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Figure 9 — Truncated example 24-bit multiplier array
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Figure 1 — Example summation of four 4-bit partial products
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Figure 5 — Notation used to describe truncation
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Figure 7 — Example calculation of optimal bits to truncate from arbitrary array
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Figure 11 — Truncated example Booth array
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METHOD AND APPARATUS FOR SYNTHESISING A SUM OF ADDENDS OPERATION
AND FOR MANUFACTURING AN INTEGRATED CIRCUIT

Field of the invention

This invention relates to the synthesis of a functional block in logic of the type which can be
used to perform a sum-of-addends operation, as commonly used for binary multiplication and to
a method and apparatus for manufacturing an integrated circuit using the thus synthesised

functional block.

Background of the invention

When modem integrated circuits (IC) designs are produced, these usually start with a high level
design specification which captures the basic functionality required but does not include the
detail of implementation. High level models of this type are usual written using high level
programming language to derive some proof of concept and validate the model, and can be run

on general purpose computers or on dedicated processing devices.

Once this has been completed and the model has been reduced to register transfer level (RTL)
using commercially available tools, this RTL model can then be optimised to determine a

preferred implementation of the design in silicon.

The implementation of some types of multiplier in hardware often involve the determination ofa
number of partial products which are then summed, each shifted by one bit relative to the
previous partial product. Visually this can be considered as a parallelogram array of bits as
shown in figure 1, where the black circles represent bits. The example of figure 1 shows the
multiplication of four 4 bit numbers. The result of the multiplication is an 8 bit number.

Figure 1 illustrates a straightforward multiplier but others can be implemented, such as Booth
multipliers which will be discussed later in this specification. Some of these other muitipliers do
not arrange the bits in this parallelogram pattern. Nevertheless, they still have to perform a sum

of addends in order to produce a result.

When such a multiplier is synthesised in RTL it produces a netlist of gates which can then be
implemented in silicon. In many cases, the precision of the sum of addends required is lower
than that provided by a full summation. Therefore, in some instances truncated multipliers are
used which produced a less accurate result. A modified version of figure 1 is shown in figure 2.
In this example the least significant whole k columns of bits are truncated (that is to say

discarded) and to compensate for this a constant value represented by the hatched circles is
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added. Once the summation has been caiculated, further truncation of the n-k least significant
bits of the result can be performed to leave an approximation to the multiplication result. Thus,
the truncation comprises the discarding of some of the columns and the adding of a constant to
one or more of the remaining columns to provide the approximation to the multiplication results.
Synthesis of such an arrangement in RTL will result in a smaller netlist and therefore will enable
a multiplier to be manufactured using fewer gates and thus less silicon. This will reduce the

cost.

The issue with truncating bits in sum of products operations is that it is complex to determine
the effect of truncation and usually error statistics need to be gathered which is time consuming
and can lead to many iterations being required during RTL synthesis to produce just one sum of
addends unit. This problem becomes much worse with larger multipliers than those shown in
the examples of figures 1 and 2. Further complexity may arise when many separate
multiplications are combined together and summed with a larger array as is shown in figure 3.
This shows four separate multiplications x1*y1 to x4*y4 which are all combined in a single
summation array. Each one of these multiplications can be truncated by different numbers of
columns (k). This significantly further increases complexity in determining the effects of
truncation on any error in the thus approximated result. The larger the sum of addends and the

more multiplications which are combined the more the complexity rises.

It is therefore desirable to be able to construct a sum of addends function which minimises
hardware implementation cost as the output of RTL synthesis while maintaining a known error
profile. In other words, it will be desirable to reduce the complexity of the synthesised logic as
much as possible through truncation while maintaining a known error in the thus approximated
result, without the time consuming data manipulation required to gather error statistics. Any
reduction in complexity results in a reduction in silicon area and hence also in costs and power

consumption.
Summary of the Invention

In a first aspect of the invention there is provided a method for deriving in RTL a logic circuit for

performing a sum of addends operation with faithful rounding comprising the steps of:

a) determining a number of bits to discard from a result of the sum of addends to produce
a faithfully rounded result;

b) determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation;

c) determining how many least significant whole columns of bits may be discarded from
the sum of addends operation;

d) discarding those said columns;
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3

determining how many bits of a next least significant column can be discarded from the
sum of addends operation,

discarding those said bits from said next least significant column; and

deriving an RTL representation of the sum of addends operation without said discarded

columns and bits, and including said constant.

