
United States Patent (19)
Middledorp et al.

54

(75)

(73)

21)
22)

I63)

(51)
(52)

(58)

(56)

APPARATUS AND METHOD FOR
INTERFACINGHOST COMPUTER AND
COMPUTER NODESUSING REDUNDANT
GATEWAY DATA LISTS OF ACCESSIBLE
COMPUTER NODE DATA

Inventors: Frans M. Middledorp, Attleboro;
Allan P. Fournier, North Attleboro,
both of Mass.

The Foxboro Company, Foxboro,
Mass.

105,766
Aug. 11, 1993

Assignee:

Appl. No.:
Filed:

Related U.S. Application Data
Continuation of Ser. No. 574,706, Aug. 29, 1990, aban
doned.

Int. Cl........................ G06F 13/00; G06F 11/20
U.S. C. 395/575; 364/DIG. 1;

364/253; 364/266.5; 364/268; 364/268.3;
364/242.94

Field of Search 395/575, 200, 600, 800;
371/7, 11.1, 9.1

References Cited
U.S. PATENT DOCUMENTS

4,371,754 2/1983 De et al. 371/9.1
4,644,468 2/1987 Doster et al.................. 364/DIG.
4,718,005 l/1988 Feigenbaum et al......... 364/DIG. 1

US00534496A

11 Patent Number: 5,341,496
(45) Date of Patent: Aug. 23, 1994

4,731,734 3/1988 Gruner et al. 364/DIG. 1
4,817,091 3/1989 Katzman et al. 364/DIG. 1
4,823,256 4/1989 Bishop et al. 364/200
4,879,716 11/1989 McNally et al...................... 371/9.1
5,008,805 4/1991 Fiebig et al. 371/9.
5,027,269 6/1991 Grant et al. 371/9.
5,121,486 6/1992 Kurihara et al. 371/9.1
5,125,091 6/1992 Staas, Jr. et al... ... 364/DIG.
5,202,981 4/1993 Shackelford 395/600

Primary Examiner-Eddie P. Chan
Attorney, Agent, or Firm-Jules Jay Morris; Steven M.
Mills; Mary Lou Wakimura
(57) ABSTRACT
Application interface software provides communication
between a network of computer nodes and user applica
tions of a host processor. Interpreters or gateways are
used between the host processor and the network of
computer nodes. The application interface software
employs a redundancy routine to ensure host access of
computer node data through the gateways. The redun
dancy routine changes access of computer node data
from one gateway to a second gateway during times of
dysfunctioning of the one gateway. The redundancy
routine changes access in a manner which is transparent
to the host processor. A database is employed to hold
computer node data for direct access by the host pro
cessor. The redundancy routine ensures the latest com
puter node data values to be reflected in the database.

9 Claims, 10 Drawing Sheets

U.S. Patent Aug. 23, 1994 Sheet 1 of 10 5,341,496

s

U.S. Patent Aug. 23, 1994 Sheet 2 of 10 5,341,496

i
S

A
P
P
L

C
A
T

O
N

FIC. 2

U.S. Patent Aug. 23, 1994 Sheet 3 of 10 5,341,496

OPEN SUBROUTINES FLOW DAGRAM
66

l,
75

Sort the Set by INI

Arethere enough resources NO Return with error indication
to open this Set 2

Chop the Set into pieces
of maximum of 50 entries per
list and skip to a new list if
a new N is enCOuntered

77

Build the next request
and ask CENTRAL to

open the list on requested Ni

NO Last List?

YES

Read the values from all
Objects in the Set and update

system common

Return to Caller

FIG. 3

U.S. Patent Aug. 23, 1994 Sheet 4 of 10 5,341,496

CENTRALTASK FLOW DAGRAM
OPEN REQUEST HANDLING 63

Get a Pseudoid for the to be opened 4.
list

Store the information in the database 79
for all the objects in this request. The
idfield gets the value of the Pseudo

id.

Open the list on the requested IN

is the opening of the list NO
Sucessfull?

YES

81

Replace the Pseudo id in the
database for the objects in this list.

Update the crossreference table by
INI and id to point to the correct

database entry.

Send completion indication to
requesting program.

FIG. 4 O.

U.S. Patent Aug. 23, 1994 Sheet 5 of 10 5,341,496

CENTRAL TASK FLOW DAGRAM
HANDLING OF A BREAKN SWC

63

SWCBREAK 4.
Mark the N which lost it's SWC as FALNG

in the database

Trigger the REASSIGN task to handle the
change in the state of this Ni

END

FIC. 4b.

U.S. Patent Aug. 23, 1994 Sheet 6 of 10 5,341,496

67 Start

Get the status of the next configured INI,

NO Did the status change from FAILED to OK?

Request the CENTRAL task to open an new SVC for himself.

NO
Did Central lose the SWC to this INI? (The state of the INI is FAILING...)

