WO 2006/102655 A2 |0 |00 00 00 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 September 2006 (28.09.2006)

lﬂb A 0000

(10) International Publication Number

WO 2006/102655 A2

(51) International Patent Classification:
GOG6F 7/60 (2006.01)

(21) International Application Number:
PCT/US2006/011076

(22) International Filing Date: 23 March 2006 (23.03.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/664,642 23 March 2005 (23.03.2005) US
(71) Applicant (for all designated States except US): ELEC-
TRONIC ARTS INC. [US/US]; 209 Redwood Shores

Parkway, Redwood City, California 94065-1175 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LEPREVOST, Jean-
Christophe [FR/GB]; Westbury Court, Buryfields, Guild-
ford Surrey GU2 5AZ (GB).

(74) Agents: ALBERT, Philip, H. et al.; TOWNSEND AND
TOWNSEND AND CREW LLP, Two Embarcadero Center
8th Floor, San Francisco, California 94111-3834 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER SIMULATION OF BODY DYNAMICS INCLUDING A SOLVER THAT SOLVES FOR POSITION-

BASED CONSTRAINTS

GAME PLATFORM
200 202
USER INPUT
DEVICE(S)
I b I
COMPILED l 230 | 240
GAME CODE
MOTION REACTION FORCE
AGTION CONSTRAINT DISPLACEMENT
10 GAME FORCE IDENTIFIER CALCULATOR
Loaic 242
IMPLEMENTER Déi’ié‘ﬁﬁ“#g’ﬁ COLLISION | 232 er |
SETEGTOR DATA COMP
TN (A N W B RSN D SR e T
\ 210 220 PARAMETER 234 SOLVER 244
12 EADER
q
250 j 260 | 270 ! 280
- ————d /. -
: |
i |
OBJECT A
SOUND I
Drames RENDERER CONTROLLER ! !
1
i |
| 1

(57) Abstract: Computer simulation of the dynamics of rigid bodies interacting through collisions, stacks and joints is performed
using a constraint based system in which constraints are defined in terms of the positions of the bodies.

10

15

20

25

WO 2006/102655 PCT/US2006/011076

COMPUTER SIMULATION OF BODY DYNAMICS INCLUDING A
SOLVER THAT SOLVES FOR POSITION-BASED CONSTRAINTS

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application claims priority from co-pending U.S. Provisional Patent
Application No. 60/664,642 filed March 23, 2005 entitled “POSITION-BASED SOLVER”
which is hereby incorporated by reference, as if set forth in full in this document, for all

purposes.

[0002] The present application is filed of even date with the following commonly assigned

applications/patents:

U.S. Patent Application No. filed March 23, 2006 entitled “COMPUTER
SIMULATION OF BODY DYNAMICS INCLUDING A SOLVER THAT SOLVES IN
LINEAR TIME FOR A SET OF CONSTRAINTS” [Attorney Docket No.
019491-010710US], in the name of Jean-Christophe Leprevost (hereinafter “Leprevost I1);

U.S. Patent Application No. filed March 23, 2006 entitled “COMPUTER
SIMULATION OF BODY DYNAMICS INCLUDING A SOLVER THAT SOLVES IN
LINEAR TIME FOR A SET OF CONSTRAINTS USING VECTOR PROCESSING”
[Attorney Docket No. 019491-010810US], in the name of Jean-Christophe Leprevost
(hereinafter “Leprevost I1I); '

each of which are hereby incorporated by reference, as if set forth in full in this document, for

all purposes.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of computer processing to

simulate dynamics of rigid bodies and in particular to simulate the interaction of rigid bodies
in three-dimensional space to produce a realistic display of the bodies, as might be used in

computer graphics and animation thereof.

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

BACKGROUND OF THE INVENTION
[0004] Simulating the dynamics of rigid bodies is important for many applications such as,

for example, virtual reality devices, simulators and computer games. To be realistic, the
simulation takes into account of the interaction of the bodies through contacts such as
collisions and connections. For example, if a video game character was an articulated body
with arms and legs and a scene involved that character moving, it would not be realistic if the
character’s forearm temporarily separated from the character’s upper arm at the elbow during
a body movement. Thus, a simulation process done by simulator hardware or a
programmable system programmed according to simulation instructions (é. g., software,
codes, etc.) might operate according to general principles that a designer deems are necessary
to result in realistic simulations. For example, a designer might deem that body parts
attached at joints shall remain attached, that any moving part be subject to friction or not, that

parts have weight and are subject to gravity, etc.

[0005] It should be understood that for different applications, different general principles
might be in play. For example, for a video game simulating the interaction of sports team
players, such as American football, soccer, basketball, etc., some effects that might be present
in an actual sporting event do not need to be considered, such as air friction, while in other
simulations, such as a simulation of a falling body or a diver diving into water, friction at the
surface of the body might be taken into account. That said, once the designer settles on what
general principles are needed or desirable to provide the realistic simulation, a task of the

simulator is to compute the dynamics taking into account those general principles.

[0006] Because “realism” is often subjective and people are typically much better that
computer in determining how realistic an animation appears, the reader should understand
that “realistic” simulation may refer less to what is perceived by a particular set of individuals
as being a realistic simulation and refer more to the simulation processes that comply with the
general principles that the designer indicates as being representative of realism. In a very
specific example, a designer might determine, possibly by some process not fully described
herein, that realistic simulation occurs, for that designer’s purposes, if each moving object in
a scene is represented by a finite number of rigid bodies having mass and those rigid bodies
move consistent with (at least approximations of) rules of physics such as (1) inertia, (2)
acceleration occurring when a force is applied to a body wherein the acceleration is equal to
the force divided by the mass, (3) two rigid bodies will not simultaneously occupy the same

space, (4) bodies in the scene not attached to, or resting on, any other body will fall “down”,

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

and so on. It is the role of the simulator to simulate consistent with those general principles,
hopefully to provide something that many will consider realistic, but a simulator should not
be considered outside of the present definition of a simulator because someone might

subjectively determine that its simulations are not realistic looking.

Known Approaches to Rigid-Body Simulation

[0007] Many approaches to simulating the interaction of rigid bodies are known. These
include constraint-based methods, penalty-based methods, impulse-based methods, collision

synchronisation and hybrid methods.

[0008] With constraint-based rigid body dynamics simulation, the simulator considers a set
of rigid bodies and the forces incident on those bodies to determine how those bodies move
from one state to the next (e.g., from one point in time represented by one image of the scene
containing those bodies to another point in time represented by a later image of the scene,
wherein the sequence of scenes can be displayed in order, to show animation of those
bodies). Where there are constraints on bodies, additional forces (constraint reaction forces)
are introduced into the system to ensure that the rigid bodies comply with physical constraints
on their motion resulting from the interaction of the bodies (for example physical constraints
resulting from a collision between bodies or physical constraints resulting from a connection
between bodies). The constraint reaction forces may be transient, for example if bodies
collide and bounce apart, or they may be persistent, for example if a body rests on another
body.

[0009] In computer simulation of rigid body dynamics, the movement of the rigid bodies is
calculated at discrete times (for example times defined by the frame rate of the display device
upon which the positions of the bodies are to be displayed), with the result that each
calculation needs to take account of the movement of the bodies and the interaction of the
bodies within the predetermined time period since the last calculation (commonly referred to
as the “time step”). Simulation is carried out to model changes to the position, velocity and
acceleration of the bodies caused by interactions between the bodies within the time step. A
particular problem is to prevent bodies from simultaneously occupying the same space at the
same time (known as object penetration) by calculating non-penetration constraint forces to

keep the objects apart.

[0010] Known rigid body constraint-based simulations are either acceleration-based or

velocity-based, imposing constraints on the velocity or acceleration of the bodies,

10

15

20

25

WO 2006/102655 PCT/US2006/011076

respectively and calculating the constraint reaction forces necessary to ensure that the bodies
comply with those constraints. The most popular type of constraint-based simulation is
velocity-based. Examples of velocity-based methods are described for example in Baraff, D.,
“Fast Contact Force Computation for Nohpenetrating Rigid Bodies”, Computer Graphics
Proceedings, Annual Conference Series, SIGGRAPH 94, pp. 23-34 (1994) (hereinafter
[Baraffo4]”) and Baraff, D., “Linear-Time Dynamics Using Lagrange Multipliers”, Computer
Graphics Proceedings, Annual Conference Series, SIGGRAPH ’96, pp. 137-146 (1996)
(hereinafter [Baraff96]”).

[0011] In velocity-based constraint systems, constraints are imposed upon the velocities of
interacting rigid bodies at the time the bodies collide, and the constraint reaction forces that
are required to maintain the velocities of the bodies within the defined constraints are

calculated.

[0012] Typically, an equation containing Lagrange multipliers describing the constraint
reaction forces is evaluated. Such an equation has the form shown in Equation (1) (see, for

example [Baraff94] and [Baraff96]):
JMT T Az ¢)
where:
J is a Jacobian matrix for all contacts between all bodies in the simulation
M is the inverse of the mass matrix for all bodies
A is a vector of Lagrange multipliers of the system
C is a vector of the defined velocity constraints

J™), are the unknown constraint reaction forces acting on the bodies to ensure that the

velocities of the bodies satisfy the velocity constraints

[0013] Evaluating Equation (1) above results in the calculation of J T), defining the
constraint reaction forces acting on the bodies to ensure that the bodies’ velocities comply
with the defined velocity constraints. Following calculation of the constraint reaction forces,
the acceleration of each body is calculated using Equation (2) derived from the well-known
equations in physics, F = ma, where a is the acceleration of the rigid body, Fey; is the known

external forces acting on the rigid body (that is, non-constraint forces such as gravity and

10

15

20

25

WO 2006/102655 PCT/US2006/011076

forces resulting from propulsion simulation, etc.), and m is the individual mass of the rigid

body.

