
(19) United States
US 20020099759A1

(12) Patent Application Publication (10) Pub. No.: US 2002/00997.59 A1
G00therts (43) Pub. Date: Jul. 25, 2002

(54) LOAD BALANCER WITH STARVATION
AVOIDANCE

(76) Paul David Gootherts, Santa Clara, CA
(US)

Inventor:

Correspondence Address:
HEWLETTPACKARD COMPANY
Intellectual Property Administration
P.O. BOX 272400
Fort Collins, CO 80527-2400 (US)

(21)

(22)

Appl. No.: 09/768,051

Filed: Jan. 24, 2001

Publication Classification

(51) Int. Cl. .. G06F 9/00

Evaluate
Processors

200

s= 1
processor is

>= 1
processor is
a SINK

Balance
Load

a SOURCE

(Starvation)

08

(52) U.S. Cl. .. 709/105

(57) ABSTRACT

A method and apparatus for balancing processing loads to
avoid starvation of threads is described. A method of load
balancing evaluates the load and State of multiple proces
Sors. If at least one processor is in a Source State and at least
one processor is in a sink State, the processing load is
balanced to avoid starvation. A thread is transferred from the

heaviest loaded, Source State processor to the least loaded,
Sink State processor. Each processor load and State is then
reevaluated and, if needed, the load balancing with Starva
tion avoidance repeated.

Balance
Load

(Normal)

204

Patent Application Publication Jul. 25, 2002 Sheet 1 of 5 US 2002/00997.59 A1

Processor

1. RT2
2. TS2

A2

Processor

1. RT1
2. TS1

Al

Processor

1. RT3

A4

Processor

1. TS3

A3

Figure 1

Patent Application Publication Jul. 25, 2002. Sheet 2 of 5 US 2002/0099759 A1

Evaluate
Processors

200

>= 1
processor is
a SOURCEP

Balance
Load

(Normal)

204

>= 1
processor is
a SINK

Balance
Load

(Starvation)

08

Fig. 2

Patent Application Publication Jul. 25, 2002 Sheet 3 of 5 US 2002/0099759 A1

Processor Processor

1. RT2
2. TS5

Processor

1. RT3
2. TS11

Processor

Figure 3

Patent Application Publication Jul. 25, 2002 Sheet 4 of 5 US 2002/0099759 A1

PrOceSSOr

1. RT1

ProceSSOr

1. RT2

Processor

1. TS6
TS7
TS8
TS9
TS10
TS1
TS2
TS3
TS4

10. TS5
11. TS11 B3

Processor

1. RT3

Figure 4

Jul. 25, 2002. Sheet 5 of 5 US 2002/00997.59 A1 Patent Application Publication

//

H XINHOAALEIN \ IVOOT

{{OV HRHEILNI NOIJ VOIN?IJANJANOJ)

TORIJLNO O (IOSNICIO

YHOEHARIHS

US 2002/00997.59 A1

LOAD BALANCER WITH STARVATION
AVOIDANCE

FIELD OF THE INVENTION

0001. The present invention relates to a load balancer
using Starvation avoidance, and more particularly, a load
balancer for balancing processing loads among multiple
processor queues in a multiprocessor computer System. Still
more particularly, the present invention relates to a load
balancer for balancing processing loads between multiple
processor queues in a multiprocessor computer System while
avoiding Starvation of processing threads. Further, the mul
tiprocessor computer System may encompass multiple, net
worked, single processor computer Systems.

BACKGROUND

0002 Operating System
0003) The operating system (OS) or kernel is the software
forming the core or heart of an OS. The kernel is loaded into
main memory first on Startup of a computer and remains in
main memory providing essential Services, Such as memory
management, process and task management, and disk man
agement. The kernel manages nearly all aspects of proceSS
execution on a computer System. Processes may be typical
programs Such as word processors, spreadsheets, games, or
web browserS. Processes are also underlying tasks executing
to provide additional functionality to either the operating
System or to the user of the computer. Processes may also be
additional processes of the operating System for providing
functionality to other parts of the operating System, e.g.,
networking and file sharing functionality.
0004. The kernel is responsible for scheduling the execu
tion of processes and managing the resources made available
to and used by processes. The kernel also handles Such
issueS as Startup and initialization of the computer System.
0005. As described above, the kernel is a very important
and central part of an operating System. Additional Software
or code, be it a program, process, or task, is written for
execution on top of or in conjunction with the kernel, that is,
to make use of kernel-provided Services, information, and
CSOUCCS.

