2016/075570 A1 |11 10O 0 OO0 RO O

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/075570 A1l

19 May 2016 (19.05.2016) WIPOIPCT
(51) International Patent Classification: 71032 Boeblingen (DE). BUENDGEN, Reinhard,
GO6F 9/44 (2006.01) Theodor; ¢c/o IBM Deutschland Research & Development
(21) International Application Number: GmbH, Schoenaicher Strasse 220, 71032 Boeblingen (DE).
PCT/IB2015/058058 (74) Agent: KLETT, Peter M.; IBM Research GmbH, IBM
(22) International Filing Date: i{tf:::gzh 8-80Z3ur ﬁillé’sclﬁtiilolic(%%)ljmpeny Law, Sacumer-
20 October 2015 (20.10.2015) ? ’

- . . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
L. BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
1420046.3 11 November 2014 (1 1.1 12014) GB HN, HR, HU, ID, IL, H\I, IR, IS, JP, KE, KG, KN, KP, KR,
(71) Applicant: INTERNATIONAL BUSINESS MA- KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
CHINES CORPORATION [US/US]; New Orchard MK, MN, MW, MX, MY, MZ, NA, NG, NI NO, NZ, OM,
Road, Armonk, New York 10504 (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicants (for MG only): 1BM (CHINA) INVEST- TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

MENT COMPANY LTD. [CN/CN]; 25/F, Pangu Plaza,

(84) Designated States (uniess otherwise indicated, for every

(72

No. 27, Central North 4th Ring Road, Chaoyang District,
Beijing 100101 (CN). IBM RESEARCH GMBH
[CH/CH]; IBM Research - Zurich, Saegumerstrasse 4, 8803
Rueschlikon (CH).

Inventors: BACHER, Utz; c/o IBM Deutschland Re-
search & Development GmbH, Schoenaicher Strasse 220,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: PROCESSING GUEST EVENT IN HYPERVISOR-CONTROLLED SYSTEM

20

30

L Hipenser

70 €
% \,

10

Firmware 216
50 60
g . SV '
ge  ICPU N o
Context = 2 2
Sef ! H H
management | Guest : Memory | Memory
i i Access —> Access 4
i state | : ! ic
| i | Protection | Logic |
j | /
HY j ‘ j
ctxt :

4o 42 46

Fig. 3

(57) Abstract: A method for processing a guest event in a hypervisor-controUed system (lO), comprising the steps: (i) the guest
event triggering a tirst firmware service being specitic for the guest event in a firmware (70), the guest event being associated with a
guest ( 20) and with a guest state (52) and a protected guest memory (22) accessible only by the guest (20) and the firmware (70),
and a guest key (24); (ii) the firmware (70) processing information associated with the guest event, comprising information of the
guest state (52) and the protected guest memory (22), and presenting only a subset of the information of the guest state (52) and the
protected guest memory (22) to a hypervisor (30), wherein the subset of the information is selected to suffice for the hypervisor(30)
to process the guest event; (iii) the firmware(70) retaining a part of the information of the guest state (52) and the protected guest
memory (22) that is not being sent to the hypervisor(30); (iv) the hypervisor (30) processing the guest event based on the received
subset of the information of the guest state (52) and the protected guest memory (22) and sending a process result to the firmware

(70) triggering a second firmware service being specific for the guest even; (v)the firmware (70) processing the received process res -
ult together with the part of the information of the guest state (52) and the protected guest memory (22) that was not sent to the hy -
pervisor (30),generating a state and/or memory modification; (vi) the firmware (70) performing the state and/or memory modifica-
tion associated with the guest event at the protected guest memory (22).



WO 2016/075570 A1 AT 00T 0 0TSO AR

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, KM, ML, MR, NE, SN, TD, TG). —  with international search report (Art. 21(3))



WO 2016/075570 PCT/IB2015/058058

DESCRIPTTION

PROCESSING GUEST EVENT IN HYPERVISOR-CONTROLLED SYSTEM

The present invention relates in general to data processing
systems, and in particular, to a method and a system for

processing a guest event in a hypervisor-controlled system.

BACKGROUND

Customer adoption of public Clouds is limited to non-mission
critical data. Very often, the core business data is an
essential asset to a customer, and the data's confidentiality is
critical for business success. As long as customers do not trust
Cloud environments, Cloud adoption of those business sensitive
environments stays minimal. Among the main concerns of customers
are lack of trust in the Cloud provider and the security of the

Cloud.

Trust in the Cloud provider is critical since an administrator
of the provider has the capability to fully inspect the
customer's workload and data. This potential breach for

espionage 1s the reason for being reluctant for many customers.

Trust in Cloud security relates to the threat of a hypervisor
breach, i.e. 1f an attacker gains access to the hypervisor, the

customer's workload and data are at risk again.

Approaches to guarantee confidentiality and privacy are limited
to input/output (I/0) at this time: network encryption like
secure sockets layer (SSL) can be used to encrypt socket
connections and disk encryption tools like dm-crypt in LINUX can

be used to encrypt data on a disk device.



WO 2016/075570 PCT/IB2015/058058

A trusted platform module (TPM) has been developed to ensure the
boot chain is valid at the time the customer runs its workload,
yet 1t is not deployed in a Cloud environment. Also, TPMs do not

ensure privacy but integrity of the setup at best.

A1l these technologies, even if used, do not address the issue
that a hypervisor can always fully inspect its guests, where
guests may in general be virtual machines on a hypervisor-—
controlled system, and read memory contents with potentially
sensitive data of the image running in the guest. The concerns

mentioned above cannot be eliminated by these technologies.

US 2011/0302400 Al describes a method that generally includes
receiving, by a trust anchor on a central processing unit (CPU)
having a plurality of processing cores, a virtual machine (VM)
image. As received, the VM image is encrypted using a VM image
encryption key. The method also includes obtaining the VM image
encryption key and configuring a first encrypt/ decrypt block
with the VM image encryption key. The method also includes
generating a memory session key and configuring a second
encrypt/decrypt block with the memory session key. The method
also includes fetching one or more pages of the VM image into a
memory accessible by the plurality of processing cores. Each
fetched page is decrypted by the first encrypt/decrypt block
using the VM image encryption key and subsequently encrypted by

the second encrypt/decrypt block using the memory session key.

SUMMARY

It is an objective of the invention to provide a method for
securely processing guest data in an untrusted Cloud

environment.



WO 2016/075570 PCT/IB2015/058058
3
Another objective is to provide a system for securely processing

guest data in an untrusted Cloud environment.

These objectives are achieved by the features of the independent
claims. The other claims, the drawings and the specification

disclose advantageous embodiments of the invention.

