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SYNTHESIZING PATIENT-SPECIFIC SPEECH MODELS 

FIELD OF THE INVENTION 

The present invention is related to the field of speech-signal processing, particularly for 

diagnostic purposes.  

5 BACKGROUND 

Sakoe and Chiba, "Dynamic Programming Algorithm Optimization for Spoken Word 

Recognition," IEEE Transactions on Acoustics, Speech, and Signal Processing 26.2 (1978): 43

49, which is incorporated herein by reference, reports on an optimum dynamic programming (DP) 

based time-normalization algorithm for spoken word recognition. First, a general principle of 

10 time-normalization is given using a time-warping function. Then, two time-normalized distance 

definitions, called symmetric and asymmetric forms, are derived from the principle. These two 

forms are compared with each other through theoretical discussions and experimental studies. The 

symmetric form algorithm superiority is established. A technique, called slope constraint, is 

introduced, in which the warping function slope is restricted so as to improve discrimination 

15 between words in different categories.  

Rabiner, Lawrence R., "A tutorial on hidden Markov models and selected applications in 

speech recognition," Proceedings of the IEEE 77.2 (1989): 257-286, which is incorporated herein 

by reference, reviews theoretical aspects of types of statistical modeling, and shows how they have 

been applied to selected problems in machine recognition of speech.  

20 US Patent 5,864,810 describes a method and apparatus for automatic recognition of speech, 

which adapts to a particular speaker by using adaptation data to develop a transformation through 

which speaker independent models are transformed into speaker adapted models. The speaker 

adapted models are then used for speaker recognition and achieve better recognition accuracy than 

non-adapted models. In a further embodiment, the transformation-based adaptation technique is 

25 combined with a known Bayesian adaptation technique.  

US Patent 9,922,641 describes a method that includes receiving input speech data from a 

speaker in a first language, and estimating, based on a universal speech model, a speaker transform 

representing speaker characteristics associated with the input speech data. The method also 

includes accessing a speaker-independent speech model for generating speech data in a second 

30 language that is different from the first language. The method further includes modifying the 

speaker-independent speech model using the speaker transform to obtain a speaker-specific speech 
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model, and generating speech data in the second language using the speaker-specific 

speech model.  

Reference to any prior art in the specification is not an acknowledgement or suggestion 

that this prior art forms part of the common general knowledge in any jurisdiction or that this prior 

5 art could reasonably be expected to be combined with any other piece of prior art by a skilled 

person in the art.  

SUMMARY OF THE INVENTION 

By way of clarification and for avoidance of doubt, as used herein and except where the 

context requires otherwise, the term "comprise" and variations of the term, such as "comprising", 

10 "comprises" and "comprised", are not intended to exclude further additions, components, integers 

or steps.  

According to a first aspect of the invention, there is provided a method, comprising: 

receiving a plurality of subject-uttered speech samples {um}, m=1...M, which were uttered by a 

subject while in a first state with respect to a disease; obtaining at least one reference discriminator, 

15 which was trained, using multiple reference first-state speech samples uttered in the first state and 

multiple reference second-state speech samples uttered in a second state with respect to the disease, 

to discriminate between first-state utterances uttered in the first state and second-state utterances 

uttered in the second state, wherein none of the reference first-state speech samples and reference 

second-state speech samples was uttered by the subject; and using {u%} and the at least one 

20 reference discriminator, even without using any other speech samples uttered by the subject while 

in a second state with respect to the disease, adapting the at least one reference discriminator to 

synthesize a subject-specific discriminator, which is specific to the subject and is configured to 

generate, in response to one or more test utterances uttered by the subject, an output indicating a 

likelihood that the subject is in the second state.  

25 According to a second aspect of the present invention, there is provided an apparatus, 

comprising: a communication interface; and a processor, configured to perform the method of the 

first aspect.  

According to a third aspect of the invention, there is provided a computer software product 

comprising a tangible non-transitory computer-readable medium in which program instructions 

30 are stored, which instructions, when read by a processor, cause the processor to perform the 

method of the first aspect.  

There is provided, in accordance with some embodiments of the present invention, an 
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apparatus including a communication interface and a processor. The processor is configured to 

receive, via the communication interface, a plurality of speech samples {u }, m=1...M, which 

were uttered by a subject while in a first state with respect to a disease, and using {um} and at 

least one reference discriminator, which is not specific to the subject, synthesize a subject-specific 

5 discriminator, which is specific to the subject and is configured to generate, in response to one or 

more test utterances uttered by the subject, an output indicating a likelihood that the subject is in 

a second state with respect to the disease.  

In some embodiments, the first state is a stable state and the second state is an unstable 

state.  

10 In some embodiments, the disease is selected from the group of diseases consisting of: 

congestive heart failure (CHF), coronary heart disease, arrhythmia, chronic obstructive pulmonary 

disease (COPD), asthma, interstitial lung disease, pulmonary edema, pleural effusion, Parkinson's 

disease, and depression.  

In some embodiments, the processor is configured to synthesize the subject-specific 

15 discriminator by: 

generating a first-state subject-specific speech model 00 that returns, for any speech sample 

s, a first distance measure indicative of a first degree of similarity between s and first-state speech 

of the subject, and 

generating a second-state subject-specific speech model 01 that returns a second distance 

20 measure indicative of a second degree of similarity between s and second-state speech of the 

subject.  

In some embodiments, 

the at least one reference discriminator includes K reference discriminators {Pk}, k=1.. .K, 

{(pk} including: 

25 respective first-state reference speech models that return respective first distances 

{DO°(s)}, which indicate first degrees of similarity between s and respective reference first

state speech uttered by K groups of one or more other subjects, and 

respective second-state reference speech models that return respective second 

2a
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distances {D1(s)1, which indicate second degrees of similarity between s and respective 

reference second-state speech uttered by the groups, 

00 returning the first distance measure by applying a function to {D (s)1, and 

01 returning the second distance measure by applying the function to {D(s)} 

5 In some embodiments, the function, when applied to {D (s)}, returns a weighted average 

of {D'(s)},D' (s) being a non-decreasing function of D (s).  

In some embodiments, the weighted average is _ _1 wkD'k (s) for K weights {wk}, k = 

1...K, that minimize a sum of respective distance measures for {u" I with respect to a constraint, 

the distance measure for each speech sample um belonging to { u" } being based on 

10 EK_ /D0(m) 

In some embodiments, the at least one reference discriminator includes: 

a first-state reference speech model that returns a first distance DO(s), which indicates a 

first degree of similarity between s and reference first-state speech, and 

a second-state reference speech model that returns a second distance D1 (s), which 

15 indicates a second degree of similarity between s and reference second-state speech.  

In some embodiments, 

the first-state reference speech model returns DO(s) by applying a first function to a set of 

feature vectors V(s) extracted from s, 

the second-state reference speech model returns D 1(s) by applying a second function to 

20 V(s), and 

generating 00 and 01 includes generating 00 and 01 using a normalizing transformation T 

that optimally transforms {V(u% ) Iunder one or more predefined constraints.  

In some embodiments, T minimizes Eucto }A(T(V(u)),V(uo)) with respect to a 

constraint, A being a third distance measure between any two sets of features, and uo being a 

25 canonical utterance of content of u E u}.  

In some embodiments, A is a non-decreasing function of a Dynamic Time Warping (DTW) 

distance.  

