing the
second database query to the database engine for exccution so that the record
specification can be stored in the relational database. The method further includes
obtaining data representing the field specification, constructing a third database query
relating to the data representing the field specification, and passing the third database
query to the databasc engine for execution so that the field specification can be stored in
the relational database. Still further, the method includes obtaining data representing the
relation specification, constructing a fourth database query relating to the data
representing the relation specification, and passing the fourth database query to the
database engine for execution so that the relation specification can be stored in the

relational database.

SUBSTITUTE SHEET (RULE 26)

20

WO 99/56230 PCT/US99/09442

A fourth aspect of the present invention pertains to a method for
translating a first file containing data in a first format into a second file containing data in
a second format, wherein the first format differs from the second format. The method
includes populating a relational database with metadata relating to the first file. The
method also includes using translating software to access the data in the first file and the
metadata in the relational database and translate the first file into the second file using the
metadata and the data in the first file.

A fifth aspect of this invention is directed to a system for storing metadata
in a relational database, wherein the metadata describes data in a flat file. The metadata
comprises (i) a header specification describing a general content of the data stored in the
flat file, (ii) a record specification describing characteristics of a plurality of types of
records contained in the flat file, and (iii) a field specification describing characteristics of
fields of arecord. The metadata has a relation specification associated therewith
indicating a relation between the plurality of types of records.

The system includes a relational database and a processor in
communication with the relational database. The processor is programmed to create data
structures for storing data representing the header specification, the record specification,
the field specification, and the relation specification in the relational database. The
processor is also programmed to store data representing the header specification, the
record speciﬁca"tion, the field specification, and. the relation specification in the data

structures.

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 ; PCT/US99/09442

BRIEF DESCRIPTION OF THE FIGURES

Representative embodiments of the present invention will be described
with reference to the following figures:
FIG. 1 illustrates an exemplary general-block flat file.
5 FIG. 2 is a block diagram illustrating a prior art e-commerce
architecture.
FIG. 3 is a block diagram illustrating an e-commerce architecture in which
the present invention may be used.
FIG. 4 illustrates metadata that describes the structure and content of the
10 general-block flat file shown in FIG. 1.
FIG. 5 illustrates a relational database for storing the metadata illustrated
in FIG. 4 and relation specifications.
FIG. 5A is a flowchart illustrating a process for creating data structures for
storing metadata and relation specifications.
15 FIG. 6 is a flowchart illustrating a process for processing and storing
metadata in a relational database.
FIG. 7 is a flowchart illustrating a process for processing and storing a
header specification in a relational database.
FIG. 8 is a flowchart illustrating a process for processing and storing a
20 record specification in a relational database.
FIG. 9 is a flowchart illustrating a process for processing and storing a
field specification in a relational database
FIG. 10 1s a flowchart illustrating a process for processing and storing a

relation specification in a relational database.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

DETAILED DESCRIPTION OF
THE PREFERRED EMBODIMENTS

Reference is now made to the accompanying Figures for the purpose of
describing, in detail, the preferred embodiments of the present invention. The Figures
and accompanying detailed description are provided as examples of the invention and are
not intended to limit the scope of the claims appended hereto.

The present invention, as defined by the claims, provides a novel and
unique method and system for storing metadata in, and using metadata from, a relational
database, which metadata describes data stored in a flat file. In so doing, the method and
system permits standard database software to be used to securely and quickly access
metadata that describes even the most complex flat files.

Referring now to the figures wherein like reference numerals identify
similar elements, FIG. 3 is a block diagram illustrating an e-commerce architecture in
which the present invention may be used. In particular, a first enterprise E1 may transfer
flat file business documents to an enterprise E2. Enterprise E1 operates a computer 114
that is in communication with a computer network 130 over a communication channel
128. Computer 114 communicates with translator/mapper software running on a
computer 106 having one or more processors as is well known. Enterprise E2 operates a
computer 134 that is in communication with computer network 130 over a
communication channel 132. Computer 134 communicates with translator/mapper
software running on a computer 140 having one or more processors as is well known.

In one embodiment, the translator/mapper software running on computers
106 and/or 140 is well-known Electronic Document Interchange ("EDI")
translator/mapper software such as IBM Corp.'s (Armonk, NY) "Data Inicrchange/MVS"
and/or "Data Interchange/MVS-CICS" software. Of course, other translator/mapper
software may be chosen as desired to suit particular file formats used by enterprises El

and E2.

10

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

While the particular type of computer network 130 is not important to the
present invention, according to one embodiment, computer network 130 is the Internet.
However, computer network 130 may be a local area network ("LAN"), a wide area
network ("WAN"), an lnlrzmcf, or some other communications nctwork that allows
enterprise EI to communicate with enterprise E2. Communication channels 128 and 132
may be wired or wireless.

Enterprise E1 maintains a flat file F1, which is to be transferred to
enterprise E2 for processing. In one embodiment, flat file F1 represents a purchase order
business document indicating goods and/or services that enterprise E1 desires to purchase
from enterprise E2. In alternate embodiments, flat file F1 may represent any other
document or business document to be used by enterprise E2 for any purpose.

Enterprise E1 stores flat file F1 in a data repository. The purchase order
represented by flat file F1 is stored in one particular format that is described by metadata
MI.

Enterprise E2 will maintain the purchase order as a flat file F2, but in a
format that differs from the format in which enterprise E1 maintains the purchase order.
The format in which enterprise E2 maintains the purchase order is described by metadata
M2, which differs from mectadata M1. In an alternative embodiment, metadata M1 and
M2 may be similar.