According to a first aspect of the invention a method is
proposed for processing a guest event in a hypervisor-controlled
system, comprising the steps: (i) the guest event triggering a
first firmware service being specific for the guest event in a
firmware, the guest event being associated with a guest and with
a guest state and a protected guest memory accessible only by
the guest and the firmware, and a guest key; (ii) the firmware
processing information associated with the guest event,
comprising information of the guest state and the protected
guest memory, and presenting only a subset of the information of
the guest state and the protected guest memory to a hypervisor,
wherein the subset of the information is selected to suffice for
the hypervisor to process the guest event; (iii) the firmware
retaining a part of the information of the guest state and the
protected guest memory that is not being sent to the hypervisor;
(iv) the hypervisor processing the guest event based on the
received subset of the information of the guest state and the
protected guest memory and sending a process result to the
firmware triggering a second firmware service being specific for
the guest event; (v) the firmware processing the received
process result together with the part of the information of the
guest state and the protected guest memory that was not sent to
the hypervisor, generating a state and/or memory modification;
(vi) the firmware performing the state and/or memory
modification associated with the guest event at the protected

guest memory.



WO 2016/075570 PCT/IB2015/058058
4
The first firmware service may favorably comprise steps (ii) and

(iii), namely (ii) the firmware processing information
associated with the guest event, comprising information of the
guest state and the protected guest memory, and presenting only
a subset of the information of the guest state and the protected
guest memory to a hypervisor, wherein the subset of information
is selected to suffice for the hypervisor to process the guest
event; and (i1iii) the firmware retaining a part of the
information of the guest state and the protected guest memory

that was not being sent to the hypervisor.

The second firmware service may favorably comprise steps (v) and
(vi), namely (v) the firmware processing the received process
result together with the part of the information of the guest
state and the protected guest memory that was not sent to the
hypervisor, generating a state and/or memory modification; and
(vi) the firmware performing the state and/or memory
modification associated with the guest event at the protected

guest memory.

Particularly, a method for processing a guest event in a
hypervisor—-controlled system is addressed exhibiting the
advantage of protecting guest confidentiality. Thus the method
according to the invention generally describes securely managing
virtual machines while maintaining privacy of virtual machine
contents towards the hypervisor comprising one or more VMs each
with resources including concealed memory and context data, a
hypervisor managing VM resources and VM states, CPU assisted
virtualization enforcing restricted access of the hypervisor to

VM state/memory/context through firmware services.

Particularly, the method according to the invention describes
processing a guest event in a hypervisor-controlled system where
guest data is encrypted with a guest key not accessible to the

hypervisor and where CPUs and firmware are considered trusted



WO 2016/075570 PCT/IB2015/058058
5
and have access to the guest key when running in guest context.

The firmware in this context particularly means system software

implemented in a hardware based environment.

As said the method according to the invention describes running
virtual machines from protected memory such that the protected
memory belonging to a specific virtual machine cannot be
accessed by another virtual machine even if the hypervisor
allowed such memory access. Also, the method prevents that a
hypervisor can always fully inspect its guests, i.e. virtual
machines/images, and read memory contents with potentially
sensitive data. The advantage is that the described method does
not use processes like authentication of a trust anchor with a
(customer) key service. It is able to deal with interrupts or
hypervisor intercepts. The described method does not require an

attestation module (e.g. a TPM) on the CPU.

In an advantageous embodiment, particularly for enabling access
to a memory page for the hypervisor, the method may further
comprise (i) the hypervisor requesting access to a page of the
protected guest memory from firmware; (ii) the firmware
disabling access for the guest to that page; (iii) the firmware
encrypting that page with the guest key; and (iv) the firmware

enabling access for the hypervisor to that page.

Further, particularly for enabling access to a memory page for a
guest, the method may favorably comprise (i) the hypervisor
providing an encrypted page to the firmware; (ii) the firmware
disabling access for the hypervisor to that page; (iii) the
firmware decrypting that page; and (iv) the firmware enabling

access for the guest to that page.

According to the above described embodiments, particularly for
allowing decryption of a page, the method may advantageously

comprise (i) the firmware computing an integrity wvalue of the



WO 2016/075570 PCT/IB2015/058058
6
page to be encrypted and made accessible to the hypervisor;

(ii) the hypervisor providing an encrypted page to be added to
the protected pages of a virtual machine to the firmware; and
(i1ii) the firmware only allowing adding the decrypted page to
the protected pages of the virtual machine when the integrity

value matches the page.

Further, particularly for a secure deployment and execution of a
virtual machine, the method may advantageously comprise the
steps (1) providing the guest with the guest key being encrypted
with the public key associated with a private key of the
hypervisor—-controlled system for transfer to the key store of
the hypervisor-controlled system; (ii) providing the hypervisor-
controlled system with the private key, being stored in the
hypervisor-controlled system and being used to decrypt the
encrypted guest key; (i1iii) the guest key being used to encrypt
and decrypt the guest data, when being transferred out of or
into the protected guest memory. Thus a secure deployment and
execution of a virtual machine in a hypervisor-controlled system

may be enabled.

For encryption/decryption of guest data, the hypervisor
controlled system may get a key pair; its private key may be
stored in the trusted firmware or hardware, and may be used to
decrypt guest keys. The public key may be used to encrypt (and
transfer) the private guest key to the trusted firmware or
hardware, in which the guest key may be stored and used

securely.

The guest may generate a key as well. The guest key may be
encrypted with the public key of the hypervisor controlled
system before it is transferred to the hypervisor controlled
system. The trusted firmware or hardware of the hypervisor
controlled system may use this guest key to encrypt the guest's

memory (but only when running the guest in the context of the



WO 2016/075570 PCT/IB2015/058058
7
CPU virtualization function). The guest key may also be used to

deploy images from the guest in a Cloud environment.

Favorably, particularly for boot image generation and
deployment, the method according to the invention may further
comprise the steps (i) generating a boot image by a client or
customer; (ii) encrypting the boot image with the guest key;
(iii) transferring the encrypted boot image to a boot disk; (iv)
loading the encrypted boot image of a guest by the hypervisor to
the guest memory; (v) transforming the guest memory (23) into
the protected guest memory (22); (vi) decrypting contents of the
protected guest memory; (vii) starting an execution of a guest
as a virtual machine at the CPU level, where the guest is
defined by an area of an encrypted memory, an area of an
unencrypted memory and an encrypted guest key. The guest key may
be known only to the client and the guest respectively and the
trusted firmware or hardware in guest context and for the
transport to the trusted firmware or hardware the guest key may
be encrypted with the public key associated with the private key
of the hypervisor controlled system. It need not be known to a

Cloud operator or the hypervisor.

