
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018211280 B2

(54) Title
MANAGING MEMORY AND STORAGE SPACE FOR A DATA OPERATION

(51) International Patent Classification(s)
G06F9/50 (2006.01)

(21) Application No: 2018211280 (22) Date of Filing: 2018.08.02

(43)
(43)
(44)

Publication Date: 2018.08.23
Publication Journal Date: 2018.08.23
Accepted Journal Date: 2018.11.29

(62) Divisional of:
2014265246

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Khan, Muhammad Arshad;Rybicki, Stephen G.;Gould, Joel

(74) Agent / Attorney
Pizzeys Patent and Trade Mark Attorneys Pty Ltd, PO Box 291, WODEN, ACT, 2606, AU

(56) Related Art
US 7756873 B2
US 2012/0324197 A1
US 2007/0011668 A1



20
18

21
12

80
 

02
 A

ug
 2

01
8 ABSTRACT

In one aspect, the invention comprises a computing system including: a memory device 

providing a working memory space; a storage device providing an overflow storage space; and 

at least one processor configured to process a plurality of data units to generate result 

information, wherein the processing includes: performing a data operation for each data unit of 

a first subset of data units from the plurality of data units and storing information associated 

with a result of the data operation in a first set of one or more data structures stored in the 

working memory space; after an overflow condition on the working memory space is satisfied, 

storing information in the overflow storage space and freeing at least some of the working 

memory space, and performing the data operation for each data unit of a second subset of data 

units from the plurality of data units and storing information associated with a result of the data 

operation in a second set of one or more data structures stored in the working memory space; 

and combining multiple sets of one or more data structures, including the first and second sets, 

to generate the result information.



WO 2014/186673 PCT/US2014/038345
1/8

20
18

21
12

80
 

02
 A

ug
 2

01
8



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

MANAGING MEMORY AND STORAGE SPACE FOR A DATA
OPERATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Application Serial No. 61/824,686, filed

5 on May 17, 2013.

BACKGROUND

This description relates to managing memory and storage space for a data 

operation.

Some computing systems use a virtual memory scheme to manage a memory

10 device used by programs executing within an operating system. For example, the 

operating system may handle translation between a larger virtual address space and a 

smaller real address space of the memory device (also called “main memory”), with 

pages of memory swapped in and out from a storage device that serves as a backing store 

with a larger storage capacity than the memory device. Thus, the amount of working

15 memory accessible to a program is not limited by the size of main memory. In a virtual 

memory scheme, the movement of pages of addresses in the working memory of a 

program back and forth between the memory device and the backing store is generally 

transparent to the program using that working memory. Some computing systems may 

have hardware support for virtual memory such as a memory management unit (MMU)

20 built into a central processing unit (CPU). Some computing systems may also use a 

caching system with one or more levels to store copies of a limited number of main 

memory addresses within relatively faster cache memory to speed repeated access of 

those memory addresses.

SUMMARY

25 In one aspect, in general, a computing system includes: a memory device

providing a working memory space; a storage device providing an overflow storage 

space; and at least one processor configured to process a plurality of data units to 

generate result information. The processing includes: performing a data operation for 

each data unit of a first subset of data units from the plurality of data units and storing

- 1-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

information associated with a result of the data operation in a first set of one or more data 

structures stored in the working memory space; after an overflow condition on the 

working memory space is satisfied, storing information in the overflow storage space and 

freeing at least some of the working memory space, and performing the data operation for 

5 each data unit of a second subset of data units from the plurality of data units and storing

information associated with a result of the data operation in a second set of one or more 

data structures stored in the working memory space; and combining multiple sets of one 

or more data structures, including the first and second sets, to generate the result 

information. Storing the information associated with a result of the data operation in a set 

10 of one or more data structures includes, for at least one data unit, performing an operation 

that changes information in the set of one or more data structures without increasing the 

amount of the working memory space used for the set of one or more data structures.

Aspects can include one or more of the following features.

The overflow condition on the working memory space is satisfied if the amount of 

15 the working memory space used for the first set of one or more data structures is greater 

than or equal to a predetermined threshold.

The processing further includes, after the overflow condition being satisfied and 

before performing the data operation for each data unit of the second subset of data units, 

storing the first set of one or more data structures in the overflow storage space, and 

20 removing the first set of one or more data structures from the working memory space.

Combining multiple sets of one or more data structures includes merging at least 

one data structure from the first set with at least one data structure from the second set.

Merging at least one data structure from the first set with at least one data 

structure from the second set includes matching a first key in the data structure from the 

25 first set of one or more data structures with a second key in the data structure from the

second set of one or more data structures, and performing an aggregation operation on a 

value associated with the first key and a value associated with the second key.

The processing further includes, after the overflow condition being satisfied and 

before performing the data operation for each data unit of the second subset of data units, 

30 performing the data operation for each data unit of a third subset of data units from the 

plurality of data units and storing information associated with a result of the data

-2-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

operation in the first set of one or more data structures stored in the working memory 

space.

The second subset of data units is a subset of the data units of the third subset of 

data units.

5 The processing further includes, after performing the data operation for a first

data unit of the third subset of data units, determining whether to store information 

associated with a result of the data operation in: (1) the first set of one or more data 

structures stored in the working memory space, or (2) the overflow storage space.

The operation that changes information in the set of one or more data structures

10 includes an in-place memory operation that overwrites a value stored in a location within 

the working memory space with a different value stored in the same location within the 

working memory space.

Storing information associated with a result of the data operation in the overflow 

storage space includes storing at least some content of the first data unit in the overflow 

15 storage space.

Performing the data operation for the first data unit includes comparing a key in 

the first data unit to one or more keys in the first set of one or more data structures, and 

the information associated with a result of the data operation is stored in the first set of 

one or more data structures stored in the working memory space if the comparison results 

20 in a match, and the information associated with a result of the data operation is stored in 

the overflow storage space if the comparison does not result in a match.

The processing further includes generating the plurality of data units from a data 

source, with each data unit including an identifier for a field of the data source and a 

value appearing in that field within a record of the data source.

25 The data operation includes an aggregation of information from multiple data

units using the values included in the data units as keys for selecting matching data units 

from which information is aggregated.

The memory device includes a volatile memory device.

The storage device includes a non-volatile storage device.

30 In another aspect, in general, a computing system includes: means for providing a

working memory space; means for providing an overflow storage space; and means for

- 3-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

processing a plurality of data units to generate result information. The processing 

includes: performing a data operation for each data unit of a first subset of data units from 

the plurality of data units and storing information associated with a result of the data 

operation in a first set of one or more data structures stored in the working memory

5 space; after an overflow condition on the working memory space is satisfied, storing 

information in the overflow storage space and freeing at least some of the working 

memory space, and performing the data operation for each data unit of a second subset of 

data units from the plurality of data units and storing information associated with a result 

of the data operation in a second set of one or more data structures stored in the working

10 memory space; and combining multiple sets of one or more data structures, including the 

first and second sets, to generate the result information. Storing the information 

associated with a result of the data operation in a set of one or more data structures 

includes, for at least one data unit, performing an operation that changes information in 

the set of one or more data structures without increasing the amount of the working

15 memory space used for the set of one or more data structures.

In another aspect, in general, a method for processing a plurality of data units to 

generate result information, including: performing a data operation for each data unit of a 

first subset of data units from the plurality of data units and storing information 

associated with a result of the data operation in a first set of one or more data structures

20 stored in working memory space of a memory device; after an overflow condition on the 

working memory space is satisfied, storing information in overflow storage space of a 

storage device and freeing at least some of the working memory space, and performing 

the data operation for each data unit of a second subset of data units from the plurality of 

data units and storing information associated with a result of the data operation in a

25 second set of one or more data structures stored in the working memory space; and 

combining multiple sets of one or more data structures, including the first and second 

sets, to generate the result information. Storing the information associated with a result 

of the data operation in a set of one or more data structures includes, for at least one data 

unit, performing an operation that changes information in the set of one or more data

30 structures without increasing the amount of the working memory space used for the set of 

one or more data structures.

-4-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

In another aspect, in general, software is stored on a computer-readable medium 

for processing a plurality of data units to generate result information. The software 

includes instructions for causing a computing system to: perform a data operation for 

each data unit of a first subset of data units from the plurality of data units and storing

5 information associated with a result of the data operation in a first set of one or more data 

structures stored in the working memory space of a memory device; after an overflow 

condition on the working memory space is satisfied, store information in overflow 

storage space of a storage device and freeing at least some of the working memory space, 

and perform the data operation for each data unit of a second subset of data units from the

10 plurality of data units and storing information associated with a result of the data 

operation in a second set of one or more data structures stored in the working memory 

space; and combine multiple sets of one or more data structures, including the first and 

second sets, to generate the result information. Storing the information associated with a 

result of the data operation in a set of one or more data structures includes, for at least

15 one data unit, performing an operation that changes information in the set of one or more 

data structures without increasing the amount of the working memory space used for the 

set of one or more data structures.