. J'A+F,,
- - 2
" @
[0014] After calculating the acceleration of each body, the velocity of each body is
calculated as follows:
V1 =y +adt 3)

where:
v**! is the velocity of the body at time t+1
v'is velocity of the body at time t
dt is the time step duration

[0015] Finally, after calculating the velocity of each body, the position of each body is
calculated using Equation (4), where x* is the position of the body at time t+1 and x" is the

position of the body at time t.

xt+1 — xt + vt-l-l .dt (4)

The approach above suffers from a number of problems, however.

[0016] Firstly, the Jacobian matrix J is a very large matrix, because each row contains
parameters for only one constraint (for example, one contact) between one pair of bodies. In
addition, in scalar format, three rows are necessary for every constraint, and six columns are
necessary for every body. As a result, for even a moderately complex system, J can be of a
very large size. Calculating the transpose of J is therefore both computationally expensive
and memory expensive, even though the calculation itself is straightforward. Further, the
memory storage and computation time requirements increase in proportion to the square of
the number of constraints represented by J. Evaluation of the transpose of J is therefore
particularly problematic for computer game consoles which typically do not provide

extensive processing capability or extensive memory.

[0017] Secondly, the approach requires all of the equations above to be evaluated, and
further requires the evaluation to be carried out in a specific order. More particularly, forces

have to be calculated by evaluating Equation (1), then accelerations have to be calculated

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

using the determined forces by evaluating Equation (2), then velocities have to be calculated
using the determined accelerations by evaluating Equation (3), and finally positions have to
be calculated using the determined velocities by evaluating Equation (4). Not only is this

restrictive, but it is also time-consuming.

[0018] Thirdly, errors in the calculated positions of the bodies often occur. This is because
the velocity constraint applied to the velocity of the two bodies is that (Va-Vg).n 2 0; that is
the difference between the velocities of the bodies in a normal direction (perpendicular) to the
contact plane is not less than zero in order to prevent the bodies moving closer together.
However, this constraint is only valid at the instant in time when the bodies touch —not
before when the bodies are apart and not after when the bodies are penetrating. Accordingly,
if the instant in time at which the body dynamic equations are evaluated does not correspond
exactly to the instant in time at which the bodies touch, then the contact forces calculated by
evaluating the equations above cause the bodies to stop and suspend in space with a gap

therebetween or cause the bodies to stop with one body penetrating the other.

[0019] It is known to solve this position error by subsequently adjusting the positions of the
bodies to remove the error. However, not only does this add another step to the computation
(increasing the number of processing operations and the processing time), but the movement
of the bodies to their corrected positions imparts a velocity to the bodies which results in

subsequent errors in the dynamics of the bodies.

[0020] Improved simulation was sought to overcome these difficulties.

BRIEF SUMMARY OF THE INVENTION

[0021] In embodiments of simulators according to the present invention that simulate

motion of a plurality of rigid bodies, constraints on the plurality of rigid bodies are expressed
in terms of positions or displacements of the bodies and positions or displacements that
satisfy the constraints are calculated for the bodies at predetermined time steps. The
predetermined time steps can be determined by the needs of a display system used to display
simulated movement of simulated rigid bodies. Boundary conditions can be defined for each
constraint acting on computer objects as a function of positions or displacements of the
objects in order to generate equations to be solved to determine positions of the objects as

influenced by the constraint. Positions of a plurality of objects under the influence of a

10

15

20

25

WO 2006/102655 PCT/US2006/011076

constraint can be calculated by reducing differences in the positions of the objects in at least

one direction and solving an equation including the positions with reduced differences.

[0022] The simulator can be embodied in hardware, firmware, software or a combination, a

computer program, a data signal, or the like.

[0023] The following detailed description together with the accompanying drawings will

provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] Embodiments of the present invention will now be described, by way of example

only, with reference to the accompanying drawings, in which like reference numbers are used

to designate like parts, and in which:

[0025] Figure 1 schematically illustrates the contents of a software development tool kit in

an embodiment;

[0026] Figure 2 schematically illustrates the contents of an application product in an

embodiment;

[0027] Figure 3 schematically illustrates a programmable game platform, and also shows
some of the notional functional processing units and data stores into which the programmable
game platform may be thought of as being configured in an embodiment when programmed

by the programming instructions of the application product shown in Figure 2;

[0028] Figure 4, comprising Figures 4a and 4b, shows the processing operations performed
by the game platform of Figure 3 during processing to execute the processing instructions of

the application product shown in Figure 2;

[0029] Figure 5 shows the processing operations performed at step S4-6 in Figure 4;
[0030] Figure 6 shows the processing operations performed at step S4-8 in Figure 4;
[0031] Figure 7 shows the processing operations performed at step S6-4 in Figure 6;
[0032] Figure 8 shows the processing operations performed at step S7-2 in Figure 7;
[0033] Figure 9 shows the processing operations performed at step S7-4 in Figure 7;
[0034] Figure 10 shows an example to illustrate a collision between two bodies; and

[0035] Figures 11-12 show example to illustrate joints connecting two bodies.

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

DETAILED DESCRIPTION OF THE INVENTION
[0036] In embodiments of a simulator according to the present invention, constraint-based
simulation of the interaction of rigid bodies is done where constraints are defined in terms of
the displacements of the positions of the rigid bodies and displacements caused by constraint
reaction forces when the bodies interact are calculated to ensure that the bodies comply with

the displacement constraints.

[0037] The simulator can be devised of hardware specifically suited to the tasks or software
executable by a general purpose programmable device (or other programmable device, such
as a microprocessing system). While steps, operations and/or functions of the simulator are
often described herein with reference to mathematical calculations, it should be understood
that these calculations are performed by an electronic device or system. For example, it need
not be explicitly stated, but it should be apparent that apparatus described herein could be

used to perform matrix operations described herein.

[0038] Thus, it should be understood to one of ordinary skill in the art that a process
involving generating a matrix, solving a matrix equation, then performing an action based on
the results of such solving might be performed by a processor that reads from a memory
values representative of parameters used in a matrix generation process, wherein the
processor has access to memory locations for storing the matrix values and that processor (or
another processor and/or circuit) has access to those memory locations and is configured to
manipulate those values in memory to arrive at a solution to the matrix equation, represented
as values stored in possibly other memory locations, then executes instructions to perform the

steps based on the results.

[0039] In a very specific implementation, the process is implemented by a processor and
instructions in an instruction code memory wherein the process reads parameters of rigid
bodies once per frame period, performs operations to determine new positions for some or all
of the rigid bodies, outputs an indication of the new positions (such as outputting to a
rendering engine), and so on. It should also be understood that inventions described herein
might be implemented ‘entirely in software stored on a computer-readable medium, wherein
such software is executable by a processor to perform the functionality contained within that

software.

10

15

20

25

WO 2006/102655 PCT/US2006/011076

Example Evaluator

[0040] In an example evaluator of a simulator according to aspects of the present invention,
the evaluator constructs and evaluates Equation (5) twice, once to account for collisions
between the rigid bodies and once to account for joint constraints of joints connecting the

rigid bodies. Of course, the invention is not limited to exactly two evaluations of Equation

(5).

JM TT AN > B ()
[0041] In Equation (5), J, M, I™ and) have the same definition as in Equation (1) above,
At is the time step (that is, the time period between the times at which successive evaluations
of the equation are performed in the embodiment) and B is a vector of constraints on the
displacements of the rigid bodies in constraint space, with the format of B being different for
the case of collision constraints acting on the rigid bodies and the case of joint constraints

acting on the rigid bodies, as described in further detail below.

[0042] More particularly, the matrix M in Equation (5) is the inverse mass matrix, and in
a preferred embodiment can have the same form for both the case of collisions and the case
of joints. This matrix has a block diagonal form as shown in Equation (6) below, in which
each matrix block is the individual inverse mass matrix of dimension 6 by 6 of a respective
rigid body, with the final dimension of the matrix M being 6n by 6n with “n” being the

number of rigid bodies in the system.

] o o o |
0 [mM] o o —
O [02] see 0 With Mll = mll I3x3 03X3 (6)

0 I
0 0 0 [Mm] -

[0043] In Equation (6):
my, is the mass of individual rigid body n
Isx3 is the 3 by 3 identity matrix
03x3 is the 3 by 3 null matrix
I," is the inverse inertia tensor for rigid body n

[0044] In the case of Equation (5) for collisions, the Jacobian matrix J comprises a matrix

having a number of columns equal to the number of rigid bodies in the system and a number

WO 2006/102655 PCT/US2006/011076

of rows equal to the number of contacts between the rigid bodies. Each row of J represents
one contact and has a maximum of two non-zero block matrices on the row (there being only
one block matrix for a contact between a rigid body and an immovable rigid body, and there
being two non-zero block matrices for a contact between two movable rigid bodies)./ More

5 particularly, the non-zero block matrices on each row, Ji, of the Jacobian matrix J are given

by:
T sq7 sq¥
Jo=C Ly [R1T1FLs —[5] 1] 7
where:
C is the contact constraint frame coordinate system
10 Lzxs is the 3 by 3 identity matrix

r, is the vector between the centre of mass of body a and the contact point, as
illustrated in Figure 10 and r,’ is the skew symmetric matrix containing the

components (ty, Iy, I) of 1, as follows:

—I"y I

15 1y, is the vector between the centre of mass of body b and the contact point, as
illustrated in Figure 10 and ry,’ is the skew symmetric matrix containing the

components (ry, Ty, Iz) of 1p.