In order for enterprise E2 to identify and parse the contents of the purchase
order represented by flat file F1, flat file F1 is translated into flat file F2. The translation
process uses an intermediate file format, which, in the present embodiment, is an
Electronic Data Interchange (“EDI”) format. Of course, other intermediate file formats
may be uscd as desired. Thus, flat file F1 will be translated into an EDI flat file EF1,
which will be sent to enterprise E2 over computer network 130. Enterprise E2 will

translate EDT flat file EF1 into flat file F2, which enterprise E2 can parse.

11

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

The metadata that describes EDI flat file EF1 is described by EDI
metadata EDI_M, which is maintained by enterprises E1 and E2. Enterprise El stores
metadata M1 and EDI metadata EDI_M in a relational database 500. Similarly,
enterprise E2 stores metadata M2 and EDI metadata EDI_M in a relational database 210.
The storage of metadata is facilitated by computer software 204 as will be explained in
more detail below.

The translation of flat file F1 into EDI flat file EF1 is performed by
translator/mapper software running on computer 106, which accesses flat file F1,
metadata M1, and EDI metadata EDI_M. Unlike the prior art, the metadata can be
accessed from relational database 500 using standard database queries. The
translator/mapper software uses flat file F1, metadata M1, and metadata EDI_M to
translate flat file F1 into EDI flat file EF1 in a well-known manner. Computer 114
receives EDI flat file EF1 from computer 106 and transmits EDI flat file EF1, over the
computer network 130, to computer 134 residing in enterprise E2.

The translator/mapper software running on computer 140 receives EDI flat
file EF1 from computer 134. This software accesses metadata M2 and EDI metadata
EDI_M from relational database 210. Because the metadata is stored in relational
database 210, it may be accessed using standard database queries. The translator/mapper
software uses flat file EF1, metadata M2, and metadata EDI_M to translate flat file EF1
into flat file F2 in a well-known manner. The output of the translator/mapper software is
flat file F2. Thus, the purchase order represented by flat file F2, which corresponds to the
purchasc order represented by flat file F1, is in a format that enterprisc E2 can parse and
use.

FIG. 4 illustrates metadata that describes the structure and content of a flat
file. In this example, the metadata of FIG. 4 describes the general-block flat file 300
(FIG. 1). Of course, metadata can be used to describe other flat files. General block flat

file 300 may be considered as all or part of a purchase order requested by that file F1.
12

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

The metadata compriscs a header specification 400 and block specifications 405, 410, and
415.

Header specification 400 describes the general content of a flat file, here,
flat file 300. As shown in row R1, header specification 400 includes a HeaderName and
a Description. In this example, the HeaderName is "CompanyInformation" and the
description is “Company, Products, and Owner Information” as shown in row R2. Thus,
header specification 400 indicatcs that the flat file contains information pertaining to
companies, products that the companies manufacture, and the owner(s) of the companies.

A block specification is maintained for each type of record that is
contained in a flat file. In the example shown in FIG. 4, block spccifications 405, 410,
and 415 each represent one of three differcnt types of records in a flat file -- that is, block
specifications 405, 410, and 415 represent a first type of delimited record, a first type of
fixed-width record, and a second type of delimited record, respectively.

Each block specification comprises a record specification and a field
specification. In this exemplary embodiment, block specifications 405, 410, and 415
comprise record/field specifications 405A/405B, 410A/410B, and 415A/415B,
respectively.

A record specification describes the characteristics of a record. In the
present embodiment, record specifications 405A, 410A, and 415A describe the
characteristics of records represented by block speciﬁcalions 405, 410, and 415.

In this example, each record specification 405A, 410A, and 410B includes
a RecordName, Type, FicldDelimiter, and RowDelimiter as shown in rows R3, R13, and
R21, respectively. The RecordNames of record specifications 405A, 410A, and 415A
contain the "Company" (R4), “Product” (R14), and “Owner” (R22), respectively. This
indicates that the “Company” record type contains information pertaining to a given

company, the “Product” record type contains information pertaining to a given product of

13

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

the Company, and the “Owner” record type contains information pertaining to a given
owner of the company.

The Type of a record specification indicates a type of record represented
by the record specification. Each Type is unique and need not be present when the flat
file described by the metadata is a fixed-width or delimited flat file because they contain
only one type of record. In the example shown in FIG. 4, record specifications 405A,
410A, and 415A contain the Types “0100” (R4), “0200” (R14), and “0300” (R22),
respectively.

The FieldDelimiter of a record specification represents a character that
separates two consecutive fields in the record. In fixed-width records, this character need
not be present. In this example, records specifications 405A and 415A have a comma ","
and a semicolon ;" as respective field delimiters as indicated in rows R4 and R22. Row
R14 of record specification 410A does not have a field delimiter because it is a fixed-
width record.

The RowDelimiter of a record specification represents the character that
separates two records that have the samé record specification. In this example,
“NEWLINE” is a RowDelimiter for record specifications 405A and 410A as indicated in
rows R4 and R 14, respectively. “NEWLINE” is used to indicate that any two
consecutive records, which have the same record specification, appear on two consecutive
lines in the file. A vertical bar "|" (R22) is shown as the exemplary RowDelimiter for
record specification 415A.

