
(19) United States
US 20090077205A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0077205 A1
Quinet et al. (43) Pub. Date: Mar. 19, 2009

(54) OBJECT TRANSFER CONTROL INA
COMMUNICATIONS NETWORK

(76) Inventors: Raphael Quinet, Liege (BE);
Daniel Schaffrath, Viersen (DE)

Correspondence Address:
ERCSSON INC.
6300 LEGACY DRIVE, M/S EVR1-C-11
PLANO, TX 75024 (US)

(21) Appl. No.: 12/276,780

(22) Filed: Nov. 24, 2008

Related U.S. Application Data

(63) Continuation of application No. 10/509,979, filed on
Mar. 18, 2005, filed as application No. PCT/EP02/
03802 on Apr. 5, 2002.

i

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/219
(57) ABSTRACT

A method and an intermediate component for controlling in a
communications network an object transfer from a first net
work component via the intermediate component to a second
network component which is remote from the first network
component are described. The object transfer is based on a
plurality of object requests relating to objects referred to in
one or more codes to be processed by the second network
component or another network component. The intermediate
component forms the steps of sending an object request to the
first network component, receiving the requested object from
the first network component, updating and/or assessing a
priority of the requested object, and, in dependence of the
priority of the requested object, delaying the requested object
or forwarding the requested object to the second network
component. An initial priority is assigned to the requested
objects on the basis of an analysis of at least one of the object
request and the code that refers to the requested object.

Proxy Server

(the request can be
forwarded at any time)

Patent Application Publication Mar. 19, 2009 Sheet 1 of 7 US 2009/0077205 A1

Client Server

Fig. 1

Patent Application Publication Mar. 19, 2009 Sheet 2 of 7 US 2009/0077205 A1

EI it. I S

SN

I

I 3

Patent Application Publication Mar. 19, 2009 Sheet 3 of 7 US 2009/0077205 A1

Patent Application Publication Mar. 19, 2009 Sheet 4 of 7 US 2009/0077205 A1

Client tko) Proxy Server

(the request can be
forwarded at any time)

i

Fig. 4

Patent Application Publication Mar. 19, 2009 Sheet 5 of 7 US 2009/0077205 A1

receive a HTTP request
fron the client

is this a lodified
URL (result of a

previous
redirection)?

502.

No 5ou Yes

decode the URL: restore
the original location

5O6

is the object already
available (cached)? No

request the object from
the server or mark it for

later retrieval
Yes

M SM2 54

the reply is ready to be
Sent to the client

SM6
Fig. 5

Patent Application Publication

HTTP reply ready to be
sent to the client

evaluate or adjust the
priority of the object

606
No

higher priority
than all objects

being transferred or
expected Soon?

send object to client

Fig. 6

spare bandwidth in
link towards client?

higher priority
than all objects
expected soon?

Mar. 19, 2009 Sheet 6 of 7

44,

Send 302 redirection to
the client

re-evaluate all
suspended connections

US 2009/0077205 A1

suspend connection

622

Patent Application Publication Mar. 19, 2009 Sheet 7 of 7 US 2009/0077205 A1

f

US 2009/0077205 A1

OBJECT TRANSFER CONTROLINA
COMMUNICATIONS NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/509,979, filed Mar. 18.2005, now pending,
which was the National Stage of International Application
No. PCT/EP02/03802, filed Apr. 5, 2002, the disclosure of
which is incorporated herein by reference.

BACKGROUND

0002 1. Technical Field
0003. The invention generally relates to the field of com
munications networks and more particularly to an object
transfer from a first network component via an intermediate
component to a second network component, the second net
work component being remote from the first network com
ponent.
0004 2. Description of the Prior Art
0005. The transfer of information over modem communi
cations networks like the public Internet or internal networks
is based on specific transfer protocols. The World Wide Web
for example, which constitutes a major aspect of the Internet,
uses the HyperText Transfer Protocol (HTTP) for exchang
ing files comprising text, images, Sound, video, and other
COntentS.

0006 Any WWW server contains, in addition to the files it
can serve, an HTTP component that is designed to wait for
HTTP requests and to handle them when they arrive. A
WWW browser can be considered as an HTTP client that is
configured to send HTTP requests to WWW servers. When
ever a user of the browser enters a file request by either
“opening a WWW file (by typing in a Uniform Resource
Locator (URL)) or by clicking on a hyper text link, the
browser builds a corresponding HTTP request for the file and
sends it to the destination address. The HTTP component in
the destination server receives the HTTP request and returns
the requested file.
0007. The requested file may be constituted by a Hyper
TextMark up Language (HTML) page that includes HTML
code. When the browser receives the HTML page from the
server and detects that the HTML code, which can be consid
ered as an object itself, includes further objects such as (back
ground) images, Sounds, Scripts or HTML frames, the
browser issues further HTTP requests to the server in order to
fetch the further objects which are included in the HTML
code. Upon receipt of the further HTTP requests, the server
sends HTTP responses including the requested objects like
images to the browser. As becomes apparent from FIG. 1, the
HTTP responses are sent from the server to the browser
running on the client in the same order as the browser has
issued the HTTP requests.
0008. The order in which any additional objects included
in the HTML code of the HTML page are requested by the
browser usually depends on how the HTML page was written.
For example an object that is included at the beginning of the
HTML code is not necessarily displayed at the top of the
HTML page because features such as tables, layers and
frames allow the HTML author to use complex layouts. In
addition, the order in which a browser issues HTTP requests
depends also on internal browser algorithms. For example
Some browsers use complex heuristics for generating the

Mar. 19, 2009

HTTP requests by starting with requesting the first four
objects as they appear in the HTML code of the page. After
the first four objects have been requested, every second object
starting from the top of the area that is currently visible to the
user is requested, then every fourth object and so on. Other
browsers use a simpler algorithm that requests the objects one
by one as they appear in the HTML code. From the above it
becomes apparent that it is usually difficult to predict the
order in which HTTP requests for objects referred to in an
HTML code are generated.
0009 Moreover, it is difficult to predict the order in which
requested objects are received by the browser. Although the
current HTTP standard (HTTP/1.1) requires that on each
Transfer Control Protocol (TCP) connection the HTTP
responses are sent from the server to the browser in the same
order as the HTTP requests are received by the server, the
order in which HTTP responses are received becomes unpre
dictable as soon as more than one connection is opened to the
server. The reason therefore is the fact that due to varying
network conditions and different request processing times,
some connections may transfer HTTP responses faster than
others.

0010. There is a need for a method and a device that enable
an improved transfer of objects from a first network compo
nent to a second network component which is remote from the
first network component.