The hypervisor may read contents of a boot image from the boot
disk into the guest memory without relocation, where the boot
disk contents may comprise a kernel, parameters, an initial ram
disk. Loading the boot image may also comprise mounting a
conventionally encrypted (e.g. via dm-crypt, a usually applied
LINUX encrypting tool) root file system. Further the boot disk
contents may comprise a kernel execution (kexec) environment
that loads a new kernel from a conventionally encrypted target

boot device.

The CPU architecture may be extended to provide a well-defined
means to access a guest state, where access methods may provide

the hypervisor only with the necessary information to perform



WO 2016/075570 PCT/IB2015/058058
8
its tasks (e.g. handling traps). However, the guest memory and

register file may not be accessible outside of said access
methods. Thus confidentiality of the guest may be protected,
since the hypervisor cannot read a guest state or guest data
entirely. The register file may not be accessible to the
hypervisor directly, but may be stored away and restored through
a hypervisor service. Other contexts than the guest itself may
only see encrypted memory contents, as the hypervisor may not
see the unencrypted guest memory. An area of the guest memory
may remain unencrypted and unprotected in order to exchange data
with the hypervisor or I/0 devices. An I/0 scratch area may be

outside the protected memory area of the guest.

In an advantageous embodiment, particularly for an interaction
between the virtual machine and the hypervisor, the method may
further comprise the steps (i) keeping the range of the
protected guest memory or registers associated with the guest
event being not accessible to the hypervisor in decrypted form;
(ii) extending a virtualization function of the hypervisor-
controlled system by access methods to specific guest data
associated with the guest event. This step may be advantageous
for a hypervisor operation, but may not reveal data or code
(other than reason and relevant parameters for instructions that
trap) of the guest and enable to continue execution of the guest
event. Some traps may be disabled entirely since they may only
be meaningful (e.g. single stepping), when a hypervisor has full

access to a guest.

Advantageously, particularly for an I/0 process of a guest, the
method may further comprise the steps (i) defining a non-
protected memory area for I/0 buffers and I/0 control structures
of the guest outside the area of the protected guest memory;

(ii) starting the I/0 process by the guest using that non-
protected area of the guest memory; (iii) the virtualization

function of the hypervisor-controlled system generating a guest



WO 2016/075570 PCT/IB2015/058058
9
event; (iv) the hypervisor reading a reason for the guest event

and performing the I/0 process. By putting the I/0 buffers
outside the protected guest memory, the hypervisor and I/0

devices may have access to I/0 control structures and data.

The hypervisor may store pages on a hypervisor owned swap
device, where still the page contents may be encrypted. The
CPU’s virtualization function may trap, where the hypervisor may
read a reason for the trap (e.g. ,page fault"“) and may read a
guest address. Then the hypervisor may put the page back to the
same guest address, which maintains guest data integrity when
encryption results are kept non-relocatable. Then the hypervisor

may restart the guest.

In an advantageous embodiment, particularly for establishing
trust in the described method, the method may further comprise
checking a guest integrity with a checking process that knows
the guest key, the checking process comprising the steps (i) the
guest reading a memory content in clear text from the protected
guest memory transferring an arbitrary range of the protected
guest memory via a secure communication path to the checking
process; (il1) reguesting the same memory range of the protected
guest memory from the hypervisor and transferring it to the
checking process; (iii) comparing the memory content obtained
from the guest with the result of decrypting the memory content
obtained from the hypervisor; (iv) delivering a comparison
result depending on the contents of the two memory ranges; (V)
returning the result of the checking process being positive if
the comparison result equals zero, otherwise being negative.
These method steps may be especially advantageous because the
hypervisor is not able to read/inject code or data since it is
not provided with the key for guest memory

decryption/encryption.



WO 2016/075570 PCT/IB2015/058058
10
According to a further advantageous aspect of the invention a

data processing program for execution in a data processing
system 1s proposed comprising an implementation of an
instruction set for performing a method as described above when

the data processing program is run on a computer.

Further a favorable computer program product is proposed
comprising a computer usable medium including a computer
readable program, wherein the computer readable program when
executed on a computer causes the computer to perform a method
for processing a guest event in a hypervisor-controlled system,
comprising the steps: (i) the guest event triggering a first
firmware service being specific for the guest event in a
firmware, the guest event being associated with a guest and with
a guest state and a protected guest memory accessible only by
the guest and the firmware, and a guest key; (ii) the firmware
processing information associated with the guest event,
comprising information of the guest state and the protected
guest memory, and presenting only a subset of the information of
the guest state and the protected guest memory to a hypervisor,
wherein the subset of the information is selected to suffice for
the hypervisor to process the guest event; (iii) the firmware
retaining a part of the information of the guest state and the
protected guest memory that is not being sent to the hypervisor;
(iv) the hypervisor processing the guest event based on the
received subset of the information of the guest state and the
protected guest memory and sending a process result to the
firmware triggering a second firmware service being specific for
the guest event; (v) the firmware processing the received
process result together with the part of the information of the
guest state and the protected guest memory that was not sent to
the hypervisor, generating a state and/or memory modification;
(vi) the firmware performing the state and/or memory
modification associated with the guest event at the protected

guest memory.



WO 2016/075570 PCT/IB2015/058058
11

As will be appreciated by one skilled in the art, aspects of the
present invention may be embodied as a system, method or
computer program product. Accordingly, aspects of the present
invention may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining software
and hardware aspects that may all generally be referred to

herein as a "circuit," "module" or "system."

Furthermore, aspects of the present invention may take the form
of a computer program product embodied in one or more computer
readable medium(s) having computer readable program code

embodied thereon.

Any combination of one or more computer readable medium(s) may
be utilized. The computer readable medium may be a computer
readable signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a
non—-exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having one
or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash memory),
an optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device, or
any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use by
or in connection with an instruction execution system,

apparatus, or device.



WO 2016/075570 PCT/IB2015/058058
12
A computer readable signal medium may include a propagated data

signal with computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, including,
but not limited to, electro-magnetic, optical, or any suitable
combination therecf. A computer readable signal medium may be
any computer readable medium that is not a computer readable
storage medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction

execution system, apparatus, or device.

Program code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or

any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of
the present invention may be written in any combination of one
or more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The
program code may execute entirely on the user's computer, partly
on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to block diagrams of methods, apparatus (systems) and

computer program products according to embodiments of the



WO 2016/075570 PCT/IB2015/058058
13
invention. It will be understood that each block of the

flowchart illustrations and/or block diagrams, and combinations
of blocks in the block diagrams, can be implemented by computer
program instructions. These computer program instructions may be
provided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart

and/or block diagram block or blocks.

These computer program instructions may also be stored in a
computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the

function/act specified in the block diagram block or blocks.