A ficld specification describes the characteristics of the fields of a record.
In this embodiment, ficld specifications 405B, 410B, 415B describe the characteristics of
the ficlds of records described by record specifications 405A, 410A, and 4154,
respectively. Each field specification 405B, 410B, and 415B includes a FieldName,

DataType, Size, Position, Offset, and Null indicator as shown in rows R5, R15, and R23,

respectively.

14

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 99/56230 PCT/US99/09442

FieldName identifies the name of a field. DataType indicates the type of
data that can be stored in the field. For example, DataTypes "A," "N," "AN," and "DT"
indicate that alpha, numeric, alphanumeric, and date values can be stored in the field,
respectively. Size indicates the maximum size of a value that may be contained in the
field. Position indicates a logical position of the field in a record. Offset indicates that
the value contained in the ficld begins in a certain column in the record (that is, the
physical position in the record from where the value of a field begins). Null indicates
whether or not the value of the field can be null.

As stated above, the storage of metadata in a relational database is
facilitated by computer software 204, which controls one or more processor(s) of an
appropriate computer in order to execute processes described herein. This is now

described in more detail.

FIG. 5A illustrates a process for creating data structures in a relational
database, which data structures will be used to store one or more header specifications,
record specifications, field specifications, and relation specifications. As is well-known,
a relation specification indicates a relation between two or more types of records. In one
embodiment, a relation specification indicates a relation between two fields across two
different record types in a flat file. As is well-known, the relation specification typically
does not appear explicitly as part of the metadata, but may appear as input from a user.

At step 550, software 204 creates.a relational database 500 (FIG. 5) in a
Relational Database Management System (RDBMS). Any RDBMS software can be used
as desired. This step 550 is executed in a well-known manner.

At step 552, software 204 creates a table 505 (FIG. 5) to store data
representing header specification 400. In this embodiment, the columns in table 505 are
the HeaderID, HeaderName, and Description. The HeaderID is the primary key column
that identifies each row in table 505 uniquely. The manner in which the value contained

in the HeaderID column is generated is specific to the RDBMS. The HeaderName and

15

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

Description columns of table 505 will store the HeaderName and Description contained
in row R2 of header specification 400, respectively.

At step 554, software 204 creates a table 510 (FIG. 5) to store data
representing record specifications. In this embodiment, a row is created for each record
specification, here, 405A, 410A, 415A. The columns of table 510 include the RecordID,
HeaderID, RecordName, Type, FieldDelimiter, and RowDelimiter. The RecordID is the
primary key column that identifies each row in the table uniquely. The manner in which
the value contained in the RecordID column is generated is specific to the RDBMS.

The HeaderID is the foreign key column that links table 510 to its parent
table 505. This link establishes a relation between record specifications 405A, 410A, and
415A and header specification 400. The value contained in this column must be present
in the HeaderID column of parent table 505. The RecordName, Type, FieldDelimiter and
RowDelimiter columns of rows in table 510 having RecordIDs 1/2/3 will store the
RecordName, Type, FicldDelimiter and RowDelimiter contained in rows R4/R14/R22 of
record specifications 405A/410A/415A, respectively.

Software 204 creates a table 515 (FIG.) to store ficld specifications at
step 556. In this embodiment, a row is created in table 515 for each field specification
405B, 410B, 415B. The columns of table 515 include FieldID, RecordID, FieldName,
DataType, Size, Position, Offset, and Null.

The FieldID is the primary key column that identifies each row in the table
uniquely. The manner in which the value contained in this column is generated is
specific to the type of the RDBMS. The RecordID is the forcign key column that links
this table 515 to its parent table 510. This link establishes a relation between field
specifications 4058, 4108, 4158 and its corresponding record specification 405A, 410A,
415A. The value contained in this column must be present in the Recordld column of

parent table 510.

16

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 99/56230 PCT/US99/09442

The FicldName, DataType, Size, Position, Offset, and Null columns of
rows in table 515 having FieldIDs 1-16 will store the FieldName, DataType, Size,
Position, Offset, and Null values contained in rows R6-R12/R16-R20/R24-27 of field
specifications 405B/410B/415B, respectively. The "VARCHAR," "DATE," and
"NUMERIC" data represents alphanumeric, numeric, and date data types in table 515.
The values may vary depending on the RDBMS.

At step 558, software 204 creates table 520 to store a relation
specification. The columns in table 520 include a RelationID, ParentColumnld, and
ChildColumnID. The RelationID is the primary key column that identifies each row in
table 520 uniquely. The manner in which the value contained in this column is generated
is specific to the type of the RDBMS.

The ParentColumnlD is the foreign key column that indicates the parent
field in a relation specification. For example, the row in table 520 having RelationlID 1
indicates that the Recldentifier (FieldID 1 in table 515) is the parent column. This
Recldentifier ficld belongs to the “Company” record specification as indicated by
RecordID 1 in table 510. The value contained in the ParentColumnID column must be
present in the parent table 515.

The ChildColumnID is the foreign key column that indicates the child
field in a relation specification. For example, the row in table 520 having RelationID 1
indicates that the Recldentifier field (FieldID 8.in table 515) is the child column. This
Recldentifier field belongs to the Product record specification (RecordID 2 in table 510).
The value contained in the ChildColumnID column must be present in the parent table
518.