SUMMARY OF THE INVENTION

0011. According to one aspect of the invention this need is
satisfied by a method of controlling in a communications
network an object transfer from a first component via an
intermediate (hardware or software) component to a second
component which is remote from the first component,
wherein the object transfer is based on a plurality of object
requests relating to objects referred to in one or more codes to
be processed by the second or another component of the
communications network and wherein the intermediate com
ponent performs the steps of sending an object request to the
first component, receiving the requested object from the first
component, at least one of assessing and updating a priority of
the requested object, wherein an initial priority has been
assigned to the requested object on the basis of an analysis of
at least one of the object request and the code that refers to the
requested object, and, in dependence of the priority of the
requested object, delaying the requested object or forwarding
the requested object to the second component. An object may
itself comprise code portions referring to one or more further
objects. Furthermore, a code may itself form a (e.g. previ
ously requested) object.
0012. By intentionally delaying the object transfer based
on an assigned priority, the overall transfer of objects is
improved from a user's point of view (even if the total amount
of data to be transferred is not decreased) because important
objects are transferred preferentially. Furthermore, by imple
menting appropriate priority assignment schemes the object
transfer from the first network component to the second net
work component becomes more predictable. For example
objects being of higher significance to the user may be
assigned a higher priority and may thus be preferentially
transferred to the second component. On the other hand,
objects being of lesser significance may be delayed. In the
extreme case an object having a low significance may be
delayed to such an extent that it is not transferred to the second

US 2009/0077205 A1

component at all. This allows to control the order in which
objects are received by the second component.
0013 The assignment of absolute or relative priorities to
objects (or classes of objects) may be performed dynamically.
Once a priority has initially been assigned, this priority may
be assessed with respect to specific absolute values like
thresholds or with respect to priorities of other objects. Based
on the assessment it can be decided whether or not an object
is to be delayed. Prior to the assessment a priority initially
assigned to an object may be evaluated anew with the purpose
of determining whether the initial priority has to be updated.
0014. The intermediate component may be operated to
re-order objects received from the first component. The
delaying of objects is thus preferably performed such that the
order in which the intermediate component receives the
objects from the first component differs from the order in
which the objects are forwarded to the second component.
The reordering may be based on the priorities of the objects to
be transferred. During the reordering there might arise the
situation that due to the delay of some objects the transfer of
other objects is actually accelerated.
0015 The object request that is sent to the first component
may be generated by the intermediate component. When the
requested object is received by the intermediate component, it
“pushes it to the second component without having received
an explicit object request from the second component. Alter
natively, the object request may be generated by the second
component and sent to the intermediate component. Upon
receipt of the object request from the second component, it
may be processed by the intermediate component and for
warded to the first component.
0016. When the intermediate component receives the
requested object from the first component, the received object
may either be delayed or directly forwarded to the second
component. There exist various possibilities how the
requested object that is received by the intermediate compo
nent can be delayed. Delaying of the requested object can for
example include at least one of instructing the second com
ponent to repeat the object request, Suspending a connection
to the second network component via which the requested
object is to be forwarded, and informing the second compo
nent that the requested object will automatically (e.g. without
any further object request from the second component) be
forwarded to the second component at a later point in time.
0017. If delaying of the requested object includes instruct
ing the second component to repeat the object request, the
intermediate component may perform the steps of assigning a
specific attribute to the object to be delayed, informing the
second component of the attribute, receiving a reference to
the attribute (e.g. the attribute itself or an unambiguous ref
erence derived from the attribute) from the second compo
nent, and, upon receipt of the reference to the attribute, send
ing the delayed object to the second component or further
delaying the delayed object. The decision whether a delayed
object is to be sent to the second component or delayed further
may be based on the newly assessed relative priority of the
repeatedly requested object.
0.018. The attribute can be considered as a common
denominator which enables the intermediate component and
the second component to negotiate about the transfer of the
object to which the attribute has been assigned. Usually, the
form of the attribute will depend on the characteristics of the
transfer protocol that is used for the object transfer. In the case
of HTTP for example, the attribute may be constituted by a

Mar. 19, 2009

virtual URL created by the intermediate component. It should
be noted that the attribute-based delay scheme of instructing
the second component to repeat the object request can gen
erally be used to delay objects and does not necessarily
require that priorities have been assigned to the objects to be
transferred.
0019. In the attribute-based delay scheme the object may
be send from the intermediate component to the second com
ponent in response to an object request received from the
second component or in accordance with a pushing scheme,
i.e. independently of Such an object request from the second
component. If the delay Scheme is based on an object request
received from the second component, the second component
may be informed about the attribute in context with an
instruction to repeat the object request. In Such a case the
reference to the attribute may be received by the intermediate
component in context with a repeated object request from the
second component.
0020. The objects to be transferred to the second compo
nent may be forwarded to the second component via a single
or via a plurality of connections between the intermediate
component and the second component. In such a multiple
connections scenario selected ones of the connections to the
second component may be suspended dependent upon the
(initial or updated) priorities of the requested objects that are
to be forwarded via the selected ones of the connections to the
second component. The intermediate component may thus
Suspend one or more connections so that objects having a high
priority can make use of the additional bandwidth that is
released on the link between the intermediate component and
the second component. In order not to waste available band
width the intermediate component is preferably configured
such that it ensures that a link formed by two or more con
nections is fully used before Suspending one or more connec
tions thereof.
0021. There exist various techniques for suspending a con
nection. For example transmission over the connection could
be blocked for a specific period of time while leaving the
connection as Such open (intermediate state open). Alterna
tively, the connection could be closed (intermediate
state closed) while saving the state of the connection. In Such
a case the connection may be reopened at a later point in time
in the same state in which it was closed. According to a third
possibility, the connection may be completely closed without
saving any information about the State of the connection. In
any case the second component can be informed that the one
or more objects to be transmitted via the closed connection
will be sent later, either in response to or independently from
a (repeated) object request.
0022. Instead of or in addition to suspending individual
connections, the object transfer may also be delayed by a
priority based adjustment of the transfer speed. To that end, a
specific share of processing capabilities may be dynamically
allocated to each object or each connection. In the case of
multiple connections, all connections or at least Some con
nections get a share of the CPU time, i.e. a share of the
network bandwidth. The share of processing capabilities allo
cated to a specific connection may be changed (e.g. decreased
constantly) while one or more objects are transferred via the
respective connection.
0023. It has been mentioned above that the object transfer

is based on a plurality of object requests relating to objects
referred to in one or more codes. According to a first variant
of the invention a code is readily available to at least one of the

