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EXECUTE A FIRST USER-LEVEL THREAD USING A FIRST CONTEXT
STORED IN A FIRST ONE THE BANKS OF AN EXTENDED REGISTER SET

810

:

RECEIVE AN INSTRUCTION FOR EXCHANGING CONTEXTS OF THE FIRST
THREAD AND A SECOND THREAD; THE SECOND THREAD BEING
ANOTHER USER-LEVEL THREAD AND HAVING A SECOND CONTEXT
SAVED IN A SECOND BANK OF THE EXTENDED REGISTER SET
520

|

CHANGE A REGISTER POINTER, WHICH POINTS TQO THE FIRST BANK AS
A CURRENTLY ACTIVE BANK, TO THE SECOND BANK IN RESPONSE TO
THE INSTRUCTION
530

!

EXECUTE THE SECOND THREAD USING THE SECOND CONTEXT STORED
IN THE SECOND BANK
540

(57) Abstract: A processor uses multiple banks of an ex-
tended register set to store the contexts of multiple user-
level threads. A current bank register provides a pointer
to the bank that is currently active. A first thread saves
its context (first context) in a first bank of the extended
register set and a second thread saves its context (second
context) in a second bank of the extended register set.
When the processor receives an instruction for exchan-
ging contexts between the first thread and the second
thread, the processor changes the pointer from the first
bank to the second bank, and executes the second thread
using the second context stored in the second bank.



10

15

20

25

30

35

WO 2014/051771 PCT/US2013/047401

A NEW INSTRUCTION AND HIGHLY EFFICIENT MICRO-ARCHITECTURE TO
ENABLE INSTANT CONTEXT SWITCH FOR USER-LEVEL THREADING

Technical Field

The present disclosure pertains to the field of processing logic, microprocessors, and
associated instruction set architecture that, when executed by the processor or other processing
logic, perform logical, mathematical, or other functional operations.

Background Art

An instruction set, or instruction set architecture (ISA), is the part of the computer
architecture related to programming, and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, interrupt and exception handling, and
external input and output (I/O). The term instruction generally refers herein to
macro-instructions — that is instructions that are provided to the processor (or instruction
converter that translates (e.g., using static binary translation, dynamic binary translation
including dynamic compilation), morphs, emulates, or otherwise converts an instruction to one
or more other instructions to be processed by the processor) for execution — as opposed to
micro-instructions or micro-operations (micro-ops) — that is the result of a processor’s decoder
decoding macro-instructions.

The ISA is distinguished from the micro-architecture, which is the internal design of the
processor implementing the instruction set. Processors with different micro-architectures can
share a common instruction set. For example, Intel® Core™ processors and processors from
Advanced Micro Devices, Inc. of Sunnyvale CA implement nearly identical versions of the x86
instruction set (with some extensions that have been added with newer versions), but have
different internal designs. For example, the same register architecture of the ISA may be
implemented in different ways in different micro-architectures using well-known techniques,
including dedicated physical registers, one or more dynamically allocated physical registers
using a register renaming mechanism, etc.

Modern processor cores generally support multithreading to improve its performance
efficiency. For example, Intel® Xeon™ cores currently provide 2-way simultaneous
multithreading (SMT). Increasing the number of threads per core can bring higher performance
to key server applications. However, increasing the number of SMT threads (from two to four
or more) is very complex, costly and error-prone.

An alternative multithreading approach is to implement user-level threads managed by
application software. For example, Microsoft® systems use software mechanisms to manage

user-level threads called fibers. Using the fiber or a similar approach, an application can switch
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from a first fiber to a second fiber when the first fiber encounters a long latency event (e.g., I/O,
a non-user event, wait-for- semaphore, etc.). The management and execution of fibers can be
fully handled and carefully tuned by the application. However, performance improvement by
the fiber approach is quite limited due to the costly switch penalty between fibers (e.g., save,
restore, branch operations), and due to the limitations of software in figuring out efficiently when
to switch for both short and long latency hardware stall events.

Brief Description of the Drawings

Embodiments are illustrated by way of example and not limitation in the Figures of the
accompanying drawings:

Figure 1A is a block diagram of an instruction processing apparatus having an extended
register set according to one embodiment.

Figure 1B is a block diagram of register architecture having an extended register set
according to one embodiment.

Figure 2A illustrates an example of memory regions for storing multiple hiber contexts
according to one embodiment.

Figure 2B illustrates an example of an extended register set including banks for storing
multiple hiber contexts according to one embodiment.

Figure 2C illustrates another example of an extended register set including banks for
storing multiple hiber contexts according to one embodiment.

Figure 3 illustrates an example of vector registers divided into partitions for storing
multiple hiber contexts according to one embodiment.

Figure 4A illustrates an example of a program including an instruction that is likely to
cause cache misses.

Figure 4B illustrates an example of using state exchange instructions for executing
multiple hibers.

Figure 5 is a flow diagram illustrating operations to be performed according to one
embodiment.

Figure 6 is a block diagram illustrating the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction
set according to one embodiment.

Figure 7A is a block diagram of an in-order and out-of-order pipeline according to one
embodiment.

Figure 7B is a block diagram of an in-order and out-of-order core according to one
embodiment.

Figures 8A-B are block diagrams of a more specific exemplary in-order core architecture
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according to one embodiment.

Figure 9 is a block diagram of a processor according to one embodiment.

Figure 10 is a block diagram of a system in accordance with one embodiment.

Figure 11 is a block diagram of a second system in accordance with one embodiment.

Figure 12 is a block diagram of a third system in accordance with an embodiment of the
invention.

Figure 13 is a block diagram of a system-on-a-chip (SoC) in accordance with one
embodiment.

Description of the Embodiments

In the following description, numerous specific details are set forth. However, it is
understood that embodiments of the invention may be practiced without these specific details.
In other instances, well-known circuits, structures and techniques have not been shown in detail
in order not to obscure the understanding of this description.

Embodiments described herein provide a set of state exchange instructions (e.g., SXCHG,
SXCHGL and their variants), with appropriate micro-architectural support, that causes a
processor to perform an instant switch (with near-zero-cycle penalty) between user-level threads.
No additional changes to the ISA are necessary. These user-levels threads are referred to
hereinafter as “hibers,” which are hardware supported fibers. The set of instructions enable
software to rapidly switch among N hibers by saving and restoring register content (also referred
to as “register state”) in N banks of user-mode (ring-3) registers. This switching can be
controlled by the applications without involvement of an operating system. These N-banks of
user-mode registers are herein referred to as an extended register set. The number N can be 2,
4, 8, or any number that is supported by the micro-architecture.

Figure 1A is a block diagram of an embodiment of an instruction processing apparatus 115
having an execution unit 140 operable to execute instructions. In some embodiments, the
instruction processing apparatus 115 may be a processor, a processor core of a multi-core
processor, or a processing element in an electronic system.