YES

Change all the id's for this ENE to Pseudo lists and update the Database,

NO
is this the last IN to check?

YES

Build a table of all active lists; get their initial IN, the IN the list is
Currently opened on and their id (valid or Pseudo).

Try to Open all lists which are not opened on any INI on their initial
(preferred) INI. (These lists have a Pseudoid.) It is possible to open these

lists on their initial IN, if the initial INI is OK and there are still lists
available on the initial N.

Try to move all lists which are opened on backup IN's to their initial
(preferred) N. (These lists have an id, but the wrong INI #.) it is possible
to move these lists on their initial IN, if the initial IN is OK and there are

Still lists available On the initial N.

85

Try to Open all lists which are not opened on any INI on any available TNI.
(These lists have a Pseudoid.) it is possible to open these lists on an INI,

if that N is OK and there are still lists on that N.

End

FIC, 5

U.S. Patent Aug. 23, 1994 Sheet 7 of 10 5,341,496

Obj Name

57-7

FIC. 6

U.S. Patent Aug. 23, 1994 Sheet 8 of 10 5,341,496

71 Before Failure of Ni - 73

Curr. - Current Nil the list is opened on.
ld id of the list
List - List number on the initial (perfered N)

2

FIC. 7O.

U.S. Patent Aug. 23, 1994 Sheet 9 of 10 5,341,496

71 Before Failure of IN - 73

O
1
2
3
4.
5
6
7
8
9

2
3
4.
5.
6
7
8
9

Curr. - Current N the list is opened on.
ld id of the list
List - List number on the initial (perfered N)

FIC. 7b

U.S. Patent Aug. 23, 1994 Sheet 10 of 10 5,341,496

71 Start of figure is the end state of figure 7b 73

List id Cur.
2 O
2
2 2
2 3
2 4.
2 5
2 6
2 7
2 8

9

f
t
1.

71 After lN - 1 returns to a OK State 73

N av 2

U r r

Curr. - Current Nl the list is opened on.
ld - id of the list
List - List number on the initial (perfered IN)

2
3
4
5.
6
7
8
9
10
11
12
13
14
15
16
7
18
19
20

FIC. 7e

5,341,496
1.

APPARATUS AND METHOD FOR INTERFACNG
HOST COMPUTER AND COMPUTER NODES

USING REDUNDANT GATEWAY DATA LISTS OF
ACCESSIBLE COMPUTER NODE DATA

This is a continuation of co-pending application Ser.
No. 07/574,706 filed on Aug. 29, 1990 now abandoned.

BACKGROUND OF THE INVENTION

In a process plant, various processes are employed to
produce amounts of a desired product. The various
processes are performed by a system of devices (vats,
transfer lines, machinery and the like) operated in series
or parallel. In addition, electronic sensing and computer
control have been incorporated to detect and correct
errors or unwanted changes in processing status, for
example pressure, temperature and flow volume, and
thus maximize processing.

Recently, other add-on computer programs or user
applications have been utilized with processing systems
to provide historization, accounting modelling, optimi
zation, and/or inventory management. Typically, a host
processor and a network of computer workstations or
modules are employed to support the various computer
control and add-on computer programs.
One disadvantage has been that the different add-on

computer programs are not always compatible with
current configurations of the host processor and thus
require certain interfacing. Various interfaces are
known and each have certain disadvantages and advan
tages and are typically system specific.

SUMMARY OF THE INVENTION

The present invention is directed toward an interface
between add-on programs (or the host processor on
which the programs are executed) and a network of
working computer nodes of a process system. Specifi
cally, the present invention ensures add-on program
access to data in the process system or various working
computer nodes thereof.
This is accomplished by multiple gateways into the

process system and a data handling scheme which em
ploys redundancy of data. The gateways serve as inter
preters between an add-on program (i.e., the host pro
cessor) and the computer nodes of the process system.
Each gateway supports access to respective data in the
process system according to lists of the gateway. The
redundancy portion of the data handling scheme pro
vides copying of data lists from an initial gateway to an
available substitute gateway when the initial gateway
fails.

Program access of data is then supported by the sub
stitute gateway currently holding the data lists although
no change in protocol from the program end is re
quired. That is, the data handling redundancy scheme
changes data lists of gateways in a manner which is
transparent to the host processor and add-on programs
thereof.

In accordance with one aspect of the present inven
tion, the process system is an object oriented system in
which data is accessed by name and not memory ad
dress. This enables a program to request data according
to name no matter which gateway (an initial one or a
substitute one) is currently supporting access of the
data.

In accordance with another aspect of the present
invention, when the failed initial gateway has been rec

10

15

20

25

30

35

40

45

50

55

60

65

2
tified and has returned to a functional state, the data
handling redundancy scheme replaces copied data lists
in the initial gateway from the substitute gateway.

