United States Patent

US011902081B1

(12) ao) Patent No.: US 11,902,081 B1
Sharma et al. 45) Date of Patent: Feb. 13, 2024
(54) MANAGING COLLECTION AGENTS VIA AN 8,019,851 B2* 9/2011 Nagarajrao HO4L 41/00
AGENT CONTROLLER 370254
8,112,425 B2 2/2012 Baum et al.
. . 8,352,535 B2* 1/2013 Peled ..cocoocccrrren.. GOGF 21/60
(71) Applicant: SPLUNK INC., San Francisco, CA ee 709/200
(Us) 8,527,624 B2* 9/2013 Chen ...ccccooouecn. GO6F 11/3466
709/224
(72) Inventors: Dinesh Dutt Sharma, Pleasanton, CA 8,613,083 B1* 12/2013 Njemanze HO4L 63/0218
(US); Anuj Gupta, San Bruno, CA 8,626,115 B2* 1/2014 Raleigh HO4W 3/61%
(US); Vinu K. Alazath, Santa Clara, e CIEN covvvvrees 700/224
CA (US) 8,627,328 B2* 1/2014 Mousseauc..... GOGF 9/50
718/1
(73) Assignee: Splunk Inc., San Francisco, CA (US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 41 days. Bitincka, L., et al., “Optimizing Data Analysis with a Semi-
structured Time Series Database”, self-published, First presented at
(21) Appl. No.: 17/589,127 Workshop on Managing Systems via Log Analysis and Machine
) Leaming Techniques (SLAML), pp. 1-16 (Oct. 3, 2010).
(22) Filed: Jan. 31, 2022 (Continued)
(51) Int. ClL Primary Examiner — Thu Ha T Nguyen
HO4L 41/046 (2022.01) (74) Attorney, Agent, or Firm — Shook, Hardy & Bacon
HO4L 9/40 (2022.01) LLP
(52) US. CL
CPC HO4L 41/046 (2013.01); HO4L 63/0823 (57) ABSTRACT
. . . (2013.01) Embodiments described herein are directed to facilitating
(58) Field of Classification Search management of collection agents. In one embodiment, a
CPC ... HO4L 41/046; HOAL 41/048; HOAL 41/06; control request is provided to an agent service manager from
HO4L 41/04; HOAL 63/0823 an agent controller that manages collection agents that
USPC i 709/202, 203, 223, 224 collect data. The agent controller and the collection agents
See application file for complete search history. operate on a computing machine remote from the agent
service manager. In response to the control request, a control
(56) References Cited directive is received, the control directive including an agent

U.S. PATENT DOCUMENTS

6,754,664 B1* 6/2004 Bush HO4L 41/0681
707/999.102

7,526,540 B2* 4/2009 Gopisetty GOG6F 3/0613
709/224

7,937,344 B2 5/2011 Baum et al.

event indicator indicating an agent event to be executed in
association with a set of collection agents of the collection
agents. Thereafter, execution of the agent event is initiated
in association with each collection agent of the set of
collection agents.

18 Claims, 17 Drawing Sheets

/100

HOST DEVICE 104/
DATA SOURCE

A

y

DATA INTAKE AND QUERY
SYSTEM 102

INTAKE
110

INDEXING
112

QUERY STORAGE
114 116

!

CLIENT
COMPUTING
DEVICE 106

US 11,902,081 B1

Page 2
(56) References Cited 2012/0096513 Al* 42012 Raleigh HO04L 41/0894
709/224
U.S. PATENT DOCUMENTS 2013/0080641 Al* 3/2013 Lui oo HO04L 47/70
709/226
8,634,805 B2* 1/2014 Raleigh HO4L 47/39 2014/0047107 Al* 2/2014 Maturana GO5B 15/02
455/406 709/224
8,683,547 B2* 3/2014 Apparao HO4L 63/20 2014/0101665 Al* 4/2014 Mousseau GO6F 9/5077
709/224 718/104
8,751,529 B2 6/2014 Zhang et al. 2017/0012812 Al1* 1/2017 Gotoh HO04W 4/021
8,788,525 B2 7/2014 Neels et al. 2017/0318104 Al* 11/2017 Angeles . .. GO6F 16/986
8,898,293 B2* 11/2014 Raleigh HO4W 48/18 2018/0124072 Al1* 52018 Hamdi GOG6F 11/3428
709/224 2018/0219743 Al* 82018 Garcia HO04L 41/0213
9,215,240 B2 12/2015 Merza et al. 2018/0219909 Al* 8/2018 Gorodissky HO4L. 43/50
9,286,413 Bl 3/2016 Coates et al. 2018/0302486 Al* 10/2018 Ma HO04L 67/1004
9,495,652 B1* 11/2016 Cook G06Q 10/00 2018/0375828 Al* 12/2018 Rawat HO04L 63/029
9,887,889 B1* 2/2018 Dippenaar HO4L 43/20 2019/0098106 Al* 3/2019 Mungel ..o HO4L 67/02
10,127,258 B2 11/2018 Lamas et al. 2019/0245883 Al* 82019 Gorodissky HO04L 63/1433
11,552,868 B1* 1/2023 Cole HO4L 67/34 2021/0211356 Al1* 7/2021 Gati HO4L. 43/08
11,619,512 BL* 4/2023 GOG6F 3/14 2021/0271506 Al* 9/2021 Ganguly HO4L 67/10
345/589 2023/0179485 Al* 6/2023 Bhatnagar GO6F 11/3452
2004/0054782 Al* 3/2004 Donzec........ HO04L 69/329 709/223
709/227 2023/0291716 Al* 9/2023 Rawatcc.... HO04L 12/4633
2004/0230832 Al* 11/2004 McCallam HO4L 43/00 726/12
709/224
3k
2005/0021598 Al 1/2005 Dunlop H04Q73/9(;gg§ OTHER PUBRLICATIONS
2005/0237947 Al* 10/2005 Ando HOAL 43‘%(352461 Carasso, D., “Exploring Splunk,” Search Processing Language
. SPL) Primer and Cookbook, p. 156 (Apr. 2012).
2008/0201468 Al* 82008 Tituscccooeenne HO04L. 43/0852 (P P
s 709/224 “Splunk Cloud 8.0.2004 User Manual”, available online, Retrieved
2009/0259749 AL* 10/2009 Barret HO4I 67/133 from docs.splunk.com on May 20, 2020, pp. 1-66. _
709/224 “Splunk Enterprise 8.0.0 Overview”, available online, Retrieved
2010/0205299 Al* 8/2010 Nagarajrao HO4L 69/329 from docs.splunk.com on May 20, 2020, pp. 1-17.
709/224 “Splunk Quick Reference Guide”, Retrieved from: https://www.
2012/0011238 Al* 1/2012 Rathodooocoo..... HO4L 51/214 splunk.com/pdfs/solution-guides/splunk-quick-reference-guide.
709/223 pdf, on May 20, 2020, pp. 1-6.
2012/0089845 Al* 4/2012 Raleighcccou. HO4L 12/14
709/224 * cited by examiner

US 11,902,081 B1

Sheet 1 of 17

Feb. 13,2024

U.S. Patent

¢ 'Ol

SIN3IA3 FHO1S

— 80¢

H

SIN3AT dNOYO

— 90¢

H

SINIAT F1LVHINTO

— ¥0¢

H

v1va 3aAI303d

— ¢0¢

T°Ol4

901 JJIA3A
ONILNdNOD
IN3ITO

H

ol i
JOVd01S Ad3aND

41 0lt
ONIX3ANI IAVLNI
20l INTLSAS

Ad3IND ANV IHVINI V1Vd

H

304N0S v1vd
/ ¥0T 30I1A3A LSOH

oo_\\

U.S. Patent Feb. 13, 2024 Sheet 2 of 17 US 11,902,081 B1

302
/ 302A

127.0.0.1 — eva [10/0Oct/2000:13:55:36-0700] “GET/apache.gif HTTP/1.0” 200 2326 0.0947
127.0.0.1 — emerson [10/0ct/2000:13:56:36-0700] “GET/eastwood.gif HTTP/1.0” 200 2980
0.0899 ~302C -302B

127.0.0.3 - eliza [10/0¢t/2000:13:57:36-0700] “GET/ezra.gif HTTP/1.0” 200 2900 0.0857
[Sunday Oct 10 1:58:33 2010] [error] [client 127.10.1.1.015] File does not exist: /home/emmeline/
pub_html/images/alisia.gif 302E \-302D

91.205.189.15 - - [28/Apr/2014:18:22:16] *GET /oldlink?itemId=EST-
14&JSESSIONID=SD6SL7FF7ADFF53113 HTTP 1.1" 200 1665 "http.//

www .buttercupgames.com/oldiink?itemid=EST-14" "Mozilla/5.0 (Windwos NT 6.1; WOW 64)
AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.46 Safari/536.5" 159

/ 304

docker: {
container_id: f7360a148a670c4c25714ee024be81284b6017d72ae41ea8ee5d
} 304A
kubernetes: {
container_name: kube-apiserver
host: ip-172-20-43-173.ec2.internal
labels: {
k8s-app: kube-apiserver
}
master_url: hitps://100.64.0.1:443/api
namespace_id: ebaf26aa-4ef9-11e8-a4e1-0a2bf2abdbba
namespace_name: kube-system
pod_id: 0a73017b-4efa-11e8-ade1-0a2bf2ab4bba 304B
pod_name: kube-apiserver-ip-172-20-43-173.ec2.internal /
}
log: 10503 23:04:12.595203 1 wrap.go:42] GET /apis/admissionregistrations.k8s.io/v1betal/
validatingwebhookconfiguration 200 [[kube-apiserver/v1.9.3 (linux/amd64) kubernetes/d283541]
127.0.0.1:55026

stream: stdout
time: 2018-05-03T23:04:12.6199483957

/ 306

}

time ID CPU memory
10/10/00 12:01:00.013 eliza 14% 80%
10/10/00 12:01:05.153 eva 26% 70%

FIG. 3A

US 11,902,081 B1

Sheet 3 of 17

Feb. 13,2024

U.S. Patent

- . Hb eisyessebewyjwiy gnd/eulewulus/awuoy/ [1SIXe 10U S80p
Joue eyoede Bojsone MMM ‘wrd 8§11 0002/0L/0L | 9CE
alid [S1L0'L 101 221 welo] ows] [010Z ££:85:1 01 100 Aepung]
- . LS80°0 0062 002 .0'L/dLLIH
psuIquIoD $s800k Bojssaooe ZMMM ‘wrd 6: 10L/0L — VCE
I6eize/1 39, [00£0-9€:/6:€1:0002/100/01L] €ZIO — €°0°0'L21 £4:1 000¢/0L/0
- . 6680°0 0862 002 .0 L/dLLH Jif poomises
pauIguIog ssa00k Bo| ssaooe MMM ‘wrd 9611 0002/04/0L }——
/139, [0020-9£:95:€1:0002/100/01] uosiaws — L'0'0°L21 cce
erll . E el
pauIquIoD” sseoe Bo|'sseooe | MMM N~ 9v | 11460°0]{9cee]|00ef.0"L/dLLH ‘wd §5:4 000z/0L0L [0ce
Hb-euoede/ 1 39, [0020-9€:65:€1:0002A0Q/01] BA® = L°0°0°LZL
Ll — Wil— oblL—
QC¢ adfoounog | 9T sounog $EE 1S0H 0E¢€ eleq auiyory ZE¢ awil
/. 6le
~ dcl¢€
g€ ‘bl
/45>
—
olLe

US 11,902,081 B1

Sheet 4 of 17

Feb. 13,2024

U.S. Patent

J€ 'O

ege
[

rae
7

CTssa4ppy

TTssaippy

0TssaJppy

65S31ppPY

gs$21ppY

£5531ppY

95531ppY

ssaIppY

yssaippy

7 gssaippy

\ ZSsauppy

T5S3Ippy

L1/T/€
000°L1:87:91

LT/T/€
0TT'80:87:91

LT/T/€
0Ly 98:LT:9T

LT/1/€
000°05:£2:9T

LT/1/€
000°T0:97:9T

LT/1/¢€
019°L€:%T:9T

L1/1/¢€
00T ST:vT:9T

LT/1/€
ST PSITTi9T

LT/T/€
020°€5:22:91

LT/T/¢€
000°0£:22:9T

/e
000°SY:TZ:9T

LT/T/€
000°02:TT:9T

1

11

ot

6

8

L

9

g
AN

€

|-

4

1

\(

142K

.

deve veve
e

LL 0L "2 9 ¥ ‘e alwey
CV€ 1 ZL 1L '89S ‘c Joud
LL 'Ol ‘6 ‘g ‘9 ‘g ‘v DadAyeoinos::adAianinos

Z1L ‘I gedAeoinos::edfi@ainos
. ‘¢ ‘2 vadAiealnos:.adA1gainos

0l ‘9 ‘G (]824N0S:824N0S
Ll '8 ‘2 D92IN0s::80Jnos

6 ‘¢ 9992In0s::821n0S

2L L'y 'L Y92INn0s :90inos

ZL ‘vl LL'p9L'9eT Z8l ssaippe d|
Ll '0L8'C €'€0L'8lL'TLLSsaippe d|
6°L'c GL'68L'G0T |6:SS2IPPE d|
9'6s L0Z¥Z9L'0L:sSsalppE d|

LL‘'oL'8'9's

ZL'e’L'v'e

K B
arve

e 8V urew™:xepuy|
000°21:82:9L — 000°0Z:L2:9L LL/L/c ‘obuey awil

‘2 gisoy:isoy

‘L viIsoy:isoy

|
Yive

- dcle

- VZle

US 11,902,081 B1

Sheet 5 of 17

Feb. 13,2024

U.S. Patent

LLALTE

S1INS3 o
3ZIMYNIH/SNOILYOd INIFINOD
HANNYIN | aop
Q3LNEIILSIA NI A¥3ND 3LNDIXI
NOILNO3XT oy
¥0O4 AY3ND 3LNAIYLSIA

AY3IND $$300¥d — OV
A¥3IND IAIFOTY 20

US 11,902,081 B1

Sheet 6 of 17

Feb. 13,2024

U.S. Patent

av 'ol4
W 27 (0122
TEVLSLINSTY | | FEVLSLINSH | | o quonam 40
3LVIAIWHILNI LVIGIWHIINI 13S V 3LVHINID
AaNOD3S $S300dd 1S¥I4 $83004d

o|]e)
sjnsai |eui

<

5147
s|0e) synsal
sjeipawIeIU]

=

.

(247
s|ge) synsa.
ojeIpawIa]

[447
%sid

11572

qussaad — SPISTIT

Z

_ H@ms\ doa | ¥Oo¥¥Hd @QH@%@H@Q%M@OMSO@

J0€y CANVININOD \momv _\DZ<_>=>_OO\ VOcy eUSIID Jo)id —

US 11,902,081 B1

Sheet 7 of 17

Feb. 13,2024

U.S. Patent

ot 'Ol

9G¥ .
<8jnJ xabal> | <losle syoedde:.adAlooinoss> = diusi)D

<8|nl xabal> | <siusAs Jo adAyes> = 9zI18 108lgo” pauiniey

<8|nJ xebal> | <slusAe Jo adAiess = awl esuodsey
<o|nl xebal> | <sjuare Jo adhyies> = epoo” sniels
<a|nJ xebal> | <pauIquod” ssedoe:adAjeainoss = diyuai)

py =
Z25¥ oli4 uoneinbiyuo)

-t

uonoelxd pieid
awil] yoJeeg

0S¥ Jeq yoJesg

ejeq
JusAg ul Ajpoaaqg
yoleeg plomiay

._otmlm_._omam mo_.._o.:m ZMMM t@.m_m__m\mm@mE__EEIQ39@::05_&@\050:\ JJSIX8 Jou saop ‘wrd 961 000Z/0L/01
and [g1o 1 1oL L2y weno] bows] [010Z ££:85:1 01 190 Aepung] . 9ce
- . 1680°0 0062 002 .0° L/dLLH
pauIquIod” ssa008. Bo} ssaooe ZMMM ‘wrd 2611 000Z/0L/01L [VCE
16e1z9/139, [002£0-9€:26:€1:0002/190/01] BZI]9 - £0°0°LZL = 0
- . 6680°0 0862 002 .0'L/dLLH 6 poomisea |
poulquios” $S9008 Boj sseooe MMM wrd 95:} 000¢/0L/0) }—
/139, [00£0-9€:95:€1:0002/120/01] uosiowe - 1'0°0°L21 95:1- 000z/0k/0 cee
- . L¥60°0 9Z£Z 002 .0'L/dLlH
pauIquiod ssadoe @o_ SS90k L MMM ‘wd GG L 0002/0L/01 fer
N6-ayorde/]1 39, [0020-9€:66:S1:0002/100/0L] BAS — L'0°0° 221 0ce
8EE adAipounog | GEE sounos | HEE 1SOH €€ ejed sulyoey 2EE owil

/m_‘m

US 11,902,081 B1

Sheet 8 of 17

Feb. 13,2024

U.S. Patent

" '0G:02:20LEZ:0L:7L0T LEAUM ipslie) Japlo AN, :Apod | 9Greg L[ebessaw poddns

av 'oid

vov
H3INAES
140ddNS

9Ly al Jawojsny M/Nv

414
J4VMIT1AdiiN

N\
R
<

“ 'UOI0BUU0D
|ood 8)jea.d Jou p|no) uoidaox3zpesaoinosay |oodasinosal uowwod d16o|gam
‘uondaox31HSpesguoIlosUU0) sucisuaxa ogpl-oibojgem
:8M0||0} UoldeOX8 |/ 9GHEZ L] PaIE) G9/86 WO JNISpoobzm 066:Z1:10 €2 190

v/,
viv (i Jewoisng M/ov

09V
ddV 43040

"7 'Z°001°001°001°69/86).95¥EC 828l LOLEC-0L-¥102 HAAHO

cly 4/
(gl Jswoisn)) 9o

US 11,902,081 B1

Sheet 9 of 17

Feb. 13,2024

U.S. Patent

0LG—

O)

eidioey
ejed

—

909

VS 'Ol

[£4%]

Zzs 02§
N AN

T >

/./
\ € dde

sng

Y N
zdde) (] dde /
‘shg BojsAg

| sjoyjoed

SeQel] | soue|
oel] | soue

(shusby

UoI98II0Y Jusby

Jljenuo)

m/ clLg

/ JUBLUUIOIIALL 824n0SG B1R(]

k 09

/ 809

Ja8euepy N
20IAJG JUady

/ 09

201A8(]

Jesn 92%

00s

US 11,902,081 B1

Sheet 10 of 17

Feb. 13,2024

U.S. Patent

€4S 'Ol

- a

T pod Z pod 1 pod
791 1°9AS 1°9AS

sole|y | s607

sooRl|

I8ljonuod j

waidioay eyeq

099

weby
& Uono8}j00 Weby
ﬁ JUSWUOIAUT PaINgINs] 169

/ 669

BoisAg

¢ dde 2 dde | dde/ /
'sng ‘sng

sjoxoed

sooei] | solaeyy | sboq

89

‘ yeaH jussy

e

v6G J98eue A JuswAioldaq
Jadeue
e1ePRIBIN

Jadeuepy
:Mzﬁ:m:cou

Ja8euey
2e211I3D

JaBeueln
uojles1sidoy /

Ja8eURIA UOREINUNWIWOD g

4 ,

65
ggg
,/ 80INI8S JusWwaBbeueyy JusAg \

T

\ 88

ERIINETS

sby Jajoduo)

| uonoeljon ueby
L HCQECO.&_\E 80In0og Ee
@mw\/ 3 8oinos &ea

U 125

/ 09

v8G

'ﬁ Aemajen

089

14%1°}
@01A8Q

Josn
9§

08§

US 11,902,081 B1

Sheet 11 of 17

Feb. 13,2024

U.S. Patent

V9 "DId

i ofessuwg poxdjuensum sbs G-XBB-SMOpUIM SO Ile Xepul Jeplemuo [esisAn Bungosy e onpundszoe'gzl 620z 0L-dl ([
: obessnuiz posd jusneum sbs Gi-X66-SMOPUIM SOTIETXepUl Japlemiod esiealn) Bunsoey e olpunids zosgzLeZoz ol [
¢ ofesonuiig posd jusrsumsBs Gi-XB6-SMOPUIA SO llETXepU; JopIemIod [eSIBAIUN BUIKO o onpunds'zos'szy 6oz ol-dl (0
: ofessnuwg poidjuereuim sbs Gr-X66-SMOpUIM SO e Xepul Jepiemiod Jesienun eulygO o onpundszoeggl 6oz old [
i obessnuiz posdjusneum sbs Gir-X66-SMopUIM SO JlETXepU] JopIEmIO [BSIOAN SUIO o onpunds zoargzL 6oz oldl (O
¢ ofesenuuiz poid iusnrsuimsbs Gi-XB6-SMOPLIM SO EXepUl JepIemio eSIBAUn sUO o onpunidszoegzLezozoldl)
: ofessuig poidjuensuim sbs Gi-X66-SAOpUIM SO [[E Xepul Jeplemio- [eSIBAIUN BUIO o onpundszoe'gzl 620z oL-dl [
i ofesenuiz poidjusneum sbs Gi7-X6B-SMopUIm SO llETXepUl Joplemiod [eSIBAU BUIWO o onpunds'zosgzl e zozol-dl (O

¢ oBeseuiz poidjusnsumsbs Gir-X66-SMOPUIM SOTIE™epU Joplemiod jesioAIUN BUIKO o onpundszosgzl 6oz oA (O e} ysop soneg [x]

wes) Ayunoeg (5]

: ofessuiug poxd iuersuin sbs Gir-X66-SAOPUIM SO e XepU Jeplemio- eSIBAIUN BUIWO o onpundszoegzl 620z 0L-dl [sueosy ©

Buid 1se7 SSE[D Jenleg adA) suiyoep uopo8uLIoD adA| ueby sniels ,/ 4 aweNIsoH [sjeseleq [

\

209 M09 suoby ez spreoquseq Ml

$OILI0AR]
@ SI9111} IO || IV sselD Jenieg || IV Co_smccoo_ I usby _ IIv snielg _ TIelliy

asequnids </>

sjueby suoposulog S4e8 usjuo) Janoosig SUOREOUON B Sl U

Jesn)

009

US 11,902,081 B1

Sheet 12 of 17

Feb. 13,2024

49 'Ol
PoINPa 1€ i i T
. . 01d el "sdo]
0202 ‘€2 oS ‘Pe s pael sl O
Ho psjesld ¥l poid efueyoxe sdoy]
SOARIS) Uesp O Asp—msdois
z] SMOPUI, WL Yunids A pejesio 9 ep gl sdopu [
SUOPPY [ROIUYDR | /8 poudmous™sdo) [
Aunasg ‘uoneolddy 195 paid i sdoy (]
sodf s0inog)
o 008 pold ebueyoxesdoy [
SO lle xspul
uogosuuo) /8y Siuens Aunoes smopuis [
sdqN Gl sdaNGEll 99 6hl U
ueLny brehep [e10} Indybinouy . [Smopuim | _Ewm G0l paidopsdoy [J
sbe|
0 0 0 8 08, MepTopTsdoy (3
ouge aulyo o BuluO © Buinesey e
(yava 7 yd 7 a4 7 v) ‘SSEJD JanJes 8L 06 poidjuoo sdoy [
1noge uonduosep e seoh alsH
slusby g MoUS | BUBILO MOYS SUeBy ABPTSMOPUIMT|E 9 AopsmopumTie [N
_ N
SSE[0 1oMS 902 wurle 0 |[geg
X i ¢ Rungoy s|ele(d sjueby 1 sseipssnes [

mwcwm< 65¢

/ 14°1°)

U.S. Patent

h

089

US 11,902,081 B1

Sheet 13 of 17

Feb. 13,2024

U.S. Patent

L9l

WesAs o)l

™

U a31AI8¢
J3WNSU0)
ejeq

89/

I S S S S
sjexoed ¢Ies LIS LJos | 198 | 108
PHOMEN \ \ sov) 1 sona I wo_:u Elep Bjep 607 09/
] [9.
€ ¢)
Wisby o} 9yl eby Joj o)l jusby o 9|y
uonelnbijuo) N Lonheinbljuo) yolgeinbijuo) VoS
b/ ¥ 095V 89577y
Ll ¢ USBY el 7 1WeDY -t Lueby jeg— T 22138
M JBUINSUOD
5, eieq

SN

T IN

y090.