In some embodiments, T minimizes Eucto f ' (T(V(u))) with respect to a constraint, 

f'o being a non-decreasing function of the first function.  

30 In some embodiments, 

00returns the first distance measure by applying the first function to T(V(s)), and 

3
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01returns the second distance measure by applying the second function to T(V(s)).  

In some embodiments, 

generating 00 includes generating 00 by applying a denormalizing transformation T', which 

optimally transforms first parameters of the first-state reference speech model under one or more 

5 predefined constraints, to the first parameters, and 

generating 01 includes generating 01 by applying T' to second parameters of the second

state reference speech model.  

In some embodiments, T' minimizes T'(D0 )(u) under the constraints, T'(DO)(s) 

being the first distance returned by the first-state reference speech model under the transformation.  

10 In some embodiments, 

the first-state reference speech model includes a first Hidden Markov Model (HMM) 

including multiple first kernels, the first parameters including first-kernel parameters of the first 

kernels, and 

the second-state reference speech model includes a second HMM including multiple 

15 second kernels, the second parameters including second-kernel parameters of the second kernels.  

In some embodiments, the first kernels and second kernels are Gaussian, and T' includes: 

an affine transformation operating on a mean vector of any one or more Gaussian kernels, 

and 

a quadratic transformation operating on a covariance matrix of any one or more Gaussian 

20 kernels.  

In some embodiments, 

the first-state reference speech model includes multiple first reference frames, the first 

parameters including first-reference-frame features of the first reference frames, and 

the second-state reference speech model includes multiple second reference frames, the 

25 second parameters including second-reference-frame features of the second reference frames.  

In some embodiments, 

the reference first-state speech includes multiple first-state reference speech samples 

uttered by a first subset of R other subjects, 

the reference second-state speech includes multiple second-state reference speech samples 

30 uttered by a second subset of the other subjects, and 

the processor is further configured to: 

identify respective transformations Tr, r=1...R, for the other subjects, Tr being, 

4
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for each rth one of the other subjects, a normalizing transformation that optimally 

transforms {D} under one or more predefined constraints, {D} being a union of (i) those 

of the first-state reference speech samples uttered by the other subject and (ii) those of the 

second-state reference speech samples uttered by the other subject, 

5 compute modified sets of features by, for each rth one of the other subjects, applying 

Tr to {V(Dr)}, and 

generate the reference discriminator from the modified sets of features.  

In some embodiments, 

the first-state reference speech model and the second-state reference speech model are 

10 identical with respect to a first set of parameters and differ from one another with respect to a 

second set of parameters, 

the processor is configured to generate 00 such that 00is identical to the first-state reference 

speech model with respect to the second set of parameters, and 

the processor is configured to generate 01 such that 01 is identical to 00 with respect to the 

15 first set of parameters and identical to the second-state reference speech model with respect to the 

second set of parameters.  

In some embodiments, 

the first-state reference speech model and the second-state reference speech model include 

different respective Hidden Markov Models (HMMs), each including multiple kernels having 

20 respective kernel weights, 

the first set of parameters includes the kernel weights, and 

the second set of parameters includes kernel-parameters of the kernels.  

In some embodiments, 

the at least one reference discriminator includes a reference neural network associated with 

25 multiple parameters, which returns, for any one or more speech samples, another output indicating 

a likelihood of the speech samples having been uttered in the second state, and 

the processor is configured to synthesize the subject-specific discriminator by synthesizing 

a subject-specific neural network, by tuning a subset of the parameters so as to minimize an error 

of the other output for a set of input speech samples that includes {u}.  

30 In some embodiments, the parameters include a plurality of neuronal weights, and the 

subset of the parameters includes a subset of the weights.  

In some embodiments, the reference neural network includes multiple layers, and the 

subset of the weights includes at least some of the weights associated with one of the layers but 

5
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does not include any of the weights associated with another one of the layers.  

In some embodiments, 

the layers include (i) one or more acoustic layers of neurons, which generate an acoustic

layer output in response to an input based on the speech samples, (ii) one or more phonetic layers 

5 of neurons, which generate a phonetic-layer output in response to the acoustic-layer output, and 

(iii) one or more discriminative layers of neurons, which generate the other output in response to 

the phonetic-layer output, and 

the subset of the weights includes at least some of the weights associated with the acoustic 

layers and the discriminative layers but does not include any of the weights associated with the 

10 phonetic layers.  

In some embodiments, the subset of the parameters includes a speaker-identifying 

parameter identifying a speaker of the speech samples.  

In some embodiments, the set of input speech samples further includes one or more second

state speech samples.  

15 There is further provided, in accordance with some embodiments of the present invention, 

a method including receiving a plurality of speech samples {u}, m=1...M, which were uttered 

by a subject while in a first state with respect to a disease. The method further includes, using 

{u%} and at least one reference discriminator, which is not specific to the subject, synthesizing a 

subject-specific discriminator, which is specific to the subject and is configured to generate, in 

20 response to one or more test utterances uttered by the subject, an output indicating a likelihood 

that the subject is in a second state with respect to the disease.  

There is further provided, in accordance with some embodiments of the present invention, 

a computer software product including a tangible non-transitory computer-readable medium in 

which program instructions are stored. The instructions, when read by a processor, cause the 

25 processor to receive a plurality of speech samples {u%} m=1...M, which were uttered by a subject 

while in a first state with respect to a disease, and using {u } and at least one reference 

discriminator, which is not specific to the subject, synthesize a subject-specific discriminator, 

which is specific to the subject and is configured to generate, in response to one or more test 

utterances uttered by the subject, an output indicating a likelihood that the subject is in a second 

30 state with respect to the disease.  

The present invention will be more fully understood from the following detailed 

description of embodiments thereof, taken together with the drawings, in which: 

6
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BRIEF DESCRIPTION OF THE DRAWINGS 

Fig. 1 is a schematic illustration of a system for evaluating the physiological state of a 

subject, in accordance with some embodiments of the present invention; 

Figs. 2-4 are flow diagrams for techniques for generating subject-specific speech models, 

5 in accordance with some embodiments of the present invention; and 

Fig. 5 is a schematic illustration of a neural-network discriminator, in accordance with 

some embodiments of the present invention.  

DETAILED DESCRIPTION OF EMBODIMENTS 

GLOSSARY 

10 In the context of the present application, including the claims, a subject is said to be in an 

"unstable state" with respect to a physiological condition (or "disease") if the subject is suffering 

from an acute worsening of the condition. Otherwise, the subject is said to be in a "stable state" 

with respect to the condition.  

In the context of the present application, including the claims, a "speech model" refers to 

15 a computer-implemented function configured to map a speech sample to an output indicating a 

property of the sample. For example, given a speech sample s uttered by a subject, a speech model 

may return a distance measure D(s) indicating a degree of similarity between s and reference 

speech of the subject or of other subjects.  

In the context of the present application, including the claims, a "discriminator" refers to a 

20 group of one or more models, typically machine-learned models, configured to discriminate 

between various states. For example, given a set of states, such as "stable" and "unstable," with 

respect to a particular physiological condition, a discriminator may, based on a speech sample of 

a subject, generate an output indicating the likelihood that the subject is in one of the states.  