[0045] In the case of joints, the Jacobian matrix J is also a sparse matrix with the two

non-zero block matrices on each row of J being given by:

LT LT[I”S]T __LT _LT[rbs]T
= ‘
20 m H 0., 77 } [0, T (8)

x3

where:
L is the joint linear constraint frame coordinate system

T is the joint angular constraint frame coordinate system

10

10

15

20

25

WO 2006/102655 PCT/US2006/011076

r, is the vector between the centre of mass of body a and the joint position, as
illustrated in Figure 11 and 1.’ is the skew symmetric matrix containing the

components (ry, Iy, I7) of 1,

1y is the distance between the centre of mass of body b and the joint position, as
illustrated in Figure 11 and r,,’ is the skew symmetric matrix containing the

components (ry, Iy, I7) of 1,

[0046] When evaluating Equation (5) above for contacts between bodies, one optimization
is such that the constraint reaction forces in the direction normal to the contact plane have the
lowest magnitude that prevents the bodies from penetrating and another optimization is such
that the constraint reaction forces in tangential directions to the contact plane have the highest
magnitude that removes as much velocity through friction as is allowed by the material
properties of the bodies. Material properties of the bodies might be represented as parameters
to an evaluation process and as such might be stored in a memory having other parameters

relating to the rigid bodies, such as their shape, mass, center of mass, surface outline, etc.

[0047] The evaluator evaluates Equation (5) to calculate a linear displacement, Dreaction
resulting from the application of constraint reaction forces during the time step At, and an
angular displacement, Ascaction, resulting from the constraint reaction forces applied during the

time step At, as follows:

{i reaction} — (M -1 J r &) At? | ©)

reaction

[0048] Using the calculated displacements [D"e“””"" } resulting from the constraint

reaction
reaction forces, the evaluator then updates the linear and angular displacement of each body
and the linear and angular position of each body using Equations (10)-(13), where d, o', x*
and qi are the linear displacement, angular displacement, position, and orientation quaternion,
respectively, of a body at time i. The values of i for which these equations might be
evaluated might be the times corresponding to successive video frames, or other suitable

intervals.

d'*'= d'+ D + D ,ion (10)

action

@ o = (D, + A + Areaction (]‘1)

action

11

10

15

20

WO 2006/102655 PCT/US2006/011076

xt+1 = xt + dt+1 (12)

t+ 1 I3
qt+l — qt + w 2® q (13)

[0049] Details of the constraints on the displacements of the rigid bodies used in this

example (that is, the vector B in Equation (5) above) will now be described.

[0050] The constraints for the case of collisions between rigid bodies will be described
first. In this case, two B vectors, Bl and B2, are used to define constraints on the
displacements of the rigid bodies, resulting in two instances of Equation (5) to be solved as
set out in equations (14) and (15) below. In both cases, the positioning constraints used

derive from the general requirement that » (P, ~ P,)> 0 to prevent the bodies

penetrating.

JM7J"A . 2Bl=C"n.AP (14)

where:

n.AP is a vector in which each component defines the distance between a respective
pair of rigid bodies (that is, the distance between the contact points of the bodies) in a
direction normal to the surface of contact between the bodies calculated on the
previous iteration (and therefore represents the distance between the bodies in this
direction at the end of the previous time step, which is equivalent to the distance
between the bodies at the start of the current time step for the current iteration)

D'
reacton } is the linear and angular displacement in the direction

M = [
reaction

normal (perpendicular) to the contact plane caused by constraint reaction forces that

removes the distances between the bodies defined by B1 (that is, the distance between

the bodies at the start of the iteration).

=

7 12=82 = u B - B e v - o o e
(15)

I<

+[(F" +7) XF))- (Fb” +7, Xp))]At2}+ e(Av-n)At

a

which is equivalent to:

12

10

15

20

WO 2006/102655 PCT/US2006/011076

where:

[0051]

(S

JM7ITAz B2=|u | [AP+ AVAt +AFAZ |+ & (Av-n)Ar (g4

1=

I<

1=

IS

are the axes of the contact frame C

<

P" is the contact point of the body at time n

V" is the linear velocity of the body at time n

o" is the angular velocity of the body at time n

1 is the distance between the centre of mass of the body and its contact point at time n
F" is the action force acting on the body at time n

7" is the action torque acting on the body at time n

¢ is the coefficient of restitution 0 < <1

AP = (P — P)') is the distance between the contact points of body a and body b

attimet=n

AVA = [(Val + a{f X 7‘}:) —(Vbn + @1 X VE,H)] A is the displacement resulting form the

relative velocity of bodies a and b during the time interval At

2 2
AN = [(F +TZ X7, ;)_(an +TZ X’},’z)] At” is the displacement resulting form

T
a

the relative action forces (that is gravity, propulsion forces etc.) acting on bodies a and

b during the time interval At

It will be understood from the above, therefore, that Equation (15) can be
decomposed as follows:
IMTT A, =n- (AP + AFAS +(1+ &) AVA?) a7
JM7IT A, =u - (AP + AFAL® +AVA?) (18)

13

10

15

20

25

WO 2006/102655 PCT/US2006/011076

JMIT A, =v - (AP + AFAZ +AVAt) (19)
[0052] Equation (14) is evaluated to determine the displacements between the bodies in the
normal direction at the start of the current iteration. The AP displacements in Equation (15)
are then updated to remove this normal direction displacement before Equation (15) is
evaluated itself to calculate the displacements of the bodies in the normal and tangential

directions at the end of the current iteration. As a result, the equation JM ~'J" 1 > B2 - Bl

is evaluated (with B1 equal to JM ~J" i,,).

[0053] The position constraints B1 and B2 have been described above for the case of
collisions between the rigid bodies. Similar position constraints can be defined for the case

of joints between rigid bodies.

[0054] By defining constraints in terms of positions of the rigid bodies and calculating
constraint reaction forces necessary to ensure that the dynamics of the rigid bodies comply
with the position constraints, the simulator provides a number of advantages compared to

systems in which velocity-based constraints are employed.

[0055] In particular, any error between the positions of the bodies is corrected without
imparting additional velocity or acceleration to the bodies. As a result, the system simulates
the positions of the bodies with better accuracy and more stability (this being particularly true

in the case of stacks of three or more bodies resting upon each other without movement).

[0056] The use of Equation (14) to remove the difference in position between bodies in the

normal direction at the start (not the end) of the current time step assists in achieving this

‘increased accuracy and stability.

[0057] Details of the processing components and processing operations in an embodiment

to set up and evaluate the equations above will now be described.

[0058] In the example embodiment described below, a development toolkit comprising a
library of respective software computer programs is supplied to a game development
apparatus (comprising one or more processing apparatus operated by one or more users). The
supplied programs from the library are then used in the game development apparatus to
generate compiled software defining a three-dimensional (3D) computer graphics application

(a computer game in this embodiment, but other applications are also possible).

14

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

[0059] The compiled game code is then supplied to a game platform, which executes the
compiled game code. In some embodiments, the game code is represented entirely in
software on computer-readable medium. In other embodiments, the game code is represented
in part in firmware, hardware and/or the like. Processes of simulation of rigid body dynarhics

are described in this context. However, other embodiments are, of course, possible.

[0060] Referring to Figures 1, 2 and 3, an overview of the generation and use of a 3D

computer graphics game will be described first.

[0061] A software development toolkit comprising a program library 2 is supplied as code
(either source code or compiled code) carried by a storage medium 4 (such as an optical CD
ROM, semiconductor ROM, magnetic recording medium, etc.) or by a signal 6 (for example,
an electrical or optical signal transmitted over a communication network such as the Internet
or through the atmosphere) to a game developer apparatus (not shown). The game developer
apparatus is operated to use the programs contained in the program library 2 to generate
software code defining an application product 8, which, in this embodiment, comprises a

computer game which uses 3D computer graphics to interactively display images to a user.

[0062] The code 8 defining the 3D computer graphics game is supplied as compiled code
on a storage medium 10 (such as an optical CD ROM, semiconductor ROM, magnetic
recording medium, etc.) or as compiled code carried by a signal 12 (for example an electrical
or optical signal transmitted over a communication network such as the Internet or through
the atmosphere) to a game platform 14. The software defining the 3D computer graphics

game 8 may then be installed in, and run by, the game platform 14.

[0063] Referring again to Figure 1, the program library 2 of the software development
toolkit comprises software code defining a plurality of programs 20-80, each for causing a
target type of programmable processing apparatus (that is, a game developer apparatus or
game platform 14 in this embodiment) to perform particular 3D computer graphics
processing operations. The programs 20-80 in this software development toolkit 2 are
generated by one or more users writing program code, with the programs then being collected

together to generate the program library 2.

[0064] In this embodiment, the programs in the program library 2 include action force
displacement calculation program 20, motion constraint identification program 30, reaction
force displacement calculation program 40, object dynamics updating program 50, rendering

program 60, sound control program 70, and other 3D computer graphics programs

15

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

(schematically represented by the dots in block 80 in Figure 1) such as lighting programs,

virtual viewing camera control programs, etc.

[0065] Action force displacement calculation program 20 comprises code for calculating
the linear displacement caused by reaction forces acting on the rigid bodies during a given
time step (that is, Daction in Equation (10)) and the angular displacement caused by the action
forces acting on the rigid bodies during the time step that is, Aaction in Equation (11)). As
explained above, the action forces comprise all forces acting on the bodies which do not
result from a constraint on the bodies’ movements (such as a collision or joint). The action
forces therefore include forces such as gravity, propulsion forces resulting from simulation of

a motor, etc., and other similar forces.

[0066] Motion constraint identification program 30 comprises code to identify constraints

applying forces during a time step which constrain the dynamics of the rigid bodies during

_ that time step.

[0067] In this embodiment, motion constraint identification program 30 comprises a

collision detection program 32 and a joint parameter reading program 34.

[0068] Collision detection program 32 comprises code to detect collisions occurring
between bodies in a given time step. In this embodiment, collision detection program 32
comprises a conventional collision detection program such as available from Criterion

Software Limited, Guildford, United Kingdom.

[0069] Joint parameter reading program 34 comprises code for reading the parameters of

each joint connecting rigid bodies.

[0070] Reaction force displacement calculation program 40 comprises code to calculate the
linear displacement caused by constraint reaction forces acting on the rigid bodies during a
given time step (that is, Drcaction it equations (9) and (10) above) and the angular displacement
caused by the constraint reaction forces acting on the rigid bodies during the time step (that

iS, Ayeaction it equations (9) and (11) above).