0006 Threads
0007 Processes executing on a processor, i.e., processes
interacting with the kernel, are also known as execution
threads or simply “threads.” A thread is the Smallest unit of
Scheduling on an operating System. Normally, each proceSS
(application or program) has a single thread; however, a
process may have more than one thread (Sometimes thou
Sands). Each thread can execute on its own on an operating
system or kernel. There are at least two different types of
threads of execution: real-time (RT) threads and time share
(TS) threads.
0008 Real-time threads RT threads are threads of execu
tion which should not be interrupted by the processor for any
other thread execution. RT threads typically control or
monitor mechanisms or devices which are time Sensitive;
usually these are much more time Sensitive than TS threads.
RT threads executing lock out other threads and prevent
them from executing by having a high priority. A real-time
thread has a real-time Scheduling policy and all real-time

Jul. 25, 2002

Scheduling policies feature non-degrading thread priorities.
That is, a real-time thread's priority does not degrade as is
consumes more processor time.
0009 Every real-time priority is a higher priority than all
time share priorities. This is necessary because RT threads
are considered more important, but it does mean RT threads
can starve TS threads indefinitely.
0010 Time share threads
0011 TS threads are threads other than RT threads. TS
threads may be preempted by the processor to allow a RT or
higher priority TS thread to execute. ATS thread has a time
share Scheduling policy and most, but not all, time Share
Scheduling policies feature degrading thread priorities. AS
TS threads run, their priority is reduced or weakens. If the
thread does not execute for a time period, its priority is
increased or Strengthens. This keeps aggressive threads from
Starving out leSS aggressive threads.
0012 Load Balancing of OS
0013 During typical load balancing of multiple proces
Sor computer Systems, each processor is evaluated to deter
mine the load present on the processor. The load on a
particular processor is determined by counting the number
of threads ready to run on the processor, e.g., the number of
threads in a processor queue. The number of threads
includes both RT and TS threads.

0014) Example of Load Balancing

0015. A brief example is illustrated in FIG. 1 and is
illustrative of the prior art load balancing approach and its
drawbacks. A computer System, described in detail below,
including four processors is shown. Each processor is able
to execute threads. The load balancer executeS as a part of
the operating Software of the computer System to attempt to
ensure an even distribution of threads to processors. The
load balancer transferS threads between the processors to
distribute the load. For example, if a processor A1 has a load
of ten, meaning ten threads are awaiting execution, by
processor A1, and processors A2-A4 each have loads of two,
meaning two threads are awaiting execution, then processor
A1 has a higher load than the other processors A2-A4.
Accordingly, the load balancer transferS, or causes to be
transferred, one or more pending threads from processor A1
to one or more of the other processors A2-A4. As a result of
load balancing, the load on processor A1 is reduced from ten
to four and the other processors load increases from two to
four. All the processors A1-A4 have equal loads and the
system is “load balanced.”
0016. The scenario above becomes more complicated
when the threads available or executing on a given processor
may be real time (RT) threads. Because RT threads may not
be interrupted during execution, bottlenecks or roadblockS
to other thread execution may be created by RT threads. The
other threads are referred to as time share (TS) threads
because they share the available processor execution time
whereas RT threads do not. Therefore, it is entirely possible
that a RT thread may monopolize a processor to Such an
extent that the TS threads fail to execute, otherwise referred
to as starving or thread Starvation). Using the example
above, if one of the ten threads on processor A1 is a RT
thread, the load on the processor A1 is still ten and the load
on the other processors A2-A4 remains at two. Upon execu

US 2002/00997.59 A1

tion, the load balancer transferS the threads as described
above; however, the three TS threads on processor A1 will
Still not execute because the RT thread is executing, in other
words, the three TS threads will starve for lack of processor
time. The three TS threads do not die, rather they are
perpetually preempted from executing due to the RT thread.

0.017. The load balancer will not see a need to transfer
any more threads between processors because the load is
balanced among the processors equally. Therefore, there is
a need in the art to load balance threads to avoid Starvation
of threads.