A decoder 130 receives incoming instructions in the form of higher-level machine
instructions or macroinstructions, and decodes them to generate lower-level micro-operations,
micro-code entry points, microinstructions, or other lower-level instructions or control signals,
which reflect and/or are derived from the original higher-level instruction. The lower-level
instructions or control signals may implement the operation of the higher-level instruction
through lower-level (e.g., circuit-level or hardware-level) operations. The decoder 130 may be
implemented using various different mechanisms. Examples of suitable mechanisms include,

but are not limited to, microcode, look-up tables, hardware implementations, programmable
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logic arrays (PLAs), other mechanisms used to implement decoders known in the art, etc.

The execution unit 140 is coupled to the decoder 130. The execution unit 140 may
receive from the decoder 130 one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals, which reflect, or are derived from
the received instructions. The execution unit 140 also receives input from and generates output
to a register file 170 or a memory 120.

To avoid obscuring the description, a relatively simple instruction processing apparatus
115 has been shown and described. It is to be appreciated that other embodiments may have
more than one execution unit. For example, the apparatus 115 may include multiple different
types of execution units, such as, for example, arithmetic units, arithmetic logic units (ALUs),
integer units, floating point units, etc. ~ Still other embodiments of instruction processing
apparatus or processors may have multiple cores, logical processors, or execution engines. A
number of embodiments of the instruction processing apparatus 115 will be provided later with
respect to Figures 7-13.

According to one embodiment, the memory 120 stores the contexts of multiple hibers.
The hiber contexts being stored include the register state of the multiple hibers. When a
computer system (e.g., a processor running a compiler or other optimization code, prediction or
optimization circuitry, etc.) or a programmer predicts that a specific instruction in an application
may cause a stall in one of its hibers, an instruction is inserted into the application to cause the
execution unit 140 to switch the execution from one hiber to another hiber.

To improve processing performance, hiber context is not necessarily stored in and restored
from the memory 120 wherever there is a hiber switch. In one embodiment, the instruction
processing apparatus 115 may use the extended register set 175 as a “write-back cache” for
temporarily storing hiber context to reduce the frequency of memory access. Accessing the
hiber context from the extended register set 175 is much faster than accessing the same from the
memory 120. Thus, the speed of context switching among hibers can be significantly
increased.

However, by not constantly storing and restoring hiber contexts in the memory 120, the
memory 120 may not have the up-to-date hiber context. To avoid the out-dated information in
the memory 120 being accessed by any applications or threads (which run concurrently on the
cores or processors of the instruction processing apparatus 115), the instruction processing
apparatus 115 uses snoop circuitry 180 to track access to the memory regions in which hiber
context is stored. Whenever the content of any of these memory regions is to become
incoherent with (i.e., different from) the current register content, the corresponding memory

addresses are marked in the snoop circuitry 180 as a marked area. A write-back event (e.g., a
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microcode trap) is triggered when the marked area is to be read from or is written into in order to
synchronize the stored contexts between the marked area and the extended register set 175.

This microcode trap causes current register state (i.e., the updated hiber context) to be written to
the marked area (if any application or thread is trying to read from the area), or re-load the
registers from the marked area (if another application or thread has written to the area).

In one embodiment, the instruction processing apparatus 115 supports a set of
hiber-switching instructions, such as a State Exchange (SXCHG) instruction and its variants.
The set of hiber-switching instructions include a basic SXCHG(], J), where the context of
hiber[I] is saved into the memory 120 and the context of hiber[J] is restored and cleared from the
memory 120. The set of hiber-switching instructions also include SXCHG (without operands),
SXCHGL (a light version of SXCHG), SXCHG.u (unconditional SXCHG), SXCHG.c
(conditional SXCHG) and < SXCHG.start—SXCHG.end> (block SXCHG), and the like.

These instructions will be explained in detail below.

Before describing the hiber-switching instructions, it is useful to show an embodiment of
underlying register architecture that supports these instructions. The register architecture to be
described with reference to Figure 1B is based on the Intel® Core™ processors implementing
an instruction set including x86, MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 instructions, as well as an additional set of SIMD extensions, referred to the
Advanced Vector Extensions (AVX) (AVX1 and AVX2). However, it is understood different
register architecture that supports different register lengths, different register types and/or
different numbers of registers can also be used.

Figure 1B is a block diagram of a register architecture 100 according to one embodiment
of the invention. In the embodiment illustrated, there are thirty-two vector registers 110 that are
512 bits wide; these registers are referenced as zmmO through zmm31. The lower order 256
bits of the lower sixteen zmm registers are overlaid on registers ymm0-16. The lower order 128
bits of the lower sixteen zmm registers (the lower order 128 bits of the ymm registers) are
overlaid on registers xmmO-15. In the embodiment illustrated, there are eight write mask
registers 112 (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 112 are 16 bits in size.

In the embodiment illustrated, the extended register set 175 includes four banks of sixteen
64-bit general-purpose (GP) registers, referred to herein as extended GP registers 125. In an
embodiment they are used along with the existing x86 addressing modes to address memory
operands. These registers (in each bank) are referenced by the names RAX, RBX, RCX, RDX,
RBP, RSI, RDI, RSP, and R8 through R15. The embodiment also illustrates that the extended
register set 175 includes extended RFLAGS registers 126, extended RIP registers 127 and
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extended MXCSR registers 128, all of which include four banks.

The embodiment also illustrates a scalar floating point (FP) stack register file (x87 stack)
145, on which is aliased the MMX packed integer flat register file 150. in the embodiment
illustrated, the x87 stack is an eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87 instruction set extension; while the
MMX registers are used to perform operations on 64-bit packed integer data, as well as to hold
operands for some operations performed between the MMX and XMM registers.

In one embodiment, the extended register set 175 may additionally include four banks of
FP stack register file 145 and/or four banks of vector registers 110 to provide temporary storage
for up to four hibers with respect to their FP register state and/or vector register state.

Alternative embodiments of the invention may use wider or narrower registers and/or more
or few register banks. Additionally, alternative embodiments of the invention may use more,
less, or different register files and registers.

Figure 2A is a diagram illustrating the operation performed by a processor (e.g., the
instruction processing apparatus 115) responsive to the basic SXCHG(I,J) instruction according
to one embodiment. In this embodiment, the memory 120 is configured to include four regions,
where different regions are designated to store the contexts of different hibers. The basic
SXCHG(I,J) has two operands — a source(I) indicating which hiber context is to be saved, and a
destination(J) indicating which hiber context is to be restored. In response to this instruction,
the processor saves the current content of registers to the memory 120. In one embodiment,
these registers includes one or more of the GP registers (e.g., RAX, RBX..., R15), vector
registers (e.g., zmmO-31), flag registers (e.g., RFLAGS), instruction pointer (e.g., RIP),
MXCSR, and any combinations thereof. The current content of these registers is saved into a
designated memory region (region[I]) pointed to by a memory pointer register 210 (SMEM][I]).
After saving the current register content, the processor loads the above registers from another
memory region (region[J]) pointed to by the memory pointer register SMEM[J], and clears (i.e.,
zeros out) this memory region (region[J]). As aresult of this operation, the processor switches
from one instruction flow hiber[I] to execute another instruction flow hiber[J]

In one scenario, hiber[J] may include an instruction SXCHG(J,I), which causes the
processor to switch back to execute the previous instruction flow (i.e., hiber[I]) with the register
content stored in memory region[I]. Responsive to SXCHG(J,I), the processor saves the
registers state in the memory region (region[J]) pointed to by SMEM][J], loads the registers from
the memory region (region[I]) pointed to by SMEM[I] and clears (i.e., zeros out) this memory
region (region[I]).