Further, a preferred embodiment of the present in
vention employs a database for holding computer node
data. The database provides direct program/host pro
cessor access to the computer node data while the data
handling redundancy scheme maintains the database.

Preferably, the data handling scheme is a data handler
routine executable in the host processor, or similar
means coupled to the host processor.
BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advan
tages of the invention will be apparent from the follow
ing more particular description of preferred embodi
ments of the invention, as illustrated in the accompany
ing drawings in which like reference characters refer to
the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the in
vention.
FIG. 1 is a schematic view of a manufacturing or a

process plant employing the present invention.
FIG. 2 is a block diagram of one embodiment of the

present invention.
FIG. 3 is a flow diagram of a subroutine for opening

access to sets of data objects in the embodiment of FIG.
2.

FIGS. 4a and 4b are flow diagrams of a central task
routine in the embodiment of FIG. 2.
FIG. 5 is a flow diagram of a software routine provid

ing redundancy in the embodiment of FIG. 2.
FIG. 6 is a partially exploded block diagram of the

data structures supporting the software routines of the
embodiment of FIG. 2.
FIGS. 7a-7c are illustrations of operation of the pres

ent invention to provide redundancy in gateways of the
process plant of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Illustrated in FIG. 1 is a general manufacturing plant
10 in which an embodiment of the present invention
may be employed. Manufacturing operations begin at
11 and involve processing through a series or patterns
of process means collectively indicated at 15. The final
(output) product or batch thereof exits the manufactur
ing operations at 13. The process means 15 includes
vats, mixers, heating units, conveyer belts, pumps,
transfer lines together with valving assemblies and the
like for performing various processes required to make
the various products of the plant.

Sensors 27 are coupled to the process means 15 to
detect temperature, pressure, volume, weight, flow
volume, flow rate and other desired physical and/or
chemical aspects of the process means 15. Such sensors
27 include, but are not limited to temperature sensors,
pressure gauges and the like for detecting the desired
physical and/or chemical aspects. The sensors 27 gener
ate analog or digital signals which are received by field
bus modules 29a, 29b, 29c.
The field bus modules 29a, 29b, 29c convert and for

mat the received sensor signals as described in product
specifications PSS21H-2B1 B3, "Intelligent Automa
tion Series Field Bus Modules' by the Foxboro Com
pany, Foxboro, Mass. and herein incorporated by refer
ence. The field bus modules 29a, 29b, 29c transmit

5,341,496
3.

across field buses 31a, 31b, 31c, preferably of the multi
drop type, the converted and formatted digital sensor
signals to computer nodes 35, 33. Each computer node
35, 33 supports a different workstation (or computer
terminal) 17, 19 of the plant 10 and is formed of a plural
ity of processor modules 21 and an interface module 23.
Communication between modules 21, 23 of the same
computer node 33, 35 is supported over a serial back
plane 51. And communication between different com
puter nodes 33, 35 is supported over a carrier band local
area network (LAN) 25 or other suitable bus assembly
for internode communication.

In a preferred embodiment, each processor module
21 has its own operating system 53 and applications
environment. Only certain processor modules 21a, 21d.
21l receive the converted and formatted sensor signals
from a respective field bus module 29b, 29c. These pro
cessor modules 21 store the signals in local memory in
object oriented program structures called input blocks
61. Each input block 61 is assigned a block name and the
block name is catalogued in the processor modules 21a,
21d, 21l object or datapoint directory (not shown).
Each entry in the directory provides a pointer or other
memory address indicator to the corresponding input
block 61. The other processor modules 21 similarly hold
data in local memory as object oriented blocks 61.
Names of these blocks and corresponding memory ad
dresses are catalogued in respective object directories
of the modules 21.
Each of the processor modules 21 employs an object

manager 41 which manages the import and export of
input and other data blocks between modules of a com
puter node 33, 35 along serial backplane 51, as well as
between modules of different computer nodes 33, 35
along the carrier band LAN 25. Further details of the
object manager 41 are found in U.S. application Ser.
No. 07/485,698 assigned to the Assignee of the present
invention and herein incorporated by reference. In sum,
the object managers 41 of the computer nodes 33, 35
enable objects (e.g. input/data blocks 61) to be accessed
by name instead of memory location or address, wher
ever in the network the object may be stored.

Referring back to FIG. 1, a host computer 37 pro
vides central control and operation throughout the
plant network 10 over the LAN 25. Preferably, the host
computer 37 is a DEC VAX/VMS or an HP 9000
which supports an X.25 card by Digital Equipment
Corporation or Hewlett-Packard Company. The X.25
card provides various functionality including the syn
chronous transmitting of data between the host com
puter 37 and gateways 39, discussed later. Also included
in the host 37 is a packet switching interface which
provides adjustment of data packages for better trans
mission over the X.25 link 43 to gateways 39 discussed
later. Preferably, the packet switching interface is the
Packetnet Systems Interface (PSI) manufactured by
Digital Equipment Corporation or Hewlett-Packard
Company.