In accordance with a second aspect of the invention there is provided a method for

manufacturing in integrated circuit for performing a sum of addends operation with faithful

rounding comprising the steps of:

a)

b)

c)

d)
e)

f)
a)

h)

determining a number of bits to discard from a result of the sum of addends to produce
a faithfully rounded result;

determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation to
produce a faithfully rounded result; A

determining how many least significant whole columns of bits may be discarded from
the sum of addends operation;

discarding those said columns;

determining how many bits of a next least significant column can be discarded from the
sum of addends operation;

discarding those said bits from said next least significant column;

deriving an RTL representation of the sum of addends operation without said discarded
columns and bits, and including said constant; and

manufacturing the integrated circuit with the thus derived RTL representation of the

sum of addends operation.

In accordance with a third aspect of the present invention there is provided an integrated circuit

for performing multiplication of input logic values to a predetermined faithful rounding precision

comprising:

3

an input to receive logic values;

a logic gate array to perform multiplication of the input logic values and for providing an
output value to the predetermined faithful rounding precision:

wherein the logic gate array is configured to perform a sum of addends representing the
multiplication, the sum of addends including columns of lower significance than the
predetermined faithful rounding precision and wherein the logic gate array is further
configured to sum only some of the bits of a least significant column of the said columns

of lower significance.

In accordance with a fourth aspect of the present invention there is provided a computer

program product which when run on a computing system causes it to perform a method for
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deriving in RTL a logic circuit for pérforming a sum of addends operating with faithful rounding

comprising the step of:

a) determining a number of bits to discard from a resuit of the sum of addends to produce
a faithfully rounded resuilt;

b) determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation;

c) determining how many least significant whole columns of bits may be discarded from
the sum of addends operation;,

d) discarding those said columns; v

e) determining how many bits of a next least significant column can be discarded from the
sum of addends operation;

f) discarding those said bits from said next least significant column; and

g) deriving an RTL representative of the sum of addends operation without said discarded

columns and bits, and including said constant.

Brief Description of the Drawings

Figure 1 shows an example summation of four 4 bit partial products as referred to above;
Figure 2 shows an example of a multiplier of the form of figure 1 with truncation applied;
Figure 3 shows an example of combined truncated muitipliers as discussed above;

Figure 4 shows the relationship of faithfully rounded results from a sum of addends in relation to

a precise result;

Figure 5 shows an example of truncation and notation used in accordance with the embodiment

of the invention;
Figure 6 shows a rearrangement of the array of figure 5;

Figure 7 shows an example of truncation of optimal bits from an arbitrary array in accordance

with an embodiment of the invention;
Figure 8 shows an example 24 bit multiplication array;

Figure 9 shows a truncated example 24 bit multiplier array in accordance with an embodiment

of the invention;

Figure 10 shows an example Booth multiplier array to which the invention may be applied;
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Figure 11 shows a truncated example of the Booth multiplier array of figure 10 in accordance

with an embodiment of the invention;
Figure 12 shows a flow diagram of an embodiment of the invention;
Figure 13 shows schematically an RTL system to which the invention is applied; and

Figure 14 a and b show the RTL synthesis units required for a truncated AND array and a

truncated Booth array respectively of the types shown in figures 9 and 11.

Detailed Description of Preferred Embodiments

Embodiments of the invention described below aim to truncate a bit array to which a sum of
addends is to be applied and which represents a multiplication such that it generates a faithful
rounding of the real precise result. In other words, the faithful rounding limits provide a known

error profile.