490/

(sjusbBy Uo SpUBWILOY a1hosX]) soelsiu| WelsAg Buneisdo
A

JebBeuep
4P s0oineS
Wsby

soBLISU|
S90IA8G
a0y

Igjjouo?) Wueby

05, ~N

N

1257

V901 99/

18joguo)
Jualy Joj S|l
uoneinBijuo)

N

Gl

00L

US 11,902,081 B1

Sheet 14 of 17

Feb. 13,2024

U.S. Patent

908

—

8°DId
S8l
LiopenBliuo) |||«
.«Em% 0 _A aneny
sjusAg
jueby
ﬁmmcoqeoo usuoduio:
cy_wm @E_ 2/8 ?m&%&mm_ *
)
//@@w / 12[l0RU0D
298 iiebl ol TN
uonenbyusn
V.8
JUBUOdWIOY | o +
stodwion uonenbyuc
~— Uoneoynied // \
Jsuodwo) L 098 loleniu] /wmw
émm/_._ Js|j04UoD
\
N AN v
bog " 098 | yueuoduon
usuodo uonespusyIny /
wo_ﬁbw_mm T
—N £
gy eisiBey 'z 998 8|0SUOD UM OY_|

eneny)

ﬁsmo_%sé i

»| S85U0CSH weuodwio) enant
‘ﬁUg_ogsm e - s |
08 - 898
< }
1abeuepy

991AI3G Juaby

N

08

08

US 11,902,081 B1

Sheet 15 of 17

Feb. 13,2024

U.S. Patent

6 'Ol

016
S/

ua)0} Jueusl

pUE DI JUEUS) B} UIEIGO

pue Jswiojsno e ucmww._am.h
0] JUBU3) Mau e aleal)d '|

ooy

shay ajeAld

pue 2jgnd sjelouss) .v/

USHO| SSB00Y:

A

A

Jebeuepy 9o1n10g by

A

A

fediould 8onsg

A

/ 906

JUeus) i} 10} dS N9

<=me JOUIDIU| ===

I~

s|iemali4

jusuodwon
BuoepLlUl 80IAIES

N

/ 496

UsY0] SS800Y: >

La-UIOILIOSSE JUBI|O SIL JO} UBYO) SSBO0E. 18E) * jmmt
" aceb

g LIO[}JOSSY JUBIJD) PUSS Gt

™ 0z6

L ————£8Y 0lignd JoIsibsY G

N gl6

~e——A)usp 0} [edioullid 80IMSS PPY '€

N6

penIRosy [edioulld 8oIA8E ————m

La—(dS) [edioulld 801198 MeU 1o} 158nbay 7 —

/Nrm

usuodwion
uoneodnuayiny

4

/ c06

US 11,902,081 B1

Sheet 16 of 17

Feb. 13,2024

U.S. Patent

0T "OId

s1uoSe uondI[0d JO 39S Y} JO JUASE UONI[[0D YoB YIm
UOTJBIDOSSE UT JUIAD JUSSE PIIISIP Y} JO UOTINOIXD J0J IO[[OIIU0D
1338k 9y} 01 JUSAD JUISE PAIISOP Y} JO UONEBIIPUT UB OPIAOIJ

~—9001

sjuoSe uonoI[0d JO 13S B
1M UOTRIDOSSE Ul PAINOIXI 9q 0} JUIAD JUdSE PAIISIP © AJ1IUap[

—001

BIEP 109[[02 T8y} SIUSSE UONII[0d
saZeurw Jey) JI[[OJIUOD JUITE UB WOIJ }SANDAI [0U0D B JATIIY

<001

US 11,902,081 B1

Sheet 17 of 17

Feb. 13,2024

U.S. Patent

TT 'Ol

s1uoSe uondI[[0d JO 39S Y} JO JUASE UONI[[0D
OB3 Y}IM UONRBIDOSSE UI JUIAD JUISE 91} JO UONNIIXD IBTIU]

L

—901 |

S1UdS®e UOTII[[0D
9} JO SJUITE UONII[[OD JO 198 B YIIM UOTRBIDOSSE UI PAINIIXD 9q
0] JUSAQ JUdSE UB FuNEIIPUI JOJRITPUI JUIAD JUSFR Uk FuIpnoul
QATIOIIP [OJIUOD B AL “Isanbar [o1uod ay} 03 asuodsar uf

L

—0lL |

BIEP JO9]]0J 1By} SJUATE UONII[[0D SATeuRW Jeyf} JO[[ONU0D JUdTe
ue Wolj JAFeUBW IIIAIIS JUdTE Uk 0} }sanbas [01u0d € Ip1aoid

<0l |

US 11,902,081 B1

1
MANAGING COLLECTION AGENTS VIA AN
AGENT CONTROLLER

RELATED APPLICATIONS

This application is related to U.S. patent application Ser.
No. 17/589,283, titled “FACILITATING MANAGEMENT
OF COLLECTION AGENTS,” and filed Jan. 31, 2022,
which is incorporated by reference herein in its entirety.

Any and all applications for which a foreign or domestic
priority claim is identified in the Application Data Sheet as
filed with the present application are incorporated by refer-
ence under 37 CFR 1.57 and made a part of this specifica-
tion.

BACKGROUND

Information technology (IT) environments can include
diverse types of data systems that store large amounts of
diverse data types generated by numerous devices. For
example, a big data ecosystem may include databases such
as MySQL and Oracle databases, cloud computing services
such as Amazon web services (AWS), and other data sys-
tems that store passively or actively generated data, includ-
ing machine-generated data (“machine data”). The machine
data can include log data, performance data, diagnostic data,
metrics, tracing data, or any other data that can be analyzed
to diagnose equipment performance problems, monitor user
interactions, and to derive other insights.

The large amount and diversity of data systems containing
large amounts of structured, semi-structured, and unstruc-
tured data relevant to any search query can be massive, and
continues to grow rapidly. This technological evolution can
give rise to various challenges in relation to managing,
understanding and effectively utilizing the data. To reduce
the potentially vast amount of data that may be generated,
some data systems pre-process data based on anticipated
data analysis needs. In particular, specified data items may
be extracted from the generated data and stored in a data
system to facilitate efficient retrieval and analysis of those
data items at a later time. At least some of the remainder of
the generated data is typically discarded during pre-process-
ing.

However, storing massive quantities of minimally pro-
cessed or unprocessed data (collectively and individually
referred to as “raw data”) for later retrieval and analysis is
becoming increasingly more feasible as storage capacity
becomes more inexpensive and plentiful. In general, storing
raw data and performing analysis on that data later can
provide greater flexibility because it enables an analyst to
analyze all of the generated data instead of only a fraction of
it. Although the availability of vastly greater amounts of
diverse data on diverse data systems provides opportunities
to derive new insights, it also gives rise to technical chal-
lenges to search and analyze the data in a performant way.

BRIEF DESCRIPTION OF THE DRAWINGS

Tlustrative examples are described in detail below with
reference to the following figures:

FIG. 1 is a block diagram of an embodiment of a data
processing environment.

FIG. 2 is a flow diagram illustrating an embodiment of a
routine implemented by the data intake and query system to
process, index, and store data.

FIG. 3A is a block diagram illustrating an embodiment of
machine data received by the data intake and query system.

15

20

30

35

40

45

55

60

65

2

FIGS. 3B and 3C are block diagrams illustrating embodi-
ments of various data structures for storing data processed
by the data intake and query system.

FIG. 4A is a flow diagram illustrating an embodiment of
a routine implemented by the query system to execute a
query.

FIG. 4B provides a visual representation of the manner in
which a pipelined command language or query can operate

FIG. 4C is a block diagram illustrating an embodiment of
a configuration file that includes various extraction rules that
can be applied to events.

FIG. 4D is a block diagram illustrating an example
scenario where a common customer identifier is found
among log data received from disparate data sources.

FIG. 5A is a block diagram illustrating an embodiment of
an agent management service.

FIG. 5B is a block diagram illustrating another embodi-
ment of an agent management service.

FIG. 6A provides one example of a graphical user inter-
face for displaying health data.

FIG. 6B provides another example of a graphical user
interface for displaying health data.

FIG. 7 is a block diagram illustrating an example envi-
ronment of an agent controller.

FIG. 8 is a block diagram illustrating an example imple-
mentation of an agent controller.

FIG. 9 provides one example implementation used to
perform authentication.

FIG. 10 is a flow diagram illustrating an embodiment of
a method for managing a set of collection agents.

FIG. 11 is a flow diagram illustrating an embodiment of
another method for managing a set of collection agents.

DETAILED DESCRIPTION

Modern data centers and other computing environments
can comprise anywhere from a few host computer systems
to thousands of systems configured to process data, service
requests from remote clients, and perform numerous other
computational tasks. During operation, various components
within these computing environments often generate signifi-
cant volumes of machine data. Machine data is any data
produced by a machine or component in an information
technology (IT) environment and that reflects activity in the
IT environment. For example, machine data can be raw
machine data that is generated by various components in IT
environments, such as servers, sensors, routers, mobile
devices, Internet of Things (IoT) devices, etc. Machine data
can include system logs, network packet data, sensor data,
application program data, error logs, stack traces, system
performance data, etc. In general, machine data can also
include performance data, diagnostic information, and many
other types of data that can be analyzed to diagnose perfor-
mance problems, monitor user interactions, and to derive
other insights.

A number of tools are available to analyze machine data.
In order to reduce the size of the potentially vast amount of
machine data that may be generated, many of these tools
typically pre-process the data based on anticipated data-
analysis needs. For example, pre-specified data items may
be extracted from the machine data and stored in a database
to facilitate efficient retrieval and analysis of those data
items at search time. However, the rest of the machine data
typically is not saved and is discarded during pre-process-
ing. As storage capacity becomes progressively cheaper and

US 11,902,081 B1

3

more plentiful, there are fewer incentives to discard these
portions of machine data and many reasons to retain more of
the data.

This plentiful storage capacity is presently making it
feasible to store massive quantities of minimally processed
machine data for later retrieval and analysis. In general,
storing minimally processed machine data and performing
analysis operations at search time can provide greater flex-
ibility because it enables an analyst to search all of the
machine data, instead of searching only a pre-specified set of
data items. This may enable an analyst to investigate dif-
ferent aspects of the machine data that previously were
unavailable for analysis.

However, analyzing and searching massive quantities of
machine data presents a number of challenges. For example,
a data center, servers, or network appliances may generate
many different types and formats of machine data (e.g.,
system logs, network packet data (e.g., wire data, etc.),
sensor data, application program data, error logs, stack
traces, system performance data, operating system data,
virtualization data, etc.) from thousands of different com-
ponents, which can collectively be very time-consuming to
analyze. In another example, mobile devices may generate
large amounts of information relating to data accesses,
application performance, operating system performance,
network performance, etc. There can be millions of mobile
devices that concurrently report these types of information.

These challenges can be addressed by using an event-
based data intake and query system, such as the SPLUNK®
ENTERPRISE, SPLUNK® CLOUD, or SPLUNK®
CLOUD SERVICE system developed by Splunk Inc. of San
Francisco, California. These systems represent the leading
platform for providing real-time operational intelligence that
enables organizations to collect, index, and search machine
data from various websites, applications, servers, networks,
and mobile devices that power their businesses. The data
intake and query system is particularly useful for analyzing
data which is commonly found in system log files, network
data, metrics data, tracing data, and other data input sources.

In the data intake and query system, machine data is
collected and stored as “events.” An event comprises a
portion of machine data and is associated with a specific
point in time. The portion of machine data may reflect
activity in an IT environment and may be produced by a
component of that IT environment, where the events may be
searched to provide insight into the IT environment, thereby
improving the performance of components in the IT envi-
ronment. Events may be derived from “time series data,”
where the time series data comprises a sequence of data
points (e.g., performance measurements from a computer
system, etc.) that are associated with successive points in
time. In general, each event has a portion of machine data
that is associated with a timestamp. The time stamp may be
derived from the portion of machine data in the event,
determined through interpolation between temporally proxi-
mate events having known timestamps, and/or may be
determined based on other configurable rules for associating
timestamps with events.

In some instances, machine data can have a predefined
structure, where data items with specific data formats are
stored at predefined locations in the data. For example, the
machine data may include data associated with fields in a
database table. In other instances, machine data may not
have a predefined structure (e.g., may not be at fixed,
predefined locations), but may have repeatable (e.g., non-
random) patterns. This means that some machine data can
comprise various data items of different data types that may

20

25

30

40

45

4

be stored at different locations within the data. For example,
when the data source is an operating system log, an event
can include one or more lines from the operating system log
containing machine data that includes different types of
performance and diagnostic information associated with a
specific point in time (e.g., a timestamp).

Examples of components which may generate machine
data from which events can be derived include, but are not
limited to, web servers, application servers, databases, fire-
walls, routers, operating systems, and software applications
that execute on computer systems, mobile devices, sensors,
Internet of Things (IoT) devices, etc. The machine data
generated by such data sources can include, for example and
without limitation, server log files, activity log files, con-
figuration files, messages, network packet data, performance
measurements, sensor measurements, etc.

The data intake and query system can use flexible schema
to specify how to extract information from events. A flexible
schema may be developed and redefined as needed. The
flexible schema can be applied to events “on the fly,” when
it is needed (e.g., at search time, index time, ingestion time,
etc.). When the schema is not applied to events until search
time, the schema may be referred to as a “late-binding
schema.”

During operation, the data intake and query system
receives machine data from any type and number of sources
(e.g., one or more system logs, streams of network packet
data, sensor data, application program data, error logs, stack
traces, system performance data, etc.). The system parses the
machine data to produce events each having a portion of
machine data associated with a timestamp, and stores the
events. The system enables users to run queries against the
stored events to, for example, retrieve events that meet filter
criteria specified in a query, such as criteria indicating
certain keywords or having specific values in defined fields.
Additional query terms can further process the event data,
such as, by transforming the data, etc.

As used herein, the term “field” can refer to a location in
the machine data of an event containing one or more values
for a specific data item. A field may be referenced by a field
name associated with the field. As will be described in more
detail herein, in some cases, a field is defined by an extrac-
tion rule (e.g., a regular expression) that derives one or more
values or a sub-portion of text from the portion of machine
data in each event to produce a value for the field for that
event. The set of values produced are semantically-related
(such as IP address), even though the machine data in each
event may be in different formats (e.g., semantically-related
values may be in different positions in the events derived
from different sources).

As described above, the system stores the events in a data
store. The events stored in the data store are field-searchable,
where field-searchable herein refers to the ability to search
the machine data (e.g., the raw machine data) of an event
based on a field specified in search criteria. For example, a
search having criteria that specifies a field name “UserID”
may cause the system to field-search the machine data of
events to identify events that have the field name “UserID.”
In another example, a search having criteria that specifies a
field name “UserID” with a corresponding field value
“12345” may cause the system to field-search the machine
data of events to identify events having that field-value pair
(e.g., field name “UserID” with a corresponding field value
of “12345”). Events are field-searchable using one or more
configuration files associated with the events. Each configu-
ration file can include one or more field names, where each
field name is associated with a corresponding extraction rule

US 11,902,081 B1

5

and a set of events to which that extraction rule applies. The
set of events to which an extraction rule applies may be
identified by metadata associated with the set of events. For
example, an extraction rule may apply to a set of events that
are each associated with a particular host, source, or source-
type. When events are to be searched based on a particular
field name specified in a search, the system can use one or
more configuration files to determine whether there is an
extraction rule for that particular field name that applies to
each event that falls within the criteria of the search. If so,
the event is considered as part of the search results (and
additional processing may be performed on that event based
on criteria specified in the search). If not, the next event is
similarly analyzed, and so on.

As noted above, the data intake and query system can
utilize a late-binding schema while performing queries on
events. One aspect of a late-binding schema is applying
extraction rules to events to extract values for specific fields
during search time. More specifically, the extraction rule for
a field can include one or more instructions that specify how
to extract a value for the field from an event. An extraction
rule can generally include any type of instruction for extract-
ing values from machine data or events. In some cases, an
extraction rule comprises a regular expression, where a
sequence of characters form a search pattern. An extraction
rule comprising a regular expression is referred to herein as
a regex rule. The system applies a regex rule to machine data
or an event to extract values for a field associated with the
regex rule, where the values are extracted by searching the
machine data/event for the sequence of characters defined in
the regex rule.

In the data intake and query system, a field extractor may
be configured to automatically generate extraction rules for
certain fields in the events when the events are being created,
indexed, or stored, or possibly at a later time. Alternatively,
a user may manually define extraction rules for fields using
a variety of techniques. In contrast to a conventional schema
for a database system, a late-binding schema is not defined
at data ingestion time. Instead, the late-binding schema can
be developed on an ongoing basis until the time a query is
actually executed. This means that extraction rules for the
fields specified in a query may be provided in the query
itself, or may be located during execution of the query.
Hence, as a user learns more about the data in the events, the
user can continue to refine the late-binding schema by
adding new fields, deleting fields, or modifying the field
extraction rules for use the next time the schema is used by
the system. Because the data intake and query system
maintains the underlying machine data and uses a late-
binding schema for searching the machine data, it enables a
user to continue investigating and learn valuable insights
about the machine data.

In some embodiments, a common field name may be used
to reference two or more fields containing equivalent and/or
similar data items, even though the fields may be associated
with different types of events that possibly have different
data formats and different extraction rules. By enabling a
common field name to be used to identify equivalent and/or
similar fields from different types of events generated by
disparate data sources, the system facilitates use of a “com-
mon information model” (CIM) across the disparate data
sources.

In some embodiments, the configuration files and/or
extraction rules described above can be stored in a catalog,
such as a metadata catalog. In certain embodiments, the
content of the extraction rules can be stored as rules or
actions in the metadata catalog. For example, the identifi-

10

15

20

25

30

35

40

45

50

55

60

65

6

cation of the data to which the extraction rule applies can be
referred to a rule and the processing of the data can be
referred to as an action.

1.0. Operating Environment

FIG. 1 is a block diagram of an embodiment of a data
processing environment 100. In the illustrated embodiment,
the environment 100 includes a data intake and query system
102, one or more host devices 104, and one or more client
computing devices 106 (generically referred to as client
device(s) 106).

The data intake and query system 102, host devices 104,
and client devices 106 can communicate with each other via
one or more networks, such as a local area network (LAN),
wide area network (WAN), private or personal network,
cellular networks, intranetworks, and/or internetworks using
any of wired, wireless, terrestrial microwave, satellite links,
etc., and may include the Internet. Although not explicitly
shown in FIG. 1, it will be understood that a client com-
puting device 106 can communicate with a host device 104
via one or more networks. For example, if the host device
104 is configured as a web server and the client computing
device 106 is a laptop, the laptop can communicate with the
web server to view a website.

A client device 106 can correspond to a distinct comput-
ing device that can configure, manage, or sends queries to
the system 102. Examples of client devices 106 may include,
without limitation, smart phones, tablet computers, handheld
computers, wearable devices, laptop computers, desktop
computers, servers, portable media players, gaming devices,
or other device that includes computer hardware (e.g.,
processors, non-transitory, computer-readable media, etc.)
and so forth. In certain cases, a client device 106 can include
a hosted, virtualized, or containerized device, such as an
isolated execution environment, that shares computing
resources (e.g., processor, memory, etc.) of a particular
machine with other isolated execution environments.

The client devices 106 can interact with the system 102
(or a host device 104) in a variety of ways. For example, the
client devices 106 can communicate with the system 102 (or
a host device 104) over an Internet (Web) protocol, via a
gateway, via a command line interface, via a software
developer kit (SDK), a standalone application, etc. As
another example, the client devices 106 can use one or more
executable applications or programs to interface with the
system 102.

A host device 104 can correspond to a distinct computing
device or system that includes or has access to data that can
be ingested, indexed, and/or searched by the system 102.
Accordingly, in some cases, a client device 106 may also be
a host device 104 (e.g., it can include data that is ingested by
the system 102 and it can submit queries to the system 102).
The host devices 104 can include, but are not limited to,
servers, sensors, routers, personal computers, mobile
devices, internet of things (JOT) devices, or hosting devices,
such as computing devices in a shared computing resource
environment on which multiple isolated execution environ-
ment (e.g., virtual machines, containers, etc.) can be instan-
tiated, or other computing devices in an IT environment
(e.g., device that includes computer hardware, e.g., proces-
sors, non-transitory, computer-readable media, etc.). In cer-
tain cases, a host device 104 can include a hosted, virtual-
ized, or containerized device, such as an isolated execution
environment, that shares computing resources (e.g., proces-

US 11,902,081 B1

7

sor, memory, etc.) of a particular machine (e.g., a hosting
device or hosting machine) with other isolated execution
environments.

As mentioned host devices 104 can include or have access
to data sources for the system 102. The data sources can
include machine data found in log files, data files, distributed
file systems, streaming data, publication-subscribe (pub/sub)
buffers, directories of files, data sent over a network, event
logs, registries, streaming data services (examples of which
can include, by way of non-limiting example, Amazon’s
Simple Queue Service (“SQS”) or Kinesis™ services,
devices executing Apache Kafka™ software, or devices
implementing the Message Queue Telemetry Transport
(MQTT) protocol, Microsoft Azure EventHub, Google
Cloud PubSub, devices implementing the Java Message
Service (JMS) protocol, devices implementing the
Advanced Message Queuing Protocol (AMQP)), cloud-
based services (e.g., AWS, Microsoft Azure, Google Cloud,
etc.), operating-system-level virtualization environments
(e.g., Docker), container orchestration systems (e.g., Kuber-
netes), virtual machines using full virtualization or paravir-
tualization, or other virtualization technique or isolated
execution environments.

In some cases, one or more applications executing on a
host device may generate various types of machine data
during operation. For example, a web server application
executing on a host device 104 may generate one or more
web server logs detailing interactions between the web
server and any number of client devices 106 or other
devices. As another example, a host device 104 implemented
as a router may generate one or more router logs that record
information related to network traffic managed by the router.
As yet another example, a database server application
executing on a host device 104 may generate one or more
logs that record information related to requests sent from
other devices (e.g., web servers, application servers, client
devices, etc.) for data managed by the database server.
Similarly, a host device 104 may generate and/or store
computing resource utilization metrics, such as, but not
limited to, CPU utilization, memory utilization, number of
processes being executed, etc. Any one or any combination
of the files or data generated in such cases can be used as a
data source for the system 102.

In some embodiments, an application may include a
monitoring component that facilitates generating perfor-
mance data related to host device’s operating state, includ-
ing monitoring network traffic sent and received from the
host device and collecting other device and/or application-
specific information. A monitoring component may be an
integrated component of the application, a plug-in, an exten-
sion, or any other type of add-on component, or a stand-
alone process.

Such monitored information may include, but is not
limited to, network performance data (e.g., a URL requested,
a connection type (e.g., HTTP, HTTPS, etc.), a connection
start time, a connection end time, an HTTP status code,
request length, response length, request headers, response
headers, connection status (e.g., completion, response
time(s), failure, etc.)) or device performance information
(e.g., current wireless signal strength of the device, a current
connection type and network carrier, current memory per-
formance information, processor utilization, memory utili-
zation, a geographic location of the device, a device orien-
tation, and any other information related to the operational
state of the host device, etc.), device profile information
(e.g., a type of client device, a manufacturer, and model of
the device, versions of various software applications

10

15

20

25

30

35

40

45

50

55

60

65

8

installed on the device, etc.) In some cases, the monitoring
component can collect device performance information by
monitoring one or more host device operations, or by
making calls to an operating system and/or one or more
other applications executing on a host device for perfor-
mance information. The monitored information may be
stored in one or more files and/or streamed to the system
102.

In general, a monitoring component may be configured to
generate performance data in response to a monitor trigger
in the code of a client application or other triggering
application event, as described above, and to store the
performance data in one or more data records. Each data
record, for example, may include a collection of field-value
pairs, each field-value pair storing a particular item of
performance data in association with a field for the item. For
example, a data record generated by a monitoring compo-
nent may include a “networklatency” field (not shown in
the Figure) in which a value is stored. This field indicates a
network latency measurement associated with one or more
network requests. The data record may include a “state” field
to store a value indicating a state of a network connection,
and so forth for any number of aspects of collected perfor-
mance data.

In some embodiments, such as in a shared computing
resource environment (or hosted environment), a host device
104 may include logs or machine data generated by an
application executing within an isolated execution environ-
ment (e.g., web server log file if the isolated execution
environment is configured as a web server or database server
log files if the isolated execution environment is configured
as database server, etc.), machine data associated with the
computing resources assigned to the isolated execution
environment (e.g., CPU utilization of the portion of the CPU
allocated to the isolated execution environment, memory
utilization of the portion of the memory allocated to the
isolated execution environment, etc.), logs or machine data
generated by an application that enables the isolated execu-
tion environment to share resources with other isolated
execution environments (e.g., logs generated by a Docker
manager or Kubernetes manager executing on the host
device 104), and/or machine data generated by monitoring
the computing resources of the host device 104 (e.g., CPU
utilization, memory utilization, etc.) that are shared between
the isolated execution environments. Given the separation
(and isolation) between isolated execution environments
executing on a common computing device, in certain
embodiments, each isolated execution environment may be
treated as a separate host device 104 even if they are, in fact,
executing on the same computing device or hosting device.