The example of Figure 2A shows memory region[0], region[1], region[2] and region[3].
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The execution of SXCHG(0,2) results in saving the register content into region[0] (pointed to by
SMEM][0]) and restoring the register content from region[2] (pointed to by SMEM[2]).

To improve the speed of user-level context switching, register state can be saved and
restored from an extended register set (e.g., the extended register set 175 of Figures 1A and 1B)
instead of the memory. Mapping memory locations into physical registers is sometimes
referred to as memory renaming.

Figure 2B illustrates an embodiment of the extended register set 175. In this
embodiment, each register in the set 175 has four banks: bank 0, bank 1, bank 2 and bank 3.
Micro-architecture that supports the SXCHG instructions with improved performance can have
multiple banks; e.g., four banks, with the GP registers in each bank being 64 bit wide. In the
embodiment of Figure 2B, a register in a given bank is renamed by its original name appended
with a bank index; e.g., RAX.0, RAX.1, RAX.2 and RAX.3. When the processor switches
between two hiber contexts, instead of long sequence of memory save and memory restore
operations, the processor only needs to change a pointer (e.g., the content of a current bank (CB)
register 220) from one register bank to another. In one embodiment, the decoder can change a
register name (e.g., from RAX.0 to RAX.3) referred to by instructions upon a context switch.
An advanced out-of-order processor with register renaming can easily switches the rename
pointer. As a result, if the processor front end predicts the SXCHG, hiber switch can be
performed swiftly in near zero cycle.

One embodiment of the SXCHG instruction does not have any operands. Instead of
supplying the source index (e.g., index I), the instruction uses the CB register 220 to identify the
bank of the currently-active hiber that the processor is executing. Following a SXCHG
instruction (e.g., when a write-back event occurs), the processor saves the current register state
into the memory region pointed to by SMEM[CB]. In the example of Figure 2B, CB=0, which
means the processor saves register state in SMEM[0]. The register state in bank 0 of the
extended register set 175 should stay in bank O for future use; e.g., when the execution switches
back to hiber[0].

Moreover, the SXCHG instruction does not need a destination index. Instead, the
processor uses a mask register 230 which includes a mask bit for each of the hibers. In the
example of Figure 2B, each hiber has an associated mask bit. If the associated mask bit has a
predetermined value (e.g., zero), the corresponding hiber is deactivated and no switch will be
made into this hiber. Otherwise (e.g., when the mask bit value is one), the corresponding hiber
is active (currently being executed) or sleeping (waiting to be executed). Upon SXCHG
execution, the processor will switch to and activate the next hiber that is sleeping, using a

round-robin or similar policy. In the example of Figure 2B, the processor switches from CB=0
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to CB=2 because the mask bit of hiber[1] is zero.

Figure 2C illustrates an embodiment of the extended register set 175 in further detail. In
this embodiment, the extended register set 175 includes four banks, and each bank includes
zmmO-31, the GP registers, the RFLAGS, and the RIP. As described before, the mask register
230 includes a mask bit for each bank to indicate whether the corresponding is deactivated, and
the CB register 220 points to the currently active bank.  Although the widths of the registers in
the same bank appear to be the same in Figure 2C, it is understood that different registers in the
same bank may or may not have the same widths. In alternative embodiments, the extended
register set 175 may include more of fewer registers, and/or more or fewer number of banks.

In one embodiment, the SXCHG instruction has a number of variants. SXCHG.u is an
instruction that causes an unconditional switch to a next hiber. SXCHG.c is an instruction that
causes a switch to the next hiber based on the runtime decision of the micro-architecture. In
one embodiment, the decision-making micro-architecture may be the front end circuitry (e.g., the
branch prediction unit), which tracks the instruction pointer for frequently missed loads. Based
on hardware parameters, the micro-architecture may determine whether a condition is met for
performing a switch and, if a switch is to be performed, at which point of execution to perform
the switch. For example, the micro-architecture can decide to switch upon a prefetch cache
miss or other long latency events. SXCHG.start and SXCHG.end are a pair of instructions that
mark the boundary of a block of instructions in which every instruction can be a candidate to
have an SXCHG context switch. This has the same effect as having SXCHG.c before every
instruction in that instruction block. The SXCHG.start and SXCHG.end mark the beginning
and the end of the instruction block, respectively. By using such a marking, the
micro-architecture can freely select among the instructions to execute different hibers.

In one embodiment, the SXCHG instruction and its variants have a “light” version called
SXCHGL. In response to an SXCHGL instruction, the processor does not save and restore hiber
context in memory. Instead, the processor saves and restores hiber context in unutilized
registers on-die, such as vector registers and/or floating point registers. In one embodiment,
these unutilized registers are the vector registers (e.g., zmm0-31, zmm16-31, or any unutilized
portion of the zmm registers). In one embodiment, a portion of the zmm registers can still be
used for vector storage (e.g., xmm0-15) and the rest of the zmm registers can be used for storing
hiber context. These unutilized registers (or a portion thereof) can be divided into multiple
partitions (e.g., four partitions corresponding to the four memory regions in SXCHG) for storing
the context of multiple hibers. Additionally, similar to SXCHG, the SXCHGL instruction also
has a number of variants: SXCHGL.u, SXCHGL.c, SXCHGL.start and SXCHGL.end; their use
is analogous to their SXCHG counterparts.
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In one embodiment, the context saved in response to SXCHG instructions includes zmm
register state; whereas the context saved in response to SXCHGL instructions includes xmm
register state (but not the zmm register state). Thus, for SXCHGL instructions, zmmO-15 can
be used to store the xmm state of four hibers, and zmm16-31 can be used to store the other
registers’ state (e.g., GP registers, flags registers, instruction pointer, etc.) of the same four
hibers. Figure 3 illustrates an embodiment of a portion of vector registers 310 (zmm16-31)
divided into four partitioned for storing the contexts of four hibers; each partition corresponding
to a bank of the extended register set 175. The CB register 220 provides a pointer to the
currently active bank of the extended register set 175 as well as the corresponding partition of
the portion of vector registers 310.

Executing an SXCHGL instruction by a direct save/restore of registers from/to zmm
registers can be slow. To enable an efficient implementation, instead of saving and restoring
registers from/to zmm registers, an extended register set (e.g., the extended register set 175 of
Figures 1A and 1B) including multiple banks can be used as a “write-back cache” in a manner
similar to SXCHG. Similar to SXCHG, a CB register can be used by SXCHGL to point to the
currently active bank, and a mask register including mask bits can be used to indicate whether a
corresponding bank is no longer in use (i.e., deactivated). If all of the hibers are masked (e.g.,
having corresponding mask bits of zeros), SXCHGL becomes a no-op operation.