As those skilled in the art will be aware a faithfully rounded result is a machine representable
number that is either immediately above or immediate below the real precise result. This is
shown in figure 4. As can be seen, the machine representable values are indicated with dash
lines. A valid faithful rounding can be the machine representable value either side of the
precise result, although one value may be closer than the other. The exception to this arises
when the precise result can be represented exactly by a machine value, in which case only that
exact machine value is valid. In other words, the faithfully rounded value will be spaced from

the real precise value by less than the spacing between machine representable numbers

As is well known, when implemented in an IC faithful rounding schemes typically use less
silicon area than other rounding schemes such as round to nearest, or round to zero.
Therefore, they give a preferential reduction in silicon and consequently in cost and power

consumption.

The following describes a technique for determining how many bits can be truncated from an
array before summing the values, and which columns they should be removed from, such that
the achieved result is still a faithful rounding of the real value. The following notation is used:

F is the precise result
A is the set of bits to truncate (i.e. throw away) from the array
val(A) is the value of the bits within the set A
‘ C is the compensating constant added to the array
n is the number of least significant bits (columns) that are removed from the precise

result to give the faithfully rounded approximate result
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This notation is indicated graphically using the example of Figure 3, a shown below in Figure 5.
In the following, it is assumed that any bit within the array can take the value of one
independently of any other bit in the array. Using this notation, the approximation to the precise

result can be given by the following floor function:

Froor F—val(A)+ CJ
2”
The numerator F — val(A)+ C gives the value of the real result minus the truncated bit value,

plus the constant, and the floor function 27|-/2"| removes the n jeast significant bits. The error

in this approximation is therefore:

e=F-F
= Fo 2,,LF —val(A)+ Cj
2’!
¢ = (F —val(A)+ C)mod 2" +val(8)-C
The last step in the equations above uses a known rearrangement of the floor function. The

error in the approximation can then be defined within limits as:
—C<e<2"-1+valla)-C
This is because the smallest the error value can be is —C (in the case that the first part of the

error equation is divisible by 2" and val(A) is zero, and the largest that the error value can be is

2" -1+ val(A)— C (as 2"-1 is the largest possible value from the modulo operation).

As noted above, faithful rounding requires that the approximate value varies from the precise
result by less than the spacing between machine representable values. In this case, the least
significant n bits are being removed from the precise result, and hence the spacing between

machine representable values is 2" Therefore, to ensure faithful rounding, the magnitude of

the error must be less than 2, i.e. |£| < 2" . Any error larger than this will not give a faithfully

rounded result.

Considering the bounds of the error, this means that C < 2" (from the lower bound) and
2" -1 +val(A)— C <2" (from the upper bound). If Cis setto its maximal possible value of
C =2" -1, then this places the least restriction on A. This value for C satisfies the lower

bound, and means that val(A)< 2" satisfies the upper bound. That is to say, C and the value
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of bits to be discarded by truncation must each be smaller than the difference between adjacent

faithful rounding values in a selected faithful rounding scheme.

As a result of this, the optimisation task for the synthesis of the operation can be stated as
maximising the number of bits in A, subject to val(A) <2". In other words, the number of bits to
truncate from the array should be maximised (to reduce silicon area and complexity), while
keeping the value of the bits removed to less than 2" to ensure that faithful rounding is
maintained. Described below is a technique for achieving this optimisation task, where faithfully
rounding is maintained and the number of bits discarded is maximised (leading to fewer gates

and thus less silicon area being used).

To more clearly show the operation of the optimisation, the array can be represented as shown
in Figure 6. Figure 6 shows the same array as in Figure 5, except that the bits have been
grouped together into contiguous columns. This does not affect the result of the array
summation, as it is irrelevant which row a given bit is from, or indeed which row a bit is removed
from (as a one at any bit position is independent of other bit positions). For illustration, the
example of Figure 6 also shows the same number of bits being removed from the array as
Figure 5 (as indicated by white circles), although this is not necessarily optimal (the
determination of this is described in more detail below). These bits are the ones which were

originally truncated as shown in figure 3.