In another aspect, in general, a computing system includes: a memory device 

providing a working memory space; a storage device providing an overflow storage

20 space; and at least one processor configured to process a plurality of data units to 

generate result information. The processing includes: performing a data operation for 

each data unit of a first subset of data units from the plurality of data units and storing 

information associated with a result of the data operation in a first set of one or more data 

structures stored in the working memory space; and after an overflow condition on the

25 working memory space is satisfied, performing the data operation for each data unit of a 

second subset of data units from the plurality of data units and determining whether to 

store information associated with a result of the data operation in: (1) the first set of one 

or more data structures stored in the working memory space, or (2) the overflow storage 

space.

30 Aspects can include one or more of the following features.



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

The overflow condition on the working memory space is satisfied if the amount of 

the working memory space used for the first set of one or more data structures is greater 

than or equal to a predetermined threshold.

The data operation is based at least in part on a key value in each data unit, and

5 the determining includes searching for at least one key value in at least one of the data 

structures of the first set to determine whether to: (1) update information associated with 

that key value in a data structure of the first set of one or more data structures in the 

working memory space, or (2) store information associated with that key value in the 

overflow storage space.

10 The data operation includes an in-place memory operation that overwrites a value

stored in a location within the working memory space with a different value stored in the 

same location within the working memory space.

Storing information associated with a result of the data operation in the overflow 

storage space includes storing at least some content of the data unit on which the data 

15 operation is performed in the overflow storage space.

Performing the data operation for a first data unit includes comparing a key in the 

first data unit to one or more keys in the first set of one or more data structures, and the 

information associated with a result of the data operation is stored in the first set of one or 

more data structures stored in the working memory space if the comparison results in a 

20 match, and the information associated with a result of the data operation is stored in the 

overflow storage space if the comparison does not result in a match.

The processing further includes generating the plurality of data units from a data 

source, with each data unit including an identifier for a field of the data source and a 

value appearing in that field within a record of the data source.

25 The data operation includes an aggregation of information from multiple data

units using the values included in the data units as keys for selecting matching data units 

from which information is aggregated.

Generating the plurality of data units includes generating data units for at least a 

first field of the data source and at least a second field of the data source.

30 Performing the data operation for each data unit of the second subset includes:

storing information associated with a result of the data operation performed on a first data

- 6-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

unit in the first set of one or more data structures, and storing information associated with 

a result of the data operation performed on a second data unit in the overflow storage 

space.

The first data unit and the second data unit include respective identifiers for the

5 same field of the data source.

The memory device includes a volatile memory device.

The storage device includes a non-volatile storage device.

In another aspect, in general, a computing system includes: means for providing a 

working memory space; means for providing an overflow storage space; and means for

10 processing a plurality of data units to generate result information. The processing 

includes: performing a data operation for each data unit of a first subset of data units from 

the plurality of data units and storing information associated with a result of the data 

operation in a first set of one or more data structures stored in the working memory 

space; and after an overflow condition on the working memory space is satisfied,

15 performing the data operation for each data unit of a second subset of data units from the 

plurality of data units and determining whether to store information associated with a 

result of the data operation in: (1) the first set of one or more data structures stored in the 

working memory space, or (2) the overflow storage space.

In another aspect, in general, a method for processing a plurality of data units to

20 generate result information includes: performing a data operation for each data unit of a 

first subset of data units from the plurality of data units and storing information 

associated with a result of the data operation in a first set of one or more data structures 

stored in working memory space of a memory device; and after an overflow condition on 

the working memory space is satisfied, performing the data operation for each data unit

25 of a second subset of data units from the plurality of data units and determining whether 

to store information associated with a result of the data operation in: (1) the first set of 

one or more data structures stored in the working memory space, or (2) overflow storage 

space of a storage device.

In another aspect, in general, software is stored on a computer-readable medium

30 for processing a plurality of data units to generate result information. The software 

including instructions for causing a computing system to: perform a data operation for

-7-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

each data unit of a first subset of data units from the plurality of data units and storing 

information associated with a result of the data operation in a first set of one or more data 

structures stored in working memory space of a memory device; and after an overflow 

condition on the working memory space is satisfied, perform the data operation for each 

5 data unit of a second subset of data units from the plurality of data units and determine 

whether to store information associated with a result of the data operation in: (1) the first 

set of one or more data structures stored in the working memory space, or (2) overflow 

storage space of a storage device.

In another aspect, in general, a computing system includes: a memory device

10 providing a working memory space; a storage device providing an overflow storage 

space; and at least one processor configured to process a plurality of data units to 

generate result information. The processing includes: performing a data operation for 

each data unit of a first subset of data units from the plurality of data units, the data 

operation including searching for a value in the data unit within at least one data structure

15 of a first set of one or more data structures stored in the working memory space, and if 

the value is found modifying information in at least one data structure of the first set, and 

if the value is not found adding information to at least one data structure of the first set; 

after an overflow condition on the working memory space is satisfied, storing 

information in the overflow storage space and freeing at least some of the working

20 memory space, and for each data unit of a second subset of data units from the plurality 

of data units, performing the data operation including searching for a value in the data 

unit within at least one data structure of a second set of one or more data structures stored 

in the working memory space, and if the value is found modifying information in at least 

one data structure of the second set; and combining multiple sets of one or more data

25 structures, including the first and second sets, to generate the result information. 

Aspects can include one or more of the following features.

The overflow condition on the working memory space is satisfied if the amount of 

the working memory space used for the first set of one or more data structures is greater 

than or equal to a predetermined threshold.

30 The processing further includes, after the overflow condition being satisfied and

before performing the searching for each data unit of the second subset of data units,

- 8-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

storing the first set of one or more data structures in the overflow storage space, and 

removing the first set of one or more data structures from the working memory space.

Combining multiple sets of one or more data structures includes merging at least 

one data structure from the first set with at least one data structure from the second set.

5 Merging at least one data structure from the first set with at least one data

structure from the second set includes matching a first key in the data structure from the 

first set of one or more data structures with a second key in the data structure from the 

second set of one or more data structures, and performing an aggregation operation on a 

value associated with the first key and a value associated with the second key.

10 The processing further includes, after the overflow condition being satisfied and

before performing the searching for each data unit of the second subset of data units, for 

each data unit of a third subset of data units from the plurality of data units, searching for 

a value in the data unit within at least one data structure of the first set of one or more 

data structures stored in the working memory space, and if the value is found modifying

15 information in at least one data structure of the first set.

The second subset of data units is a subset of the data units of the third subset of 

data units.

Modifying the information includes performing an in-place memory operation 

that overwrites a value stored in a location within the working memory space with a

20 different value stored in the same location within the working memory space.

The processing further includes generating the plurality of data units from a data 

source, with each data unit including an identifier for a field of the data source and a 

value appearing in that field within a record of the data source.

The first set of one or more data structures includes a plurality of associative

25 arrays of key-value pair entries.

Searching for the value in the data unit within at least one data structure of a first 

set of one or more data structures stored in the working memory space includes searching 

for the value as a key for an entry within a selected one of the associative arrays of key­

value pair entries.

30 The selected one of the associative arrays of key-value pair entries corresponds to

the identifier in the data unit.

-9-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

Modifying information in at least one data structure of the first set includes 

incrementing the value of the key-value pair entry that was found.

Adding information to at least one data structure of the first set includes adding a 

new key-value pair entry to the selected array having as its key the value in the data unit

5 and having as its value a count of one.

The memory device includes a volatile memory device.

The storage device includes a non-volatile storage device.

In another aspect, in general, a computing system includes: means for providing a 

working memory space; means for providing an overflow storage space; and means for

10 processing a plurality of data units to generate result information. The processing 

includes: performing a data operation for each data unit of a first subset of data units from 

the plurality of data units, the data operation including searching for a value in the data 

unit within at least one data structure of a first set of one or more data structures stored in 

the working memory space, and if the value is found modifying information in at least

15 one data structure of the first set, and if the value is not found adding information to at 

least one data structure of the first set; after an overflow condition on the working 

memory space is satisfied, storing information in the overflow storage space and freeing 

at least some of the working memory space, and for each data unit of a second subset of 

data units from the plurality of data units, performing the data operation including

20 searching for a value in the data unit within at least one data structure of a second set of 

one or more data structures stored in the working memory space, and if the value is found 

modifying information in at least one data structure of the second set; and combining 

multiple sets of one or more data structures, including the first and second sets, to 

generate the result information.

25 In another aspect, in general, a method for processing a plurality of data units to

generate result information includes: performing a data operation for each data unit of a 

first subset of data units from the plurality of data units, the data operation including 

searching for a value in the data unit within at least one data structure of a first set of one 

or more data structures stored in working memory space of a memory device, and if the

30 value is found modifying information in at least one data structure of the first set, and if 

the value is not found adding information to at least one data structure of the first set;

- 10-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

after an overflow condition on the working memory space is satisfied, storing 

information in overflow storage space of a storage device and freeing at least some of the 

working memory space, and for each data unit of a second subset of data units from the 

plurality of data units, performing the data operation including searching for a value in

5 the data unit within at least one data structure of a second set of one or more data 

structures stored in the working memory space, and if the value is found modifying 

information in at least one data structure of the second set; and combining multiple sets 

of one or more data structures, including the first and second sets, to generate the result 

information.