As aresult, a processor may execute code from multiple hibers efficiently.  If the front
end correctly predicts SXCHGL, the processor can switch between hibers very fast without a
pipeline flush.

In one embodiment, a snoop mechanism similar to the snoop circuitry 180 of Figure 1A
can be used to track access to the zmm registers in which hiber contexts are stored. Whenever a
hiber context stored in a zmm register is to become incoherent with (i.e., different from) the
corresponding content of the extended register set 175, the zmm register is marked. In one
embodiment, this snoop mechanism can be implemented as a state bit associated with each
global status of the zmm register. The state bit indicates where the latest updated hiber context
is. If the latest update is in the zmm registers (e.g., after an XRESTORE operation), the first
SXCHGL instruction execution will trigger a write-back event which causes a micro-code
sequence to be executed. The micro-code sequence will copy the latest update from the zmm
space to the extended register set 175. If the latest update is in the extended register set 175 and
the processor starts to execute a vector instruction (e.g., after an XSAVE operation), the
micro-code will copy the latest update from the extended register set 175 to the zmm space.

In the following description, wherever SXCHG or “state exchange instruction” is

mentioned, it is understood that the description applies to both SXCHG and SXCHGL.
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Figure 4A illustrates an example of a code segment 410 that may use the SXCHG
instruction or one of its variants described above. The code segment 410 implements binary
search (referred to as “Bsearch”). During the binary search, a large number of cache misses are
expected to occur at instruction 420 (temp = A[mid]). Figure 4B illustrates an example of
performing the same binary search with two code segments foo0 and fool, each of which
represents a hiber. Each of the code segments includes a SXCHG.u instruction after the (temp
= A[mid]) instruction (430 or 431), where a lot of cache misses are expected to occur. Thus,
immediately after the processor executes the instruction 430 in foo0, the processor executes an
unconditional switch to fool during the expected cache miss event. If a cache miss indeed
occurs to the instruction 430, the context switch allows the processor to engage in other useful
work in fool. Similarly, if a cache miss indeed occurs to the instruction 431, the context switch
allows the processor to engage in other useful work in foo0. If a cache miss does not occur, the
penalty of the context switch is minimal. This is because the contexts of foo0O and fool are both
stored in the extended register set and can be quickly saved and restored.

In one embodiment, the SXCHG instruction (e.g., the SXCHG.u instruction in Figure 4B)
can be added by a programmer. In an alternative embodiment, the SXCHG instruction can be
added by a compiler. The compiler can be a static compiler or a just-in-time compiler. The
compiler can be located on the same hardware platform as the processor executing the SXCHG
instruction, or on a different hardware platform. It is noted that the placement of SXCHG and
execution of SXCHG have no operating system involvement.

Figure 5 is a block flow diagram of a method 500 for exchanging two hiber contexts
according to one embodiment.  The method 500 begins with a processor (e.g., the instruction
processing apparatus 115 of Figure 1A) executing a first user-level thread (e.g., a hyber) using a
first context stored in a first bank of an extended register set (block 510). During execution of
the first thread, the processor receives an instruction for exchanging contexts of the first thread
and a second thread (block 520), where the second thread is another user-level thread (e.g., a
hyber) and has a second context saved in a second bank of the extended register set. In
response to the instruction, the processor changes a register pointer, which currently points to the
first bank as a currently active bank, to the second bank (block 530). The processor then
executes the second thread using the second context stored in the second bank (block 540).

In various embodiments, the method of Figure 5 may be performed by a general-purpose
processor, a special-purpose processor (e.g., a graphics processor or a digital signal processor),
or another type of digital logic device or instruction processing apparatus. In some
embodiments, the method of Figure 5 may be performed by the instruction processing apparatus

115 of Figure 1A, or a similar processor, apparatus, or system, such as the embodiments shown
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in Figures 7-13.  Moreover, the instruction processing apparatus 115 of Figure 1A, as well as
the processor, apparatus, or system shown in Figures 7-13 may perform embodiments of
operations and methods either the same as, similar to, or different than those of the method of
Figure 5.

In some embodiments, the instruction processing apparatus 115 of Figure 1 may operate in
conjunction with an instruction converter that converts an instruction from a source instruction
set to a target instruction set. For example, the instruction converter may translate (e.g., using
static binary translation, dynamic binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more other instructions to be processed by
the core. The instruction converter may be implemented in software, hardware, firmware, or a
combination thereof. The instruction converter may be on processor, off processor, or part on
and part off processor.

Figure 6 is a block diagram contrasting the use of a software instruction converter
according to embodiments of the invention. In the illustrated embodiment, the instruction
converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 6
shows a program in a high level language 602 may be compiled using an x86 compiler 604 to
generate x86 binary code 606 that may be natively executed by a processor with at least one x86
instruction set core 616. The processor with at least one x86 instruction set core 616 represents
any processor that can perform substantially the same functions as an Intel processor with at least
one x86 instruction set core by compatibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same result as an Intel processor with at
least one  x86 instruction set core. The x86 compiler 604 represents a compiler that is operable
to generate x86 binary code 606 (e.g., object code) that can, with or without additional linkage
processing, be executed on the processor with at least one x86 instruction set core 616.
Similarly, Figure 6 shows the program in the high level language 602 may be compiled using an
alternative instruction set compiler 608 to generate alternative instruction set binary code 610
that may be natively executed by a processor without at least one x86 instruction set core 614
(e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 612 is used to convert the x86 binary code 606 into code that
may be natively executed by the processor without an x86 instruction set core 614.  This

converted code is not likely to be the same as the alternative instruction set binary code 610
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because an instruction converter capable of this is difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 612 represents software, firmware, hardware, or
a combination thereof that, through emulation, simulation or any other process, allows a
processor or other electronic device that does not have an x86 instruction set processor or core to
execute the x86 binary code 606.

Exemplary Core Architectures

In-order and out-of-order core block diagram

Figure 7A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention. Figure 7B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to embodiments of the invention. The
solid lined boxes in Figures 7A and 7B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline and core.  Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

In Figure 7A, a processor pipeline 700 includes a fetch stage 702, a length decode stage
704, a decode stage 706, an allocation stage 708, a renaming stage 710, a scheduling (also
known as a dispatch or issue) stage 712, a register read/memory read stage 714, an execute stage
716, a write back/memory write stage 718, an exception handling stage 722, and a commit stage
724.

Figure 7B shows processor core 790 including a front end unit 730 coupled to an
execution engine unit 750, and both are coupled to a memory unit 770. The core 790 may be a
reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 790 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

The front end unit 730 includes a branch prediction unit 732 coupled to an instruction
cache unit 734, which is coupled to an instruction translation lookaside buffer (TLB) 736, which
is coupled to an instruction fetch unit 738, which is coupled to a decode unit 740. The decode
unit 740 (or decoder) may decode instructions, and generate as an output one or more
micro-operations, micro-code entry points, microinstructions, other instructions, or other control

signals, which are decoded from, or which otherwise reflect, or are derived from, the original
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instructions. The decode unit 740 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),
etc. In one embodiment, the core 790 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 740 or otherwise within the front
end unit 730). The decode unit 740 is coupled to a rename/allocator unit 752 in the execution
engine unit 750.