The computer program instructions may also be loaded onto a
computer, other programmable data processing apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other devices
to produce a computer implemented process such that the
instructions which execute on the computer or other programmable
apparatus provide processes for implementing the functions/acts

specified in the block diagram block or blocks.

Due to a further aspect of the invention, a data processing
system for execution of a data processing program is proposed,
comprising software code portions for performing a method

described above.



WO 2016/075570

PCT/IB2015/058058
14

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention together with the above-mentioned and

other objects and advantages may best be understood from the

following detailed description of the embodiments, but not

restricted to the embodiments, wherein is shown in:

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

a stack of components in a hypervisor—-controlled

system according to prior art;

a general overview of a method for a secure
execution of guests in an insecure environment

according to an embodiment of the invention;

a system diagram of a hypervisor-controlled system
for a secure execution of guests in an insecure
environment according to an embodiment of the

invention;

a generic flow chart for running a secure guest

according to an embodiment of the invention;

a detailed flow chart for interception handling with
a secure guest running according to an embodiment of

the invention;

an example embodiment of a data processing system
for carrying out a method according to the

invention.

DETAILED DESCRIPTION

In the drawings, like elements are referred to with equal

reference numerals. The drawings are merely schematic



WO 2016/075570 PCT/IB2015/058058
15
representations, not intended to portray specific parameters of

the invention. Moreover, the drawings are intended to depict
only typical embodiments of the invention and therefore should

not be considered as limiting the scope of the invention.

Figure 1 shows a stack of components in a hypervisor-controlled
system according to prior art. The different components comprise
one or more guests 20, realized as a virtual machine, running on
a hypervisor-controlled system as a virtual server system,
consisting of firmware 70, hardware 72, as e.g. one or more
CPUs, memory, I1/0 devices 74 for storage networking. A
hypervisor 30 manages the resources of the hardware 72 and I/0
devices 74 and allocates appropriate portions of these resources
to the guests 20. In a Cloud environment the guest VM 20 is
operated by a client or customer, whereas the hypervisor 30 is
operated by a Cloud provider, who may be untrusted by the
client. The firmware 70 for the virtual server system, as well
as the hardware 72, are manufactured by a hardware vendor, who
may be considered as trusted. It is an objective of the
invention to provide a method for securely processing the guest
VM 20 in a Cloud environment where the Cloud provider may not be

trusted.

In one embodiment, the first firmware service may favorably
comprise at least one of the steps (ii) and (iii) of the
description above, wherein in step (ii), the firmware 70
processing information associated with the guest event,
comprising information of the guest state 52 and the protected
guest memory 22, and presenting only a subset of the information
of the guest state 52 and the protected guest memory 22 in
decrypted form to a hypervisor 30, wherein the subset of
information is selected to suffice for the hypervisor 30 to
process the guest event. Step (iii) comprises the firmware 70
retaining a part of the information of the guest state 52 and

the protected guest memory 22 that was not being sent to the



WO 2016/075570 PCT/IB2015/058058
16
hypervisor 30.

In one embodiment, the second firmware service may favorably
comprise at least one of the steps (v) and (vi) of the
description above, wherein step (v) comprises the firmware 70
processing the received process result together with the part of
the information of the guest state 52 and the protected guest
memory 22 that was not sent to the hypervisor 30, generating a
state and/or memory modification; and wherein in step (vi) the
firmware 70 performing the state and/or memory modification
associated with the guest event at the protected guest memory

22.

Figure 2 gives a general overview of a method for a secure
execution of guests 20 in an insecure environment of a
hypervisor—-controlled system 10 according to an embodiment of
the invention. This may be achieved in analogy to a secure
socket layer, where secure operation (i.e. messaging) is also
achieved over an unsecure medium. A hypervisor 30, which is
considered as untrusted, may control secure guests 20 as well as
unsecure guests 40 at the same time and in the same system. The
system 10, that runs the hypervisor 30 and the guests 20, 40 on
a CPU 216 maintains a specific context 42 for each secure guest
20, a specific context 44 for each unsecure guest 40 and a
context 46 for the hypervisor 30 respectively. Each context 42
of a secure guest 20 contains a guest key 24 associated which
the according secure guest 20. The memory of each secure guest
20 is protected against access form code running in a context
that does not belong to the secure guest 20. When accessed from
a context not belonging to the secure guest 20 the guest memory
23 is encrypted with the guest key 24 of the according secure
guest 20. These guests, 20, 40 as well as the hypervisor 30 may
run on the system 10 in their own contexts 42, 44, 46. Also on
the system 10 there is the hypervisor 30 running in its own

context 46. When a CPU 216 runs in one context it has no access



WO 2016/075570 PCT/IB2015/058058
17
to information maintained by another context. When a CPU 216

runs in a guest context 42 of a secure guest 20 it has access to
the guest key 24 of that guest 20 to encrypt and decrypt data of
that guest 20. Further a CPU 216 enters a context of a guest 20,
40 or a hypervisor 30 only 1f it processes code of that guest
20, 40 or that hypervisor 30 respectively or if it runs a
firmware service in support of that guest 20, 40 or that
hypervisor 30 respectively. The firmware 70 also comprises a

private key 26 of the system 10.

Figure 3 shows a system diagram of a hypervisor-controlled
system 10 for a secure execution of guests 20 in an insecure
environment according to an embodiment of the invention.
Numerals referenced in the following description which are not

shown in Figure 3, reference objects of Figures 1 and 2.

First generic functions of an execution of guests 20 in an
insecure environment according to an embodiment of the invention
will be explained using the diagram in Figure 3, before the
behavior of the hypervisor-controlled system for handling
interrupts or interceptions due to a guest event will be

discussed.

The diagram in Figure 3 shows two guests 20, named guest 1 and
guest 2, controlled by a hypervisor 30, all components running
on a firmware 70 comprising a CPU 216, which is connected to a
memory 230. The CPU 216 comprises access means for a state of
guest context of the CPU’s virtualization function, where the

access 1s controlled based on the context the CPU 216 is in.

The firmware 70 is running a context management function 50,
which controls the different contexts under which the guests 20
as well as the hypervisor 30 are operating. The context
management function 50 is triggering memory access operations

through the CPU 216, where guest state functions 52, memory



WO 2016/075570 PCT/IB2015/058058
18
access protection 54 as well as a memory access logic 60 is

implemented. The context management function 50 controls running
of the guests 20 on the hypervisor 30, as indicated by the

operation 80.