10 In another aspect, in general, software is stored on a computer-readable medium

for processing a plurality of data units to generate result information. The software 

includes instructions for causing a computing system to: perform a data operation for 

each data unit of a first subset of data units from the plurality of data units, the data 

operation including searching for a value in the data unit within at least one data structure

15 of a first set of one or more data structures stored in working memory space of a memory 

device, and if the value is found modifying information in at least one data structure of 

the first set, and if the value is not found adding information to at least one data structure 

of the first set; after an overflow condition on the working memory space is satisfied, 

store information in overflow storage space of a storage device and free at least some of

20 the working memory space, and for each data unit of a second subset of data units from 

the plurality of data units, perform the data operation including searching for a value in 

the data unit within at least one data structure of a second set of one or more data 

structures stored in the working memory space, and if the value is found modifying 

information in at least one data structure of the second set; and combine multiple sets of

25 one or more data structures, including the first and second sets, to generate the result 

information.

In another aspect, in general, a computing system includes: a memory device 

providing a working memory space; a storage device providing an overflow storage 

space; and at least one processor configured to process a plurality of data units to

30 generate result information. The processing includes: performing a data operation for 

each data unit of a first subset of data units from the plurality of data units, and storing

- 11-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

information associated with a result of the data operation in a first set of one or more data 

structures stored in the working memory space; after an overflow condition on the 

working memory space is satisfied, storing information in the overflow storage space; 

and repeating an overflow processing procedure multiple times during the processing of 

5 the plurality of data units, the overflow processing procedure including: updating a new 

set of one or more data structures stored in the working memory space using at least some 

information stored in the overflow storage space.

Aspects can include one or more of the following features.

The overflow condition on the working memory space is satisfied if the amount of 

10 the working memory space used for the first set of one or more data structures is greater 

than or equal to a predetermined threshold.

The processing further includes, after the overflow condition being satisfied and 

before performing the data operation for each data unit of the second subset of data units, 

storing the first set of one or more data structures in the overflow storage space as a

15 moved set, and removing the first set of one or more data structures from the working 

memory space.

Updating a new set of one or more data structures stored in the working memory 

space using at least some information stored in the overflow storage space includes 

merging information from at least one data structure from the moved set of one or more 

20 data structures stored in the overflow storage space with at least one data structure from 

the new set of one or more data structures stored in the working memory space.

The merging includes matching a first key in the data structure from the moved 

set of one or more data structures with a second key in the data structure from the new set 

of one or more data structures, and performing an aggregation operation on a value

25 associated with the first key and a value associated with the second key.

Updating a new set of one or more data structures stored in the working memory 

space using at least some information stored in the overflow storage space includes 

matching a first key in a data unit stored in the overflow storage space with a second key 

in a data structure from the new set of one or more data structures, and incrementing a 

30 value associated with the second key.

- 12-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

Updating a new set of one or more data structures stored in the working memory 

space using at least some information stored in the overflow storage space includes 

performing an in-place memory operation that overwrites a value stored in a location 

within the working memory space with a different value stored in the same location

5 within the working memory space.

The processing further includes generating the plurality of data units from a data 

source, with each data unit including an identifier for a field of the data source and a 

value appearing in that field within a record of the data source.

The data operation includes an aggregation of information from multiple data

10 units using the values included in the data units as keys for selecting matching data units 

from which information is aggregated.

The first set of one or more data structures includes a plurality of associative 

arrays of key-value pair entries.

The data operation for a first data unit includes using a value in the first data unit

15 as a key to search within a selected one of the associative arrays of key-value pair entries. 

The selected one of the associative arrays of key-value pair entries corresponds to 

the identifier in the first data unit.

The memory device includes a volatile memory device.

The storage device includes a non-volatile storage device.

20 In another aspect, in general, a computing system includes: means for providing a

working memory space; means for providing an overflow storage space; and means for 

processing a plurality of data units to generate result information. The processing 

includes: performing a data operation for each data unit of a first subset of data units from 

the plurality of data units, and storing information associated with a result of the data

25 operation in a first set of one or more data structures stored in the working memory 

space; after an overflow condition on the working memory space is satisfied, storing 

information in the overflow storage space; and repeating an overflow processing 

procedure multiple times during the processing of the plurality of data units, the overflow 

processing procedure including: updating a new set of one or more data structures stored

30 in the working memory space using at least some information stored in the overflow 

storage space.

- 13-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

In another aspect, in general, a method for processing a plurality of data units to 

generate result information includes: performing a data operation for each data unit of a 

first subset of data units from the plurality of data units, and storing information 

associated with a result of the data operation in a first set of one or more data structures 

5 stored in working memory space of a memory device; after an overflow condition on the 

working memory space is satisfied, storing information in overflow storage space of a 

storage device; and repeating an overflow processing procedure multiple times during the 

processing of the plurality of data units, the overflow processing procedure including: 

updating a new set of one or more data structures stored in the working memory space

10 using at least some information stored in the overflow storage space.

In another aspect, in general, software is stored on a computer-readable medium 

for processing a plurality of data units to generate result information. The software 

includes instructions for causing a computing system to: perform a data operation for 

each data unit of a first subset of data units from the plurality of data units, and store

15 information associated with a result of the data operation in a first set of one or more data 

structures stored in working memory space of a memory device; after an overflow 

condition on the working memory space is satisfied, store information in overflow 

storage space of a storage device; and repeat an overflow processing procedure multiple 

times during the processing of the plurality of data units, the overflow processing

20 procedure including: updating a new set of one or more data structures stored in the 

working memory space using at least some information stored in the overflow storage 

space.

Aspects can have one or more of the following advantages.

Some computing systems (e.g., some database management systems) do not rely

25 solely on virtual memory to manage working memory, but are able to directly control 

whether data being processed is to be stored in main memory or in an overflow storage 

space in the storage device. For example, some systems impose an explicit limit on the 

size of the working memory that is available to a program, with that working memory 

limit being smaller than the size of main memory (e.g., since that program may be

30 sharing the working memory with other programs). If the program approaches that 

working memory limit, the program has the option to use a “spill to disk” technique to

- 14-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

temporarily store some data within the overflow storage space and finish processing that 

data later, after enough working memory has been made available. In some cases, 

spilling data to disk, or relying on the operating system to swap memory pages, can have 

a large effect on the performance of a data operation.

5 For some applications of data processing systems, such as the data profiling

described in more detail below, if a data operation is meant to be performed on a 

potentially large amount of data (e.g., large datasets and/or a large numbers of datasets), 

the system should be configured to manage the working memory and overflow storage 

space in an efficient manner in order to ensure that the data processing application can

10 provide adequate performance. One approach to managing the working memory and 

overflow storage space is based on the recognition that, for some data operations, instead 

of spilling incoming data to disk without processing it, the system can at least partially 

perform the data operation on that incoming data, and in some cases avoid the need to 

spill that incoming data to disk.

15 For example, some data operations process a stream of incoming records that are

each associated with a key value, and for records whose key value matches a previous 

key value, the data operation updates a result stored in a data structure in memory. In 

some implementations, the computing system described herein is able to keep processing 

new records with any key even after the working memory limit has been reached, using

20 an “overflow processing” procedure. Two specific examples of overflow processing 

procedures are described. Both procedures enable some records to be matched and used 

to update a result data structure without having to spill those records. For the matched 

records, the result data structure can be updated in-place without using more memory. 

One overflow processing procedure handles overflow by moving only the result data

25 structure to overflow storage and continuing to process all new records (in a new result 

data structure to be merged with the moved result data structure), and the other overflow 

processing procedure handles overflow by moving only non-matching records to 

overflow storage and continuing to process all new records (in the same result data 

structure).

30 One example of a data operation that can be performed using the techniques

described herein is a census operation used to generate a census of data values (including

- 15-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

values appearing in a dataset and a count for each value) within a large dataset for 

profiling the dataset. A data profiling operation may include any operation that is 

performed on data that is being processed during the execution of a data profiling 

procedure, such as the census operation. A census operation may also be performed on

5 data that is being processed in other contexts, such as in a data quality system that tracks 

characteristics of data over time. Other data operations to which the techniques can be 

applied include data operations that allow merging of incomplete results, and data 

operations for which at least some cases can be handled in-place within a data structure in 

memory, as described in more detail below. The techniques can be used to process data

10 units such as the normalized records described herein, or any other data unit that 

represents an individual portion of data within a stream of data.

Other features and advantages of the invention will become apparent from the 

following description, and from the claims.

DESCRIPTION OF DRAWINGS

15 FIG. 1 is a block diagram of a data processing system.

FIG. 2 is a schematic diagram of a data profiling procedure.

FIGS. 3 and 5 are schematic diagrams of census generation procedures. 

FIGS. 4A-4C and 6 are flowcharts of census generation procedures.

DESCRIPTION

20 FIG. 1 shows an example of a data processing system 100 in which the techniques

to manage working memory and overflow storage space can be used. The data 

processing system 100 includes a data source 102 that may include one or more sources 

of data such as storage devices or connections to online data streams, each of which may 

store or provide data in any of a variety of formats (e.g., database tables, spreadsheet

25 files, flat text files, or a native format used by a mainframe). The data processing system

100 includes a computing system 104, which includes at least one processor 106, at least

one memory device 108 (e.g., volatile memory such as Dynamic Random Access

Memory) coupled to the processor 106, and at least one storage device 110 (e.g., non­

volatile storage such as a magnetic hard disk drive) coupled to the processor 106. After

30 the computing system 100 processes data from the data source 102, results of that

- 16-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

processing may be provided in a user interface (UI) 112, including automatically 

providing visual indications to a user about conditions that prevail in the data source 102 

or about conditions that will prevail in a destination that is to receive and process data 

from the data source 102.