The execution engine unit 750 includes the rename/allocator unit 752 coupled to a
retirement unit 754 and a set of one or more scheduler unit(s) 756. The scheduler unit(s) 756
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 756 is coupled to the physical register file(s) unit(s) 758.
Each of the physical register file(s) units 758 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In
one embodiment, the physical register file(s) unit 758 comprises a vector registers unit, a write
mask registers unit, and a scalar registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose registers. The physical register
file(s) unit(s) 758 is overlapped by the retirement unit 754 to illustrate various ways in which
register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s)
and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement
register file(s); using a register maps and a pool of registers; etc.). The retirement unit 754 and
the physical register file(s) unit(s) 758 are coupled to the execution cluster(s) 760. The
execution cluster(s) 760 includes a set of one or more execution units 762 and a set of one or
more memory access units 764. The execution units 762 may perform various operations (e.g.,
shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar floating
point, packed integer, packed floating point, vector integer, vector floating point). While some
embodiments may include a number of execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 756, physical register file(s) unit(s) 758,
and execution cluster(s) 760 are shown as being possibly plural because certain embodiments
create separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have their own scheduler unit, physical

register file(s) unit, and/or execution cluster — and in the case of a separate memory access
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pipeline, certain embodiments are implemented in which only the execution cluster of this
pipeline has the memory access unit(s) 764). It should also be understood that where separate
pipelines are used, one or more of these pipelines may be out-of-order issue/execution and the
rest in-order.

The set of memory access units 764 is coupled to the memory unit 770, which includes a
data TLB unit 772 coupled to a data cache unit 774 coupled to a level 2 (L2) cache unit 776. In
one exemplary embodiment, the memory access units 764 may include a load unit, a store
address unit, and a store data unit, each of which is coupled to the data TLB unit 772 in the
memory unit 770. The instruction cache unit 734 is further coupled to a level 2 (L2) cache unit
776 in the memory unit 770. The L2 cache unit 776 is coupled to one or more other levels of
cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 700 as follows: 1) the instruction fetch 738 performs
the fetch and length decoding stages 702 and 704; 2) the decode unit 740 performs the decode
stage 706; 3) the rename/allocator unit 752 performs the allocation stage 708 and renaming stage
710; 4) the scheduler unit(s) 756 performs the schedule stage 712; 5) the physical register file(s)
unit(s) 758 and the memory unit 770 perform the register read/memory read stage 714; the
execution cluster 760 perform the execute stage 716; 6) the memory unit 770 and the physical
register file(s) unit(s) 758 perform the write back/memory write stage 718; 7) various units may
be involved in the exception handling stage 722; and §) the retirement unit 754 and the physical
register file(s) unit(s) 758 perform the commit stage 724.

The core 790 may support one or more instructions sets (e.g., the x86 instruction set (with
some extensions that have been added with newer versions); the MIPS instruction set of MIPS
Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s) described
herein. In one embodiment, the core 790 includes logic to support a packed data instruction set
extension (e.g., SSE, AVX1, AVX2, etc.), thereby allowing the operations used by many
multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or more
parallel sets of operations or threads), and may do so in a variety of ways including time sliced
multithreading, simultaneous multithreading (where a single physical core provides a logical
core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of out-of-order execution, it should be
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understood that register renaming may be used in an in-order architecture. While the illustrated
embodiment of the processor also includes separate instruction and data cache units 734/774 and
a shared L2 cache unit 776, alternative embodiments may have a single internal cache for both
instructions and data, such as, for example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may include a combination of an internal cache
and an external cache that is external to the core and/or the processor. Alternatively, all of the
cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

Figures 8A-B illustrate a block diagram of a more specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., a ring network) with some fixed function logic, memory I/0O
interfaces, and other necessary 1/0 logic, depending on the application.

Figure 8A is a block diagram of a single processor core, along with its connection to the
on-die interconnect network 802 and with its local subset of the Level 2 (LL2) cache 804,
according to embodiments of the invention. In one embodiment, an instruction decoder 800
supports the x86 instruction set with a packed data instruction set extension. An L1 cache 806
allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 808 and a vector unit 810 use separate register
sets (respectively, scalar registers 812 and vector registers 814) and data transferred between
them is written to memory and then read back in from a level 1 (L1) cache 806, alternative
embodiments of the invention may use a different approach (e.g., use a single register set or
include a communication path that allow data to be transferred between the two register files
without being written and read back).

The local subset of the L2 cache 804 is part of a global L2 cache that is divided into
separate local subsets, one per processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 804. Data read by a processor core is stored in its L2 cache
subset 804 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache
subset 804 and is flushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network is bi-directional to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

Figure 8B is an expanded view of part of the processor core in Figure 8A according to

embodiments of the invention. Figure 8B includes an L1 data cache 806A part of the L1 cache
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804, as well as more detail regarding the vector unit 810 and the vector registers §14.
Specifically, the vector unit 810 is a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 828), which executes one or more of integer, single-precision float, and double-precision
float instructions. 'The VPU supports swizzling the register inputs with swizzle unit 820,
numeric conversion with numeric convert units 822A-B, and replication with replication unit 824
on the memory input. Write mask registers 826 allow predicating resulting vector writes.
Processor with integrated memory controller and graphics

Figure 9 is a block diagram of a processor 900 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 9 illustrate a processor 900 with
a single core 902A, a system agent 910, a set of one or more bus controller units 916, while the
optional addition of the dashed lined boxes illustrates an alternative processor 900 with multiple
cores 902A-N, a set of one or more integrated memory controller unit(s) 914 in the system agent
unit 910, and special purpose logic 908.

Thus, different implementations of the processor 900 may include: 1) a CPU with the
special purpose logic 908 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 902A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of the
two); 2) a coprocessor with the cores 902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 902A-N being a large number of general purpose in-order cores. Thus, the processor 900
may be a general-purpose processor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 900 may be a part of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,
for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of cache within the cores, a set or one
or more shared cache units 906, and external memory (not shown) coupled to the set of
integrated memory controller units 914. The set of shared cache units 906 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 912 interconnects the integrated graphics logic 908, the set of shared cache

units 906, and the system agent unit 910/integrated memory controller unit(s) 914, alternative
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embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 906 and cores
902-A-N.

In some embodiments, one or more of the cores 902A-N are capable of multi-threading.
The system agent 910 includes those components coordinating and operating cores 902A-N. The
system agent unit 910 may include for example a power control unit (PCU) and a display unit.
The PCU may be or include logic and components needed for regulating the power state of the
cores 902A-N and the integrated graphics logic 908. The display unit is for driving one or more
externally connected displays.