The notation h; is used to denote the total number of bits in column j (i.e. the array height), and

the notation l; is used to denote the number of bits to remove from column /.

‘ Using this notation, the optimisation problem can be expressed as:

n-1
Maximising the number of bits removed = male,.
i=0

n-1

Such that val(8) <2"=> Y 1,2 < 2", where [, < b,
i=0
A value k is now defined, and this is the largest number of complete (i.e. whole) least significant
columns that can be removed from the array, such that the optimisation constraint val(A) <2" is
maintained. This value is a key part of the determination of the optimal number of bits to

truncate. This can be found from:

r=1
k =max(r) suchthat » h2' <2"

i=0

For example, in the merely illustrative case of Figure 6, nis 5 so 2"is32,andhy=4,h;=7

andh, = 4. If r = 2, then the sum of the first two column values is 4x1+7x2=18 (which is less
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than 32). If r = 3, then the sum of the first three column values is 4x1+7x2+4x4=34 (which is
greater than 32). Therefore, only two full columns can be removed with the constraint of their

value being <2", and hence k = 2 in this example.
The truncation optimisation problem can be summarised by the following steps:

Calculate k
Remove all bits from all columns less than k
Do not remove any bits from any columns greater than k

e N =

Determine the maximum number of bits to remove from column k to meet the

optimisation criteria
Following these steps during RTL synthesis will optimise the number of bits which are removed.

The proof behind each of these steps is outlined below.

The optimal number of bits to remove from column jis denoted lf”t. If the removal of all

columns less than k is optimal, then this given by the lemma:
I =h for i<k
This can be proven by contradiction using the following two cases:

a. If [P* = 0 for i 2 k and there exists j<k such that I’P* < h; then, by the definition of k.
can increase to h; thus increasing the objective of maximising the number of bits to
remove while not violating the constraint.

b. If there exists izk and (77" > Oand j<k withlj"'" < hythenl{"‘can be decremented and

ljo Plincremented. The objective is unchanged (still the same number of bits removed)

and the constraint is still met as the left hand side of the constraint is reduced by 2'- 2>
0.

This means that that if there exists a supposedly optimal set of values for /; such that I[7P° <

h;for some i<k, then by repeated application of the second case, truncations in column k or
above can be exchanged for truncations in the least significant k columns. If all the truncations

occur in the least significant k columns then these can include all partial product bits of the k
columns, by the definition of k. Hence it can be assumed that optimal /; values satisfyl[?* = h;

for i<k. In other words, it is optimal to remove all bits from columns less than k.

This result can be substituted into the optimisation of RTL synthesis, as follows:




n-1 k-1

Maximising the number of bits removed = malei + Zh,.
i=k i=0

k-1

n-1
Such that val(A) <2"=> Zl,. 2° + Zh,.Zi <2",where [ <h

i=k i=0

k-1
Because Z h‘. is a constant, this can be removed from the maximisation. The constraint can

i=0

also be rearranged, and this gives the following optimisation problem:

n-1

5 Maximising the number of bits removed = male,.
i=k
k-1 )
n—k=1 . 2" - Zhi2 ‘
Such that val(p) <2"= Zlk+i2’ < _;ko__ ,where [, < h;

i=0

This optimisation problem can be clarified by using the definition of k (that k is the column just

before the value is 22"):

fh,.z" <2"< ihﬂ‘
i=0 i=0

10  This can be rearranged as follows:

k-1
0<2" =Y h2' <h2*

i=0
k-1
0<27 =Y h2™" <k
i=0

This can be substituted into the optimisation problem to give:

n-1

Maximising the number of bits removed = male,
i=k

n—k-1 k-1

15 Such that val(8) <2"= >'1,,,2' <2"* =% B2 <k, where |, <h,

i=0 i=0
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Moving onto step 3 of the optimisation, if the removal of no bits from columns greater than k is

optimal, then this given by the lemma:

17 =0 for i>k

By contradiction, say there exists >k such that l;?"’ > 0, then that implies that the constraint
term contains terms of the following form:

k-1
L2 <2 =Y B2 <hy

i=0
If these transformations are made:
[, - ;-1
l, - [ +27F
Then the objective function is strictly increased, and the constraint function is unchanged. Note
that the new J, still satisfies [, < &, because it is already known that l j2f"‘ +1, <h,. ltcan

therefore be concluded thatlfpt — Ofor i>k. In other words, it is optimal not to remove any bits

from columns greater than k. This lemma shows that if there is a set of supposedly optimal
values for /; which have truncations in a column above k then these can be exchanged for more

truncations in column k.

By including lfpt = 0 for >k in the optimisation problem, this can be further simplified as

follows:

Maximising the number of bits removed = max I
k-1 )

Such that val(B) <2"= [, < 2"k =3 b2 <hy where [ <h
i=0

It can be noted that this now depends only on the number of bits to remove from the K" column
(remembering that columns are indexed from zero). The solution satisfying this optimisation

problem is therefore:

k-1
l;:pl — \72"-[( i Zh, 2i—k-‘
i=0
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This means that the equation above can be used to determine the optimal number of bits to
remove from column k of the array (step 4 in the process above). The overall process for

determining the bits to truncate can then be stated in full as follows:

r=1
1. Determine k from k = max(r) suchthat » h2' <2"

i=0
Remove all bits from all columns less than k

Do not remove any bits from any columns greater than k

k-1
4. Determine the number of bits to remove from column k from [[*' = [2""‘ -1- Zh,.2""‘—‘
i=0

More formally, this can be expressed as:

h, i<k
k-1

I = {2"* —1—Zh1.2f‘ﬂ i=k
j=0
0 i>k

r—1
Where k = max(r : Zh,.Z' < 2")
i=0
Finally, in order to complete the optimisation within the faithfully rounded constraints, the

constant C must be added, where C=2"-1.

Using the example of the arbitrary array of Figure 6, the optimal bits to remove can be
calculated as follows. Above, k was calculated to be 2. Therefore, the bits from column 0 and 1
are removed, and no bits from column 3 and above are removed. The heights of the least

significant three columns are {10, 7, 4} as shown in the Figure. l;’pt can then be calculated as

[25-2 =1 — (4 x 0.25 + 7 x 0.5)] = 3. This result can be seen illustrated below in Figure 7 in

which bits are removed from column 2.

Two more illustrative examples are included_ below for different types of multipliers, which also
show how the optimisation can be further simplified when particular known multiplier structures
are used. Figure 8 shows an example of a 24-bit multiplication operation using an AND array
multiplier. The AND array multiplier forms the parallelogram type array as mentioned
previously. In this example, the number of bits to be removed from the result, n, is 24.thus for a

faithfully rounded result, the least significant 24 bits of figure 8 are removed from the result.
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In the area of the array that is being truncated (i.e. <n) the array is a triangle, and hence the
value for h; can be calculated simply by 4, =i+1. Substituting this in allows the optimisation

algorithm to be further simplified, as follows:

i+1 i<k
k-1
17 = [2"* —1—Z(j+1)2f'ﬂ i=k
J=0
0 i>k
r-1 .
5 Where k = max(r : Z(z + 1)2' < 2"}
=0
This can be reduced to:
i+1 i<k
l,f”” ={2"*_k i=k
0 i>k

Where k = max(r (r-12" < 2")

Applying this optimisation algorithm to the example of Figure 8 for n = 24, itis found that kK = 19
10 and /= 13. This truncation is shown illustrated in Figure 9, and shows that a significant number
of the bits can be truncated, which significantly reduces silicon area in the synthesised

hardware.