5 A variety of configurations of different components of the data processing system

100 are possible. The processor 106 may be configured to host an execution environment 

controlled, for example, by a suitable operating system, such as a version of the UNIX 

operating system. In some implementations, the computing system 104 may be part of a 

multiple-node parallel computing environment including a configuration of multiple

10 central processing units (CPUs) or processor cores, either local (e.g., multiprocessor 

systems such as symmetric multi-processing (SMP) computers), or locally distributed 

(e.g., multiple processors coupled as clusters or massively parallel processing (MPP) 

systems, or remote, or remotely distributed (e.g., multiple processors coupled via a local 

area network (LAN) and/or wide-area network (WAN)), or any combination thereof.

15 Storage devices providing the data source 102 may be local to the computing system 104, 

for example, being stored on a storage medium connected to the computing system 104 

(including the storage device 110), or may be remote to the computing system 104, for 

example, being hosted on a remote system (e.g., a mainframe) in communication with the 

computing system 104, over a remote connection (e.g., provided by a cloud computing

20 infrastructure).

In some implementations, the computing system 104 is configured to execute 

applications as dataflow graphs that include nodes (representing data processing 

components or datasets) connected by directed links (representing flows of work 

elements, i.e., data) between the nodes. For example, such an environment is described

25 in more detail in U.S. Publication No. 2007/0011668, titled “Managing Parameters for 

Graph-Based Applications,” incorporated herein by reference. A system for executing 

such graph-based computations is described in U.S. Patent 5,966,072, titled 

“EXECUTING COMPUTATIONS EXPRESSED AS GRAPHS,” incorporated herein by 

reference. Dataflow graphs made in accordance with this system provide methods for

30 getting information into and out of individual processes represented by graph 

components, for moving information between the processes, and for defining a running

- 17-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

order for the processes. This system includes algorithms that choose interprocess 

communication methods from any available methods (for example, communication paths 

according to the links of the graph can use TCP/IP or UNIX domain sockets, or use 

shared memory to pass data between the processes).

5 The computing system 104 can receive data from a variety of types of systems

that may embody the data source 102, including different forms of database systems. The 

data may be organized as datasets representing a collection of records that have values for 

respective fields (also called “attributes” or “columns”), including possibly null values. 

When first reading data from a data source, the computing system 104 typically starts

10 with some initial format information about records in that data source. In some 

circumstances, the record structure of the data source may not be known initially and may 

instead be determined after analysis of the data source or the data. The initial information 

about records can include, for example, the number of bits that represent a distinct value, 

the order of fields within a record, and the type of value (e.g., string, signed/unsigned

15 integer) represented by the bits.

One example of a type of processing that the data processing system 100 is able to 

perform on the data within the data source 102 is data profiling. Stored datasets may 

include data for which various characteristics are not known beforehand. For example, 

ranges of values or typical values for a dataset, relationships between different fields

20 within the dataset, or functional dependencies among values in different fields, may be 

unknown. Data profiling can involve examining any number of potentially related 

datasets in order to determine such characteristics. The computing system 104 may also 

perform various tasks such as cleansing the data in the data source 102 or managing 

metadata for datasets stored in the data source 102. In implementations in which the

25 computing system 104 is configured to execute applications as dataflow graphs, the data 

profiling can be performed, for example, by a profiler component node in a data flow 

graph that has an input port connected by a dataflow link to an input dataset and an 

output port connected by a dataflow link to a downstream component configured to 

perform a task using results of the data profiling.

30 When performing data profiling, the computing system 104 reads data from the

data source 102 and stores profiling summary information, which can be used to perform

- 18-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

various types of analysis to characterize different datasets and different fields within 

different datasets. In some implementations, the profiling summary information includes 

a census of the values appearing within particular fields (e.g., selected fields of selected 

datasets, or all fields of all datasets). The census lists all of the distinct values within a

5 field and quantifies the number of times each distinct value appears. In some 

implementations, the census data is stored in a single data structure, optionally indexed 

by field, and in other implementations, the census data is stored in multiple data 

structures, for example, one for each field.

The census data for a particular field being profiled can be organized as a list of

10 entries, with each entry including: an identifier for the field, a value appearing within the 

field, and a count of a number of records in which that value appears in that field. There 

is an entry for each distinct value, so each value in an entry is different from the values in 

other entries, and the number of entries is equal to the number of distinct values 

appearing within a field. The identifier for the field can be any value that uniquely

15 identifies the field being profiled. For example, the fields being profiled can be 

enumerated by assigning each field an integer index in a range from 1 to the number of 

fields being profiled. Such an index can be stored compactly within the census data 

structure. Even if the census data for different fields are stored in separate data 

structures, it may still be useful to include the particular field identifier for that field

20 within each entry of the data structure (e.g., to distinguish entries from different data 

structures streamed into a processing module). Alternatively, in some implementations, 

if the census data for different fields are stored in separate data structures the field only 

has to be stored once for that data structure, and each entry is implicitly associated with 

that field and only includes the value and the count.

25 FIG. 2 illustrates an example of a census based data profiling procedure

performed by a program executing on the computing system 104 that includes: a 

normalize module 200 for generating a stream 208 of normalized records, a census 

generation module 202 for processing the stream 208 of normalized records into census 

files 210, and a census processing module 204 for analyzing the census files 210 to

30 compute profile results. The normalize module 200 reads one or more datasets to be 

profiled, such as a table 206. The table 206 has three fields, named FIELD 1, FIELD2,

- 19-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

and FIELD3, and the first few data records in the table 206 (for the first three rows) are 

shown with respective values for each of the three fields. The normalize module 200 

generates normalized records by breaking a particular data record into a series of 

normalized records that each include: a field index, and a data value. The field index is

5 an index value that was assigned to a particular field to uniquely (and efficiently) identify 

that field (e.g., 1=FIELD1,2=FIELD2, 3=FIELD3), and the data value is the 

corresponding value contained in the data record for that field. In this example, the first 

data record in the table 206 would yield the following (field index, data value) pairs 

within three respective normalized records: (1, A), (2, M), (3, X). The census generation

10 module 202 aggregates data values from the normalized records in the stream 208 to 

produce the census files 210. (In FIG. 2, the values shown in the entries of the census 

files 210 correspond to the first three data records in the table 206, which would be 

updated as normalized records from additional data records in the table 206 were 

processed by the census generation module 202.)

15 For a particular dataset, the normalized records can be inserted into the stream

208 in any order. In this example, the stream 208 includes all of the normalized records 

for a particular data record followed by all of the normalized records for the next data 

record as the data records appear in the table 206. Alternatively, the table 206 could be 

processed by field, such that the stream includes all of the normalized records for a

20 particular field followed by all of the normalized records for the next field as the fields 

appear in the table 206. Higher dimensional data sets can also be normalized in this way, 

with normalized records being added to the output stream based, for example, on an order 

that will be most efficient for reading the dataset, or for generating the census files from 

the resulting stream. The stream 208 of normalized records can be written into a file to

25 be processed by the downstream census generation module 202 after all normalized 

records have been generated, or the stream 208 of normalized records can be provided to 

the down stream census generation module 202 as they are being generated (e.g., to take 

advantage of the resulting pipeline parallelism).

The census generation module 202 processes the normalized records until the end

30 of the stream 208 is reached (e.g., as indicated by an end-of-stream record). The module

202 performs a type of census operation on a normalized record, called a “census

-20-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

matching operation,” to determine if the data value in that normalized record matches a 

previous data value from a previously processed normalized record. The module 202 

performs the census matching operation at least once for each normalized record within 

the stream 208. The module 202 stores information associated with a result of the census 

5 matching operation in at least one data structure stored in working memory space in the 

memory device 108. The working memory space used for the data structure includes 

both memory for any overhead of the data structure and all information in the data 

structure, including any memory for data referenced by pointers. If the census matching 

operation found a match to a previous data value, then a stored count associated with that 

10 data value is incremented. Otherwise, if the census matching operation did not find a 

match to a previous data value, then a new entry is stored in the data structure.

For example, the data structure may be an associative array that is able to store 

key-value pairs with unique keys being used to look up associated values within the 

array. In this example, the key is a data value from the normalized records, and the value 

15 is a count that will be incremented up to the total count for the census data. The count 

starts at 1 when the key-value pair is created for a normalized record with a particular 

data value as its key that does not match any key already existing in the associative array, 

and is incremented by 1 every time another normalized record has a data value that 

matches an existing key. The module 202 looks up data values of normalized records for 

20 different fields (as determined by the field index within each normalized record) within 

different associative arrays, with one associative array allocated for each of the fields 

being profiled. In some implementations, the number of fields being profiled is known in 

advance, and an empty associative array (which uses only a minimal amount of storage 

space) is allocated for each field at the beginning of the profiling procedure.