US 2009/0077205 A1

second and the intermediate component. According to a sec
ond variant of the invention the code has yet to be loaded by
either one of the second and the intermediate component. In
the latter case the intermediate component may send a code
request that has been generated by the second component or
by the intermediate component to the first component or a
third component that is different from the first component.
When the requested code is received from the first or the third
component, it may be analyzed by the intermediate compo
nent with respect to references to objects comprised within
the code. Any references to objects contained in the code may
then be assessed with the purpose of assigning (initial) pri
orities to the objects referred to in the received code. The code
received from the first or the third component may eventually
be forwarded by the intermediate component to the second
component.
0024. Upon receipt of a response from the first component
the requested object contained in the response may be evalu
ated with respect to the received objects priority. For example
at least one of the object size, the object content and a header
of the response may be analyzed to that end. It can then be
determined whether or not an initial priority of a received
object has to be updated.
0025 Preferably, at least some information about each
object or each class of objects is stored for example by the
intermediate component. The stored information may com
prise priority information for individual objects or a classes of
objects, preferably, in the form of a priority list. This priority
list may be repeatedly assessed. Such an assessment can
relate to at least one of updating priority information and
deleting objects or classes of objects from the priority list.
0026. The invention may be implemented as a hardware
Solution or as a software solution. In the case of a Software
solution the invention may be realized in the form of a com
puter program product comprising program code portions for
performing the individual steps of the invention. The com
puter program product may be stored on a computer readable
recording medium.
0027. According to a preferred embodiment of the inven
tion the intermediate component is implemented as a proxy
component in the form of a piece of software running on the
first or the second component of the communications net
work. If the invention is implemented as a hardware solution,
the intermediate component may be constituted by a separate
piece of hardware like a proxy server arranged between the
first and the second component in the communications net
work. The intermediate component may include one or more
appropriately configured communication interfaces for com
municating with at least the first and the second component of
the communications network as well as a unit for performing
the processing in context with delaying of objects.
0028. In the communications network there exists a first
link between the intermediate component and the first com
ponent and a second link between the intermediate compo
nent and the second component. Preferably, the first link and
the second link have different transfer rates. For example a
fast link may be provided between the intermediate compo
nent and the first component and a comparatively slower link
may be provided between the intermediate component and
the second component. This situation is usually given when
the first component is a network server, the second compo
nent is a network client and the intermediate component is
located in the vicinity of (in terms of network links) or on the
network server. However, the intermediate component could

Mar. 19, 2009

also be located close to (in terms of network links) or on the
network client. In such a case the link between the interme
diate component and the second component (the network
client) has a much higher capacity and lower latency than the
link between the intermediate component and the first com
ponent (the network server).
0029. It should be noted that the invention is not restricted
to the case that the first componentacts as network server and
the second component acts as network client. In particular,
the intermediate component could also be used to improve the
object transfer between two network clients or two network
SWCS.

0030. According to an especially preferred embodiment of
the invention the intermediate component is part of a wireless
communications network like a GSM, GPRS, etc. cellular
network. In Such a network the second component may be
constituted by a mobile terminal.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0031. Further aspects and advantages of the invention will
become apparent upon reading the following detailed
description of preferred embodiments of the invention and
upon reference to the drawings, in which:
0032 FIG. 1 is a schematic diagram illustrating a transfer
of objects between a network server and a network client in
accordance with HTTP;
0033 FIG. 2 is a block diagram of a network system
comprising an intermediate component in the form of a HTTP
proxy server according to the invention;
0034 FIG.3 is a block diagram of the HTTP proxy server
of FIG. 2:
0035 FIG. 4 is a schematic diagram depicting a redirec
tion-based object delay in the network system depicted in
FIG. 2:
0036 FIG. 5 is a flow chart reflecting the steps preceding
an object delay;
0037 FIG. 6 is a flow chart depicting the decisions
involved in an object transfer according to the invention; and
0038 FIG. 7 is a block diagram depicting a proxy compo
nent according to the invention located on a network client.

DETAILED DESCRIPTION

0039. Although the present invention can be practiced in
any communications network in which a request-based object
transfer via an intermediate component is performed, the
following description of preferred embodiments is exemplar
ily set forth with respect to the transfer of HTML code in
accordance with the HTTP protocol over the WWW. In prin
ciple, transfer protocols different from HTTP, like the wire
less WAP transport protocol or some Remote Procedure Call
(RPC) mechanisms, and codes different from HTML, for
example the WAP Markup-Language (WML) or any deriva
tives of the eXtensible Markup-Language (XML), could be
utilized as well. Furthermore, although the following descrip
tion mainly concerns an object transfer from a server to a
client, the object transfer could be performed between any
two or more network components.
0040. In FIG. 2, a block diagram of a network system 10
according to the invention is depicted. As becomes apparent
from FIG. 2, the network system 10 comprises a first compo
nent in the form of a server 20, an intermediate component in
the form of a HTTP proxy server 30 and a second component

US 2009/0077205 A1

in the form of a client 40. The proxy server 30 is arranged in
the network system 10 such that it has a fast link 12 towards
the server 20 and a comparatively slower link 14 towards the
client 40. Each link 12, 14 is constituted by a plurality of TCP
connections 50. Each TCP connection 50 is configured to
allow the transfer of HTTP requests and HTTP responses
between the server 20 and the client 40.

0041. The proxy server 30 performs some traditional
proxy functions like caching and filtering of objects. Addi
tionally, the proxy server 30 is configured to artificially delay
an object that is received from the server 20 and that is to be
forwarded to the client 40. This is done by using a combina
tion of temporary Suspension of data transfer on Some con
nections 50 and HTTP redirection messages that force a
browser running on the client 40 to repeat an object requested
after a certain period of time. By using these mechanisms the
proxy server 30 re-orders the HTTP responses received from
the server 20 in Such a way that objects having a higher
priority are delivered to the client 40 first. For that purpose the
proxy server 30 dynamically assigns priorities to the objects
to be forwarded to the client 40. In order to ensure that
delaying of the less important objects does not cause the link
14 between the proxy server 30 and the client 40 to become
idle, the proxy server 30 continuously or at least repeatedly
monitors the traffic on this link 14.