0.018 Many times, this situation will occur and users
perceive the computer system to be “locked up” or “hung”
and not executing any processes. If the computer System is
accessible to the user or users, they may be inclined to cause
the computer system to reboot. Depending on the RT thread
and its importance, i.e., depending on the criticality of the
RT thread execution, this could lead to disastrous results. In
most Situations, a heavily loaded multiprocessor computer
System able to respond, at least minimally, to indicate that it
is processing is much less likely to be restarted by a user due
to the user believing the computer System to be in an error
State, e.g., hung or crashed. However, many times the
threads which would provide the minimal responsiveness
required by the user are TS threads preempted by a RT
thread. If there is a processor not Starving threads, the
preempted TS threads could be moved to the other processor
for execution and Some level of responsiveness returned to
the computer System. Therefore, there is a need in the art to
load balance threads to provide a responsive System having
multiple processors to minimize unnecessary user interven
tion.

SUMMARY OF THE INVENTION

0019. It is therefore an object of the present invention to
load balance threads to avoid thread Starvation.

0020. Another object of the present invention is to load
balance threads in a System having multiple processors to
avoid thread Starvation.

0021 Another object of the present invention is to load
balance threads to provide a responsive System having
multiple processors to minimize unnecessary user interven
tion.

0022. The present invention provides a method and appa
ratus for balancing processing loads to avoid thread Starva
tion. A method of load balancing evaluates the load and State
of multiple processors. If at least one processor is in a Source
State and at least one processor is in a sink State, the
processing load is balanced to avoid Starvation. A thread is
transferred from the heaviest loaded, Source State processor
to the least loaded, Sink State processor. Each processor load
and State is then reevaluated and, if needed, the load bal
ancing with Starvation avoidance repeated.

0023. A method aspect includes transferring a single
thread at a time from the heaviest loaded, Source State
processor to the least loaded, sink State processor.

0024. In another method aspect, multiple threads at a
time are transferred from the heaviest loaded, Source State
processor to the least loaded, sink State processor.

Jul. 25, 2002

0025. In another method aspect, the load balancing to
avoid Starvation is performed periodically, Such as once
every Second.
0026. An apparatus aspect of the present invention for
load balancing with Starvation avoidance includes a proces
Sor for receiving and transmitting data and a memory
coupled to the processor. The memory has Stored therein
Sequences of instructions which, when executed by the
processor, cause the processor to evaluate the load and State
of multiple processors. If at least one processor is in a Source
State and at least one processor is in a sink State, the
processing load is balanced to avoid Starvation. A thread is
transferred from the heaviest loaded, Source State processor
to the least loaded, Sink State processor. Each processor load
and State is then reevaluated and, if needed, the load bal
ancing with Starvation avoidance repeated.
0027 Still other objects and advantages of the present
invention will become readily apparent to those skilled in
the art from the following detailed description, wherein the
preferred embodiments of the invention are shown and
described, simply by way of illustration of the best mode
contemplated of carrying out the invention. AS will be
realized, the invention is capable of other and different
embodiments, and its Several details are capable of modifi
cations in various obvious respects, all without departing
from the invention. Accordingly, the drawings and descrip
tion thereof are to be regarded as illustrative in nature, and
not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

0028. The present invention is illustrated by way of
example, and not by limitation, in the figures of the accom
panying drawings, wherein elements having the same ref
erence numeral designations represent like elements
throughout and wherein:
0029 FIG. 1 is a high level block diagram of a system
having multiple processors;

0030 FIG. 2 is a high level flow diagram of an embodi
ment of the present invention;
0031 FIG. 3 is a high level block diagram of a system
having multiple processors experiencing thread Starvation;
0032 FIG. 4 is a high level block diagram of the system
of FIG. 3 after load balancing with starvation avoidance;
and,
0033 FIG. 5 is a high level block diagram of a computer
System as used in the present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

0034. In computer systems having multiple processors
executing real-time processing threads, a method of balanc
ing the load on processors while preventing Starvation of
processing threads is described.
0035) Multiprocessor computer system
0036) The present invention is operable on a computer
System, as described in detail below, in particular, a com
puter System having multiple processors (more than one
processor). Though the invention is described with reference
to a multiprocessor computer System, the invention operates

US 2002/00997.59 A1

on Single processor computer Systems; however, the benefits
of Starvation avoidance are not realizable on a Single pro
ceSSor computer System. Further, the invention may be
practiced on computer Systems comprising multiple net
worked computer Systems.
0037 Additionally, though the invention is described
with respect to multiple, Same-speed processors, it is to be
understood that the invention is applicable to multiple,
different Speed processors, e.g., different frequency proces
Sors, as well. Using different Speed processors will effect the
ranking order of the processors for load balancing purposes.
For instance, a similar load value, i.e., number of processes
in a processor queue, on a faster processor is actually a
lighter load on the faster processor in comparison to the
slower processor.
0038) Operating system (OS)
0.039 The present invention provides a novel approach to
load balancing threads of execution among multiple proces
Sors in a multiprocessor computer System. Specifically, the
invention allows load balancing of threads while avoiding
Starvation of threads.

