PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 97/39421

GO6K 9/36, 9/46 Al

(43) International Publication Date: 23 October 1997 (23.10.97)

(21) International Application Number: PCT/US97/05847 | (81) Designated States: AU, CA, CN, JP, RU, European patent

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

(22) International Filing Date: 9 April 1997 (09.04.97) MC, NL, PT, SE).
(30) Priority Data: Published
08/633,386 16 April 1996 (16.04.96) Us With international search report.

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF
CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive,
Oakland, CA 94612 (US).

(72) Inventors: FEO, John, T.; 11321 Marwick Drive, Dublin, CA
94568 (US). HANKS, David, C.; 2675 Twin Crecks Drive,
San Ramon, CA 94583 (US). KRAAY, Thomas, A.; 15192
Harrison Hill Lane, Leeburg, VA 22075 (US).

(74) Agent: SARTORIO, Henry, P.; P.O. Box 808, L-703, Liver-
more, CA 94550 (US).

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD FOR DATA COMPRESSION BY ASSOCIATING COMPLEX NUMBERS WITH FILES OF DATA VALUES

(57) Abstract

A method (10) for compressing data for storage or transmission. Given
a complex polynomial and a value assigned to each root, a root generated
data file (RGDF) is created, one entry at a time. Each entry is mapped to
a point in a complex plane. An iterative root finding technique is used to
map the coordinates of the point to the coordinates of one of the roots of the
polynomial. The value associated with that root is assigned to the entry. An
equational data compression (EDC) method reverses this procedure. Given a
target data file (F’), the EDC method uses a search algorithm (22) to calculate
a set of m complex numbers and a value map that will generate the target
data file. The error (E) between a simple target data file and generated data
file is typically less than 10 %. Data files can be transmitted or stored without
loss by transmitting (26) the m complex numbers, their associated values, and
error file (E) whose size is at most one-tenth of the size of the input data file

().

10 F
\A /-20

simplify

Fl
L 2

search
E€
Ve 24

compress

- i [

transmit

Y om Y

generate uncompress

*J lEr”

correct |

e

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Amenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

QGreece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
T
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

‘Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 97/39421 PCT/US97/05847

METHOD FOR DATA COMP ION BY ASSOCIATIN
M FIL F DATA

The United States Government has rights in this invention
pursuant to Contract No. W-7405-ENG-48 between the United States
Department of Energy and the University of California for the
operation of Lawrence Livermore National Laboratory.

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to data compression and more
particularly to methods and systems for representing a computer data
file as a set of complex number-value pairs.

Description of the Background Art

A so-called graphics interchange format (GIF) was developed
by a telephone-based information source, CompuServe Incorporated.
GIF uses Lempel-Ziv and Welch (LZW) compression as its primary
source of image compression. The syntax of the GIF data stream
provides the information required for the preparation of LZW
decoding, such as color maps. GIF compression is lossless, with a
compression ratio from 2:1 to 9:1 being possible, depending on the type
of data being compressed.

LZW Encoding reduces the size of a data set in one
dimension. The compression method developed by Lempel-Ziv and
Welch, known as LZW compression, seeks to take advantage of
repeated sequences of data values, even when the repetition exists non-
contiguously. A unique code replaces a repeated sequence in the

encoded data set, saving bytes each time that sequence is repeated.

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-2-

Consider the following data stream and its corresponding compressed

data stream.

original data set 5237 125237612 5237 612
compressed dataset Codel 12 Codel Code2 Codel Code2

Given the compressed data set, a table or "codebook” which
assigns values to each code is used to decode the data. In the example
above, such a codebook would assign "5 23 7" to the entry for Codel. If
the codebook is large, however, the overhead costs of storing it can
greatly reduce the efficiency of compression. LZW compression was
developed to avoid this storage requirement. It also has the pleasant
characteristics of relatively low memory requirements, due to its
sequential processing, and simplicity of algorithm, leading to
implementations which use a relatively small amount of computer
code.

In LZW compression, an encoder and decoder build identical
codebooks as the data stream is processed sequentially. The encoder
outputs a pattern code only after it has found the pattern more than
once. The first time it processes a sequence of data, it places that
sequence in its codebook and outputs the sequence without any
encoding. During decoding, this sequence is output and an entry into
the codebook is made for this sequence. The entry is assigned a code in
the same manner that the encoder assigned a code, so that when this
code is encountered later, the decoder will output the correct sequence
of values.

To further illustrate LZW compression, the following
algorithms for encoding and decoding are presented, together with
simulation examples for each. Here, a colon is used to indicate

concatenation. For example "abc" : "d" = "abed".

