wo 2015/140728 A1 |10 OO0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/140728 A1l

24 September 2015 (24.09.2015) WIPO | PCT
(51) International Patent Classification: Pangu Plaza, No.27, Central North 4th Ring Road, Chaoy-
GOG6F 17/00 (2006.01) ang District, Beijing 100101 (CN).
(21) International Application Number: (72) Inventors: OLSON, John, Thomas; IBM Corporation,
PCT/IB2015/051978 Mail Drop 9022-2 217, 9000 S Rita Road, Tucson, Arizona
. - 85744-0002 (US). BALDWIN, Duane, Mark; IBM Cor-
(22) International Filing Date: poration, Mail Drop 005-2, 3605 Highway 52 North,
18 March 2015 (18.03.2015) Rochester, Minnesota 55901-1407 (US). PUNADIKAR,
(25) Filing Language: English Sachin, Chandrakant; IBM India Private Limited, Mail
L. . Drop Etbl 3f B161, Rajiv Gandhi Infotech Pk Phase 2,
(26) Publication Language: English Plot No P1-3 Mide, Hinjewadi, Village Limit Of Marunji,
(30) Priority Data: Pune MH 411057 (IN). PATIL, Sandeep, Ramesh; IBM
14/220,921 20 March 2014 (20.03.2014) Us India Private Limited, Mail Drop Etbl 3f B109, Rajiv
Gandhi Infotech Pk Phase 2, Plot No P1-3 Midc, Hinjew-
(71) Applicant: INTERNATIONAL BUSINESS MA- adi, Village Limit Of Marunji, Pune MH 411057 (IN).
CHINES CORPORATION [US/US]; New Orchard)) o
Road, Armonk, New York 10504 (US). (74) Agent: SHAW, Anita; IBM United Kingdom Limited, In-
tellectual Property Law, Hursley Park, Winchester Hamp-
(71) Applicants (for MG only): IBM UNITED KINGDOM shire SO21 2JN (GB).
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports-
(81) Designated States (uniess otherwise indicated, for every

mouth Hampshire PO6 3AU (GB). IBM (CHINA) IN-
VESTMENT COMPANY LIMITED [CN/CN]; 25/F,

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

[Continued on next page]

(54) Title: ACCELERATED ACCESS TO OBJECTS IN AN OBJECT STORE IMPLEMENTED UTILIZING A FILE STORAGE
SYSTEM

Send a request to create
an object

Receive the object ID for
the created object

(57) Abstract: In one embodiment, a method for creating an object includes

500

502

504

Receive the request to
create the object

Create the object

Obtain aninode ID for
the created object

Create a unique object
ID for the created object

Merge the object ID with
the inode ID

Modify the inode to
include the abject ID and
a path name for the
created object

514~

Send the object ID for

the created object

518

FIG. 5

creating an object in an object store making use of a file system, obtaining an
index node (inode) identifier (ID) for an inode associated with the object,
creating an object ID for the object, wherein the object ID is unique from any
other object IDs in the object store, merging the object ID with the inode ID,
and moditying the inode to include at least the object ID. In another embodi-
ment, a system includes a processor and logic integrated with and/or execut-
able by the processor, the logic being configured to: create an object in an
object store making use of a file system, obtain an inode ID for an inode as-
sociated with the object, create an object ID for the object, the object ID in-
cluding the inode ID, and modity the inode to include at least the object ID.

WO 2015/140728 A1 AT 00N VAT 0 O

84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EF, EG, ES, FL, GB, GD, GE, GH, GM,
GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN,
KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2015/140728 PCT/IB2015/051978

ACCELERATED ACCESS TO OBJECTS IN AN OBJECT STORE IMPLEMENTED
UTILIZING A FILE STORAGE SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates to accessing objects in an object store, and more
specifically, to accelerated access to objects that have been stored in an object store which

utilizes a file storage system for its implementation.

BACKGROUND OF THE INVENTION

[0002] Object store is a storage technique that is useful in many different storage
systems, including cloud storage, among others, where object store is the most prominent
storage used. Object storage, is mainly intended to handle exponential growth of
unstructured data. Unlike traditional storage of files in network-attached storage (NAS) or
blocks in a storage area network (SAN), object store uses data objects. Each object is
assigned a unique object identifier (ID) and each object contains its own metadata (part of
which is user defined metadata, like tags associated with objects) along with actual data,
thereby removing the need for centralized indexing. The user defined metadata (or tags) is a
strong differentiator of object store-based storage techniques and is used extensively
throughout object store. Thus, it enables massive scalability and geographic independence of

storage locations, while maintaining reasonable costs.

[0003] The important elements of an object store are “objects” and “containers.” The
objects and containers in the object store are identified with an object ID. The object ID is a
universally unique ID (UUID) given to a particular object or container in a particular object
store. The key usage and purpose of object ID is to allow for easy retrieval of objects and

containers.

[0004] Depending on the particular implementation of object store, the object ID may be
referred to as an object name, an object key, or by some other name, but will be referred to

as object ID throughout. Accessing these objects/containers is made easy by just providing

WO 2015/140728 PCT/IB2015/051978

the object ID while requesting the object/container. This hides the implementation details
from the end user and management of the objects is simplified. Most implementations of
object store use a file system to store the objects and containers. In a file system semantic, a
full path is provided to a file and/or directory to access a particular file or directory. Soin a
file system semantic, depending on the location in the file system, the objects and/or
containers will have different path names. This can be very easily observed when the object
association is moved from one container to another, and then the same object gets a different
path, thereby making it difficult to manage. Therefore, using an object ID is the preferred

mechanism for accessing the objects/containers.