0040 Processor information
0041 AS described below, each of the processors in the
computer System may be designated as in either a Source,
Sink, or neither State depending on the load on the processor
and thread execution.

0042. Within a kernel data structure, a multiprocessor
information (MPI) block is stored and updated by the kernel.
The MPI includes such information as a processor identifier
and operating Statistics about each processor, e.g., current
and previous thread execution statistics. Further, the MPI
includes the State of the processor, i.e., Source, Sink, and
neither, and the Starvation time, if any, of the threads waiting
to execute on the processor.
0043. The system processing unit (SPU) is the processor
number identifier of the individual processor in the computer
system. The SPU is also stored and updated in a kernel data
Structure.

0044) The starvation limit (SL) is a predetermined
amount of time within which a RT thread is executing and
no TS threads have eXecuted and thus, a processor is
determined to be starving threads.
0.045 Load balancing portion of OS
0046. In accordance with the present invention, each
processor in the computer System may be in one of three
States: Source, Sink, and neither. If the processor is in a
Source State, the processor is determined to have at least one
starving thread. The starving thread would be better off, i.e.,
the thread would be able to execute, if it were transferred to
another processor for execution.
0047. If the processor is in a sink state, there are no
Starving threads on the processor. The processor in this State
can accept additional threads without creating a Starvation
Situation, i.e., no threads will Starve if an additional thread
is added to the processor for execution.
0.048 If the processor is in a neither state, the processor
is not currently Starving any threads, but if one or more
threads are added, the added threads would start to Starve

Jul. 25, 2002

immediately. The processor in this State does not have to
offload threads nor should it receive additional threads.

0049 Functionality overview

0050. During load balancing, each processor is evaluated
to determine the best candidate to receive threads, i.e., the
best Score processor, and the best candidate for transferring
threads, i.e., the worst Score processor. The processor Score
is determined by weighting the processor State more heavily
than the processor load and combining the processor State
and the processor load. The processor is determined to be in
one of three States, described above: Source, Sink, and
neither.

0051. The state of the processor is determined along with
the load on the processor. The best and worst Score proces
Sors are determined based on the State and then the load
value. For example, the processor Starving threads but with
a low load value is the worst Score processor in comparison
with the processor without starvation but with a high load
value. If there are processors that are not starving threads
and there is at least one processor that is starving threads,
then the Starvation-based load balance is performed. In the
present invention, the load value is used to differentiate
between two processors having the same State. If two or
more processors are Starving threads, the ranking or Score as
between those processors is determined by the load value.
Neither State processors are not Scored and cannot be either
a best Score or worst Score processor.

0.052 AS processors are scored, the processor Scores are
compared to the existing best and worst Score processors. If
the current processor Score is better than the best Score or
worse than the worst Score, then the current processor is
identified as the best or worst Score processor, as appropri
ate. Therefore, only the best and worst Score processors need
be retained; a Single evaluation of all processors will identify
the best and worst processors. As a result of the processor
evaluation, a best Score processor and a worst Score proces
Sor are identified.

0053 During the starvation-based load balance, a single
TS thread is transferred from the highest loaded, thread
Starving processor, i.e., a Source processor, to the lowest
loaded, non-thread Starving processor, i.e., a sink processor.
The processor State and load is then reevaluated and the load
balancing proceSS begins again. This is performed until there
are no processors Starving threads or all processors are
Starving threads.

0054. In alternate embodiments, more than one thread
may be moved at a time or more than one thread may be
moved prior to reevaluation of the processors. However,
moving a single thread at a time prior to reevaluating the
processors reduces the chance of overreacting to a perceived
load imbalance and further degrading System performance.