Accordingly, as used herein, obtaining data from a data
source may refer to communicating with a host device 104
to obtain data from the host device 104 (e.g., from one or
more data source files, data streams, directories on the host
device 104, etc.). For example, obtaining data from a data
source may refer to requesting data from a host device 104
and/or receiving data from a host device 104. In some such
cases, the host device 104 can retrieve and return the
requested data from a particular data source and/or the
system 102 can retrieve the data from a particular data
source of the host device 104 (e.g., from a particular file
stored on a host device 104).

The data intake and query system 102 can ingest, index,
and/or store data from heterogeneous data sources and/or
host devices 104. For example, the system 102 can ingest,
index, and/or store any type of machine data, regardless of
the form of the machine data or whether the machine data

US 11,902,081 B1

9

matches or is similar to other machine data ingested,
indexed, and/or stored by the system 102. In some cases, the
system 102 can generate events from the received data,
group the events, and store the events in buckets. The system
102 can also search heterogeneous data that it has stored or
search data stored by other systems (e.g., other system 102
systems or other non-system 102 systems). For example, in
response to received queries, the system 102 can assign one
or more components to search events stored in the storage
system or search data stored elsewhere.

As will be described herein in greater detail below, the
system 102 can use one or more components to ingest,
index, store, and/or search data. In some embodiments, the
system 102 is implemented as a distributed system that uses
multiple components to perform its various functions. For
example, the system 102 can include any one or any
combination of an intake system 110 (including one or more
components) to ingest data, an indexing system 112 (includ-
ing one or more components) to index the data, a storage
system 116 (including one or more components) to store the
data, and/or a query system 114 (including one or more
components) to search the data, etc.

In the illustrated embodiment, the system 102 is shown
having four subsystems 110, 112, 114, 116. However, it will
be understood that the system 102 may include any one or
any combination of the intake system 110, indexing system
112, query system 114, or storage system 116. Further, in
certain embodiments, one or more of the intake system 110,
indexing system 112, query system 114, or storage system
116 may be used alone or apart from the system 102. For
example, the intake system 110 may be used alone to glean
information from streaming data that is not indexed or stored
by the system 102, or the query system 114 may be used to
search data that is unaffiliated with the system 102.

In certain embodiments, the components of the different
systems may be distinct from each other or there may be
some overlap. For example, one component of the system
102 may include some indexing functionality and some
searching functionality and thus be used as part of the
indexing system 112 and query system 114, while another
computing device of the system 102 may only have ingest-
ing or search functionality and only be used as part of those
respective systems. Similarly, the components of the storage
system 116 may include data stores of individual compo-
nents of the indexing system and/or may be a separate shared
data storage system, like Amazon S3, that is accessible to
distinct components of the intake system 110, indexing
system 112, and query system 114.

In some cases, the components of the system 102 are
implemented as distinct computing devices having their own
computer hardware (e.g., processors, non-transitory, com-
puter-readable media, etc.) and/or as distinct hosted devices
(e.g., isolated execution environments) that share computing
resources or hardware in a shared computing resource
environment.

For simplicity, references made herein to the intake sys-
tem 110, indexing system 112, storage system 116, and
query system 114 can refer to those components used for
ingesting, indexing, storing, and searching, respectively.
However, it will be understood that although reference is
made to two separate systems, the same underlying compo-
nent may be performing the functions for the two different
systems. For example, reference to the indexing system
indexing data and storing the data in the storage system 116
or the query system searching the data may refer to the same

10

15

20

25

30

35

40

45

50

55

60

65

10

component (e.g., same computing device or hosted device)
indexing the data, storing the data, and then searching the
data that it stored.

As will be described in greater detail herein, the intake
system 110 can receive data from the host devices 104 or
data sources, perform one or more preliminary processing
operations on the data, and communicate the data to the
indexing system 112, query system 114, storage system 116,
or to other systems (which may include, for example, data
processing systems, telemetry systems, real-time analytics
systems, data stores, databases, etc., any of which may be
operated by an operator of the system 102 or a third party).
Given the amount of data that can be ingested by the intake
system 110, in some embodiments, the intake system can
include multiple distributed computing devices or compo-
nents working concurrently to ingest the data.

The intake system 110 can receive data from the host
devices 104 in a variety of formats or structures. In some
embodiments, the received data corresponds to raw machine
data, structured or unstructured data, correlation data, data
files, directories of files, data sent over a network, event logs,
registries, messages published to streaming data sources,
performance metrics, sensor data, image and video data, etc.

The preliminary processing operations performed by the
intake system 110 can include, but is not limited to, asso-
ciating metadata with the data received from a host device
104, extracting a timestamp from the data, identifying
individual events within the data, extracting a subset of
machine data for transmittal to the indexing system 112,
enriching the data, etc. As part of communicating the data to
the indexing system, the intake system 110 can route the data
to a particular component of the intake system 110 or
dynamically route the data based on load-balancing, etc. In
certain cases, one or more components of the intake system
110 can be installed on a host device 104.

1.4.2. Indexing System Overview

As will be described in greater detail herein, the indexing
system 112 can include one or more components (e.g.,
indexing nodes) to process the data and store it, for example,
in the storage system 116. As part of processing the data, the
indexing system can identify distinct events within the data,
timestamps associated with the data, organize the data into
buckets or time series buckets, convert editable buckets to
non-editable buckets, store copies of the buckets in the
storage system 116, merge buckets, generate indexes of the
data, etc. In addition, the indexing system 112 can update
various catalogs or databases with information related to the
buckets (pre-merged or merged) or data that is stored in the
storage system 116, and can communicate with the intake
system 110 about the status of the data storage.

As will be described in greater detail herein, the query
system 114 can include one or more components to receive,
process, and execute queries. In some cases, the query
system 114 can use the same component to process and
execute the query or use one or more components to receive
and process the query (e.g., a search head) and use one or
more other components to execute at least a portion of the
query (e.g., search nodes). In some cases, a search node and
an indexing node may refer to the same computing device or
hosted device performing different functions. In certain
cases, a search node can be a separate computing device or
hosted device from an indexing node.

Queries received by the query system 114 can be rela-
tively complex and identify a set of data to be processed and
a manner of processing the set of data from one or more
client devices 106. In certain cases, the query can be
implemented using a pipelined command language or other

US 11,902,081 B1

11

query language. As described herein, in some cases, the
query system 114 can execute parts of the query in a
distributed fashion (e.g., one or more mapping phases or
parts associated with identifying and gathering the set of
data identified in the query) and execute other parts of the
query on a single component (e.g., one or more reduction
phases). However, it will be understood that in some cases
multiple components can be used in the map and/or reduce
functions of the query execution.

In some cases, as part of executing the query, the query
system 114 can use one or more catalogs or databases to
identify the set of data to be processed or its location in the
storage system 116 and/or can retrieve data from the storage
system 116. In addition, in some embodiments, the query
system 114 can store some or all of the query results in the
storage system 116.

In some cases, the storage system 116 may include one or
more data stores associated with or coupled to the compo-
nents of the indexing system 112 that are accessible via a
system bus or local area network. In certain embodiments,
the storage system 116 may be a shared storage system 116,
like Amazon S3 or Google Cloud Storage, that are accessible
via a wide area network.

As mentioned and as will be described in greater detail
below, the storage system 116 can be made up of one or
more data stores storing data that has been processed by the
indexing system 112. In some cases, the storage system
includes data stores of the components of the indexing
system 112 and/or query system 114. In certain embodi-
ments, the storage system 116 can be implemented as a
shared storage system 116. The shared storage system 116
can be configured to provide high availability, highly resil-
ient, low loss data storage. In some cases, to provide the high
availability, highly resilient, low loss data storage, the shared
storage system 116 can store multiple copies of the data in
the same and different geographic locations and across
different types of data stores (e.g., solid state, hard drive,
tape, etc.). Further, as data is received at the shared storage
system 116 it can be automatically replicated multiple times
according to a replication factor to different data stores
across the same and/or different geographic locations. In
some embodiments, the shared storage system 116 can
correspond to cloud storage, such as Amazon Simple Stor-
age Service (S3) or Elastic Block Storage (EBS), Google
Cloud Storage, Microsoft Azure Storage, etc.

In some embodiments, indexing system 112 can read to
and write from the shared storage system 116. For example,
the indexing system 112 can copy buckets of data from its
local or shared data stores to the shared storage system 116.
In certain embodiments, the query system 114 can read
from, but cannot write to, the shared storage system 116. For
example, the query system 114 can read the buckets of data
stored in shared storage system 116 by the indexing system
112, but may not be able to copy buckets or other data to the
shared storage system 116. In some embodiments, the intake
system 110 does not have access to the shared storage
system 116. However, in some embodiments, one or more
components of the intake system 110 can write data to the
shared storage system 116 that can be read by the indexing
system 112.

As described herein, in some embodiments, data in the
system 102 (e.g., in the data stores of the components of the
indexing system 112, shared storage system 116, or search
nodes of the query system 114) can be stored in one or more
time series buckets. Each bucket can include raw machine
data associated with a timestamp and additional information
about the data or bucket, such as, but not limited to, one or

25

30

40

45

60

12

more filters, indexes (e.g., TSIDX, inverted indexes, key-
word indexes, etc.), bucket summaries, etc. In some embodi-
ments, the bucket data and information about the bucket data
is stored in one or more files. For example, the raw machine
data, filters, indexes, bucket summaries, etc. can be stored in
respective files in or associated with a bucket. In certain
cases, the group of files can be associated together to form
the bucket.

The system 102 can include additional components that
interact with any one or any combination of the intake
system 110, indexing system 112, query system 114, and/or
storage system 116. Such components may include, but are
not limited to an authentication system, orchestration sys-
tem, one or more catalogs or databases, a gateway, etc.

An authentication system can include one or more com-
ponents to authenticate users to access, use, and/or configure
the system 102. Similarly, the authentication system can be
used to restrict what a particular user can do on the system
102 and/or what components or data a user can access, etc.

An orchestration system can include one or more com-
ponents to manage and/or monitor the various components
of the system 102. In some embodiments, the orchestration
system can monitor the components of the system 102 to
detect when one or more components has failed or is
unavailable and enable the system 102 to recover from the
failure (e.g., by adding additional components, fixing the
failed component, or having other components complete the
tasks assigned to the failed component). In certain cases, the
orchestration system can determine when to add components
to or remove components from a particular system 110, 112,
114, 116 (e.g., based on usage, user/tenant requests, etc.). In
embodiments where the system 102 is implemented in a
shared computing resource environment, the orchestration
system can facilitate the creation and/or destruction of
isolated execution environments or instances of the compo-
nents of the system 102, etc.

In certain embodiments, the system 102 can include
various components that enable it to provide stateless ser-
vices or enable it to recover from an unavailable or unre-
sponsive component without data loss in a time efficient
manner. For example, the system 102 can store contextual
information about its various components in a distributed
way such that if one of the components becomes unrespon-
sive or unavailable, the system 102 can replace the unavail-
able component with a different component and provide the
replacement component with the contextual information. In
this way, the system 102 can quickly recover from an
unresponsive or unavailable component while reducing or
eliminating the loss of data that was being processed by the
unavailable component.

In some embodiments, the system 102 can store the
contextual information in a catalog, as described herein. In
certain embodiments, the contextual information can corre-
spond to information that the system 102 has determined or
learned based on use. In some cases, the contextual infor-
mation can be stored as annotations (manual annotations
and/or system annotations), as described herein.

In certain embodiments, the system 102 can include an
additional catalog that monitors the location and storage of
data in the storage system 116 to facilitate efficient access of
the data during search time. In certain embodiments, such a
catalog may form part of the storage system 116.

In some embodiments, the system 102 can include a
gateway or other mechanism to interact with external
devices or to facilitate communications between compo-
nents of the system 102. In some embodiments, the gateway
can be implemented using an application programming

US 11,902,081 B1

13

interface (API). In certain embodiments, the gateway can be
implemented using a representational state transfer API
(REST API).

In some environments, a user of a system 102 may install
and configure, on computing devices owned and operated by
the user, one or more software applications that implement
some or all of the components of the system 102. For
example, with reference to FIG. 1, a user may install a
software application on server computers owned by the user
and configure each server to operate as one or more com-
ponents of the intake system 110, indexing system 112,
query system 114, shared storage system 116, or other
components of the system 102. This arrangement generally
may be referred to as an “on-premises” solution. That is, the
system 102 is installed and operates on computing devices
directly controlled by the user of the system 102. Some users
may prefer an on-premises solution because it may provide
a greater level of control over the configuration of certain
aspects of the system (e.g., security, privacy, standards,
controls, etc.). However, other users may instead prefer an
arrangement in which the user is not directly responsible for
providing and managing the computing devices upon which
various components of system 102 operate.

In certain embodiments, one or more of the components
of'the system 102 can be implemented in a shared computing
resource environment. In this context, a shared computing
resource environment or cloud-based service can refer to a
service hosted by one more computing resources that are
accessible to end users over a network, for example, by
using a web browser or other application on a client device
to interface with the remote computing resources. For
example, a service provider may provide a system 102 by
managing computing resources configured to implement
various aspects of the system (e.g., intake system 110,
indexing system 112, query system 114, shared storage
system 116, other components, etc.) and by providing access
to the system to end users via a network. Typically, a user
may pay a subscription or other fee to use such a service.
Each subscribing user of the cloud-based service may be
provided with an account that enables the user to configure
a customized cloud-based system based on the user’s pref-
erences.

When implemented in a shared computing resource envi-
ronment, the underlying hardware (non-limiting examples:
processors, hard drives, solid-state memory, RAM, etc.) on
which the components of the system 102 execute can be
shared by multiple customers or tenants as part of the shared
computing resource environment. In addition, when imple-
mented in a shared computing resource environment as a
cloud-based service, various components of the system 102
can be implemented using containerization or operating-
system-level virtualization, or other virtualization technique.
For example, one or more components of the intake system
110, indexing system 112, or query system 114 can be
implemented as separate software containers or container
instances. Each container instance can have certain comput-
ing resources (e.g., memory, processor, etc.) of an underly-
ing hosting computing system (e.g., server, microprocessor,
etc.) assigned to it, but may share the same operating system
and may use the operating system’s system call interface.
Each container may provide an isolated execution environ-
ment on the host system, such as by providing a memory
space of the hosting system that is logically isolated from
memory space of other containers. Further, each container
may run the same or different computer applications con-
currently or separately, and may interact with each other.
Although reference is made herein to containerization and

10

15

20

25

30

35

40

45

50

55

60

65

14

container instances, it will be understood that other virtual-
ization techniques can be used. For example, the compo-
nents can be implemented using virtual machines using full
virtualization or paravirtualization, etc. Thus, where refer-
ence is made to “containerized” components, it should be
understood that such components may additionally or alter-
natively be implemented in other isolated execution envi-
ronments, such as a virtual machine environment.

Implementing the system 102 in a shared computing
resource environment can provide a number of benefits. In
some cases, implementing the system 102 in a shared
computing resource environment can make it easier to
install, maintain, and update the components of the system
102. For example, rather than accessing designated hard-
ware at a particular location to install or provide a compo-
nent of the system 102, a component can be remotely
instantiated or updated as desired. Similarly, implementing
the system 102 in a shared computing resource environment
or as a cloud-based service can make it easier to meet
dynamic demand. For example, if the system 102 experi-
ences significant load at indexing or search, additional
compute resources can be deployed to process the additional
data or queries. In an “on-premises” environment, this type
of flexibility and scalability may not be possible or feasible.

In addition, by implementing the system 102 in a shared
computing resource environment or as a cloud-based service
can improve compute resource utilization. For example, in
an on-premises environment if the designated compute
resources are not being used by, they may sit idle and
unused. In a shared computing resource environment, if the
compute resources for a particular component are not being
used, they can be re-allocated to other tasks within the
system 102 and/or to other systems unrelated to the system
102.

As mentioned, in an on-premises environment, data from
one instance of a system 102 is logically and physically
separated from the data of another instance of a system 102
by virtue of each instance having its own designated hard-
ware. As such, data from different customers of the system
102 is logically and physically separated from each other. In
a shared computing resource environment, components of a
system 102 can be configured to process the data from one
customer or tenant or from multiple customers or tenants.
Even in cases where a separate component of a system 102
is used for each customer, the underlying hardware on which
the components of the system 102 are instantiated may still
process data from different tenants. Accordingly, in a shared
computing resource environment, the data from different
tenants may not be physically separated on distinct hardware
devices. For example, data from one tenant may reside on
the same hard drive as data from another tenant or be
processed by the same processor. In such cases, the system
102 can maintain logical separation between tenant data. For
example, the system 102 can include separate directories for
different tenants and apply different permissions and access
controls to access the different directories or to process the
data, etc.

In certain cases, the tenant data from different tenants is
mutually exclusive and/or independent from each other. For
example, in certain cases, Tenant A and Tenant B do not
share the same data, similar to the way in which data from
a local hard drive of Customer A is mutually exclusive and
independent of the data (and not considered part) of a local
hard drive of Customer B. While Tenant A and Tenant B may
have matching or identical data, each tenant would have a
separate copy of the data. For example, with reference again
to the local hard drive of Customer A and Customer B

US 11,902,081 B1

15

example, each hard drive could include the same file.
However, each instance of the file would be considered part
of the separate hard drive and would be independent of the
other file. Thus, one copy of the file would be part of
Customer’s A hard drive and a separate copy of the file
would be part of Customer B’s hard drive. In a similar
manner, to the extent Tenant A has a file that is identical to
a file of Tenant B, each tenant would have a distinct and
independent copy of the file stored in different locations on
a data store or on different data stores.

Further, in certain cases, the system 102 can maintain the
mutual exclusivity and/or independence between tenant data
even as the tenant data is being processed, stored, and
searched by the same underlying hardware. In certain cases,
to maintain the mutual exclusivity and/or independence
between the data of different tenants, the system 102 can use
tenant identifiers to uniquely identify data associated with
different tenants.

In a shared computing resource environment, some com-
ponents of the system 102 can be instantiated and designated
for individual tenants and other components can be shared
by multiple tenants. In certain embodiments, a separate
intake system 110, indexing system 112, and query system
114 can be instantiated for each tenant, whereas the shared
storage system 116 or other components (e.g., data store,
metadata catalog, and/or acceleration data store, described
below) can be shared by multiple tenants. In some such
embodiments where components are shared by multiple
tenants, the components can maintain separate directories
for the different tenants to ensure their mutual exclusivity
and/or independence from each other. Similarly, in some
such embodiments, the system 102 can use different hosting
computing systems or different isolated execution environ-
ments to process the data from the different tenants as part
of the intake system 110, indexing system 112, and/or query
system 114.

In some embodiments, individual components of the
intake system 110, indexing system 112, and/or query sys-
tem 114 may be instantiated for each tenant or shared by
multiple tenants. For example, some individual intake sys-
tem components (e.g., forwarders, output ingestion buffer)
may be instantiated and designated for individual tenants,
while other intake system components (e.g., a data retrieval
subsystem, intake ingestion buffer, and/or streaming data
processor), may be shared by multiple tenants.

In certain embodiments, an indexing system 112 (or
certain components thereof) can be instantiated and desig-
nated for a particular tenant or shared by multiple tenants. In
some embodiments where a separate indexing system 112 is
instantiated and designated for each tenant, different
resources can be reserved for different tenants. For example,
Tenant A can be consistently allocated a minimum of four
indexing nodes and Tenant B can be consistently allocated
a minimum of two indexing nodes. In some such embodi-
ments, the four indexing nodes can be reserved for Tenant A
and the two indexing nodes can be reserved for Tenant B,
even if Tenant A and Tenant B are not using the reserved
indexing nodes.

In embodiments where an indexing system 112 is shared
by multiple tenants, components of the indexing system 112
can be dynamically assigned to different tenants. For
example, if Tenant A has greater indexing demands, addi-
tional indexing nodes can be instantiated or assigned to
Tenant A’s data. However, as the demand decreases, the
indexing nodes can be reassigned to a different tenant, or

5

10

15

20

25

30

35

40

45

50

55

60

65

16

terminated. Further, in some embodiments, a component of
the indexing system 112 can concurrently process data from
the different tenants.

In some embodiments, one instance of query system 114
may be shared by multiple tenants. In some such cases, the
same search head can be used to process/execute queries for
different tenants and/or the same search nodes can be used
to execute query for different tenants. Further, in some such
cases, different tenants can be allocated different amounts of
compute resources. For example, Tenant A may be assigned
more search heads or search nodes based on demand or
based on a service level arrangement than another tenant.
However, once a search is completed the search head and/or
nodes assigned to Tenant A may be assigned to Tenant B,
deactivated, or their resource may be re-allocated to other
components of the system 102, etc.

In some cases, by sharing more components with different
tenants, the functioning of the system 102 can be improved.
For example, by sharing components across tenants, the
system 102 can improve resource utilization thereby reduc-
ing the amount of resources allocated as a whole. For
example, if four indexing nodes, two search heads, and four
search nodes are reserved for each tenant then those com-
pute resources are unavailable for use by other processes or
tenants, even if they go unused. In contrast, by sharing the
indexing nodes, search heads, and search nodes with differ-
ent tenants and instantiating additional compute resources,
the system 102 can use fewer resources overall while
providing improved processing time for the tenants that are
using the compute resources. For example, if tenant A is not
using any search nodes 506 and tenant B has many searches
running, the system 102 can use search nodes that would
have been reserved for tenant A to service tenant B. In this
way, the system 102 can decrease the number of compute
resources used/reserved, while improving the search time
for tenant B and improving compute resource utilization.

2.0. Data Ingestion, Indexing, and Storage

FIG. 2 is a flow diagram illustrating an embodiment of a
routine implemented by the system 102 to process, index,
and store data received from host devices 104. The data flow
illustrated in FIG. 2 is provided for illustrative purposes
only. It will be understood that one or more of the steps of
the processes illustrated in FIG. 2 may be removed or that
the ordering of the steps may be changed. Furthermore, for
the purposes of illustrating a clear example, one or more
particular system components are described in the context of
performing various operations during each of the data flow
stages. For example, the intake system 110 is described as
receiving machine data and the indexing system 112 is
described as generating events, grouping events, and storing
events. However, other system arrangements and distribu-
tions of the processing steps across system components may
be used. For example, in some cases, the intake system 110
may generate events.

At block 202, the intake system 110 receives data from a
host device 104. The intake system 110 initially may receive
the data as a raw data stream generated by the host device
104. For example, the intake system 110 may receive a data
stream from a log file generated by an application server,
from a stream of network data from a network device, or
from any other source of data. Non-limiting examples of
machine data that can be received by the intake system 110
is described herein with reference to FIG. 3A.

In some embodiments, the intake system 110 receives the
raw data and may segment the data stream into messages,

US 11,902,081 B1

17

possibly of a uniform data size, to facilitate subsequent
processing steps. The intake system 110 may thereafter
process the messages in accordance with one or more rules
to conduct preliminary processing of the data. In one
embodiment, the processing conducted by the intake system
110 may be used to indicate one or more metadata fields
applicable to each message. For example, the intake system
110 may include metadata fields within the messages, or
publish the messages to topics indicative of a metadata field.
These metadata fields may, for example, provide informa-
tion related to a message as a whole and may apply to each
event that is subsequently derived from the data in the
message. For example, the metadata fields may include
separate fields specifying each of a host, a source, and a
sourcetype related to the message. A host field may contain
a value identifying a host name or IP address of a device that
generated the data. A source field may contain a value
identifying a source of the data, such as a pathname of a file
or a protocol and port related to received network data. A
sourcetype field may contain a value specifying a particular
sourcetype label for the data. Additional metadata fields may
also be included, such as a character encoding of the data, if
known, and possibly other values that provide information
relevant to later processing steps. In certain embodiments,
the intake system 110 may perform additional operations,
such as, but not limited to, identifying individual events
within the data, determining timestamps for the data, further
enriching the data, etc.

At block 204, the indexing system 112 generates events
from the data. In some cases, as part of generating the
events, the indexing system 112 can parse the data of the
message. In some embodiments, the indexing system 112
can determine a sourcetype associated with each message
(e.g., by extracting a sourcetype label from the metadata
fields associated with the message, etc.) and refer to a
sourcetype configuration corresponding to the identified
sourcetype to parse the data of the message. The sourcetype
definition may include one or more properties that indicate
to the indexing system 112 to automatically determine the
boundaries within the received data that indicate the portions
of machine data for events. In general, these properties may
include regular expression-based rules or delimiter rules
where, for example, event boundaries may be indicated by
predefined characters or character strings. These predefined
characters may include punctuation marks or other special
characters including, for example, carriage returns, tabs,
spaces, line breaks, etc. If a sourcetype for the data is
unknown to the indexing system 112, the indexing system
112 may infer a sourcetype for the data by examining the
structure of the data. Then, the indexing system 112 can
apply an inferred sourcetype definition to the data to create
the events.