The cores 902A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 902A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Exemplary Computer Architectures

Figures 10-13 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

Referring now to Figure 10, shown is a block diagram of a system 1000 in accordance
with one embodiment of the present invention. The system 1000 may include one or more
processors 1010, 1015, which are coupled to a controller hub 1020. In one embodiment the
controller hub 1020 includes a graphics memory controller hub (GMCH) 1090 and an
Input/Output Hub (IOH) 1050 (which may be on separate chips); the GMCH 1090 includes
memory and graphics controllers to which are coupled memory 1040 and a coprocessor 1045;
the IOH 1050 is couples input/output (I/O) devices 1060 to the GMCH 1090. Alternatively,
one or both of the memory and graphics controllers are integrated within the processor (as
described herein), the memory 1040 and the coprocessor 1045 are coupled directly to the
processor 1010, and the controller hub 1020 in a single chip with the IOH 1050.

The optional nature of additional processors 1015 is denoted in Figure 10 with broken
lines. Each processor 1010, 1015 may include one or more of the processor cores described

herein and may be some version of the processor 900.
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The memory 1040 may be, for example, dynamic random access memory (DRAM), phase
change memory (PCM), or a combination of the two. For at least one embodiment, the
controller hub 1020 communicates with the processor(s) 1010, 1015 via a multi-drop bus, such
as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or
similar connection 1095.

In one embodiment, the coprocessor 1045 is a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 1020 may include an integrated graphics accelerator.

There can be a variety of differences between the physical resources 1010, 1015 in terms
of a spectrum of metrics of merit including architectural, micro-architectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 1010 executes instructions that control data processing
operations of a general type. Embedded within the instructions may be coprocessor
instructions. The processor 1010 recognizes these coprocessor instructions as being of a type
that should be executed by the attached coprocessor 1045.  Accordingly, the processor 1010
issues these coprocessor instructions (or control signals representing coprocessor instructions) on
a coprocessor bus or other interconnect, to coprocessor 1045.  Coprocessor(s) 1045 accept and
execute the received coprocessor instructions.

Referring now to Figure 11, shown is a block diagram of a first more specific exemplary
system 1100 in accordance with an embodiment of the present invention. As shown in Figure
11, multiprocessor system 1100 is a point-to-point interconnect system, and includes a first
processor 1170 and a second processor 1180 coupled via a point-to-point interconnect 1150.
Each of processors 1170 and 1180 may be some version of the processor 900. In one
embodiment of the invention, processors 1170 and 1180 are respectively processors 1010 and
1015, while coprocessor 1138 is coprocessor 1045.  In another embodiment, processors 1170
and 1180 are respectively processor 1010 coprocessor 1045.

Processors 1170 and 1180 are shown including integrated memory controller (IMC) units
1172 and 1182, respectively.  Processor 1170 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1176 and 1178; similarly, second processor 1180 includes P-P
interfaces 1186 and 1188. Processors 1170, 1180 may exchange information via a
point-to-point (P-P) interface 1150 using P-P interface circuits 1178, 1188. As shown in
Figure 11, IMCs 1172 and 1182 couple the processors to respective memories, namely a
memory 1132 and a memory 1134, which may be portions of main memory locally attached to

the respective processors.
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Processors 1170, 1180 may each exchange information with a chipset 1190 via individual
P-P interfaces 1152, 1154 using point to point interface circuits 1176, 1194, 1186, 1198.

Chipset 1190 may optionally exchange information with the coprocessor 1138 via a
high-performance interface 1139. In one embodiment, the coprocessor 1138 is a
special-purpose processor, such as, for example, a high-throughput MIC processor, a network or
communication processor, compression engine, graphics processor, GPGPU, embedded
processor, or the like.

A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed
into a low power mode.

Chipset 1190 may be coupled to a first bus 1116 via an interface 1196. In one
embodiment, first bus 1116 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of
the present invention is not so limited.

As shown in Figure 11, various I/O devices 1114 may be coupled to first bus 1116, along
with a bus bridge 1118 which couples first bus 1116 to a second bus 1120. In one embodiment,
one or more additional processor(s) 1115, such as coprocessors, high-throughput MIC
processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1116. In one embodiment, second bus 1120 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 1120 including, for example, a keyboard and/or
mouse 1122, communication devices 1127 and a storage unit 1128 such as a disk drive or other
mass storage device which may include instructions/code and data 1130, in one embodiment.
Further, an audio I/O 1124 may be coupled to the second bus 1120. Note that other
architectures are possible. For example, instead of the point-to-point architecture of Figure 11,
a system may implement a multi-drop bus or other such architecture.

Referring now to Figure 12, shown is a block diagram of a second more specific
exemplary system 1200 in accordance with an embodiment of the present invention. Like
elements in Figures 11 and 12 bear like reference numerals, and certain aspects of Figure 11
have been omitted from Figure 12 in order to avoid obscuring other aspects of Figure 12.

Figure 12 illustrates that the processors 1170, 1180 may include integrated memory and
I/0O control logic (“CL”) 1172 and 1182, respectively. Thus, the CL 1172, 1182 include
integrated memory controller units and include I/O control logic. Figure 12 illustrates that not

only are the memories 1132, 1134 coupled to the CL 1172, 1182, but also that I/0 devices 1214
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are also coupled to the control logic 1172, 1182. Legacy I/O devices 1215 are coupled to the
chipset 1190.

Referring now to Figure 13, shown is a block diagram of a SoC 1300 in accordance with
an embodiment of the present invention. Similar elements in Figure 9 bear like reference
numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure
13, an interconnect unit(s) 1302 is coupled to: an application processor 1310 which includes a set
of one or more cores 202A-N and shared cache unit(s) 906; a system agent unit 910; a bus
controller unit(s) 916; an integrated memory controller unit(s) 914; a set or one or more
coprocessors 1320 which may include integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access memory (SRAM) unit 1330; a direct
memory access (DMA) unit 1332; and a display unit 1340 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1320 include a special-purpose processor,
such as, for example, a network or communication processor, compression engine, GPGPU, a
high-throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one
output device.

Program code, such as code 1130 illustrated in Figure 11, may be applied to input
instructions to perform the functions described herein and generate output information.  The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, for example; a digital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level procedural or object oriented
programming language to communicate with a processing system. The program code may also
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the

techniques described herein.  Such representations, known as “IP cores” may be stored on a

20



10

15

20

25

WO 2014/051771 PCT/US2013/047401

tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also be referred to as program
products.

While certain exemplary embodiments have been described and shown in the
accompanying drawings, it is to be understood that such embodiments are merely illustrative of
and not restrictive on the broad invention, and that this invention not be limited to the specific
constructions and arrangements shown and described, since various other modifications may
occur to those ordinarily skilled in the art upon studying this disclosure. In an area of
technology such as this, where growth is fast and further advancements are not easily foreseen,
the disclosed embodiments may be readily modifiable in arrangement and detail as facilitated
by enabling technological advancements without departing from the principles of the present

disclosure or the scope of the accompanying claims.
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Claims

What is claimed is:

1. An apparatus comprising:
an extended register set partitioned into a plurality of banks;
a current bank register to provide a pointer to one of the banks that is currently
active; and
execution circuitry coupled to the extended register set and the current bank register,
the execution circuitry to:
receive an instruction for exchanging contexts of two user-level threads
including a first thread and a second thread, wherein the first thread having a first context saved
in a first one of the banks and the second thread having a second context saved in a second one
of the banks,
change the pointer from the first bank to the second bank in response to
the instruction, and
execute the second thread using the second context stored in the second

bank.