0055 Detailed description of process

0056. A detailed description of the load balancing with
Starvation avoidance of the present invention is now pro
vided with reference to FIG. 2. FIG. 2 is a high level
diagram of the flow of execution of an embodiment of the
present invention. It is to be understood that the flow
depicted in FIG. 2 is only representative of the load bal
ancing portion of the kernel.

US 2002/00997.59 A1

0057 The flow of control begins at step 200 wherein each
of the processors in the multiprocessor computer System is
evaluated. Both the processor State and processor load are
determined by examining the mpi block of each processor
within the evaluation of step 200.
0.058 As described above, the processor may be in one of
three States: Source, Sink, and neither. In Step 200, an
evaluation of the executing threads is performed to deter
mine whether the processor is (a) a Source, e.g., the proces
Sor is starving threads, (b) a sink, e.g., the processor is not
Starving threads and may accept additional threads for
execution without causing the processor to Starve threads, or
(c) neither a Source nor a sink, e.g., the processor is not
currently starving threads but adding threads would cause
the processor to begin Starving threads.

0059) The time since a TS thread has executed on the
processor is compared against the preset Starvation limit. In
a current embodiment, the Starvation limit is set to five
seconds. The starvation limit is adjustable and different
values may be appropriate for differing Systems, e.g., dif
ferent numbers of processors, types of processors, processor
configurations, System configurations, and Software. In addi
tion, the time since the processor was idle, i.e., the time since
the processor last executed any thread, is determined and
compared against the preset Starvation limit. If both the time
Since a TS thread has executed on the processor and the time
Since the processor was idle are greater than the preset
Starvation limit, then the processor is determined to be a
Source processor.

0060. In addition to the processor state, the load on the
processor is determined. The processor load is the number of
threads ready to execute on the processor. The processor
load does not provide information about which threads are
executing on the processor.
0061. After each processor is evaluated in step 200, the
flow proceeds to step 202.
0.062. In step 202, the best and worst score processors
identified as a result of step 200 are checked to determine if
at least one processor is starving processes.
0.063. If no processors have been starving processes, then
the flow proceeds to step 204 to balance the loads on the
processors as in the prior art. Once the loads on each of the
processors are balanced, the flow of execution returns to Step
200 for processor evaluation.
0064. If at least one of the processors is starving threads,

i.e., at least one of the processors is in a Source State, the flow
proceeds to step 206.
0065. If step 206 is reached, then at least one processor
is starving threads and the threads should be moved to a
processor which is not starving threads, i.e., a processor in
a sink State. In Step 206, the best and worst Score processors
identified as a result of step 200 are checked to determine if
at least one processor is not starving processes and is able to
receive an additional process without causing the processor
to begin Starving processes.

0.066 If there are no sink state processors, then there is no
place for threads to be moved to and the load cannot be
balanced among the processors, i.e., there is no place to
transfer Starving threads. In this case, the flow returns to Step
200 for processor evaluation. In an alternate embodiment

Jul. 25, 2002

(dashed line of FIG. 2), if there are no sink state processors
determined in step 206, the flow proceeds to step 204 and the
load is balanced as described above (step 204).
0067. If there is at least one sink state processor, then
there is at least one processor which is able to receive an
additional thread without causing the processor to begin
Starving threads. The flow of execution then proceeds to Step
208 to balance the loads on the processor while avoiding
Starvation.

0068 A computer system reaching step 208 has at least
one processor in a Source State and at least one processor in
a sink state. In step 208, the kernel performs the load
balancing.

0069. Subsequent to identifying the best and worst score
processors, the kernel Selects a Single TS thread from the
highest ranking Source processor, i.e., the worst Score pro
ceSSor, and transferS it to the lowest ranking Sink processor,
i.e., the best score processor. The transferred TS thread is
then ready to execute on the Sink processor and the flow of
control returns to step 200.
0070 Although the transfer of a single thread is
described, it is to be understood that more than one thread
may be transferred at a time between processors. In order to
avoid overcorrecting for the load balance, in a current
embodiment only a Single thread is transferred at a time
between processors. If the load or Starvation imbalance is
very large, e.g., if the difference between loads on best and
Worst Score processors is great, for example, greater than
100, the number of threads transferred could be increased.
However, increasing the number of threads transferred
increases the probability of overcorrecting for the load
imbalance.