Typically running on the host 37 are various software
applications 49 which provide historization, plant opti
mization and other management information as desired.
Accordingly, data objects 61 are shared between com
puter nodes 33, 35 and the software applications 49 of
host 37. To aid execution of such software applications
49, an application interface software (AIS) package 45
is concurrently executed within host 37, and translator
devices 39 are employed between the object manager

10

15

20

25

30

35

45

50

55

60

65

4.
configured computer nodes 33, 35 and the host config
ured software applications 49.

In the preferred embodiment, a plurality of informa
tion network interfaces 39 (INI-10's) are employed to
serve as gateways or translators between object man
ager requests and X.25 messages. The INI-10's (gate
ways 39) are coupled between host 37 and the serial
backplane 51 of computer nodes 33, 35 as shown in
FIG. 1. Preferably the INI-10's are of the CmP15 type
manufactured by the Foxboro Company, Foxboro,
Mass. and follow the CCITT standard of protocol
across the X.25 link 43 to the host 37.
Access of objects is organized in a list. Each INI-10

(gateway 39) enables twenty lists of up to fifty data
objects 61 per list to be accessed (i.e. 1000 data objects
per INI-10). Specifically the AIS 45 runs in the host 37
and opens lists on an INI-10 to make object access possi
ble to software applications 49 in host 37. A user (e.g.
software application 49) of the AIS 45 organizes desired
objects in sets, where a set may be from one to n objects,
n being the maximum number of objects accessible
through the total number of INI-10's of the plant system
10. For example, with four INI-10's n is 4,000 (i.e.
4x1,000). The set is assigned an identification number
called the set number. In the preferred embodiment, the
user of the AIS 45 specifies a preferred INI-10 (gateway
39) for each desired object 61. Thus, one user-specified
set may initiate access of objects 61 using multiple lists
and multiple INI-10's (gateways 39).

Concurrently, the AIS 45 updates a host database 47
with the most recent set of object values. Any further
access of objects is done by the software application 49
(i.e. the user of the AIS 45) using the set number or by
reading the object values from the database 47. The
knowledge of relationship between the involved INI-10
(gateway 39) and the accessed object is not necessary of
the user of the AIS 45. The relationship between the
accessed object and the INI-10 (gateway 39) is kept
internal within the AIS 45. This makes it possible for
AIS to access an object, in case of a failing INI-10 (gate
way 39), using another INI-10 (gateway 39) without
degrading the accessibility by the AIS user.
Hence between database updates, the AIS 45 con

stantly monitors the state of each INI-10 (gateway 39).
If one of the INI-10's (gateways 39) fails, new lists are
opened on any available INI-10 (gateway 39) for storing
the object values of the failed INI-10. When the failed
INI-10 (gateway 39) is again operable, the back up list is
transferred back to the original INI-10 (gateway 39).
To that end, the present invention provides what is

known as redundancy, to keep as many objects accessi
ble as possible when various INI-10's fail.
To supply redundancy, it is necessary to have two or

more INI-10's (gateways 39) coupled to the same com
puter node 33, 35 with some free lists. The redundancy
scheme of the present invention keeps as many lists
open on the preferred INI-10 (gateway 39) and if this is
not possible, then on any other INI-10 corresponding to
the computer node 33, 35. The result is that lists are
moved from a failing INI-10 (gateway 39) to a func
tional INI-10 (gateway 39) and the lists are moved back
to their preferred INI-10 (gateway 39) as soon as that
INI-10 (gateway 39) returns to a functional state.
The preferred implementation of the foregoing in the

present invention is illustrated in FIGS. 2 through 6 and
discussed next.

FIG. 6 provides a block diagram, partially exploded,
of the data structures which support the preferred im

5,341,496
5

plementation of the present invention. Included are a
database 47 and an index table 55. Database 47 holds a
multiplicity of data entries or data points 57 at respec
tive positions in the database. Each position and hence
each data point is referenced by an index number
which, in the preferred embodiment, is a typical coordi
nate number of the database 47. Each data entry 57 in
the database 47 contains information of a respective
object. In particular, the contained information includes
object name, identification number of the initial INI-10
supporting access of the object, identification number of
the current INI-10 supporting access of the object,
identification of the INI-10 list in which the object data
is stored, entry number within the list (e.g., 0-49), set
number, entry number within the set, latest object value
and delta value (described later) as shown in FIG. 6.