[0071] In this embodiment, reaction force displacement calculation program 40 comprises

data compilation program 42 and solver program 44.

[0072] Data compilation program 42 comprises code to compile data defining the known

variables in equations (14) and (15) above (and similar equations for joints).

16

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

[0073] Solver program 44 comprises code for solving equations (14) and (15) above (and
similar equations for joints) to calculate Dreqction ad Ascaction Using an iterative solving

process, as described in detail later.

[0074] Object dynamics updating program 50 comprises code for updating the linear and
angular displacement (implicitly defining the linear and angular velocity) and the linear and
angular position of each rigid body using equations (10) to (13) above using the values of
Diactions Dreaction, Aaction a1d Aeqction calculated by the action force displacement calculation

program 20 and the reaction force displacement calculation program 40.

[0075] Rendering program 60 comprises code to render images of the three-dimensional
bodies to generate image data for display. In this embodiment, rendering program 60
comprises a conventional rendering program such as RenderWare™ available from Criterion

Software Limited, Guildford, United Kingdom.

[0076] Sound control program 70 comprises code to generate sound data for output to a

user.

[0077] As described previously, the programs 20-80 in program library 2 are input to a
game developer apparatus (not shown). The user(s) of the game developer apparatus then
generates software code defining application product 8 (which, in this embodiment,
comprises a computer game which uses 3D computer graphics to interactively display images

to a user).

[0078] Referring to Figure 2, the application product 8 contains game code 100, a library of
programs 110 and a library of data records 120.

[0079] The game code 100 comprises software instructions written by the user(s) of the

\
game developer apparatus defining instructions for controlling game platform 14 to play the
computer game in accordance with user inputs. The game code 100 includes calls to

programs in the program library 110.

[0080] The programs in the program library 110 include all of the programs 20-90 from the
software development toolkit 2, together with additional programs generated by the user(s) of

the game development apparatus.

[0081] The data record library 120 includes, in a conventional manner for 3D computer

graphics games, data defining polygon models representing 3D bodies and scenes, data

17

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

defining properties of materials associated with the polygons, data defining cameras to view
the 3D computer models and scenes, and data defining light sources to light the 3D computer

models and scenes, etc.

[0082] The compiled machine code defining application product 8 is delivered to end users
of game plétforms 14 as code on a storage medium 10, and/or as a signal 12, as described
above. The code defining application product data may be output from the game developer
apparatus and stored directly on storage medium 10. Alternatively, the code defining
application product 8 output from the game developer apparatus may be stored on a “master”
storage medium and then further storage media 10 storing the code may be generated
therefrom for delivery to the user of a game platform 14. In this way, an indirect recording is '
made of the code defining application product 8 from the game developer apparatus for
delivery to a user of a game platform 14. Similarly, the signal 12 carrying the code defining
application product 8 to game platform 14 may be the direct output of the game developer

apparatus or a signal generated indirectly therefrom.

[0083] Referring to Figure 3, game platform 14 comprises, in a conventional manner, one
Of more processors, memories, graphics cards, sound cards, together with prestored
programming instructions for the control of the processors, etc. Game platform 14 is
connected to one or more user-input devices 200 for inputting user instructions to play the
game (such as a control pad, joystick, keyboard, etc.) and a display device 202, which may be

of any known form.

[0084] Game platform 14 is programmed to operate in accordance with the game code

input from storage medium 10 and/or signal 12.

[0085] When programmed by the programming instructions of the application product 8,
game platform 14 can be thought of as being configured as a number of functional processing
units and data stores. Examples of relevant functional processing units and data stores are
schematically illustrated in Figure 3. The processing units, data stores and interconnections
illustrated in Figure 3 are, however, notional and are shown for illustration purposes only to
assist understanding; they do not necessarily represent the actual processing units, data stores
and interconnections into which the processors, memories, etc. of the game platform 14

become configured.

[0086] Referring to Figure 3, when programmed by the game code, game platform 14 may

be thought of as including a game logic implementer 210, an action force displacement

18

10

15

20

25

WO 2006/102655 PCT/US2006/011076

calculator 220, a motion constraint identifier 230, a reaction force displacement calculator
240, an object dynamics updater 250, a renderer 260, a sound controller 270 and other
functional processing units (schematically illustrated by the dotted lines and block 280 in
Figure 3).

[0087] Game logic implementer 210 comprises one or more processors operating in

accordance with programming instructions from the game code 100 of application product 8.

[0088] Action force displacement calculator 220 comprises one or more processors
operating in accordance with the action force displacement calculation program 20 from the

program library 110 of application product 8.

[0089] Motion constraint identifier 230 comprises one or more processors operating in
accordance with the motion constraint program 30 from the program library 110 of

application product 8.

[0090] Reaction force displacement calculator 240 comprises one or more processors
operating in accordance with the reaction force displacement calculation program 40 from the

program library 110 of application product 8.

[0091] Object dynamics updater 250 comprises one or more processors operating in
accordance with the object dynamics updating program 50 from the program library 110 of
application product 8.

[0092] Renderer.260 comprises one or more processors operating in accordance with the

rendering program 60 from the program library 110 of application product 8.

[0093] Sound controller 270 comprises one or more processors operating in accordance

with the sound control program 70 from the program library 110 of application product 8.

[0094] Referring now to Figures 4a and 4b, the processing operations performed by the
functional processing units in the game platform 14 when the compiled game code 8 supplied

to the platform is run will now be described.

[0095] Referring to Figure 4a, the processing operations at steps S4-2 to S4-16 are
continually repeated as the game proceeds to generate and display images interactively to the
user in accordance with the game rules. Images are generated and displayed on display

device 202 at discrete time intervals which, in this embodiment, comprise every 1/60th of a

19

10

15

20

25

WO 2006/102655 PCT/US2006/011076

second. Other frame intervals are possible and might or might not coincide with a display

refresh rate.

[0096] At step S4-2, game logic implementer 210 reads instructions input by the user using
a user-input device 200, and also reads the game logic (defining, inter alia, the rules of the
game) and the parameters of the 3D objects currently active in the game. The object
parameters define, infer alia, the action forces acting on the objects (that is, gravity,
propulsion forces and similar forces), the current position of each object in 3D world space,

and the current velocity of each object in 3D world space.

[0097] At step S4-4, action force displacement calculator 220 calculates the linear and
angular displacements in 3D world space, caused by the action forces acting on the bodies
read at step S4-2. In this embodiment, action force displacement calculator 220 calculates the

linear displacement, Dyetion and the angular displacement Agction, USing the following

equations:
2
D = u@m
action — m (20)
2
A — At) Taction
action ~ m (21)
where:

Faction is the total of all action forces acting on the body
Taction 1S the total of all action torques acting on the body.

[0098] At step S4-6, motion constraint identifier 230 performs processing to identify

motion constraints acting upon the objects.

[0099] Figure 5 shows the processing operations performed by motion constraint identifier

230 at step S4-6 in this embodiment.

[0100] Referring to Figure 5, at step S5-2, collision detector 232 performs object collision
detection for the current time step using the object parameters read at step S4-2. In this
embodiment, this processing is performed in a conventional manner and generates data for
each contact between each pair of objects comprising (as illustrated in Figure 10) the
identities of the two bodies, the vector 1, between the point of contact and the centre of mass

of body a, the vector 1, between the point of contact and the centre of mass of body b, the

20

10

15

20

25

WO 2006/102655 PCT/US2006/011076

normal vector n for the contact defining a direction perpendicular to the plane of contact, and

the distance between the bodies in the normal direction.

[0101] At step S5-4, joint parameter reader 234 reads the parameters of each joint
connecting the objects. Referring to Figure 11, the parameters read at step S5-4 define the
coordinate frame for body a with angular limits, the coordinate frame for body b with angular
limits, the coordinate frame for the joint with prismatic limits, the vector r, between the
centre of mass of body a and the position of the joint, and the vector 1, between the centre of
mass of body b and the joint position. The example shown in Figure 11 is a ball and socket

joint. Corresponding parameters are read for other types of joints.

[0102] Referring again to Figure 4, at step S4-8, reaction force displacement calculator 240
calculates the linear and angular displacement, Dreaction a0d Areaction, fOr €ach object in 3D

world space caused by the motion constraints identified at step S4-6.

[0103] Equation (9) above defines the equation to be solved in order to calculate the linear
and angular displacements Dieaction, Areaction OF the rigid bodies caused by the constraint
reaction forces. To evaluate this equation directly, however, it would be necessary to
calculate J™ which would be computationally expensive, require large memory resources and
require a large number of memory access operations due to the large size of the J matrix. The
present embodiment therefore employs a technique which avoids calculating J* and which is
ideally suited to game platforms which do not have significant processing resources or
memory. However, it is not required that the simulator not perform this calculation if it is

able to.

[0104] More particularly, Equation (9) is decomposed into a system of linear algebraic

equations as follows:

_D reaction
J|: A reaction } = B (22)
D reaction
|7Areaction i| = M _IJT/I (23)

where:

l: Dreaction

y ,eacﬁo,} is a column vector containing the displacements of all bodies.

21

10

15

20

25

WO 2006/102655 PCT/US2006/011076

[0105] As will be explained in detail below, the present embodiment solves equations (22)
and (23) iteratively. For a single contact between two bodies, values of Dreaction a0 Areaction
are estimated and used to calculate values of A (which defines the impulse of the constraint
reaction forces in this embodiment). The calculated values of A are then used to update the
values of Dyeaction and Areaction, fOr the single contact. By evalﬁating the equations for a single
contact only the transpose of the blocks of J for that contact need to be calculated and not the
transpose of J as a whole. The values of Dyeaotion ad Areaction are then used as initial values for
the processing of the next contact, in which values of A are calculated and the values of
Dieaction a0d Aeaciion are refined in the same way as the processing for the first contact. This
processing is repeated for all contacts and then all joints, with further iterations of the whole

processing then being performed.