2. The apparatus of claim 1, wherein a copy of the contexts is stored in a plurality of

memory regions corresponding to the plurality of banks of the extended register set.

3. The apparatus of claim 2, further comprising snoop circuitry to track access to the
memory regions, and to trigger an event for synchronizing the contexts between an area of the
memory regions and a corresponding bank of the extended register set when the access is

detected.

4. The apparatus of claim 1, further comprising a plurality of vector registers divided
into a plurality of partitions, wherein a copy of the contexts is stored in the plurality of partitions

corresponding to the plurality of banks of the extended register set.

5. The apparatus of claim 4, wherein each of the vector registers has one or more state
bits associated therewith to indicate whether a latest copy of a given context is stored in the

vector registers or in the extended register set.

6. The apparatus of claim 1, further comprising decoder circuitry coupled to the
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execution circuitry to map a register referenced by a given user-level thread into a corresponding

bank of the extended register set.

7. The apparatus of claim 1, wherein the execution circuitry unconditionally switches to

the second context in response to the instruction.

8. The apparatus of claim 1, further comprising front end circuitry coupled to the

execution circuitry to determine whether a condition is met for switching to the second context.

0. The apparatus of claim 1, wherein the instruction is one of a pair of instructions that
mark the boundary of an instruction block that includes a plurality of instructions, and wherein

each instruction in the instruction block is a candidate for context switch.

10. The apparatus of claim 1, further comprising a mask register coupled to the
execution circuitry, the mask register comprising a plurality of mask bits, wherein each mask bit
is associated with one of the banks and indicates whether the one of the banks has been

deactivated for context switching.

11. A method comprising:

executing by a processor a first thread using a first context stored in a first one of
banks of an extended register set, wherein the first thread is a user-level thread;

receiving by the processor an instruction for exchanging contexts of the first thread
and a second thread, wherein the second thread is another user-level thread having a second
context saved in a second one of the banks of the extended register set;

changing a register pointer, which points to the first bank as a currently active bank,
to the second bank in response to the instruction; and

executing by the processor the second thread using the second context stored in the

second bank.

12. The method of claim 11, wherein a copy of the contexts is stored in a plurality of

memory regions corresponding to the plurality of banks of the extended register set.

13. The method of claim 12, further comprising:
tracking access to the memory regions; and

triggering an event for synchronizing the contexts between an area of the memory
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regions and a corresponding bank of the extended register set when the access is detected.

14. The method of claim 11, wherein a copy of the contexts is stored in a plurality of

partitions of vector registers corresponding to the plurality of banks of the extended register set.

15. The method of claim 14, wherein each of the vector registers has one or more state
bits associated therewith to indicate whether a latest copy of a given context is stored in the

vector registers or in the extended register set.

16. The method of claim 11, wherein executing the instruction causes switching to the

second context unconditionally.

17. The method of claim 11, wherein executing the instruction causes determining

whether a condition is met for switching to the second context.

18. The method of claim 11, wherein the instruction is one of a pair of instructions that
mark the boundary of an instruction block that includes a plurality of instructions, and wherein

each instruction in the instruction block is a candidate for context switch.

19. The method of claim 11, further comprising executing the instruction without

involvement of an operating system.

20. A system comprising:
memory; and
a processor coupled to the memory, the processor comprising:
an extended register set partitioned into a plurality of banks,
a current bank register to provide a pointer to one of the banks that is
currently active, and
execution circuitry coupled to the extended register set and the current
bank register, the execution circuitry to receive an instruction for exchanging contexts of two
user-level threads including a first thread and a second thread, wherein the first thread having a
first context saved in a first one of the banks and the second thread having a second context
saved in a second one of the banks, to change the pointer from the first bank to the second bank

in response to the instruction, and to execute the second thread using the second context stored in
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the second bank.

21. The system of claim 20, wherein a copy of the contexts is stored in a plurality of
memory regions of the memory corresponding to the plurality of banks of the extended register

set.
22. The system of claim 20, further comprising a plurality of vector registers divided

into a plurality of partitions, wherein a copy of the contexts is stored in the plurality of partitions

corresponding to the plurality of banks of the extended register set.
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500

EXECUTE A FIRST USER-LEVEL THREAD USING A FIRST CONTEXT
STORED IN A FIRST ONE THE BANKS OF AN EXTENDED REGISTER SET
510

y

RECEIVE AN INSTRUCTION FOR EXCHANGING CONTEXTS OF THE FIRST
THREAD AND A SECOND THREAD; THE SECOND THREAD BEING
ANOTHER USER-LEVEL THREAD AND HAVING A SECOND CONTEXT
SAVED IN A SECOND BANK OF THE EXTENDED REGISTER SET
520

A 4

CHANGE A REGISTER POINTER, WHICH POINTS TO THE FIRST BANK AS
A CURRENTLY ACTIVE BANK, TO THE SECOND BANK IN RESPONSE TO
THE INSTRUCTION
530

A\ 4

EXECUTE THE SECOND THREAD USING THE SECOND CONTEXT STORED
IN THE SECOND BANK

540

FIG. 5



PCT/US2013/047401

WO 2014/051771

9/16

9'0l4

209 IOVNONYT TIATTHOIH

809 ¥3dNOD
13S NOILONYLSNI
JAILLYNY3LTY

$09 ¥31dNOD 98X

909 3000 AHVNIF 98X

219 H3LHIANOD
NOILONYLSNI

019 3000 AYvYNIG
13S NOILONYLSNI

JHVMLA0S JALLYNYALTY
JUYMAHVH / e
\
e 19 340D 13S NOILONYLSNI
340D L3S NOILOMYLSNI
98X INO 1SV 98X NY LNOHLIM ¥OSSID0Hd
1V HLIM HOSSIO0Md




PCT/US2013/047401

WO 2014/051771

10/16

A

9.1
LINN
JHOVD
¢l

viL

LINA FHOVO V1vd
¢l

042 1INN
AHOWIW

LINA mw.r vilvd

y 09/ (SIH3LSNIO NOILND3X3

92 (SILINN
$S300V
AHOWIN

29/
(S)LINN
NOILND3X3

€. "9l

V. Old

- — — — v —

A

A

]