Index table 55 is a listing of each object made accessi
ble by each INI-10. Table 55 is organized such that the
first 50 objects listed in the table correspond to the
objects of the first list of a first INI-10. The second 50
objects listed in the table correspond to the objects of
the second list of the first INI-10, and so on for each list
of the first INI-10 and on to each list of the other INI
10’s. Thus, index table 55 mimics the data from the
series of INI-10's (gateways 39) corresponding to a
computer node 33, 35. Of particular interest, for each
object in table 55, a database index number is provided.
To that end, the table 55 provides cross referencing
from an object to the corresponding data point 57 in the
database 47.

Referring to FIG. 2, the AIS 45 employs various
working blocks 63, 65, 67, 69 to implement the redun
dancy of the present invention. There are five states of
operation of the AIS 45:
AIS 45 initialization;
opening of a set;
normal running of AIS 45;
INI-10 (gateway 39) failure; and
INI-10 (gateway 39) recovery.

Each of these states is described next in terms of the
working blocks more accurately called tasks and sub
routines 63, 65, 67, 69 of FIG. 2. -

1. AIS Initialization
AIS 45 initialization takes place between the CEN

TRAL task 63 and the INI-10's (gateway 39). The
CENTRAL task 63 establishes switched virtual circuits
to the INI-10's (gateways 39) from AIS 45. These cir
cuits provide the communication links and data transfer
line between the working blocks of AIS 45 and the
INI-10's (gateways 39). Circuit elements and circuit
establishment methods common in the art are used.

2. Opening of a Set
Opening of a set takes place between the user applica

tion 49, the AIS open subroutine 65, the CENTRAL
task 63, and the INI-10's (gateways 39). The user appli
cation 49 passes to subroutine open 65 a set of desired
object names, together with identification numbers of
the preferred INI-10 per object and a delta number for
each object. The delta number indicates the change in
the value of an object. The open subroutine 65 sorts the
set according to INI-10 number and forms a new list for
an INI-10 for every 50 objects corresponding to the
INI-10. Next, subroutine open 65 passes requests to the
CENTRAL task 63 to open each formed list on the
corresponding INI-10's. The CENTRAL task 63 opens
the lists of the INI-10's and updates index table 55 and
corresponding database 47 entries with list identifica
tion numbers that the INI-10 returns to CENTRAL

O

15

25

35

40

45

50

55

60

65

6
task 63. After all lists are open, the open subroutine 65
reads through respective INI-10's the initial values of
the objects in the set and updates the database 47 to
reflect these values at corresponding data points 57. The
open subroutine 65 also updates the database 47 with
the delta numbers for each object. Further, open sub
routine 65 provides calling user application 49 the set
numbers and indexes of the requested objects. Thereaf.
ter, user application 49 uses the set numbers and/or
indexes for direct access of corresponding data points
57 in database 47.

3. Normal Running of AIS 45
During the normal running of AIS 45, the INI-10's

(gateways 39) send change driven messages to the
CENTRAL task 63 over the established switched vir
tual circuits. That is, after opening lists on INI-10's, the
INI-10's detect changes in operating environment.
Upon detecting a change, an INI-10 transmits a perti
nent message over the switched virtual circuit to CEN
TRAL task 63. The CENTRAL task 63 sends the mes
sage to the process unsolicited messages task
(PRCUNS) 69. The PRCUNS task 69 processes the
message and updates the changed values in the database
entries 57. To access the proper data points 57 in data
base 47, PRCUNS 69 refers to table 55 using the INI-10
identification number, list identification number, and
entry number within the list (e.g., 0-49) of the gateway
39 which generated the unsolicited message.
PRCUNS 69 is employed to provide a queueing and

processing task for unsolicited messages such that
CENTRAL task 63 is freed of such processing. It is
understood that processing of unsolicited messages
could be accomplished by CENTRAL task 63 or an
other task if no PRCUNS 69 were used and steps were
taken to prevent overloading of CENTRAL task 63.

4. INI-10 (Gateway 39) Failure
If an INI-10 fails, the CENTRAL task 63 receives

from the failed INI-10 a message that the switched
virtual circuit therebetween has been disconnected. In
response, CENTRAL task 63 sends a pertinent indica
tion to the REASSIGN task 67. The REASSIGN task
67 checks index table 55 and/or the database 47 to de
termine which INI-10s are available and how many lists
are open on each INI-10. The REASSIGN task 67
transmits requests to CENTRAL task 63 to open lists
on determined INI-10s for the lists on the failed INI-10.
CENTRAL task 63 opens the requested lists which
effectively switches lists of the failed INI-10 to the
determined INI-10s. CENTRAL task 63 then returns to
REASSIGN task 67 the list identification numbers of
the INI-10s where CENTRAL task 63 stored the lists of
the failed INI-10,
REASSIGN task 67 updates corresponding database

entries 57 with the new list identification numbers and
identification numbers of the determined (backup) INI
10s. REASSIGN task 67 also updates the object values
held in the corresponding database entries 57.