The relation just described indicates that a single parent record (e.g., type
“0100” of row R4 of FIG. 4) could have one or more child records of a different type

(e.g.,*“0200” of row R14 of FIG. 4). This is similar to a primary-foreign key relation in a

17

SUBSTITUTE SHEET (RULE 26)

10

20

25

WO 99/56230 PCT/US99/09442

relational database. Therefore, record type “0100” (R4) shares a one-to-many relation
with record type “0200” (R14).

The data representing the header specification, the record specifications,
the field specifications, and the relation specification is stored in the data structures. The
flowchart of FIG. 6 illustrates a preferred method, which begins at step 600.

At step 605, header specification 400 is input from a user to software 204.
At step 610, software 204 processes and stores header specification 400 in table 505. The
flowchart in FIG. 7, which begins at step 700, illustrates step 610 in more detail.

Atstep 710, software 204 constructs a program data-structure containing
the dates shown in row R2 of header specification 400 (FIG. 4). Atstep 715, software
204 stores row R2 of header specification in the program data-structure created at step
710. At step 720, software 204 constructs a Structured Query Language (SQL) query to
insert the data contained in the program data-structure into a row in table 505. At step
725, software 204 passes the SQL query to a database engine, which is part of the
RDBMS. Atstep 730, the databasc engine executes the SQL query and inserts the data
contained in the program data-structure into an appropriate row in table 505.

Referring again to FIG. 6, processing proceeds to step 615 where software
204 may check whether all record specifications 40SA, 4104, 415A for the current
header specification 400 have been stored in relational database 500. If all such record
specifications have been stored, then processing continues at step 645.

If there are record specifications to store, then the next row R4/R14/R22 of
record specification 405A/410A/415A arc input from a user to software 204 at step 620.
At step 625, the next record specification is stored in relational database 500.

The flowchart of FIG. 8 illustrates step 625 in detail. Atstep 810,
software 204 constructs a program data-structure containing current record specification
405A/410A/415A. Atstep 815, software 204 stores the current record specification

405A/410A/415A in the program data-structure created at step 810. At step 820,
18

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 99/56230 PCT/US99/09442

soflwdrc 204 constructs a Structured Query Language (SQL) query to insert the data
contained in the program data-structure into a row in table S10. At step 825, software
204 passes the SQL query to the database engine for execution. At step 830, the database
cngine exccutes the SQL query and inserts the data contained in the current program data-
structurc into an appropriate row in table 510.

Referring again to FIG. 6, at step 630, software 204 may check whether all
field specifications for the current record specification have been stored in table 515 1If
all ficld specifications for the current record specification have been stored in table 515,
then processing returns to step 615 where the next record specification is processed.

If all field specifications for the current record specification have not been
stored in table 515, then the next field specification (i.c., R6-R12/R16-R20/R24-R27 of
record specifications 405B/410B/415B) is input from the user to software 204 at step
635. At step 640, software 204 processes and stores the current field specification in
table 515. The flowchart in FIG. 9 illustrates this process in more detail.

At step 910, software 204 constructs a program data-structure containing
current field specification 405B/410B/415B. At step 915, software 204 stores the current
field specification the program data-structure created at step 910. At step 920, software
204 constructs a Structured Query Language (SQL) query to insert the data contained in
the program data-structure into a row in table 515. At step 925, software 204 passes the
SQL query to the databasc engine for execution. At step 930, the database engine
executes the SQL query and inserts the data contained in the program data structure into
an appropriate row in table 515.

At step 645, software 204 may check whether all of the relation
specifications for the current header specification 400 have been stored in table 520. If
all of the relation specifications for the current header specification 400 have been stored

in table 520, then processing is done at step 660. At that point, metadata for the flat file

19

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/56230 PCT/US99/09442

has been stored in the relational database 500. It is noted that the metadata for other flat
files can be stored in a relational database in a similar manner.

If all of the relation specifications for the current header specification 400
have not been stored in table 520, then processing continues at step 655 where software
204 processes and stores the relation specification in table 520. The flowchart of FIG. 10
illustrates the method in more detail. At step 1010, software 204 constructs a program
data-structure containing the relation specification, which includes a Relationld,
ParentColumnlID, and the ChildColumnID. The values of these columns may be obtained
from the FieldID column in table 515 and input by a user to the software 204 at step 650.

Atstep 1015, software 204 stores the ParentColumnID and the
ChildColumnID in the program data-structure created at step 1010. At step 1020,
software 204 constructs a Structured Query Language SQL query to insert the data
contained in the program data-structure as a row in table 520. At step 1025, software 204
passes the SQL query to the database engine for exccution. At step 1030, the database
engine executes the SQL query and inserts the data contained in the program data
structure into an appropriate row in table 520. Processing returns to step 645 and may
end at step 660. The metadata and relation specification stored in relational database 500
may then be used by translator/mapper software as described above.

While the foregoing described the storage of the metadata of FIG. 4 in
relational database 500, it should be appreciated. that the processes of FIGS. 5A-10 can be
used to store any metadata in an appropriate relational database.

It is noted that while the foregoing description has referred to specific
individual databases, formats, structures, records, and fields, those skilled in the art will
readily appreciate that various modifications and substitutions may be made thereto
without departing from the spirit and scope of the present invention.

In view of the foregoing, it is apparent that the present invention offers

advantages over the prior art. In particular, with the present invention, the metadata is

20

SUBSTITUTE SHEET (RULE 26)

10

WO 99/56230 PCT/US99/09442

stored in a standard format in relational databases. Therefore, the metadata may be
accessed using industry-standard, non-proprietary database queries such as those offered
in Structured Query Language (SQL). Moreover, relational databases have a standard
security protocol built into the system, which ensures that the metadata remains secure.