Shortly, the method according to the invention for processing a
guest event in a hypervisor-controlled system 10 is comprising
the following steps as shown in Figure 3. These steps are
referenced in the description. First a guest event, originating
from the guest 1 in the embodiment shown in Figure 3, 1is
triggering a first firmware service being specific for the guest
event in the firmware 70, where the guest event is being
associated with the guest 20 and with a guest state 52 and a
protected guest memory 22 accessible only by the guest 20 and
the firmware 70, and a guest key 24. This is controlled by the
context management function 50 by reading guest context 42,
indicated by operation 82. Secondly the firmware 70 is
processing information associated with the guest event,
comprising information of the guest state 52 and the protected
guest memory 22, and presenting only a subset of the information
of the guest state 52 and the protected guest memory 22 to the
hypervisor 30. The subset of the information is selected to
suffice for the hypervisor 30 to process the guest event.
Thirdly the firmware 70 is retaining a part of the information
of the guest state 52 and the protected guest memory 22 that was
not being sent to the hypervisor 30. Fourthly the hypervisor 30
is processing the guest event based on the received subset of
the information of the guest state 52 and the protected guest
memory 22 and sending a process result to the firmware 70
triggering a second firmware service being specific for the
guest event. Fifthly the firmware 70 is processing the received
process result together with the part of the information of the
guest state 52 and the protected guest memory 22 that was not
sent to the hypervisor 30, generating a state and/or memory

modification. Therefore the context management function 50 sets



WO 2016/075570 PCT/IB2015/058058
19
the guest state 52 in the CPU 216 by operation 84, where

information is passed to a memory access protection function 54
and finally to a memory access logic 60, controlling access to
the memory 230. Sixthly the firmware 70 is performing the state
and/or memory modification associated with the guest event at
the protected guest memory 22. This is performed by the memory
accesses 86, where memory access 86 is allowed only to the
protected memory 22 of the respective guest 20 and not to the
memory of a guest which is not the originator of the guest

event, as indicated by the operation 88.

The hypervisor 30 has only limited access to data and/or code in
the memory 230, because there exist ranges which are encrypted
with a guest key 24 and other ranges which are visible to the
hypervisor 30. Further there are protected guest memory 22
ranges, which are protected by the firmware 70 and which are

also not accessible to the hypervisor 30.

Following, the realization of the handling of interruptions or
interceptions by means of firmware services as services
implemented in the firmware 70 according to an embodiment of the
invention is explained. In a short description, processing a
guest event in a hypervisor-controlled system 10 is comprising
the steps: (i) triggering a first firmware service; (ii) the
firmware 70 processing information associated with the guest
event, presenting only a subset of the information to a
hypervisor 30; (iii) the firmware retaining a part of the
information that is not being sent to the hypervisor 30; (iv)
the hypervisor 30 triggering a second firmware service; (v) the
firmware generating a guest state 52 and/or a protected guest
memory 22 modification; (vi) the firmware performing the guest

state 52 and/or protected guest memory 22 modification.

Enabling access for the hypervisor 30 to a memory page by the

firmware 70 comprises (1) the hypervisor 30 requesting access to



WO 2016/075570 PCT/IB2015/058058
20
a page of the protected guest memory 22 from firmware 70; (ii)

the firmware 70 disabling access for the guest 20 to that page;
(i1ii) the firmware 70 encrypting that page with the guest key
24; and (iv) the firmware 70 enabling access for the hypervisor

30 to that page.

Further enabling access for a guest 20 to a memory page by the
firmware 70 comprises (i) the hypervisor 30 providing an
encrypted page to the firmware 70; (ii) the firmware 70
disabling access for the hypervisor 30 to that page; (iii) the
firmware 70 decrypting that page; and (iv) the firmware 70

enabling access for the guest 20 to that page.

Allowing decryption by the firmware 70 further comprises (i) the
firmware 70 computing an integrity value of the page to be
encrypted and made accessible to the hypervisor 30; (ii) the
hypervisor 30 providing an encrypted page to be added to the
protected pages of a virtual machine to the firmware 70; and
(iii) the firmware 70 only allowing adding the decrypted page to
the protected pages of the virtual machine when the integrity

value matches the page.

A secure deployment and execution of a guest 20 comprises
providing the guest 20 with the guest key 24 being encrypted
with the public key 32 associated with a private key 26 of the
hypervisor—-controlled system 10 for transfer to the key store 28
of the hypervisor-controlled system 10; providing the
hypervisor-controlled system 10 with the private key 26, being
stored in the hypervisor-controlled system 10 and being used to
decrypt the encrypted guest key 24; the guest key 24 being used
to encrypt and decrypt the guest data, when being transferred

out of or into the protected guest memory 22.

A boot image generation and deployment process covers generating

a boot image by a client or customer for the guest 20;



WO 2016/075570 PCT/IB2015/058058
21
encrypting the boot image with the guest key 24; transferring

the encrypted boot image to a boot disk; loading the encrypted
boot image of a guest 20 by the hypervisor 30 to the guest
memory 23; transforming the guest memory 23 into the protected
guest memory 22; decrypting contents of the protected guest
memory 22; starting an execution of a guest 20 as a virtual

machine.

An interaction between the guest 20 and the hypervisor 30
further covers a range of the protected guest memory 22 or
registers associated with the guest event being not accessible
to the hypervisor 30; extending a virtualization function 34 of
the hypervisor-controlled system 10 by access methods to

specific guest data associated with the guest event.

An I/0 process of a guest 20 further comprises defining a non-
protected memory area for I/0 buffers and I/0 control structures
of the guest 20 outside the area of the protected guest memory
22; starting the I/0 process by the guest 20 using that non-
protected area of the guest memory 22; the virtualization
function 34 of the hypervisor-controlled system 10 generating a
guest event; the hypervisor 30 reading a reason for the guest

event and performing the I/0 process.

Further checking a guest integrity with a checking process, the
checking process comprises the steps: the checking process
knowing the guest key 24; the guest 20 reading a memory content
in clear text from the protected guest memory 22 transferring an
arbitrary range of the protected guest memory 22 via a secure
communication path to the checking process; requesting the same
memory range of the protected guest memory 22 from the
hypervisor 30 and transferring it to the checking process;
comparing the memory content obtained from the guest 20 with the
result of decrypting the memory content obtained from the

hypervisor 30; delivering a comparison result depending on the



WO 2016/075570 PCT/IB2015/058058
22
contents of the two memory ranges; the result of the checking

process being positive i1if the comparison result equals zero,

otherwise being negative.