In addition, as part of generating events from the data, the
indexing system 112 can determine a timestamp for each
event. Similar to the process for parsing machine data, the
indexing system 112 may again refer to a sourcetype defi-
nition associated with the data to locate one or more prop-
erties that indicate instructions for determining a timestamp
for each event. The properties may, for example, instruct the
indexing system 112 to extract a time value from a portion
of data for the event (e.g., using a regex rule), to interpolate
time values based on timestamps associated with temporally
proximate events, to create a timestamp based on a time the
portion of machine data was received or generated, to use
the timestamp of a previous event, or use any other rules for
determining timestamps, etc.

15

20

40

45

18

The indexing system 112 can also associate events with
one or more metadata fields. In some embodiments, a
timestamp may be included in the metadata fields. These
metadata fields may include any number of “default fields”
that are associated with all events, and may also include one
more custom fields as defined by a user. In certain embodi-
ments, the default metadata fields associated with each event
may include a host, source, and sourcetype field including or
in addition to a field storing the timestamp.

In certain embodiments, the indexing system 112 can also
apply one or more transformations to event data that is to be
included in an event. For example, such transformations can
include removing a portion of the event data (e.g., a portion
used to define event boundaries, extraneous characters from
the event, other extraneous text, etc.), masking a portion of
event data (e.g., masking a credit card number), removing
redundant portions of event data, etc. The transformations
applied to event data may, for example, be specified in one
or more configuration files and referenced by one or more
sourcetype definitions.

At block 206, the indexing system 112 can group events.
In some embodiments, the indexing system 112 can group
events based on time. For example, events generated within
a particular time period or events that have a time stamp
within a particular time period can be grouped together to
form a bucket. A non-limiting example of a bucket is
described herein with reference to FIG. 3B.

In certain embodiments, multiple components of the
indexing system, such as an indexing node, can concurrently
generate events and buckets. Furthermore, each indexing
node that generates and groups events can concurrently
generate multiple buckets. For example, multiple processors
of an indexing node can concurrently process data, generate
events, and generate buckets. Further, multiple indexing
nodes can concurrently generate events and buckets. As
such, ingested data can be processed in a highly distributed
manner.

In some embodiments, as part of grouping events
together, the indexing system 112 can generate one or more
inverted indexes for a particular group of events. A non-
limiting example of an inverted index is described herein
with reference to FIG. 3C. In certain embodiments, the
inverted indexes can include location information for events
of a bucket. For example, the events of a bucket may be
compressed into one or more files to reduce their size. The
inverted index can include location information indicating
the particular file and/or location within a particular file of
a particular event.

In certain embodiments, the inverted indexes may include
keyword entries or entries for field values or field name-
value pairs found in events. In some cases, a field name-
value pair can include a pair of words connected by a
symbol, such as an equals sign or colon. The entries can also
include location information for events that include the
keyword, field value, or field value pair. In this way, relevant
events can be quickly located. In some embodiments, fields
can automatically be generated for some or all of the field
names of the field name-value pairs at the time of indexing.
For example, if the string “dest=10.0.1.2” is found in an
event, a field named “dest” may be created for the event, and
assigned a value of “10.0.1.2.” In certain embodiments, the
indexing system can populate entries in the inverted index
with field name-value pairs by parsing events using one or
more regex rules to determine a field value associated with
a field defined by the regex rule. For example, the regex rule
may indicate how to find a field value for a userID field in
certain events. In some cases, the indexing system 112 can

US 11,902,081 B1

19

use the sourcetype of the event to determine which regex to
use for identifying field values.

At block 208, the indexing system 112 stores the events
with an associated timestamp in the storage system 116,
which may be in a local data store and/or in a shared storage
system. Timestamps enable a user to search for events based
on a time range. In some embodiments, the stored events are
organized into “buckets,” where each bucket stores events
associated with a specific time range based on the time-
stamps associated with each event. As mentioned, FIGS. 3B
and 3C illustrate an example of a bucket. This improves
time-based searching, as well as allows for events with
recent timestamps, which may have a higher likelihood of
being accessed, to be stored in a faster memory to facilitate
faster retrieval. For example, buckets containing the most
recent events can be stored in flash memory rather than on
a hard disk. In some embodiments, each bucket may be
associated with an identifier, a time range, and a size
constraint.

The indexing system 112 may be responsible for storing
the events in the storage system 116. As mentioned, the
events or buckets can be stored locally on a component of
the indexing system 112 or in a shared storage system 116.
In certain embodiments, the component that generates the
events and/or stores the events (indexing node) can also be
assigned to search the events. In some embodiments sepa-
rate components can be used for generating and storing
events (indexing node) and for searching the events (search
node).

By storing events in a distributed manner (either by
storing the events at different components or in a shared
storage system 116), the query system 114 can analyze
events for a query in parallel. For example, using map-
reduce techniques, multiple components of the query system
(e.g., indexing or search nodes) can concurrently search and
provide partial responses for a subset of events to another
component (e.g., search head) that combines the results to
produce an answer for the query. By storing events in
buckets for specific time ranges, the indexing system 112
may further optimize the data retrieval process by the query
system 114 to search buckets corresponding to time ranges
that are relevant to a query. In some embodiments, each
bucket may be associated with an identifier, a time range,
and a size constraint. In certain embodiments, a bucket can
correspond to a file system directory and the machine data,
or events, of a bucket can be stored in one or more files of
the file system directory. The file system directory can
include additional files, such as one or more inverted
indexes, high performance indexes, permissions files, con-
figuration files, etc.

In embodiments where components of the indexing sys-
tem 112 store buckets locally, the components can include a
home directory and a cold directory. The home directory can
store hot buckets and warm buckets, and the cold directory
stores cold buckets. A hot bucket can refer to a bucket that
is capable of receiving and storing additional events. A warm
bucket can refer to a bucket that can no longer receive events
for storage, but has not yet been moved to the cold directory.
A cold bucket can refer to a bucket that can no longer receive
events and may be a bucket that was previously stored in the
home directory. The home directory may be stored in faster
memory, such as flash memory, as events may be actively
written to the home directory, and the home directory may
typically store events that are more frequently searched and
thus are accessed more frequently. The cold directory may
be stored in slower and/or larger memory, such as a hard
disk, as events are no longer being written to the cold

20

25

30

40

45

50

20

directory, and the cold directory may typically store events
that are not as frequently searched and thus are accessed less
frequently. In some embodiments, components of the index-
ing system 112 may also have a quarantine bucket that
contains events having potentially inaccurate information,
such as an incorrect timestamp associated with the event or
a timestamp that appears to be an unreasonable timestamp
for the corresponding event. The quarantine bucket may
have events from any time range; as such, the quarantine
bucket may always be searched at search time. Additionally,
components of the indexing system may store old, archived
data in a frozen bucket that is not capable of being searched
at search time. In some embodiments, a frozen bucket may
be stored in slower and/or larger memory, such as a hard
disk, and may be stored in offline and/or remote storage.

In some embodiments, components of the indexing sys-
tem 112 may not include a cold directory and/or cold or
frozen buckets. For example, in embodiments where buckets
are copied to a shared storage system 116 and searched by
separate components of the query system 114, buckets can
be deleted from components of the indexing system as they
are stored to the storage system 116. In certain embodi-
ments, the shared storage system 116 may include a home
directory that includes warm buckets copied from the index-
ing system 112 and a cold directory of cold or frozen buckets
as described above.

FIG. 3A is a block diagram illustrating an embodiment of
machine data received by the system 102. The machine data
can correspond to data from one or more host devices 104
or data sources. As mentioned, the data source can corre-
spond to a log file, data stream or other data structure that is
accessible by a host device 104. In the illustrated embodi-
ment of FIG. 3A, the machine data has different forms. For
example, the machine data 302 may be log data that is
unstructured or that does not have any clear structure or
fields, and include different portions 302A-302E that corre-
spond to different entries of the log and that separated by
boundaries. Such data may also be referred to as raw
machine data.

The machine data 304 may be referred to as structured or
semi-structured machine data as it does include some data in
a JavaScript Object Notation (JSON) structure defining
certain field and field values (e.g., machine data 304A
showing field name:field values container name:kube-api-
server, host:ip 172 20 43 173.ec2.internal, pod id:0a73017b-
4efa-11e8-adel-0a2bf2ab4dbba, etc.), but other parts of the
machine data 304 is unstructured or raw machine data (e.g.,
machine data 304B). The machine data 306 may be referred
to as structured data as it includes particular rows and
columns of data with field names and field values.

In some embodiments, the machine data 302 can corre-
spond to log data generated by a host device 104 configured
as an Apache server, the machine data 304 can correspond
to log data generated by a host device 104 in a shared
computing resource environment, and the machine data 306
can correspond to metrics data. Given the differences
between host devices 104 that generated the log data 302,
304, the form of the log data 302, 304 is different. In
addition, as the log data 304 is from a host device 104 in a
shared computing resource environment, it can include log
data generated by an application being executed within an
isolated execution environment (304B, excluding the field
name “log:”) and log data generated by an application that
enables the sharing of computing resources between isolated
execution environments (all other data in 304). Although
shown together in FIG. 3A, it will be understood that
machine data with different hosts, sources, or sourcetypes

US 11,902,081 B1

21

can be received separately and/or found in different data
sources and/or host devices 104.

As described herein, the system 102 can process the
machine data based on the form in which it is received. In
some cases, the intake system 110 can utilize one or more
rules to process the data. In certain embodiments, the intake
system 110 can enrich the received data. For example, the
intake system may add one or more fields to the data
received from the host devices 104, such as fields denoting
the host, source, sourcetype, index, or tenant associated with
the incoming data. In certain embodiments, the intake sys-
tem 110 can perform additional processing on the incoming
data, such as transforming structured data into unstructured
data (or vice versa), identifying timestamps associated with
the data, removing extraneous data, parsing data, indexing
data, separating data, categorizing data, routing data based
on criteria relating to the data being routed, and/or perform-
ing other data transformations, etc.

In some cases, the data processed by the intake system
110 can be communicated or made available to the indexing
system 112, the query system 114, and/or to other systems.
In some embodiments, the intake system 110 communicates
or makes available streams of data using one or more shards.
For example, the indexing system 112 may read or receive
data from one shard and another system may receive data
from another shard. As another example, multiple systems
may receive data from the same shard.

As used herein, a partition can refer to a logical division
of'data. In some cases, the logical division of data may refer
to a portion of a data stream, such as a shard from the intake
system 110. In certain cases, the logical division of data can
refer to an index or other portion of data stored in the storage
system 116, such as different directories or file structures
used to store data or buckets. Accordingly, it will be under-
stood that the logical division of data referenced by the term
partition will be understood based on the context of its use.

FIGS. 3B and 3C are block diagrams illustrating embodi-
ments of various data structures for storing data processed
by the system 102. FIG. 3B includes an expanded view
illustrating an example of machine data stored in a data store
310 of the data storage system 116. It will be understood that
the depiction of machine data and associated metadata as
rows and columns in the table 319 of FIG. 3B is merely
illustrative and is not intended to limit the data format in
which the machine data and metadata is stored in various
embodiments described herein. In one particular embodi-
ment, machine data can be stored in a compressed or
encrypted format. In such embodiments, the machine data
can be stored with or be associated with data that describes
the compression or encryption scheme with which the
machine data is stored. The information about the compres-
sion or encryption scheme can be used to decompress or
decrypt the machine data, and any metadata with which it is
stored, at search time.

In the illustrated embodiment of FIG. 3B the data store
310 includes a directory 312 (individually referred to as
312A, 312B) for each index (or partition) that contains a
portion of data stored in the data store 310 and a sub-
directory 314 (individually referred to as 314A, 314B,
314C) for one or more buckets of the index. In the illustrated
embodiment of FIG. 3B, each sub-directory 314 corresponds
to a bucket and includes an event data file 316 (individually
referred to as 316A, 316B, 316C) and an inverted index 318
(individually referred to as 318A, 318B, 318C). However, it
will be understood that each bucket can be associated with
fewer or more files and each sub-directory 314 can store
fewer or more files.

10

15

20

25

30

35

40

45

50

55

60

22

In the illustrated embodiment, the data store 310 includes
a main directory 312A associated with an index “_main™ and
a _test directory 312B associated with an index “_test.”
However, the data store 310 can include fewer or more
directories. In some embodiments, multiple indexes can
share a single directory or all indexes can share a common
directory. Additionally, although illustrated as a single data
store 310, it will be understood that the data store 310 can
be implemented as multiple data stores storing different
portions of the information shown in FIG. 3C. For example,
a single index can span multiple directories or multiple data
stores.

Furthermore, although not illustrated in FIG. 3B, it will be
understood that, in some embodiments, the data store 310
can include directories for each tenant and sub-directories
for each index of each tenant, or vice versa. Accordingly, the
directories 312A and 312B can, in certain embodiments,
correspond to sub-directories of a tenant or include sub-
directories for different tenants.

In the illustrated embodiment of FIG. 3B, two sub-
directories 314A, 314B of the _main directory 312A and one
sub-directory 312C of the _test directory 312B are shown.
The sub-directories 314A, 314B, 314C can correspond to
buckets of the indexes associated with the directories 312A,
312B. For example, the sub-directories 314A and 314B can
correspond to buckets “B1” and “B2,” respectively, of the
index “_main” and the sub-directory 314C can correspond to
bucket “B1” of the index “_test.” Accordingly, even though
there are two “B1” buckets shown, as each “B1” bucket is
associated with a different index (and corresponding direc-
tory 312), the system 102 can uniquely identify them.

Although illustrated as buckets “B1” and “B2,” it will be
understood that the buckets (and/or corresponding sub-
directories 314) can be named in a variety of ways. In certain
embodiments, the bucket (or sub-directory) names can
include information about the bucket. For example, the
bucket name can include the name of the index with which
the bucket is associated, a time range of the bucket, etc.

As described herein, each bucket can have one or more
files associated with it, including, but not limited to one or
more raw machine data files, bucket summary files, filter
files, inverted indexes (also referred to herein as high
performance indexes or keyword indexes), permissions files,
configuration files, etc. In the illustrated embodiment of
FIG. 3B, the files associated with a particular bucket can be
stored in the sub-directory corresponding to the particular
bucket. Accordingly, the files stored in the sub-directory
314A can correspond to or be associated with bucket “B1,”
of'index “_main,” the files stored in the sub-directory 314B
can correspond to or be associated with bucket “B2” of
index “_main,” and the files stored in the sub-directory 314C
can correspond to or be associated with bucket “B1” of
index “_test.”

FIG. 3B further illustrates an expanded event data file
316C showing an example of data that can be stored therein.
In the illustrated embodiment, four events 320, 322, 324,
326 of the machine data file 316C are shown in four rows.
Each event 320-326 includes machine data 330 and a
timestamp 332. The machine data 330 can correspond to the
machine data received by the system 102. For example, in
the illustrated embodiment, the machine data 330 of events
320, 322, 324, 326 corresponds to portions 302A, 302B,
302C, 302D, respectively, of the machine data 302 after it
was processed by the indexing system 112.

Metadata 334-338 associated with the events 320-326 is
also shown in the table 319. In the illustrated embodiment,
the metadata 334-338 includes information about a host 334,

US 11,902,081 B1

23

source 336, and sourcetype 338 associated with the events
320-326. Any of the metadata can be extracted from the
corresponding machine data, or supplied or defined by an
entity, such as a user or computer system. The metadata
fields 334-338 can become part of, stored with, or otherwise
associated with the events 320-326. In certain embodiments,
the metadata 334-338 can be stored in a separate file of the
sub-directory 314C and associated with the machine data file
316C. In some cases, while the timestamp 332 can be
extracted from the raw data of each event, the values for the
other metadata fields may be determined by the indexing
system 112 based on information it receives pertaining to the
host device 104 or data source of the data separate from the
machine data.

While certain default or user-defined metadata fields can
be extracted from the machine data for indexing purposes,
the machine data within an event can be maintained in its
original condition. As such, in embodiments in which the
portion of machine data included in an event is unprocessed
or otherwise unaltered, it is referred to herein as a portion of
raw machine data. For example, in the illustrated embodi-
ment, the machine data of events 320-326 is identical to the
portions of the machine data 302A-302D, respectively, used
to generate a particular event. Similarly, the entirety of the
machine data 302 may be found across multiple events. As
such, unless certain information needs to be removed for
some reasons (e.g. extraneous information, confidential
information), all the raw machine data contained in an event
can be preserved and saved in its original form. Accordingly,
the data store in which the event records are stored is
sometimes referred to as a “raw record data store.” The raw
record data store contains a record of the raw event data
tagged with the various fields.

In other embodiments, the portion of machine data in an
event can be processed or otherwise altered relative to the
machine data used to create the event. With reference to the
machine data 304, the machine data of a corresponding
event (or events) may be modified such that only a portion
of the machine data 304 is stored as one or more events. For
example, in some cases, only machine data 304B of the
machine data 304 may be retained as one or more events or
the machine data 304 may be altered to remove duplicate
data, confidential information, etc.

In FIG. 3B, the first three rows of the table 319 present
events 320, 322, and 324 and are related to a server access
log that records requests from multiple clients processed by
a server, as indicated by entry of “access.log” in the source
column 336. In the example shown in FIG. 3B, each of the
events 320-324 is associated with a discrete request made to
the server by a client. The raw machine data generated by the
server and extracted from a server access log can include the
1P address 1140 of the client, the user id 1141 of the person
requesting the document, the time 1142 the server finished
processing the request, the request line 1143 from the client,
the status code 1144 returned by the server to the client, the
size of the object 1145 returned to the client (in this case, the
gif file requested by the client) and the time spent 1146 to
serve the request in microseconds. In the illustrated embodi-
ments of FIGS. 3A, 3B, all the raw machine data retrieved
from the server access log is retained and stored as part of
the corresponding events 320-324 in the file 316C.

Event 326 is associated with an entry in a server error log,
as indicated by “error.log” in the source column 336 that
records errors that the server encountered when processing
a client request. Similar to the events related to the server

10

15

20

25

30

35

40

45

50

55

60

65

24

access log, all the raw machine data in the error log file
pertaining to event 326 can be preserved and stored as part
of the event 326.

Saving minimally processed or unprocessed machine data
in a data store associated with metadata fields in the manner
similar to that shown in FIG. 3B is advantageous because it
allows search of all the machine data at search time instead
of searching only previously specified and identified fields
or field-value pairs. As mentioned above, because data
structures used by various embodiments of the present
disclosure maintain the underlying raw machine data and
use a late-binding schema for searching the raw machines
data, it enables a user to continue investigating and learn
valuable insights about the raw data. In other words, the user
is not compelled to know about all the fields of information
that will be needed at data ingestion time. As a user learns
more about the data in the events, the user can continue to
refine the late-binding schema by defining new extraction
rules, or moditying or deleting existing extraction rules used
by the system.

FIG. 3C illustrates an embodiment of another file that can
be included in one or more subdirectories 314 or buckets.
Specifically, FIG. 3C illustrates an exploded view of an
embodiments of an inverted index 318B in the sub-directory
314B, associated with bucket “B2” of the index “_main,” as
well as an event reference array 340 associated with the
inverted index 318B.

In some embodiments, the inverted indexes 318 can
correspond to distinct time-series buckets. As such, each
inverted index 318 can correspond to a particular range of
time for an index. In the illustrated embodiment of FIG. 3C,
the inverted indexes 318A, 318B correspond to the buckets
“B1” and “B2,” respectively, of the index “_main,” and the
inverted index 318C corresponds to the bucket “B1” of the
index “_test.” In some embodiments, an inverted index 318
can correspond to multiple time-series buckets (e.g., include
information related to multiple buckets) or inverted indexes
318 can correspond to a single time-series bucket.

Each inverted index 318 can include one or more entries,
such as keyword (or token) entries 342 or field-value pair
entries 344. Furthermore, in certain embodiments, the
inverted indexes 318 can include additional information,
such as a time range 346 associated with the inverted index
or an index identifier 348 identifying the index associated
with the inverted index 318. It will be understood that each
inverted index 318 can include less or more information than
depicted. For example, in some cases, the inverted indexes
318 may omit a time range 346 and/or index identifier 348.
In some such embodiments, the index associated with the
inverted index 318 can be determined based on the location
(e.g., directory 312) of the inverted index 318 and/or the
time range of the inverted index 318 can be determined
based on the name of the sub-directory 314.

Token entries, such as token entries 342 illustrated in
inverted index 318B, can include a token 342A (e.g., “error,”
“itemID,” etc.) and event references 342B indicative of
events that include the token. For example, for the token
“error,” the corresponding token entry includes the token
“error” and an event reference, or unique identifier, for each
event stored in the corresponding time-series bucket that
includes the token “error.” In the illustrated embodiment of
FIG. 3C, the error token entry includes the identifiers 3, 5,
6, 8, 11, and 12 corresponding to events located in the bucket
“B2” of the index “_main.”

In some cases, some token entries can be default entries,
automatically determined entries, or user specified entries.
In some embodiments, the indexing system 112 can identify

US 11,902,081 B1

25

each word or string in an event as a distinct token and
generate a token entry for the identified word or string. In
some cases, the indexing system 112 can identify the begin-
ning and ending of tokens based on punctuation, spaces, etc.
In certain cases, the indexing system 112 can rely on user
input or a configuration file to identify tokens for token
entries 342, etc. It will be understood that any combination
of token entries can be included as a default, automatically
determined, or included based on user-specified criteria.

Similarly, field-value pair entries, such as field-value pair
entries 344 shown in inverted index 318B, can include a
field-value pair 344 A and event references 344B indicative
of events that include a field value that corresponds to the
field-value pair (or the field-value pair). For example, for a
field-value pair sourcetype::sendmail, a field-value pair
entry 344 can include the field-value pair “sourcetype::
sendmail” and a unique identifier, or event reference, for
each event stored in the corresponding time-series bucket
that includes a sourcetype “sendmail.”

In some cases, the field-value pair entries 344 can be
default entries, automatically determined entries, or user
specified entries. As a non-limiting example, the field-value
pair entries for the fields “host,” “source,” and “sourcetype”
can be included in the inverted indexes 318 as a default. As
such, all of the inverted indexes 318 can include field-value
pair entries for the fields “host,” “source,” and “sourcetype.”
As yet another non-limiting example, the field-value pair
entries for the field “IP_address” can be user specified and
may only appear in the inverted index 318B or the inverted
indexes 318A, 318B of the index “ main” based on user-
specified criteria. As another non-limiting example, as the
indexing system 112 indexes the events, it can automatically
identify field-value pairs and create field-value pair entries
344. For example, based on the indexing system’s 212
review of events, it can identify IP_address as a field in each
event and add the IP_address field-value pair entries to the
inverted index 318B (e.g., based on punctuation, like two
keywords separated by an ‘=" or “:” etc.). It will be under-
stood that any combination of field-value pair entries can be
included as a default, automatically determined, or included
based on user-specified criteria.

With reference to the event reference array 340, each
unique identifier 350, or event reference, can correspond to
a unique event located in the time series bucket or machine
data file 316B. The same event reference can be located in
multiple entries of an inverted index 318. For example if an
event has a sourcetype “splunkd,” host “www1” and token
“warning,” then the unique identifier for the event can
appear in the field-value pair entries 344 “sourcetype::
splunkd” and “host::www1,” as well as the token entry
“warning.” With reference to the illustrated embodiment of
FIG. 3C and the event that corresponds to the event refer-
ence 3, the event reference 3 is found in the field-value pair
entries 344 “host::hostA,” cc source::sourceB,” “source-
type::sourcetypeA,” sourcetype::sourcetypeA,” and “IP_ad-
dress::91.205.189.15” indicating that the event correspond-
ing to the event references is from hostA, sourceB, of
sourcetypeA, and includes “91.205.189.15” in the event
data.

For some fields, the unique identifier is located in only
one field-value pair entry for a particular field. For example,
the inverted index 318 may include four sourcetype field-
value pair entries 344 corresponding to four different source-
types of the events stored in a bucket (e.g., sourcetypes:
sendmail, splunkd, web_access, and web_service). Within
those four sourcetype field-value pair entries, an identifier
for a particular event may appear in only one of the

10

15

20

25

30

35

40

45

50

55

60

65

26

field-value pair entries. With continued reference to the
example illustrated embodiment of FIG. 3C, since the event
reference 7 appears in the field-value pair entry “source-
type::sourcetypeA,” then it does not appear in the other
field-value pair entries for the sourcetype field, including
“sourcetype::sourcetypeB,” “sourcetype::sourcetypeC,” and
“sourcetype::sourcetypeD.”

The event references 350 can be used to locate the events
in the corresponding bucket or machine data file 316. For
example, the inverted index 318B can include, or be asso-
ciated with, an event reference array 340. The event refer-
ence array 340 can include an array entry 350 for each event
reference in the inverted index 318B. Each array entry 350
can include location information 352 of the event corre-
sponding to the unique identifier (non-limiting example:
seek address of the event, physical address, slice ID, etc.), a
timestamp 354 associated with the event, or additional
information regarding the event associated with the event
reference, etc.

