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PREDICTIVE CONTROL MODEL FOR THE ARTIFICIAL PANCREAS USING PAST PREDICTIONS 

Background 

Technical Field 

[0001] The present disclosure relates generally to model predictions of glucose 

concentration for artificial pancreas. More particularly, aspects of this disclosure relate to 

methods, and devices directed towards an adaptive model predictive controller to improve 

model prediction accuracy.  

Description of Related Art 

[0002] The destruction of the insulin secretion pancreatic beta-cells in people with type 1 

diabetes mellitus causes glucose concentration to increase to unhealthy threatening levels in 

the bloodstream. Prolonged high blood glucose concentration is harmful to the patient, 

making an exogenous insulin delivery a necessity. However, excessive insulin delivery is also 

dangerous, since too low glucose concentration (hypoglycemia) can quickly lead to coma or 

even death. The most common treatment historically has been Multiple Daily Injections 

(MDI) of insulin to correct the ever-increasing glucose concentration. Even though MDI is 

still the most applied treatment, the introduction of Continuous Subcutaneous Insulin Infusion 

(CSII) pumps and Continuous Glucose Monitors (CGM) in the last decades has boosted the 

application of a variety of new, more efficient insulin-based treatments.  

[0003] The artificial pancreas is a device that aims to automate insulin delivery (close the 

loop) by continuously adjusting insulin delivery based on glucose fluctuations. Massive 

advances have been done in recent years with several research teams completing closed-loop 

experiments in controlled environments, and more recently in an ambulatory setting and even 

free living / at home.  

[0004] The core of any artificial pancreas is a control algorithm that calculates the 

appropriate insulin dosing to maintain glucose concentration at a safe healthy level at all 

times. The most common controllers used in the artificial pancreas are algorithms based on: 

Model predictive control (MPC), Proportional-Integral-Derivative (PID) approach and 

Fuzzy-Logic design.  

[0005] MPC controllers use prediction models to estimate the trajectories of output 

variables. However, glucose predictions by mathematical models are still very inaccurate, and 

model individualization is unsatisfactory for data-based models or physiology-based models,
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resulting in great uncertainty in the model predictions for individual patients. Several recent 

studies about the quantification of the uncertainty have been published by bounding the 

uncertainty using interval identification, showing very promising results.  

[0006] MPC performance depends on the accuracy of the prediction models implemented 

for the controller. Prediction errors must be measured and accounted for in the glucose 

regulation process. Thus, there is a need for an MPC algorithm that is personalized to the 

patient's clinical information and an MPC with a reference defined as a glucose zone, 

designed to deliver the optimal insulin dose that brings glucose predictions to a healthy range 

within a limited time frame.  

Summary 

[0007] According to an aspect of an exemplary embodiment, a method of adaptively 

tuning a zone based Model Predictive Control (MPC) controller, using at least one processor, 

includes determining, using at least one of said at least one processor, residuals based on 

prediction models, storing, in a memory, the determined residuals, calculating a trust index, 

using at least one of said at least one processor, by quantifying uncertainty of the prediction 

models using the stored residuals and tuning the MPC controller, in real time, using at least 

one of said at least one processor, based on the calculated value of the trust index.  

[0008] According to another exemplary embodiment the determining further includes 

determining the residual at time t and for a prediction k steps ahead using the formula: 

resk Y=yt-k - CGMt Vk c Zj 

where Ykt-k represents predicted glucose by the model at time t that was predicted k 

samples in the past, Ny represents prediction horizon and CGMt represents current glucose 

values.  

[0009] According to another exemplary embodiment the storing further comprises storing 

each of the Ny residuals (rest) in a pool of most recent N residuals, resulting in a matrix 

N, x Nf.  

[0010] According to another exemplary embodiment, the method further includes 

penalizing, using at least one of said at least one processor, the determined residuals using a 

forgetting function, where the forgetting function is determined using the formula: 

t-i. log(Nf - i + 1) N res = res Vk E Z es k log Nf
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wheretrepresentscurrenttime,res- represent progressively more distant residuals, 

and frsi represents the penalized residual.  

[0011] According to another exemplary embodiment, for each timestamp t each residual 

is penalized differently.  

[0012] According to another exemplary embodiment, the tuning further comprises tuning 

the MPC conservatively when the determined residuals have a high value.  

[0013] According to another exemplary embodiment, the tuning further comprises tuning 

the MPC conservatively when the penalized residuals have a high value.  

[0014] According to another exemplary embodiment, the tuning further comprises tuning 

the MPC aggressively when the determined residuals have a low value.  

[0015] According to another exemplary embodiment, the tuning further comprises tuning 

the MPC aggressively when the penalized residuals have a low value.  

[0016] According to another exemplary embodiment, the method further includes 

calculating, using at least one of said at least one processor, an estimate of a confidence 

interval of a current prediction error based on the penalized residuals using the formula: 

B, = max(percentilex(rest), 0) Vk ZNp 
k 1 

where Bk is an empirically defined boundary of the confidence interval of a prediction 

error k steps ahead, and percentile,(fr-st) represents x-th percentile function of the 

penalized residual at time t and for a prediction k steps ahead.  

[0017] According to another exemplary embodiment, the calculating the estimate of the 

confidence interval comprises calculating an empirically defined upper boundary 5k and an 

empirically defined lower boundary Ek using the formula: 

Bk= max(percentilegs(fres),0) Vk e Z Np 

Bk= min(percentilesr(fes),0) Vk e Z N 

[0018] According to another exemplary embodiment, the calculating the trust index 

comprises calculating the trust index based on the calculated empirically defined upper 

boundary Bk and the calculated empirically defined lower boundary Bk using the formula: 

Tt: = Bk - Ak + dH(CGMt, [F + ytB + y]) 

0 if x E [a,b] 
dH(x,[a,b]) := x -b if x > b 

a-x if x<a
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[0019] where dH (x, [a, b]) represents Hausdorff distance from a point x to an interval [a, 

b], and yt represents model's prediction of current CGM sample.  