[0106] Figure 6 shows the processing operations performed by reaction force displacement

calculator 240 at step S4-8 in this embodiment.

[0107] Referring to Figure 6, at step S6-2, data compiler 242 generates data defining the
known values in the linear algebraic system to be solved for each of the constraints identified

at step S4-6.

{
[0108] More particularly, data compiler 242 generates data defining the known variables in
equations (14) and (15) above for collisions and Equation (9) above for joints. The data is
stored in native format which provides the advantages that the format can be efficiently
processed using vector arithmetic by the game platform 14 as well as reducing the amount of
storage needed in game platform 14. The data is of fixed size corresponding to a fixed
amount of arithmetic operations required to evaluate the equations. As a result, the amount
of memory required to store the data, the number of memory accesses and the amount of time
required to process the data are independent of the complexity of the problem. In the case of

a collision, the data generated at step S6-2 in this embodiment comprises:

B1
B2
J & {CT,-—ras,—i‘bs} (24)
c L 1
M o “m, m

a b
I7'[r21C, I;' [1C

[0109] In the case of a joint, the data generated at step S6-2 comprises:

22

10

15

20

25

WO 2006/102655 PCT/US2006/011076

Blinear
Bangular
LT,;,HS’_;,S’
J < { o ’ } (25)
1 1
M7IT & L
m, m,

I v 1L, I [, 1L, I]'T, I;'T
[0110] At step S6-4, solver 244 performs processing to solve the linear algebraic system

defined by equations (22) and (23) above to calculate the linear and angular displacement of

each object caused by the constraint reaction forces.

[0111] Figure 7 shows the processing operations performed by solver 244 at step S6-4 in

this embodiment.

[0112] Referring to Figure 7, at step S7-2, solver 244 iteratively solves the collision linear
algebraic system defined by equations (22) and (23) above to calculate the linear and angular

displacements of the objects caused by reaction forces resulting from collisions.

[0113] The displacements calculated at step S7-2 are then used as initial displacements in
processing at step S7-4, in which solver 244 iteratively solves the joint linear algebraic
system defined by equations (22) and (23) above to calculate the linear and angular

displacements of the objects caused by reaction forces resulting from joints.

[0114] This processing is repeated (with the linear and angular displacements calculated at
step S7-4 being fed back as starting displacements for the processing at step S7-2 and the
displacements calculated at step S7-2 being used as starting displacements for the processing
at step S7-4) until a convergence test is satisfied or until a predetermined number of iterations

have been performed, as will be described in detail later.

[0115] Figure 8 shows the processing operations performed by solver 244 at step S7-2 in

the present embodiment.

[0116] As explained above the processing performed at step S7-2 avoids the need for
calculating the transpose of the whole Jacobian matrix J, thereby reducing the burden on

processing requirements memory storage.

[0117] Referring again to equations (22) and (23), the equations are iteratively solved in

this embodiment by considering each collision contact separately, and for each contact (a)

23

10

15

20

25

WO 2006/102655 PCT/US2006/011076

estimating initial values for the components of A using estimates of the displacements caused
by the reaction forces, Dyeaction and Areaction; (b) ensuring that the estimated values of A lie
within allowed bounds; (c) updating estimates of the displacements caused by the reaction
forces (Dreaction a0 Areaction) Using the estimated values of A; and (d) repeating the processing
in steps (a) to (¢) for each collision contact using as input the values of A, Dreaction and Areaction

calculated on previous iterations.

[0118] As aresult, the displacements Dyeaction and Areaction Caused by the collision reaction
forces are updated differentially and fed back to update the reaction forces themselves (A).
By doing this, there is no need to calculate the transpose of the whole Jacobian matrix J, and
instead it is only necessary to calculate the transpose of individual blocks on a row of J for
each individual contact. The processing is therefore completely linearised; the displacements
Dreaction and Areaction are updated at the same time as the impulse A in a fixed amount of
calculations, and memory storage is linearly proportional to the amount of contacts. Linear
time processing is that processing which requires an effort that is linearly proportional to the
number of items to be processed, or approximately so, rather than quadratically proportional
or higher order proportional. Some additional overhead might be needed for increased
numbers of items, but generally that would still be considered linearly proportional if the
overhead does not grow too fast with the number of items. Effort required can be measured

in processing steps required, memory operations or locations required, or similar measures.

[0119] Referring to Figure 8, at step S8-2, solver 244 reads the parameters of the next
collision contact generated at step S6-2 (this being the first collision contact the first time step
S8-2 is performed).

[0120] At step S8-4, solver 244 calculates values for the components of the Lagrange
multipliers A for the contact as follows (these representing the impulse of the constraint

reaction forces as explained above):

n+l __ qn _ n-correction _ n-corection
/lc _/Ic E[(Da raXAa)
—_— (D ll)z'correction _ Vb % A :-correction)] + - A P
ntl _ qn T n n-corection n n-corection
a2 g = (D + preerseson)= e (47 + geerron)

~ (g + Dy)=, e (g + e]+ @
n-(AP+AF +(1+&)AV)

(26)

24

10

15

20

25

WO 2006/102655 PCT/US2006/011076

= g~ (D 7, x4)= (D} 7, x 47)|+ u- (AP + AV + AF) (28)

gt = 2= (D —rx 42Dy 1y x 4 v (AP+AV +AF) (29)

n
a

[0121] On the first iteration of step S8-4, the values of D,eomection o n.correstion 1y, n.corestion
AgheoTetion 1y A, Dy and Ay are all set to zero. In addition, all components of A" are set to
zero. As aresult, on the first iteration, the values of the components of A are determined

solely by the components of B1 and B2 in the equations above.

[0122] It will be seen from Equation (27) above that the value of A, is calculated using the
displacement correction D™OTetOn AROTECHN o the previous iteration. As explained
previously, the displacement correction removes the displacement between the bodies in the
direction perpendicular to the contact plane of the collision at the start of the time step
without introducing any velocities to the bodies. Accordingly, this displacement is removed

before A, is evaluated for the current iteration.

[0123] By performing the processing at step S8-4 as described above, solver 244 calculates
values for the components of A as a vector operation on four scalars (namely the n, u, and v,
components of A and also the correction component of A). All of these values are calculated
in a single vector operation considerably reducing processing time and resources. Further,
solver 244 evaluates equations (26) and (27) by evaluating the 4-dimensional boundary
vector equation set out below (labelled 26a, 27a). As a result, solver 244 reads the

14T

parameters from JMJ" necessary to evaluate equations (26) and (27) only oncé, thereby

reducing the number of memory accesses and saving further processing time and resources:

nl|(A,
T (a7 Ju || A, |_(CT(AP+AV +AP)+ 2Av.n 26
v 4 n.AP [27aj

(a7 [2,

[0124] At step S8-6, solver 244 tests the values of the Lagrange multipliers A calculated at
step S8-4 to determine whether they are within acceptable bounds and clamps any value

which lies outside the acceptable bounds.

[0125] More particularly, in this embodiment, solver 244 performs processing in

accordance with the following equations:

25

WO 2006/102655 PCT/US2006/011076

If A" <0 then set Al*' =0 (30)
i A < 0 then set AJY' =0 (31)
If A <— p A2 then set At = — A (32)
I A > p A" then set A% = p At (33)

5 where:
U is the Coulomb static friction coefficient
Lq is the Coulomb dynamic friction coefficient

[0126] By performing processing in accordance with equations (30) and (31), solver 244
ensures that the constraint reaction forces do not act to push the two objects together. By
10 performing the processing in accordance with equations (32) and (33), solver 244 ensures that

friction conditions are complied with.

[0127] At step S8-8, solver 244 performs processing to update the linear and angular
displacements of the objects and the displacement correction terms for the objects using the
values of A previously calculated at step S8-4. In this embodiment, solver 244 performs

15 processing to update the values in accordance with the following equations (34)-(41).

-1 n
—A
m,
A = A+ I - a) (35)
/111+I _ /111
D[:1+1 = D: _ C’ﬁ_——) (36)
m,
A[:,-H — AI;I _ Ib—l[rb]C-(/anH - /111) (37)
Zn-l»l — A
20 D ;z+1.carrecrian =D :-CWVECHM + C 0 (38)
0
/rtlH—l _ ﬁ”
A;z+1.correction = A:.correction +];l[ra] C’ 0 (39)
0

26

WO 2006/102655 PCT/US2006/011076

n+l n
lc - ;i’c

n+l.correction __ n.correction _
0
2‘)1+l _ ;Ln
(4 c
n+l.correction __ jgn.correction ~ly_,
4, =4, —1,;n1C 0 (41)
0

[0128] In this embodiment, equations (38) to (41) are evaluated as vector scalar operations.

[0129] At step S8-10, solver 244 determines whether all collision contacts have been
5 processed. The processing at steps S8-2 to $8-10 is repeated until all collision contacts have

been processed in the way described above.

[0130] Referring again to Figure 7, at step S7-4, solver 244 performs processing to
iteratively solve the linear algebraic system defined by equations (22) and (23) above for
joints.

10 [0131] Figure 9 shows the processing operations performed at step S7-4 by solver 244 in
this embodiment. This processing is the same as the processing at step S7-2 described above
with the exception of the data compilation performed at step S9-2 and the mathematical

operations performed at steps S9-4, S9-6 and S9-8.

[0132] More particularly, in this embodiment at step S9-4, solver 244 calculates values for

15 the Lagrange multipliers using the following equations:

A (D, 41, x A) = (D, 41, x A B @)

lin

Y i ={7¢ ~L((D, +r,x4,)-D,+7 XAb))} —B,min 43)

Y {ﬂZ,,g ~T"(4, - Ab)}—Bangmax (44)
Z’Z:gl—min = {;’“Z;zg - T g (Aa - Ab)}_ Bang—min (45)

20 [0133] Within equations (42) and (43) above, the terms in {} brackets are the same and are
evaluated only once. Similarly the terms in {} brackets in equations (44) and (45) are the

same and are evaluated only once.