For each token entry 342 or field-value pair entry 344, the
event reference 342B, 344B, respectively, or unique identi-
fiers can be listed in chronological order or the value of the
event reference can be assigned based on chronological data,
such as a timestamp associated with the event referenced by
the event reference. For example, the event reference 1 in the
illustrated embodiment of FIG. 3C can correspond to the
first-in-time event for the bucket, and the event reference 12
can correspond to the last-in-time event for the bucket.
However, the event references can be listed in any order,
such as reverse chronological order, ascending order,
descending order, or some other order (e.g., based on time
received or added to the machine data file), etc. Further, the
entries can be sorted. For example, the entries can be sorted
alphabetically (collectively or within a particular group), by
entry origin (e.g., default, automatically generated, user-
specified, etc.), by entry type (e.g., field-value pair entry,
token entry, etc.), or chronologically by when added to the
inverted index, etc. In the illustrated embodiment of FIG.
3C, the entries are sorted first by entry type and then
alphabetically.

In some cases, inverted indexes 318 can decrease the
search time of a query. For example, for a statistical query,
by using the inverted index, the system 102 can avoid the
computational overhead of parsing individual events in a
machine data file 316. Instead, the system 102 can use the
inverted index 318 separate from the raw record data store
to generate responses to the received queries.

3.0. Query Processing and Execution

FIG. 4A is a flow diagram illustrating an embodiment of
a routine implemented by the query system 114 for execut-
ing a query. At block 402, the query system 114 receives a
search query. As described herein, the query can be in the
form of a pipelined command language or other query
language and include filter criteria used to identify a set of
data and processing criteria used to process the set of data.

At block 404, the query system 114 processes the query.
As part of processing the query, the query system 114 can
determine whether the query was submitted by an authen-
ticated user and/or review the query to determine that it is in
aproper format for the data intake and query system 102, has
correct semantics and syntax, etc. In addition, the query
system 114 can determine what, if any, configuration files or
other configurations to use as part of the query.

In addition as part of processing the query, the query
system 114 can determine what portion(s) of the query to

US 11,902,081 B1

27

execute in a distributed manner (e.g., what to delegate to
search nodes) and what portions of the query to execute in
anon-distributed manner (e.g., what to execute on the search
head). For the parts of the query that are to be executed in
a distributed manner, the query system 114 can generate
specific commands, for the components that are to execute
the query. This may include generating subqueries, partial
queries or different phases of the query for execution by
different components of the query system 114. In some
cases, the query system 114 can use map-reduce techniques
to determine how to map the data for the search and then
reduce the data. Based on the map-reduce phases, the query
system 114 can generate query commands for different
components of the query system 114.

As part of processing the query, the query system 114 can
determine where to obtain the data. For example, in some
cases, the data may reside on one or more indexing nodes or
search nodes, as part of the storage system 116 or may reside
in a shared storage system or a system external to the system
102. In some cases, the query system 114 can determine
what components to use to obtain and process the data. For
example, the query system 114 can identify search nodes
that are available for the query, etc.

At block 406, the query system 1206 distributes the
determined portions or phases of the query to the appropriate
components (e.g., search nodes). In some cases, the query
system 1206 can use a catalog to determine which compo-
nents to use to execute the query (e.g., which components
include relevant data and/or are available, etc.).

At block 408, the components assigned to execute the
query, execute the query. As mentioned, different compo-
nents may execute different portions of the query. In some
cases, multiple components (e.g., multiple search nodes)
may execute respective portions of the query concurrently
and communicate results of their portion of the query to
another component (e.g., search head). As part of the iden-
tifying the set of data or applying the filter criteria, the
components of the query system 114 can search for events
that match the criteria specified in the query. These criteria
can include matching keywords or specific values for certain
fields. The searching operations at block 408 may use the
late-binding schema to extract values for specified fields
from events at the time the query is processed. In some
embodiments, one or more rules for extracting field values
may be specified as part of a sourcetype definition in a
configuration file or in the query itself. In certain embodi-
ments where search nodes are used to obtain the set of data,
the search nodes can send the relevant events back to the
search head, or use the events to determine a partial result,
and send the partial result back to the search head.

At block 410, the query system 114 combines the partial
results and/or events to produce a final result for the query.
As mentioned, in some cases, combining the partial results
and/or finalizing the results can include further processing
the data according to the query. Such processing may entail
joining different set of data, transforming the data, and/or
performing one or more mathematical operations on the
data, preparing the results for display, etc.

In some examples, the results of the query are indicative
of performance or security of the IT environment and may
help improve the performance of components in the IT
environment. This final result may comprise different types
of data depending on what the query requested. For
example, the results can include a listing of matching events
returned by the query, or some type of visualization of the

5

10

15

20

25

30

35

40

45

50

55

60

28

data from the returned events. In another example, the final
result can include one or more calculated values derived
from the matching events.

The results generated by the query system 114 can be
returned to a client using different techniques. For example,
one technique streams results or relevant events back to a
client in real-time as they are identified. Another technique
waits to report the results to the client until a complete set
of results (which may include a set of relevant events or a
result based on relevant events) is ready to return to the
client. Yet another technique streams interim results or
relevant events back to the client in real-time until a com-
plete set of results is ready, and then returns the complete set
of results to the client. In another technique, certain results
are stored as “search jobs™” and the client may retrieve the
results by referring to the search jobs.

The query system 114 can also perform various operations
to make the search more efficient. For example, before the
query system 114 begins execution of a query, it can
determine a time range for the query and a set of common
keywords that all matching events include. The query sys-
tem 114 may then use these parameters to obtain a superset
of the eventual results. Then, during a filtering stage, the
query system 114 can perform field-extraction operations on
the superset to produce a reduced set of search results. This
speeds up queries, which may be particularly helpful for
queries that are performed on a periodic basis. In some
cases, to make the search more efficient, the query system
114 can use information known about certain data sets that
are part of the query to filter other data sets. For example, if
an early part of the query includes instructions to obtain data
with a particular field, but later commands of the query do
not rely on the data with that particular field, the query
system 114 can omit the superfluous part of the query from
execution.

Various embodiments of the present disclosure can be
implemented using, or in conjunction with, a pipelined
command language. A pipelined command language is a
language in which a set of inputs or data is operated on by
a first command in a sequence of commands, and then
subsequent commands in the order they are arranged in the
sequence. Such commands can include any type of func-
tionality for operating on data, such as retrieving, searching,
filtering, aggregating, processing, transmitting, and the like.
As described herein, a query can thus be formulated in a
pipelined command language and include any number of
ordered or unordered commands for operating on data.

Splunk Processing Language (SPL) is an example of a
pipelined command language in which a set of inputs or data
is operated on by any number of commands in a particular
sequence. A sequence of commands, or command sequence,
can be formulated such that the order in which the com-
mands are arranged defines the order in which the com-
mands are applied to a set of data or the results of an earlier
executed command. For example, a first command in a
command sequence can include filter criteria used to search
or filter for specific data. The results of the first command
can then be passed to another command listed later in the
command sequence for further processing.

In various embodiments, a query can be formulated as a
command sequence defined in a command line of a search
Ul In some embodiments, a query can be formulated as a
sequence of SPL. commands. Some or all of the SPL
commands in the sequence of SPL. commands can be sepa-
rated from one another by a pipe symbol “I.” In such
embodiments, a set of data, such as a set of events, can be
operated on by a first SPL. command in the sequence, and

US 11,902,081 B1

29

then a subsequent SPL. command following a pipe symbol
“” after the first SPL command operates on the results
produced by the first SPL. command or other set of data, and
so on for any additional SPL. commands in the sequence. As
such, a query formulated using SPL. comprises a series of
consecutive commands that are delimited by pipe “I” char-
acters. The pipe character indicates to the system that the
output or result of one command (to the left of the pipe)
should be used as the input for one of the subsequent
commands (to the right of the pipe). This enables formula-
tion of queries defined by a pipeline of sequenced com-
mands that refines or enhances the data at each step along the
pipeline until the desired results are attained. Accordingly,
various embodiments described herein can be implemented
with Splunk Processing Language (SPL) used in conjunc-
tion with the SPLUNK® ENTERPRISE system.

While a query can be formulated in many ways, a query
can start with a search command and one or more corre-
sponding search terms or filter criteria at the beginning of the
pipeline. Such search terms or filter criteria can include any
combination of keywords, phrases, times, dates, Boolean
expressions, fieldname-field value pairs, etc. that specify
which results should be obtained from different locations.
The results can then be passed as inputs into subsequent
commands in a sequence of commands by using, for
example, a pipe character. The subsequent commands in a
sequence can include directives for additional processing of
the results once it has been obtained from one or more
indexes. For example, commands may be used to filter
unwanted information out of the results, extract more infor-
mation, evaluate field values, calculate statistics, reorder the
results, create an alert, create summary of the results, or
perform some type of aggregation function. In some
embodiments, the summary can include a graph, chart,
metric, or other visualization of the data. An aggregation
function can include analysis or calculations to return an
aggregate value, such as an average value, a sum, a maxi-
mum value, a root mean square, statistical values, and the
like.

Due to its flexible nature, use of a pipelined command
language in various embodiments is advantageous because it
can perform “filtering” as well as “processing” functions. In
other words, a single query can include a search command
and search term expressions, as well as data-analysis expres-
sions. For example, a command at the beginning of a query
can perform a “filtering” step by retrieving a set of data
based on a condition (e.g., records associated with server
response times of less than 1 microsecond). The results of
the filtering step can then be passed to a subsequent com-
mand in the pipeline that performs a “processing” step (e.g.
calculation of an aggregate value related to the filtered
events such as the average response time of servers with
response times of less than 1 microsecond). Furthermore, the
search command can allow events to be filtered by keyword
as well as field criteria. For example, a search command can
filter events based on the word “warning” or filter events
based on a field value “10.0.1.2” associated with a field
“clientip.”

The results obtained or generated in response to a com-
mand in a query can be considered a set of results data. The
set of results data can be passed from one command to
another in any data format. In one embodiment, the set of
result data can be in the form of a dynamically created table.
Each command in a particular query can redefine the shape
of the table. In some implementations, an event retrieved
from an index in response to a query can be considered a row
with a column for each field value. Columns can contain

20

25

35

40

45

55

30

basic information about the data and/or data that has been
dynamically extracted at search time.

FIG. 4B provides a visual representation of the manner in
which a pipelined command language or query can operate
in accordance with the disclosed embodiments. The query
430 can be input by the user and submitted to the query
system 114. In the illustrated embodiment, the query 430
comprises filter criteria 430A, followed by two commands
430B, 430C (namely, Command]l and Command?2). Disk
422 represents data as it is stored in a data store to be
searched. For example, disk 422 can represent a portion of
the storage system 116 or some other data store that can be
searched by the query system 114. Individual rows of can
represent different events and columns can represent differ-
ent fields for the different events. In some cases, these fields
can include raw machine data, host, source, and sourcetype.

At block 440, the query system 114 uses the filter criteria
430A (e.g., “sourcetype=syslog ERROR”) to filter events
stored on the disk 422 to generate an intermediate results
table 424. Given the semantics of the query 430 and order
of'the commands, the query system 114 can execute the filter
criteria 430A portion of the query 430 before executing
Commandl or Command?.

Rows in the table 424 may represent individual records,
where each record corresponds to an event in the disk 422
that satisfied the filter criteria. Columns in the table 424 may
correspond to different fields of an event or record, such as
“user,” “‘count,” percentage,” “timestamp,” or the raw
machine data of an event, etc. Notably, the fields in the
intermediate results table 424 may differ from the fields of
the events on the disk 422. In some cases, this may be due
to the late binding schema described herein that can be used
to extract field values at search time. Thus, some of the fields
in table 424 may not have existed in the events on disk 422.

Tustratively, the intermediate results table 424 has fewer
rows than what is shown in the disk 422 because only a
subset of events retrieved from the disk 422 matched the
filter criteria 430A “sourcetype=syslog ERROR.” In some
embodiments, instead of searching individual events or raw
machine data, the set of events in the intermediate results
table 424 may be generated by a call to a pre-existing
inverted index.

At block 442, the query system 114 processes the events
of the first intermediate results table 424 to generate the
second intermediate results table 426. With reference to the
query 430, the query system 114 processes the events of the
first intermediate results table 424 to identify the top users
according to Command'. This processing may include deter-
mining a field value for the field “user” for each record in the
intermediate results table 424, counting the number of
unique instances of each “user” field value (e.g., number of
users with the name David, John, Julie, etc.) within the
intermediate results table 424, ordering the results from
largest to smallest based on the count, and then keeping only
the top 10 results (e.g., keep an identification of the top 10
most common users). Accordingly, each row of table 426
can represent a record that includes a unique field value for
the field “user,” and each column can represent a field for
that record, such as fields “user,” “count,” and “percentage.”

At block 444, the query system 114 processes the second
intermediate results table 426 to generate the final results
table 428. With reference to query 430, the query system 114
applies the command “fields—present” to the second inter-
mediate results table 426 to generate the final results table
428. As shown, the command “fields—present” of the query
430 results in one less column, which may represent that a
field was removed during processing. For example, the

US 11,902,081 B1

31

query system 114 may have determined that the field “per-
centage” was unnecessary for displaying the results based on
the Command2. In such a scenario, each record of the final
results table 428 would include a field “user,” and “count.”
Further, the records in the table 428 would be ordered from
largest count to smallest count based on the query com-
mands.

It will be understood that the final results table 428 can be
a third intermediate results table, which can be pipelined to
another stage where further filtering or processing of the
data can be performed, e.g., preparing the data for display
purposes, filtering the data based on a condition, performing
a mathematical calculation with the data, etc. In different
embodiments, other query languages, such as the Structured
Query Language (“SQL”), can be used to create a query.

As described herein, extraction rules can be used to
extract field-value pairs or field values from data. An extrac-
tion rule can comprise one or more regex rules that specify
how to extract values for the field corresponding to the
extraction rule. In addition to specifying how to extract field
values, the extraction rules may also include instructions for
deriving a field value by performing a function on a char-
acter string or value retrieved by the extraction rule. For
example, an extraction rule may truncate a character string
or convert the character string into a different data format.
Extraction rules can be used to extract one or more values
for a field from events by parsing the portions of machine
data in the events and examining the data for one or more
patterns of characters, numbers, delimiters, etc., that indicate
where the field begins and, optionally, ends. In certain
embodiments, extraction rules can be stored in one or more
configuration files. In some cases, a query itself can specify
one or more extraction rules.

In some cases, extraction rules can be applied at data
ingest by the intake system 110 and/or indexing system 112.
For example, the intake system 110 and indexing system 112
can apply extraction rules to ingested data and/or events
generated from the ingested data and store results in an
inverted index.

The system 102 advantageously allows for search time
field extraction. In other words, fields can be extracted from
the event data at search time using late-binding schema as
opposed to at data ingestion time, which was a major
limitation of the prior art systems. Accordingly, extraction
rules can be applied at search time by the query system 114.
The query system can apply extraction rules to events
retrieved from the storage system 116 or data received from
sources external to the system 102. Extraction rules can be
applied to all the events in the storage system 116 or to a
subset of the events that have been filtered based on some
filter criteria (e.g., event timestamp values, etc.).

FIG. 4C is a block diagram illustrating an embodiment of
the table 319 showing events 320-326, described previously
with reference to FIG. 3B. As described herein, the table 319
is for illustrative purposes, and the events 320-326 may be
stored in a variety of formats in an event data file 316 or raw
record data store. Further, it will be understood that the event
data file 316 or raw record data store can store millions of
events. FIG. 4C also illustrates an embodiment of a search
bar 450 for entering a query and a configuration file 452 that
includes various extraction rules that can be applied to the
events 320-326.

As a non-limiting example, if a user inputs a query into
search bar 450 that includes only keywords (also known as
“tokens”), e.g., the keyword “error” or “warning,” the query
system 114 can search for those keywords directly in the
events 320-326 stored in the raw record data store.

30

40

45

32

As described herein, the indexing system 112 can option-
ally generate and use an inverted index with keyword entries
to facilitate fast keyword searching for event data. If a user
searches for a keyword that is not included in the inverted
index, the query system 114 may nevertheless be able to
retrieve the events by searching the event data for the
keyword in the event data file 316 or raw record data store
directly. For example, if a user searches for the keyword
“eva,” and the name “eva” has not been indexed at search
time, the query system 114 can search the events 320-326
directly and return the first event 320. In the case where the
keyword has been indexed, the inverted index can include a
reference pointer that will allow for a more efficient retrieval
of the event data from the data store. If the keyword has not
been indexed, the query system 114 can search through the
events in the event data file to service the search.

In many cases, a query include fields. The term “field”
refers to a location in the event data containing one or more
values for a specific data item. Often, a field is a value with
a fixed, delimited position on a line, or a name and value
pair, where there is a single value to each field name. A field
can also be multivalued, that is, it can appear more than once
in an event and have a different value for each appearance,
e.g., email address fields. Fields are searchable by the field
name or field name-value pairs. Some examples of fields are
“clientip” for IP addresses accessing a web server, or the
“From” and “To” fields in email addresses.

By way of further example, consider the query, “sta-
tus=404.” This search query finds events with “status” fields
that have a value of “404.” When the search is run, the query
system 114 does not look for events with any other “status”
value. It also does not look for events containing other fields
that share “404” as a value. As a result, the search returns a
set of results that are more focused than if “404” had been
used in the search string as part of a keyword search. Note
also that fields can appear in events as “key=value” pairs
such as “user_name=Bob.” But in most cases, field values
appear in fixed, delimited positions without identifying
keys. For example, the data store may contain events where
the “user_name” value always appears by itself after the
timestamp as illustrated by the following string: “Nov 15
09:33:22 evaemerson.”

FIG. 4C illustrates the manner in which configuration files
may be used to configure custom fields at search time in
accordance with the disclosed embodiments. In response to
receiving a query, the query system 114 determines if the
query references a “field.” For example, a query may request
a list of events where the “clientip” field equals “127.0.0.1.”
If the query itself does not specify an extraction rule and if
the field is not an indexed metadata field, e.g., time, host,
source, sourcetype, etc., then in order to determine an
extraction rule, the query system 114 may, in one or more
embodiments, locate configuration file 452 during the
execution of the query.

Configuration file 452 may contain extraction rules for
various fields, e.g., the “clientip” field. The extraction rules
may be inserted into the configuration file 452 in a variety
of ways. In some embodiments, the extraction rules can
comprise regular expression rules that are manually entered
in by the user.

In one or more embodiments, as noted above, a field
extractor may be configured to automatically generate
extraction rules for certain field values in the events when
the events are being created, indexed, or stored, or possibly
at a later time. In one embodiment, a user may be able to
dynamically create custom fields by highlighting portions of
a sample event that should be extracted as fields using a

US 11,902,081 B1

33

graphical user interface. The system can then generate a
regular expression that extracts those fields from similar
events and store the regular expression as an extraction rule
for the associated field in the configuration file 452.

In some embodiments, the indexing system 112 can
automatically discover certain custom fields at index time
and the regular expressions for those fields will be auto-
matically generated at index time and stored as part of
extraction rules in configuration file 452. For example, fields
that appear in the event data as “key=value” pairs may be
automatically extracted as part of an automatic field discov-
ery process. Note that there may be several other ways of
adding field definitions to configuration files in addition to
the methods discussed herein.

Events from heterogeneous sources that are stored in the
storage system 116 may contain the same fields in different
locations due to discrepancies in the format of the data
generated by the various sources. For example, event 326
also contains a “clientip” field, however, the “clientip” field
is in a different format from events 320, 322, and 324.
Furthermore, certain events may not contain a particular
field at all. To address the discrepancies in the format and
content of the different types of events, the configuration file
452 can specify the set of events to which an extraction rule
applies. For example, extraction rule 454 specifies that it is
to be used with events having a sourcetype “access_com-
bined,” and extraction rule 456 specifies that it is to be used
with events having a sourcetype “apache error.” Other
extraction rules shown in configuration file 452 specify a set
or type of events to which they apply. In addition, the
extraction rules shown in configuration file 452 include a
regular expression for parsing the identified set of events to
determine the corresponding field value. Accordingly, each
extraction rule may pertain to only a particular type of event.
Accordingly, if a particular field, e.g., “clientip” occurs in
multiple types of events, each of those types of events can
have its own corresponding extraction rule in the configu-
ration file 452 and each of the extraction rules would
comprise a different regular expression to parse out the
associated field value. In some cases, the sets of events are
grouped by sourcetype because events generated by a par-
ticular source can have the same format.

The field extraction rules stored in configuration file 452
can be used to perform search-time field extractions. For
example, for a query that requests a list of events with
sourcetype “access_combined” where the “clientip” field
equals “127.0.0.1,” the query system 114 can locate the
configuration file 452 to retrieve extraction rule 454 that
allows it to extract values associated with the “clientip” field
from the events where the sourcetype is “access_combined”
(e.g., events 320-324). After the “clientip” field has been
extracted from the events 320, 322, 324, the query system
114 can then apply the field criteria by performing a compare
operation to filter out events where the “clientip” field does
not equal “127.0.0.1.” In the example shown in FIG. 4C, the
events 320 and 322 would be returned in response to the user
query. In this manner, the query system 114 can service
queries with filter criteria containing field criteria and/or
keyword criteria.

It should also be noted that any events filtered by per-
forming a search-time field extraction using a configuration
file 452 can be further processed by directing the results of
the filtering step to a processing step using a pipelined search
language. Using the prior example, a user can pipeline the
results of the compare step to an aggregate function by
asking the query system 114 to count the number of events
where the “clientip” field equals “127.0.0.1.”

20

35

40

45

50

55

60

65

34

By providing the field definitions for the queried fields at
search time, the configuration file 452 allows the event data
file or raw record data store to be field searchable. In other
words, the raw record data store can be searched using
keywords as well as fields, wherein the fields are searchable
name/value pairings that can distinguish one event from
another event and can be defined in configuration file 452
using extraction rules. In comparison to a search containing
field names, a keyword search may result in a search of the
event data directly without the use of a configuration file.

Further, the ability to add schema to the configuration file
452 at search time results in increased efficiency and flex-
ibility. A user can create new fields at search time and simply
add field definitions to the configuration file 452. As a user
learns more about the data in the events, the user can
continue to refine the late-binding schema by adding new
fields, deleting fields, or modifying the field extraction rules
in the configuration file for use the next time the schema is
used by the system 102. Because the system 102 maintains
the underlying raw data and uses late-binding schema for
searching the raw data, it enables a user to continue inves-
tigating and learn valuable insights about the raw data long
after data ingestion time. Similarly, multiple field definitions
can be added to the configuration file to capture the same
field across events generated by different sources or source-
types. This allows the system 102 to search and correlate
data across heterogeneous sources flexibly and efficiently.

The system 102 can use one or more data models to search
and/or better understand data. A data model is a hierarchi-
cally structured search-time mapping of semantic knowl-
edge about one or more datasets. It encodes the domain
knowledge used to build a variety of specialized searches of
those datasets. Those searches, in turn, can be used to
generate reports.

The above-described system provides significant flexibil-
ity by enabling a user to analyze massive quantities of
minimally-processed data “on the fly” at search time using
a late-binding schema, instead of storing pre-specified por-
tions of the data in a database at ingestion time. This
flexibility enables a user to see valuable insights, correlate
data, and perform subsequent queries to examine interesting
aspects of the data that may not have been apparent at
ingestion time.

Performing extraction and analysis operations at search
time can involve a large amount of data and require a large
number of computational operations, which can cause
delays in processing the queries. In some embodiments, the
system 102 can employ a number of unique acceleration
techniques to speed up analysis operations performed at
search time. These techniques include: performing search
operations in parallel using multiple components of the
query system 114, using an inverted index 118, and accel-
erating the process of generating reports.

To facilitate faster query processing, a query can be
structured such that multiple components of the query
system 114 (e.g., search nodes) perform the query in paral-
lel, while aggregation of search results from the multiple
components is performed at a particular component (e.g.,
search head). For example, consider a scenario in which a
user enters the query “Search “error” stats count BY host.”
The query system 114 can identify two phases for the query,
including: (1) subtasks (e.g., data retrieval or simple filter-
ing) that may be performed in parallel by multiple compo-
nents, such as search nodes, and (2) a search results aggre-
gation operation to be executed by one component, such as
the search head, when the results are ultimately collected
from the search nodes.

US 11,902,081 B1

35

Based on this determination, the query system 114 can
generate commands to be executed in parallel by the search
nodes, with each search node applying the generated com-
mands to a subset of the data to be searched. In this example,
the query system 114 generates and then distributes the
following commands to the individual search nodes: “Search
“error” prestats count BY host.” In this example, the
“prestats” command can indicate that individual search
nodes are processing a subset of the data and are responsible
for producing partial results and sending them to the search
head. After the search nodes return the results to the search
head, the search head aggregates the received results to form
a single search result set. By executing the query in this
manner, the system effectively distributes the computational
operations across the search nodes while reducing data
transfers. It will be understood that the query system 114 can
employ a variety of techniques to use distributed compo-
nents to execute a query. In some embodiments, the query
system 114 can use distributed components for only map-
ping functions of a query (e.g., gather data, applying filter
criteria, etc.). In certain embodiments, the query system 114
can use distributed components for mapping and reducing
functions (e.g., joining data, combining data, reducing data,
etc.) of a query.