OVERVIEW 

25 For a subject who suffers from a physiological condition, it may be desired to train a 

discriminator configured to ascertain, based on the subject's speech, whether the subject is in a 

stable state or an unstable state with respect to the condition. A challenge, however, is that it may 

be difficult to acquire a sufficient number of training samples for each of the states. For example, 

for a subject who is generally stable, a sufficient number of speech samples uttered while in the 

30 stable state might be available, but it may be difficult to acquire a sufficient number of speech 

samples uttered while in the unstable state. For other subjects, it may be straightforward to collect 

7



WO 2022/003451 PCT/IB2021/054952 

a sufficient number of unstable-state samples (e.g., following admittance of the subject to a 

hospital), but not a sufficient number of stable-state samples.  

To address this challenge, embodiments of the present invention generate a subject-specific 

discriminator, which is specific to the subject (i.e., is configured to discriminate for the subject), 

5 from a reference discriminator, which is not specific to the subject. To generate the subject

specific discriminator, the processor uses speech samples uttered by the subject while in one of 

the states to modify, or adapt, the reference discriminator. This process is referred to as a 

"synthesis" of the subject-specific discriminator, given that, advantageously, no speech samples 

uttered by the subject while in the other state are required.  

10 The techniques described herein may be used to synthesize a discriminator for any suitable 

physiological condition such as congestive heart failure (CHF), coronary heart disease, atrial 

fibrillation or any other type of arrhythmia, chronic obstructive pulmonary disease (COPD), 

asthma, interstitial lung disease, pulmonary edema, pleural effusion, Parkinson's disease, or 

depression.  

15 SYSTEM DESCRIPTION 

Reference is initially made to Fig. 1, which is a schematic illustration of a system 20 for 

evaluating the physiological state of a subject 22, in accordance with some embodiments of the 

present invention.  

System 20 comprises an audio-receiving device 32, such as a mobile phone, a tablet 

20 computer, a laptop computer, a desktop computer, a voice-controlled personal assistant (such as 

an Amazon EchoTM or a Google HomeTM device), a smart speaker device, or a dedicated medical 

device used by subject 22. Device 32 comprises circuitry including an audio sensor 38 (e.g., a 

microphone), which converts sound waves to analog electric signals, an analog-to-digital (A/D) 

converter 42, a processor 36, and a network interface, such as a network interface controller (NIC) 

25 34. Typically, device 32 further comprises a storage device such as a solid-state drive, a screen 

(e.g., a touchscreen), and/or other user interface components, such as a keyboard and a speaker.  

In some embodiments, audio sensor 38 (and, optionally, A/D converter 42) belong to a unit that is 

external to device 32. For example, audio sensor 38 may belong to a headset that is connected to 

device 32 by a wired or wireless connection, such as a Bluetooth connection.  

30 System 20 further comprises a server 40, comprising circuitry including a processor 28, a 

storage device 30, such as a hard drive or flash drive, and a network interface, such as a network 

interface controller (NIC) 26. Server 40 may further comprise a screen, a keyboard, and/or any 

8
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other suitable user interface components. Typically, server 40 is located remotely from device 32, 

e.g., in a control center, and server 40 and device 32 communicate with one another, via their 

respective network interfaces, over a network 24, which may include a cellular network and/or the 

Internet.  

5 System 20 is configured to evaluate the subject's physiological state by processing one or 

more speech signals (also referred to herein as "speech samples") received from the subject.  

Typically, processor 36 of device 32 and processor 28 of server 40 cooperatively perform the 

receiving and processing of at least some of the speech samples. For example, as the subject 

speaks into device 32, the sound waves of the subject's speech may be converted to an analog 

10 signal by audio sensor 38, which may in turn be sampled and digitized by A/D converter 42. (In 

general, the subject's speech may be sampled at any suitable rate, such as a rate of between 8 and 

45 kHz.) The resulting digital speech signal may be received by processor 36. Processor 36 may 

then communicate the speech signal, via NIC 34, to server 40, such that processor 28 receives the 

speech signal via NIC 26. Subsequently, processor 28 may process the speech signal.  

15 To process the subject's speech signals, processor 28 uses a subject-specific discriminator 

44, which is specific to subject 22 and is stored in storage device 30. Based on each input speech 

signal, the subject-specific discriminator generates an output indicating a likelihood that the 

subject is in a particular physiological state. For example, the output may indicate a likelihood 

that the subject is in a stable state, and/or a likelihood that the subject is in an unstable state, with 

20 respect to a physiological condition. Alternatively or additionally, the output may include a score 

indicating the degree to which the subject's state appears to be unstable. Processor 28 is further 

configured to synthesize subject-specific discriminator 44 prior to using the subject-specific 

discriminator, as described in detail below with reference to the subsequent figures.  

In response to the output from the subject-specific discriminator, the processor may 

25 generate any suitable audio or visual output to the subject and/or to another person, such as the 

subject's physician. For example, processor 28 may communicate the output to processor 36, and 

processor 36 may then communicate the output to the subject, e.g., by displaying a message on the 

screen of device 32. Alternatively or additionally, in response to the subject-specific discriminator 

outputting a relatively high likelihood that the subject's state is unstable, the processor may 

30 generate an alert indicating that the subject should take medication or visit a physician. Such an 

alert may be communicated by placing a call or sending a message (e.g., a text message) to the 

subject, to the subject's physician, and/or to a monitoring center. Alternatively or additionally, in 

response to the output from the discriminator, the processor may control a medication

administering device so as to adjust an amount of medication administered to the subject.  

9
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In other embodiments, subsequently to synthesizing the subject-specific discriminator, 

processor 28 communicates the subject-specific discriminator to processor 36, and processor 36 

then stores the discriminator in a storage device belonging to device 32. Subsequently, processor 

36 may use the discriminator to assess the physiological state of subject 22. As yet another 

5 alternative, even the synthesis of the subject-specific discriminator may be performed by processor 

36. (Notwithstanding the above, the remainder of the present description, for simplicity, generally 

assumes that processor 28 - also referred to hereinbelow simply as "the processor" - performs the 

synthesis.) 

In some embodiments, device 32 comprises an analog telephone that does not comprise an 

10 A/D converter or a processor. In such embodiments, device 32 sends the analog audio signal from 

audio sensor 38 to server 40 over a telephone network. Typically, in the telephone network, the 

audio signal is digitized, communicated digitally, and then converted back to analog before 

reaching server 40. Accordingly, server 40 may comprise an A/D converter, which converts the 

incoming analog audio signal - received via a suitable telephone-network interface - to a digital 

15 speech signal. Processor 28 receives the digital speech signal from the A/D converter, and then 

processes the signal as described above. Alternatively, server 40 may receive the signal from the 

telephone network before the signal is converted back to analog, such that the server need not 

necessarily comprise an A/D converter.  

As further described below with reference to the subsequent figures, processor 28 uses 

20 training speech samples, which were uttered by subject 22 while in a known physiological state, 

to synthesize subject-specific discriminator 44. Each of these samples may be received via a 

network interface, as described above, or via any other suitable communication interface, such as 

a flash-drive interface. Similarly, at least one reference discriminator that is not specific to subject 

22, which is also used to synthesize the subject-specific discriminator, or training samples from 

25 other subjects that may be used to generate the reference discriminator, may be received by 

processor 28 via any suitable communication interface.  

Processor 28 may be embodied as a single processor, or as a cooperatively networked or 

clustered set of processors. For example, a control center may include a plurality of interconnected 

servers comprising respective processors, which cooperatively perform the techniques described 

30 herein. In some embodiments, processor 28 belongs to a virtual machine.  