27

WO 2006/102655 PCT/US2006/011076

[0134] When performing the first iteration of step S9-4, the values of D,, A,, Dy and Ay, are

the values previously calculated at step S7-2, while all values of A, are zero.

[0135] The equations used by solver 244 at step S9-6 comprise the following in this

embodiment:
. n+l n+l —
5 if (/lx,y,z_m)ang&lin <O0then A, , =0 (46)
. n+l n+l .
zf (ﬂ‘x,y,::—min)ang Slin >0 then X,y,Zz—-min 0 (47)
- an+l _ qn+l n+l
/llin - /”“lin—min + /llin—max (48)
/’UH-I . /171+1 + /ln+1
ang — /% ang-min ang —max (49)

[0136] The equations used by solver 244 at step S9-8 comprise the following in this

10 embodiment:

D:+1 — D: + 7 (2'2:1 _/12')1) (50)

ma
A = A+ D - e 1T - 2,) (51)

n+l n

DII)H-I — D;l _ L (/'z'lin _ﬂ'lin) (52)

my,

n+l _ 4n =1f..s n+l n -1 n+l n

Ab - Ab - Ib [rb]L‘(/llin - ﬂ‘lin)— Ib T(ﬂ’ang - ﬂ'ang) (53)

15 [0137] Referring again to Figure 7, at step S7-6, solver 244 performs a convergence test.
In this embodiment, solver 244 performs processing to determine whether the values of A
calculated for the current iteration differ from the values of A calculated for the previous

iteration by more than a predetermined threshold, in accordance with the following equation:
! /1;1+1 . /171 f
; pre < Threshold (54)

20 [0138] In this embodiment, the threshold employed in Equation (54) is set to 10™.

[0139] At step S7-8, solver 244 determines whether a predetermined number of iterations
of the processing at steps S7-2 to S7-8 have been performed. In this embodiment, solver 244

determines whether 50 iterations have been performed.

28

10

15

20

25

30

WO 2006/102655 PCT/US2006/011076

[0140] The processing at steps S7-2 to S7-8 is repeated until it is determined at step S7-8
that the predetermined number of iterations has been performed or until it is determined at

step S7-6 that convergence has been achieved.

[0141] Referring again to Figure 4, at step S4-10, object dynamics updater 250 updates the
linear and angular displacements (which implicitly define the linear and angular velocities)
and the linear and angular positions of each body. In this embodiment, the processing at step
S4-10 is performed by evaluating equations (10) to (13) above using the values of D,ctjon and
Aaction calculated at step S4-4 and the values of Dreaction and Ayeaction Calculated at step S4-8.

[0142] At step S4-12, game logic implementer 210 updates the game logic as a result of the
user-input instructions read at step S4-2 and the changes in positions and velocities of the

objects calculated at step S4-10.

[0143] At step S4-14, renderer 260 performs processing to render an image of the 3D
objects and to output the image data for display to the user on display device 202, while
sound controller 270 performs processing to generate and output sounds to the user. The
processing performed by renderer 260 and 270 takes account of the updates to the object
parameters performed by object dynamic updater 250 at step S4-10. In this embodiment, the
processing at step S4-14 is performed in a conventional manner and accordingly details will

not be provided here. |

[0144] At step S4-16, game logic implementer 210 determines whether the game has
finished. Processing at steps S4-2 to S4-16 is repeated until the game has finished.

[0145] Many modifications and variations can be made to the embodiment described

above.

[0146] For example, instead of performing processing as described above at step S4-8 to
calculate the linear and angular displacements of the objects caused by the motion
constraints, equations (14) and (15) above for collisions and Equation (9) above for joints
may be evaluated in a conventional manner by calculating the transpose of J. In the case of
collisions, Equation (14) defining B1 should be evaluated first, with the results being used to
correct the boundary conditions defined by B2 in Equation (15) before Equation (15) is itself

evaluated.

[0147] Inthe embodiment described above, two sets of boundary conditions are defined for

collisions — that is, B1 in Equation (14) and B2 in Equation (15). Processing is then

29

10

15

20

25

WO 2006/102655 PCT/US2006/011076

performed at steps S8-4 to S8-8 taking into account both of these boundary conditions.
However, it is not essential to use the boundary conditions defined by Equation (14), with the
results that the processing to evaluate Equation (26) at step S8-4, the processing to evaluate
Equation (30) at step S8-6 and the processing to evaluate equations (38) to (41) at step S8-8
are omitted. In addition, in the processing at step S8-4 and step S8-8, all correction terms are

omitted.

[0148] The convergence test performed at step S7-6 in the embodiment above may be
replaced with a convergence test to determine whether the difference between the
displacements of the objects calculated for the current iteration differ from the displacements
for the objects calculated for the previous iteration by more than a predetermined threshold.
In this case, instead of summing the difference between the A components in accordance with
Equation (54), the difference between the displacement components would be summed and
tested against a threshold. Alternatively, the convergence test at step S7-6 may be omitted.
By omitting the convergence test, the processing time required to perform the convergence
test could be utilised carrying out additional iterations of the processing at steps S7-2 and
S7-4.

[0149] In the embodiment described above, the processing performed at steps S7-2 to S7-4
utilises a projected successive over-relaxation method. However, this is not essential and
other types of methods may be used. More particularly, the processing at step S7-2 and the
processing at step S7-4 can solve IM'JTAA* > B using an iterative method but with different

projection rules.

[0150] More particularly, the purpose of the iterative method is to achieve:

lim A" = A"
n—>®© (55)
B-JM7JTA" =0

where B—JM™J"2=0 can be called the residual.

[0151] In the processing performed at step S8-4 above, to update A, each component of A is
updated independently, that is to say, each component is updated based on the value of that
component obtained from the previous iterative cycle, but no other component values. The
updating of the components of each A vector is therefore performed using a so-called Jacobi

method.

30

10

15

20

25

WO 2006/102655 PCT/US2006/011076

[0152] On the other hand, the processing of the respective contact constraints at steps S8-2
to S8-10 is performed using a so-called Gauss-Seidel method because the processing for each
respective contact is performed in dependence upon displacements calculated for bodies in

previous contact constraint cycles.

[0153] In the processing at steps S8-4, it is possible to control the amount by which each
vector A" is changed relative to A" by controlling the amount added to A" to update A™*".
This is done by controlling the effect of the residual on the update of A for each iterative step.
As aresult, it is possible to control the convergence rate of . This is achieved by using a

relaxation parameter .

[0154] A global description of the method can therefore be defined by Equation (56),

where v is a relaxation term with 0 <y <2 and A is a pre-conditioning matrix.

A

A =00 4 }/A(B —JM Tt A), where A is a vector | 4, (56)
A

v

[0155] For a per vector solver like the one in the embodiment described above:

[0156] Fory=1, A= Diag™” the iterations are either pure Gauss-Seidel or pure Jacobi
methods, depending on which series of cycles is being considered (vector component, or

contact constraint cycles).

[0157] For0<y<1,and A =Diag" the iteration is a successive-under-relaxation (SUR)
iteration, where the y term results in a reduced effect of the residual on the amount by which

A™! is changed relative to A"

[0158] Forl<y<2, A= Diag'1 the iteration is a successive over-relaxation (SOR)
iteration, where the y term results in an increased effect of the residual on the amount by

which _E’H is changed relative to A", which increases the convergence rate.

[0159] Higher convergence rates per vector can be achieved with a better A
pre-conditioning.
GS

[0160] Exact component: | SOR | per vector: can be achieved using l:A Al A=J M7 JF
SUR

" _ ~1
by using the converse diagonal block A7 = (J M J ,-T) .

31

10

15

20

25

WO 2006/102655 PCT/US2006/011076

[0161] Exact component calculation per vector can then be achieved.

Joint Constraints

[0162] Joints can have six degrees of freedom, potentially, and thus can be more complex

than position constraints. A joint has a position and an orientation, each with three degrees.

[0163] The most constraining situation for a joint is when all degrees of freedom (“DOF”)
are removed, i.e., a “6 DOF locked” joint. This will be the case used in describing how
boundary conditions for joints are calculated. An example of a 6 DOF locked joint is

illustrated in Fig. 12.

[0164] In one example: the constraints of the joint are defined by one linear constraint,
wherein the two positions of the joints are locked to be equal, i.e., 3 DOF linear locked,

represented by:

G,+7, =G, +7, and
two angular constraints wherein the two frames are equal, i.e., 3 DOF angular locked,

represented by:

Fo=Fs
[0165] These constraints can be linearized to be solved in the same way as contact
constraints are solved, such as by using a position-based solver, or perhaps an angle-based
solver that solves with angles instead of angular velocity. A linear constraint equation (which

is similar to the contact condition) might be as follows:

0
LT J0ol< LT . ((é:ﬂ + ;;”n+1) _ (G;Hl + ;;”n+1)>s LT 0
0

[0166] Equality is where the two boundaries are equal.

[0167] The L frame evolves with the parent object, but is used in world space. Repeat the

same for F, and Fp.

[0168] As for the angular constraint equation, the angular projection frame is not as
straightforward as L. That frame, called T here can be calculated by quaternion

decomposition. The relative quaternion from B— 4 is given by:

Gret =9, 9

32

WO 2006/102655 PCT/US2006/011076

where g, is the quaternion form of F, and g is the quaternion form of F},. The derivative of

the relative quaternion produces:

- 1 a)b - a)a
qrel = —5 qa : O ' Qb

[0169] That can be expressed as:

. =Jw wb - a)a
9rer = q 0

where w,and o, are the angular velocities of object B and object A, respectively.

[0170] Jwg can be called the relative quaternion Jacobian matrix and is a 4x4 matrix.
Only the first 3 lines of the Jwgq are required to constrain the 3 dimension of the angular

freedom.

q;

Jog = [TT] 9;
X x x|q

q,

the rate of change of a quaternion given an angular velocity is given by:
4
q J =T TAmab
q,
imaginary forms of ¢,,,
[0171] The meaning of this equation is if we rotate the child quaternion with an angular

q;
velocity Aw,, suchthat | g, |=T"Aw,

9,
= Then the child quaternion will match the parent joint quaternion. < F, = F,.