0042. The construction of the proxy server 30 is depicted
in more detail in FIG. 3. As becomes apparent from FIG. 3,
the proxy server 30 comprises a communications interface 32
coupled between the first link 12 to the server 20 and the
second link 14 to the client 40. The communications interface
32 is configured such that it enables the sending of object
requests to and the receipt of the requested objects from the
server 20. A processing unit 34 of the proxy server 30 com
municates with the communications interface 32. The pro
cessing unit 34 allows to assess and/or adapt the priority of
any object received via the first link 12 from the server 20.
Additionally, the processing unit 34 allows to assign an initial
priority to a requested object on the basis of an analysis of at
least one of the object request and the code that refers to the
requested object. Possible assignment schemes will be dis
cussed later in more detail.
0043 Independence of the initial or updated priority of an
requested object the processing unit 34 controls the commu
nications interface 32 such that a requested object received
from the server 20 is either delayed or forwarded via the
second link 14 to the client 40. If a requested object received
from the server 20 is to be delayed, it is temporarily stored in
a buffer 36 that can be accessed by both the communications
interface 32 and the processing unit 34. Alternatively or in
addition, the buffer 36 may be implemented as a software or
hardware component of the processing unit 34.
0044 Besides the tasks outlined above, the processing unit
34 is additionally configured such that it allows to assign a
specific attribute to an object which is to be delayed (an
exemplary format of this attribute will be discussed later in
more detail). The processing unit 34 enables to control the
communications interface 32 Such that the communications
interface 32 informs the client 40 about this attribute. If the
communications interface 32 receives a reference to the
attribute from the client 40, the processing unit 34 evaluates
this reference and controls the communications interface 32
such that the delayed object to which this attribute has previ
ously been assigned and which is currently stored in the
buffer 36 is either sent to the client 40 or further delayed. A

Mar. 19, 2009

further delay of the object stored in the buffer 36 may become
necessary if objects of a higher priority have to be forwarded
to the client 40 first.
0045. In the following, a preferred operational mode of the
network system 10 shown in FIG. 2 will exemplarily be
described.
0046 When a user enters a URL, clicks on a link or fol
lows a bookmark, the browser running on the client 40 issues
a HTTP request for the corresponding HTML page including
HTML code. The HTTP request issued by the browser is
received by the proxy server 30 via the link 14 and forwarded
via the link 12 to the destination server 20. The server 20
replies by sending the HTML code for the requested page to
the proxy server 30, which analyzes the HTML code received
from the server 20 to assign an initial priority to any kind of
objects like links, frames, Scripts, images, etc. referred to in
the HTML code (first analysis phase).
0047 Independently from this analysis of the HTML
code, the proxy server 30 forwards the HTML code via the
link 14 to the client 40. When the browser running on the
client 40 receives the HTML page including the HTML code
it processes the HTML code. If the browser detects that the
HTML code includes further objects, it issues further HTTP
requests for the objects referred to in the HTML code. These
HTTP requests for further objects are received and evaluated
by the proxy server 30. To most of the requested objects an
initial priority will have been assigned already during the
proxy server's 30 previous analysis of the HTML code that it
has forwarded to the server 40. However, in this second analy
sis phase the proxy server 30 either assigns initial priorities to
those objects to which a priority has not yet been assigned or
updates the priority of such objects to which an initial priority
has already been assigned. The priority is updated on the basis
of additional information available in the HTTP request
received from the client 40.
0048. The proxy server 30 forwards any HTTP requests
for additional objects received from the client 40 to the server
20. The server 20 replies by sending the requested objects to
the proxy server 30. The proxy server 30 analyzes the HTTP
responses (including the requested objects) from the server
20 in a third analysis phase and updates—if necessary—the
priorities of the objects comprised in the HTTP response.
Additionally, the proxy server 30 assesses the relative priority
of any received object with respect to the priority of previ
ously received objects that are still stored in the buffer 36 (see
FIG. 3) and the priorities of objects that are expected soon.
Information regarding the objects that will be received soon
from the server 20 can be derived from the HTML code that
has previously been forwarded to the client 40 or from HTTP
requests from the client 40 for which the corresponding
objects have not yet been received from the server 20. Alter
natively or additionally, the proxy server 30 may be config
ured such that it compares a priority of an object that has just
been received from the server 40 with an absolute value like
a priority threshold.
0049 Based on the evaluation of an object's absolute and/
or relative priority and the current and/or predicted traffic on
the link 14, the proxy server 30 decides if this object is to be
delayed, e.g. if this object is to be temporarily stored in the
buffer 36 or if the corresponding HTTP request is not yet to be
forwarded to the server 20, or if the object is to be immedi
ately forwarded to the client 40.
0050. The intentional delay of individual objects improves
the overall object transfer from a user's point of view. It is for

US 2009/0077205 A1

example well known that the relative importance of the vari
ous objects included in a web page varies greatly: An image
that is used to build a graphical menu may be essential for the
navigation of a site, while a background image merely makes
the page look nicer. The invention can thus be employed to
provide the user with the more important information first. As
Soon as there is enough information of a web page displayed
on the user's screen, the user can decide to click on a link and
request another web page without having to wait for the
remaining (less important) parts of the previous web page that
is still being transferred. As a result, the user is no longer
forced to wait until Some uninteresting objects are transferred
before being able to see the important ones. This is especially
useful in conjunction with the mobile Internet, which is usu
ally slower and more expensive than the fixed Internet.

Assignment and Adjustment of Priorities
0051. As has become apparent from the above, the proxy
server 30 can assign or adjust the priority of an object to be
sent to the client 20 during three different phases, namely
when a reference to that object is found in an HTML code (i.e.
in a previous object) that is to be forwarded to the client 40,
when a HTTP request relating to that object is issued by the
browser running on the client 40, or when the corresponding
HTTP response containing the requested object is received
from the server 20.
0052. In the following, various schemes for assigning or
updating priorities during each of these three phases are
exemplarily described. During any of the three phases a pri
ority list that contains priority information for individual
objects or classes of objects is either generated or updated. In
the priority list, the individual objects or classes of objects are
ordered with respect to increasing or decreasing priority. The
order of the objects in the priority list can thus be considered
as priority information. However, additional priority infor
mation like absolute or relative priority values (numbers) may
alternatively or additionally be part of the priority list.
0053. The exact priority assigned to specific objects or
classes of objects is implementation-dependent and in the
exemplary embodiment configurable by the operator of the
proxy server 30 or a user of the browser running on the client
40. For example in order to allow the operator of the proxy
server 20 to have more control over the priority of some
objects, there could be one or several lists of URLs (using
pattern matching) that allow the operator to increase or
decrease the priority of the objects appearing on those lists.
For example an operator could decide to increase or decrease
priority of all images downloaded from an advertising com
pany. The same possibilities may be made available to the
user. For example the user could send his preferences to the
proxy server 30. This can be done by a specific software
running on the client 40 or by using designated web pages
provided directly by the proxy server 30 and allowing the user
to set his preferences.
0054. In the first analyzing phase the proxy server 30 can
assign an initial priority to an object by analyzing an HTML
code that has been requested by the client 40 from the server
20. In particular, references to objects referred to in the
HTML code may be assessed to that end. In this way a priority
list may be generated that lists individual objects which are
referred to in the HTML code in the following order (objects
of highest priority are mentioned first):
0055 links to other pages
0056 frames