If a determined INI-10 becomes full (has all the open
lists it can possibly accommodate) with only some of the
lists from the failed INI-10 and further lists from the
failed INI-10 remain on the failed INI-10, REASSIGN
task 67 performs one of two allowable steps. In step 1,
REASSIGN task 67 leaves the remaining lists on the
failed INI-10 and assigns pseudo-list identification num
bers therefore. REASSIGN task 67 also indicates in the
database 47 that object values for the lists with pseudo
identification numbers are not valid. This is accom
plished by the setting or insertion of flags, symbols or

5,341,496
7

the like in the value or other pertinent fields of the data
entries 57 corresponding to the objects of the lists. In an
alternative step, REASSIGN task 67 opens lists on a
second determined available INI-10 in a manner similar
to opening the lists on a first determined INI-10. In
either case, REASSIGN task 67 updates the database 47
accordingly.

5. INI-10 (Gateway 39) Recovery
The REASSIGN task 63 monitors (checks) the INI

10's every thirty seconds. If an INI-10 changes state
from FAILED to FUNCTIONAL, then REASSIGN
task 67 sends a request to the CENTRAL task 63 to
reestablish connections with the INI-10. Subsequent to
the reestablishment of a switched virtual circuit be
tween CENTRAL task 63 and the subject INI-10, the
REASSIGN task 67 requests CENTRAL task 63 to
open lists on the subject INI-10 for the lists on a corre
sponding backup INI-10 as indicated in the database 47.
Along with the request to open lists, REASSIGN task
67 requests CENTRAL task 63 to close the lists on the
backup INI-10. Thereafter REASSIGN task 67 updates
the database 47 with current INI-10 identification num
ber, list identification numbers and latest object values
read through the newly opened INI-10.
During all the above states, the user application 49

may access the values of the objects in the database 47.
In other words, user access into the database 47 is inde
pendent of the state of the INI-10's (gateways 39).
FIGS. 7a-7c illustrate the above described handling

of the lists between an initial INI-10 and a backup INI
10.
In a first example illustrated in FIG. 7a, five lists are

initially open on gateway 71 (INI-10 identification num
ber 1), and another five lists are initially open on gate
way 73 (INI-10 identification number 2). Gateway 71
changes states from FUNCTIONAL to FAILED. The
REASSIGN task 67 moves the lists opened on gateway
71 to gateway 73. REASSIGN task 67 updates database
47 by changing the current INI-10 number from 1 to 2
and by changing the list identification numbers from 0,
1, 2, 3, 4 to 5, 6, 7, 8, 9 which were the next available list
identification numbers on backup gateway 73.
The second example shown in FIG.7b has fifteen lists

open on gateway 71 as their initial INI-10 and ten lists
open on gateway 73 as their initial INI-10. Gateway 71
changes states from FUNCTIONAL to FAILED. The
REASSIGN task 67 moves the lists open on gateway 71
to gateway 73 and updates the database 47 to reflect this
by changing the current INI-10 number from 1 to 2 and
by updating the list identification numbers from 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 to 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, -1, -2, -3, -4, -5 respectively.
The list identification numbers 10 through 19 were the
next available list identification numbers on gateway 73.
At that point, gateway 73 is completely filled with lists
and no more lists are able to be accommodated. Hence,
the remaining lists were given pseudo identification
numbers -1 through -5. The pseudo list ids are still
contributed to their initial gateway 71.
The third example shown in FIG. 7c begins with the

end state of example 2 of FIG. 7b. Gateway 71 returns
to a FUNCTIONAL State. The REASSIGN task 67
responds by first moving the pseudo lists back to initial
gateway 71 and then moves the back-up lists opened on
gateway 73 back to initial gateway 71. The fact that the
lists are assigned different identification numbers than in
the initial opening of gateway 71 is not of importance to
the working of the AIS 45, because applications 49 are

10

15

20

25

30

35

40

45

50

55

60

65

8
able to access object values in the database 47 indepen
dent of list number, gateway number, and list identifica
tion number.
Flow diagrams of the above functioning of subrou

tine open 65, CENTRAL task 63 and REASSIGN task
67 are provided in FIGS. 3-5 and discussed next.
FIG. 3 provides a flow chart of open subroutine 65.