[0005] One of the biggest needs in cloud based object store is to improve overall
performance. This calls for optimizing the object store system. One way to optimize the
object store system is to optimize the object retrieval process which may lead to increased
performance. Particularly, in an object store implementation, such as one based on cloud
data management interface (CDMI), OpenStack Swift, etc., the objects are being stored on a
file system, with each object mapping to a file and each container mapping to a directory.
Inside the file system, there is no object and everything is being accessed/operated as a file.
To the outside world, the objects are allowed and preferred to be referred to as object IDs.
These object IDs are unique and both objects and containers may be accessed with an object

ID.

[0006] When one tries to access the object/container using an object ID, then at the
object store server (which is responding to the requests), there needs to be a mapping made
available from the object ID to the file path name, and then the path name may be used for
further processing. Considering a huge number of objects being stored in a cloud
environment, mapping from object ID to file path name becomes time consuming and is one

of the constraining factors for object store performance related to retrieval of data.

[0007] A generic method being followed to solve this issue is to maintain an in-memory
copy of this mapping. When a very large number of such records is stored, this represents an
impractical solution. Another mechanism would be to create a database which will keep this

mapping information keeping the object ID as a primary key. The second method uses less

WO 2015/140728 PCT/IB2015/051978

memory, but is more computationally intensive. The huge list of object IDs may need to be
searched in order to find the one object in the request, and then to retrieve the associated file

name.

[0008] Hence, smarter object ID generation and mapping would be beneficial to help

optimize the system with regard to performance and memory.

DISCLOSURE OF THE INVENTION

[0009] In one embodiment, a method for creating an object includes creating an object in
an object store making use of a file system, obtaining an index node (inode) identifier (ID)
for an inode associated with the object, creating an object ID for the object, wherein the
object ID is unique from any other object IDs in the object store, merging the object ID with
the inode ID, and modifying the inode to include at least the object ID.

[0010] In another embodiment, a computer program product for accessing an object
includes a computer readable storage medium having program code embodied therewith, the
program code readable and/or executable by a processor to cause the processor to: extract,
by the processor, an inode ID from an object ID associated with an object stored in an object
store making use of a file system, access, by the processor, an inode associated with the
inode ID and determine an object ID stored therein, determine, by the processor, whether the
object ID from the inode matches the object ID associated with the object from which the

inode ID was extracted, and perform, by the processor, an operation on the object.

[0011] In yet another embodiment, a system includes a processor and logic integrated
with and/or executable by the processor, the logic being configured to: create an object in an
object store making use of a file system, obtain an inode ID for an inode associated with the
object, create an object ID for the object, the object ID including the inode ID, wherein the
object ID is unique from any other object IDs in the object store, and modify the inode to

include at least the object ID.

WO 2015/140728 PCT/IB2015/051978

[0012] Other aspects and embodiments of the present invention will become apparent
from the following detailed description, which, when taken in conjunction with the

drawings, illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0013] A preferred embodiment of the invention will now be described, by way of
example only, and with reference to the following drawings:

FIG. 1 illustrates a network architecture, in accordance with one embodiment.

FIG. 2 shows a representative hardware environment that may be associated with
the servers and/or clients of FIG. 1, in accordance with one embodiment.

FIG. 3 illustrates a tiered data storage system in accordance with one
embodiment.

FIG. 4 shows an example of an index node (inode) structure, according to one
embodiment.

FIG. 5 is a flowchart of a method for creating an object according to one
embodiment.

FIG. 6 is a flowchart of a method for accessing an object according to one

embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0014] The following description is made for the purpose of illustrating the general
principles of the present invention and is not meant to limit the inventive concepts claimed
herein. Further, particular features described herein can be used in combination with other

described features in each of the various possible combinations and permutations.

[0015] Unless otherwise specifically defined herein, all terms are to be given their
broadest possible interpretation including meanings implied from the specification as well as
meanings understood by those skilled in the art and/or as defined in dictionaries, treatises,

etc.

WO 2015/140728 PCT/IB2015/051978

[0016] It must also be noted that, as used in the specification and the appended claims,

the singular forms "a," "an" and "the" include plural referents unless otherwise specified. It
will be further understood that the terms "comprises" and/or "comprising," when used in this
specification, specify the presence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components, and/or groups thereof.

[0017] The following description discloses several preferred embodiments of systems,
methods and computer program products for enhancing a file system metadata layer to be
cognizant of an object store residing over the file system and an object identifier (ID)
associated with the object belonging to the object store. The technique helps improve on the

performance of object look-up/retrieval for the object store.

[0018] In one general embodiment, a method for creating an object includes creating an
object in an object store making use of a file system, obtaining an index node (inode)
identifier (ID) for an inode associated with the object, creating an object ID for the object,
wherein the object ID is unique from any other object IDs in the object store, merging the

object ID with the inode ID, and modifying the inode to include at least the object ID.

[0019] In another general embodiment, a computer program product for accessing an
object includes a computer readable storage medium having program code embodied
therewith, the program code readable and/or executable by a processor to cause the
processor to: extract, by the processor, an inode ID from an object ID associated with an
object stored in an object store making use of a file system, access, by the processor, an
inode associated with the inode ID and determine an object ID stored therein, determine, by
the processor, whether the object ID from the inode matches the object ID associated with
the object from which the inode ID was extracted, and perform, by the processor, an

operation on the object.

[0020] In yet another general embodiment, a system includes a processor and logic
integrated with and/or executable by the processor, the logic being configured to: create an

object in an object store making use of a file system, obtain an inode ID for an inode

WO 2015/140728 PCT/IB2015/051978

associated with the object, create an object ID for the object, the object ID including the
inode ID, wherein the object ID is unique from any other object IDs in the object store, and

modify the inode to include at least the object ID.