10

15

20

WO 97/39421 PCT/US97/05847

encoding
initialize the codebook - one entry for each possible individual
value
prefix = empty string
repeat
dataValue = next data value in data stream
if prefix : dataValue is already in codebook
then prefix = prefix : dataValue
else {

add prefix : dataValue to the codebook
output the prefix code from the codebook
prefix = dataValue)

until all the data values are processed

output the code from the codebook for prefix

For the encoding algorithm, a string of data values is built
until the string is different from any other previously coded string.
New data strings are always made of some previously known strings
(which has been entered into the codebook) plus one new data value.
When a new pattern is found the new pattern is immediately added to
the codebook, the code for the prefix of the new data string is output,
and the data string is reinitialized to begin the search for a new data
string. Each time a code is output, a new entry is made in the

codebook.

10

15

20

25

WO 97/39421 ' PCT/US97/05847

ation of T

assuming that original data can be one of three different values - a, b, or
c. Consider the sample data stream "ababbbb c"

Initialize the codebook as follows:

0 a -:a
1 b -:b
2 c -:C
prefix = empty string
input prefix: new codebook entries

dataValue dataValue code data string output new prefix

a -:a [code O already entered] 0
b 0:b 3 ab 0 1
a 1:a 4 ba 1 0
b 0:b [code 3 already entered] 3
b 3:b 5 abb 3 1
b 1:b 6 bb 1 1
b 1:b [code 6 already entered] 6
c 6:c 7 bbc 6 2

output last prefix value: 2

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-5-
|decoding
initialize the codebook - one entry for each possible individual
value

code = the first code value in the compressed data stream
output the data string that corresponds to code in the codebook
repeat

oldCode = code

code = next code value from compressed data stream

if code already exists in the codebook

then {
output the data string corresponding to code
prefix = oldCode
suffix = first value from output data string }
else {

prefix = oldCode
suffix = first value from the prefix data string
output prefix : suffix}
add prefix : suffix to the codebook
until all code values are processed

For the if-statement, when the input code is already in the
codebook, it is a straight forward process to output the string
corresponding to that code. When a code is encountered which is not
yet in the codebook, the immediately preceding data values must form
the new data string. The new data string being formed is immediately
preceded by itself. Since the preceding suffix starts the current prefix,
the new code’s data string must begin and end with the same data
value. And since the pattern is repeated, the prefix of the new data
string must be the string corresponding to the code previously input to
the decoder. Therefore, the value of the undefined code is oldCode

concatenated with the first value of OldCode.

10

15

20

25

30

35

WO 97/39421 PCT/US97/05847

 lion of decod:

The encoder produced the data stream "013162". This now becomes our
input for the decoder.

Initialize the codebook as follows:

Code Data Value Prefix : Data Value
0 a -:a
1 b -:b
2 c -:C
code =0
output a (data value of code 0)
new codebook entries
input in prefix:
0ldCode Code codebook? prefix suffix output code string suffix
0 1 yes 0 1 b 3 ab 0:1
1 3 yes 1 0 ab 4 ba 1:0
3 1 yes 3 1 b 5 abb 3:1
1 6 no 1 1 bb 6 bb 1:1
6 2 yes 6 2 c 7 bbc 6:2

The string produced by the decoder, "ababbbbc”, is the original
string which was input into the encoder.

The effectiveness of LZW compression is data dependent.
Simple line drawings that are stored in raster format can be compressed
as much as 16:1 or more. Raster scanned photographs are expected to
achieve compression ratios from 2:1 to 9:1.

The Joint Photographic Experts Group (JPEG) has issued a
suite of standards, with twenty nine distinct coding processes in all.
The so-called JPEG compression standard was intended to satisfy a
broad range of applications. Its seeks high compression ratios and high
image fidelity. Applications can select from a broad range of
compression ratios, trading off image quality for higher compression to
meet the specific needs of an application. No restrictions are made on
the image contents, e.g., complexity or range of colors, or characteristics,
such as resolution. A manageable computational complexity allows for

reasonable software implementations and fast hardware

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-7-

such as resolution. A manageable computational complexity allows for
reasonable software implementations and fast hardware
implementations. A lossless encoding mode provides for exact image
reproduction. A sequential encoding mode provides for image
reproduction using multiple passes through the data, where the image
is initially blurry and each pass through the data adds further clarity to
the image. And a hierarchical encoding mode is provided for image
reproduction using a sequence of frames, each at different resolutions.

Other prior art data compression methods exist and some are
in wide use. However, all leave the user wanting higher levels of
compression with lower losses occuring in such compression. No
conventional compression method has thus far proven totally
satisfactory, even in particular applications.