0071 Another mechanism to accelerate the load balanc
ing is to increase the frequency at which threads are trans
ferred between processors. By decreasing the time between
execution of the load balancing portion of the kernel, the
load balancing is performed more frequently.

0072. In order to further protect against constantly trans
ferring threads between processors, each thread is trans
ferred a Single time before being transferred again. In other
words, each thread to be transferred is moved once before
any thread is moved a Second time. In one current embodi
ment, a memory address of the thread Structure is used to
differentiate and identify threads for this purpose. According
to the above embodiment, the thread with the least numerical
distance above the previous thread moved is transferred.
Because the thread will be transferred between processors,
the identifier chosen needs to be globally unique across the
computer System.

0073. Example of load balancing with starvation avoid
CC

0074 An example, with reference to FIGS. 3 and 4, is
helpful to illustrate the operation of the present invention.
Similarly to FIG. 1, FIG. 3 is a high level block diagram of
four processors (A1-A4) of a multiprocessor computer Sys
tem. Within each processor is shown a thread queue (B1-B4
of A1-A4, respectively) listing the currently executing
thread (at position 1 of each thread queue) and any addi
tional threads waiting to execute. For example, thread RT1
is the currently executing thread on processor A1 and

US 2002/00997.59 A1

threads TS1, TS2, TS3, and TS4 are waiting to execute on
processor A1. Accordingly, threads RT2, TS6, and RT3 are
executing on processors A2, A3, and A4, respectively.
Thread TS5 is awaiting execution on processor A2, threads
TS7, TS8, TS9, and TS10 are awaiting execution on pro
ceSSor A3, and thread TS11 is awaiting execution on pro
ceSSor A4.

0075) Assuming all the RT threads (RT1-RT3) use all
available processing time on their respective processors,
three of the four processors, i.e., processors A1, A2, and A4,
will be starving threads. Because the RT thread priorities do
not degrade over time, as described above, there are no
threads of Sufficient priority to cause a processor to preempt
the executing RT threads. Therefore, if the RT threads are
using all available processor time, then the pending TS
threads will not be able to execute. That is to say, threads
TS1, TS2, TS3, and TS4 in thread queue B1 of processor A1
will not be able to execute while RT1 is executing, i.e.,
processor A1 is starving threads TS1, TS2, TS3, and TS4.
Processor A2 is starving thread TS5 and processor A4 is
starving thread TS11.
0.076 The present invention provides a mechanism to
balance the loads on the processors to attempt to ensure that
no thread Starves, i.e., load balancing using Starvation avoid
ance. The kernel evaluates each of the processors (step 200
of FIG. 2) to determine the processor state and load.
Evaluating each of the processors in turn, the kernel deter
mines that processor A1 is in a Source State and has a load
of 5, processor A2 is in a Source State and has a load of 2,
processor A3 is in a sink State and has a load of 5, and
processor A4 is in a Source State and has a load of 2. Thus,
processor A3 is able to receive threads for execution.
0077 Proceeding to step 202 of FIG. 2, the kernel checks
to see if at least one processor is in a Source State. In this
particular example, processors A1, A2, and A4 are all in a
Source State So there is at least one processor with threads
available to be transferred to another processor. Because
there is at least one processor in a Source State, the typical
load balancing (step 204) is not performed.
0078. The kernel next proceeds to check if any processors
are in a sink state (step 206 of FIG. 2). Processor A3, as
determined above (step 200 of FIG. 2), is in a sink state, i.e.,
able to receive threads from the other processors for execu
tion. If there had been no processor available to receive
threads, that is, in a sink State, the kernel would return to
evaluating the processors. If no processor is able to receive
threads, the kernel is unable to load balance the computer
System because there is no processor to which to move
threads. At this point, additional measures may need to be
taken by either another portion of the kernel or a user.
0079 Having determined that there is at least one source
and at least one sink processor, the kernel proceeds to
balance the load using starvation avoidance (step 208 of
FIG. 2).
0080. In order to balance the load on the processors
A1-A4 and avoid Starvation, the kernel transferS a Single
thread from the worst Score processor, i.e., processor A1, to
the best Score processor, i.e., processor A3. The kernel
Selects one of the non-executing threads from the worst
processor, i.e., the most heavily loaded, Source State proces
Sor, and transferS the thread to the best processor, i.e., the