25 The associative array can be implemented, for example, using a hash table or

other data structure that provides efficient lookup of the keys and modification of the 

associated values. The data value used as the key of a key-value pair can store a copy of 

the data value itself or a pointer to the data value stored in a different location in the 

working memory (e.g., stored in a copy of the normalized record). The associative array 

30 along with the stored copy of the data value from the normalized record, or even the 

entire normalized record itself, may then be collectively considered as the data structure

-21-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

storing the census matching results. In implementations in which pointers to data values 

in normalized records are stored in the associative array, only the first normalized record 

containing a particular key needs to be stored in the working memory, and subsequent 

normalized records containing that particular key can be removed from working memory 

5 after the census matching operation.

In the examples below, these associative arrays for the fields being profiled are 

called “census arrays” and the key-value pairs are called “census entries” within a census 

array. At the end of the data profiling procedure, the census arrays generated by the 

census generation module 202 will store all the distinct data values appearing within the 

10 table 206 within separate census entries, and the total count of the number of times that 

data value appears within rows of the table 206, which represent the data records being 

profiled.

The program performing the data profiling procedure, or a portion of the program 

(e.g., the census generation module 202), may be given a memory limit setting a

15 maximum amount of working memory space within the memory device 108 that the 

program is allowed to use. The program may use the working memory space for storing 

the census arrays, which may require most of the working memory space allowed, and for 

storing other temporary values, which may require significantly less space than the 

census arrays. An overflow condition on the working memory space is satisfied when the 

20 module 202 determines that there is likely to be insufficient available working memory 

space to add an additional entry to the census array, or that there is no longer any 

available working memory space to add an additional entry (e.g., due to the last entry 

added). The module 202 can make this determination by measuring the memory size of 

the census arrays. This memory size represents the amount of the working memory space 

25 used for the census arrays, which includes the total amount of memory occupied by any 

overhead used for the data structures representing the census arrays and all information in 

those data structures (including any data values or normalized records referenced by 

pointers within the census array). The module 202 then compares this memory size to the 

memory limit (or other threshold).

30 In some implementations, the program sets an overflow threshold to detect when

the memory size of the census arrays is close to the memory limit. The memory size of

-22-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

the census arrays can be measured directly, for example, by computing the sum of the 

sizes of the individual census arrays, where the size of an individual census array is 

measured as a number of bits of within the working memory space occupied by that 

census array. Alternatively the memory size of the census arrays can be measured

5 indirectly, for example, by computing an amount of available space left within the 

working memory space without directly measuring the memory size of the census arrays 

(e.g., a range of memory addresses that are left from an allocated block of memory 

addresses). In some implementations, the program sets the overflow threshold that is just 

below the memory limit to reserve some space for other values. In some

10 implementations, the overflow threshold may be equal to the memory limit, for example, 

if the space needed for the other values is negligible and/or the computing system 104 

does not impose strict memory limits, allowing the memory limit to be exceeded by small 

amounts for relatively short periods of time.

After an overflow condition has been triggered, the program uses an overflow

15 processing procedure to store some data needed to generate the completed census arrays 

overflow storage space within the storage device 110. Exactly what is stored in the 

overflow storage space depends on the type of overflow processing procedure that is 

used. In the examples of overflow processing procedures described below, the program 

continues to perform the census matching operation for each normalized record processed

20 after the overflow condition has been triggered, and stores information associated with a 

result of the census matching operation (i.e., an incremented count in a census entry, or a 

new census entry), either in the same set of census arrays in working memory or in a new 

set of census arrays in working memory, as described in more detail below. If an 

overflow condition was triggered at some point during the processing of he normalized

25 records in the stream 208, some data will be stored in the working memory space, and 

some data will be stored in the overflow storage space. In the examples of overflow 

processing procedures described below, the data in both locations is combined in some 

way to generate completed census arrays. Each census array is output within its own 

census file 210 for processing by the census processing module 204. Again, the exact

30 combination procedure used depends on the type of overflow processing procedure that is 

used. The census file 210 can optionally be output from the census generation module

-23-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

202 in stages with census arrays or sets of census array entries being sent to an output 

port as they are completed.

The two examples of overflow processing procedures described below can both 

be used by the same census generation module 202. In one mode, one of the procedures 

5 can be used, and in another mode, the other of the procedures can be used. The mode can 

be determined by a user, for example, or by some initial analysis (e.g., performed on a 

subset of a dataset being profiled, or on historical profile information for the same or 

similar dataset) to estimate which procedures would be the most efficient. These 

overflow processing procedures can also be applied to other data operations in addition to 

10 the census matching operation. A data operation that allows merging of incomplete 

results would be compatible with the combination of results stored in the working 

memory space and results stored in the overflow storage space, as performed in the 

overflow processing procedures described below. A data operation for which at least 

some cases can be handled in-place would be compatible with the updating of the data 

15 structure in-place within a data structure in memory, as performed in the overflow 

processing procedures described below. The efficiency of the overflow processing 

procedures, by avoiding the time it would have taken to store certain data in the overflow 

storage space, is especially useful for a data operation such as a census operation or other 

data profiling operation used to process a potentially large volume of incoming data 

20 before allowing a user to view results of that processing or perform additional 

interactions that depend on that processing.

FIG. 3 illustrates census generation with a first overflow processing procedure 

used within the context of the census generation module 202 generating the census 

arrays. FIGS. 4A-4C show flowcharts corresponding to census generation with the first 

25 overflow processing procedure. Referring to FIGS. 3 and 4A, the census generation 

module 202 receives a stream 300 of normalized records, and by the end of the overflow 

processing procedure generates, for each field being profiled, a completed census array 

302. The module 202 reads (400) the next normalized record as it iterates in a loop over 

each of the normalized records in the stream 300 (starting with the first normalized record 

30 on the first iteration). The module 202 checks (402) the memory size of the census arrays

-24-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

304 being generated in the working memory space 306 to determine whether the 

overflow threshold has been reached.

If the overflow threshold has not been reached, then the module 202 performs a 

census matching operation 404 on that normalized record. The census matching

5 operation 404 includes searching (406) the keys of the appropriate one of the census 

arrays 304 (the census array for the field index in the normalized record) for a match to 

the data value in the normalized record. If there was a match to a key (which is a data 

value from a previous normalized record), then the count corresponding to that key is 

incremented (408). If there was not a match to a key, then a new entry is added (409) to 

10 the appropriate one of the census arrays 304 with a key set to the data value and a count 

set to 1.

If the overflow threshold has been reached, the module 202 performs a merge 

operation 412 on the census arrays 304 and any previous partial census arrays 308 stored 

in the overflow storage space 310 (during a previous iteration). The result of the merge 

15 operation 412 (described in more detail below) is a new set of partial census arrays 308, 

each containing entries corresponding to the union of the keys (i.e., data values) in the 

merged census arrays for a given field along with the sum of the counts for each key. 

Thus, the information in the partial census arrays 304 that were in the working memory 

space 306 has been safely stored in the overflow storage space 310, and the partial census 

20 arrays 304 can now be removed (414) from the working memory space 306, freeing more 

working memory space 306 to perform the census matching operation 404 on the next 

normalized record.

At the end of an iteration, the module 202 determines (416) if the end of the 

stream 300 has been reached (which ends the loop iterating for each record in the stream).

25 If the end has not been reached, another iteration starts by reading (400) the next

normalized record. If the end has been reached, the module 202 determines (418) if 

overflow occurred during any of the iterations. If no overflow occurred, the module 202 

sends (419) each of the now completed census arrays 304 in the working memory space 

306 to an output port. If overflow did occur, then the module 202 performs a modified

30 version of the merge operation 412’ on the partial census arrays 304 stored in the 

working memory space 306 and the partial census arrays 308 stored in the overflow

-25-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

storage space 310 to send resulting merged census arrays to the output port. The merge 

operation 412 is described in more detail with reference to FIG. 4B, and the merge 

operation 412’ is described in more detail with reference to FIG. 4C.

Referring to FIG. 4B, an example of the merge operation 412 for merging a set of

5 partial census arrays in the working memory space 306 (called the “memory arrays”) 

with a set of partial census arrays in the overflow storage space 310 (called the “stored 

arrays”). The merge operation 412 includes an outer loop that iterates over the fields 

(i.e., with a loop counter referencing a “current field” going from 1 to the number of 

fields), and an inner loop that iterates over the entries in the stored array for the field of

10 the current field iteration (i.e., with a loop counter referencing a “current entry” going 

from 1 to the number of entries). The inner loop starts by searching (420) for the data 

value of the current entry in the stored array within the memory array for the field of the 

current field iteration. If a match is found, the inner loop sums (422) the count from the 

current entry in the stored array and the count from the matched entry in the memory

15 array, and stores the resulting total count in the matched entry in the memory array 

(overwriting the previous count). Since this new total count will not need any additional 

space in working memory, this operation will not cause the amount of working memory 

space used to grow. In different implementations, either of the memory array or the 

stored array can be searched and used to accumulate the total counts, but by iterating over

20 the stored array and searching the memory array, the search can be performed more 

efficiently (since the memory device 108 can be accessed more efficiently than the 

storage device 110). If a match was not found, the inner loop adds (424) the current entry 

in the stored array to a new census array in the overflow storage space 310, which is part 

of a set of new census arrays that will replace the previous stored arrays after the merge

25 operation 412, and begins a new inner loop iteration by searching (420) for the data value 

of the next entry in the stored array within the memory array. The inner loop ends (426) 

after the last entry in the stored array has been reached. The outer loop includes 

appending (428) the updated memory array to the new census array so that the full set of 

new census arrays will represents both matched and unmatched entries from the merge

30 operation 412. The outer loop ends (430) after the last field has been reached.