In Figure 4 a generic flow chart for executing a secure guest
running according to an embodiment of the invention from a
hypervisor 30 and CPU 216 view is shown. Figure 4 as well as
Figure 5 reference in the flowcharts objects defined in the
diagrams of Figures 2 and 3, so the reference numerals used also
are referencing the objects of these Figures. Running a secure
guest 20 starts with step S5410, where the hypervisor 30 reads an
encrypted guest image from an initial program loader (IPL)
device together with an encrypted guest key 24. Next, in step
S420, the hypervisor 30 stores the encrypted guest image into
the protected guest memory 22. In step S430 the hypervisor 30
prepares an initial guest state 52 that includes the encrypted
guest key 24 and submits it to the firmware 70. Thus the steps
S410 to S430 serve for initializing a guest 20 in a hypervisor-
controlled system 10. Next in step S440 the firmware 70 decrypts
the protected guest memory 22 thus protecting the protected
guest memory 22 from access by non-trusted components, as e.g.
the hypervisor 30 or other guests. In step S450 a secure guest
20 virtual machine is started according to the current guest
state 52. Following in step S460, a CPU 216 runs the secure
guest 20 in a secure guest context 42 as described by the
current guest state 52. In step S470, if a guest event in the
form of an interrupt or an instruction interception occurs, the
guest 20 exits the guest context 42 with an updated guest state
52 due to this interrupt or interception. The hypervisor 30 is
now able in step S480, to handle the interrupt or interception
using a first firmware service to read data from the secure
guest 20 or a second firmware service to write data to the

secure guest 20.

Generally, a first firmware service may be triggered, meaning



WO 2016/075570 PCT/IB2015/058058
23
that (ii) the firmware 70 is processing information associated

with the guest event and presenting only a subset of the
information of the guest state 52 and the protected guest memory
22 to the hypervisor 30, and (iii) the firmware 70 is retaining
a part of the information that is not being sent to the
hypervisor 30. Further, (iv) based on the received subset of the
information, the hypervisor 30 may be triggering a second
firmware service for (v) generating a state and/or memory
modification of the guest 20, and for (vi) performing the state
and/or memory modification associated with the guest event at

the protected guest memory 22.

If the secure guest 20 is finished, at branch S490 the whole
process comes to an end. If the secure guest 20 is not finished,
a loop to step S450 is closed and the hypervisor 30 is starting

the secure guest 20 again.

In Figure 5 a detailed flow chart for interception handling with
a secure guest running according to an embodiment of the
invention is depicted. Step S510 starts with a guest event,
meaning that the secure guest 20 is issuing an instruction which
requests interpretation or support by the hypervisor 30, e.g.,
an instruction to store system environment parameters, which is
usually provided by the hypervisor 30. In a next step $520, the
execution of the virtualization function 34 leaves the guest
context 42 and passes initiative to a CPU-internal
virtualization logic. Then in step S$530 the CPU-internal
virtualization logic detects a reason for exit of the guest 20,
e.g., 1ldentifies instruction to store system environment
parameters. In step S540, the CPU-internal virtualization logic
prepares handles for the hypervisor 30 to access input and
output parameters, according to the reason for exit of the guest
20, e.g., associates the storage location for the requested
information with a handle. Then in step S$550, the CPU-internal

virtualization logic masks the part of the execution state not



WO 2016/075570 PCT/IB2015/058058
24
needed to process the interception and returns the initiative to

the hypervisor 30, indicating the exit of the guest 20 and a
hint to input and output parameter handles, e.g., hides
registers and context data from the hypervisor 30, e.g. by
encrypting them. The CPU-internal virtualization logic in steps
S520 to S550 can alternatively be implemented as a first
firmware service. Next, in step S$560, the hypervisor 30 detects
the reason for the exit of the guest 20 by reading the reason
indication from the CPU-internal virtualization logic, e.g.,
reads a reason code to identify a virtual server'‘s request to
store system environment parameters. The hypervisor 30 triggers
in step 8570 (if necessary, repeatedly) firmware services (e.g.
the first firmware service) to work with input and output
parameters to process the exit of the guest 20. To perform this,
the hypervisor 30 uses previously established handles as means
to reference contents of the memory 230 and registers required
for processing, e.g., the hypervisor 30 stores system
environment parameters into the virtual server'‘s memory through
firmware services (e.g. the second firmware service) using the

received handle.

By this way in the detailed flow chart for interception handling
with a secure guest in Figure 5 it is described how first and
second firmware services are used for processing a guest event
in a hypervisor-controlled system 10, how (ii) the firmware 70
is processing information associated with the guest event and
presenting only a subset of the information to the hypervisor
30, as well as (iii) the firmware 70 1s retaining a part of the
information and (iv) based on the received subset of the

information the second firmware service may be triggered.

Next, in step S580, the hypervisor 30 restarts virtualization
function 34 execution by issuing an according CPU instruction,
until in step 5590, the CPU-internal virtualization logic clears

handles from the previous exit of the guest 20, unmasks the



WO 2016/075570 PCT/IB2015/058058
25
virtual server context for the virtualization function 34

execution and starts execution of the virtual server.

Thus a state and/or memory modification of the guest 20 may be
generated and performed at the guest memory 22 in encrypted

form.

Referring now to Figure 6, a schematic of an example of a data
processing system 210 is shown. Data processing system 210 is
only one example of a suitable data processing system and is not
intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described herein.
Regardless, data processing system 210 is capable of being
implemented and/or performing any of the functionality set forth

herein above.

In data processing system 210 there is a computer system/server
212, which is operational with numerous other general purpose or
special purpose computing system environments or configurations.
Examples of well-known computing systems, environments, and/or
configurations that may be suitable for use with computer
system/server 212 include, but are not limited to, personal
computer systems, server computer systems, thin clients, thick
clients, handheld or laptop devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed Cloud computing
environments that include any of the above systems or devices,

and the like.

Computer system/server 212 may be described in the general
context of computer system executable instructions, such as
program modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,

components, logic, data structures, and so on that perform



WO 2016/075570 PCT/IB2015/058058
26
particular tasks or implement particular abstract data types.

Computer system/server 212 may be practiced in distributed Cloud
computing environments where tasks are performed by remote
processing devices that are linked through a communications
network. In a distributed Cloud computing environment, program
modules may be located in both local and remote computer system

storage media including memory storage devices.

As shown in Fig. 6, computer system/server 212 in data
processing system 210 is shown in the form of a general-purpose
computing device. The components of computer system/server 212
may include, but are not limited to, one or more processors or
processing units 216, a system memory 228, and a bus 218 that
couples various system components including system memory 228 to

processor 216.

Bus 218 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor or
local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry
Standard Architecture (ISA) bus, Micro Channel Architecture

(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component

Interconnect (PCI) bus.

Computer system/server 212 typically includes a variety of
computer system readable media. Such media may be any available
media that is accessible by computer system/server 212, and it
includes both volatile and non-volatile media, removable and

non-removable media.