Jul. 25, 2002

least loaded, sink State processor. In the present example,
one thread is transferred from processor A1 to processor A3.
Upon transferring a single thread, the kernel then reevaluates
the processors (step 200 of FIG. 2).
0081. It is important to note that using the typical prior art
load balancing mechanism, processors A1 and A3 would be
equally Scored based on having the same load value of 5.
Using the prior art load balancing, the kernel would transfer
threads from processors A1 and A3 to processors A2 and A4,
even though the threads already present on processors A2
and A4 are Starving and the newly transferred threads would
immediately starve.
0082. After several iterations using the load balancer of
the present invention, the thread distribution among the
processors A1-A4 would be as shown in FIG. 4. In FIG. 4,
all of the TS threads have been transferred from processors
having RT threads consuming all available processing
resources, i.e., processors A1, A2, and A4, to a processor
able to accept additional threads for processing without
Starving any threads, i.e., processor A3. The load among the
processors A1-A4 has been balanced and Starvation of
threads has been avoided.

0083. Further, because processor state is the primary key
for the load balancer, the threads transferred to processor A3
will not be transferred to any of the other processors A1, A2,
or A4 until the processors are in a sink State.
0084 Hardware overview
0085 FIG. 5 is a block diagram illustrating an exemplary
computer system 500 upon which an embodiment of the
invention may be implemented. The present invention is
uSable with currently available personal computers, mini
mainframes, enterprise Servers, multiprocessor computers
and the like.

0086) Computer system 500 includes a bus 502 or other
communication mechanism for communicating information,
and a processor 504 coupled with the bus 502 for processing
information. Computer system 500 also includes a main
memory 506, such as a random access memory (RAM) or
other dynamic storage device, coupled to the bus 502 for
Storing information and instructions to be executed by
processor 504. Main memory 506 also may be used for
Storing temporary variables or other intermediate informa
tion during execution of instructions to be executed by
processor 504. Computer system 500 further includes a read
only memory (ROM) 508 or other static storage device
coupled to the bus 502 for storing static information and
instructions for the processor 504. A storage device 510,
Such as a magnetic disk or optical disk, is provided and
coupled to the bus 502 for storing information and instruc
tions.

0087 Computer system 500 may be coupled via the bus
502 to a display 512, such as a cathode ray tube (CRT) or a
flat panel display, for displaying information to a computer
user. An input device 514, including alphanumeric and other
keys, is coupled to the bus 502 for communicating infor
mation and command selections to the processor 504.
Another type of user input device is cursor control 516, Such
as a mouse, a trackball, or cursor direction keys for com
municating direction information and command Selections
to processor 504 and for controlling cursor movement on the
display 512. This input device typically has two degrees of

US 2002/00997.59 A1

freedom in two axes, a first axis (e.g., x) and a Second axis
(e.g., y) allowing the device to specify positions in a plane.

0088. The invention is related to the use of a computer
system 500, such as the illustrated system, to provide an
expression-based mechanism for triggering and testing cor
ner-case exceptional conditions in Software and use thereof.
According to one embodiment of the invention, a Software
trigger facility for testing Software exceptional conditions is
provided by computer system 500 in response to processor
504 executing Sequences of instructions contained in main
memory 506. Such instructions may be read into main
memory 506 from another computer-readable medium, such
as storage device 510. However, the computer-readable
medium is not limited to devices such as storage device 510.
0089 For example, the computer-readable medium may
include a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, an
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave embodied in an electrical, electro
magnetic, infrared, or optical Signal, or any other medium
from which a computer can read. Execution of the Sequences
of instructions contained in the main memory 506 causes the
processor 504 to perform the process steps described below.
In alternative embodiments, hard-wired circuitry may be
used in place of or in combination with computer Software
instructions to implement the invention. Thus, embodiments
of the invention are not limited to any Specific combination
of hardware circuitry and Software.

0090 Computer system 500 also includes a communica
tion interface 518 coupled to the bus 502. Communication
interface 518 provides a two-way data communication as is
known. For example, communication interface 518 may be
an integrated services digital network (ISDN) card or a
modem to provide a data communication connection to a
corresponding type of telephone line. AS another example,
communication interface 518 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any Such implementation, communication interface 518
Sends and receives electrical, electromagnetic or optical
Signals which carry digital data Streams representing various
types of information. Of particular note, the communications
through interface 518 may permit transmission or receipt of
the operating Software program Scheduling information. For
example, two or more computer systems 500 may be net
worked together in a conventional manner with each using
the communication interface 518.