Still further, existing software tools enable storage of metadata in a
variety of data repositories, although not in relational databases. Further, they mostly
cater to only fixed-width and delimited files. While a small number cater to fixed-block
files, such tools do not handle metadata that describe very generic types of flat files such
as delimited-block files or general-block files. From that respect, the present invention is
highly generic and therefore powerful because it is not restricted to storing metadata for
any one single type of a flat file just described. It facilitates the storage of metadata that
describe very general and complex files containing two or more different types of records
that may be fixed-width, delimited, or both.

Although the particular embodiments shown and described above are
useful in many applications relating to the arts to which the present invention pertains,
further modifications of the present invéntion herein disclosed will occur to persons
skilled in the art. All such modifications are deemed to be within the scope and spirit of

the present invention.

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 PCT/US99/09442

What is claimed is:

1. A method for storing metadata in a relational database, wherein the metadata
describes data in a flat file, wherein the metadata comprises (i) a header specification
describing a general content of the data stored in the flat file, (ii) a record specification
describing characteristics of a plurality of types of records contained in the flat file, and
(i11) a field specification describing characteristics of fields of a record, wherein the
metadata has a relation specification associated therewith indicating a relation between
the plurality of types of records, and wherein the method comprises:

(a) creating a relational database;

(b) creating data structures for storing data representing the header
specification, the record specification, the field specification, and the
relation specification in the relational database; and

(c) storing data representing the header specification, the record specification,

the field specification, and the relation specification in the data structures.

2. The method of Claim 1, wherein the step of creating the data structures comprises:
(a) creating a first table for storing the header specification;
(b) creating a second table for storing the record specification;
(c) creating a third table for storing the field specification; and

(d) creating a fourth table for storing the relation specification.

3. The method of Claim 1, wherein the step of storing data comprises:
(a) storing data representing the header specification in a first table;
(b) storing data representing the record specification in a second table;
(c) storing data representing the field specification in a third table;

(d) storing data representing the relation specification in a fourth table.

22

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 PCT/US99/09442

4. The method of Claim 1, further comprising the step of providing data indicating
structures of the header specification, the record specification, the field specification, and
the relation specification to database software, and wherein the step of creating the data
structures comprises causing the database software to create the data structures based on

the provided data indicating the structures.

5. The method of Claim 4, wherein the step of providing comprises providing data
indicating the record specification that describes characteristics of fixed-width and

delimited records stored in the flat file.

6. The method of Claim 4, wherein the step of providing comprises providing data
indicating the record specification that describes characteristics of fixed-width records

stored in the flat file.

7. The method of Claim 4, wherein the step of providing comprises providing data
indicating the record specification that describes characteristics of delimited records

stored in the flat file.

23

SUBSTITUTE SHEET (RULE 26)

[2]

10
11
12
13
14
15
16
17
18
19
20
21
22
23

WO 99/56230

PCT/US99/09442

8. A method for storing metadata in a relational database, wherein the metadata

describes data in a flat file, wherein the metadata comprises (i) a header specification

describing a general content of the data stored in the flat file, (ii) a record specification

describing characteristics of a plurality of types of records contained in the flat file, and

(1ii) a field specification describing characteristics of fields of a record, wherein the

metadata has a relation specification associated therewith indicating a relation between

the plurality of types of records, and wherein the method comprises:

(a)

(b)

(0

(g)

(h)

creating a first data structure for storing data representing the header
specification;

storing the data representing the header specification in the first data
structure;

creating a second data structure for storing data representing the record
specification;

storing the data representing the record specification in the second data
structure;

creating a third data structure for storing data representing the field
specification;

storing the data representing the field specification in the third data

structure;

creating a fourth data structure for storing data representing the relation
specification; and

storing the data representing the relation specification in the fourth data

structure.

24

SUBSTITUTE SHEET (RULE 26)

W

WA

o8]

WO 99/56230 PCT/US99/09442

9. The method of Claim 8, further comprising the step of providing data indicating
structures of the header specification, the record specification, the field specification, and
the relation specification to database software, and wherein the steps of creating the first,
secpnd, third, and fourth data structures comprises causing the database software to create
the first, second, third, and fourth data structures based on the data indicating the

structures.

10. The method of Claim 9, wherein the step of creating the sccond data structure
comprises creating a data structure for storing data representing fixed-width and

delimited records stored in the flat file.

11. The method of Claim 9, wherein the step of creating the second data structure
compriscs creating a data structure for storing data representing fixed-width records

stored in the flat file.

12. The method of Claim 9, wherein'the step of creating the second data structure
comprises creating a data structure for storing data representing delimited records stored

in the flat file.