MMARY OF THE I NTI

An object of the present invention is to provide a method for
starting with a data file to compress and finding the roots of the
polynomial, assuming such a polynomial exists, that will generate the
same data file in a reconstruction either exactly or within some
threshold of error.

Briefly, a method embodiment of the present invention
compresses data for storage or transmission. For a data file of pixel
values organized as an nen grid of pixels, the data file of pixel values,
or any computer data file, may be compressed by the method of the
present invention. Letting G be an nen grid superimposed on the
complex plane, and P, an m degree polynomial. Letting A be a function
of the first derivative of P, and letting B be a function of the second
derivative of P. And further letting C(i) be a map to a unique color for
each root of P, where 1<i <m. A and B are then iteratively solved for
each z in G. The solution ultimately converges within some epsilon of
one of the roots of P. When z converges to root i, C(i) is assigned to z.

P, A and B can be defined for any m numbers in the complex plane and

10

15

20

25

WO 97/39421 PCT/US97/05847

-8-

color function C to generate a data file of pixel values encoded by m
complex numbers.

An advantage of the present invention is that a method for
compressing data is provided.

Another advantage of the present invention is that a method
of compressing data with few losses and high compression ratios is
provided.

BRIEF RA

Fig. 1 is a flowchart of an equational data file compression
method embodiment of the present invention for data compression;

Fig. 2 shows a more detailed flowchart of the method of Fig.
1

Fig. 3 is a flowchart for a generic search method useful in the
method of Fig. 2; and

Fig. 4 is a flowchart of a generating method useful in the
method of Figs. 2 and 3.

DETAILED DESCRIPTION OF THE INVENTION

Figs. 1 illustrates an equational data compression (EDC)
method embodiment of the present invention for compressing and
decompressing data, and is referred to herein by the general reference
numeral 10. The EDC method 10 comprises a compression step 12, a
transmission step 14, and a decompression step 16. The compression
step 12 takes the data file F and returns a data file F'. The file F is a file
of values whose type depends on the data medium. For example, if the
file F is a text file, then the values might be octal numbers such that F(i)
encodes the i-th character of the text. If the file F is a data file file, then
the values might be eight-bit binary numbers such that F(i) encodes the
color of the i-th pixel of the data file. The compression step 12 reduces
the size of the data file to minimize the amount of data that needs to be

transmitted or stored by the transmission step 14.

10

15

20

25

30

WO 97/39421

PCT/US97/05847

-9-

The transmission step 14 either transmits or stores the data
file F'. The transmission or storage of data is assumed here to be
without error. Any of a number of conventional methods may be used
to detect and/or correct errors due to faulty transmission or storage.

The decompression step 16 inputs the data file F' and outputs
the data file F". It uses an inverse method to that used by the
compression step 12 to uncompress the data. Where file F" equals file
F, then the compression method was lossless. Otherwise, the
compression resulted in data loss. The extent to which the
compression method is lossy depends on the methods used steps 12
and 16.

Fig. 2 illustrates the EDC method 10 in greater detail. A
simplify step 20, a search step 22, and a compress step 24 are equivalent
to the compression step 12 of Fig. 1. A transmission step 26 is
equivalent to the transmission step 14 of Fig. 1. A generating step 28, a
decompression step 30, and a correction step 32 are equivalent to the
decompression step 16 in Fig. 1. The simplify step 20 takes the data file
F and returns a simplified data file F'. This step may or may not be
empty. The form of the simplification is data dependent and the
degree of simplification depends on the amount of loss information
tolerable by the sender and receiver. For example, this step might
reduce the number of colors in a data file file from a maximum of 256
to twenty six by dividing each value in the file F by 10. The search step
22 takes the data file F' and returns two outputs, C and E. OutputCisa
set of tuples {z, v}, such that z is complex number, and v is a value in
F'. The search step 22 uses a search heuristic to find C such that G(C, i)
= P'(i). Since it is unlikely that the search heuristic will return a set of
numbers that regenerates P’ without loss, the step returns an error file
E. The tuple {i, y} is in E if and only if G(C, i) # F'(i) and F'(i) = y. A
conventional genetic algorithm is used to find C, however, practically

any search algorithm can be used. The compression step 24 compresses

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-10-

the file E, e.g., using any conventional lossless compression algorithm.
Its output is the data file E'. The transmission step 26 either
electronically transmits or stores C and E', e.g., across the Internet or
into a hard disk file. Such transmission or storage of the data is
assumed here to be without error. The generating step 28 implements
the generation of an algorithm G, described in connection with Fig. 4.
The generating step 28 inputs a set of complex numbers C and returns
the data file P'". The decompression step 30 uncompresses the data file
E' to regenerate a data file E without loss. The correction step 32 inputs
files F' and E, and returns a data file F'. For each tuple {i, y} in E, the
box sets the value of F'(i) to y.