0091 Network link 520 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the Worldwide packet data communication Services
through the Worldwide packet data communication network
now commonly referred to as the “Internet'528. Local
network 522 and Internet 528 both use electrical, electro
magnetic or optical signals which carry digital data Streams.
The Signals through the various networks and the Signals on
network link 520 and through communication interface 518,

Jul. 25, 2002

which carry the digital data to and from computer System
500, are exemplary forms of carrier waves transporting the
information.

0092 Computer system 500 can send messages and
receive data, including program code, through the net
work(s), network link.520 and communication interface 518.
In the Internet example, a server 530 might transmit a
requested code for an application program through Internet
528, ISP 526, local network 522 and communication inter
face 518. In accordance with the invention, one Such down
loaded application provides for an expression-based mecha
nism for triggering and testing exceptional conditions in
Software and use thereof, as described herein.
0093. The received code may be executed by processor
504 as it is received, and/or stored in storage device 510, or
other non-volatile Storage for later execution. In this manner,
computer system 500 may obtain application code in the
form of a carrier wave.

0094. It will be readily seen by one of ordinary skill in the
art that the present invention fulfills all of the objects set
forth above. After reading the foregoing specification, one of
ordinary skill will be able to affect various changes, Substi
tutions of equivalents and various other aspects of the
invention as broadly disclosed herein. It is therefore
intended that the protection granted hereon be limited only
by the definition contained in the appended claims and
equivalents thereof.
0095 For example, although a single computer system
having multiple processors has been described above, the
invention may also be practiced using multiple, networked,
Single processor computer Systems. Further, additional pro
ceSSor States may be used beyond the Sink, Source, and
neither States described. The processor State must be the
primary key for the load balancing to avoid Starvation.

What is claimed is:
1. A computer implemented method of load balancing a

multiprocessor computer System, comprising the following
Steps:

determining the State of each of two or more processors,
wherein the State includes at least one of a Source and
Sink State; and

if at least one of the two or more processors is in a Source
State and at least one of the two or more processors is
in a sink State, transferring at least one thread from a
queue of a Source State processor to a queue of a sink
State processor.

2. The method as claimed in claim 1, wherein the State
further includes a neither State.

3. The method as claimed in claim 1, wherein the method
further comprises the following Step:

repeating Said steps.
4. The method as claimed in claim 1, wherein the method

is initiated once every Second.
5. The method as claimed in claim 1, wherein the method

is performed indefinitely.
6. The method as claimed in claim 1, wherein the method

further includes the following step:
determining the load of each of the two or more proces

SOS.

US 2002/00997.59 A1

7. The method as claimed in claim 6, wherein the trans
ferring Step further includes:

transferring at least one thread from the highest loaded,
Source State processor to the lowest loaded, Sink State
processor.

8. A computer implemented method of load balancing a
multiprocessor computer System, comprising the following
Steps:

determining a Score of each of two or more processors,
determining a best Score processor and a worst Score

processor, and
transferring at least one thread from a queue of a worst

Score processor to a queue of a best Score processor.
9. The method as claimed in claim 8, wherein the score is

a function of at least a processor State.
10. The method as claimed in claim 8, wherein the score

is a function of at least a processor State and a processor
load.

11. The method as claimed in claim 10, wherein the
processor State is weighted more heavily than the processor
load.

12. A computer implemented method of load balancing a
networked plurality of computer Systems, comprising the
following Steps:

Jul. 25, 2002

determining the State of each of the networked plurality of
computer Systems, wherein the State includes at least
one of a Source and Sink State; and

if at least one of the plurality of computer Systems is in a
Source State and at least one of the plurality of computer
Systems is in a sink State, transferring at least one thread
from a Source State processor to a Sink State processor.

13. A computer System for balancing load using Starvation
avoidance comprising:

one or more processors for receiving and transmitting
data; and

a memory coupled to Said one or more processors, Said
memory having Stored therein Sequences of instruc
tions which, when executed by one of Said one or more
processors, cause one of Said one or more processors to
determine the State of each of Said one or more pro
ceSSors, wherein the State includes at least one of a
Source and Sink State, and, if at least one of the one or
more processors is in a Source State and at least one of
the one or more processors is in a sink State, transfer at
least one thread from a Source State processor to a sink
State processor.