4.0. Example Use Cases

The system 102 provides various schemas, dashboards,
and visualizations that simplify developers’ tasks to create
applications with additional capabilities, including but not
limited to security, data center monitoring, IT service moni-
toring, and client/customer insights.

An embodiment of an enterprise security application is as
SPLUNK® ENTERPRISE SECURITY, which performs
monitoring and alerting operations and includes analytics to
facilitate identifying both known and unknown security
threats based on large volumes of data stored by the system
102. The enterprise security application provides the secu-
rity practitioner with visibility into security-relevant threats
found in the enterprise infrastructure by capturing, monitor-
ing, and reporting on data from enterprise security devices,
systems, and applications. Through the use of the system
102 searching and reporting capabilities, the enterprise secu-
rity application provides a top-down and bottom-up view of
an organization’s security posture.

An embodiment of an IT monitoring application is
SPLUNK® IT SERVICE INTELLIGENCE™, which per-
forms monitoring and alerting operations. The I'T monitoring
application also includes analytics to help an analyst diag-
nose the root cause of performance problems based on large
volumes of data stored by the system 102 as correlated to the
various services an 1T organization provides (a service-
centric view). This differs significantly from conventional IT
monitoring systems that lack the infrastructure to effectively
store and analyze large volumes of service-related events.
Traditional service monitoring systems typically use fixed
schemas to extract data from pre-defined fields at data
ingestion time, wherein the extracted data is typically stored
in a relational database. This data extraction process and
associated reduction in data content that occurs at data
ingestion time inevitably hampers future investigations,
when all of the original data may be needed to determine the
root cause of or contributing factors to a service issue.

In contrast, an IT monitoring application system stores
large volumes of minimally-processed service-related data
at ingestion time for later retrieval and analysis at search
time, to perform regular monitoring, or to investigate a

25

40

45

36

service issue. To facilitate this data retrieval process, the IT
monitoring application enables a user to define an IT opera-
tions infrastructure from the perspective of the services it
provides. In this service-centric approach, a service such as
corporate email may be defined in terms of the entities
employed to provide the service, such as host machines and
network devices. Each entity is defined to include informa-
tion for identifying all of the events that pertains to the
entity, whether produced by the entity itself or by another
machine, and considering the many various ways the entity
may be identified in machine data (such as by a URL, an IP
address, or machine name). The service and entity defini-
tions can organize events around a service so that all of the
events pertaining to that service can be easily identified. This
capability provides a foundation for the implementation of
Key Performance Indicators.

As described herein, the system 102 can receive hetero-
geneous data from disparate systems. In some cases, the data
from the disparate systems may be related and correlating
the data can result in insights into client or customer
interactions with various systems of a vendor. To aid in the
correlation of data across different systems, multiple field
definitions can be added to one or more configuration files
to capture the same field or data across events generated by
different sources or sourcetypes. This can enable the system
102 to search and correlate data across heterogeneous
sources flexibly and efficiently.

As a non-limiting example and with reference to FIG. 4D,
consider a scenario in which a common customer identifier
is found among log data received from three disparate data
sources. In this example, a user submits an order for mer-
chandise using a vendor’s shopping application program 460
running on the user’s system. In this example, the order was
not delivered to the vendor’s server due to a resource
exception at the destination server that is detected by the
middleware code 462. The user then sends a message to the
customer support server 464 to complain about the order
failing to complete. The three systems 460, 462, 464 are
disparate systems that do not have a common logging
format. The shopping application program 460 sends log
data 466 to the system 102 in one format, the middleware
code 462 sends error log data 468 in a second format, and
the support server 464 sends log data 470 in a third format.

Using the log data received at the system 102 from the
three systems 460, 462, 464, the vendor can uniquely obtain
an insight into user activity, user experience, and system
behavior. The system 102 allows the vendor’s administrator
to search the log data from the three systems 460, 462, 464,
thereby obtaining correlated information, such as the order
number and corresponding customer 1D number of the
person placing the order. The system 102 also allows the
administrator to see a visualization of related events via a
user interface. The administrator can query the system 102
for customer ID field value matches across the log data from
the three systems 460, 462, 464 that are stored in the storage
system 116. While the customer ID field value exists in the
data gathered from the three systems 460, 462, 464, it may
be located in different areas of the data given differences in
the architecture of the systems. The query system 114
obtains events from the storage system 116 related to the
three systems 460, 462, 464. The query system 114 then
applies extraction rules to the events in order to extract field
values for the field “customer ID” that it can correlate. As
described herein, the query system 114 may apply a different
extraction rule to each set of events from each system when
the event format differs among systems. In this example, a
user interface can display to the administrator the events

US 11,902,081 B1

37

corresponding to the common customer ID field values 472,
474, and 476, thereby providing the administrator with
insight into a customer’s experience. The system 102 can
provide additional user interfaces and reports to aid a user in
analyzing the data associated with the customer.

5.0. Facilitating Management of Collection Agents

Collection agents are generally used to collect or obtain
data (e.g., from a data source) and provide or forward such
data to a data recipient that receives and/or consumes the
data. Such data may include, for example, log data, metrics,
network packets, traces, and/or the like. Collection agents
may exist in various forms. For example, collection agents
may be in the form of universal forwarder agents that collect
log files, stream forwarder agents that collect network pack-
ets (e.g., to analyze incoming and/or outgoing network
traffic), and/or OpenTelemetry agents that collect metrics
and traces. Collection agents are typically installed in com-
puting infrastructures across various computing devices. In
many cases, an extensive number of collection agents are
installed across a particular computing infrastructure (e.g.,
associated with an entity). For example, tens of millions of
universal forwarder agents may be installed in a customer
infrastructure to collect log data.

In conventional implementations, installation and other
management of such collection agents is performed on an
individual basis. That is, a user generally initiates installa-
tion of collection agents in an agent-by-agent manner.
Thereafter, to manage various performance or functionality
aspects related to the collection agents, the user manually
and separately initiates various actions to be executed in
association with the collection agents. For example, assume
a software upgrade or a new security certificate is desired for
a set of collection agents. In such a case, a user manually
initiates a software or certificate update for each collection
agent independently. For instance, the user can initiate a
software update for a first agent, then initiate a software
update for a second agent, and so on. Such manual and
individual management of collection agents, however is
tedious, particularly when an extensive number of collection
agents exist. Further, oftentimes, users do not readily have
access to information pertaining to the collection agents. For
example, a user may not have visibility into the whether
deployed agents are operating in an effective manner or not.

Accordingly, embodiments of the present technology are
directed to facilitating management of collection agents. In
this regard, embodiments described herein can manage
various collection agents in an automated and scalable
manner. In particular, embodiments can facilitate manage-
ment of collection agents by managing agent events asso-
ciated with the collection agents. An agent event generally
refers to an event or function related to a lifecycle of a
collection agent. Examples of such agent events include
functions or actions related to installation, deployment,
configuration (e.g., data destination, types of data), upgrade,
downgrade, securities or certificate validation, or other secu-
rity or performance aspects. Additionally or alternatively,
health associated with various collection agents can be
managed.

In operation, to manage agent events and/or health asso-
ciated with collection agents, an agent management service
may be used. An agent management service is generally
configured to facilitate management of collection agents in
an automated and scalable manner. As described herein, an
agent management service can include an agent controller
and an agent service manager. Generally, an agent controller

25

30

40

45

50

60

38

is a controller installed on a computing device to manage
lifecycle and/or health of all the agents that reside or are
hosted on that computing device. An agent service manager
is generally a service that is remote from agent controllers
and communicates with various agent controllers. As
describe herein, the agent controllers and the agent service
manager communicate with one another to effectuate a
scalable management of collection agents (e.g., associated
with a customer or entity). Accordingly, multiple collection
agents can be managed in a more efficient manner. For
example, various collection agents can be monitored in
relation to performance or health of the collection agents.
Further, any agent events identified for application to a set
of collection agents can be managed and/or executed as a set
such that individual actions do not need to be separately
initiated by a user to effectuate management for each desired
collection agent.

Turning to FIG. 5A, FIG. 5A illustrates an example agent
management service environment 500 in accordance with
various embodiments of the present disclosure. Generally,
the agent management service environment is configured to
manage collection agents, for example, to deploy collection
agents, configure collection agents, monitor collection
agents, and/or the like. As shown in FIG. 5A, the agent
management service environment 500 includes an agent
service manager 502 and an agent controller(s) 504. The
agent service manager 502 and the agent controller 504
communicate with one another to manage collection
agent(s) 506.

As shown in FIG. 5A, the agent controller 504 and the
collection agent 506 operate within a data source environ-
ment 508. A data source environment generally refers to an
environment including a source of data from which data is
collected and provided to a data recipient, such as data
recipient 510. A data source environment may be or include
a computing device or machine, for example, that hosts the
agent controller 504 and collection agent 506.

A data recipient 510 is generally associated with an entity
receiving data (e.g., from collection agent 506). A data
recipient may receive, analyze, and/or store the data. In one
embodiment, a data recipient 510 is illustrated as data intake
and query system 102 of FIG. 1, in which events are
generated from the data. In some cases, the data recipient
510 may be associated with a third party or separate from the
entity associated with the data source environment. For
instance, data collected in association with the data source
environment 508 operated via one entity (e.g., customer) is
provided to the data recipient 510 for analysis and/or pro-
cessing via another entity. The data recipient 510 may
operate, for example, in a server or cloud environment to
analyze and/or process the received data (e.g., logs, metrics,
traces, packets, etc.).

As shown, the data source environment 508 includes a
collection agent 506. The collection agent 506 may be in any
number of forms, such as a universal forwarder agent, a
stream forwarder agent, or an open telemetry agent. The
collection agent 506 can obtain various types of data, such
as logs 512, metrics 514, traces 516, and packets 518.
Although illustrated as collecting various types of data, a
collection agent may obtain a specific type of data, such as
logs. For example, in cases in which the collection agent 506
is a universal forwarder agent, the collection agent may
obtain log data. As another example, in cases in which the
collection agent 506 is a stream forwarder agent, the col-
lection agent may obtain network packets. As yet another
example, in cases in which the collection agent 506 is an
open telemetry agent, the collection agent may obtain met-

US 11,902,081 B1

39

rics and traces. Such data may be obtained via various
applications in the infrastructure, such as applications 520,
522, and 524. Applications 520, 522, and 524 are presented
for illustrative purposes only and may be of any form or
number. Upon obtaining or collecting logs 512, metrics 514,
traces 516, packets 518, and/or other data, the collection
agent 506 provides such data to the data recipient 510.
Although only one collection agent 506 is illustrated, any
number of collection agents may exist. For example, a
computing device or machine within the data source envi-
ronment 508 may include multiple collection agents that
collect data. Such collection agents operating on a single
computing device or machine need not be of a same type of
collection agent. For example, a single computing device
operating in a data source environment may include a
universal forwarder(s) agent and a stream forwarder(s)
agent, among others.

The agent controller 504 is generally configured to man-
age a set of collection agents, such as collection agent 506.
In particular, the agent controller 504 manages health and/or
agent events, or a lifecycle, associated with the collection
agent 506. In embodiments, the agent controller 504 is
deployed on a computing device on which the collection
agent 506 is installed. As a computing device can have any
number of collection agents hosted thereon, the agent con-
troller 504 can manage each of such collection agents.

As described, the agent controller 504 can manage any
type of collection agent. For example, the agent controller
can manage universal forwarder agents, stream forwarder
agents, OpenTelemetry agents, and combinations thereof.
Although embodiments described herein generally refer to a
single agent controller operating on a computing device to
manage each of the collection agents installed thereon, any
number of agent controllers may exist on a computing
device. For instance, one agent controller may manage a first
set of 10 collection agents, while another agent controller
manages a second set of 10 collection agents.

At a high level, the agent controller 504 communicates
with the collection agent 506, among others, to effectuate
agent events in association with the collection agent 506. An
agent event generally refer to any event or action being
performed or to be performed by a collection agent. In
particular, an agent event generally relates to an action
related to a lifecycle of a collection agent. By way of
example only, the agent controller 504 may communicate
with the collection agent 506 to initiate performance of
configuration updates (e.g., data destination, types of data),
upgrades, downgrades, securities or certificate validation,
and/or other security or performance aspects associated with
the collection agent. The agent controller 504 can addition-
ally or alternatively communicate with the collection agent
506 to monitor health of the collection agent 506.

To manage the collection agent(s) 506, the agent control-
ler 504 communicates with the agent service manager 502.
The agent service manager 502 is generally configured to
provide control directives to the agent controller 504. A
control directive generally refers to a message, request, or
instruction that provides an indication of an agent event, that
is a task, action, or operation, to perform (e.g., in relation to
a lifecyle of a collection agent(s)). Accordingly, the agent
service manager 502 may generate and provide control
directives to various agent controllers, such as agent con-
troller 504, to effectuate an agent event in association with
a set of collection agents, such as collection agent 506.

Generally, the agent service manager 502 generates con-
trol directives in accordance with instructions or requests
provided via a user device, such as user device 526 operated

30

40

45

40

by a user or entity (e.g., customer). In this way, the user may
input or select a desired agent task to be performed in
association with a set of collection agents. For example, a
user may indicate a desired configuration setting to be
applied to each collection agent operated by a particular
entity (e.g., the customer). As another example, a user may
indicate a desired configuration setting to be applied to a
particular set of collection agents operated by a particular
entity (e.g., the customer). For instance, a particular con-
figuration setting may be specified for a particular type of
collection agents (e.g., stream forwarders), collection agents
operating via a particular operating system version, collec-
tion agents associated with, or residing within, a particular
geographical region, or the like. Such input or instructions
may be selected or input in any number of ways via user
device 526. For example, a graphical user interface or
command line interface may be used to provide a desired
agent task(s) and/or an identification of collection agents to
which the agent task(s) is to apply. Advantageously, imple-
mentations described herein enable a user to initiate agent
events in association with various collection agents in an
efficient, secure, and scalable manner.

In some embodiments, the agent service manager 502
operates in a multi-tenant cloud service. In such embodi-
ments, the agent service manager 502 operates as a service
applicable to any number of tenants, or customers. As such,
the agent service manager 502 may communicate with
numerous (e.g., millions) of agent controllers operated in
various customer or tenant environments. In a multi-tenant
environment, the agent service manager 502 can securely
provide agent management services for different customers
using unique tenant credentials, such as tenant identifiers,
and the like. Although the agent service manager 502 is
generally described herein as operating in a multi-tenant
cloud service, embodiments are not intended to be limited
herein. For example, each tenant or customer may operate in
connection with a dedicated agent service manager such that
the agent service manager only provides services to the
particular tenant.

Turning to FIG. 5B, FIG. 5B provides an example
embodiment of an agent service manager 552 in an agent
management service environment 550. As described, the
agent service manager 552 generally communicates with
user devices 576 (e.g., associated with any number of
customers or tenants) and agent controllers 554 (e.g., oper-
ating in data source environments hosted by customers). As
shown, the agent service manager 552 includes a gateway
580, an agent health service 582, an event management
service 584, and a data store 578.

The data store 578 may be any type or number of data
stores. In one embodiment, data store 578 may include a
relational data store that captures registration information
associated with agent controllers and collection agents. Such
a relational data store may also include an audit of agent
events (e.g., origination of agent event, date/time of origi-
nation, date/time of performance of agent event, status of
agent event, etc.) Data store 578 may additional or alterna-
tively include a memory cache to store data.

The gateway 580 is generally configured to obtain com-
munications to the agent service manager 552. In embodi-
ments, the gateway 580 is an application programming
interface (API) gateway that is an entry point and performs
a standardized process for interactions between the agent
service manager 552, agent controllers (e.g., agent controller
554), and user devices (e.g., user device 576). In this way,
as communications are received from agent controllers
and/or user devices, the gateway 580 can obtain such

US 11,902,081 B1

41

communications and perform, for example, authentication
and authorization of the communication. The gateway 580
may perform any number of functions, such as authorization
and/or authentication of communications, associated with
the agent service manager 552. In addition to authorization
and/or authentication, other functions performed by gateway
580 may include, for example, rate limiting/quota, circuit
breaking/throttling, routing and traffic shaping, logging, etc.

Such communications to gateway 580 may include, for
example, health data (e.g., from agent controllers), control
requests (e.g., from agent controllers), directive responses
(e.g., from agent controllers), agent tasks (e.g., from user
devices), and/or the like. Upon obtaining such data, the
gateway 580 can direct the communications within the agent
service manager 552, as appropriate. For example, in one
implementation, the gateway 580 can provide health data to
the agent health service 582, while other data is directed to
the event management service 584 via the communication
manager 586, which can distribute to the appropriate man-
ager within the event management service 584.

The agent health service 582 is generally configured to
facilitate health monitoring of agent controllers (e.g., agent
controller 554) and/or collection agents (e.g., collection
agent 556). In this regard, the agent health service 582 can
obtain health data from various agent controllers. Such
health data may reflect or represent health associated with
the agent controller and/or collection agents that the agent
controller is managing. In this way, as an agent controller
obtains health data from a corresponding collection agent(s),
the agent controller can provide such health data to the agent
health service 582 (e.g., via the gateway 580). Similarly, the
agent controller 554 can provide health data reflecting the
health of the agent controller to the agent health service 582.

Health data can be communicated from agent controllers
at any time. In some cases, health data is communicated
from agent controllers on a periodic basis (e.g., every 5
seconds). In other cases, health data is communicated from
agent controllers upon the agent controllers obtaining data
(e.g., from agent collectors), upon obtaining a particular
amount of health data, upon a request to provide health data,
and/or the like. In some implementations, health data may be
communicated to the agent service manager 552 separate
from other communication, such as control requests. In other
implementations, health data may be communicated to the
agent service manager 552 in association with other com-
munication (e.g., control requests, etc.).

Health data may include any number or type of data
related to health or performance of an agent controller or a
collection agent. By way of example only, health data may
include a timestamp, deployment/tenant identifier, collec-
tion agent identifier, collection agent version, class identi-
fier, timestamp associated with when the collection last
successfully sent data, collection agent metrics (e.g., CPU,
memory, storage, disk I/0, network statistics, agent through-
put, etc.), and/or the like. In this way, health data may
indicate whether a collection agent or agent controller is
running, whether a collection agent or agent controller is in
distress, whether a collection agent or agent controller is
running out of resources, etc.

In accordance with obtaining health data, the agent health
service 582 may process and/or capture the health data
associated with the collection agents and/or agent control-
lers. In some cases, the agent health service 582 may store
the health data in the data store 578. Alternatively or
additionally, the agent health service 582 may communicate
the health data to a data recipient, such as data recipient 560,
for consumption, processing, and/or storing of the data.

5

10

15

20

25

30

40

45

50

55

60

65

42

The agent health service 582 may also facilitate commu-
nication with a user device to provide health data to the user
device for viewing by a user (e.g., an individual of a
customer or entity associated with the data). For example, a
user may request to view health data associated with the
corresponding entity’s collection agents, or for a specific set
of collection agents. In such a case, the agent health service
582 can receive a request for health data and provide
relevant data to the user device for viewing the correspond-
ing health data. In some cases, a user may set up an alert(s)
related to the health of an agent controller and/or collection
agent(s). In such a case, the agent health service 582 can
obtain the desired alert and implement the alert at the agent
health service 582 or disseminate such an alert to the data
recipient 560 that establishes alerts based on the data cap-
tured at the data recipient 560.

To efficiently provide health data to a user device for
display, a most recent set of health data may be stored in a
memory cache accessible by the agent health service 582.
For example, a most recent set of health data for each
collection agent may be stored in a memory cache. In this
way, upon a user request to view health data, the most recent
health data can be efficiently accessed and provided to the
user. In some cases, the type, or amount, of health informa-
tion stored in the memory cache may be limited given the
cost of in-memory data. For example, a tenant identifier, a
collection agent identifier, a timestamp, and a status (e.g.,
health status of the agent, such as “offline,” “sending and
healthy,” “unhealthy,” etc.) may be stored. In such cases,
other health data, and/or more historical health data, can be
provided to a persistent data store or the data recipient (e.g.,
data recipient 560) for storage. For example, health data that
is not the most recent health data or not of a data type desired
for memory storage can be provided to a data recipient for
indexing. Such data can be accessed, as needed, for provid-
ing to a user device for display.

FIG. 6A-6B provide example user interfaces of health
data that can be provided to a user device. With reference to
FIG. 6A, an example user interface 600 is illustrated that
includes a current status (health) 602 of collection agents
604 that a tenant has installed and are managed via agent
controllers. FIG. 6B provides an example user interface 650
that includes details of collection agents 654 belonging to a
particular set of collection agents. In this example, a set of
collection agents 654 is designated via a server class of
“all_windows_dev.” Upon selection of the server class “all_
windows_dev” 658, the corresponding details and/or activi-
ties can be presented. In this way, a user can view data
related to collection agents of the selected server class. Such
collection agent sets, or server classes, can be generated via
the user device by a user. For example, a user may select or
indicate desired server classes for which the user may wish
to view data or manage collection agents. Examples of
server classes, or classes, include groupings by operating
system, hardware type, version, geographical location, time
zone, etc.

Returning to FIG. 5B, as shown, the agent health service
582 may perform as a service separate from the event
management service 584. In some embodiments, agent
health service 582 may be executed separately due to the
amount of health data communicated. In particular, in some
cases, health data is frequently obtained at the agent service
manager 552. For example, an agent controller may com-
municate health data to the agent service manager 552 every
5 seconds. Assume tens of millions agent controllers exist
and communicate health data every 5 seconds. Due this
extensive amount of health data, the agent health service 582

US 11,902,081 B1

43

may operate separate from the event management service
584. However, as can be appreciated, a separate service is
not required and the agent health service 582 may be
performed in association with the event management ser-
vice.

Although generally described herein as the agent control-
lers providing health data to the agent service manager 552
for distribution to a data recipient 560, as can be appreciated,
other implementations may be used. For example, in other
implementations, the agent controllers and/or the collection
agents may directly communicate health data to the data
recipient 560.

The event management service 584 is generally config-
ured to manage agent events in association with agent
controllers and/or collection agents. As described herein,
agent events generally refer to any events or actions asso-
ciated with a lifecyle of an agent controller and/or collection
agent. By way of example only, agent events may include
actions related to configuration updates (e.g., data destina-
tion, types of data), upgrades, downgrades, securities or
certificate validation, and/or other security or performance
aspects. To manage agent events, the event management
service 584 can communicate (e.g., via gateway 580) with
agent controllers, such as agent controller 554, and user
devices, such as user device 576.

In embodiments, the event management service 584
includes a communication manager 586, a registration man-
ager 588, a configuration manager 590, a certificate manager
592, a metadata manager 594, and a deployment manager
596. Although the various managers are illustrated sepa-
rately, such functionality can be performed via any number
or combination of managers or components. Further, addi-
tional or alternative event managers may be used, in accor-
dance with embodiments described herein.

The communication manager 586 is generally configured
to manage communication to and/or from the event man-
agement service 584. As described herein, agent controllers
communicate control requests to the agent service manager
552. As such, among other things, the communication man-
ager 586 is responsible for accepting and distributing the
control requests sent from the agent controllers and, in
return, providing control directives to the agent controllers,
when appropriate.

A control request generally refers to a request that polls
the agent service manager 552, or the event management
service 584, requesting new information. In some cases, the
service can hold the request open until new data is available.
Once available, the service responds and sends the new
information in the form of a control directive. In some cases,
when the agent controller receives the new information, it
immediately sends another request, and the operation is
repeated. In this way, control requests are communicated
from agent controllers to regularly or continually check with
the event management service 584 to identify whether any
agent events should be performed by the agent controllers
and/or corresponding collection agent(s). In other cases,
agent controllers may communicate control requests on a
periodic basis (e.g., every five seconds).

In accordance with obtaining a control request, the com-
munication manager 586 can read a desired agent event(s)
created or generated by other managers of the event man-
agement service 584 (e.g., configuration manager, etc.) and
provide control directives indicating such desired agent
events to appropriate agent controllers in response to control
requests. In this regard, control directives may be or include
any number of agent events desired to be executed at a
control agent and/or collection agent. Control directives may

10

15

20

25

30

40

45

50

55

60

65

44

be communicated to agent controllers in any number of
formats, such as JSON payloads.