-26-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

FIG. 4C shows an example of the modified version of the merge operation 412’ 

performed to merge the last set of memory arrays with the stored arrays. In this example, 

the only differences are the following. Instead of adding (424) the current entry in the 

stored array to a new census array in the overflow storage space 310, the operation 412’ 

5 outputs (424’) the current entry in the stored array to an output port of the module 202 

(e.g., by writing into an output census file, which may also be stored in the overflow 

storage space 310). Instead of appending (428) the updated memory array to the stored 

array, the operation 412’ sends (428’) the updated memory array to the output port of the 

module 202 (e.g., by writing into an output census file, which may also be stored in the 

10 overflow storage space 310).

To summarize, the first overflow processing procedure handles the overflow 

condition on working memory by moving the partial census arrays to overflow storage 

and continuing to process all new records (in new partial census arrays in working 

memory to be merged with the partial census arrays moved to overflow storage). The 

15 first overflow processing procedure efficiently manages the spilling of partial census 

arrays to overflow storage. A second overflow processing procedure will similarly 

handle the overflow condition while continuing to process all new records, but will be 

configured to efficiently manage the spilling of non-matching records to overflow storage 

instead of the partial census arrays.

20 FIG. 5 illustrates census generation with a second overflow processing procedure

used within the context of the census generation module 202 generating the census 

arrays. FIG. 6 shows a flowchart corresponding to census generation with the second 

overflow processing procedure. Referring to FIGS. 5 and 6, the census generation 

module 202 receives a stream 500 of normalized records, and by the end of the overflow

25 processing procedure generates, for each field being profiled, a completed census array 

502. The module 202 reads (600) the next normalized record as it iterates in a loop over 

each of the normalized records in the stream 500 in a first pass, or iterates in a loop over 

each of a set of normalized records that have been temporarily stored in a temporary 

record store 503 in the overflow storage space 504, in one or more additional passes. The

30 steps performed in the one or more passes are described in more detail below, but 

essentially, each pass involves filling up the working memory space 306 until the

-27-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

threshold condition is met and then processing all matching records in-place and spilling 

all non-matching records after the threshold condition is met. The module 202 performs 

a census matching operation 602 on that normalized record.

The census matching operation 602 includes searching (604) the keys of the

5 appropriate one of the census arrays 506 being generated in the working memory space 

508 (the census array for the field index in the normalized record) for a match (605) to 

the data value in the normalized record. If there was a match to a key (which is a data 

value from a previous normalized record), then the count corresponding to that key is 

incremented (606). This incrementing (606) can occur without using more of the

10 working memory space 508 (e.g., using an in-place operation to increment the count of 

the matched entry), and therefore does not depend on whether or not the overflow 

threshold has been reached. If there was not a match to a key, then the next action 

depends on results of a check (607) on the memory size of the census arrays 506 to 

determine whether the overflow threshold has been reached. If the overflow threshold

15 has not been reached, then a new entry is added (608) to the appropriate one of the census 

arrays 506 with a key set to the data value and a count set to 1. If the overflow threshold 

has been reached, then the module 202 stores (609) the normalized record in a new 

temporary record store 503 in the overflow storage space 504. The temporary record 

store 503 can be a single file (or other data structure) storing the normalized records, or

20 can be multiple files (or other data structures) providing access to normalized records by 

field index (or other characteristic). There is a different temporary record store 503 with 

different sets of normalized records for different passes.

The module 202 determines (610) if the end of the first pass through the stream 

500 has been reached (which ends the loop iterating for each record in the stream), or if

25 the end of a pass through one of the temporary record stores 503 has been reached. If the 

end of a pass has not been reached, another iteration starts by reading (600) the next 

normalized record. If the end of a pass has been reached, the module 202 determines 

(611) if overflow occurred during any of the previous iterations for the current pass. If 

no overflow occurred, the module 202 sends (613) each of the now completed census

30 arrays 506 in the working memory space 508 to an output port. If overflow did occur,

-28-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

then the module 202 checks (612) to determine if there remains any temporary record 

store 503.

If there is at least one temporary record store 503 remaining, then the module 202 

starts to free space in the working memory to process the normalized records in that store

5 503 by iterating over the fields (i.e., with a loop counter referencing a “current field”

going from 1 to the number of fields) and appending (614) the appropriate one of the 

partial census arrays 506 to a corresponding one (with the same field index) of any partial 

census arrays 510 stored in the overflow storage space 504 (during a previous iteration). 

The loop ends (615) after the last field has been reached. Thus, the information in the

10 partial census arrays 506 in the working memory space 508 has been safely stored in the 

overflow storage space 504, and the partial census arrays 506 can be removed (616) from 

the working memory space 508, freeing more working memory space 508 to read (600) 

the next normalized record from the remaining temporary record store 503, and perform 

the census matching operation 602 on that normalized record.

15 The partial census arrays 506 and the partial census arrays 510 can simply be

appended without requiring a merge operation to be performed since any normalized 

record with a data value that would have matched a key in the census arrays 510 would 

have been processed when those census arrays 510 were being generated in the working 

memory space 508, and therefore none of those data values can exist in any of the census

20 arrays 506 currently in the working memory space 508. The entries in the partial census 

arrays 506 and the partial census arrays 510 can optionally be sorted or rearranged into 

one or more other data structures if it is helpful (e.g., for efficiency of accessing those 

entries), but no individual entries need to combined to consolidate information for a 

particular data value.

25 In an example of how the module 202 passes processes records from the stream

500, after a first subset 512 of normalized records from the stream 500 has been 

processed to expand the memory size of the census arrays 506 to the overflow threshold, 

a second subset 514 of normalized records is processed to continue incrementing counts 

of the census arrays 506, for data values that match a key (from records shown as

30 unshaded boxes), or to store a third subset 516 of normalized records (shown as shaded 

boxes) into a temporary record store 503. Note that the third subset 516 is also a subset

-29-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

of the second subset 514. This process continues with the stream 500 being replaced by 

the temporary record store 503, with potentially a new (smaller) temporary record store 

503’ being generated while iterating through the current temporary record store 503.

If there is no temporary record store 503 remaining after checking (612), then the

5 module 202 iterates over the fields (i.e., from 1 to the number of fields), sending (618) 

the appropriate one of the census arrays 506 from the working memory space 508 to the 

output port, and sending (620) the appropriate one of the census arrays 510 from the 

overflow storage space 504 to the output port. The loop ends (622) after the last field has 

been reached. Sending the census arrays 506 and 510 to the output port in this part of the

10 census generation enables the census arrays to be output in field index order (as opposed 

to partial census arrays for different fields being output as soon as they are ready). This 

may be useful, for example, if there is a downstream computation after the census 

processing module 204 that needs the census arrays to be provided in that order. 

Alternatively, other implementations of the census generation that do not necessarily

15 require an ordered output can avoid storing the partial census arrays 506 from the 

working memory space 508 in the overflow storage space 504, and instead can simply 

output the partial census arrays 506 to the output port directly from the working memory 

space 508 (for the same reason that a merge operation did not need to be performed when 

appending them).

20 To summarize, the second overflow processing procedure handles the overflow

condition on working memory by moving non-matching records to overflow storage and 

continuing to process all new records (updating the census arrays already in working 

memory for any matching records). The second overflow processing procedure 

efficiently manages the spilling of non-matching records to overflow storage.

25 There are some differences between the first and second overflow processing

procedures, which may make one or the other more appropriate (i.e., more efficient) in 

certain cases. The first overflow processing procedure does not need to spill records to 

overflow storage, while the second overflow processing procedure does. But, the second 

overflow processing procedure does not need to merge census arrays, while the first

30 overflow processing procedure does. Also, since the second overflow processing 

procedure keeps the same census arrays in working memory after the overflow condition

- 30-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

until reading through a full pass of the records in an input stream, the initial distribution 

of values determine which later values will be matched or non-matched. So, the second 

overflow processing procedure may tend to enable efficient spilling for situations in 

which the distribution of repeated values (if any) in a given field are relatively even over 

5 all of the records in an input stream. The first overflow processing procedure enables a 

completely new set of values to be matched each time the census arrays are spilled to 

overflow storage. So, the first overflow processing procedure may tend to enable 

efficient spilling for situations in which there is a significant change in the distribution of 

repeated values in one or more fields over all of the records in the input stream.

10 Other overflow processing procedures are also possible. For example, a hybrid

between the first and second procedures described above may start handling the overflow 

condition by storing normalized records that do not match a census array in the overflow 

storage space (i.e., according to the second procedure). Then, if the fraction of stored 

normalized records that do not match becomes larger than a particular threshold, the

15 procedure may move the partial census arrays in the working memory space to the 

overflow storage space (merging with any previously stored partial census arrays), and 

continue processing the normalized records in the current pass (i.e., according to the first 

procedure). After that pass of the first procedure is done, the procedure would continue 

by processing the normalized records stored in the overflow storage space, using the

20 same hybrid process (i.e., when the overflow condition is reached start storing non­

matching normalized records until a threshold is reached).