Upon being called by user application 49, open subrou
tine 65 sorts the set provided by the application 49.
Open subroutine 65 sorts according to gateway 39 iden
tification number. Next at 75, open subroutine 65 deter
mines whether there are enough gateways 39 and lists
thereon to open the subject set. If there are not enough
gateways 39, then open subroutine 65 returns to user
application 49 with an error. If there are enough gate
ways 39, open subroutine 65 segments the sorted set into
pieces or lists of a maximum of 50 objects. Open subrou
tine 65 provides objects corresponding to one preferred
gateway in a different segment than objects correspond
ing to another gateway.
For each requested gateway, open subroutine 65

passes a series of requests to CENTRAL task 63 to open
the lists on the requested gateway. This is illustrated at
loop 77 of FIG. 3. Each request in the series of requests
opens a different list on the requested gateway. After
completing the list opening loop 77, open subroutine 65
reads object values through the open gateway lists and
in turn updates database 47. Open subroutine 65 then
returns to the calling user application 49 indicating set
number and database indexes of the objects currently
opened on the requested gateways.
FIGS. 4a and 4b provide flow charts of the function

ing of the CENTRAL task 63. Illustrated in FIG. 4a are
the steps performed by the CENTRAL task 63 in re
sponse to a request to open a list on a gateway 39. Upon
such a request, CENTRAL task 63 begins by establish
ing a pseudo-list identification number for the list to be
opened. Next at 79, CENTRAL task 63 stores in data
base 47 the information of the objects involved in the
current request. The list identification field of the data
entry 57 is assigned the value of the pseudo-list identifi
cation number. CENTRAL task 63 then opens the lists
on the requested gateway 39.

If the opening of the list is not successful 81, then
CENTRAL task 63 returns to the requesting program
with an indication that the CENTRAL task 63 has
completed the request as best possible. If the opening of
the list is successful, CENTRAL task 63 replaces the
pseudo-list identification number in the database entries
57 with the respective open list identification number
for the objects in the subject list. CENTRAL task 63
then updates the index table 55 according to involved
gateway 39 and list identification number such that the
corresponding entries in table 55 provide the correct
respective indexes into database 47. CENTRAL task 63
then sends a completion indication to the requesting
program and returns control to the program.
FIG. 4b provides a flow chart of the CENTRAL task

63 responding to a break in a switched virtual circuit
between a gateway 39 and the AIS 45. Such an event
may be received and handled by CENTRAL task 63 in
parallel with all other activities of CENTRAL task 63.
After receipt, CENTRAL task 63 marks pertinent data
base entries with an indication that the corresponding
INI-10 has lost its switched virtual circuit and is thus
failing. Next, CENTRAL task 63 triggers the REAS
SIGN task 67 to handle the change in state of the gate
way 39.

5,341,496
9

FIG. 5 provides a flow chart of the functioning of
REASSIGN task 67. The REASSIGN task 67 is reacti
vated every 30 seconds or so and, in addition, is reacti
vated by CENTRAL task 63 if a switched virtual cir
cuit is lost between a gateway 39 and AIS 45. The RE
ASSIGN task 67 begins by checking the status of a
gateway 39. This is a different gateway for each activa
tion of the REASSIGN task 67, and preferably the
gateways 39 are monitored in a predefined order. RE
ASSIGN task 67 determines whether the subject gate
way 39 has changed from a failed status to a functional
status. If the gateway 39 has changed status from failed
to functional, then at 83 REASSIGN task 67 requests
CENTRAL task 63 to open a switched virtual circuit
for the subject gateway 39. If the REASSIGN task 67
determines that no such change in status has occurred in
the subject gateway 39, then step 83 is omitted.

In any case, REASSIGN task 67 continues by deter
mining whether or not the subject gateway 39 is cur
rently failing, i.e., CENTRAL task 67 has recently lost
the switched virtual circuit to the subject gateway 39.
In the event that the subject gateway 39 is not in a state
of failing, the REASSIGN task 67 ends and begins
anew upon timed activation or activation by CEN
TRAL task 63.

In the event that the subject gateway 39 is in a state of
failing, REASSIGN task 67 changes all of the list iden
tification numbers for the gateway 39 to pseudo-list
numbers and updates the database 47 accordingly.
REASSIGN task 67 then determines whether the

subject gateway 39 is the lastgateway to process. If not,
then REASSIGN task 67 begins anew with the determi
nation of status of the next gateway 39.

If the gateway 39 is the last gateway for the REAS
SIGN 67 to process, then the task 67 builds a table of all
the active lists. Included in the table are the initial gate
way numbers, the number of the gateway on which the
list is currently opened and the list identification num
bers (valid or pseudo). After building the table, REAS
SIGN task 67 attempts to open on respective preferred
(initial) gateways 39 all lists which are not opened on
any gateway. It is these lists which have a pseudo-list
identification number. It is possible to open these lists on
their initial gateway 39 if the initial gateway is func
tional and there are still lists available on the gateway.
In the next step 85, REASSIGN task 67 tries to move
all lists which are open on backup gateways 39 to their
initial (preferred) gateways. These lists have a list iden
tification number, but a mismatched gateway number. It
is possible to move these lists onto their initial gateway
if the initial gateway is functional and there are still lists
available on the gateway.

In a last step, REASSIGN task 67 attempts to open
on any available gateway 39 all lists which are not on
any gateway at this point. These lists have pseudo-list
identification numbers. It is possible to open these lists
on a gateway 39 if that gateway is functional and there
are still lists available on the gateway.