As described herein, agent events to be performed at an
agent controller and/or collection agent(s) may be generated
based on user input via a user interface at the user device
576. In this regard, a user may specify a group of collection
agents for which an agent event is desired to be applied. In
other examples, a user may specify a particular device, agent
controller, collection agent, etc. for which an agent event is
desired. By way of example, an administrator at a custom-
er’s premises can provide indications to the event manage-
ment service 584 of desired agent tasks to be performed.
Based on the input, the appropriate manager (e.g., configu-
ration manager, registration manager, etc.) can generate an
indication of an agent event to be performed via an agent
controller and/or collection agent(s). Examples of agent
events include, but are not limited to, a deployment event
(e.g. for a collection agent(s)), an upgrade or downgrade
event (e.g., for a collection agent(s) and/or agent
controller(s)), a start or stop event (e.g., for a collection
agent(s) and/or agent controller(s)), a configuration change
event (e.g., for a collection agent(s) and/or agent
controller(s)), a certificate change event (e.g., for a collec-
tion agent(s) and/or an agent controller(s)), or the like.

In some embodiments, the communication manager 586
may communicate with various managers of the event
management service 584 to identify any agent events to
communicate to the requesting agent controller. In this
regard, upon the communication manager 586 obtaining a
control request, the communication manager 586 can com-
municate with other managers of the event management
service 584 to identify whether any agent events have been
generated or identified to communicate to the requesting
agent controller.

Additionally or alternatively, the communication manager
586 may access a data store (e.g., data store 578) to identify
any applicable agent event indicators. Agent event indicators
may be stored in a memory cache and/or a persistent data
store. As one example, the communication manager 586
may initially check against a memory cache (or other data
store) to identify whether any agent event indicators are
available for or applicable to an agent controller that pro-
vided the control request. In some cases, the memory cache
may store agent event indicators at a class level indicating a
class or group of collection agents. For example, agent event
indicators may be stored in the memory cache based on a
class level associated with an agent controller and/or col-
lection agent (e.g., to provide an efficient lookup). As
described herein, a class, or class level, may be generated for
any set of collection agents. For instance, a class level may
be specific to a type of collection agent (e.g., universal
forwarder), a type of machine or attribute of a machine
hosting a collection agent, a geographic region of a collec-
tion agent, etc. The control request can include an agent
controller identifier(s), a collection agent identifier(s) asso-
ciated with the agent controller, and/or indication of a class
level to facilitate such agent event lookup. Accordingly,
based on information in the control request, the memory
cache can be used to identify a relevant or applicable agent
event desired to be performed. In such embodiments, if the
first check at the in-memory cache level is positive, the
desired agent event can be retrieved from a persistent data
store. In this way, each agent event indicator can be stored
and managed at an individual collection agent level in a
persistent data store, but flagging at class level in the
memory cache can enable efficient serving of control
requests. In embodiments, even when there is one specific

US 11,902,081 B1

45

collection agent that has an associated management in
persistent data store, the memory cache entry can be flagged
at the class level. Utilizing a memory cache can improve
latency as it reduces the number of persistent data store
accesses.

In some cases, the communication manager 586 may
itself generate an agent event indicator. For example, a
communication manager 586 may generate or initiate a start
or stop event. Such event indicators generated by the com-
munication manager 586 may be stored (e.g., in a persistent
data store) for lookup upon receiving a subsequent control
request. An example control directive that includes a start or
stop event may include various data, such as tenant identi-
fier, class identifier, agent controller identifier, collection
agent identifier, a start/stop/restart indicator, an action target
indicator, etc.

Upon identifying an agent event indicator to send to an
agent controller, the communication manager 586 can send
a control directive that includes such an agent event indi-
cator to the appropriate agent controller for distribution to
the collection agent(s), as appropriate. The control directive
may include any number of agent event indicators. For
example, in one embodiment, each agent event indicator
may be communicated via a separate control directive. In
another embodiment, each of the applicable agent event
indicators for an agent controller may be communicated via
a single control directive. In some cases, when an agent
controller manages multiple collection agents, separate con-
trol directives may be communicated for each collection
agent. Further, control directives may include any other type
of data, such as tenant identifiers, class identifiers, agent
controller identifiers, collection agent identifiers, etc.

In some cases, upon the agent controller communicating
the control directive to the appropriate collection agent(s)
and/or upon the agent controller(s) executing the received
control directive, the agent controller can provide a directive
response to the agent service manager 552 with a response
or result associated with an agent event. A directive response
may include any type of information. For example, the agent
controller 554 can communicate a status update indicating
completion of the agent event, or data associated therewith,
to the agent service manager 552. Such a directive response
may be in any format, such as a JSON response. The
communication manager 586 may obtain the directive
response and store such a response, for example, in a data
store 578.

As generally described herein, a control directive is
generally communicated to the agent controller in response
to a control request from the agent controller. To this end, in
response to a control request from the agent controller, a
control directive can be communicated to the requesting
agent controller. Utilizing control requests from agent con-
trollers to initiate communication of control directives to
agent controllers enables a secure environment. In some
cases, control requests originating from agent controllers
may use OAUTH2 access tokens. As can be appreciated,
agent controllers can register with gateway 580 in advance
to enable such communication. Although generally
described herein as the agent controllers requesting indica-
tions of agent events, other implementations can be used.
For example, in some cases, the communication manager
586 may push agent event indicators, via control directives,
upon such events being generated.

As described, the communication manager 586 commu-
nicates with various managers of the event management
service 584 to manage various types of agent events. In
particular, the communication manager 586 can communi-

10

15

20

25

30

40

45

50

55

60

65

46

cate with the registration manager 588, the configuration
manager 590, the certificate manager 592, the metadata
manager 594, and the deployment manager 596. Such man-
agers can generate various agent event indicators, and/or
control directives associated therewith, to facilitate manage-
ment of lifecycles associated with agent controllers and/or
collection agents. In addition to generating agent events
and/or control directives, the originating manager can man-
age storage of such agent event indicators (e.g., via memory
cache and/or persistent storage). That is, the managers can
facilitate an audit trail of various agent events, and data
associated therewith. For instance, an originating manager
can access agent event indicators in a memory cache on a
periodic basis (e.g., configurable or default period) and
determine whether an agent event has been completed. If so,
the agent event entry can be removed from the memory
cache.

The registration manager 588 is generally configured to
manage registration events. A registration event generally
refers to an event associated with registration of an agent
controller and/or collection agent. By way of example,
assume an agent controller is installed and initiated on a
computing device. Further assume the agent controller
detects three collection agents existing on the computing
device. In such cases, the agent controller can initiate
registration of the three collection agents. In this regard, the
agent controller can communicate a registration request to
the event management service 584 (e.g., at startup and boot).
Such a registration request may include any type of data,
such as, for example, an agent identifier, an agent version, a
class, a node IP address, an operating system identifier, an
operating system version, etc. The communication manager
586 can direct the registration request to the registration
manager 588 to indicate that the collection agents need to be
registered. Based on the registration request, the registration
manager 588 can generate a registration agent event.
Accordingly, a control directive including the registration
agent event can be communicated to the requesting agent
controller. In some cases, agent controllers are registered
with the event management service before, or in accordance
with, its installation.

In embodiments, the registration manager 588 maintains
a relational data store including indications of collection
agents relative to agent controllers. Such data stored may
include, for example, collection agent identifiers, agent
controller identifiers, machine identifiers, machine data
(e.g., when started, how long running, etc.) to register in the
relational data store.

In accordance with agent controllers and/or collection
agents being registered via the registration manager 588, the
registration manager 588 can also facilitate providing agent
controller data and/or collection agent data to users to view.
For example, assume a user requests, via a user device, to
view how many collection agents exist for the customer. In
such a case, the registration manager 588 can access the
relational data store and provide such information to the user
device to view. As can be appreciated, the registration
manager 588 can manage such information at the customer
or tenant level such that the data is secure.

The configuration manager 590 is generally configured to
manage configurations in association with collection agents
and/or agent controllers. In this regard, the configuration
manager 590 can manage adding new configurations and/or
modifying existing configurations. A configuration generally
refers to a manner in which components (e.g., software
components) are arranged. By way of example only, a

US 11,902,081 B1

47

configuration may indicate particular data or files to ingest,
filters to apply, an indication to apply regular expressions on
incoming data, etc.

A user may select (e.g., via a user device) a desired
configuration for a collection agent, or set of collection
agents. By way of example only, a user may specify, via user
device 576, a desire to use a new configuration for all
collection agents of a certain type (e.g., universal forward-
ers), for example, as indicated by a particular class level. In
accordance with obtaining a desired configuration, the con-
figuration manager 590 can translate the request to an agent
event for delivery to the specified set of agents (e.g., via the
agent controller). Accordingly, in a subsequent control
request sent by an agent controller to the communication
manager, a control directive including the registration agent
event is provided to the agent controller.

In some cases, the configuration manager 590 may pro-
vide the agent event to the communication manager 586 for
responding to the agent controller. In other cases, the con-
figuration manager 590 may provide the agent event to a
data store, such as data store 578, for subsequent access by
the communication manager 590 to provide to the agent
controller. For example, an agent event indicator may be
stored in association with an agent controller, collection
agent, and/or class level such that the agent event indicator
can be referenced based on a control request sent from an
agent controller. As such, upon the communication manager
590 obtaining a control request, the communication manager
590 can access the data store to obtain the configuration
agent event indicator and provide in a control directive.
Identifying which agent controller(s) to provide such a
control directive to may be based on registration details. For
example, assume a configuration is to be applied to a class
of collection agents. Based on the registration information
associated with the collection agents and/or agent controller,
appropriate agent controllers to which to disseminate the
information can be identified.

The configuration manager 590 can also monitor and
track configuration data. Configuration data generally refers
to any data associated with a configuration, or configuration
event. Configuration data may include, for example, a user
that initiated a new or modified configuration, when the
configuration event was executed, status of the configuration
event, etc. For instance, as directive responses, including
status updates, are returned from agent collectors in response
to events, the configuration manager 590 can manage stor-
age of such data (e.g., a status of the configuration event). As
such, the configuration data can be analyzed and/or provided
for viewing by a user. By way of example only, assume a
user provides a request to view configurations applied to a
particular set of collection agents. In such a case, the
configuration manager 590 can access appropriate informa-
tion and communicate such data to the user device for
presentation to the user. In this way, a user may be able to
view, a configuration, a time of execution, etc.

The certificate manager 592 is generally configured to
manage certificates in association with collection agents
and/or agent controllers. As can be appreciated, collection
agents may need to communicate with other sources (e.g.,
data recipients) in a secure manner. Accordingly, collection
agents may need a secure sockets layer (SSL) or transport
layer security (TLS) certificate to enable such secure com-
munications. To maintain security, the certificates are often
updated, for example, at regular intervals. Accordingly, the
certificate manager 592 can facilitate management of such
certificates (e.g., updating certificates, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

48

As described, a user may select (e.g., via a user device) a
desired certificate for a collection agent, or set of collection
agents. By way of example only, a user may specify, via user
device 576, a desire to use a new certificate for all collection
agents of a certain type (e.g., universal forwarders), for
example, as indicated by a particular server class. As another
example, an administrator of the collection agents might
provide an instruction to push a set of certificates to the
collection agents. In some cases, the certificates may be
unique for each collection agent.

In accordance with obtaining an indication of a desired
certificate, the certificate manager 592 can translate the
request to an agent event for delivery to a particular set of
agents (e.g., via the agent controller). Accordingly, in a
subsequent control request sent by an agent controller to the
communication manager, a control directive including a
certificate agent event can be provided to the agent control-
ler. The control directive may include any type of informa-
tion including certificate data, agent controller identifier,
collection agent identifier, tenant identifier, etc.

To provide certificate data, in some cases, the certificate
manager 592 may interface with a certificate store (not
shown) that stores certificates. In such a case, based on a
user instruction, the certificate manager 592 can obtain
certificate data and communicate such data when the com-
munication manager receives a control request from an
agent controller.

In some cases, the certificate manager 592 may provide
the agent event indicator to the communication manager 586
for responding to the agent controller. In other cases, the
certificate manager 592 may provide the agent event indi-
cator to a data store for subsequent access by the commu-
nication manager 586 to provide to the agent controller. For
example, the agent event may be stored in association with
an agent controller, collection agent, and/or a class level
such that the agent event can be referenced based on the
control request sent from an agent controller. As such, upon
the communication manager 586 obtaining a control request,
the communication manager 586 can access a data store
(e.g., data store 578) to obtain the agent event indicator and
provide to the agent controller via a control directive.
Identifying which agent controller to provide such a control
directive to may be based on registration details.

The certificate manager 592 can also monitor and track
certificate data. Certificate data generally refers to any data
associated with a certificate, or certificate event. Certificate
data may include, for example, an indication of a selected
certificate, a user that initiated a certificate event, a time
and/or date of execution of the certificate event, etc. For
example, as directive responses, including status updates,
are returned from agent collectors in response to the certifi-
cate events, the certificate manager 592 can manage storage
of such data (e.g., a status of the certificate event). As such,
the data can be analyzed and/or provided for viewing by a
user. For example, assume a user provides a request to view
certificate data applied to a particular set of collection
agents. In such a case, the certificate manager 592 can access
appropriate information and communicate such data to the
user device for presentation to the user. In this way, a user
may be able to view specific certificates applied, when they
are expiring, etc.

The metadata manager 594 is generally configured to
manage metadata in association with collection agents and/
or agent controllers. In this regard, the metadata manager
594 can facilitate maintenance of metadata associated with
collection agents and/or agent controllers. Metadata for
collection agents and/or agent controllers may include, but

US 11,902,081 B1

49

is not limited to, respective version numbers, an operating
system version the component was built on, when the
component was deployed, when the component was last
started/restarted, etc.

As described, a user may select (e.g., via a user device)
desired metadata for a collection agent, or set of collection
agents. By way of example only, a user may specify a desire
to modify metadata for all collection agents of a certain type
(e.g., universal forwarders), for example, as indicated by a
particular class. In accordance with obtaining desired meta-
data, the metadata manager 594 can translate the request to
an agent event for delivery to the specified set of agents (e.g.,
via the agent controller). Accordingly, in a subsequent
control request sent by an agent controller to the commu-
nication manager 586, a control directive including the agent
event is provided to the agent controller. As another
example, a user may specify a desire to view what agents are
too old or that are operating on unsupported versions. For
instance, a user may select to view a list of agents below a
certain version number to assess the scope of upgrade. In
some cases, the metadata manager 594 may provide an
indication of the agent event to the communication manager
586 for responding to the agent controller. In other cases, the
metadata manager 594 may provide the agent event to a data
store (e.g., data store 578) for subsequent access by the
communication manager 586 to provide to the agent con-
troller. For example, the agent event may be stored in
association with an agent controller, collection agent, or
server class such that the agent event can be referenced
based on the control request sent from an agent controller.
As such, upon the communication manager 586 obtaining a
control request, the communication manager 586 can access
a data store to obtain the agent event and provide in a control
directive. Identifying which agent controller to provide such
a control directive to may be based on registration details.

The metadata manager 594 can also monitor and track
metadata. Metadata generally refers to any data associated
with an agent controller and/or collection agent, or an event
associated therewith, etc. Metadata may include, for
example, a user that initiated the metadata task request,
when the metadata event was executed, etc. Accordingly, as
directive responses, including status updates, are returned
from agent collectors in response to the metadata events, the
metadata manager 594 can manage storage of such data
(e.g., a status of the metadata event). As such, the data can
be analyzed and/or provided for viewing by a user. For
example, assume a user provides a request to view metadata
associated with a particular set of collection agents. In such
a case, the metadata manager 594 can access appropriate
information and communicate such data to the user device
for presentation to the user. In this way, a user may be able
to view various metadata associated with a collection
agent(s) and/or agent controller(s).

The deployment manager 596 is generally configured to
manage deployment, upgrades, and/or downgrades in asso-
ciation with agent controllers and/or collection agents. In
this regard, the deployment manager 596 can communicate
various instructions to initiate deployment, upgrades, and/or
downgrades in connection with agent controllers or collec-
tion agents. For example, the deployment manager 596 may
manage deployment of the agent controller as well as one or
more collection agents (e.g., via the agent controller). As
another example, the deployment manager 596 may manage
upgrading software versions associated with collection
agents. For instance, when a new version is available, the
deployment manager 596 can enable automatic upgrade of
the collection agent(s).

25

40

45

50

As described, a user may select (e.g., via user device 576)
a desired deployment, upgrade, or downgrade for a collec-
tion agent, or set of collection agents. By way of example
only, a user may specify a desire to upgrade software in
association with all collection agents of a certain type (e.g.,
universal forwarders), for example, as indicated by a par-
ticular class. In accordance with obtaining an indication of
a desired deployment or upgrade/downgrade version, the
deployment manager 596 can translate the request to an
agent event for delivery to the specified set of agents (e.g.,
via the agent controller). Accordingly, in connection with
receiving a subsequent control request sent by an agent
controller to the communication manager 586, a control
directive including the applicable agent event is provided to
the agent controller. In some cases, the deployment manager
596 may provide an indication of an agent event to the
communication manager 586 for responding to the agent
controller. In other cases, the deployment manager 596 may
provide an indication of the agent event to a data store (e.g.,
data store 578) for subsequent access by the communication
manager 586 to provide to the agent controller. For example,
the agent event may be stored in association with an agent
controller, a collection agent, or a class such that the agent
event indicator can be referenced based on the control
request sent from an agent controller. As such, upon the
communication manager 586 obtaining a control request, the
communication manager 586 can access the data store to
obtain the agent event and provide in a control directive.
Identifying which agent controller to provide such a control
directive to may be based on registration details.

The deployment manager 596 can also monitor and track
deployment data, upgrade data, and/or downgrade data.
Deployment, upgrade, downgrade data generally refers to
any data associated with deployment, upgrade, or down-
grade associated with a collection agent, or an event asso-
ciated therewith or device, etc. Such data may include, for
example, an indication of a user that initiated the request,
when the event was executed, etc. In tracking such data, the
deployment manager 596 may store such information. As
one example, as directive responses, including status
updates, are returned from agent collectors in response to
execution of events, the deployment manager 596 can store
such data (e.g., via data store 578). As such, the data can be
analyzed and/or provided for viewing by a user. For
example, assume a user provides a request to view deploy-
ment, upgrade, or downgrade data associated with a par-
ticular set of collection agents. In such a case, the deploy-
ment manager 596 can access appropriate information and
communicate such data to the user device for presentation to
the user. In this way, a user may be able to view various
deployment, upgrade, and/or downgrade data associated
with a collection agent(s) and/or agent controller(s).

As shown in FIG. 5B, an agent controller 597 and
collection agent 598 may additionally or alternatively be
hosted via a distributed environment 599 (e.g., distributed
services Kubernetes environment). In some embodiments,
for containerized applications deployed in such an environ-
ment (e.g., Kubernetes environment), the agent controller,
such as agent controller 597, may be deployed at a control
plane so that the agent controller has access to APIs to access
and manage collection agents.

As described herein, agent controllers communicate with
the agent service manager and collection agents to facilitate
management of collection agents. FIG. 7 provides an
example environment 700 of an agent controller 704. As
shown, the agent controller 704 includes a remote services
interface 750 to communicate with the agent service man-

US 11,902,081 B1

51

ager 702. An example agent service manager 702 may be the
agent service manager 502 of FIG. 5A or the agent service
manager 552 of FIG. 5B. As shown, the agent controller 704
can include a configuration file 752. An operating system
interface 754 associated with the agent controller 704 can
execute various commands in association with collection
agents 706 A-706N. The particular commands executed may
be based on the particular operating system installed. The
agent controller 704 can use the underlying operating system
of the device to execute the applicable agent events for
collection agents 706A-706N.

As shown in FIG. 7, each collection agent 706 A-706N has
a corresponding configuration file 756 A-756N. In embodi-
ments, each collection agent can be configured indepen-
dently. Each of the collection agents 706A-706N can read
data from the file system 758 and collect data based on the
respective configuration information. For example, collec-
tion agent 706A can read log data 760 from the file system,
and collection agent 706B can read log data 762 and metric
data 764 from the file system. As the collection agents obtain
such data, the data (e.g., log data 760, log data 762, metric
data 764) can be provided to the appropriate data recipient,
such as data recipient 766 and/or 768. The configuration
information associated with the collection agent can indicate
where a collection agent is to send data, a format of the data,
a frequency for transmitting data, etc.

The agent controller 704 and the collection agents 706 A-
706N communicate with each other via the operating system
interface 754. In this regard, control directives applicable to
one or more of the collection agents can be used to execute
an action(s) in association with the appropriate collection
agent via the operating system interface 754. For example,
an agent controller can start/stop a collection agent after
changing the collection agent’s configuration file. Based on
the results of such actions, the agent controller 704 can
prepare and provide a directive response, for example,
indicating status of the control directives and/or other data
associated therewith. For example, the agent controller 704
may provide a status indicating the completion of an agent
event, a time of completion of the agent event, etc.

The agent controller 704 and the collection agents 706 A-
706N can also communicate with one another to convey
health data. For example, the collection agents 706 A-706N
can provide health data to the agent controller 704, for
example, on a periodic basis (e.g., every 5 seconds), in
response to a request from the agent controller 704 for health
data, and/or the like. As described herein, the communica-
tion between the agent controller 704 and the collection
agents 706 A-706N is typically performed within a comput-
ing device or distributed environment hosting the agent
controller and the collection agents.

Turning to FIG. 8, FIG. 8 provides an example imple-
mentation of an agent controller 804. As described, an agent
controller resides at the data collection source (e.g., via a
computing device or distributed environment) and generally
obtains various control directives (e.g., restart a collection
agent) to manage various collection agents. In embodiments,
the agent controller is separate from collection agents. Such
separation enables the collection agents to maintain perfor-
mance and throughput as such aspects should remain unaf-
fected, in accordance with embodiments described herein.
Further, advantageously, in instances in which a collection
agent terminates, the corresponding agent controller may
continue to run and, as such, can continue to report on the
health of the collection agent and/or restart the collection
agent. With a separation of the agent controller from the
collection agents, as can be appreciated, existing collection

10

15

20

25

30

35

40

45

50

55

60

65

52

agents do not need to be changed or reinstalled to implement
such an agent management service.

As described herein, the agent controller 804 communi-
cates with the agent service manager 802 and various
collection agents 806 to facilitate management of the col-
lection agents 806. The agent controller can include various
components and queues to effectuate such management in a
scalable manner. In one embodiment, as shown in FIG. 8, the
agent controller 804 includes a controller initiator 850, a
service interfacing component 852, an authentication com-
ponent 854, a registration component 856, a configuration
component 858, a certification component 860, a deploy-
ment component 862, a health component 864, an agent
interfacing component 866, an incoming requests queue
868, an outgoing responses queue 870, and an agent events
queue 872.

The controller initiator 850 is generally configured to
initiate the agent controller 804. In particular, the controller
initiator 850 is initiated when the agent controller 804 is
started. At a high level, the controller initiator 850 can
operate as a bootstrapper that generally manages initiation of
the agent controller. Accordingly, the controller initiator 850
can recognize whether appropriate queues and/or configu-
ration files (e.g., configuration file 874) exist. In cases in
which a data queue (e.g., a persistent data queue) or a
configuration file does not already exist in association with
the agent controller 804, the controller initiator 850 can
create such a data queue and/or configuration file.

The controller initiator 850 can also initiate various
components of the agent controller 804 (e.g., registration
component 856, configuration component 858, etc.). To this
end, the controller initiator 850 may start and/or stop various
components. For example, as a configuration file may be
used at the time a controller initiator 850 initiates the agent
controller, the controller initiator 850 can initiate or instan-
tiate the configuration component 858 to read the configu-
ration information from the configuration file 874. In addi-
tion to initiating various components, the controller initiator
850 can also ensure that components properly terminate,
when needed. For example, when an agent controller is shut
down or otherwise terminates, the controller initiator 850
can ensure that the components it initiated or spawned are
properly terminated. The various activities performed by the
controller initiator 850 can be logged into a log file.

In accordance with initiating the agent controller 804, the
agent controller 804 registers with the agent service manager
802. In embodiments, registering with the agent service
manager 802 enables the agent controller 804 to communi-
cate with the agent service manager 802. To register with the
agent service manager 802, authentication may be initially
performed. The authentication component 854 can perform
authentication steps with the agent service manager 802
(e.g., using an agent controller configuration) via the service
interfacing component 852.

One example implementation used to perform authenti-
cation is illustrated in FIG. 9. In FIG. 9, the authentication
component 902 communicates with the service interfacing
component 952 of an agent controller. The service interfac-
ing component 952 can communicate (e.g., over a network,
such as the Internet) with the agent service manager 906. As
shown at 910, a tenant identifier and tenant token are
generated or obtained for a tenant (e.g., representing a
customer). Such generation of a tenant identifier and tenant
token may be performed at any time prior to initiating
authentication. To perform authentication, the authentication
component 902 can request a service principal, as shown at
912. For example, the authentication component 902 can

US 11,902,081 B1

53

make a REST POST call using the generated tenant identi-
fier and tenant token. Thereafter, the service principal is
created. For example, an agent controller can create its own
service principal on the agent service manager 906, which
can then be communicated to the authentication component
902. A service principal can define or indicate what can be
performed in association with a specific tenant, who has
access rights, and what resources are accessible. Upon
obtaining a service principal, the service principal can be
added to a service principal group for the tenant (e.g., on the
agent service manager 906), as shown at 914.