In some embodiments, the functionality of processor 28 and/or of processor 36, as 

described herein, is implemented solely in hardware, e.g., using one or more fixed-function or 

general-purpose integrated circuits, Application-Specific Integrated Circuits (ASICs), and/or 
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Field-Programmable Gate Arrays (FPGAs). Alternatively, this functionality may be implemented 

at least partly in software. For example, processor 28 and/or processor 36 may be embodied as a 

programmed processor comprising, for example, a central processing unit (CPU) and/or a 

Graphics Processing Unit (GPU). Program code, including software programs, and/or data may be 

5 loaded for execution and processing by the CPU and/or GPU. The program code and/or data may 

be downloaded to the processor in electronic form, over a network, for example. Alternatively or 

additionally, the program code and/or data may be provided and/or stored on non-transitory 

tangible media, such as magnetic, optical, or electronic memory. Such program code and/or data, 

when provided to the processor, produce a machine or special-purpose computer, configured to 

10 perform the tasks described herein.  

SYNTHESIZING THE SUBJECT-SPECIFIC DISCRIMINATOR 

As described above in the Overview, conventional techniques for generating a 

discriminator for discriminating between two states typically requires a sufficient number of 

training samples for each of the states. However, in some situations, the processor may have 

15 sufficient training samples for only one of the states. To address such situations, the processor 

synthesizes the subject-specific discriminator.  

To perform this synthesis, the processor first receives a plurality of speech samples {u, 

m=1...M, which were uttered by the subject while in a first state (e.g., a stable state) with respect 

to a disease. Next, using {u} and at least one reference discriminator, which is not specific to 

20 the subject, the processor synthesizes the subject-specific discriminator. Advantageously, despite 

the processor having few or no speech samples uttered by the subject while in the second state 

(e.g., an unstable state) with respect to the disease, the subject-specific discriminator may generate, 

in response to one or more test utterances uttered by the subject, an output indicating a likelihood 

that the subject is in the second state.  

25 Multi-model discriminators 

In some embodiments, the subject-specific discriminator includes a first-state subject

specific speech model 00 and a second-state subject-specific speech model 01. For any speech 

sample s, 00 returns a first distance measure indicative of a degree of similarity between s and first

state speech of the subject, while 01 returns a second distance measure indicative of a degree of 

30 similarity between s and second-state speech of the subject. In such embodiments, the subject

specific discriminator may generate an output based on a comparison of the two distance measures 

to one another. For example, assuming a convention in which a greater distance indicates less 

11
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similarity, the subject-specific discriminator may generate an output indicating that the subject is 

likely in the first state in response to the ratio between the first distance measure and the second 

distance measure being less than a threshold. Alternatively, the subject-specific discriminator may 

output respective likelihoods for the two states based on the distance measures, or simply output 

5 the two distance measures.  

To synthesize such a multi-model discriminator, various techniques may be used.  

Examples of such techniques are hereby described with reference to Figs. 2-4.  

(i) First Technique 

Reference is now made to Fig. 2, which is a flow diagram for a first technique 46 for 

10 generating 00 and 01, in accordance with some embodiments of the present invention.  

Technique 46 begins at a first receiving-or-generating step 48, at which the processor 

receives or generates K 1 reference discriminators {(pk}, k=1...K. (It is noted that the processor 

may receive some of the discriminators while generating others of the discriminators.) {(pk} 

comprise respective first-state reference speech models and respective second-state reference 

15 speech models that are specific to the same K groups of one or more other subjects, referred to 

herein as "reference subjects." In other words, for any speech sample s, the first-state reference 

speech models return respective first distances {DO (s)1, k=1...K, which indicate degrees of 

similarity between s and respective reference first-state speech uttered by the K groups, while the 

second-state reference speech models return respective second distances {D(s)1, k=1...K, which 

20 indicate degrees of similarity between s and respective reference second-state speech uttered by 

the K groups. In some embodiments, each of the reference speech models comprises a parametric 

statistical speech model, such as a Hidden Markov Model (HMM).  

Subsequently, at a speech-sample-receiving step 50, the processor receives one or more 

first-state speech samples {u,} from subject 22 (Fig. 1). Next, at a first first-state-model

25 generating step 52, the processor computes a function "f' for transforming the set of distances 

{D,(s) } into a single transformed distance f({ D(s) 1) such that another function of the 

transformed distances for u} is minimized with respect to one or more suitable constraints. The 

processor thus generates 00 such that the distance measure returned by 00, for any speech sample 

s, is computed by applying the function "f 'to {D,0(s)1.  

30 For example, the processor may identify the function "f' that minimizes the sum 

E =1 If({D(um)})q, q > 0, with respect to the constraints. Alternatively, the function "f' may 

minimize the weighted sum Em= 1PmIf({D,0(um)})|4, with respect to the constraints. In such 
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embodiments, the weight Om for each speech sample may be a function of the quality of the sample, 

in that higher-quality samples may be assigned greater weights. Alternatively or additionally, 

those speech samples whose transformed distances are greater than a predefined threshold (such 

as a particular percentile of the transformed distances) may be assumed to be outliers, and may 

5 therefore be assigned a weighting of zero.  

Subsequently, at a first second-state-model-generating step 54, the processor generates 01 

by applying the same function to {D(s)}. In other words, the processor generates 01 such that 

the distance measure returned by 01, for any speech sample s, is equal to f({D1(s)}).  

Effectively, in technique 46, the processor uses the first-state speech samples of the subject 

10 to learn the manner in which the subject's voice in the first state may be best approximated as a 

function of the voices of the K groups of reference subjects in the first state. The processor then 

assumes that the same approximation applies to the second state, such that the function used for 

00 may also be used for 01.  

As a specific example, the function computed in first-state-model-generating step 52, when 

15 applied to {D (s)1, may return a weighted average of {D' (s)1, D'0(s)beinganon-decreasing 

function of D2(s) such as ID2(s)IP for p > 1. In other words, the distance measure returned by 00, 

for any speech sample s, may be equal to EkwkD'k (s) for K weights {wk}, k = 1...K.  

Similarly, in such embodiments, the distance measure returned by 01 may be equal to 

>k_1wkD'(s), D'(s) being the same non-decreasing function of Dj(s). Effectively, such a 

20 function approximates the subject's voice as a weighted average of the voices of the K groups of 

reference subjects.  

In such embodiments, to compute the K weights in first-state-model-generating step 52, 

the processor may minimize the sum of respective distance measures for {u%} with respect to a 

constraint (e.g., f=1 Wk = 1), the distance measure for each speech sample um belonging to {u } 

25 being based on the transformed distance f_1 wD' (um). For example, the processor may 

minimize, with respect to a validity constraint, m1wkD'(um) for q > 0. (For 

embodiments in which D'(s) = ID(s)IP, q is typically made equal to i/p.) As noted above, the 

transformed distances may be weighted, e.g., in response to the varying qualities of the samples.  

In some embodiments, to simplify the subject-specific models, the processor nullifies 

30 weights that are relatively low, such as weights that are less than a particular percentile of {wk} 

and/or less than a predefined threshold. The processor may then rescale the remaining non-zero 

weights such that the sum of the weights is one. For example, the processor may nullify all weights 
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but the largest weight wmax, such that the distance measure returned by 00 is equal to D'% , where 

kmax is the index of wmax. Thus, effectively, the subject's voice may be approximated by that of a 

single one of the K groups of reference subjects, ignoring the other K-i groups.  