Mar. 19, 2009

0057 inlined images (if the IMG tag includes width and
height information, this information can be used to refine the
priority of images depending on the expected dimensions so
that Smaller images get a higher priority than larger ones)
0058 style sheets
0059 scripts (JavaScript, VBScript, etc.), embedded
objects and applets
0060 background image (page background, table back
ground, style sheet, etc.)
0061 any object that was already sent to the client 40 gets
the lowest priority
0062. In addition the priority of a specific object can be
lowered if the object is not located on the same server 20 or on
the same domain as the current HTML page.
0063 A further possibility to assign or adjust the priority
of an object occurs when a request for that object is issued by
the browser and received by the proxy server 30. In such a
case the HTTP request can be analyzed by the proxy server 30
in an URL context (second analysis phase). Since initial pri
orities have already been assigned during analysis of the
HTML code that led to that HTTP request, analysis of the
HTTP request will usually result in an adjustment of the
initial priority. However, in Some cases initial priorities may
be assigned also (see above).
0064. The adjustment or assignment of initial priorities in
the second analysis phase can be performed independence on
additional information available for example in the header of
the HTTP request. One or more of the following rules for
updating the priorities may be implemented:

0065. The analysis leads to the result that the browser
has already requested the same object once. Such an
object is preferably assigned a very high priority in order
to avoid infinite loops caused by browsers that are not
fully compliant to HTTP/1.1 and ignore the Retry-After
header (this header will be discussed below in more
detail).

0.066. The object does not have a priority yet, but the file
extension looks like HTML (“.HTML’.“.HTM) or
XML (“XML') or looks like a directory index (ends"/
'). Sucha priority assignment ensures that a HTML page
requested from the bookmarks or typed in directly will
be requested with a high priority.

0067. The browser makes a conditional HTTP request
for an object, using if-modified-since or similar condi
tions. This indicates that the browser has probably
cached a copy of the object. The reply is expected to be
small if the cached copy is still valid (HTTP reply code
“304 not modified').

0068. The URL of the requested object was found while
parsing a previous HTML page.

0069. Any object that was not inserted in the list while
parsing the HTML tags of a previous page was probably
requested indirectly by a script and should get a lower
priority than most of the other requested objects.

0070. In the third analysis phase, the adjustment of object
priorities is based on an analysis of the HTTP response from
the server 20. The adjustment of the priorities in the third
analysis phase (as well as in the second analysis phase men
tioned above) can be calculated as a weighted Sum of several
criteria. The weights may be configurable by the operator of
the proxy server 30 or the user of the browser running on the
client 40.
0071. In the third analysis phase, all objects will usually
have a priority assigned to them. However, this priority can be

US 2009/0077205 A1

updated before sending the requested objects to the client 40.
To adjust the priorities, the headers and contents of the HTTP
responses received from the server 20 may be assessed. The
priorities may then be adjusted in accordance with one or
more of the following rules:

0072 Assessment of the reply code: the relative priority
of the HTTP responses depends on the first digit of the
reply code. Error codes (4xx, 5xx) should have a higher
priority than normal replies (2XX).

0073 Assessment of the content type: a HTML code
should have a higher priority than any image.

0074 Assessment of the objects size (derived from the
content-length if specified in the headers, or from the
total size if the object is already cached): smaller objects
should have a slightly higher priority than larger ones.

0075 Analysis of the content: for example animated
images can be assigned a lower priority than static
images. The analysis of the content can also form the
basis for estimating the size of the object if this infor
mation is not available in the HTTP header and the
object has not yet been cached.

0076. If the reply code is a permanent or temporary
redirection (3XX) specifying a new location for the
requested object, then this new location gets the same
priority as the original object.

0077. In the three analysis phases described above the
proxy server 30 sets and updates the priorities of the objects
that are to be transferred to the client 40. The proxy server 30
thus keeps some information about each object like the
object's URL, priority, time of last request and, if required,
Some further parameters. However, this information can not
be kept forever since otherwise the proxy server 30 would run
out of memory. Moreover, if an object to which a high priority
has been assigned is never requested, action is preferably
taken so that it does not prevent other objects from being
transferred.
0078 For these reasons a routine is implemented that
ensures that information that is no longer up to date or that is
no longer required is deleted. To that end one or more of the
following mechanisms may be used:

0079 Any object that is successfully transferred to the
client is marked as having been sent or is moved to a
separate list of objects that have been sent to the client
40.

0080 A maximum size for one or more lists containing
relevant information is set and configured such that older
objects or objects with the lowest priority expire first.

0081. Whenever the client resets a TCP connection
before the object is fully transferred (meaning that the
user has stopped the download and may have selected
anotherpage), clear the information of objects to be sent.

I0082. As an alternative to the previous solution, keep
cross-references for each object in order to associate
each HTML page with the objects that it contains and
vice versa. When the client 40 resets a TCP connection,
remove only the objects that are included in the same
HTML page.

I0083. The priority of all objects can be decreased after a
specified amount of time or after some number of HTTP
requests or HTTP responses have been processed.

Reordering of Objects
0084. In the previous chapter the generation of a priority

list for the requested objects to be transferred to the client 40

Mar. 19, 2009

as well as possible updating mechanisms for this priority list
have been described. Usually, the requested objects will be
received by the proxy server 30 from the server 20 in an order
that is different from the order indicated in the priority list.
Consequently, the proxy server 30 has to reorder the objects
received from the server 20 in such a manner that they are
forwarded from the proxy server 30 to the client 40 in an order
which reflects the order in the priority list as closely as pos
sible. The proxy server 30 reorders the objects received from
the server 20 by intentionally delaying objects having a lower
priority and by forwarding objects having a higher priority
without any substantial delay to the client 40.
I0085. The proxy server 30 uses a combination of different
delay mechanisms to reorder the objects received from the
server 20. In the following, two of these delay mechanisms,
namely suspension of TCP connections on the one hand and
HTTP redirections on the other hand, will exemplarily be
described in more detail