[0021] FIG. 1 illustrates an architecture 100, in accordance with one embodiment. As
shown in FIG. 1, a plurality of remote networks 102 are provided including a first remote
network 104 and a second remote network 106. A gateway 101 may be coupled between the
remote networks 102 and a proximate network 108. In the context of the present architecture
100, the networks 104, 106 may each take any form including, but not limited to a LAN, a
WAN such as the Internet, public switched telephone network (PSTN), internal telephone

network, etc.

[0022] In use, the gateway 101 serves as an entrance point from the remote networks 102
to the proximate network 108. As such, the gateway 101 may function as a router, which is
capable of directing a given packet of data that arrives at the gateway 101, and a switch,

which furnishes the actual path in and out of the gateway 101 for a given packet.

[0023] Further included is at least one data server 114 coupled to the proximate network
108, and which is accessible from the remote networks 102 via the gateway 101. It should be
noted that the data server(s) 114 may include any type of computing device/groupware.
Coupled to each data server 114 is a plurality of user devices 116. Such user devices 116
may include a desktop computer, lap-top computer, hand-held computer, printer or any other
type of logic. It should be noted that a user device 111 may also be directly coupled to any of

the networks, in one embodiment.

[0024] A peripheral 120 or series of peripherals 120, e.g., facsimile machines, printers,
networked and/or local storage units or systems, etc., may be coupled to one or more of the
networks 104, 106, 108. It should be noted that databases and/or additional components may
be utilized with, or integrated into, any type of network element coupled to the networks
104, 106, 108. In the context of the present description, a network element may refer to any

component of a network.

WO 2015/140728 PCT/IB2015/051978

[0025] According to some approaches, methods and systems described herein may be
implemented with and/or on virtual systems and/or systems which emulate one or more other
systems, such as a UNIX (UNIX is a registered trademark of The Open Group in the United
States and other countries) system which emulates an IBM z/OS (IBM and z/OS are
registered trademarks of International Business Machined Corporation) environment, a
UNIX system which virtually hosts a MICROSOFT WINDOW S (Microsoft and Windows
are trademarks of Microsoft Corporation in the United States, other countries, or both)
environment, a MICROSOFT WINDOWS system which emulates an IBM z/OS
environment, etc. This virtualization and/or emulation may be enhanced through the use of

VMW ARE software, in some embodiments.

[0026] In more approaches, one or more networks 104, 106, 108, may represent a cluster
of systems commonly referred to as a "cloud." In cloud computing, shared resources, such as
processing power, peripherals, software, data, servers, etc., are provided to any system in the
cloud in an on-demand relationship, thereby allowing access and distribution of services
across many computing systems. Cloud computing typically involves an Internet connection
between the systems operating in the cloud, but other techniques of connecting the systems

may also be used.

[0027] FIG. 2 shows a representative hardware environment associated with a user
device 116 and/or server 114 of FIG. 1, in accordance with one embodiment. Such figure
illustrates a typical hardware configuration of a workstation having a central processing unit
210, such as a microprocessor, and a number of other units interconnected via a system bus

212.

[0028] The workstation shown in FIG. 2 includes a Random Access Memory (RAM)
214, Read Only Memory (ROM) 216, an I/O adapter 218 for connecting peripheral devices
such as disk storage units 220 to the bus 212, a user interface adapter 222 for connecting a
keyboard 224, a mouse 226, a speaker 228, a microphone 232, and/or other user interface
devices such as a touch screen and a digital camera (not shown) to the bus 212,

communication adapter 234 for connecting the workstation to a communication network 235

WO 2015/140728 PCT/IB2015/051978

(e.g., a data processing network) and a display adapter 236 for connecting the bus 212 to a
display device 238.

[0029] The workstation may have resident thereon an operating system such as the
Microsoft Windows® Operating System (OS), a MAC OS, a UNIX OS, etc. It will be
appreciated that a preferred embodiment may also be implemented on platforms and
operating systems other than those mentioned. A preferred embodiment may be written
using JAVA (Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates), XML, C, and/or C++ language, or other
programming languages, along with an object oriented programming methodology. Object
oriented programming (OOP), which has become increasingly used to develop complex

applications, may be used.

[0030] Now referring to FIG. 3, a storage system 300 is shown according to one
embodiment. Note that some of the elements shown in FIG. 3 may be implemented as
hardware and/or software, according to various embodiments. The storage system 300 may
include a storage system manager 312 for communicating with a plurality of media on a
higher storage tier 302 and a lower storage tier 306. The higher storage tier 302 preferably
may include one or more random access and/or direct access media 304, such as hard disks
in hard disk drives (HDDs), nonvolatile memory (NVM), solid state memory in solid state
drives (SSDs), etc., and/or others noted herein. The lower storage tier 306 may preferably
include one or more sequential access media 308, such as magnetic tape in tape drives,
optical media, etc., and/or others noted herein. Additional storage tiers 316 may include any
combination of storage memory media. The storage system manager 312 may communicate
with the storage media 304, 308 on the higher and lower storage tiers 302, 306 through a
network 310, such as a storage area network (SAN), as shown in FIG. 3. The storage system
manager 312 may also communicate with one or more host systems (not shown) through a
host interface 314, which may or may not be a part of the storage system manager 312. The
storage system manager 312 and/or any other component of the storage system 300 may be
implemented in hardware and/or software, and may make use of a processor (not shown) for
executing commands of a type known in the art, such as a central processing unit (CPU), a

field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.

WO 2015/140728 PCT/IB2015/051978

Of course, any arrangement of a storage system may be used, as will be apparent to those of

skill in the art upon reading the present description.