(ii) Second Technique 

5 Reference is now made to Fig. 3, which is a flow diagram for a second technique 56 for 

generating 00 and 01, in accordance with some embodiments of the present invention.  

Technique 56 begins at a second receiving-or-generating step 58, at which the processor 

receives or generates a first-state reference speech model and a second-state reference speech 

model (each of which is not specific to the subject). Similarly to each of the first-state reference 

10 models in technique 46 (Fig. 2), the first-state reference speech model in technique 56 returns a 

first distance D(s), which indicates a degree of similarity between any speech sample s and 

reference first-state speech. Likewise, similarly to each of the second-state reference models in 

technique 46, the second-state reference speech model in technique 56 returns a second distance 

D 1 (s), which indicates a degree of similarity between s and reference second-state speech.  

15 For example, the first-state reference speech model may return Do(s) by applying a first 

function fo to a set V(s) of feature vectors extracted from s (i.e., DO(s) may equal fo(V(s))), while 

the second-state reference speech model may return D 1(s) by applying a second function fi to 

V(s) (i.e., D1 (s) may equal fi(V(s))). Each of the reference speech models may comprise a 

parametric statistical speech model, such as a Hidden Markov Model (HMM).  

20 However, as opposed to the case in technique 46, the two reference models are not 

necessarily generated from reference speech of the same group of subjects. For example, the first

state reference speech model may be generated from reference first-state speech of one group of 

one or more subjects, while the second-state reference speech model may be generated from 

reference second-state speech of another group of one or more subjects. Alternatively, one or both 

25 of the models may be generated from artificial speech generated by a speech synthesizer. Hence, 

technique 56 differs from technique 46 as described in detail immediately below.  

Subsequently to performing second receiving-or-generating step 58, the processor receives 

u% } at speech-sample-receiving step 50. Next, in some embodiments, at a transformation

computing step 60, the processor computes a transformation T that optimally transforms {V(u0)} 

30 under one or more predefined constraints. T may be referred to as a "feature-normalizing" 

transformation, in that T transforms features of the subject's speech samples so as to neutralize the 

vocal-tract particularity of the subject, i.e., T renders the speech samples more generic or 
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canonical.  

For example, T may minimize Ese f'O (T(V(u))) with respect to a constraint, f'o 

being a non-decreasing function of fo. (For example, f'o(*) may equal Ifo(*)IP for p > 1.) 

Alternatively, T may minimize EuctAu A(T(V(u)), V(uo)) under one or more predefined validity 

5 constraints, where A is a distance measure between any two sets of feature vectors, and uo is, for 

each sample u belonging to {u" }, a canonical utterance of the content of u, such as a synthesized 

utterance of the content. In some embodiments, A is a non-decreasing function of a Dynamic Time 

Warping (DTW) distance, which may be computed as described in the reference to Sakoe and 

Chiba cited in the Background, which is incorporated herein by reference. For example, 

10 A(T(V(u)), V(uo)) may be equal to IDTW(T(V(u)), V(uo))IP, where DTW(V1, V2 ) is the DTW 

distance between two sets of feature vectors V1 and V2 , and p > 1.  

(It is noted that, typically, the DTW distance between two sets of feature vectors is 

computed by mapping each feature vector in one set to a respective feature vector in the other set 

such that the sum of respective local distances between the pairs of feature vectors is minimized.  

15 The local distance between each pair of vectors may be computed by summing the squared 

differences between the corresponding components of the vectors, or using any other suitable 

function.) 

Typically, the processor extracts, from each received speech sample s, N overlapping or 

non-overlapping frames, N being a function of the predefined length of each frame. V(s) thus 

20 includes N feature vectors {vn}, n=1...N, one feature vector per frame. (Each feature vector may 

include, for example, a set of cepstral coefficients and/or a set of linear prediction coefficients for 

the frame.) Typically, T includes a transformation that operates on each feature vector 

independently, i.e., T(V(s)) = {T(vn)}, n=1...N. For example, T may include an affine 

transformation that operates on each feature vector independently, i.e., T(V(s)) may be equal to 

25 {Av + b}, n=1...N, where A is an LxL matrix and b is an LxI vector, L being the length of each 

vector vn.  

Subsequently to computing T, the processor, at a second first-state-model-generating step 

62, generates 00(the first-state model for the subject) such that, for any speech sample s, 00returns 

fo(T(V(s))). Similarly, at a second second-state-model-generating step 64, the processor generates 

30 01 such that 01returns fi(T(V(s))).  

In other embodiments, rather than computing T, the processor, at an alternate 

transformation-computing step 66, computes an alternate transformation T', which optimally 
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transforms parameters of the first-state reference speech model under one or more predefined 

constraints. For example, the processor may compute T' such that T' minimizes 

XuEu%} T'(D)(u) under the constraints, T'(D)(s) being the distance returned by the first-state 

reference speech model under the transformation. Alternatively, subsequently to computing T, 

5 the processor may derive T' from T such that applying T' to the model parameters has the same 

effect as applying T to the features of the subject's speech samples. T' may be referred to as a 

"parameter-denormalizing" transformation, in that T' transforms the parameters of the reference 

models to better match the vocal-tract particularity of the subject, i.e., T' renders the reference 

models more specific to the subject.  

10 In such embodiments, subsequently to computing T', the processor, at a third first-state

model-generating step 68, generates 00 by applying T' to parameters of the first-state reference 

speech model. Similarly, at a third second-state-model-generating step 70, the processor generates 

01 by applying T' to parameters of the second-state reference speech model. In other words, the 

processor generates 00 such that 00returns, for any speech sample s, T'(D)(s) = f'o(V(s)), where 

15 f'o differs from fo by virtue of using the T'-modified parameters of the first-state reference speech 

model; similarly, the processor generates 01 such that 01 returns T'(D')(s) = f'1(V(s)), where f'1 

differs from fi by virtue of using the T'-modified parameters of the second-state reference speech 

model. (For embodiments in which T' is derived from T as described above, f'o(V(s))= 

fo(T(V(s))) and f'1(V(s)) = fi(T(V(s))).) 

20 For example, for cases in which each of the reference speech models includes an HMM 

including multiple kernels, each subject-specific model may, per the former embodiments, input 

T(V(s)) to the kernels of the corresponding reference speech model. Alternatively, per the latter 

embodiments, the parameters of the kernels may be transformed using T', and V(s) may then be 

input to the transformed kernels.  

25 As a specific example, each reference HMM may include multiple Gaussian kernels for 

each state, each kernel being of the form g(v; y, a) = 2111e)-(v- P-), v being any feature 

vector belonging to V(s), being a mean vector, and a being a covariance matrix having a 

determinant al. For example, assuming a state x having J kernels, the local distance between v 

and x may be computed as L(> 1 wx,jg(v; ptx,, ax,)), where g(v; ptx,, ax,) is the jf Gaussian 

30 kernel belonging to state x for j = 1...J, wx,j is the weight of this kernel, and L is any suitable scalar 

function such as the identity function or the minus-log function. In this case, T' may include an 

affine transformation operating on the mean vector of any one or more of the kernels and a 

quadratic transformation operating on the covariance matrix of any one or more of the kernels. In 
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other words, T' may transform a Gaussian kernel by replacing with ' = A-%( + b) and a with 

a' = A-1aAT, such that, for example, each local distance is computed as 

L( E=wx,g(v; p',,j,',,j)). (For embodiments in which T' is derived from T as described 

above, g(v; pt',, ) is equal to g(T(v); pt,j, j), where T(v) = Av + b.) 