25

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

PCT/US99/09442

13. A method for storing metadata in a relational database, wherein the metadata

describes data in a flat file, wherein the metadata comprises (i) a header specification

describing a general content of the data stored in the flat file, (ii) a record specification

describing characteristics of a plurality of types of records contained in the flat file, and

(i11) a field specification describing characteristics of fields of a record, wherein the

metadata has a relation specification associated therewith indicating a relation between

the plurality of types of records, wherein the relational database has a database engine

associated therewith, and wherein the method comprises:

(a)
(b)

(c)

(d)
(e)

®

(®
(h)

©)
(k)

M

obtaining data representing the header specification;

constructing a first database query relating to the data representing the
header specification;

passing the first database query to the database engine for execution so
that the header specification can be stored in the relational database;
obtaining data representing the record specification;

constructing a second database query relating to the data representing the
record specification;

passing the second database query to the database engine for execution so
that the record specification can be stored in the relational database;
obtaining data representing the field specification;

constructing a third database query relating to the data representing the
field specification;

passing the third database query to the database engine for execution so
that the field specification can be stored in the relational database;
obtaining data representing the relation specification;

constructing a fourth database query relating to the data representing the
relation specification; and

passing the forth database query to the database engine for execution so

that the relation specification can be stored in the relational database.

26
SUBSTITUTE SHEET (RULE 26)

O 0 3 O v A

WO 99/56230 PCT/US99/09442

14. The method of Claim 13, wherein steps (b), (e), (h), and (k) comprise constructing

a SQL query.

I15. A method for translating a first file containing data in a {irst format into a second
file containing data in a second format, wherein the first format differs from the sccond
format, and wherein the method comprises:
(a) populating a relational database with metadata relating to the first file; and
(b) using translating software,
(1) accessing the data in the first file and the metadata in the relational
database; and
(i) translating the first file into the second file using the metadata and

the data in the first file.

16. The method of Claim 15, wherein the step of translating comprises translating the

first file into the second file having an electronic document interchange format.

27

SUBSTITUTE SHEET (RULE 26)

10
11
12
13
14
15
16

WO 99/56230

PCT/US99/09442

7. A system for storing metadata in a relational database, wherein the metadata

describes data in a flat file, wherein the metadata comprises (i) a header specification

describing a general content of the data stored in the flat file, (ii) a record specification

describing characteristics of a plurality of types of records contained in the flat file, and

(i11) a field specification describing characteristics of fields of a record, wherein the

metadata has a relation specification associated therewith indicating a relation between

the plurality of types of records, and wherein the system comprises:

@)

(b)

a relational database; and

a processor in communication with the relational database, wherein the

processor is programmed to

(1) create data structures for storing data representing the header
specification, the record specification, the field specification, and
the relation specification in the relational database; and

(i) store data representing the header specification, the record
specification, the field specification, and the relation specification

in the data structures.

18. The system of Claim 17, wherein the processor is programmed to

(a)
(b)
(©)
(d)

create a first table for storing the header specification;
create a second table for storing. the record specification;
create a third table for storing the field specification; and

create a fourth table for storing the relation specification.

28

SUBSTITUTE SHEET (RULE 26)

(S)

o

[§S]

(9%]

WO 99/56230 PCT/US99/09442

19. The system of Claim 17, wherein the processor is programmed to
(a) store data representing the header specification in a first table;
(b) store data representing the record specification in a second table;
(c) store data representing the field specification in a third table;

(d) store data representing the relation specification in a fourth table.

20. The system of Claim 17, wherein the processor is further programmed to

provide data indicating structures of the header specification, the record specification, the
field specification, and the relation specification to database software, and wherein the
processor is programmed-to cause the database software to create the data structures

based on the data indicating the structures.

21. The system of Claim 17, wherein the data indicating the structures of the record
specification comprises data indicating characteristics of fixed-width and delimited

records stored in the flat file.

22. The system of Claim 17, wherein the data indicating the structures of the record

specification comprises data indicating characteristics of fixed-width records stored in the

flat file.

23. The system of Claim 17, wherein the data indicating the structures of the record
specification comprises data indicating characteristics of delimited records stored in the

flat file.

29

SUBSTITUTE SHEET (RULE 26)

PCT/US99/09442

WO 99/56230

1/ 11

(@002
.J

14V YOTYd

I 5/

L0s

|

A

r

J
4

00008 fShBET/CT/B0 ¢ YINMO JWOS (00$0[00009 f9S6T/ZT/ZT ‘T ¥INMO FWOS 7000 —=(9)00¢

06 8T 60¢ ALTVID 1408 ¥3dNnS ¥ISWYI0020 —= (1)00S
00 010 Qv31 YoV TIN3J00Z0 = (£)00¢
00 082 N3d NI 3N N3J00Z0 |—= (2)00¢

GheZT “SV “ALID ANV “ILINS ANV “13IS INV ¢ZT “ANVAWOD AYWNOILVLS um<_ ‘0010 —= (T)00¢

00

0

|

S0

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 2 /11 PCT/US99/09442

Ve A
PRIOR ART
[ENTERPRISE (E2) i — -
— Y METADATA
DATA (EDI_M)
REPOSITORY
THAT STORES
M2 AND FLAT FILE
EDIM = METADATA
(M2)
‘ —+— 140
ojo —134
| | FLAT FILE EDI FLAT ‘
(F2) FILE -
| BT i
e RS
EDI TRANSLATOR/ 137 COMPUTER
MAPPER SOFTWARE |

130

[ENTERPRISE (EL)

FLAT FILE EDI FLAT -:
(FD) olo FILE
— ™ — (EF) [
S

e Al
COMPUTER
118 ED] TRANSLATOR/
MAPPER SOFTWARE EDI
[s
REPOSITORY -
THAT STORES
M1 AND FLAT FILE
EDI M == METADATA
l_ O (ML)