5

O

15

20

25

30

35

40

45

50

55

While the invention has been particularly shown and
described with reference to a preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and detail may be made
therein without departing from the spirit and scope of
the invention as defined by the appended claims.
What is claimed is:
1. In a data processing system having a host processor

and a network of working computer nodes linked to the
host processor over the network for communication

60

65

10
therebetween according to a predefined host processor
protocol, each one of said working computer nodes
having respective computer node data, interface appa
ratus comprising:
a plurality of gateways coupled between the host

processor and the working computer nodes, each
gateway coupled to a respective multiplicity of
working computer nodes, said gateways serving as
interpreters between respective working computer
nodes and programs executed on the host proces
sor and each gateway having a data list indicating
names of items of computer node data at the re
spective working computer nodes which items are
accessible by the host processor via the gateway
which has the data list, such that programs exe
cuted on the host processor use the host processor
protocol to request computer node data by item
name and the gateways support access to the com
puter node data according to item name; and

data handling means coupled to the gateways to in
terface the programs executed on the host proces
sor with the gateways, the data handling means
storing a relationship between each computer node
data item and a gateway which has a data list
which includes the computer node data item name,
the data handling means receiving a request for a
computer node data item by item name from a
program executed on the host processor and identi
fying a gateway which has a data list indicating the
item name received;

wherein, during times of one gateway disfunctioning,
the data handling means copies a data list from the
one disfunctioning gateway to a second function
ing gateway and modifies the stored relationship
between the computer node data items and the
gateways such that the second gateway supports
access to the computer node data items whose
names are indicated in the copied data list instead
of the one gateway, said copying of the data list
from the one gateway to the second gateway en
abling programs executed on the host processor to
continue requesting computer node data by item
name and in a manner that is free of change in host
processor protocol.

2. Apparatus as claimed in claim 1 wherein:
the computer node data is object oriented data; and
for each gateway, the gateway data list includes a

plurality of lists of data objects.
3. Apparatus as claimed in claim 1 wherein the data

handling means further copies the data list back to the
one gateway from the second gateway upon the one
gateway returning to normal functioning.

4. Apparatus as claimed in claim 1 further comprising
a database coupled to the network of working computer
nodes for storing computer node data of each of the
working computer nodes, the data handling means
maintaining the database for host processor access.

5. In a data processing system having a host processor
and a network of working computer nodes linked to the
host processor over the network for communication
therebetween according to a predefined host processor
protocol, each one of said working computer nodes
having respective computer node data and the network
of working computer nodes including object oriented
data handling, a method of interfacing between the host
processor and the network of working computer nodes,
comprising the steps of:

5,341,496
11

providing a plurality of gateways, each having a data
list indicating names of items of computer node
data;

coupling each gateway between the host processor
and a respective multiplicity of working computer
nodes such that said gateways serve as interpreters
between respective working computer nodes and
programs executed on the host processor by each
gateway having a data list indicating names of 10
items of computer node data at the respective
working computer nodes which items are accessi
ble by the host processor via the gateway which
has the data list, such that programs executed on
the host processor use the host processor protocol
to request computer node data by item name and
the gateways support access to the computer node
data according to item name;

storing in a data handling means a relationship be
tween each computer node data item and a gate
way which has a data list which includes the com
puter node data item name such that requests for
computer node data by item name are identified
with gateways which support the requests;

executing a program on the host processor;
with said data handling means, receiving from the

host processor a request for a computer node data
item by data item name;

referencing by said data handling means the stored
relationship between data items and gateways to
identify the gateway which supports access to the
requested computer node data item;

15

20

25

30

35

40

45

50

55

60

65

12
accessing the requested computer node data item
with support from the identified gateway; and

changing location of a data list by copying the data
list from one gateway to a second functioning gate
way during times of the one gateway disfunction
ing and modifying the stored relationship between
the computer node data items and the gateways,
such that the second gateway supports access to
the computer node data items whose names are
indicated in the copied data list instead of the one
gateway, said copying of the data list from the one
gateway to the second gateway enabling programs
executed on the host processor to continue request
ing computer node data by item name and in a
manner that is free of change in host processor
protocol.

6. A method as claimed in claim 5 wherein the step of
changing location of the data list by copying the data
list is performed by an application interface routine
executed by the host processor.

7. A method as claimed in claim 5 further comprising
the step of copying the data list back to the one gateway
from the second gateway, such that the one gateway
resumes supporting access to the computer node data.

8. A method as claimed in claim 5 further comprising
the step of storing computer node data in a database for
access by the host processor, said step of storing includ
ing maintaining the database.

9. A method as claimed in claim 8 wherein the steps
of changing location of the data list by copying the data
list and storing computer node data in the database is
performed by an application interface coupled to the
host processor.

k k k >k xk