Suspension of TCP Connections
I0086. As becomes apparent from FIG. 2, the link 14
between the proxy server 30 and the client 40 is constituted by
a plurality of TCP connections 50. Dependent upon the pri
orities of the requested objects that are to be forwarded via
individual ones of the connections 50, one or more of the
connections 50 that are intended for the transfer of objects
having a low priority are Suspended. This suspension of indi
vidual connections releases some bandwidth on the link 14
that is now available for preferentially transferring objects
having a higher priority. Consequently, objects having a
higher priority will be delivered before objects having a lower
priority.
I0087. The suspension of an individual connection 50 is
performed such that the connection 50 is left open without
transferring objects for a certain period of time. Alternatively,
suspension of a connection 50 could be effected by closing
the connection 50, either with our without saving the state of
the connection 50 prior to its suspension. When the state of
the Suspended connection 50 is saved, it can be opened at a
later point in time in the same state as it has been Suspended
(i.e. closed).
I0088 Suspension of a connection 50 has the advantage
that no extra data has to be sent via the link 14. Preferably, a
connection 50 is suspended only if the released bandwidth
can be fully used by some other connections 50 for the trans
fer of objects having a high priority.
I0089. The proxy server 30 is thus configured such that it
checks that the link 14 is fully used before suspending a
connection 50 in order not to waste available bandwidth. A
possible routine for predicting if the link 14 is or will be
partially idle includes comparing the average throughput
(over the last N seconds) of all connections 50 going to the
client 40 with the amount of data that is currently cached or
buffered in the buffer 36 of the proxy server 30 (see FIG. 3)
and is ready to be sent. Other and in particular simpler tech
niques for estimating the utilization of the link 14 could be
implemented as well, especially if the available bandwidth on
the link 14 is known by other means.

HTTP Redirections

0090. If the proxy server 30 expects that objects having a
high priority will soon have to be transferred to the client 14
(e.g. because links to these objects have previously been

US 2009/0077205 A1

detected by the proxy server 30 while forwarding the HTML
code of a HTML page to the client 40), and suspension of a
connection 50 would waste some bandwidth because there is
currently nothing else to transfer on the other connections 50.
then the proxy server 30 may utilize another delay scheme. A
possible delay scheme that is applicable in Such a case
includes instructing the client 40 to repeat an object request at
a later point in time.
0091 Although HTTP specifies that any HTTP responses
must be sent to the client 40 in the same order as the browser
running on the client 40 has issued the HTTP requests, it is
possible to instruct the browser to retry a HTTP request later.
This can be done by sending a HTTP response with the status
code "302” to the client 40, together with the header field
“Retry-After. This header field tells the client 40 to retry his
HTTP request after a specified amount of time. In response to
the receipt of the status code "302' (possibly including the
“Retry-After header field), current browsers re-schedule the
HTTP request after all pending HTTP requests have been
processed.
0092. The status code "302” as specified in the HTTP
standard 1.1 tells the browser that a given object can be found
(temporarily) at a location that is different from the one that
was requested. The HTTP response sent to the client 40
includes the new location of the object. This mechanism is
used to implement the delay scheme according to the inven
tion.
0093. According to the invention the proxy server 30 gen
erates an attribute in the form of a new (virtual) URL for the
object to be delayed. The proxy server 30 then instructs the
browser running on the client 40 to try the HTTP request
again, using this temporary attribute (i.e. URL) as the new
location of the object. The browser is thus instructed to
reschedule the HTTP requestata laterpoint in time. When the
browser repeats its HTTP request (including the temporary
attribute, i.e. the virtual URL), the proxy server 30 converts
the attribute to the original URL and forwards the HTTP
request to the server 20. Alternatively, the original HTTP
request could have been forwarded to the server 20 after
receipt thereof by the proxy server 30. In such a case the
HTTP response received from the server 20 is temporarily
stored by the proxy server 30 until it receives the repeated
HTTP request from the client 40.
0094. In the following, the inventive delay mechanism
discussed above will exemplarily be described in more detail
with reference to FIGS. 4 and 5. It will be assumed that the
HTTP request received by the proxy server 30 from the client
40 relates to an object that is considered by the proxy server
30 to be of a low priority.
0095. In a first step 402 of FIG. 4, the proxy server 30
receives a HTTP request from the client 40 via the link 14. In
the exemplary case of HTTP this first request from the client
could have the following format:
0096 GET http://example.com/some/image.png HTTP/
1.1
0097 Host: example.com
0098. User-Agent: Mozilla/5.0 (X11; Linux i686; en-US:
rv: 0.9.9) Gecko/20020311
0099 Connection: close
0100. In response to the HTTP request received in step 402
from the client 40, the proxy server 30 redirects the client 40
in step 404 to a new (virtual) location and instructs the client
40 to wait for a certain period of time (delay) before retrying
the HTTP request. The redirection message from the proxy

Mar. 19, 2009

server 30 on the basis of the status code "302 as specified in
the HTTP standard 1.1 can have the following format:
0101 HTTP/1.1302 Found
0102 Date: Thu, 21 Mar. 2002 15:12:47
(0103 Server: PrioTest/0.9
0104 Location: http://example.com/some/()image(0001).
png
0105. Retry-After: 5
0106 Connection: close
0107 Transfer-Encoding: chunked
(0.108 Content-Type: text/html: charset iso-8859-1
0109 (some human-readable text follows)
0110. The proxy server 30 can now request the object from
the server 20 at any time after receipt of the initial HTTP
request from the client 40 (step 402) and the time at which it
decides to deliver the object to the client 40 (steps 406 and
408).
0111. After receipt of the above redirection message the
client 40 waits for a period of time specified in the redirection
message, i.e. five seconds (or until all other objects have been
transferred). In step 412 the client 40 then repeats his HTTP
request indicating the new (virtual) location as follows:
0112 GET http://example.com/some/()image(00001).
png HTTP/1.1
0113 Host: example.com
0114. User-Agent: Mozilla/5.0 (X11; Linux i686; en-US:
rv:0.9.9) Gecko/20020311
0115 Connection: close
0116. Upon receipt of the repeated HTTP request from the
client 40, the proxy server 30 decides whether to delay the
requested object further (e.g. by Suspending a connection 50
or by a further redirection message) or whether to forward the
delayed object to the client 40. If the proxy server 30 decides
to forward the delayed object without any further delay, this
can be done in the following format:
0117 HTTP/1.1 200 OK
0118 Date: Thu, 21 Mar. 2002 15:12:50
0119 Server: Apache/1.3.23 (Unix)
I0120 Content-Type: image/png
I0121 Content-Length: 1520
0.122 (the contents of the image follow)
I0123 Now, the decisions taken by the proxy server 30 in
the course of the redirection routine discussed above with
reference to FIG. 4 will be explained with reference to FIG.5.
(0.124. In step 502 the proxy server 30 receives the HTTP
request from the client 40. In the following step 504 the proxy
server 30 determines whether the URL included in the HTTP
request is a modified URL, i.e. the result of a previous redi
rection. If this is the case, the proxy server 30 decodes the
URL and restores the original location in step 506 and moves
via node 508 to step 510. Otherwise the method directly
moves from step 504 via node 508 to step 510.
(0.125. In step 510 the proxy server 30 determines if the
object requested by means of the HTTP request is already
available, i.e. stored in the buffer 36 of the proxy server 30
(see FIG. 3). If the object is not already cached, the proxy
server 30 requests the object from the server 20 or marks it for
later retrieval in step 514. From step 514 the method moves
via node 512 to step 516. Step 516 can also be reached directly
from step 510 via node 512 in the case the object requested by
the client 40 is already available.