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 3711 PCT/US99/09442

[~ =
[ENTERPRISE (E2) , N
— i EDT
~—— i - METADATA
RTD*?AMTS (EDI_M)
~—{ | SOFTWARE
STORES 12 FLAT FILE
ES?DM o METADATA
~— = (M)
210 +—140
= o= /-BL&
FLAT FILE EDL_FLAT =
(F2) FILE =
(EFL) ‘|IIIIIIII
7 M ———
EDI TRANSLATOR/ 132 COMPUTER
B MAPPER SOFTWARE |
50 NETWORK
[ENTERPRISE (E1) 18 -
FLAT FILE EDL FLAT %
(F1) olo FILE
(EFl) IS
7 B]l —
] COMPUTER
EDI_TRANSLATOR/
' MAPPER SO TWARE EDI
RDBMS o METADATA
THAT (EDI_M)
STORES M1f=e——o | SOFTWARE
AND FLAT FILF
s METADATA
N0 (ML)

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 PCT/US99/09442

[5G
HEADER SPECIFICATION - 400
RL HEADERNAME DESCRIPTION |
RZ COMPANYINFORMATION ~ COMPANY, PRODUCTS, AND OWNER INFORMATION ——
BLOCK SPECIFICATION - 405
RECORD SPECIFICATION - 4OSA
RS RECORDNAME ~ TYPE FIELDELIMITER ROWDELIMITER |
R4 COMPANY Q100" 7, NEWLINE i
FIELD SPECIFICATION-405B
RS FIELDNAME _ DATATYPE SIZE POSITION OFFSET NULL —H
R6 RECLDENTIFIER AN b1 VA N —
R7 NAME AN 30 2 NA N
R8 ADDRESS 1 AN %5 3 NA Y
RO ADDRESS 2 AN %5 4 NA Y
RIO CITY A 5 5 VA Y
RI1 STATE A 27 6 NA Y
R12 ZIP N 5 7 VA Y

BLOCK SPECIFICATION - 410
RECORD SPECIFICATION - 410A
R13 RECORDNAME TYPE FIELDELIMITER ROWDELIMITER

R14 COMPANY "0200" NEWLINE
FIELD SPECIFICATION-410B
R15 FIELDNAME DATATYPE SIZE POSITION OFFSET NULL
R16 RECLDENTIFIER AN 4 1 1 N
R17 NAME AN 20 2 5 N
R18 DESCRIPTION AN 0 3 25 Y
R19 PRICE N 10 4§ 75 Y
R20 DISCOUNT N 6 5 85 Y
BLOCK SPECIFICATION - 415
RECORD SPECIFICATION - 415A
R21 RECORDNAME TYPE ~ FIELDELIMITER ROWDELIMITER
R22 OWNER " 03m] ny 1] I "
FIELD SPECIFICATION-415B
RZ3 FIELDNAME DATATYPE SIZE POSITION OFFSET NULL
R24 RECLDENTIFIER AN 4 1 N/A N
R25 NAME A 20 2 N/A N
R26 DATEOFBIRTH DT 15 3 N/A Y

b N/A Y

R27 CURRENTASSETS N 15

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

PCT/US99/09442

5711

¢l 1 /4 -
3 T 1 5 2/—/
QINWNIOJAIIHD | QINWNIO0JINTYYd QINOILV I3
025 - NOILVJI4IJ3dS NOILVId
A f 1! JTYIWNN | SLISSVINFHAND ¢ 91
A ¢ Q1 41vd HIY194031v0d ¢ Sl
N 4 0l UVHOUVA JWWN ¢ yl!
N ! h YYHOUVA | H3TJIIN3ATI3Y ¢ ¢l
A a8 S 9 JTHIWNN INNOJSIa /4 1
A o/ h 0t JTYIWNN 30Tdd V4 TI
A T4 ¢ 0s YYHIUVA NOIL1dT¥ISAd ¢)1
N S 4 4 YVHIUVA JWIN - Z 6
N T T f1 YYHOUVA | YIIJIINIATIORN I 8
A L S dYHIOUVA dIZ 1 L
A 9 ¢ YYHIUVA 1V1S ! 9
A S ST HVYHIUVA ALID ! S
A h =4 YVHIUVA ZSSAaV ! f
A ¢ 74 HVHIUVA TSSRAAv ! ¢
N /4 0¢ HVHIHVA JWWN T ¢
N 1 f7 YYHUVA | H3ITJTINIATI3Y T Ll |
TIN {13S440 | NOILISOd | 3ZIS | 3dALvivd JWVNCFIS | AIQHOOR aIgiia ‘l,ln".__
STS - NOLIVOIJI03dS — 0314
" H " wln M 8MO " mmzzo H M
ANTIMIN TINN| «00Z0« 12Nadoyd 1 /4 _
ANTIMIN «“u] +00TO- ANVAWOD 1 T _
YALIWTT13AM0Y | YILIWIT3A3AId] 3dAL | WVNQHOOR ULEWE AI@40J3
0TS - NOLLYDIJI03dS _ Q003
NOLLYWYOANI ¥INMO NV “SLONAOYd “ANVAWOD | NOILVWYOINIANVAWOD T —~ 1|
NOI.LdI¥IS3d JWYNAAVH AIY3avaH ‘||.|_|||.||.m

G0S - NOILVII4IJAdS ~ Y3AV3H

SUBSTITUTE SHEET (RULE 26)