[0031] In more embodiments, the storage system 300 may include any number of data
storage tiers, and may include the same or different storage memory media within each
storage tier. For example, each data storage tier may include the same type of storage
memory media, such as HDDs, SSDs, sequential access media (tape in tape drives, optical
disk in optical disk drives, etc.), direct access media (CD-ROM, DVD-ROM, etc.), or any
combination of media storage types. In one such configuration, a higher storage tier 302,
may include a majority of SSD storage media for storing data in a higher performing storage
environment, and remaining storage tiers, including lower storage tier 306 and additional
storage tiers 316 may include any combination of SSDs, HDDs, tape drives, etc., for storing
data in a lower performing storage environment. In this way, more frequently accessed data,
data having a higher priority, data needing to be accessed more quickly, etc., may be stored
to the higher storage tier 302, while data not having one of these attributes may be stored to
the additional storage tiers 316, including lower storage tier 306. Of course, one of skill in
the art, upon reading the present descriptions, may devise many other combinations of
storage media types to implement into different storage schemes, according to the

embodiments presented herein.

[0032] According to some embodiments, the storage system (such as 300) may include
logic adapted to receive a request to open a data set, logic adapted to determine if the
requested data set is stored to a lower storage tier 306 of a tiered data storage system 300 in
multiple associated portions, logic adapted to move each associated portion of the requested
data set to a higher storage tier 302 of the tiered data storage system 300, and logic adapted
to assemble the requested data set on the higher storage tier 302 of the tiered data storage

system 300 from the associated portions.

[0033] Of course, this logic may be implemented as a method on any device and/or

system or as a computer program product, according to various embodiments.

WO 2015/140728 PCT/IB2015/051978
10

[0034] In order to implement an enhanced object ID in an object store environment,
some structures and/or formats are described according to various embodiments. The
structures and/or formats include the object ID format, the underlying file system inode
tables that hold the various objects, and object creation processing. These structures and/or
formats are integrated in an object store implementation on a file system that provides

improved object retrieval performance.

[0035] To reduce the resource utilization in current methods of mapping an object ID to
file, data set, directory, etc., a method is proposed as described below. First, the object ID is
enhanced to include an additional inode identifier (such as a number, alphanumeric string,
etc., that uniquely identifies the inode). The identifier may be any number, alphanumeric
string, hash, etc., that uniquely identifies the inode. In place of an inode, which refers to an
index node, depending on the file system being used, other file indexing structures may be
utilized in the context of embodiments described herein. For example, UNIX-based systems
may utilize an inode, but a MICROSOFT operating system may rely on a different indexing
structure that acts similarly to an inode, as would be understood by one of skill in the art, and
it is this different indexing structure which is utilized in the context of the embodiments
described herein. However, for the sake of simplicity, all indexing structures will be referred

to as an inode, with the assumption that any indexing structure may be used.

[0036] An inode represents metadata about an object in an object store (or a file in a file
system semantic). Referring now to FIG. 4, the metadata may include some or all of the
following information: size of the file, a device ID where the file is stored, an user ID
associated with the file, a group ID associated with the file, file mode information and access
privileges for the owner, the group, and possibly others, one or more file protection flags, a
timestamp for file creation, a timestamp for file modification, a timestamp for file access,
etc., a link counter to determine a number of hard links associated with the file, one or more
pointers associated with the blocks storing the file’s contents, extended attributes such as
append only, immutability (no one can delete file including root user), etc., or any other

information known in the art.

WO 2015/140728 PCT/IB2015/051978
11

[0037] In one embodiment, the inode may be modified to include a unique ID of the
object and a path name of the object within the extended attributes field, along with any

other information desired to be stored in the extended attributes field.

[0038] Most object store implementations utilize object IDs that include a universally
unique identifier (UUID) at least included therein. Thus, the object ID may be enhanced to
store the inode number as well as any other information that is already stored therein and/or
that may be useful for other identification purposes, depending on the file system being used,
in one approach. In this way, implementations of object ID may be enhanced with the
addition of the inode identifier (or some other identifier of the indexing structure depending
on the file system being used) related to a particular object/container. The creation of any
object/container will now cause an enhanced object ID to also be created which includes the

inode identifier in the object ID.

[0039] Referring again to FIG. 4, an inode 402 of the particular file system being used
may also be modified to store this enhanced object ID 426 (or at least the UUID included

therein) and the explicit path name of the object/container 428.

[0040] Then, whenever an object is being accessed via an object ID, and as the server or
system accessing the object extracts the inode identifier from that object ID, the server will
then access the respective inode information present in an inode register (such as an inode
table), which allows the inode to be identified, which may include information about the

object/container.

[0041] The inode 402 may include the object ID 426 associated with the
object/container, such as in the extended attributes field. Other information may also be
included, such as type 404, owner 406, size 408, group 410, permissions 412, last access
time 414, last modified time 416, created time 418, number of links 420, extended attributes
field 422, pointers to data blocks 424, etc. In one embodiment, the object ID 426 and/or the
explicit path name of the object/container 428 may be stored in the extended attributes field
422 of the inode 402, along with any other attributes 430 desired to be stored in the extended
attributes field 422.

WO 2015/140728 PCT/IB2015/051978
12

[0042] Next, the object ID may be passed/requested by the end user/application and the
object ID stored in the inode will be matched thereto. When a match between object IDs is
confirmed, it is assured that the inode being referred to belongs to the object being requested.
Then, the file name will be read from the inode, and the path obtained will be used for
further processing of retrieving the object/container. This direct low level inode relation with
objects via mapping and integration of object IDs and inode results in faster retrieval of

objects via the object ID associated therewith.

[0043] As accessing any inode is an O(1) operation, it is guaranteed that this method of
accessing an object/container is faster than any currently used methods. As there is no need
to keep the mapping table/database either in-memory or on a HDD or other direct access
storage device (DASD), less resources are consumed using the methods and structures

described herein according to various embodiments.