US 2009/0077205 A1

0126. In step 516 the HTTP response including the
requested object is ready to be sent to the client 40. This
corresponds to the first step in the flow chart of FIG. 6 which
will be discussed below.
0127. In principle, the redirection message (step 404 in
FIG. 4) can be sent to the client 40 at any time while steps 502
to 516 are performed or after step 516. It should be noted that
the availability of an object (i.e. whether a requested object is
already cached, currently in transfer or whether the object is
not requested yet) is a further factor that influences the initial
priority of a requested object.

Re-Ordering Decisions
0128. Once the HTTP response is ready to be sent to the
client 40 (step 516 in FIG. 5), it has to be decided if an object
comprised in the HTTP response should actually be delivered
to the client 40, if the client 40 should be redirected or if the
connection 50 via which this object is to be sent to the client
40 should be suspended. A flow chart depicting an exemplary
decision scheme in this regard is depicted in FIG. 6.
0129. In step 602 the HTTP response is ready to be sent to
the client. In the following step 604 the priority of this object
is evaluated with respect to the fact whether or not the priority
has to be updated. If the priority of the object has to be
updated, the priority is adjusted in step 604.
0130. In the next step 606 the current priority of the object

is assessed to find out if it has the highest priority of all objects
that are being transferred or that are expected soon. If it is
determined in step 606 that the requested object actually has
the highest priority, the method moves via node 610 to step
612. In step 612 the requested object is sent to the client 40.
0131) If the comparison of the priority of the currently
requested object with the priority of other objects in step 606
leads to the result that the currently requested object does not
have the highest priority, the method continues with step 614.
With respect to step 606 it should be noted that instead of
comparing the priority of the currently requested object with
the priorities of other objects it is also possible to compare the
priority of the currently requested object with a fixed thresh
old or to add an offset in the comparison so that two priorities
have to be different by more than a predefined threshold
before the difference is considered significant enough.
0.132. In step 614 the proxy server 30 estimates if the link
14 to the client 40 (see FIG. 2) is or will be idle. As explained
above, there are several ways to do that. One of them com
prises calculating a running average of the maximum amount
of data that was sent and acknowledged during the last N
seconds over all connections 50 going to the same client 40.
This gives an estimate of the maximum throughput available.
0133. The result thus obtained is then compared with the
amount of data that is ready to be sent on the connections 50
that are not suspended. If the proxy server 30 detects that it
does not have enough data to send in order to fill the link
during at least one complete round-trip time, then it considers
that there is some spare bandwidth on the link 14 towards the
client 40 and continues with step 616.
0134. In step 616 a comparison similar to that of step 606

is performed. If it is determined in step 616 that the currently
requested object has a higher priority than all objects
expected soon, the proxy server 30 continues via node 610
with step 612 and sends the currently requested object imme
diately to the client 40. Otherwise the method continues with
step 618 and a redirection message (status code "302) is sent
to the client 40 as discussed above in conjunction with FIG. 4.

Mar. 19, 2009

0.135 The decision taken in step 616 can be influenced by
the size of the currently requested object (if it is already
known). If the object is known to be small (e.g. less than twice
the size of a redirection message), then the proxy server will
always send the object instead of sending a redirection mes
sage, even if the object had been assigned a very low priority
until then (this can be considered as one way of updating the
priority).
0.136. If it is determined in step 614 that there is enough
data to be sent in order to fill the link 14, the method continues
with step 620 and suspends the connection 50 to the client 40
via which the currently requested object is to be transferred.
I0137 From either one of step 612,618 and 620 the method
continuous with step 622. In step 622 the proxy server 30
re-evaluates all suspended connections 50 to find out whether
any one of the suspended connections 50 are to be opened
again.
0.138. The HTTP/1.1 protocol supports the pipelining
option, which allows the client 40 to send several requests to
the server 20 or proxy server 30 on the same TCP connection
without waiting for the previous replies. In the case pipelining
is used, more than one object that is ready to be sent could be
sent on the same connection 50 towards the client 40. It is
apparent that in Such a case an object having a low priority
could block a second object having a high priority that is to be
sent on the same connection 50. If there are several objects
waiting on the same connection 50, the maximum or average
priority of these objects may be determined and considered in
steps 606 and 616. This ensures that objects of lower priority
do not block objects of higher priority.

Possible Extensions

0.139. Several extensions, some of which have already
briefly been discussed, to the exemplary embodiment
described with reference to FIGS. 1 to 6 could be imple
mented.
0140. One of these extension relates to constraining the
transfer speed on link 14 in dependence of the priority of the
objects to be transferred. This could be done for example by
allocating a specific share of processing capabilities to each
connection 50 depending on the priority of the objects to be
transferred. The priority of the individual objects is decreased
while the process is running. If the proxy server 30 processes
connections 50 in a round-robin fashion, this feature can be
implemented by limiting the amount of data transferred per
round on each connection 50 by a number that is derived from
the priority of that object. The dynamic allocation of process
ing capabilities can advantageously be combined with the
Suspension and redirection mechanisms discussed above. The
processing capabilities can also include any transformation of
the objects or codes being transferred.
0.141. According to a further extension of the invention,
the priorities are assigned directly by the browser running on
the client 40. The browser can then Schedule the HTTP
requests for individual objects according to their priority. If
the priorities are assigned directly by the browser, there are
Some additional factors that can be used for refining the
priority of each object:

0.142 position of the object in the page (coordinates)
0.143 relative position of the visible area (objects that
are outside the visible area have a lower priority)

0144 if image loading or Script execution is disabled,
the browser knows immediately that it is not necessary
to assign a priority to these objects.