WO 99/56230 6/ 11 PCT/US99/09442

//,/550
CREATE RELATION
DATABASE

552

CREATE TABLE FOR.
HEADER SPECIFICATION

554

CREATE TABLE FOR
RECORD SPECIFICATIONS

//,»556

CREATE TABLE FOR 1
FIELD SPCIFICATIONS

Y //,,—558

CREATE TABLE FOR =
RELATION SPECIFICATION

/15 5A

SUBSTITUTE SHEET (RULE 26)

PCT/US99/09442

WO 99/56230
7 /711

605+ START

INPUT 600
HEADER SPECIFICATION
(400-R2) 650
| o RELATION IglPPéJCTI‘FICATION
| [PROCESS AND STORE HEADER
(PARENTCOLMNID,
SPECIFICATION IN 505 NI

| 645
v/

PROCESS AND STORE RELATION
SPECIFICATION IN 520

INPUT
RECORD SPECIFICATION
(4OSA-RL, U410A-R14,
415A-R22)

- e

HAVE THE
SPECIFICATIONS FOR
ALL RECORDS IN THE CURRE
HEADER SPECIFICATION
BEEN PROCESSED AND
STORED IN
5107

HAVE_THE
SPECIFICATIONS FOR
ALL RELATIONS IN THE CURRENT

625\ NO HEADER SPECIFICATION
\ BEEN PROCESSED AND
STORED IN

L] PROCESS AND_STORE RECORD 507

™1 SPECIFICATION IN 510

630 660

HAVE_THE
SPECIFICATIONS FOR
ALL FIELDS IN THE CURRENT
HEADER SPECIFICATION
BEEN PROCESSED AND
STORED IN
5157

YES

635)
i

INPUT
FIELD SPECIFICATION
LI0B-R1S TIROUSH OO —=
415B-R2k THROUGH R27 5 G-&5

Y
'__ = PROCESS AND STORE THE NEXT
FIELD SPECIFICATION IN 515

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

INPUT
HEADER SPECIFICATION — —
(400-R2

)

605’///

610 /

/— /L5 7T

PCT/US99/09442

START 700
fno

8 /11

CONSTRUCT A PROGRAM DATA
STRUCTURE THAT WOULD
CONTAIN THE HEADER

SPECIFICATION

=

{

STORE THE HEADER
SPECIFICATION IN THE DATA

STRUCTURE

//'720

CONSTRUCT A SQL QUERY TO
INSERT THE DATA CONTAINED IN
THE DATA—STﬁHq;ggE AS A ROW

//,725

PASS THE SQL QUERY TO THE
DATABASE ENGINE WHERE IT
WHOULD BE EXECUTED

///—730

THE DATABASE ENGINE EXECUTES
THE SQL QUERY AND INSERTS
THE DATA AS A ROW IN 505

735
DONE

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

_//r620

INPUT
RECORD SPECIFICATION
(LOSA-RU, 410A-R14,
415A-R22)

625 J

VAR Ay —

PCT/US99/09442

START 800

9/ 11

CONSTRUCT A PROGRAM DATA
STRUCTURE THAT WOULD
CONTAIN THE HEADER

SPECIFICATION

l %

STORE THE HEADER
SPECIFICATION IN THE DATA
STRUCTURE

[820

CONSTRUCT A SAL QUERY TO
INSERT THE DATA CONTAINED IN
THE DATA-ST%H%;%?E AS A ROW

//,825

PASS THE SQL QUERY TO THE
DATABASE ENGINE WHERE IT
WHOULD BE EXECUTED

///—830

THE DATABASE ENGINE EXECUTES
THE SQL QUERY AND INSERTS
THE DATA AS A ROW IN 305

_ 835
DONE

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

(635

INPUT
FIELD SPECIFICATION

(405B-R6 THROUGH R12, — —

410B-R16 THROUGH R20,
1415B-R24 THROUGH RZ27)

.

/o T

PCT/US99/09442

START 900

CONSTRUCT A PROGRAM DATA

= STRUCTURE_THAT WOULD

CONTAIN THE HEADER
SPECIFICATION

J //»915

STORE THE HEADER
SPECIFICATION IN THE DATA
STRUCTURE

10 / 11

/920

CONSTRUCT A SQL QUERY TO
INSERT THE DATA CONTAINED IN
THE DATA—ST}RHC%J?E AS A ROW

/925
PASS THE SAL QUERY TO THE

DATABASE ENGINE WHERE IT
WHOULD BE EXECUTED

/930

THE DATABASE ENGINE EXECUTES
THE SQL QUERY AND INSERTS
THE DATA AS A ROW IN 505

935
DONE

SUBSTITUTE SHEET (RULE 26)

WO 99/56230

/650

INPUT
RELATION SPECIFICATION

(PARENTCOLMNID, B

CHILDCOLMNID)

655 /

/T /o200

— = STRUCTURE THAT WOULD

PCT/US99/09442
11 / 11

START 1000

CONSTRUCT A PROGRAM DATA |

CONTAIN THE HEADER
SPECIFICATION

l /lO]S

STORE THE HEADER
SPECIFICATION IN THE DATA
STRUCTURE

/ 1020

CONSTRUCT A _SQL QUERY TO
INSERT THE DATA CONTAINED IN
THE DATA—ST{(&JJC;(BJ;E AS A ROW

/102'5
PASS THE SQL QUERY TO THE

DATABASE ENGINE WHERE IT
WHOULD BE EXECUTED

/1030

THE DATABASE ENGINE EXECUTES
THE SQL QUERY AND INSERTS
THE DATA AS A ROW IN 505

1035

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