86/ (S)LINN S3 714 H3LSIOTY WIISAHd

T e ™ il s L

—— e a=——A_ ] bG

5L (LNN¥3INAIHOS _ | |

7 NIV
HOLYDOTIV / INYNIY

J---

LINM INTFNIHILIY

L

064 LINN
ANIONT NOLLNO3X3

0%L LINN

30003d

'y

OLLONYLISNI

[ 8e/HOI3AN
A

9€/ LINN g1 NOILLONYLSNI

0eL
LINN ON3 LNO¥H

vEL LINN JHOVID NOILONHLSNI

NOLLOId3Hd HONVHE

ZEL1INN

, 7zl
| VeL | oNraNYH
| LIANOD |11 430%3

MOVE JLIHM

8L
LM

AHOWIW | JOVIS

gl
31n03X3

0Y3H AHOWSN

4318194y

vil

/av3d

49
3INAIHOS [ONIWYNIH 0011V [30003a
I

|
oL |

80L

™

0643402

\ 004 INN3did

y0.
ONIQ0o3a
HLONTT

904

204
HO134




PCT/US2013/047401

WO 2014/051771

11/16

g8 "old

V908
JHOVO Vivad L1

A

82298 vees
L1H3IANOD 1¥3IANOD
ORINNN OIFINNN

A
vi8
SYILSIOY
d0.103A
A
yvy /

028 ye8

JFVZZIMS J1LYOd3d
F v h J
8¢8
NV HOLO3A 3aIM-91
A
Y

928

SHILSIOTE MSVIN LM

V8 'Ol

208
AHOMLIN ONIY
A

08
3FHOVO
¢13H1 40 1384dNS VOO

A

908
dHOVO L1
A 4
h 4 A
yig8 cl8
SHALSIOTY SY3ILSIOIY
JOLO3IA dVY VoS
A A
A J ﬁlllJ
0i8 808
LINM LINM
HOLO3A HVIVOS
A A
y
008

300030 NOILLONYLSNI




PCT/US2013/047401

WO 2014/051771

12/16

6 Ol
| weEN [ T BONE T T -]
| YITIOMINOD T~~~ ————————~— T |
AYONAW | 906 (S)LINN 3HOVO aFHVHS _
9B SLLNN 1 03 vem i (TS === i _
¥ITI0MINOD || R 1 wos T V06 |
sne | (S)LINN “ EXX (SILINN 306 01907 |
016 LINN | 3HOWO | 3HOVO | | 3sodund |
INJOVWALSAS | NZ06 0D | YZ06IHOO | WIodds |
Vowwmoo%



PCT/US2013/047401

WO 2014/051771

13/16

01 "Old

T
| *

| osoiHoI _

PH\i_qi

S

._ 060} xozU

ASOWNIN | —F — ]

0c0l anH
YITIOHINOD

O/

S— 0901
T T

_ %mmmoomn__
_ -00

L —— | ¥0SS3004d

o_el\\wnl..lL* /
EIIL
Glol

0004



PCT/US2013/047401

WO 2014/051771

14/16

I "Ol4
viva
8211 011
NV 3000 | s30n3a | 3snow
I9VHOLS V1VQ Ll WINOD el JAYYOGAIN
0zil w i
i AN v gLil
¥0SS300Md o/l oIanNY $39IA30 O/l 390144 sng
o - — — ..I_
9L, —1 M| 261 —1 AN | el
961, — d-d 061} 13SdIHO A dd L g1 _mOmwmuomn_oo_
7o) — -
pSLl 511
Bam—
owv w &u& n_-& m-n_ &..& omv l
%:L%:L \ /i.MWE \le
0511
— 28} L =z
ONlI M|
bl el
AHOWIW AHOW3N
¥0SSIDOUIOD
40SS300Yd H0SSID0Hd
001}



PCT/US2013/047401

15/16

pell
AHONIN

WO 2014/051771

H0SS320¥d

0511

(A E
5121
O/l ADY9T1
9611 —1 M
13SdIHO
64| ——1 dd
%:I\» « %:\» «
—
dd dd
981 — gg}} — \ /I;E: L_g

H0SS300¥d

et
AHOWNIN

_ S30IA3a on

_

N

00Z1




PCT/US2013/047401

WO 2014/051771

16/16

0z¢) (S)HOSS300Ud0D

¢l 9Old
716 (S)LINN
ovel 0gEl YITIOULINOD
LNNAVTdsig | | 8 LINOYAT | e v AHOWIN
Q3LVYOIINI
7/
/
916 (S)LINN
mmjoEzoo
sng ) aEz: TOANNOOYIINI |
\ !
“ |
| 906 (S)LINN IHOYD QFHVHS _
_ r—==" _ -
11 Nvos V406
I JBLND | | eme | |(SILNN
046 LINN 20 ) | 3HOVO
INOY WILSAS w NZ06 3500 .m V206 3400

01€1 HOSSIO0Hd NOILYOIddY

00gl
dIiHO V NO W3LSAS



INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/047401

A. CLASSIFICATION OF SUBJECT MATTER
GOO6F 9/38(2006.01)i, GO6F 9/46(2006.01)i, GO6F 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by classification symbols)
GO6F 9/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: , ,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
gory pprop passag

A WO 2005-098624 Al (INTEL CORPORATION et al.) 20 October 2005 1-22
See the abstract; the paragraphs [00023]-[00031]; figures 2 and 3.

A US 7827551 B2 (KULBAK YORAM et al.) 02 November 2010 1-22
See the abstract; col.6 line 37 - col.7 line 46; figures 4 and 5.

A US 8121824 B2 (LIU XUEZHENG et al.) 21 February 2012 1-22
See the abstract; col.10 line 11 - col.11 line 60.

PA US 2012-0331065 Al (MICHAEL E. AHO et al.) 27 December 2012 1-22
See the abstract; paragraphs [0017]-[0036],[0080]-[0084]; figures 1 and 8.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E"  earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L"  document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P"  document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
29 August 2013 (29.08.2013) 30 August 2013 (30.08.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, KYUNG, Youn Jeong
3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-3452

Form PCT/ISA/210 (second sheet) (July 2009)



INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/047401
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2005-098624 Al 20/10/2005 CN102779024 A 14/11/2012
CN1938686 A 28/03/2007
CN1938686 B 13/06/2012
DE112005000706 B4 17/02/2011
DE112005000706 T5 15/02/2007
JP 04-949231B2 06/06/2012
JP 2007-531167 T 01/11/2007
JP 2007-531167A 01/11/2007
JP 2012-094175A 17/05/2012
JP 2012-160202A 23/08/2012
TW 13217498 11/03/2010
US 2005-0223199 Al 06/10/2005
US 2013-111194 A1l 02/05/2013
US 7827551 B2 02/11/2010 CN101268445 A0 17/09/2008
CN101268445 B 05/12/2012
EP 1927049 Al 04/06/2008
US 2007-0067771 Al 22/03/2007
WO 2007-038011 Al 05/04/2007
US 8121824 B2 21/02/2012 US 2009-248381 Al 01/10/2009
US 2011-178788 Al 21/07/2011
US 7933759 B2 26/04/2011
US 2012-0331065 Al 27/12/2012 US 2013-080564 Al 28/03/2013
US 8490113 B2 16/07/2013
US 8495655 B2 23/07/2013

Form PCT/ISA/210 (patent family annex) (July 2009)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