The search step 22 of Fig. 2 searches the complex plane for a
set of tuples {z, v} such that a generate method can return a file F" as
close as possible to F'. Any discrepancy between F" and F' is returned
in E. The particular search algorithm used is not important. A genetic
algorithm whose gross structure is shown in Fig. 3 has been used
successfully. The particular mating, mutation, and replacement
method used is beyond the scope of this description. Possible choices of
methods are well documented in the literature.

Fig. 3 illustrates a generic search method 40. A step 42
generates a population of possible solutions, e.g., it generates two or
more possible values for C. Each value is referred to as an individual
of the population. A step 44 mates the individuals of the population
and thus generates a set of new individuals. As in nature, the method
tends to preserve the best characteristics of the population and to
eliminate the worse characteristics. Over the generations, the
population includes fitter and fitter individuals, e.g., better and better
solutions to the search problem. Typically, the methods implemented
by steps 50 and 52 of Fig. 3 are used to evaluate the fitness of
individuals. A step 46 mutates selected individuals. Mutations or

random changes to the data are necessary to prevent the method from

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-11-

becoming stuck at a local maximum. A step 48 replaces individuals
from the previous generation with those born and mutated by steps 44
and 46, respectively. An output of step 48 is the next population of
individuals. A step 50 generates a data file for each individual in P.
The set of data files is G. The step 50 is equivalent to step 28 of Fig. 2. A
step 52 calculates the error between F' and each data file generated by
step 50. A typical error function is the sum of diff(i), where diff(i) is 1 if
the two files have different values at position i, else 0. Step 52 returns
the smallest error value computed (e), the individual that generated
the smallest error value (C), and a file of the differences between that
individual and F' (E). A step 54 compares the error value with some
threshold value. If the comparison is true, then the search terminates
and C and E are returned; else, the new population and control are
passed back to step 44.

The generation step 28 of Fig. 2 generates the file F"’ of n
values, 1 <i<n, from C. Letting P be a m-th degree complex
polynomial whose roots rj, 1 <j < m, m complex numbers in C, and
letting T be a function that transforms integers to complex numbers,
then for each integer i, 1 <i < n, step 28 executes the data flow shown in
Fig. 4. The inputs to the generating step 28 of Fig. 2 are assumed to be
available to all the steps in Fig. 4 and so, do not explicitly show their
edges.

Fig. 4 illustrates a generating method 60. A step 62 applies a
transform function T to i and returns z. The appropriate transform
function to use depends on the type of the data file. For example, if the
data file is a 2-D data file of size n by n, then T(i) might return the
complex number {(i div n)/n, (i mod n)/n}. A step 64 computes P(z). If
the computed value is less than some small value, then the step
returns yes. Otherwise, the step 64 returns no. If the step 64 returns

no, then control is passed to a step 66 that computes the displayed

expression returning two complex values, a* and a~. A step 68 passes

10

15

20

25

WO 97/39421 PCT/US97/05847

-12-

the value with the smallest absolute value to a step 70 that decrements
z by this value. The decremented value and control back are passed
back to the step 64. If the step 64 returns yes, then control is passed to a
step 72 that searches C, and returns the value associated with the
complex number in C closest to z. The iterative computation of Fig. 4
terminates when z is within epsilon of some root of P.

An equational data compression (EDC) method of the present
invention reverses the creation data files that used an iterative root
finding method. Data files can be created using this method, and
equations which closely approximates a given data file can also be
found.

An iterative root finding method, developed by one of the
present inventors, Thomas Kraay, starts with a complex function, P,
with m complex roots and an arbitrary initial guess z, in the complex
plane, the iterative root finding method converges unexpectedly fast to

one of the function’s roots, usually in two to four iterations. The

method has converged over ten million times to within 1076 of a root
value.
The iterative root finding method, e.g., illustrated in Fig. 4,

can be described mathematically, as follows:

Let P(z) be a known polynomial with unknown roots r1, ..., rm. Then,
m
P(z) =[](z-r;)
i=1