The authentication component 902 generates a set of
public and private keys so that it can encrypt data before
sending it to the agent service manager 906, as shown at 916.
The authentication component 902 can also encrypt the keys
and write the encrypted values to a configuration file. At 918,
the authentication component 902 can then register the
decrypted public key with the service principal such that the
agent service manager 906 can use the key to decrypt an
incoming payload(s) from the agent controller. The authen-
tication component 902 can then use the service principal
name and its private key to perform the client assertion, as
shown at 920. The client assertion (e.g., security token) acts
as a client credentials/authorization grant (e.g., as part of
OAUTH2) to get the access token. At 922, the client
assertion and the token endpoint are used to obtain the
access token.

Returning to FIG. 8, upon authentication, the registration
component 856 can be used to register the agent controller
804 with the agent service manager 802. In this regard, the
registration component 856 can communicate a registration
request, for example, via outgoing responses queue 870 and
service interfacing component 852, to the agent service
manager 802. Such a registration request may include, for
instance, an agent controller identifier, a tenant identifier, an
operating system associated with the agent controller, a
version association with the agent controller, and/or the like.
Such an authentication and registration process can be
performed automatically by the agent controller. Accord-
ingly, in accordance with deployment of the agent controller
804, the agent controller 804 can automatically register itself
with the agent service manager 802.

Upon obtaining a successful registration response, the
registration component 856 can use received information to
update relevant configuration file (e.g., with agentld) and
can set the registration flag to indicate a successful regis-
tration. The registration component 856 can provide similar
registration tasks for collection agents. For example, upon
registering the agent controller 804 with the agent service
manager 802, the registration component 856 can detect
collection agents 806 operating on the same host as the agent
controller. Upon detecting collection agents 806, such agents
can also be registered with the agent service manager 802
(for those not already registered).

As described, the controller initiator 850 can initiate
various components and queues of the agent controller 804.
For example, the controller initiator 850 can initiate service
interfacing component 852, authentication component 854,
registration component 856, configuration component 858,
certification component 860, deployment component 862,
health component 864, agent interfacing component 866,
incoming request queue 868, outgoing response queue 870,
and agent event queue 872.

The service interfacing component 852 is generally con-
figured to communicate with the agent service manager 802.
In addition to communicating with the agent service man-
ager 802 to perform authentication and registration, the

10

15

20

25

30

35

40

45

50

55

60

65

54

service interfacing component 852 can send and/or receive
other communications related to managing various collec-
tion agents 806. As described herein, in some embodiments,
the agent controller 804 generally initiates communication
or connections with the agent service manager 802. In this
regard, the service interfacing component 852 can commu-
nicate control requests, directive responses, and/or health
data to the agent service manager 802.

Control requests can be communicated from the service
interfacing component 852 in a periodic manner so as to poll
the agent service manager 802 for any agent events to be
performed by the agent controller 804 and/or collection
agents 806. In response to a control request, the service
interfacing component 852 may receive a control directive
including any number of indications of agent events desired
to be performed (e.g., via the agent controller and/or col-
lection agent(s)). Such a control directive and/or agent
event(s) can be written or provided to the incoming requests
queue 868 for storing and queuing.

The service interfacing component 852 can also read and
relay responses from other managers of the agent controller
804 to the agent service manager 802. For example, various
managers may have directive responses (e.g., including
information responsive to a control directive and/or agent
event) to provide to the agent service manager 802. In some
embodiments, the directive responses may be written or
provided to the outgoing responses queue 870. In such
embodiments, the service interfacing component 852 may
read and relay such directive responses to the agent service
manager 802. Upon a successful communication to the agent
service manager 802, the service interfacing component 852
may remove or delete the entry from the outgoing response
queue 870. The service interfacing component 852 may read
and relay any type of information from the outgoing
response queue 870, and is not limited to directive
responses. Further, the service interfacing component 852
may read and relay information from various queues. For
example, in some cases, each manager may have a corre-
sponding queue from which the service interfacing compo-
nent 852 may read.

The authentication component 854 is generally config-
ured to facilitate authentication with the agent service man-
ager 802. As described, the authentication component 854
can perform authentication steps with the agent service
manager 802 (e.g., using an agent controller configuration)
via the service interfacing component 852. Upon being
initialized, for example, via the controller initiator 850, the
authentication component 854 may communicate with the
service interfacing component 852 to communicate authen-
tication information to the agent service manager 802. In
some cases, such communication with the service interfac-
ing component 852 may be via the outgoing responses queue
870. In such cases, any communications provided to the
outgoing responses queue 870 can be read by the service
interfacing component 852 and provided to the agent service
manager 802. The authentication component 854 may also
obtain messages from the agent service manager 802 via the
service interfacing component 852. In some cases, such
messages may be written to the incoming request queue 868,
which can then be read by the authentication component
854.

The registration component 856 is generally configured to
facilitate registration with the agent service manager 802. In
embodiments, the registration component 856 can obtain
registration-related control directives and/or agent event
indicators. For example, the registration component 856
may read control directives and/or agent events communi-

US 11,902,081 B1

55

cated to the service interfacing component 852 and provided
to the incoming requests queue 868. The registration com-
ponent 856 can process the information and determine an
agent event(s) desired to be performed. The registration
component 856 can then write the agent event indicator to
the agent event queue 872. The registration component 856
may remove or delete the related entry in the incoming
request queue 868. For example, the registration component
may delete an entry from the incoming requests queue upon
reading the entry from the queue, upon processing the entry,
upon writing an agent event indicator to the agent events
queue 872, upon performance of the agent event, etc.

In accordance with the agent event being executed or
performed, for example by the agent controller, a response
may be provided to the registration component 856. In such
cases, the registration component 856 may provide a direc-
tive response to the outgoing response queue 870. Based on
the response, the registration component 856 may also
remove the agent event indicator from the agent event queue
872.

The configuration component 858 is generally configured
to facilitate configuration additions and/or modifications in
association with the control agent 804 and/or the collection
agents 806. In embodiments, the configuration component
858 can obtain configuration-related control directives and/
or agent events. For example, the configuration component
858 may read control directives and/or agent event indica-
tors communicated to the incoming request queue 868 via
the service interfacing component 852. The registration
component 856 can process the information and determine
an agent event(s) desired to be performed. The configuration
component 858 can then write the agent event indicator to
the agent events queue 872. The configuration component
858 may remove or delete the related entry in the incoming
requests queue 868. For example, the registration compo-
nent 856 may delete an entry from the incoming requests
queue 868 upon reading the entry from the queue 868, upon
processing the entry, upon writing an agent event indicator
to the agent events queue 872, upon performance of the
agent event, etc.

In accordance with the agent event being executed or
performed (e.g., via the agent controller at the applicable
collection agent(s)), a response may be provided to the
configuration component 858. In such cases, the configura-
tion component 858 may provide a directive response to the
outgoing responses queue 870. Based on the response, the
configuration component 858 may also remove the agent
event indicator from the agent event queue 872.

The certification component 860 is generally configured
to facilitate certificate additions and/or modifications in
association with the control agent 804 and/or the collection
agents 806. In embodiments, the certification component
860 can obtain certification-related control directives and/or
agent event indicators. For example, the certification com-
ponent 860 may read control directives and/or agent event
indicators communicated to the incoming request queue 868
via the service interfacing component 852. The certification
component 860 can process the information and determine
an agent event(s) desired to be performed. The certification
component 860 can then write the agent event indicator to
the agent events queue 872. The certification component 860
may remove or delete the related entry in the incoming
requests queue 868. For example, the certification compo-
nent 860 may delete an entry from the incoming requests
queue upon reading the entry from the queue, upon process-

5

10

15

20

25

30

35

40

45

50

55

60

65

56

ing the entry, upon writing an agent event indicator to the
agent events queue 872, upon performance of the agent
event, etc.

In accordance with the agent event being executed or
performed (e.g., via a control agent on the applicable col-
lection agent(s)), a response may be provided to the certi-
fication component 860. In such cases, the certification
component 860 may provide a directive response to the
outgoing responses queue 870. Based on the response, the
certification component 860 may also remove the agent
event indicator from the agent events queue 872.

The deployment component 862 is generally configured
to facilitate deployment, upgrades, and/or downgrades asso-
ciated with agent controllers and/or collection agents. In this
regard, the deployment component 862 may coordinate
upgrade/downgrade to the agent control binary itself and/or
installation, upgrade/downgrade of one or more collection
agents. In embodiments, the deployment component 862 can
obtain deployment-related or upgrade/downgrade-related
control directives and/or agent events. For example, the
deployment component 862 may read control directives
and/or agent events communicated to the incoming request
queue 868 via the service interfacing component 852. The
deployment component 862 can process the information and
determine an agent event(s) desired to be performed. The
deployment component 862 can then write the agent event
indicator to the agent events queue 872. The deployment
component 862 may remove or delete the related entry in the
incoming requests queue 868. For example, the deployment
component may delete an entry from the incoming requests
queue upon reading the entry from the queue, upon process-
ing the entry, upon writing an agent event indicator to the
agent event queue 872, upon performance of the agent event,
etc.

In accordance with the agent event being executed or
performed (e.g., via an agent controller on the applicable
collection agent(s)), a response may be provided to the
deployment component 862. In such cases, the deployment
component 862 may provide a directive response to the
outgoing responses queue 870. Based on the response, the
deployment component 862 may also remove the agent
event indicator from the agent event queue 872.

The agent interfacing component 866 is generally con-
figured to interface with collection agents 806. In embodi-
ments, the agent interfacing component 866 execute com-
mands. In this regard, the agent interfacing component 866
can read agent events in the agent events queue 872 and
execute such events, or initiate execution thereof. As
described, the agent events in the agent events queue 872
can be obtained by various components of the agent con-
troller 804. In embodiments, formation of the particular
agent events (commands) for different platforms is handled
at the agent service manager 802. In other cases, the agent
controller 804 may configure the agent event commands for
different platforms.

Upon execution of an agent event, the agent interfacing
component 866 can update the status of that agent event and
write it to the outgoing responses queue 870. In other
examples, the agent event status may be provided to the
corresponding component (e.g., certification component
860), for example, to write to the outgoing responses queue
870. In addition to writing the result of the processed agent
event to the outgoing responses queue, data associated
therewith (e.g., status) can be written or captured in an agent
controller log file. In some implementations, the agent
interfacing component 866 may also delete the agent event
from the agent events queue 872. Further, the agent inter-

US 11,902,081 B1

57

facing component 866 may also remove various requests
from the queue that are related to the agent events associated
with the agent controller itself (e.g., commands to start/stop
itself).

The health component 864 is generally configured to
facilitate communication of health data to the agent service
manager 802. In embodiments, the health component 864 is
initiated by the controller initiator 850. The health compo-
nent 864 obtains health data associated with the agent
controller 804 and/or the collection agents 806 and provides
such data to the agent service manager 802. Although
illustrated as communicating health data directly to the agent
service manager 802, in other cases, the health component
may communicate such data to the service interfacing com-
ponent 852 (e.g., via outgoing responses queue) to commu-
nicate to the agent service manager 802. Such a destination
of health data may be configured, for example, by the user.
To obtain health data associated with various collection
agents, the health component 864 can use the agent control-
ler configuration information to monitor the health of such
collection agents.

In embodiments, the incoming requests queue 868, the
outgoing responses queue 870, and the agent events queue
872 may be persistent. In such cases, if the hosting machine
is terminated, the agent controller can resume activities as
the queues have been maintained. This enables integrity
between the agent controller 804 and the agent service
manager 802.

FIGS. 10-11 provide example method flows of facilitating
management of collection agents, in accordance with
embodiments described herein.

FIG. 10 provides one example method for facilitating
management of collection agents. Such an example may be
performed at an agent service manager, such as agent service
manager 552. Initially, at block 1002, a control request is
received from an agent controller that manages collection
agents that collect data. In embodiments, the agent controller
and the collection agents operate on a computing machine
remote from an agent service manager that receives the
control request. For example, the agent service manager and
the agent controller may communicate over the Internet. The
control request can poll the agent service manager to request
whether any new information exists for the agent controller.
At block 1004, a desired agent event to be executed in
association with a set of collection agents is identified. The
desired agent event may be specified or indicated based on
user input (e.g., via a user device). A desired agent event to
be executed in association with a set of collection agents
may be identified in any number of ways. As one example,
an agent event indicator associated with the agent controller
and/or set of collection agents may be identified. At block
1006, an indication of the desired agent event is provided to
the agent controller for execution of the desired agent event
in association with each collection agent of the set of
collection agents.

FIG. 11 provides another example method for facilitating
management of collection agents. Such an example may be
performed at an agent controller, such as agent controller
804. Initially, at block 1102, a control request is provided to
an agent service manager from an agent controller that
manages collection agents that collect data. In embodiments,
the agent controller and the collection agents operate on a
computing machine remote from the agent service manager.
The control request can be provided at any time, such as, for
example, upon a lapse of a predetermined time duration, in
accordance with receiving a previous control directive, or
the like. At block 1104, in response to the control request, a

30

40

45

55

58

control directive including an agent event indicator indicat-
ing an agent event to be executed in association with a set
of collection agents of the collection agents is received. At
block 1106, execution of the agent event is initiated in
association with each collection agent of the set of collection
agents.

6.0. Terminology

Computer programs typically comprise one or more
instructions set at various times in various memory devices
of'a computing device, which, when read and executed by at
least one processor, will cause a computing device to
execute functions involving the disclosed techniques. In
some embodiments, a carrier containing the aforementioned
computer program product is provided. The carrier is one of
an electronic signal, an optical signal, a radio signal, or a
non-transitory computer-readable storage medium.

Any or all of the features and functions described above
can be combined with each other, except to the extent it may
be otherwise stated above or to the extent that any such
embodiments may be incompatible by virtue of their func-
tion or structure, as will be apparent to persons of ordinary
skill in the art. Unless contrary to physical possibility, it is
envisioned that (i) the methods/steps described herein may
be performed in any sequence and/or in any combination,
and (ii) the components of respective embodiments may be
combined in any manner.

Although the subject matter has been described in lan-
guage specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as examples of implementing
the claims, and other equivalent features and acts are
intended to be within the scope of the claims.

Conditional language, such as, among others, “can,”
“could,” “might,” or “may,” unless specifically stated oth-
erwise, or otherwise understood within the context as used,
is generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements and/or steps. Thus, such conditional lan-
guage is not generally intended to imply that features,
elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments nec-
essarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment. Furthermore, use of “e.g.,” is to be interpreted
as providing a non-limiting example and does not imply that
two things are identical or necessarily equate to each other.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense, i.e.,
in the sense of “including, but not limited to.” As used
herein, the terms “connected,” “coupled,” or any variant
thereof means any connection or coupling, either direct or
indirect, between two or more elements; the coupling or
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, refer to this application as a whole and
not to any particular portions of this application. Where the
context permits, words using the singular or plural number
may also include the plural or singular number respectively.
The word “or” in reference to a list of two or more items,

US 11,902,081 B1

59

covers all of the following interpretations of the word: any
one of the items in the list, all of the items in the list, and any
combination of the items in the list. Likewise the term
“and/or” in reference to a list of two or more items, covers
all of the following interpretations of the word: any one of
the items in the list, all of the items in the list, and any
combination of the items in the list.

Conjunctive language such as the phrase “at least one of
X, Y and Z,” unless specifically stated otherwise, is under-
stood with the context as used in general to convey that an
item, term, etc. may be either X, Y or Z, or any combination
thereof. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of X, at least one of Y and at least one of Z to each be
present. Further, use of the phrase “at least one of X, Y or
7> as used in general is to convey that an item, term, etc.
may be either X, Y or Z, or any combination thereof.

In some embodiments, certain operations, acts, events, or
functions of any of the algorithms described herein can be
performed in a different sequence, can be added, merged, or
left out altogether (e.g., not all are necessary for the practice
of the algorithms). In certain embodiments, operations, acts,
functions, or events can be performed concurrently, e.g.,
through multi-threaded processing, interrupt processing, or
multiple processors or processor cores or on other parallel
architectures, rather than sequentially.

Systems and modules described herein may comprise
software, firmware, hardware, or any combination(s) of
software, firmware, or hardware suitable for the purposes
described. Software and other modules may reside and
execute on servers, workstations, personal computers, com-
puterized tablets, PDAs, and other computing devices suit-
able for the purposes described herein. Software and other
modules may be accessible via local computer memory, via
a network, via a browser, or via other means suitable for the
purposes described herein. Data structures described herein
may comprise computer files, variables, programming
arrays, programming structures, or any electronic informa-
tion storage schemes or methods, or any combinations
thereof, suitable for the purposes described herein. User
interface elements described herein may comprise elements
from graphical user interfaces, interactive voice response,
command line interfaces, and other suitable interfaces.

Further, processing of the various components of the
illustrated systems can be distributed across multiple
machines, networks, and other computing resources. Two or
more components of a system can be combined into fewer
components. Various components of the illustrated systems
can be implemented in one or more virtual machines or an
isolated execution environment, rather than in dedicated
computer hardware systems and/or computing devices.
Likewise, the data repositories shown can represent physical
and/or logical data storage, including, e.g., storage area
networks or other distributed storage systems. Moreover, in
some embodiments the connections between the compo-
nents shown represent possible paths of data flow, rather
than actual connections between hardware. While some
examples of possible connections are shown, any of the
subset of the components shown can communicate with any
other subset of components in various implementations.

Embodiments are also described above with reference to
flow chart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products. Each
block of the flow chart illustrations and/or block diagrams,
and combinations of blocks in the flow chart illustrations
and/or block diagrams, may be implemented by computer
program instructions. Such instructions may be provided to

10

15

20

25

30

35

40

45

50

55

60

65

60

a processor of a general purpose computer, special purpose
computer, specially-equipped computer (e.g., comprising a
high-performance database server, a graphics subsystem,
etc.) or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute
via the processor(s) of the computer or other programmable
data processing apparatus, create means for implementing
the acts specified in the flow chart and/or block diagram
block or blocks. These computer program instructions may
also be stored in a non-transitory computer-readable
memory that can direct a computer or other programmable
data processing apparatus to operate in a particular manner,
such that the instructions stored in the computer-readable
memory produce an article of manufacture including
instruction means which implement the acts specified in the
flow chart and/or block diagram block or blocks. The
computer program instructions may also be loaded to a
computing device or other programmable data processing
apparatus to cause operations to be performed on the com-
puting device or other programmable apparatus to produce
a computer implemented process such that the instructions
which execute on the computing device or other program-
mable apparatus provide steps for implementing the acts
specified in the flow chart and/or block diagram block or
blocks.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects
of'the invention can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further implementations of
the invention. These and other changes can be made to the
invention in light of the above Detailed Description. While
the above description describes certain examples of the
invention, and describes the best mode contemplated, no
matter how detailed the above appears in text, the invention
can be practiced in many ways. Details of the system may
vary considerably in its specific implementation, while still
being encompassed by the invention disclosed herein. As
noted above, particular terminology used when describing
certain features or aspects of the invention should not be
taken to imply that the terminology is being redefined herein
to be restricted to any specific characteristics, features, or
aspects of the invention with which that terminology is
associated. In general, the terms used in the following claims
should not be construed to limit the invention to the specific
examples disclosed in the specification, unless the above
Detailed Description section explicitly defines such terms.
Accordingly, the actual scope of the invention encompasses
not only the disclosed examples, but also all equivalent ways
of practicing or implementing the invention under the
claims.

To reduce the number of claims, certain aspects of the
invention are presented below in certain claim forms, but the
applicant contemplates other aspects of the invention in any
number of claim forms. For example, while only one aspect
of the invention is recited as a means-plus-function claim
under 35 U.S.C sec. 112(f) (MA), other aspects may like-
wise be embodied as a means-plus-function claim, or in
other forms, such as being embodied in a computer-readable
medium. Any claims intended to be treated under 35 U.S.C.
§ 112(1) will begin with the words “means for,” but use of
the term “for” in any other context is not intended to invoke
treatment under 35 U.S.C. § 112(f). Accordingly, the appli-
cant reserves the right to pursue additional claims after filing
this application, in either this application or in a continuing
application.

US 11,902,081 B1

61

What is claimed is:

1. A computer-implemented method, comprising:

providing a control request, from an agent controller that
manages collection agents that collect data, to an agent
service manager to poll the agent service manager
requesting new information, wherein the agent control-
ler and the collection agents operate on a computing
machine remote from the agent service manager;

in response to the control request, receiving, at the agent
controller that manages collection agents that collect
data, a control directive including an agent event indi-
cator indicating an agent event to be executed in
association with a set of collection agents of the col-
lection agents, the agent event comprising a deploy-
ment event, an upgrade or downgrade event, a configu-
ration change, or a certificate change event; and

initiating execution of the agent event in association with
each collection agent of the set of collection agents.

2. The computer-implemented method of claim 1,
wherein the control request is provided upon a lapse of a
predetermined time period.

3. The computer-implemented method of claim 1,
wherein the control request is provided upon obtaining a
previous control directive from the agent service manager.

4. The computer-implemented method of claim 1,
wherein the control request and the control directive are
communicated using JavaScript Object Notation over the
Internet.

5. The computer-implemented method of claim 1,
wherein the control directive further includes a class iden-
tifier, an agent controller identifier, and/or a collection agent
identifier.

6. The computer-implemented method of claim 1,
wherein the agent controller includes:

a controller initiator to initiate components and queues of

the agent controller;

a service interfacing component to interface with the
agent service manager; and

an agent interfacing component to interface with the
collection agents.

7. The computer-implemented method of claim 1,

wherein the agent controller includes:

an authentication component to manage authentication of
the agent controller;

a registration component to manage registration of the
agent controller and the collection agents;

a certification component to manage certificates associ-
ated with the collection agents;

a deployment component to manage deployment,
upgrades, and downgrades associated with the collec-
tion agents; and

a configuration component to manage configurations
associated with the collection agents.

8. The computer-implemented method of claim 1,
wherein the agent controller includes a health component to
manage health data associated with the collection agents.

9. The computer-implemented method of claim 1,
wherein the agent controller includes an incoming requests
queue to queue incoming control directives, an outgoing
requests queue to queue outgoing directive responses, and
an agent events queue to queue agent events to execute at the
collection agents.

10. The computer-implemented method of claim 1, fur-
ther comprising providing a directive response to the agent
service manager, the directive response including data asso-
ciated with the execution of the agent event.

10

15

20

25

30

35

40

45

50

55

60

65

62

11. The computer-implemented method of claim 1, further
comprising:

obtaining the agent event indicator via an incoming
requests queue of the agent controller; and

providing an agent event entry in an agent events queue
including a set of agent event entries to access and
initiate execution of a corresponding agent event at one
or more collection agents.

12. A computing device, comprising:
a processor; and

a non-transitory computer-readable medium having
stored thereon instructions when executed by the pro-
cessor, cause the processor to perform operations
including:

providing a control request, from an agent controller that
manages collection agents that collect data, to an agent
service manager to poll the agent service manager
requesting new information, wherein the agent control-
ler and the collection agents operate on a computing
machine remote from the agent service manager;

in response to the control request, receiving, at the agent
controller that manages collection agents that collect
data, a control directive including an agent event indi-
cator indicating an agent event to be executed in
association with a set of collection agents of the col-
lection agents, the agent event comprising a deploy-
ment event, an upgrade or downgrade event, a configu-
ration change, or a certificate change event; and

initiating execution of the agent event in association with
each collection agent of the set of collection agents.

13. The computing device of claim 12, wherein the
control request is provided upon a lapse of a predetermined
time period.

14. The computing device of claim 12, wherein the
control request is provided upon obtaining a previous con-
trol directive from the agent service manager.

15. The computing device of claim 12, wherein the
control request and the control directive are communicated
using JavaScript Object Notation over the Internet.

16. The computing device of claim 12, wherein the
control directive further includes a class identifier, an agent
controller identifier, and/or a collection agent identifier.

17. A non-transitory computer-readable medium having
stored thereon instructions that, when executed by one or
more processors, cause the one or more processor to perform
operations including:

providing a control request, from an agent controller that
manages collection agents that collect data, to an agent
service manager to poll the agent service manager
requesting new information, wherein the agent control-
ler and the collection agents operate on a computing
machine remote from the agent service manager;

in response to the control request, receiving, at the agent
controller that manages collection agents that collect
data, a control directive including an agent event indi-
cator indicating an agent event to be executed in
association with a set of collection agents of the col-
lection agents, the agent event comprising a deploy-
ment event, an upgrade or downgrade event, a configu-
ration change, or a certificate change event; and

initiating execution of the agent event in association with
each collection agent of the set of collection agents.

US 11,902,081 B1

63

18. The medium of claim 17, wherein the agent controller
includes an incoming requests queue to queue incoming
control directives, an outgoing requests queue to queue
outgoing directive responses, and an agent events queue to
queue agent events to execute at the collection agents.

#* #* #* #* #*

5

64