System memory 228 can include computer system readable media in
the form of volatile memory, such as random access memory (RAM)

230 and/or cache memory 232. Computer system/server 212 may



WO 2016/075570 PCT/IB2015/058058
27
further include other removable/non-removable, volatile/non-

volatile computer system storage media. By way of example only,
storage system 234 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not shown and
typically called a "hard drive"). Although not shown, a magnetic
disk drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a "floppy disk"), and an optical
disk drive for reading from or writing to a removable, non-
volatile optical disk such as a CD-ROM, DVD-ROM or other optical
media can be provided. In such instances, each can be connected
to bus 218 by one or more data media interfaces. As will be
further depicted and described below, memory 228 may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the functions

of embodiments of the invention.

Program/utility 240, having a set (at least one) of program
modules 242, may be stored in memory 228 by way of example, and
not limitation, as well as an operating system, one or more
application programs, other program modules, and program data.
Each of the operating system, one or more application programs,
other program modules, and program data or some combination
thereof, may include an implementation of a networking
environment. Program modules 242 generally carry out the
functions and/or methodologies of embodiments of the invention
as described herein. Computer system/server 212 may also
communicate with one or more external devices 214 such as a
keyboard, a pointing device, a display 224, etc.; one or more
devices that enable a user to interact with computer
system/server 212; and/or any devices (e.g., network card,
modem, etc.) that enable computer system/server 212 to
communicate with one or more other computing devices. Such
communication can occur via Input/Output (I/0) interfaces 222.
Still yet, computer system/server 212 can communicate with one

or more networks such as a local area network (LAN), a general



WO 2016/075570 PCT/IB2015/058058
28
wide area network (WAN), and/or a public network (e.g., the

Internet) via network adapter 220. As depicted, network adapter
220 communicates with the other components of computer
system/server 212 via bus 218. It should be understood that
although not shown, other hardware and/or software components
could be used in conjunction with computer system/server 212.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive arrays,
RATID systems, tape drives, and data archival storage systems,

etc.

The block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of
systems, methods and computer program products according to
various embodiments of the present invention. In this regard,
each block in the block diagrams may represent a module,
segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical
functions. It should also be noted that, in some alternative
implementations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks shown
in succession may, 1in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams, and
combinations of blocks in the block diagrams, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special purpose

hardware and computer instructions.



WO 2016/075570 PCT/IB2015/058058

29
CLAIMS

1. Method for processing a guest event in a hypervisor-

controlled system (10), comprising the steps:

(1)

(i1)

(1ii)

(iv)

the guest event triggering a first firmware service
being specific for the guest event in a firmware
(70), the guest event being associated with a guest
(20) and with a guest state (52) and a protected
guest memory (22) accessible only by the guest (20)
and the firmware (70), and a guest key (24);

the firmware (70) processing information associated
with the guest event, comprising information of the
guest state (52) and the protected guest memory (22),
and presenting only a subset of the information of
the guest state (52) and the protected guest memory
(22) to a hypervisor (30), wherein the subset of the
information is selected to suffice for the hypervisor
(30) to process the guest event;

the firmware (70) retaining a part of the information
of the guest state (52) and the protected guest
memory (22) that is not being sent to the hypervisor
(30);

the hypervisor (30) processing the guest event based
on the received subset of the information of the
guest state (52) and the protected guest memory (22)
and sending a process result to the firmware (70)
triggering a second firmware service being specific
for the guest event;

the firmware (70) processing the received process
result together with the part of the information of
the guest state (52) and the protected guest memory
(22) that was not sent to the hypervisor (30),

generating a state and/or memory modification;



WO 2016/075570 PCT/IB2015/058058

(vi) the firmware (70) ;grforming the state and/or memory
modification associated with the guest event at the
protected guest memory (22).

Method according to claim 1, further comprising the steps

of

(1) the hypervisor (30) reguesting access to a page of
the protected guest memory (22) from firmware (70);

(ii) the firmware (70) disabling access for the guest (20)
to that page;

(iii) the firmware (70) encrypting that page with the guest
key (24);

(iv) the firmware (70) enabling access for the hypervisor
(30) to that page.

Method according to claim 1 or 2, further comprising the

steps of

(1) the hypervisor (30) providing an encrypted page to
the firmware (70);

(ii) the firmware (70) disabling access for the hypervisor
(30) to that page;

(iii) the firmware (70) decrypting that page;

(iv) the firmware (70) enabling access for the guest (20)
to that page.

Method according to claim 2 or 3, further comprising the

steps of

(1) the firmware (70) computing an integrity value of the
page to be encrypted and made accessible to the
hypervisor (30);

(ii) the hypervisor (30) providing an encrypted page to be

added to the protected pages of a virtual machine to

the firmware (70);



7.

WO 2016/075570 PCT/IB2015/058058

(1ii)

31
the firmware (70) only allowing adding the decrypted

page to the protected pages of the virtual machine

when the integrity value matches the page.

Method according to any one of the preceding claims,

further comprising the steps of

(1)

(i1)

(1ii)

providing the guest (20) with the guest key (24)
being encrypted with a public key associated with a
private key (26) of the hypervisor-controlled system
(10) for transfer to the key store (28) of the
hypervisor-controlled system (10);

providing the hypervisor-controlled system (10) with
the private key (260), being stored in the hypervisor-
controlled system (10) and being used to decrypt the
encrypted guest key (24);

the guest key (24) being used to encrypt and decrypt
the guest data, when being transferred out of or into

the protected guest memory (22).

Method according to any one of the preceding claims,

further comprising the steps of

(1)

(i1)

(1ii)

(iv)

(v)

(vi)

(vii)

generating a boot image by a client;

encrypting the boot image with the guest key (24);
transferring the encrypted boot image to a boot disk;
loading the encrypted boot image of a guest (20) by
the hypervisor (30) to the guest memory (23);
transforming the guest memory (23) into the protected
guest memory (22);

decrypting contents of the protected guest memory
(22);

starting an execution of a guest (20) as a virtual

machine.

Method according to any one of the preceding claims,

further comprising the steps of



WO 2016/075570 PCT/IB2015/058058

(1)

(i1)

32
keeping the range of the protected guest memory (22)

Oor registers associated with the guest event not
accessible to the hypervisor (30) in decrypted form;
extending a virtualization function of the
hypervisor-controlled system (10) by access methods
to specific guest data associated with the guest

event.

Method according to any one of the preceding claims,

further comprising the steps of

(1)

(i1)

(1ii)

(iv)

defining a non-protected memory area for I/0 buffers
and I/0 control structures of the guest (20) outside
the area of the protected guest memory (22);

starting the I/0 process by the guest (20) using that
non-protected area of the guest memory (22);

the virtualization function of the hypervisor-
controlled system (10) generating a guest event;

the hypervisor (30) reading a reason for the guest

event and performing the I/0 process.