For z € {r1, ..., rm}, take the natural log of both sides to get,

m m
In P(z) = lnH(z—ri) = Zln(z—ri).
i=1 i=1

10

WO 97/39421 PCT/US97/05847

-13-

Taking the derivative of both sides,

d d < < d < 1
—InP = —)1 -r;) = —1 -r.)= ,
dzn (z) dzg{ n(z-r;) i;ldzn(z r;) Z{(Z—ri)
and since,
d P'(z)
—InP = ,
dz nblz) P(z)
then,
P - 1
glz) = (z) =) (eq. 1)

dz P(z) dz&(z-r;) {S(z-r,)*
and since,
_d P(z) _[P'(z)]” - P(z)P''(z)
dz P(z) PZ(z) ’
then,
hiz) = (P2 ~P(z)P'(z) & 1 . (eq. 2)

Pz(Z) i=1(Z—1'i)

WO 97/39421 PCT/US97/05847

-14-

Given a complex number z, the values of g(z) and h(z) can be

calculated. Let r; represent some root of P(x), and define the value a

such that,
a=2z-rj, (eq. 3)
5 The equations (1) and (2) can be rewritten,
1 < 1
g(z)=—+ —— and eq. la
a 12‘1 (z—-r1;) (eq)
HES!
1 < 1
h(z) = — _ eq. 2a
a2 izl (z-r, 2 (eq)
i#]

There exists a complex number b such that,

s 1 m - 1
Z - b ’

(z-r1;)

—_—-
W I
e

10 giving

glz) = §+ (eq. 1b)

Let € be the complex number, such that,

m
-1
Z (z—r) mb2 + £ . (eq. 4)
i

10

15

20

WO 97/39421 PCT/US97/05847

-15-

For m > 2, discarding ¢, introduces error, but gives,

h(z)=—1?+m_1

" b2 (eq. 2b)

There are two equations (1b) and (2b) in two unknowns (a and b). It can
be shown that,

£ _ m
g(z) F y(m - 1)(mh(z) - g*(z)

a (eq. 5)

Which is equivalent to the step 66. To aid in convergence, a is assigned

the value of smaller magnitude,

_Ja’ if|a+|< Ia’l
° {a_ otherwise ' (eq- 6)

Which is equivalent to the step 68. By equation (3), rj = z — a is a root of

the equation. However, having discarded e this equality no longer
holds. z —a now only approximates r;.

Given an initial guess z, P(Z) is calculated. If the absolute
value is greater than ¢, a is calculated letting z =z - a, e.g., step 70.
Repeating this process, as in the step 64, until the absolute value of P(z)
is less than €, a root of the polynomial is converged within ¢.

The iterative root finding method is used to generate data
files. A file of size n, 0 <i<n - 1is created, using the iterative root
finding method. Let P(Z) be a polynomial with roots rq, .., 'm and let
v1, ..., vm be a set of m values. Start by defining a transformation
function from integers to points in the complex plane. Letting n = W *

H, then T(i), 0 < i £ n — 1, returns the complex number,

10

15

20

25

WO 97/39421 PCT/US97/05847

-16-

z={idivW imodW}
H ~ W |

Which is equivalent to the step 62.

Using z as an initial guess, the iterative method is used to
calculate a root of P(z). As in the step 72, if the i-th root is returned,
then the value vj is assigned to the i-th datum in the file. The
resulting file of values is referred to as a root generated data file (RGDF)
and the procedure is called a generation process. For example, to create
a data file data file of 40,000 pixels. Let W =200, H = 200, r1 = 0.0 + 0.0,
v1 = blue, r2 = 0.75 + 0.751, v = green, r3 = 0.8 - 0.15i, v3 = gray, r4 = 1.5 -
0.50i, and v4 = purple. Then, the RGDF created corresponds to a
particular data file. Such file is uniquely encoded by the four root-
value pairs used to create it.

The generation process can be reverse engineered. Since EDC
is given a data file F of size n, 0 <i < n - 1, with m unique values, the
m complex numbers can be found such that the RGDF returned by the
generation process is equivalent to F. Although reversing the
mathematical formulations might appear impossible, an attractive
solution method is the use of general purpose search methods. The
problem can be viewed as a search for m points in the complex plane,
where the optimality of a set of m points is defined by a fitness
function. The current embodiments use a genetic algorithm to search
for the m points, e.g., as in Fig. 3.

Genetic algorithms are search algorithms that depend on an
imitation of nature and use the mechanics of natural selection and
natural genetics. The object is to improve a set of initial solutions,
referred to as a “population” of individuals, using “recombination”
and “mutation” of their “genetic material”. The method combines
survival of the fittest among solutions with a structured and

randomized information exchange.

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-17-

Each “generation” creates new solutions that replace old and
ineffective solutions in the population. A solution’s probability of
recombination is directly proportional to its fitness. Only the most
effective solutions survive. The selection of solutions for
recombination and mutation, as well as the replacement of solutions
in the population are driven by genetic operators controlled by
probability.