[0172] The final angular constraint becomes:

From ¢,

33

WO 2006/102655 PCT/US2006/011076

q; q;
q/‘ STT'(Aa)ab)S qj
q: q;

[0173] The two limits are equal if the DOF are locked, thus achieving equality.

[0174] Following the same logic as the one described in the contact case but with 6 DOF:

the joint constraint becomes:

L' -(AP+AV + AF) << L' -(AP+AV + AF)
TT-(Aa)-f-Az‘)-l-qre, TS TR TT-(Aa)+Az')+qre,

Where AP is position error,
AV is velocity displacement,
AF' is force displacement,
Ao is angular displacement,
10 At is torque displacement,

q,; is angular position error.
The analogy is

AP & Aa with g, =T"Aa

AV & Aw

15 AF & At

[0175] In another approach to describing this:

2]

= To match the solver notation;

B 20

limmax

=~I"(AP+AV + AF)= A,

immax

20 Blimmin = LT (AP+ AV + A}?)S ﬂ'limmin <0

/’i’lim = ;l‘max + /1

‘min

as only one of the lambdas can be non-zero.

34

10

15

WO 2006/102655 PCT/US2006/011076

B =—q T (Ao+A7)=-T" (Aa+Aw+ A7)

ang max

(Access to angular error (77 Aa) is mapped tog,,)

B

ang min =G,

+T7 (Aw+ A7)

[0176] Collision and joint constraints are described in the embodiment above. However,
the techniques used above are not limited to these cases. While the invention has been
described with respect to exemplary embodiments, one skilled in the art will recognize that
numerous modifications are possible. For example, the processes described herein may be
implemented using hardware components, software components, and/or any combination
thereof. As another example, different models can be created, for example, to have friction
constraints in joints or angular constraints in contacts to achieve rolling and spinning friction.
Other kinds of constraints can be linearly added to the contacts and/or joints. In addition, the
drive applied to a rigid body can be modelled as a constraint, and the drive can be animated
using typical animation data. Other modifications are, of course, possible. Thus, although the
invention has been described with respect to exemplary embodiments, it will be appreciated
that the invention is intended to cover all modifications and equivalents within the scope of

the following claims.

35

O 0 3 & W A W =

N N N N N kb e e e e e el e e
AW NN = O VO 0 N N WNY = O

HOWONN -

—

WO 2006/102655 PCT/US2006/011076

WHAT IS CLAIMED IS:

1. In an evaluator that evaluates a plurality of rigid bodies defined by values
stored in a memory device, a method of calculating simulated motion of the plurality of rigid
bodies that would occur given representations of positions of the plurality of rigid bodies in a
model space at a first time, data representing behaviours of the plurality of rigid bodies in the
model space, and parameters representing simulated forces that would be acting on the rigid
bodies, the method comprising:

receiving, as input to the evaluator, signals representing parameters defining an initial
state of the plurality of bodies;

receiving, as input to the evaluator, constraint signals representing constraint parameters
defining at least one constraint, wherein the constraint is a condition limiting motion
of at least one of the plurality of rigid bodies;

receiving, as input to the evaluator, either separately or in conjunction with receiving the
constraint signals, boundary condition signals representing boundary condition
parameters defining at least one boundary condition on the motion of the one or
more of the plurality of rigid bodies as a result of the at least one constraint, wherein
the at least one boundary condition defines at least one boundary constraint on
displacement of the one or more of the plurality of rigid bodies resulting from
positions and velocities of the one or more of the plurality of rigid bodies and forces
acting upon the one or more of the plurality of rigid bodies; and

calculating position parameters defining positions of at least some of the plurality of
rigid bodies at a second time, wherein the second time is a time following the first
time by a known amount, wherein the calculating is done in dependence upon at
least one reaction force that acts to keep the at least some of the plurality of bodies

in compliance with the at least one boundary condition.

2. A method according to claim 1, wherein the at least one boundary
condition defines at least one constraint on displacement of the one or more of the plurality of
rigid bodies further resulting from a coefficient of restitution represented by one or more

coefficient parameter read into the evaluator.

3. A method according to claim 1, wherein the at least one constraint

comprises one of a collision constraint and a joint constraint.

36

O 0 3 & i B W D =

L T S o = W = G S G S
0 N N Rk W= O

BSOWN

WO 2006/102655 PCT/US2006/011076

4. A method according to claim 1, further comprising determining the at least
one reaction force from displacement values representing simulated displacements of one or

more of the plurality of bodies caused by the at least one reaction force.

5. A method of calculating the positions of a plurality of three-dimensional
computer models in a three-dimensional computer space, the method comprising:
étoring initial positions in a three-dimensional computer space of a plurality of
three-dimensional computer models;
storing parameters defining at least one force acting on bodies comprising the
three-dimensional computer models and at least one constraint constraining the
three-dimensional computer models in three-dimensional computer space; and
calculating new positions of the three-dimensional computer models in the
three-dimensional computer space from the stored initial positions and the stored
parameters, the new positions being positions for the three-dimensional computer
models at the end of a time step representing a simulation of time passing, the
calculating including:
(a) removing differences in the positions of the three-dimensional computer models in
at least one direction existing for the start of the time step; and
(b) determining the new positions of the three-dimensional computer models for the
end of the time step as a result of at least one reaction force that acts to keep the
three-dimensional computer models in compliance with the at least one

constraint.

6. A method according to claim 5, wherein the differences in the positions of
the three-dimensional computer models for the start of the time step are removed without
changing the velocity parameters representing simulated velocities of the three-dimensional

computer models.

7. A method according to claim 5, wherein the at least one constraint defines

constraints as position constraints.

8. A method according to claim 5, wherein removing differences and
determining the new positions of the three-dimensional computer models for the end of the

time step in the at least one direction are performed by:

37

O 0 NN Ay A

—_

O 0 9 N b WD

O S S S Y
W N = O

WO 2006/102655 PCT/US2006/011076

evaluating an equation defining a reaction to a constraint in the at least one direction as a
function of a position parameter of the objects for the start of the time step,

evaluating an equation defining a reaction to a constraint in the at least one direction as a
function of a position parameter of the objects for the end of the time step; and

evaluating at least one equation defining the position parameter of the objects as a

function of the reaction.

9. A method according to claim 8, wherein the equations defining the reaction
as a function of the position parameter for the start and end of the time step are evaluated by

reading data to evaluate the equations only once.

10. A method according to claim 8, wherein the equations defining the
reaction as a function of the position parameter for the start and end of the time step are

evaluated simultaneously.

11. A method according to claim 8, wherein the equations defining the
reaction as a function of the position parameter for the start and end of the time step are

evaluated by performing a vector operation.

12. A method according to claim 8, wherein the position parameter of the

objects for the start and end of the time step each comprises a displacement.

13. An evaluator that calculates positions of a plurality of represented objects
in a simulated space as would result from one or more of the plurality of represented objects
being subjected to at least one force and at least one constraint acting on the plurality of
represented objects, the evaluator comprising:

a data store to store data defining the plurality of represented objects, positions of the
objects, at least one force acting on the objects, and at least one constraint on the
objects;

a boundary condition definer configured to define boundary position constraints on the
objects by calculating displacements on the objects resulting from the at least one
force and the positions of the objects; and

a position solver configured to calculate positions of the objects in dependence upon at
least one reaction force acting on the objects to keep the positions of the bodies in

compliance with the boundary position constraints defined by the constraint definer.

38

hn B W N e

W &0 3 & i A W N e

[w—
e]

WO 2006/102655 PCT/US2006/011076

14. The evaluator of claim 13, wherein the boundary condition definer is
configured to define the position constraints by calculating displacements of the objects

resulting from the at least one force, the positions of the objects and velocities of the objects.

15. The evaluator of claim 13, wherein the position solver is configured to
calculate the positions of the objects by iteratively evaluating a first equation and a second
equation, wherein the first equation defines a reaction to the at least one constraint as a
function of a position parameter and the second equation defines the position parameter as a

function of the reaction to the at least one constraint.

16. The evaluator of claim 15, wherein the position solver is configured to
evaluate the equation defining the reaction using vector processing to calculate a plurality of

component values for the reaction representing the reaction in different directions.

17. The evaluator of claim 15, wherein the position solver is configured to

perform each iteration for a respective constraint.

18. An evaluator configured to process data defining a plurality of objects,
positions of the objects as they would be at a first time, at least one force acting on the objects
and at least one constraint acting on the objects, to calculate positions of the objects as they
would be at a second time, the second time being a time step after the first time, the evaluator
comprising:

a position remover configured to remove a difference in the positions of the objects in at
least one direction as of the first time to calculate adjusted positions for the objects;
and

a position solver configured to calculate positions of the objects as of the second time in
dependence upon the adjusted positions calculated by the position remover and the

at least one constraint.

19. The evaluator of claim 18, wherein the position solver is configured to

remove the difference in positions without changing velocities of the objects.

20. The evaluator of claim 18, wherein the position solver is configured to

calculate the positions of the objects as of the second time in dependence upon the adjusted

39

O &0 N O B W N =

— = e e
W N == O

14
15
16
17
18
19
20
21

22
23
24
25
26

2

WO 2006/102655 PCT/US2006/011076

positions and at least one reaction force acting on the objects as a result of the at least one

constraint.

21. The evaluator of claim 18, wherein the at least one constraint comprises

one of a collision constraint and a joint constraint.