[0044] For the following descriptions, it is assumed that in an object store
implementation using a file system, an object is stored as a file, and a container is stored as a
directory. In a file system semantic, file and directory are both stored as files in a
LINUX/UNIX operating system. Information related to files/directories, referred to as

metadata, may be stored in an inode.

[0045] To access any file/directory on a file system, the inode is accessed and relevant
information is read therefrom. Any further tasks may also be carried out at this point. So in
any case, accessing any file/directory/device in Linux/Unix occurs via an access of the

inode.

[0046] In order to implement the methods described herein according to various
embodiments, some changes may be made in the structure of the inode. In one embodiment,
the object ID and the path to the object (such as a file or directory) may be stored in the
extended attributes of the inode. The path to the object is used when the object store

considers the permissions set on the container object.

WO 2015/140728 PCT/IB2015/051978
13

[0047] In another embodiment, some changes may be made during an object creation
process. As part of an object/container creation process, traditionally, the object ID is
generated by the object store server. This object ID creation guarantees uniqueness across

the object store.

[0048] However, according to one embodiment, the existing object ID is modified to
include the inode identifier therein. The inode identifier may also be appended to the created
object ID. This modified object ID and the path name (to the file holding the object ID on
the file system) may be added to the extended attributes of that file.

[0049] Now referring to FIG. 5, a flowchart of a method 500 for creating an object is
shown according to one embodiment. Method 500 may be executed in any desired
environment, including those shown in FIGS. 1-4, among others. Furthermore, more or less

operations than those specifically described in FIG. 5 may be included in method 500.

[0050] In one embodiment, operations 502 and 518 may be performed by a client
application, device, system, etc., in an attempt to create an object on the object store. In this
embodiment, operations 504-516 may be performed on the object store server, file system,

or some other system, application, or device connected to the object store.

[0051] In operation 502, a request to create an object is sent from a device, system,
application, etc., to the object store and/or file system implementing the object store. This
request may be sent by the client, a system, an application, or any other system, device,
application, etc., known in the art. The request may include any information that would be
useful in creating the object and/or container as would be understood by one of skill in the

art.

[0052] In operation 504, the request to create the object is received by the object store
and/or the file system implementing the object store, and any useful information therein is

identified.

WO 2015/140728 PCT/IB2015/051978
14

[0053] In operation 506, the object is created on the file system. The object may be of

any type known in the art, such as a file, data set, directory, container, etc.

[0054] In operation 508, an inode ID, such as an inode number, is obtained for the
created object. Any process of obtaining the inode ID known in the art may be used, such as
by requesting the inode ID via a user interface with the file system. In one such embodiment,

a user may enter a command to retrieve an inode associated with a file/directory.

[0055] One exemplary command and response exchange is shown below:

>># s -1 test

>> 21733378 test

In this exemplary exchange, 21733378 is the inode number which is returned in response to

the command requesting the inode number for test.

[0056] In operation 510, a unique object ID is created for the object. The unique object
ID may include a UUID, as would be understood by one of skill in the art upon reading the
present descriptions. Furthermore, the object ID may take any form known in the art, such as

a number, alphanumeric string, hash, etc.

[0057] In operation 512, the object ID is merged with the inode ID. In one embodiment,
the inode ID may be appended to the created object ID (at a beginning thereof, an end
thereof, or included in some other manner that is known to the system for extraction thereof),
thereby ensuring that an association between the object and the inode may be recalled at any

given time from the object ID.

[0058] In operation 514, the inode is modified to include the object ID and possibly the
file path of the object as metadata to the inode. These values may be stored to the extended
attributes of the inode, in one embodiment. The storage of these file storage search
parameters allows a search to be performed for the object without needing to consult an
index or other correlation structure to determine a location of the object outside of the inode.
Furthermore, since the inode ID is provided in the object ID, it is known where to find the

information to locate the object in the file system.

WO 2015/140728 PCT/IB2015/051978
15

[0059] In operation 516, the object ID is sent (returned) to the client, system, application,

or other device which sent the request.

[0060] In operation 518, the object ID is received. Once the client, system, application,
or other device which requested the object to be created receives the object ID, any future
access requests (read, write, etc.) to that object may be made via the object ID, thereby

speeding up the process of accessing the object associated with the object ID.

[0061] Furthermore, in one approach, some changes may be made to object accessing
methods. The client application, device, system, etc., may pass on the object ID (which may
be provided by the object store server, at the time of creating the object) to the object store
server for operations like read, modify, delete, etc. The server is configured to read the
object ID. From that object ID, the server is configured to extract the inode ID (which was
appended to and/or included in the object ID). Then, the server is configured to access the

inode and any information stored therewith, such as in its extended attributes.

[0062] Next, the stored object ID is compared with the object ID that was received.
When the two object IDs match, the intended operation is allowed, otherwise, a reply is

generated indicating that the object is not found and/or invalid.

[0063] When the object store implementation mandates permissions on containers
(directories in file system semantics), then the path name stored in the object ID (such as in
the extended attributes) may be used to check the permissions. Unmodified object store has

no concept of permissions on container objects.

[0064] In this way, when utilizing object store, a second metadata may be merged with
each object ID to provide object storage search parameters to more efficiently access the

object in the object store.

[0065] Now referring to FIG. 6, a flowchart of a method 600 for accessing an object is

shown according to one embodiment. Method 600 may be executed in any desired

WO 2015/140728 PCT/IB2015/051978
16

environment, including those shown in FIGS. 1-4, among others. Furthermore, more or less

operations than those specifically described in FIG. 6 may be included in method 600.