US 2009/0077205 A1

0145 Additionally, the browser knows when a user selects
a new HTML page from the bookmarks or by typing in a new
URL. The browser can thus clear the list of objects that are no
longer required.
0146 A further extension of the invention relates to a
proxy component that is located on the same computer (cli
ent) as the browser or close to this computer in terms of
network links. This situation is depicted in FIG. 7.
0147 As becomes apparent from FIG. 7, the client 40 not
only comprises a browser component 42 but an additional
proxy component 30 (having the structure shown in FIG.3) in
communication with the browser component 42. In such a
case the link 14 between the proxy component 30 and the
browser component 42 has a much higher capacity and lower
latency than the link12 between the proxy component and the
server 20 (not depicted in FIG. 7).
0148. As a result, the client-side proxy component 30
influences the request stream because it cannot do much on
the response stream. Based on the priority information
derived from the current HTTP request and previous HTTP
responses (e.g. previous HTML codes referring to further
objects) as well as an estimate of the link availability, the
client-side proxy component 30 will decide ifa HTTP request
should be forwarded to the server and/or if it should reply
immediately with a redirection message.
014.9 The decisions to be taken are simpler than depicted
in the flow chart of FIG. 6. More particularly, the decisions
can be reduced to evaluating if the currently requested object
has a lower priority than some of the objects being transferred
or expected to be transferred soon and if the link is already
fully used. If both conditions are given, then a redirection
message is sent to the browser component 42. In all other
cases, the HTTP request is immediately forwarded to the
SeVe.

0150. If HTTP pipelining is used on a specific connection
and if some previous HTTP requests are being processed,
then the client-side proxy component 30 can Suspend the
HTTP request until it can take the decision. It will have to take
a decision at the latest when the previous objects have been
fully received.
0151. A still further extension of the invention relates to
the blocking of downloads for some objects based on their
priority. This means that the priority that is assigned to the
objects can also be used to block the objects completely. If a
threshold on the priority has been set, any object that has a
priority that is lower than this threshold will not be sent to the
client 40. In this case the proxy server (or proxy component)
30 would simply return one of the "4xx' or “5xx' status codes
defined in the HTTP/1.1 standard to the client 40 when it
detects such an object. Possible status codes are “403 forbid
den”, “409 conflict or “503 service unavailable'.
0152. As an additional extension the priorities assigned to
the objects could be used for pre-fetching. A pre-fetching
mechanism allows the proxy server 30 to fill its buffer 36 (see
FIG. 3) with some objects before the client 40 actually
requests them. Such a pre-fetching mechanism may for
example be based on the analysis of a HTML code that is sent
from the proxy server 30 to the client 40 and that includes
references to further objects. Based on the analysis of the
references to the objects the proxy component 30 assigns
priorities to the individual objects and on the basis of this
assignment it is defined which objects are to be pre-fetched
and in what order. Preferably, the objects are pre-fetched
starting with the objects having the highest priority.

Mar. 19, 2009

0153. According to a still further extension that may be
combined with the pre-fetching mechanism discussed above,
specific pushing schemes are implemented that allow to trans
fer objects from the proxy server 30 to the client 40 without
having received an explicit object request from the client 40.
0154 Various modifications of the preferred embodiment
are possible without departing from the scope and spirit of the
present invention. Although the invention has been described
in connection with a preferred embodiment, it is to be under
stood that this description is not intended to limit the inven
tion thereto. Rather, the invention is intended to cover all
modifications and/or additions to the above-mentioned
description, without departing from the spirit and the scope of
the invention.

What is claimed:
1. A method of operating a proxy server, comprising:
finding a reference to an object in a previous object that is

to be forwarded to a client; and
upon finding the reference to the object, assigning or

adjusting a priority of the object to be sent to the client.
2. The method according to claim 1, wherein the previous

object comprises HTML code.
3. The method according to claim 1, comprising the step of

generating a priority list that lists individual objects, which
are referred to in the previous object, according to their pri
ority.

4. The method according to claim 1, wherein the priority of
the object is determined depending on the following order of
decreasing priority of an object type:

a link to another page,
a frame, an inlined image,
a style sheet,
same priority for a script or an embedded object or an

applet,
lower priority for a background image,
lowest priority for an object that was already sent to the

client.
5. The method according to claim 1, wherein the priority of

the object to be sent to a client is assigned or adjusted, when
a request, that is issued by a browser running on the client,
relating to said object is received.

6. The method according to claim 5, wherein the request is
an HTTP request.

7. The method according to claim 6, comprising the step of
analyzing the request in an URL context.

8. The method according to claim 6, wherein the priority is
adjusted or assigned in dependence of information in the
header of the HTTP request.

9. The method according to claim 5, comprising the steps
of determining whether the object has already been requested
once by the browser, wherein the object gets a high priority
assigned if the object has already been requested once by the
browser.

10. The method according to claim 5, wherein the object
gets a high priority assigned if the object does not have a
priority yet and the file extension indicates one of an HTML
file, an XML file or a directory index.

11. The method according to claim 5, wherein the priority,
which is assigned or adjusted in reaction of the received
request, depends on whether the request is a conditional
HTTP request.

12. The method according to claim 5, wherein the priority,
which is assigned or adjusted in reaction of the received

US 2009/0077205 A1

request, is lower than for most of other requested objects, if
the object was requested indirectly by a script.

13. The method according to claim 5, wherein the priority
of the object to be sent to a client is assigned or adjusted, when
a response corresponding to a request of the object is
received, wherein said response contains the object.

14. The method according to claim 13, wherein the
response is a HTTP response.

15. The method according to claim 14, wherein a header or
a content of the HTTP response is assessed to adjust the
priority.

16. The method according to claim 14, wherein a reply
code is assessed to adjust the priority, and wherein a higher
priority is assigned if the assessment of the reply code indi
cates an error code than if the assessment of the reply code
indicates a normal reply.

17. The method according to claim 14, wherein a content
type is assessed to adjust the priority, and wherein a higher
priority is assigned if the assessment of the content type
indicates a HTML code than if the assessment of the reply
code indicates an image.

Mar. 19, 2009

18. The method according to claim 14, wherein a size of the
object is assessed, and wherein a Smaller object gets a higher
priority than a larger object.

19. The method according to claim 14, wherein a content of
the object is analyzed to adjust the priority.

20. The method according to claim 19, wherein an ani
mated image gets a lower priority than a static image.

21. The method according to claim 14, wherein if a reply
code is a redirection specifying a new location for the
requested object, said new location gets the same priority as
the original object.

22. The method according to claim 14, wherein the priority
of all objects is decreased after a specified amount of time or
after several HTTP requests or HTTP responses have been
processed.

23. Proxy server, having means adapted to perform the
method according to claim 1.

24. A computer program comprising program code por
tions for performing the steps of claim 1 when the computer
program is run on a computer system.

25. A computer readable recording medium, which stores a
computer program of claim 24.

c c c c c