5 Alternatively, each of the reference speech models may include multiple reference frames.  

In such embodiments, the distance returned by each reference speech model, for each speech 

sample s, may be computed (e.g., using DTW) by mapping each feature vector vn to one of the 

reference frames such that the sum of the respective local distances between the feature vectors 

and the reference frames to which the feature vectors are mapped is minimized. In this case, per 

10 the former embodiments, each of the subject-specific models may map {T(vn)} to the reference 

frames of the corresponding reference model for n=1...N such that the sum of the local distances 

is minimized. Alternatively, per the latter embodiments, the features of the reference frames may 

be transformed using T', and {vn} may then be mapped to the transformed reference frames for 

n=1...N.  

15 Regardless of whether T is applied to the subject's speech samples or T' is applied to the 

reference models, it is generally advantageous for the reference models to be as canonical or 

subject-independent as possible. Hence, in some embodiments, particularly if the reference speech 

used for generating the reference models is from a relatively small number of other subjects, the 

processor, during receiving-or-generating step 58, normalizes the reference speech prior to 

20 generating the reference models.  

For example, the processor may first receive first-state reference speech samples uttered 

by a first subset of R other subjects, along with second-state reference speech samples uttered by 

a second subset of the other subjects. (The subsets may be overlapping, i.e., at least one of the 

other subjects may provide both a first-state reference speech sample and a second-state reference 

25 speech sample.) Next, for each rth one of the other subjects, the processor may identify {Dr}, the 

union of (i) those of the first-state reference speech samples uttered by the r other subject and (ii) 

those of the second-state reference speech samples uttered by the rth other subject. Subsequently, 

the processor may identify respective transformations Tr, r=1...R, for the other subjects, Tr 

being another normalizing transformation that optimally transforms {©r} under the constraints 

30 describedabove. For example, Tr may minimize EIpeIs (T(V()), V(©0 )) under predefined 

validity constraints, Do being a canonical (e.g., synthesized) utterance of the content of D. Next, 

the processor may compute modified sets of features by, for each r tone of the other subjects, 

applying Tr to {V(Dr)}. Finally, the processor may generate the reference discriminator 
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including both reference models - from the modified sets of features.  

(ii) Third Technique 

Reference is now made to Fig. 4, which is a flow diagram for a third technique 72 for 

generating 00 and 01, in accordance with some embodiments of the present invention.  

5 Similarly to technique 56 (Fig. 3), technique 72 may handle instances in which the first

state reference speech and the second-state reference speech come from different respective groups 

of subjects. Technique 72 merely requires that the two reference models be identical to one 

another with respect to a first set of parameters, though differing from one another with respect to 

a second set of parameters assumed to represent the effect of the subjects' health state on the 

10 reference speech. Since this effect is assumed to be the same for subject 22 (Fig. 1), technique 72 

generates 00 and 01 so as to be identical to their corresponding reference models, respectively, with 

respect to the second set of parameters, while differing with respect to the first set of parameters.  

Technique 72 begins at a third receiving-or-generating step 74, at which the processor 

receives or generates the first-state reference speech model and the second-state reference speech 

15 model such that the two models are identical with respect to the first set of parameters and differ 

from one another with respect to the second set of parameters.  

For example, the processor may first receive or generate the first-state reference model.  

Subsequently, the processor may adapt the second-state reference model to the first-state reference 

model, by modifying the second set of parameters (without modifying the first set of parameters) 

20 such that the sum of the respective distances returned by the second-state model for the second

state reference speech samples is minimized with respect to a suitable validity constraint. (Any 

suitable non-decreasing function, such as the absolute value raised to the power of q > 1, may be 

applied to each of the distances in this summation.) Alternatively, the processor may first receive 

or generate the second-state reference model, and then adapt the first-state reference model from 

25 the second-state reference model.  

In some embodiments, the reference models include different respective HMMs, each 

including multiple kernels having respective kernel weights. In such embodiments, the first set of 

parameters may include the kernel weights. In other words, the two reference models may include 

identical states and, in each state, the same number of kernels having the same kernel weights.  

30 The first set of parameters may further include the state transition distances or probabilities. The 

second set of parameters, with respect to which the reference models differ from one another, may 

include the parameters (e.g., means and covariances) of the kernels.  
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For example, for the first-state reference model, the local distance between any state x and 

any feature vector v may be L(E_1 wxjg(v; pi%, o )). The second-statereferencemodelmay 

include the same states as the first-state reference model, and, for any state x, the local distance 

may be L(E_ 1 wx,jg(v; 4 j, o- )).  

5 Subsequently to third receiving-or-generating step 74, the processor receives {u%} at 

speech-sample-receiving step 50. Next, at a fourth first-state-model-generating step 76, the 

processor generates 00 such that 00is identical to the first-state reference speech model with respect 

to the second set of parameters. To perform this adaptation of the first-state reference model, the 

processor may use an algorithm similar to the Baum-Welch algorithm, which is described, for 

10 example, in section 6.4.3 of L. Rabiner and B-H. Juang, Fundamentals of Speech Recognition, 

Prentice Hall, 1993, which is incorporated herein by reference. In particular, the processor may 

first initialize 00 to have the parameters of the first-state reference model. Next, the processor may 

map each feature vector in {u% } to a respective state in 00. The processor may then, for each state, 

use the feature vectors mapped to the state to recompute the first set of parameters for the state.  

15 The processor may then remap the feature vectors to the states. This process may then be repeated 

until convergence, i.e., until the mapping does not change.  

Subsequently to fourth first-state-model-generating step 76, the processor, at a fourth 

second-state-model-generating step 78, generates 01 such that 01 is identical to 00 with respect to 

the first set of parameters and identical to the second-state reference speech model with respect to 

20 the second set of parameters.  

Neural-network discriminators 

In alternate embodiments, the processor synthesizes a subject-specific neural-network 

discriminator, rather than a multi-model discriminator. In particular, the processor first receives 

or generates a reference discriminator including a neural network associated with multiple 

25 parameters. Subsequently, the processor tunes some of these parameters as described below, 

thereby adapting the network to subject 22 (Fig. 1).  

For further details regarding this technique, reference is now made to Fig. 5, which is a 

schematic illustration of a neural-network discriminator, in accordance with some embodiments 

of the present invention.  

30 Fig. 5 shows the manner in which a reference neural network 80 may be adapted to a 

specific subject. Neural network 80 is configured to receive a speech-related input 82 based on 

one or more speech samples uttered by a subject. For example, the neural network may receive 
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the speech samples themselves, and/or features, such as mel-frequency cepstral coefficients 

(MFCCs), extracted from the samples. Neural network 80 may further receive a text input 90 

including, for example, an indication of the phonetic content of the speech samples. (The phonetic 

content may be predetermined, or ascertained from the speech samples using speech-recognition 

5 techniques.) For example, if the neural network is trained on N different utterances serially 

numbered 0...N-1, text input 90 may include a sequence of bits indicating the serial number of the 

utterance that is uttered in the speech samples.  