Genetic algorithms can work with several solutions at the
same time, improving the solutions in each generation, while
simultaneously exploring new solutions in the search space. Genetic
algorithms are also easily adapted to a variety of problems requiring
adjustments to only the representation of solutions and the fitness
function. Because the objective function used to measure fitness is the
only information used to guide the search, no auxiliary or derivative
information is required.

A simple genetic algorithm (SGA) is described with the aid of
the pseudo code of Table I. A solution consists of one, or occasionally
more, bit-encoded strings, or chromosomes. Each bit’s position is its
locus and the value of the bits as its allele (0 or 1 for binary strings). For
simplicity, unless otherwise stated, we assume a single chromosome per
individual and binary alleles.

TABLE I

randomly create and evaluate an initial population of size n
for gen = 1 to MAX_GEN
create a mating pool selecting individuals from the
population using fitness proportionate selection
form n/2 pairs from the mating pool and perform
crossover and mutation
replace current generation with offsprings
evaluate the fitness of the new population

end for

10

15

20

25

WO 97/39421 PCT/US97/05847

-18-

output fittest individual as the solution

The first generation of a genetic algorithm consists of
individuals whose chromosomes are randomly constructed, e.g., step
42. Assuming that genes may be one of two values, either 0 or 1, and
letting P1 be the probability that a given gene will have the value 1.
Each gene of each chromosome in the initial population can be
assigned a value 1, with probability P1, or a value of 0, with probability
Pp=1-P1.

Once the procedure has defined all genes of a chromosome, it
then applies the fitness function to determine the chromosome's
fitness value. Once the procedure has created an initial population and
determined the fitness of each individual, it then creates the next
generation.

For successive generations, several mate selection, mating,
and replacement are used. The process is continued for an indicated
number of generations, or until some other terminating condition is
encountered.

As the step 44 illustrates, mate selection selects n individuals
to parent offspring in the next generation. The selected individuals
create a mating pool. Such individuals are chosen according to their
fitness values. On average, those with higher fitness values are
selected more often than those with lower fitness values. More exactly,

the probability that the algorithm selects individual Ij with fitness F;j is,

Such method, known as fitness proportionate reproduction
(FPR) selection, is an artificial version of natural selection, a

Darwinian “survival of the fittest” among individuals.

10

WO 97/39421 PCT/US97/05847

-19-

Table II represents a sample population of four individuals,
their fitness values and selection probabilities, and the results of mate

selection. In this example, the string is a binary number and the fitness

function is f(x)= x2.
TABLE II
INDIVIDUAL FITNESS SEL. PROB.

i Ii Fi Pi Mating Pool

1 10011 361 0.310 11001

2 00110 36 0.031 10011

3 01100 144 0.123 01100

4 11001 625 0.536 11011
Total 1166 1.000

Once the mate selection is complete, the members of the
mating pool are randomly divided into pairs for mating. Their
chromosomes are manipulated by crossover and mutation with
probability Px and P, respectively.

During the crossover operation, a crossover site, a position
between the individuals’ genes, is selected at random. The alleles to

the right of the crossover site are then swapped between the pair, as in
Table III.

WO 97/39421 PCT/US97/05847

-20-

TABLE III
childl [ABCDE| FG] | ABCDEG67 |
child2 { 12345] 67 | | 1234 5FG]|

! .
crossover site

As in step 46, when Px < 1.0, some pairs may not undergo the
crossover operation, but all pairs are subject to mutation. The
5 mutation operation considers each allele in every individual, and
changes its value with probability Pm. When an allele is mutated, its
value changes from 0 to 1 or 1 to 0. This operation allows the

algorithm to recover genetic material which has been lost and to

introduce new genetic material.

10 Table 1V illustrates a full reproduction phase for Px = 0.667
and Pm = 0.033.
TABLE IV
Mating After After New

i pairs fitness crossover mutaion gerneration fitness

1 11001 625 111100 11100 11100 784

2 01100 144 01}001 01001 01001 81

3 10011 361 10011 101t 10111 529

4 11001 625 11001 11001 11001 625
Total 1755 2019

The step 48 includes a steady state genetic algorithm (SSGA)
15 that is a variant of the SGA. In the SSGA, only a subset of individuals

in a population, e.g., a "generation gap", are replaced in every

10

15

20

25

30

WO 97/39421 PCT/US97/05847

21-

generation. The size of the generation gap, G, is usually expressed as a
fraction of the overall population size. Thus, if n is the population
size, the number of individual to be replaced each generation is G * n.
A commonly chosen value for G is 2/n. Only one pair is chosen to
mate, and their offspring replace two individuals in the population.
When G = 1.0, the algorithm replaces all individuals, as is equivalent
to the SGA. With G < 1.0, a replacement rule is need to decide which
individuals should perish to make room for the new offspring. Such
individuals could be those with the lowest fitnesses. In inverse
ranking, the individuals are ranked according to their fitnesses. Each
individual is considered, starting with the least fit, and individuals are
eliminated with probability greater than 1/n until only two individuals
remain.