[0066] In one embodiment, operations 602 and 618 may be performed by a client
application, device, system, etc., in an attempt to create an object on the object store. In this
embodiment, operations 604-616 may be performed on the object store server, file system,

or some other system, application, or device connected to the object store.

[0067] In operation 602, a request to access an object is sent from a device, system,
application, etc., to the object store and/or file system implementing the object store. This
request may be sent by any client system, device, application, etc., known in the art. The
request may include any information that would be useful in accessing the object and/or
container as would be understood by one of skill in the art. In one embodiment, the request
includes an object ID associated with the object to be accessed. In a further embodiment, an
operation to be performed on the object is also included in the request (i.e.,

read/write/modity, etc.).

[0068] In operation 604, the request to access the object is received by the object store
and/or the file system implementing the object store, and any useful information therein is

identified, including the object ID for the object to be accessed.

[0069] In operation 606, an inode ID, such as an inode number, is extracted from the

object ID.

[0070] In operation 608, the inode associated with the inode ID is accessed and an object
ID stored therein is determined. This may be accomplished by reading the inode associated

with the inode ID.

[0071] In operation 610, it is determined whether the object ID included in the request
matches with an object ID included in the inode associated with the inode ID. When the
object IDs match, method 600 continues to optional operation 612; otherwise, method 600

proceeds to operation 616.

WO 2015/140728 PCT/IB2015/051978
17

[0072] In operation 612, a path name stored in the inode is determined, should the path
name be required for further processing of the object. Operation 612 is not performed when

the path name is not required for further processing of the object.

[0073] In operation 614, the operation included in the request is performed on the object,
such as reading a portion or all of the object, writing over a portion or all of the object,

appending information to the object, modifying the object, deleting the object, etc.

[0074] In operation 616, results of the access are sent, such as back to the client system,
device, application, etc., which originally sent the request. When the object IDs do not
match, the results indicate that the object does not exist or is not accessible, and/or the
operation failed. For any of the other operations, results of the read/write/modify are

indicated to the requesting entity.

[0075] In operation 618, results of the access are received, such as by the client, system,

application, or other device which sent the request.

[0076] The present invention may be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium
(or media) having computer readable program instructions thereon for causing a processor to

carry out aspects of the present invention.

[0077] For example, in one embodiment, a computer program product for accessing an
object may comprise a computer readable storage medium having program code embodied
therewith, the program code readable and/or executable by a processor to cause the
processor to: extract, by the processor, an index node (inode) identifier (ID) from an object
ID associated with an object stored in an object store making use of a file system, access, by
the processor, an inode associated with the inode ID and determine an object ID stored
therein, determine, by the processor, whether the object ID from the inode matches the
object ID associated with the object from which the inode ID was extracted, and perform, by

the processor, an operation on the object.

WO 2015/140728 PCT/IB2015/051978
18

[0078] In various embodiments, the program code readable and/or executable by the
processor may further causes the processor to: receive a request to access the object stored in
the object store from a remote system and send results of accessing the object after
performing the operation thereon to the remote system, wherein the request includes the
object ID associated with the object to be accessed, and the operation to perform on the
object. In another embodiment, the operation to perform on the object may include at least
one of reading, writing, and modifying. According to another embodiment, the program code
readable and/or executable by the processor may further cause the processor to determine a
path name from the inode when the path name is required for further processing of the

object.

[0079] In another example, a system may comprise a processor and logic integrated with
and/or executable by the processor, the logic being configured to: create an object in an
object store making use of a file system, obtain an inode ID for an inode associated with the
object, create an object ID for the object, the object ID including the inode ID, wherein the
object ID is unique from any other object IDs in the object store, and modify the inode to

include at least the object ID.

[0080] In various embodiments, the logic may be further configured to: receive a request
to create the object in the object store from a remote system prior to creating the object, and
send the object ID for the object to the remote system after creating the object. In another
embodiment, the logic may be further configured to modify the inode to include a path name
for the object, wherein extended attributes of the inode may be modified to include the

object ID and the path name for the object.

[0081] In another embodiment, the object ID may have the inode ID appended thereto,
such as at a start or an end thereof. In further embodiments, the logic may be further
configured to: extract the inode ID from the object ID associated with the object stored in the
object store, access the inode associated with the inode ID and determine an object ID stored
therein, determine whether the object ID from the inode matches the object ID associated
with the object from which the inode ID was extracted, and perform an operation on the

object.

WO 2015/140728 PCT/IB2015/051978
19

[0082] In some approaches, the logic may be further configured to: receive a request to
access the object stored in the object store from a remote system, and send results of

accessing the object after performing the operation thereon to the remote system.

[0083] Furthermore, any of the following is possible: the request includes the object ID
associated with the object to be accessed, and the operation to perform on the object, the

operation to perform on the object includes at least one of reading, writing, and modifying,
and the logic may be further configured to determine a path name from the inode when the

path name is required for further processing of the object.

[0084] The computer readable storage medium can be a tangible device that can retain
and store instructions for use by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to, an electronic storage device, a
magnetic storage device, an optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination of the foregoing. A non-
exhaustive list of more specific examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having
instructions recorded thereon, and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be construed as being transitory signals
per se, such as radio waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or other transmission media (e.g.,
light pulses passing through a fiber-optic cable), or electrical signals transmitted through a

wire.

[0085] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local

area network, a wide area network and/or a wireless network. The network may comprise

WO 2015/140728 PCT/IB2015/051978
20

copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions from the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing

device.