The techniques described above can be implemented using a computing system 

executing suitable software. For example, the software may include procedures in one or 

more computer programs that execute on one or more programmed or programmable

25 computing system (which may be of various architectures such as distributed, 

client/server, or grid) each including at least one processor, at least one data storage 

system (including volatile and/or non-volatile memory and/or storage elements), at least 

one user interface (for receiving input using at least one input device or port, and for 

providing output using at least one output device or port). The software may include one

30 or more modules of a larger program, for example, that provides services related to the 

design, configuration, and execution of dataflow graphs. The modules of the program

- 31-



WO 2014/186673 PCT/US2014/038345
20

18
21

12
80

 
02

 A
ug

 2
01

8

(e.g., elements of a dataflow graph) can be implemented as data structures or other 

organized data conforming to a data model stored in a data repository. The modules of 

the program can store the array data in any of a variety of data structures, such as hash 

tables or flat files, which may optionally be indexed and/or compressed, for example.

5 The software may be provided on a tangible, non-transitory medium, such as a

CD-ROM or other computer-readable medium (e.g., readable by a general or special 

purpose computing system or device), or delivered (e.g., encoded in a propagated signal) 

over a communication medium of a network to a tangible, non-transitory medium of a 

computing system where it is executed. Some or all of the processing may be performed

10 on a special purpose computer, or using special-purpose hardware, such as coprocessors 

or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated 

circuits (ASICs). The processing may be implemented in a distributed manner in which 

different parts of the computation specified by the software are performed by different 

computing elements. Each such computer program is preferably stored on or

15 downloaded to a computer-readable storage medium (e.g., solid state memory or media, 

or magnetic or optical media) of a storage device accessible by a general or special 

purpose programmable computer, for configuring and operating the computer when the 

storage device medium is read by the computer to perform the processing described 

herein. The inventive system may also be considered to be implemented as a tangible,

20 non-transitory medium, configured with a computer program, where the medium so 

configured causes a computer to operate in a specific and predefined manner to perform 

one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it 

is to be understood that the foregoing description is intended to illustrate and not to limit

25 the scope of the invention, which is defined by the scope of the following claims. 

Accordingly, other embodiments are also within the scope of the following claims. For 

example, various modifications may be made without departing from the scope of the 

invention. Additionally, some of the steps described above may be order independent, 

and thus can be performed in an order different from that described.

- 32-



20
18

21
12

80
 

30
 O

ct
 2

01
8 CLAIMS

1. A computing system, including:

a memory device providing a working memory space; a storage device providing an 

overflow storage space; and

at least one processor configured to process a plurality of data units using a data 

operation that includes aggregating values from the data units to generate result information, 

the processing including:

performing the data operation for each data unit of a first subset of data units 

from the plurality of data units and storing information associated with a result of the 

data operation in a first set of one or more data structures stored in the working 

memory space;

after an overflow condition on the working memory space is satisfied, storing 

information in the overflow storage space and freeing at least some of the working 

memory space, and performing the data operation for each data unit of a second 

subset of data units from the plurality of data units and storing information associated 

with a result of the data operation in a second set of one or more data structures stored 

in the working memory space; and

combining multiple sets of one or more data structures, including the first and 

second sets, to generate the result information;

wherein storing the information associated with a result of the data operation 

in a set of one or more data structures includes, for at least one data unit, performing 

an operation that changes information in the set of one or more data structures without 

increasing the amount of the working memory space used for the set of one or more 

data structures.

2. The computing system of claim 1, wherein the overflow condition on the working 

memory space is satisfied if the amount of the working memory space used for the first set of 

one or more data structures is greater than or equal to a predetermined threshold.

3. The computing system of claim 1, wherein the processing further includes, after the 

overflow condition being satisfied and before performing the data operation for each data unit 

of the second subset of data units, storing the first set of one or more data structures in the

-33 -



20
18

21
12

80
 

30
 O

ct
 2

01
8 overflow storage space, and removing the first set of one or more data structures from the 

working memory space.

4. The computing system of claim 1, wherein the memory device includes a volatile 

memory device.

5. The computing system of claim 1, wherein the storage device includes a non-volatile 

storage device.

6. The computing system of claim 1, wherein combining multiple sets of one or more 

data structures includes merging at least one data structure from the first set with at least one 

data structure from the second set.

7. The computing system of claim 6, wherein merging at least one data structure from 

the first set with at least one data structure from the second set includes matching a first key 

in the data structure from the first set of one or more data structures with a second key in the 

data structure from the second set of one or more data structures, and performing an 

aggregation operation on a value associated with the first key and a value associated with the 

second key.

8. The computing system of claim 1, wherein the processing further includes generating 

the plurality of data units from a data source, with each data unit including an identifier for a 

field of the data source and a value appearing in that field within a record of the data source.

9. The computing system of claim 8, wherein the data operation includes an aggregation 

of information from multiple data units using the values included in the data units as keys for 

selecting matching data units from which information is aggregated.

10. The computing system of claim 1, wherein the processing further includes, after the 

overflow condition being satisfied and before performing the data operation for each data unit 

of the second subset of data units, performing the data operation for each data unit of a third 

subset of data units from the plurality of data units and storing information associated with a 

result of the data operation in the first set of one or more data structures stored in the working 

memory space.

-34-



20
18

21
12

80
 

30
 O

ct
 2

01
8

11. The computing system of claim 10, wherein the second subset of data units is a subset 

of the data units of the third subset of data units.

12. The computing system of claim 10, wherein the processing further includes, after 

performing the data operation for a first data unit of the third subset of data units, determining 

whether to store information associated with a result of the data operation in: (1) the first set 

of one or more data structures stored in the working memory space, or (2) the overflow 

storage space.

13. The computing system of claim 12, wherein the operation that changes information in 

the set of one or more data structures includes an in-place memory operation that overwrites a 

value stored in a location within the working memory space with a different value stored in 

the same location within the working memory space.

14. The computing system of claim 12, wherein storing information associated with a 

result of the data operation in the overflow storage space includes storing at least some 

content of the first data unit in the overflow storage space.

15. The computing system of claim 12, wherein performing the data operation for the first 

data unit includes comparing a key in the first data unit to one or more keys in the first set of 

one or more data structures, and the information associated with a result of the data operation 

is stored in the first set of one or more data structures stored in the working memory space if 

the comparison results in a match, and the information associated with a result of the data 

operation is stored in the overflow storage space if the comparison does not result in a match.

16. A method for processing a plurality of data units using a data operation that includes 

aggregating values from the data units to generate result information, the method including:

performing the data operation for each data unit of a first subset of data units from the 

plurality of data units and storing information associated with a result of the data operation in 

a first set of one or more data structures stored in working memory space of a memory 

device;

after an overflow condition on the working memory space is satisfied, storing

information in overflow storage space of a storage device and freeing at least some of the

-35 -



20
18

21
12

80
 

30
 O

ct
 2

01
8 working memory space, and performing the data operation for each data unit of a second 

subset of data units from the plurality of data units and storing information associated with a 

result of the data operation in a second set of one or more data structures stored in the 

working memory space; and

combining multiple sets of one or more data structures, including the first and second 

sets, to generate the result information;

wherein storing the information associated with a result of the data operation in a set 

of one or more data structures includes, for at least one data unit, performing an operation 

that changes information in the set of one or more data structures without increasing the 

amount of the working memory space used for the set of one or more data structures.

17. The method of claim 16, wherein the overflow condition on the working memory 

space is satisfied if the amount of the working memory space used for the first set of one or 

more data structures is greater than or equal to a predetermined threshold.

18. The method of claim 16, wherein the processing further includes, after the overflow 

condition being satisfied and before performing the data operation for each data unit of the 

second subset of data units, storing the first set of one or more data structures in the overflow 

storage space, and removing the first set of one or more data structures from the working 

memory space.

19. The method of claim 16, wherein the memory device includes a volatile memory 

device.

20. The method of claim 16, wherein the storage device includes a non-volatile storage 

device.

21. The method of claim 16, wherein combining multiple sets of one or more data 

structures includes merging at least one data structure from the first set with at least one data 

structure from the second set.

22. The method of claim 21, wherein merging at least one data structure from the first set 

with at least one data structure from the second set includes matching a first key in the data 

structure from the first set of one or more data structures with a second key in the data

-36-



20
18

21
12

80
 

30
 O

ct
 2

01
8 structure from the second set of one or more data structures, and performing an aggregation 

operation on a value associated with the first key and a value associated with the second key.

23. The method of claim 16, wherein the processing further includes generating the 

plurality of data units from a data source, with each data unit including an identifier for a 

field of the data source and a value appearing in that field within a record of the data source.

24. The method of claim 23, wherein the data operation includes an aggregation of 

information from multiple data units using the values included in the data units as keys for 

selecting matching data units from which information is aggregated.