SSGA thus imitates nature more accurately than the SGA,
but has several drawbacks. Because low fitness individuals are quickly
dismissed, the fitter individuals tend to dominate faster, leading to a
greater possibility premature convergence. Also, the SSGA is not easily
parallelizable, depending on the size of G. If G=2/n, there is no
parallelism.

A variation of the SGA with linear fitness scaling has been
used with success in embodiments of the present invention. The
deviation from ordinary SGA involves the encoding of the problem
and the manipulation of roots. Various methods have been attempted,
e.g., in the initial population generation and root mutation.

The data file to compress is defined here as the target file.

The target file is compressed and encoded with method embodiments
of the present invention.

For encoding, an individual is comprised of a chromosome
witﬁ N binary alleles, and N complex numbers and values, one for
each locus in the chromosome. Table V represents an individual in

this encoding.

WO 97/39421 PCT/US97/05847
22-
TABLE V
allele O complex # 0 | value 0
allele 1 complex # 1 value 1
allele 2 complex # 2 value 2
allele N-1 | complex # N-1f value N-1
A complex number is active if its corresponding allele in the
5 chromosome is one. The roots of the polynomial associated with the

individual are the active complex numbers. Thus, the degree of this

polynomial is exactly the number of ones in the chromosome.

Table VI represents a polynomial associated with a sample

individual.
10 TABLE VI
0 5.0 +3.2i blue
1 3.3-1.6i red
1 -2.4 +10.01 grey
0 4.1-59i purple
1 -0.1-1.71 green

P(z)=[z- (3.3-1.61)] [z-(-2.4+10.00)] [z-(-0.1-1.71)]

For the initial population, the value of each allele in each

15 chromosomes in the initial population is randomly chosen 0 or 1, with

10

15

20

25

30

WO 97/39421 PCT/US97/05847

-23-

equal probability. The complex numbers corresponding to each locus
are chosen by creating a vector of random angle and random length
(less than some value, L), transforming it to the form x+iy, and adding
it to C, a complex number in the middle of the frame in the complex
plane into which pixel locations are translated. Each locus of each
chromosome in the population is assigned its own randomly generated
root. Values are assigned randomly with equal probability.

For successive generations, mate selection, crossover, and
mutation are conventional, except for a few points. No replacement
policy is needed since as we use the SGA model. The triplet of allele,
root, and color always stay together. Thus, when a crossover occurs,
the roots and colors corresponding to each moved allele are also
moved. The changing of the value of a root is also different. Like
mutation of alleles, each root is considered for adjustment every
generation. Adjustment occurs with small probability. When a root is
adjusted, it is moved a random distance, e.g., less than some variable
length, in the direction of a random angle.

The fitness measurement depends on how many values in
the generated file match the corresponding value in the target file. The
maximum fitness is n. The fittest file, e.g., file C in Fig. 2, to emerge
from the genetic algorithm, referred to as the generated file, is most
likely not equivalent to the target file. A greedy algorithm is applied to
improve the solution and record the error entries in an error file, e.g.,
file E in Fig. 2.

For data file improvement, once the genetic algorithm
converges, the generated file is improved using a greedy algorithm,
that systematically adjusts each active root in the following way. An
imaginary circle is placed around the root with a random radius.
Fitnesses are sampled around the circle to determine the angle we
should move the root to maximize fitness. A line is then drawn at this

angle, and fitnesses sampled in order to determine the best distance to

WO 97/39421 PCT/US97/05847

24-

move the root in this direction. The process is typically repeated until
further attempts result in little or no improvement in fitness.
Although particular embodiments of the present invention
have been described and illustrated, such is not intended to limit the
invention. Modifications and changes will no doubt become apparent
to those skilled in the art, and it is intended that the invention only be

limited by the scope of the appended claims.