[0086] Computer readable program instructions for carrying out operations of the
present invention may be assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent instructions, microcode, firmware
instructions, state-setting data, or either source code or object code written in any
combination of one or more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The computer readable program instructions may execute entirely
on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made to an external computer (for
example, through the Internet using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable logic circuitry, field-
programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the
computer readable program instructions by utilizing state information of the computer
readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[0087] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of

the flowchart illustrations and/or block diagrams, and combinations of blocks in the

WO 2015/140728 PCT/IB2015/051978
21

flowchart illustrations and/or block diagrams, can be implemented by computer readable

program instructions.

[0088] These computer readable program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified in

the flowchart and/or block diagram block or blocks.

[0089] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0090] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion
of instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. It will also be

noted that each block of the block diagrams and/or flowchart illustration, and combinations

WO 2015/140728 PCT/IB2015/051978
22

of blocks in the block diagrams and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

[0091] Moreover, a system according to various embodiments may include a processor
and logic integrated with and/or executable by the processor, the logic being configured to
perform one or more of the process steps recited herein. By integrated with, what is meant is
that the processor has logic embedded therewith as hardware logic, such as an application
specific integrated circuit (ASIC), a field programmable gate array (FPGA), etc. By
executable by the processor, what is meant is that the logic is hardware logic, software logic
such as firmware, operating system, etc., or some combination of hardware and software
logic that is accessible by the processor and configured to cause the processor to perform
some functionality upon execution by the processor. Software logic may be stored on local
and/or remote memory of any memory type, as known in the art. Any processor known in
the art may be used, such as a software processor module and/or a hardware processor such

as an ASIC, a FPGA, a central processing unit (CPU), an integrated circuit (IC), etc.

[0092] It will be clear that the various features of the foregoing systems and/or
methodologies may be combined in any way, creating a plurality of combinations from the

descriptions presented above.

[0093] It will be further appreciated that embodiments of the present invention may be
provided in the form of a service deployed on behalf of a customer to offer service on

demand.

[0094] While various embodiments have been described above, it should be understood
that they have been presented by way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited by any of the above-described
exemplary embodiments, but should be defined only in accordance with the following claims

and their equivalents.

WO 2015/140728 PCT/IB2015/051978
23

CLAIMS

1. A method for creating an object, the method comprising:

creating an object in an object store making use of a file system;

obtaining an index node (inode) identifier (ID) for an inode associated with the
object;

creating an object ID for the object, wherein the object ID is unique from any
other object IDs in the object store; and

modifying the inode to comprise at least the object ID.

2. The method as recited in claim 1, further comprising: merging the object ID with
the inode ID.
3. The method as recited in claim 1 or claim 2, further comprising:

receiving a request to create the object in the object store from a remote system
prior to creating the object; and

sending the object ID for the object to the remote system after creating the object.

4. The method as recited in any preceding claim, further comprising modifying the

inode to comprise a path name for the object to provide search parameters for the object.

5. The method as recited in claim 4, wherein extended attributes of the inode are

modified to comprise the object ID and the path name for the object.

6. The method as recited in any preceding claim, wherein the object ID has the

inode ID appended thereto.

7. A method for accessing an object, the method comprising:

extracting an index node (inode) identifier (ID) from an object ID associated with
an object stored in an object store making use of a file system,;

accessing an inode associated with the inode ID and determine an object ID

stored therein;

WO 2015/140728 PCT/IB2015/051978
24

determining whether the object ID from the inode matches the object ID
associated with the object from which the inode ID was extracted; and
performing an operation on the object when the object ID from the inode matches

the object ID associated with the object from which the inode ID was extracted.

8. The method as recited in claim 7, further comprising:

receiving a request to access the object stored in the object store from a remote
system; and

sending results of accessing the object after performing the operation thereon to

the remote system.

9. The method as recited in claim 8, wherein the request comprises the object ID

associated with the object to be accessed, and the operation to perform on the object.

10. The method as recited in any of claims 7 to 9, wherein the performing step

further comprises at least one of reading, writing, and modifying.

11. The method as recited in any of claims 7 to 10, further comprising: determining a
path name from the inode when the path name is required for further processing of the

object.

12. A system, comprising a processor and logic integrated with and/or executable by
the processor, the logic being configured to:

create an object in an object store making use of a file system;

obtain an index node (inode) identifier (ID) for an inode associated with the
object;

create an object ID for the object, the object ID including the inode ID, wherein
the object ID is unique from any other object IDs in the object store; and

modify the inode to comprise at least the object ID.

13. The system as recited in claim 12, wherein the logic is further configured to:

merge the object ID with the inode ID.

WO 2015/140728 PCT/IB2015/051978
25

14. The system as recited in claim 12 or claim 13, wherein the logic is further
configured to:

receive a request to create the object in the object store from a remote system
prior to creating the object; and

send the object ID for the object to the remote system after creating the object.

15. The system as recited in any of claims 12 to 14, wherein the logic is further

configured to modify the inode to comprise a path name for the object.

16. The system as recited in claim 15, wherein extended attributes of the inode are

modified to comprise the object ID and the path name for the object.

17. The system as recited in any of claims 12 to 16, wherein the object ID has the
inode ID appended thereto.

18. A system, comprising a processor and logic integrated with and/or executable by
the processor, the logic being configured to:

extract the inode ID from the object ID associated with the object stored in the
object store;

access the inode associated with the inode ID and determine an object ID stored
therein;

determine whether at the object ID from the inode matches the object ID
associated with the object from which the inode ID was extracted; and

perform an operation on the object when the object ID from the inode matches

the object ID associated with the object from which the inode ID was extracted.

19. The system as recited in claim 18, wherein the logic is further configured to:
receive a request to access the object stored in the object store from a remote
system; and
send results of accessing the object after performing the operation thereon to the

remote system.

WO 2015/140728 PCT/IB2015/051978
26

20. The system as recited in claim 19, wherein the request comprises the object ID

associated with the object to be accessed, and the operation to perform on the object.