25. The method of claim 16, wherein the processing further includes, after the overflow 

condition being satisfied and before performing the data operation for each data unit of the 

second subset of data units, performing the data operation for each data unit of a third subset 

of data units from the plurality of data units and storing information associated with a result 

of the data operation in the first set of one or more data structures stored in the working 

memory space.

26. The method of claim 25, wherein the second subset of data units is a subset of the data 

units of the third subset of data units.

27. The method of claim 25, wherein the processing further includes, after performing the 

data operation for a first data unit of the third subset of data units, determining whether to 

store information associated with a result of the data operation in: (1) the first set of one or 

more data structures stored in the working memory space, or (2) the overflow storage space.

28. The method of claim 27, wherein the operation that changes information in the set of 

one or more data structures includes an in-place memory operation that overwrites a value 

stored in a location within the working memory space with a different value stored in the 

same location within the working memory space.

29. The method of claim 27, wherein storing information associated with a result of the 

data operation in the overflow storage space includes storing at least some content of the first 

data unit in the overflow storage space.

-37-



20
18

21
12

80
 

30
 O

ct
 2

01
8

30. The method of claim 27, wherein performing the data operation for the first data unit 

includes comparing a key in the first data unit to one or more keys in the first set of one or 

more data structures, and the information associated with a result of the data operation is 

stored in the first set of one or more data structures stored in the working memory space if the 

comparison results in a match, and the information associated with a result of the data 

operation is stored in the overflow storage space if the comparison does not result in a match.

31. Software stored on a non-transitory computer-readable medium for processing a 

plurality of data units using a data operation that includes aggregating values from the data 

units to generate result information, the software including instructions for causing a 

computing system to:

perform a data operation for each data unit of a first subset of data units from 

the plurality of data units and storing information associated with a result of the data 

operation in a first set of one or more data structures stored in the working memory 

space of a memory device;

after an overflow condition on the working memory space is satisfied, store 

information in overflow storage space of a storage device and freeing at least some of 

the working memory space, and perform the data operation for each data unit of a 

second subset of data units from the plurality of data units and storing information 

associated with a result of the data operation in a second set of one or more data 

structures stored in the working memory space; and

combine multiple sets of one or more data structures, including the first and 

second sets, to generate the result information;

wherein storing the information associated with a result of the data operation 

in a set of one or more data structures includes, for at least one data unit, performing 

an operation that changes information in the set of one or more data structures without 

increasing the amount of the working memory space used for the set of one or more 

data structures.

32. The software of claim 31, wherein the overflow condition on the working memory 

space is satisfied if the amount of the working memory space used for the first set of one or 

more data structures is greater than or equal to a predetermined threshold.

-38-



20
18

21
12

80
 

30
 O

ct
 2

01
8 33. The software of claim 31, wherein the processing further includes, after the overflow 

condition being satisfied and before performing the data operation for each data unit of the 

second subset of data units, storing the first set of one or more data structures in the overflow 

storage space, and removing the first set of one or more data structures from the working 

memory space.

34. The software of claim 31, wherein the memory device includes a volatile memory 

device.

35. The software of claim 31, wherein the storage device includes a non-volatile storage 

device.

36. The software of claim 31, wherein combining multiple sets of one or more data 

structures includes merging at least one data structure from the first set with at least one data 

structure from the second set.

37. The software of claim 36, wherein merging at least one data structure from the first 

set with at least one data structure from the second set includes matching a first key in the 

data structure from the first set of one or more data structures with a second key in the data 

structure from the second set of one or more data structures, and performing an aggregation 

operation on a value associated with the first key and a value associated with the second key.

38. The software of claim 31, wherein the processing further includes generating the 

plurality of data units from a data source, with each data unit including an identifier for a 

field of the data source and a value appearing in that field within a record of the data source.

39. The software of claim 38, wherein the data operation includes an aggregation of 

information from multiple data units using the values included in the data units as keys for 

selecting matching data units from which information is aggregated.

40. The software of claim 31, wherein the processing further includes, after the overflow 

condition being satisfied and before performing the data operation for each data unit of the 

second subset of data units, performing the data operation for each data unit of a third subset 

of data units from the plurality of data units and storing information associated with a result

-39-



20
18

21
12

80
 

30
 O

ct
 2

01
8 of the data operation in the first set of one or more data structures stored in the working 

memory space.

41. The software of claim 40, wherein the second subset of data units is a subset of the 

data units of the third subset of data units.

42. The software of claim 40, wherein the processing further includes, after performing 

the data operation for a first data unit of the third subset of data units, determining whether to 

store information associated with a result of the data operation in: (1) the first set of one or 

more data structures stored in the working memory space, or (2) the overflow storage space.

43. The software of claim 42, wherein the operation that changes information in the set of 

one or more data structures includes an in-place memory operation that overwrites a value 

stored in a location within the working memory space with a different value stored in the 

same location within the working memory space.

44. The software of claim 42, wherein storing information associated with a result of the 

data operation in the overflow storage space includes storing at least some content of the first 

data unit in the overflow storage space.

45. The software of claim 42, wherein performing the data operation for the first data unit 

includes comparing a key in the first data unit to one or more keys in the first set of one or 

more data structures, and the information associated with a result of the data operation is 

stored in the first set of one or more data structures stored in the working memory space if the 

comparison results in a match, and the information associated with a result of the data 

operation is stored in the overflow storage space if the comparison does not result in a match.

46. A computing system, including: means for providing a working memory space; 

means for providing an overflow storage space; and

means for processing a plurality of data units using a data operation that includes 

aggregating values from the data units to generate result information, the processing 

including:

performing the data operation for each data unit of a first subset of data units

from the plurality of data units and storing information associated with a result of the

-40-



20
18

21
12

80
 

30
 O

ct
 2

01
8 data operation in a first set of one or more data structures stored in the working 

memory space;

after an overflow condition on the working memory space is satisfied, storing 

information in the overflow storage space and freeing at least some of the working 

memory space, and performing the data operation for each data unit of a second 

subset of data units from the plurality of data units and storing information associated 

with a result of the data operation in a second set of one or more data structures stored 

in the working memory space; and

combining multiple sets of one or more data structures, including the first and 

second sets, to generate the result information;

wherein storing the information associated with a result of the data operation 

in a set of one or more data structures includes, for at least one data unit, performing 

an operation that changes information in the set of one or more data structures without 

increasing the amount of the working memory space used for the set of one or more 

data structures.

-41 -



WO 2014/186673 PCT/US2014/038345
1/8

20
18

21
12

80
 

02
 A

ug
 2

01
8



WO 2014/186673 PCT/US2014/038345
2/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

>
co

X

co

2

CM

<

co 
Q 
—1 
LU

cm
Q

LU

Q

LU

co

• ·

FI
EL

D
3

X >- N

FI
EL

D
2

s Z

FI
EL

D
1

< CD CD

ω 
Z) 
ω 
z 
LU 
o

T“ r“

X >- N

ω 
Z 
ω 
z 
LU 
O

CM

z

ω 
Σ) 
ω 
z 
LU 
O

CM

< CD

CXI

0
LL



WO 2014/186673 PCT/US2014/038345
3/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

0
LL

□□□



WO 2014/186673 PCT/US2014/038345
4/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

X'x
< OVERFLOW? > 
\ 418 /
V 

z o
.1

■YES—}
MERGE 

ARRAYS 
412'

OUTPUT 
ARRAYS 

419
END

FIG. 4A



WO 2014/186673 PCT/US2014/038345
5/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

412

START )
________ .7'

xk

SEARCH FOR
-) DATA VALUE (■

420

ADD ENTRY
424

SUM 
COUNTS

422

<Z> 
Ψ

APPEND 
ARRAY 

428

And x
LOOP?

430

Ψ
END

FIG. 4B



WO 2014/186673 PCT/US2014/038345
6/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

412'

NO

START )
_______ 7'

xk

SEARCH FOR
-) DATA VALUE (■

420

SUM 
COUNTS

422

OUTPUT 
ARRAY 

428’

And x
LOOP?

430

END

OUTPUT ENTRY 
424'

FIG. 4C



WO 2014/186673 PCT/US2014/038345
7/8

LU
o<
CL
ω

20
18

21
12

80
 

02
 A

ug
 2

01
8

5 
O 
_i 
LL oc 
LU
> 
o

LL1 
0 
< 
DC 
o 
I— 
ω

i 
Q ω

LO

0
LL



WO 2014/186673 PCT/US2014/038345
8/8

20
18

21
12

80
 

02
 A

ug
 2

01
8

‘ START
χ

READ 
RECORD 

600

J.

SEARCH
604 -K

/'X/ \/ \
X MATCH? x
X 605 
\ x 

r

INCREMENT 
■YES—) COUNT 

606

O

< OVERFLOW?
\ 607 XY

ΓΠ 
X

STORE
RECORD

609

,NO^ ADD^ENTRY

602

REMOVE 
ARRAYS 

616

/TT

X\
■ OVERFLOW?
\ 611 X'Y >—YES—)

X \
END 

LOOP?

O

1
OUTPUT 
ARRAYS

613
LOOP?

OUTPUT 
ARRAY 

618
X

OUTPUT 
ARRAY 

620

/
Y..2

/ \

APPEND 
ARRAY

END

FIG. 6