A second example multiplier is shown below in Figure 10. This shows the n least significant

columns of a Booth multiplier array (in this case a radix-2 Booth array), where n = 24,

15  The Booth multiplier array has a different structure to the AND array. As this type of array has a
specific structure, the relationship between heights of the columns and their location can be
determined. For example, it can be found that the maximal value of of any least significant k

columns of the array is given by:

k—lh_2i — \\k"‘lJzk
2

i=0 !
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Substituting this into the optimisation problem gives:

h, i<k
I = [2"-* 4-{%“ i=k
0 i>k

Where k = max(r : F—;—ljz’ < 2”)

This can be further simplified to give:

h, i<k

17 =42m* —1{EJ i=k
2

0 i>k

Where k = max(r (r+1)27 < 2n+l)

Apply this optimisation function to the example of Figure 10; forn =24, resultsink=20and /=
5. The resulting truncation is illustrated in Figure 11. Again, this shows a significant reduction
in the number of bits to sum, and thus a significant reduction in, the area of silicon required to

implement the Booth multiplier with faithful rounding.

A flow diagram showing the steps required to produce the RTL synthesised hardware logic to
manufacture an IC embodying the invention is shown in figure 12. In this, as a first step 20, the
optimisation constraint for a desired faithful rounding accuracy, i.e. the value of bits which may -
be discarded and the constant to incldde in the sum of addends operation are derived in
accordance with the methodology described above. Next at 22, the maximum number of whole
columns which may discarded is derived. The value of the bits in these columns may be less
than or equal to the maximum value of bits which may be discarded. These columns are then
discarded at 24.

The number of bits which may be discarded from the next least significant column is then
derived at 26. The number of bits will range from 0 to x-1, where x is the number of bits in that

column. These bits are then truncated from that column at 28.
A constant of 2™-1 is then introduced into the least significant n columns of the array at 30.

Using the thus truncated sum of addends array, a netlist of hardware logic is then synthesised
at 31, and is used for the the manufacture of a logic circuit in an integrated circuit to perform the

faithfully rounded sum of addends operation.
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Figure 13 shows the system in which the method of figure 12 may be implemented. This
comprises an RTL generator 32 which receives an RTL array to sum using a sum of addends
operation, and a value n which is the number of bits to discard from the resuit to produce a
faithfully rounded result. This generator 32 derives the maximum value of bits which may be
discarded and the constant to include in the sum of addends operation, and using these derives
the maximum number of whole columns to discard and the number of bits to discard from the

next least significant column.

An RTL representation of the thus truncated array is then provided to RTL synthesiser 34 which
uses known techniques to produce a gate level netlist to implement the sum of addends
operation, and which is then used to manufacture a logic circuit in an IC to perform the

truncated sum of addends.

Figure 14 and figure 15 show a modified versions of figure 12 for synthesising the logic required
to implement the n bit AND array multiplier of figures 9 and 11 respectively. In each of these
cases, the form of the array on which the sum of addends is to be performed is known, and is
dependent on the number of bits (n) in the multiplication. Where the multiplier is an n bit
multiplier then when faithful rounding is applied the result should have the same number of bits,
but be faithfully rounded to that number of bits. Thus, for 24 bits, as shown in figure 9, the
faithfully rounded result has 24 bits and 24 bits are to be discarded from the sum of addends
array by the RTL generator. The value of bits to be discarded can therefore be derived and the
constant C, and from these the number of whole columns and any bits from the next significant

column can' be derived and thus discarded.

Using the methods and systems described above, faithfully rounded multiplier can be
synthesised and manufactured using a sum of addends operation with truncation of whole
columns and of a part of a next least significant column. The resultant circuitry will have
reduced numbers of gates and will thus use less silicon and consume less power and be
cheaper to both manufécture and operate. More specifically, such a multiplier will include logic
gétes to sum at least some of the columns of the sum of addends of lower significance than the
faithful rounding precision, and sum only some of the bits of a least significant one of those

columns.