21. The system as recited in any of claims 18 to 20, wherein the operation to perform

on the object comprises at least one of reading, writing, and modifying.

22. The system as recited in any of claims 18 to 21, wherein the logic is further
configured to determine a path name from the inode when the path name is required for

further processing of the object.

23. A computer program comprising computer program code stored on a computer
readable medium to, when loaded into a computer system and executed thereon, cause said

computer system to perform all the steps of a method according to any of claims 1 to 11.

WO 2015/140728 PCT/IB2015/051978

1/6
100\
116
111
N \ 120
—
w g
- fv 101
Gateway

FIG. 1

WO 2015/140728 PCT/IB2015/051978

2/6
235
220 4
NETWORK
210 216 214
))) o \‘rm
110 COMMUNICATION
CPU ROM RAM ADAPTER ADAPTER
212
222~ 236~ 238
USER
INTERFACE ;gi:#ga
ADAPTER
232 226 L EQF528

FIG. 2

WO 2015/140728

3/6

PCT/IB2015/051978

/ 300

Host Interface
314

!

Storage System Manager
312

Higher Storage Tier
302

Lower Storage Tier

(K)(X)_...Qg)

Additional Storage Tiers
316

Q_Q@ cee OO0

FIG. 3

PCT/IB2015/051978

4/6

WO 2015/140728

¥ "OId

—Y $8INQUIY JBUIO

Ly 100[q0 8y} Jo eWweN Ujed

Ly QlI109lgo enbiun

> g)00|g BIE(O} SJ8jUIod

> SOINQUAY PapUSIXT

Ocvy
.

°1%%

A

ey

1424 \
cly \..

Oly

80V \

L—¥ S)UIT JO JaquIiNN
——» Uolleal) Jo swi|

~» UOIjedlipOIA ISET JO W]
¥ SSO00Y JSeT Jo awi]
— suolssiuliod

dnolg

y
— oz1S
- JaumQ
y

adA|

o0y \.

14814

407

WO 2015/140728

502

f

Send a request to create
an object

5/6

500

PCT/IB2015/051978

518

f

Receive the object ID for
the created object

l 504
g

Receive the request to
create the object

'

506~

Create the object

|

508~

Obtain an inode ID for
the created object

'

Create a unique object
ID for the created object

!

Merge the object ID with
the inode ID

'

Modify the inode to
include the object ID and
a path name for the
created object

'

Send the object ID for
the created object

FIG. 5

WO 2015/140728

602

f

Send a request to access
an object, the request
including an object ID for
the object and an
operation

PCT/IB2015/051978
6/6

600

618

f

Receive the results of the
access

l 604
A

Receive the request to
access the object

:

606\ Extract an inode ID from
the object ID

|

Access the inode and
determine an object ID
stored therein

608=,

610

Does the
object ID match
the stored object
ID?

612~| Determine a path name
from the inode (Optional)

'

Perform an operation on

614~| the object included in the

access request (read/
write/modify, etc.)

:

616\ Send results of the
access

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/IB2015/051978

A, CLASSIFICATION OF SUBJECT MATTER
GOG6F 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F12; GO6F17

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNKLCNABS, CNTXT,VEN: 6%, &%, X, HF, M5, &5 4, strore, system, file, object, entity, index node,
directory

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2013110891 A1 (OGASAWARA HIROSHIET AL.) 02 May 2013 (2013-05-02) 1-23
figure 4
A CN 103229173 A (HUAWEI TECHNOLOGIES CO., LTD.) 31 July 2013 (2013-07-31) 1-23
the whole document
A CN 102693286 A (UNIV HUAZHONG SCI & TECHNOLOGY) 26 September 2012 (2012- 1-23
09-26)

the whole document

A US 2012290629 A1 (BEAVERSON ARTHUR JET AL.) 15 November 2012 (2012-11-15) 1-23

the whole document

I:l Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

«p» document defining the general state of the art which is not considered <> later document published after the international filing date or priority
to be of particular relevance date and not in conflict with the application but cited to understand the

. L . . . rinciple or theory underlying the invention
“gr earlier application or patent but published on or after the international P P ry ying . . .
filing date e document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive step

“ document which may throw doubts on priority claim(s) or which is when the document is taken alone

cited to establish the publication date of another citation or other
special reason (as specified) wyn document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

“«o” document referring to an oral disclosure, use, exhibition or other
means

«p» document published prior to the international filing date but later than .., ,,
P P : &
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
15 July 2015 22 July 2015
Name and mailing address of the [SA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA .
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing LIU,Xiaohua
100088, China
Facsimile No. (86-10)62019451 Telephone No. (86-10)62089142

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/IB2015/051978
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
[N 2013110891 Al 02 May 2013 EP 2728484 Al 07 May 2014
WO 2013061463 Al 02 May 2013
CN 103748564 A 23 April 2014
EP 2728484 A4 03 June 2015
[N 2014237204 Al 21 August 2014
[N 8725695 B2 13 May 2014
CN 103229173 A WO Al 03 July 2014
CN 102693286 A CN B 26 March 2014
[N 2012290629 Al 15 November 2012 us 2015081720 Al 19 March 2015
CN 103635902 A 12 March 2014
EP 2712452 Bl 22 April 2015
[N 8898195 B2 25 November 2014
[N 8346810 B2 01 January 2013
JpP 2014513849 A 05 June 2014
AU 2012256137 Al 28 November 2013
CA 2836026 Al 22 November 2012
EP 2712452 Al 02 April 2014
ES 2535943 T3 19 May 2015
[N 2013110894 Al 02 May 2013
WO 2012158501 Al 22 November 2012

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