Given the aforementioned input, the neural network returns an output 92 indicating the 

likelihood of the speech samples having been uttered in the second state. For example, output 92 

10 may explicitly include the likelihood of the speech samples having been uttered in the second state.  

Alternatively, the output may explicitly include the likelihood of the speech samples having been 

uttered in the first state, such that the output implicitly indicates the former likelihood. For 

example, if the output states a 30% likelihood for the first state, the output may effectively indicate 

a 70% likelihood for the second state. As yet another alternative, the output may include respective 

15 scores for the two states, from which both likelihoods may be calculated.  

Typically, neural network 80 includes multiple layers of neurons. For example, for 

embodiments in which speech-related input 82 includes raw speech samples (rather than features 

extracted therefrom), the neural network may include one or more acoustic layers 84, which 

generate an acoustic-layer output 83 in response to speech-related input 82. Effectively, acoustic 

20 layers 84 extract feature vectors from the input speech samples by performing an acoustic analysis 

of the speech samples.  

As another example, the neural network may include one or more phonetic layers 86, which 

generate a phonetic-layer output 85 in response to acoustic-layer output 83 (or in response to 

analogous features contained in speech-related input 82). For example, phonetic layers 86 may 

25 match the acoustic features of the speech samples, which are specified by acoustic-layer output 

83, with the expected phonetic content of the speech samples as indicated by text input 90.  

Alternatively, the network may be configured for a single predefined text, and may thus omit 

phonetic layers 86 and text input 90.  

As yet another example, the neural network may include one or more discriminative layers 

30 88, which generate output 92 in response to phonetic-layer output 85 (and, optionally, acoustic

layer output 83). Discriminative layers 88 may include, for example, one or more layers of neurons 

that compute features for discriminating between the first health state and the second health state, 

followed by an output layer, which generates output 92 based on these features. The output layer 
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may include, for example, a first-state output neuron, which outputs a score indicating the 

likelihood for the first state, and a second-state output neuron, which outputs another score 

indicating the likelihood for the second state.  

In some embodiments, neural network 80 is a deep-learning network, in that the network 

5 incorporates a relatively large number of layers. Alternatively or additionally, the network may 

include specialized elements such as convolutional layers, skipped layers, and/or recurrent neural 

network components. The neurons in the neural network 80 may be associated with various types 

of activation functions.  

To synthesize a subject-specific neural-network discriminator, the processor tunes a subset 

10 of the parameters associated with network 80 so as to minimize an error of output 92 for a set of 

input speech samples that includes {u%}. In other words, the processor inputs {u} along with, 

optionally, one or more speech samples uttered by the subject or by other subjects while in the 

second state, and tunes the subset of the parameters such that the error of output 92 is minimized.  

For example, the processor may tune some or all of the respective neuronal weights of the 

15 neurons belonging to the network. As a specific example, the processor may tune at least some of 

the weights associated with one of the neuronal layers without tuning any of the weights associated 

with another one of the layers. For example, as indicated in Fig. 5, the processor may tune the 

weights associated with acoustic layers 84 and/or the weights associated with discriminative layers 

88, which are assumed to be subject-dependent, but not the weights associated with phonetic layers 

20 86.  

In some embodiments, the neural network is associated with a speaker-identifying (or 

"subject ID") parameter 94, which identifies the speaker of the speech samples used to generate 

speech-related input 82. For example, given R serially-numbered reference subjects whose speech 

was used to train network 80, parameter 94 may include a sequence of R numbers. For each input 

25 82 acquired from one of these subjects, the serial number of the subject may be set to 1 in parameter 

94, and the other numbers may be set to 0. Parameter 94 may be input to acoustic layers 84, to 

phonetic layers 86, and/or to discriminative layers 88.  

In such embodiments, the processor may tune parameter 94, alternatively or additionally 

to tuning the neuronal weights. By tuning parameter 94, the processor may effectively 

30 approximate the subject's voice as a combination of the respective voices of some or all of the 

reference subjects. As a purely illustrative example, for R=10, the processor may tune parameter 

94 to a value of [0.5 0 0 0 0.3 0 0 0 0.2 0], indicating that the subject's voice is approximated by 

a combination of the respective voices of the first, fifth, and ninth reference subjects. (Parameter 
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94 thus becomes associated with the network by virtue of being a fixed parameter of the network, 

rather than being associated with the network merely by being a variable input to the network.) 

To tune the parameters, the processor may use any suitable technique known in the art.  

One such technique is back-propagation, which iteratively subtracts, from the parameters, a vector 

5 of values that is a multiple of the gradient of a deviation function with respect to the parameters, 

the deviation function quantifying the deviation between the output and the expected output of the 

network. Back-propagation may be performed for each sample in the set of input speech samples 

(optionally with multiple iterations over the samples), until a suitable degree of convergence is 

reached.  

10 It will be appreciated by persons skilled in the art that the present invention is not limited 

to what has been particularly shown and described hereinabove. Rather, the scope of embodiments 

of the present invention includes both combinations and subcombinations of the various features 

described hereinabove, as well as variations and modifications thereof that are not in the prior art, 

which would occur to persons skilled in the art upon reading the foregoing description. For 

15 example, the scope of embodiments of the present invention includes a synthesis of a single-model 

subject-specific discriminator, such as a neural-network discriminator, from a reference 

discriminator including a first-state reference speech model and a second-state reference speech 

model.  

Documents incorporated by reference in the present patent application are to be considered 

20 an integral part of the application except that to the extent any terms are defined in these 

incorporated documents in a manner that conflicts with the definitions made explicitly or implicitly 

in the present specification, only the definitions in the present specification should be considered.  
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CLAIMS 

1. A method, comprising: 

receiving a plurality of subject-uttered speech samples {um}, m=1.. .M, which were 

uttered by a subject while in a first state with respect to a disease; 

5 obtaining at least one reference discriminator, which was trained, using multiple reference 

first-state speech samples uttered in the first state and multiple reference second-state speech 

samples uttered in a second state with respect to the disease, to discriminate between first-state 

utterances uttered in the first state and second-state utterances uttered in the second state, 

wherein none of the reference first-state speech samples and reference second-state speech 

10 samples was uttered by the subject; and 

using {u } and the at least one reference discriminator, even without using any other 

speech samples uttered by the subject while in a second state with respect to the disease, adapting 

the at least one reference discriminator to synthesize a subject-specific discriminator, which is 

specific to the subject and is configured to generate, in response to one or more test utterances 

15 uttered by the subject, an output indicating a likelihood that the subject is in the second state.  

2. The method according to claim 1, wherein the first state is a stable state and the second 

state is an unstable state.  

3. The method according to claim 1, wherein the disease is selected from the group of diseases 

consisting of: congestive heart failure (CHF), coronary heart disease, arrhythmia, chronic 

20 obstructive pulmonary disease (COPD), asthma, interstitial lung disease, pulmonary edema, 

pleural effusion, Parkinson's disease, and depression.  

4. The method according to any one of claims 1-3, wherein synthesizing the subject-specific 

discriminator comprises: 

generating a first-state subject-specific speech model 0' that returns, for any speech sample 

25 s, a first distance measure indicative of a first degree of similarity between s and first-state speech 

of the subject; and 

generating a second-state subject-specific speech model 01 that returns a second distance 

measure indicative of a second degree of similarity between s and second-state speech of the 

subject.  