22. A computer-readable medium having stored thereon computer program
instructions for an evaluator that evaluates a plurality of rigid bodies defined by values stored
in a memory device, a method of calculating simulated motion of the plurality of rigid bodies
that would occur given representations of positions of the plurality of rigid bodies in a model
space at a first time, data representing behaviours of the plurality of rigid bodies in the model
space, and parameters representing simulated forces that would be acting on the rigid bodies,
the medium comprising:

program code for receiving, as input to the evaluator, signals representing parameters
defining an initial state of the plurality of bodies;

program code for receiving, as input to the evaluator, constraint signals representing
constraint parameters defining at least one constraint, wherein the constraint is a
condition limiting motion of at least one of the plurality of rigid bodies;

program code for receiving, as input to the evaluator, either separately or in conjunction
with receiving the constraint signals, boundary condition signals representing
boundary condition parameters defining at least one boundary condition on the
motion of the one or more of the plurality of rigid bodies as a result of the at least
one constraint, wherein the at least one boundary condition defines at least one
boundary constraint on displacement of the one or more of the plurality of rigid
bodies resulting from positions and velocities of the one or more of the plurality of
rigid bodies and forces acting upon the one or more of the plurality of rigid bodies;
and

program code for calculating position parameters defining positions of at least some of
the plurality of rigid bodies at a second time, wherein the second time is a time
following the first time by a known amount, wherein the calculating is done in
dependence upon at least one reaction force that acts to keep the at least some of the

plurality of bodies in compliance with the at least one boundary condition.

23. A data signal carrying computer program instructions for an evaluator that

evaluates a plurality of rigid bodies defined by values stored in a memory device, a method of

40

O &0 N O L B~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

WO 2006/102655 PCT/US2006/011076

calculating simulated motion of the plurality of rigid bodies that would occur given
representations of positions of the plurality of rigid bodies in a model space at a first time,
data representing behaviours of the plurality of rigid bodies in the model space, and
parameters representing simulated forces that would be acting on the rigid bodies, the data
signal comprising:
program code for receiving, as input to the evaluator, signals representing parameters
defining an initial state of the plurality of bodies;
program code for receiving, as input to the evaluator, constraint signals representing
constraint parameters defining at least one constraint, wherein the constraint is a
condition limiting motion of at least one of the plurality of rigid bodies;
program code for receiving, as input to the evaluator, either separately or in conjunction
with receiving the constraint signals, boundary condition signals representing
boundary condition parameters defining at least one boundary condition on the
motion of the one or more of the plurality of rigid bodies as a result of the at least
one constraint, wherein the at least one boundary condition defines at least one
boundary constraint on displacement of the one or more of the plurality of rigid
bodies resulting from positions and velocities of the one or more of the plurality of
rigid bodies and forces acting upon the one or more of the plurality of rigid bodies;
and
program code for calculating position parameters defining positions of at least some of
the plurality of rigid bodies at a second time, wherein the second time is a time
folldwing the first time by a known amount, wherein the calculating is done in
dependence upon at least one reaction force that acts to keep the at least some of the

plurality of bodies in compliance with the at least one boundary condition.

41

PCT/US2006/011076

WO 2006/102655

112

RNVER

08\ 0L\ 09\
NYHO0Yd _>_<mwomn_
.................................... ._mmw%o ONIMIANIY
NYSDO0ud
bp NYND0Nd ONIQVIY e
AN ¥3AT0S ¥3LINVEVL
LNIOP
0s (44 WYHOONd NVED0Yd ce 0c
AN N NOILYTdINOD NOILO3L3a 4 /L
v.1va NOISITI00 T
WYHD0ONd NOILYINDIVO
ONILYAdN NWYHOONHd NVYHOOHd INIWIOVIdSIa
SOINVYNAQ NOILYINDIVD NOILYOIdILNIAl DM
193rg0 ININIOVISIa LNIVELSNOD NOILOY
30404 NOILOVIY NOILOW
ov 7 AdvHEn WYEeokd N oe

LIAT00L LININdOTINIA FHVMLIO0S

WO 2006/102655 PCT/US2006/011076

2M12

COMPILED GAME CODE

100
GAME CODE //

PROGRAMS

4/20 /30 /40 /50 /60 /70

110
/

DATA RECORDS

122 124 " 30| o120
[/£ LV

Fig. 2

PCT/US2006/011076

WO 2006/102655

3/12

Tt === |
) |
i |
_ | ¥3Lvadn
! | ialiviviess ¥IHIANTY SOINYNAQ
| | 1o3rgo -
i |
) I 4
ey . .
082 / ! 0le / 09z \ 0se \
_ . ¥IAVIY
4CAN Y3A10S AN IRNTET 073 oLz
e me—e ____iNor] AN AN
¥0.10313a .
i H3TNdNOD Yivd 767 e NOISITIO0 HOLYINDTIVO 3L NSINT TN
/] INIWIOVIdSIa
AcAdS ou0d 21907
YOLYINDTVO y3IILNIal 3 WS
~ IN3awzovdsia INIVHLSNOD NOILOY
39404 NOILOVIY) NOILOW
ovz ocz
Pl \
(8)30In3Q
LNdNI ¥3sn
202 00z /|

NYO4L1Y1d INVD

¢ b4

[

pigipipiyip

ot

34000 INVD
azadinoo

WO 2006/102655

412

PCT/US2006/011076

(st) Fig. 4a

>
Y

READ USER-INPUT INSTRUCTIONS, GAME
LOGIC AND OBJECT PARAMETERS

| S42
/

!

FOR EACH OBJECT, CALCULATE THE
DISPLACEMENT CAUSED BY THE ACTION
FORCES ACTING ON THE OBJECT

S4-4
L/

.

IDENTIFY OBJECT MOTION EONSTRAINTS

S4-6
/

!

CALCULATE OBJECT DISPLACEMENTS
CAUSED BY THE MOTION CONSTRAINTS

, 54-8
/

}

UPDATE EVERY OBJECT'S DISPLACEMENT
AND POSITION USING THE DISPLACEMENT
CAUSED BY THE ACTION FORCES AND THE
DISPLACEMENT CAUSED BY THE MOTION
CONSTRAINTS

S4-10
/

WO 2006/102655

512

PCT/US2006/011076

Fig. 4b
.
/ S4-12
UPDATE GAME LOGIC
S4-14
GENERATE AND OUTPUT IMAGE /
DATA AND SOUND DATA
Y S4-16
FINISH?

END

WO 2006/102655 PCT/US2006/011076

6/12

S4-6 : DETERMINE OBJECT MOTION
CONSTRAINTS

L/ S5-2
PERFORM OBJECT COLLISION DETECTION

l

L/ S5-4
READ JOINT PARAMETERS

)\ 4

(RETURN)

Fig. 5

WO 2006/102655 PCT/US2006/011076

7/12

S4-8 : GALCULATE OBJECT DISPLACEMENTS
CAUSED BY THE MOTION CONSTRAINTS

PRECOMPUTE DATA FOR LINEAR

L S6-2
ALGEBRAIC SYSTEM TO BE SOLVED
FOR EACH TYPE OF CONSTRAINT

1

SOLVE THE ALGEBRAIC SYSTEM FOR EACH L/ S6-4
TYPE OF CONSTRAINT TO CALCULATE THE
OBJECT DISPLACEMENTS

w

RETURN

Fig. 6

WO 2006/102655 : PCT/US2006/011076

8/12

S6-4 : SOLVE THE ALGEBRAIC SYSTEM FOR
EACH TYPE OF CONSTRAINT TO CALCULATE
THE OBJECT DISPLACEMENTS

ITERATIVELY SOLVE THE ALGEBRAIC

v S§7-2
SYSTEM FOR COLLISIONS TO CALCULATE
OBJECT DISPLACEMENTS

ITERATIVELY SOLVE THE ALGEBRAIC

L/ S7-4
SYSTEM FOR JOINTS TO CALCULATE
OBJECT DISPLACEMENTS

l S7-6
CONVERGENGE? %(ES

lNO

NO HAVE PREDETERMINED NUMBER OF
ITERATIONS BEEN PERFORMED?

S7-8

YES

WO 2006/102655 PCT/US2006/011076

9/12

S7-2 : ITERARTIVELY SOLVE THE ALGEBRAIC
SYSTEM FOR COLLISIONS TO CALCULATE
OBJECT DISPLACEMENTS

READ PARAMETERS OF NEXT | S8-2
COLLISION GONTACT

:

CALCULATE THE CONTACT CONSTRAINT |~ S84
LAGRANGE MULTIPLIERS

:

: L S8-6
CLAMP LAGRANGE MULTIPLIERS

UPDATE OBJECT DISPLAGEMENTS USING L/ S8-8
THE GLAMPED LAGRANGE MULTIPLIERS

S$8-10

YES ANOTHER COLLISION CONTACT?

NO
Y

(RETURN)

Fig. 8

WO 2006/102655 PCT/US2006/011076

10/12

S7-4 : ITERARTIVELY SOLVE THE ALGEBRAIC
SYSTEM FOR JOINTS TO CALCULATE
OBJECT DISPLACEMENTS

Y

. S92
READ PARAMETERS OF NEXT JOINT

!

CALCULATE JOINT CONSTRAINT LINEAR / S9-4
AND ANGULAR LAGRANGE MULTIPLIERS
FOR THE UPPER AND LOWER LIMIT

'

/ S9-6
CLAMP LAGRANGE MULTIPLIERS

UPDATE OBJECT DISPLACEMENTS UsING |~ 598
THE CLAMPED LAGRANGE MULTIPLIERS

l S9-10

ANOTHER JOINT?

YES

NO
Y

(RETURN)

Fig. 9

WO 2006/102655 PCT/US2006/011076
11/12

Fig.10

Body b

“rb

Body a

ra

WO 2006/102655 PCT/US2006/011076

1212

Frame a Frame b

Joint position

ra

Body a

Fig. 11

F

The angular
frame of the joint
= relative to the

L child object
The linear *
frame in ?
parent object
space, which
is used to ﬂ
project the , I X G
linear 3 DOF [] é
constraints. .
Child
7 The angular
@ frame of the joint
relative to the
parent object.
® G
A
Parent

Fig. 12 - Example of a 6 DOF locked joint

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