RTL generation as performed in the RTL generators of figures 12, 13 and 14 can also be
implementéd on a general purpose computer using known programming techniques to produce
an appropriate software programme. The RTL generators may also be programmable
generators into which software to perform the methodology described above may be loaded in
accordance with the type of multiplier and faithful rounding scheme to be synthesised and

manufactured.
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One important distinction to note concerning faithfully rounded multipliers synthesised and
manufactured as described above, is that the multiplications they perform are not always
computable, i.e. a muttiplied by b may give a different result to b multiplied by a. This difference
arises because of the truncation, which may be different for the different orders of multiplication.

It is important that this is understood when these multipliers are used.
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A method for deriving in RTL a logic circuit for performing a sum of addends operation

with faithful rounding comprising the steps of:

a)

b)

c)

d)

f)
g9)

d)
e)

f)

h)

determining a number of bits to discard from a result of the sum of addends to produce
a faithfully rounded result;

determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation,
determining how many least significant whole columns of bits may be discarded from
the sum of addends operation,;

discarding those said columns;

determining how many bits of a next least significant column can be discarded from the
sum of addends operation;

discarding those said bits from said next least significant column; and

deriving an RTL representation.of the sum of addends operation with said truncated

columns and bits, and including said constant.

A method of manufacturing an integrated circuit, including the step of synthesising in
RTL a logic circuit for performing a sum of addends operation with faithful rounding
according to the method of claim 1, and manufacturing the integrated circuit with the

thus derived RTL representation of the sum of addends operation.

A method for manufacturing in integrated circuit for performing a sum of addends
operation with faithful rounding comprising the steps of

determining a number of bits to discard from a result of the sum of addends to produce
a faithfully rounded result; ‘
determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation to
produce a faithfully rounded result;

determining how many least significant whole columns of bits may be discarded from
the sum of addends operation;

discarding those said columns;

determining how many bits of a next least significant column can be discarded from the
sum of addends operation;

discarding those said bits from said next least significant column;

deriving an RTL representation of the sum of addends operation without said discarded

" columns and bits, and including said constant; and

manufacturing the integrated circuit with the thus derived RTL representation of the

sum of addends operation.



10

15

20

25

30

10.

f)
9)

17

A method according to claims 1, 2 or 3 in which the number of bits discarded in steps d)

and f) is maximised.

A method according to claims 1, 2, 3 or 4 in which the sum of addends operating

represents a multiplication.

A method according to claim 5 in which the multiplication comprises an AND array

multiplication.

A method according to claim 5 in which the muiltiplication comprises a Booth

multiplication

An integrated circuit for performing multiplication of input logic values to a
predetermined faithful rounding precision comprising:

an input to receive logic values;

a logic gate array to perform multiplication of the input logic values and for providing an
output value to the predetermined faithful rounding precision:

wherein the logic gate array is configured to perform a sum of addends representing the
multiplication, the sum of addends including columns of lower significance than the

predetermined faithful rounding precision and wherein the logic gate array is furt

her configured to sum only some of the bits of a least significant column of the said

columns of lower significance.
An integrated circuit manufactured according to the method of claims 1, 2 or 3.

A computer program product which when run on a computing system causes it to
perform a method for deriving in RTL a logic circuit for performing a sum of addends
operation with faithful rounding comprising the step of:

determining a number of bits to discard from a resuit of the sum of addends to produce
a faithfully rounded resuilt;

determining a value of bits which may be discarded prior to performing the sum of
addends operation and a constant to include in the sum of addends operation;
determining how many least significant whole columns of bits may be discarded from
the sum of addends operation;

discarding those said columns;

determining how many bits of a next least significant column can be discarded from the
sum of addends operation;

discarding those said bits from said next least significant column; and

deriving an RTL representation of the sum of addends operation without said discarded

columns and bits, and including said constant.
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12.
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A method for deriving in' RTL a logic circuit for performing a sum of addends operation
with faithful rounding substantially as herein described with reference to the
accompanying drawings.

A method for manufacturing an integrated circuit for performing a sum of addends
operation with faithful rounding substantially as herein described.

An integrated circuited for performing multiplication of input logic values to a

predetermined faithful rounding precision substantially as herein described.
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