10

10

WO 97/39421 PCT/US97/05847

-25-

THE INVENTION CLAIMED IS

1. A method for compressing and uncompressing data for
storage or transmission, wherein a data file is stored as a file of size N,
and letting T be a function that maps integers to points in the complex
plane P, which is an m degree polynomial, and letting A be a function
of the first derivative of P, and B be a function of the second derivative
of P, and further letting C(i) be a map to a unique value for each root of
P, where 1< i < m, then A and B are then iteratively solved for each z =
T(), 1 <i <N, and a solution ultimately converges within some
epsilon of one of the roots of P, for when z converges to root j, C(j) is
assigned to z, and P, A and B can be defined for any m numbers in the
complex plane and color function C to generate a data file of pixel
values encoded by m complex numbers.

2. The method of claim 1, wherein given a data file of size N,
the m complex numbers and value function C are found that encode
said data file using an optimization method including conventional
genetic algorithms, wherein for a given target data file to compress, a
main process is repeated until a solution sufficiently close to the target
is found or some arbitrary maximum number of generations is
exceeded, wherein said main process comprises producing a data file
for each member of the generation, then evaluating each member's
fitness against the target, then scaling the fitness values, then creating
N/2 couples of polynomials, where each couple is comprised of two
polynomials randomly selected from the current generation, and

where the probability of a member being assigned to a couple is in

15

10

WO 97/39421 PCT/US97/05847

-26-

direct proportion to its scaled fitness value, and then, mating each
couple to generate two children, allowing for characteristics of each
parent to contribute to each child or crossover and allowing for
mutation.

3. A method for compressing data for storage or transmission,
wherein given a complex polynomial and a value assigned to each
root, a root generated data file (RGDF) is created, one entry at a time,
and each entry is mapped to a point in a complex plane, then an
iterative root finding technique is used to map the coordinates of the
point to the coordinates of one of the roots of the polynomial, then the
value associated with that root is assigned to the entry, whereafter an
equational data compression (EDC) method is used to reverse such
steps, wherein given a target data file, the EDC method uses a search
algorithm to calculate a set of m complex numbers and a value map
that will generate the target data file, wherein data files are transmitted
or stored by transmitting the m complex numbers, their associated

values, and an error file.

WO 97/39421

1/4

Fig. 1

10 F
\A /‘12

compress

Fl
14

transmit

Fl
/16

uncompress

Jr -

PCT/US97/05847

WO 97/39421 PCT/US97/05847

2/4

Fig. 2

10 F
\A /-20

simplify
Fl
} r#
search
LE
/-24
C
compress
Y - L [26
fransmit
C E'
‘ - L 30
generate uncompress
" E
F & ‘ 32
correct

-

WO 97/39421 PCT/US97/05847
3/4
Fig. 3
g lF.
40 /42
\A initial
population
P |
l [
———] mate
i
L (48
mutate
ll
l Y / 48
replace
P |
l [
generate
G
/ 52
error
e C E
Y 5

e < threshold?

l yes
C

E

WO 97/39421 PCT/US97/05847

414

60
A
T
z
yes l e
|P@)|<e2
m—
no
l Y /56
m

g@) ¢ | (m-1)Xm h(z) - g2(2)

at
L %8

min(| a+| ,| a])

a
l Y 70

Z-a

/'72

find value

|

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/05847

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6K 9/36, 9/46
US CL :382/232, 249; 395/13
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 382/232, 249, 233, 241, 243, 247, 248, 253, 395/13, 612; 364/715.02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS, IEEE/IEEE Publications Ondisc Jan 1990 - Nov 1996
Search terms: complex, polynomial, root, compression, coding, genetic

Electronic data base consulted during the international search (name of data base and, wherc practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the rclevant passages Rélevant to claim No.

A US, A 5,343,554 (KOZA et al) 30 August 1994, col. 78, line| 1-3
60 - col. 79, line 34.

[:] Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later d published after the intemational filing date or priority
“pw 4 P date and not in conflict with the application but cited 1o understand the
A g the g i state of the art which is not considered principle or theory underlying the inveation
w0 be part of pamculu relevance
e . N . X" document of particular r ; the d i
E carlier documeat published on or after the intemational filing date considered novel or cannot be eonniemd 10 involve an inventive step
L document which may throw doubts on priority claim(s) or which is when the document is takea alonc
cited to blish the date of othe; :
special reason (as lpecnf' ed) o r Y document of particular relevance; the claimed invention caanot be
considered to involve an inventive swp whea the dociml. is
"o document referring to an oral discl ¢, usc, exhibition or other combined with one or more other such d
means being obvious 10 a person skilled in the art
‘p* documeat published prior to the intemational filing date but later than & document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
10 JULY 1997 20 AUG]997
Name and mailing address of the ISA/US Authgriz ofﬁqer N
Commissioner of Patents and Trademarks v
Box PCT 1
Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 305-4861

Form PCT/ISA/210 (second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