Method according to any one of the preceding claims,

further checking a guest integrity with a checking process

that knows the guest key (24), the checking process

comprising the steps:

(1)

(i1)

(1ii)

the guest (20) reading a memory content in clear text
from the protected guest memory (22) transferring an
arbitrary range of the protected guest memory (22)
via a secure communication path to the checking
process;

requesting the same memory range of the protected
guest memory (22) from the hypervisor (30) and
transferring it to the checking process;

comparing the memory content obtained from the guest
(20) with the result of decrypting the memory content
obtained from the hypervisor (30);



10.

11.

WO 2016/075570 PCT/IB2015/058058

33
(iv) delivering a comparison result depending on the

contents of the two memory ranges;
(v) returning a result of the checking process being
positive if the comparison result equals zero,

otherwise being negative.

A data processing program (240) for execution in a data

processing system (210) comprising an implementation of an
instruction set for performing a method according to anyone
of the claims 1 to 9 when the data processing program (240)

is run on a computer (212).

A computer program product comprising a computer usable

medium including a computer readable program, wherein the

computer readable program when executed on a computer (212)

causes the computer (212) to perform a method for

processing a guest event in a hypervisor-controlled system,

comprising the steps:

(1) the guest event triggering a first firmware service
being specific for the guest event in a firmware
(70), the guest event being associated with a guest
(20) and with guest state (52) and a protected guest
memory (22) accessible only by the guest (20) and the
firmware (70), and a guest key (24);

(ii) the firmware (70) processing information associated
with the guest event, comprising information of the
guest state (52) and the protected guest memory (22),
and presenting only a subset of the information of
the guest state (52) and the protected guest memory
(22) to a hypervisor (30), wherein the subset of the
information is selected to suffice for the hypervisor
(30) to process the guest event;

(iii) the firmware (70) retaining a part of the information

of the guest state (52) and the protected guest



12.

WO 2016/075570 PCT/IB2015/058058

(iv)

(vi)

34
memory (22) that is not being sent to the hypervisor

(30);

the hypervisor (30) processing the guest event based
on the received subset of the information of the
guest state (52) and the protected guest memory (22)
and sending a process result to the firmware (70)
triggering a second firmware service being specific
for the guest event;

the firmware (70) processing the received process
result together with the part of the information of
the guest state (52) and the protected guest memory
(22) that was not sent to the hypervisor (30),
generating a state and/or memory modification;

the firmware (70) performing the state and/or memory
modification associated with the guest event at the

protected guest memory (22).

A data processing system (210) for execution of a data

processing program (240) comprising software code portions

for performing a method according to anyone of the claims 1

to 9.



WO 2016/075570 PCT/IB2015/058058
1/6

20 guest
/74
O hypervisor Il/\loe:tvsv':)?li?r?ge
o~ firmware
2~ hardware

Fig. 1 (Prior Art)



PCT/IB2015/058058

WO 2016/075570

2/6

91¢ /0L

92 by 2 ¥z v v 2y v //
_ ,/ \ ,/ //,/ (U
|
Aoy Koy Aoy
Aoy c1sonb 21sanb L11sanb
dleAlld
X10 $1s8n X10 £1s8n X10 z1sen _ 9
NdD / 8Jemuuly paisni|
y1senb e1sonb 21senb L1senb
aJnossun aInoas EIBER IR

J

J

\ losinJadAy

[

0} 7%

O}

0¢

0¢

[/

0c 0e

2 ‘b4



PCT/IB2015/058058
3/6

WO 2016/075570

X0 EsE \\\
AH 2o \\N\\\\N&m\
01607 uoljosloid slels 28 —~__—wed})
7 SS90V e SSO00Y  « 1SONE) ¥~ P
Aowspy Aiowsiy 183 Juswebeuew
1X81U09
7 \\ \, NdO v8 ~
i T \
09 £ \ es 0S
9i¢ alemuliH

0.

7 g s
\\\\\\\\/mm SO

0]



WO 2016/075570 PCT/IB2015/058058
4/6

‘U)
~
(@)
(-
F 3

Fig. 4



WO 2016/075570 PCT/IB2015/058058
5/6

S510

A 4

S520

A 4

S530

A 4

S540

A 4

S550

S560

S570

A 4

S580

A 4

S590

end

Fig. 5



WO 2016/075570 PCT/IB2015/058058
6/6

210

212

\ Computer System 228
\
230
Memory 234
<
516 p D
\ RAM Storage
System
Processing Unit 240
CPU Cache |« AN ,_Iﬁ'
A
218 / 242 Tc
N 23
224 22<
\ v 220
. VO Network Adapter /
Display [¢—» Interfaces P

214 . External

Devices

Fig. 6



INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2015/058058

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC, WPI, CNPAT, CNKI, IEEE, GOOGLE: hypervisor, virtual machine, cloud?, secur+, safety, privacy, indication, client,

guest?, user?, firmware, service, key+, event, encrypt+

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 8479190 B2 (SONY CORPORATION) 02 July 2013 (2013-07-02) 1-12
description, column 2, line 50 to column 5, line 15

A CN 102420692 A (GCI SCI&TECHNOLOGY CO., LTD.) 18 April 2012 (2012-04-18) 1-12
the whole document

A CN 103403732 A (HUAWEI TECHNOLOGIES CO., LTD.) 20 November 2013 (2013-11-20) 1-12
the whole document

PX GB 2515536 A (INTERNATIONAL BUSINESS MACHINES CORPORATION) 31 1-12

December 2014 (2014-12-31)

description, pages 11-16, and figures 1-6

D Further documents are listed in the continuation of Box C.

See patent family annex.

#  Special categories of cited documents:

. document defining the general state of the art which is not considered

A to be of particular relevance

“gr earlier application or patent but published on or after the international
filing date

“ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“«0 document referring to an oral disclosure, use, exhibition or other
means

«pr document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

wp

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

wy»

“&”

Date of the actual completion of the international search

Date of mailing of the international search report

15 January 2016 14 February 2016
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA WU,Qing

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

Facsimile No. (86-10)62019451

Telephone No. (86-10)61648111

Form PCT/ISA/210 (second sheet) (July 2009)




INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/IB2015/058058
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
Us 8479190 B2 02 July 2013 CN 101231595 A 30 July 2008
IP 2008181228 A 07 August 2008
oN 102420692 A 18 April2012 Nome
oN 1 63403732 ------ A 20 November 2013 WO 2014()59575 Ai -------- 24- Apnl 2014
e 2515536 A 31December2014 WO 2014207581 A2 31 December 2014
DE 112014000965 TS 03 December 2015

Form PCT/ISA/210 (patent family annex) (July 2009)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