30 5. The method according to claim 4, 

wherein the at least one reference discriminator includes K reference discriminators {(Pk}, 

k=1...K, {pk} including: 
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respective first-state reference speech models that return respective first distances 

{D0(s)}, which indicate first degrees of similarity between s and respective reference first

state speech uttered by K groups of one or more other subjects, and 

respective second-state reference speech models that return respective second 

5 distances {D1(s)}, which indicate second degrees of similarity between s and respective 

reference second-state speech uttered by the groups, 

wherein 0' returns the first distance measure by applying a function to {D 0 (s)}, and 

wherein 01 returns the second distance measure by applying the function to {D1(s)}.  

6. The method according to claim 5, wherein the function, when applied to {DO (s)}, returns 

10 a weightedaverageof{D'(s)},D'(s) being a non-decreasing function of DO0(s).  

7. The method according to claim 6, wherein the weighted average is1 wkD' k(s) for K 

weights {wk}, k = 1...K, that minimize a sum of respective distance measures for {u% } with 

respect to a constraint, the distance measure for each speech sample um belonging to {um} being 

basedon E_1 WkD'(um).  

15 8. The method according to claim 4, wherein the at least one reference discriminator includes: 

a first-state reference speech model that returns a first distance DO(s), which indicates a 

first degree of similarity between s and the reference first-state speech samples, and 

a second-state reference speech model that returns a second distance D1(s), which 

indicates a second degree of similarity between s and the reference second-state speech samples.  

20 9. The method according to claim 8, 

wherein the first-state reference speech model returns D 0(s) by applying a first function 

to a set of feature vectors V(s) extracted from s, 

wherein the second-state reference speech model returns D'(s) by applying a second 

function to V(s), and 

25 wherein generating 0 and 01 comprises generating 0' and 0 using a normalizing 

transformation T that optimally transforms {V(u° )} under one or more predefined constraints.  

10. The method according to claim 9, wherein T minimizes Euu A(T(V(u)),V(u)) with 

respect to a constraint, A being a third distance measure between any two sets of features, and uo 

being a canonical utterance of content of u - F{u }.  

30 11. The method according to claim 10, wherein A is a non-decreasing function of a Dynamic 

Time Warping (DTW) distance.  
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12. The method according to claim 9, wherein T minimizes EfU fO(T(V(u))) with 

respect to a constraint, f'o being a non-decreasing function of the first function.  

13. The method according to claim 9, 

wherein 00returns the first distance measure by applying the first function to T(V(s)), and 

5 wherein 1 returns the second distance measure by applying the second function to T(V(s)).  

14. The method according to claim 8, 

wherein generating 00 comprises generating 00 by applying a denormalizing transformation 

T', which optimally transforms first parameters of the first-state reference speech model under one 

or more predefined constraints, to the first parameters, and 

10 wherein generating 01 comprises generating 01 by applying T' to second parameters of the 

second-state reference speech model.  

15. The method according to claim 14, wherein T' minimizesEUEfU} )T'(D0 )(u) under the 

constraints, T'(DO)(s) being the first distance returned by the first-state reference speech model 

under the transformation.  

15 16. The method according to claim 14, 

wherein the first-state reference speech model includes a first Hidden Markov Model 

(HMM) including multiple first kernels, the first parameters including first-kernel parameters of 

the first kernels, and 

wherein the second-state reference speech model includes a second HMM including 

20 multiple second kernels, the second parameters including second-kernel parameters of the second 

kernels.  

17. The method according to claim 16, wherein the first kernels and second kernels are 

Gaussian, and wherein T' includes: 

an affine transformation operating on a mean vector of any one or more Gaussian kernels, 

25 and 

a quadratic transformation operating on a covariance matrix of any one or more Gaussian 

kernels.  

18. The method according to claim 14, 

wherein the first-state reference speech model includes multiple first reference frames, the 

30 first parameters including first-reference-frame features of the first reference frames, and 

wherein the second-state reference speech model includes multiple second reference 

frames, the second parameters including second-reference-frame features of the second reference 
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frames.  

19. The method according to claim 8, 

wherein the reference first-state speech samples were uttered by a first subset of R other 

subjects, 

5 wherein the reference second-state speech samples were uttered by a second subset of the 

other subjects, and 

wherein the method further comprises: 

identifying respective transformations {Tr}, r-1...R, for the other subjects, Tr 

being, for each rth one of the other subjects, a normalizing transformation that optimally 

10 transforms {Dr} under one or more predefined constraints, {Dr} being a union of (i) those 

of the first-state reference speech samples uttered by the other subject and (ii) those of the 

second-state reference speech samples uttered by the other subject; 

computing modified sets of features by, for each rth one of the other subjects, 

applying Tr to {V(Dr)}; and 

15 generating the reference discriminator from the modified sets of features.  

20. The method according to claim 8, 

wherein the first-state reference speech model and the second-state reference speech model 

are identical with respect to a first set of parameters and differ from one another with respect to a 

second set of parameters, 

20 wherein generating 0' comprises generating 0 such that 0° is identical to the first-state 

reference speech model with respect to the second set of parameters, and 

wherein generating 01 comprises generating 01 such that 01 is identical to 00with respect to 

the first set of parameters and identical to the second-state reference speech model with respect to 

the second set of parameters.  

25 21. The method according to claim 20, 

wherein the first-state reference speech model and the second-state reference speech model 

include different respective Hidden Markov Models (HMMs), each including multiple kernels 

having respective kernel weights, 

wherein the first set of parameters includes the kernel weights, and 

30 wherein the second set of parameters includes kernel-parameters of the kernels.  

22. The method according to any one of claims 1-3, 

wherein the at least one reference discriminator includes a reference neural network 

associated with multiple parameters, which returns, for any one or more speech samples, another 
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output indicating a likelihood of the speech samples having been uttered in the second state, and 

wherein synthesizing the subject-specific discriminator comprises synthesizing a subject

specific neural network by tuning a subset of the parameters so as to minimize an error of the other 

output for a set of input speech samples that includes {um}.  

5 23. The method according to claim 22, wherein the parameters include a plurality of neuronal 

weights, and wherein the subset of the parameters includes a subset of the weights.  

24. The method according to claim 23, wherein the reference neural network includes multiple 

layers, and wherein the subset of the weights includes at least some of the weights associated with 

one of the layers but does not include any of the weights associated with another one of the layers.  

10 25. The method according to claim 24, 

wherein the layers include (i) one or more acoustic layers of neurons, which generate an 

acoustic-layer output in response to an input based on the speech samples, (ii) one or more phonetic 

layers of neurons, which generate a phonetic-layer output in response to the acoustic-layer output, 

and (iii) one or more discriminative layers of neurons, which generate the other output in response 

15 to the phonetic-layer output, and 

wherein the subset of the weights includes at least some of the weights associated with the 

acoustic layers and the discriminative layers but does not include any of the weights associated 

with the phonetic layers.  

26. The method according to claim 22, wherein the subset of the parameters includes a speaker

20 identifying parameter identifying a speaker of the speech samples.  

27. The method according to claim 22, wherein the set of input speech samples further includes 

one or more second-state speech samples.  

28. Apparatus, comprising: 

a communication interface; and 

25 a processor, configured to perform the method of any one of claims 1-27.  

29. A computer software product comprising a tangible non-transitory computer-readable 

medium in which program instructions are stored, which instructions, when read by a processor, 

cause the processor to perform the method of any one of claims 1-27.  
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