[0020] According to another aspect of an exemplary embodiment, a method of insulin 

delivery using an artificial pancreas, the artificial pancreas including at least one processor, 

includes determining, using at least one of said at least one processor, residuals based on 

prediction models, storing, in a memory, the determined residuals, calculating a trust index, 

using at least one of said at least one processor, by quantifying uncertainty of the prediction 

models using the stored residuals, tuning a model prediction control (MPC) controller, in real 

time, using at least one of said at least one processor, based on the calculated value of the trust 

index, and controlling, using at least one of said at least one processor, the delivery of insulin 

based on the tuned MPC controller.  

[0021] According to another aspect of an exemplary embodiment, an artificial pancreas 

apparatus for insulin delivery includes at least one non-transitory memory operable to store 

program code, a model prediction control (MPC) controller including at least one processor 

operable to read said program code and operate as instructed by said program code, said 

program code causing the at least one processor to determine residuals based on prediction 

models, store, in the at least one non-transitory memory, the determined residuals, calculate a 

trust index by quantifying uncertainty of the prediction models using the stored residuals, tune 

the MPC controller in real time based on the calculated value of the trust index, and deliver the 

insulin based on the tuned MPC controller.  

[0021A] According to another aspect of an exemplary embodiment, a method of adaptively 

tuning a Model Predictive Control (MPC) controller, using at least one processor, the method 

comprising: determining, using at least one of said at least one processor, a plurality of 

residuals, wherein each of the plurality of residuals is based on a difference between a measured 

glucose value and a glucose value predicted by a model at a previous time among of a plurality 

of time samples in the past; storing, in a memory, the determined residuals; calculating a trust 

index, using at least one of said at least one processor, by quantifying uncertainty of the model 

using the stored residuals; tuning the MPC controller, in real time, using at least one of said at 

least one processor, based on the calculated value of the trust index; and determining an amount 

of insulin to be delivered by an insulin pump based on insulin amounts determined by the tuned 

MPC controller.  

[0021B] According to another aspect of an exemplary embodiment, a method of insulin 

delivery using an artificial pancreas, the artificial pancreas including at least one processor, the 

method comprising: determining, using at least one of said at least one processor, a plurality of
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residuals, wherein each of the plurality of residuals is based on a difference between a measured 

glucose value and a glucose value predicted by a model at a previous time among of a plurality 

of time samples in the past; storing, in a memory, the determined residuals; calculating a trust 

index, using at least one of said at least one processor, by quantifying uncertainty of the model 

using the stored residuals; tuning a model prediction control (MPC) controller, in real time, 

using at least one of said at least one processor, based on the calculated value of the trust index; 

and controlling, using at least one of said at least one processor, the delivery of insulin based 

on insulin amounts determined by the tuned MPC controller.  

[0021C] According to another aspect of an exemplary embodiment, an artificial pancreas 

apparatus for insulin delivery, the artificial pancreas comprising: at least one non-transitory 

memory operable to store program code; a model prediction control (MPC) controller including 

at least one processor operable to read said program code and operate as instructed by said 

program code, said program code causing the at least one processor to: determine a plurality 

of residuals, wherein each of the plurality of residuals is based on a difference between a 

measured glucose value and a glucose value predicted by a model at a previous time among of 

a plurality of time samples in the past; store, in the at least one non-transitory memory, the 

determined residuals; calculate a trust index by quantifying uncertainty of the prediction 

models using the stored residuals; tune the MPC controller in real time based on the calculated 

value of the trust index; and determine an amount of insulin to be delivered by an insulin pump 

of the artificial pancreas based on the tuned MPC controller.  

Brief Description of the Drawings 

[0022] FIG. 1 depicts a logarithmic forgetting function applied to the residuals, according 

to an exemplary embodiment.  

[0023] FIG. 2 depicts a relationship between confidence on the current measurement and 

the aggressiveness of the current tuning, according to the adaptive MPC controller.  

[0024] FIG. 3 depicts a table describing controller behavior based on the glucose scenario 

and trust index value, according to an exemplary embodiment.  

[0025] FIG. 4 depicts a control variability grid analysis for 10 in silico subjects from the 

UV A/Padova metabolic simulator using an aggressive tuning of the MPC controller, according 

to an exemplary embodiment.  

[0026] FIG. 5 depicts a control variability grid analysis for 10 in silico subjects from the 

UV A/Padova metabolic simulator using a conservative tuning of the MPC controller, 

according to an exemplary embodiment.
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[0027] FIG. 6 depicts a control variability grid analysis for 10 in silico subjects from the 

UVA/Padova metabolic simulator using an adaptive tuning of the MPC controller, according 

to an exemplary embodiment.  

[0028] FIG. 7 depicts a table providing a performance comparison metric of an MPC 

controller tuned aggressively, conservatively and adaptively, according to an exemplary 

embodiment.  

[0029] FIG. 8 depicts a chart providing a comparison in median glucose concentration 

and interquartile range (top) and mean insulin pump administration (bottom) between 

aggressive static tuning (plotted in blue - continuous line) and adaptive tuning (plotted in 

yellow - discontinuous line) of an MPC controller, the simulated protocol including three 

unannounced meals compensated using the glucose rate increase detector (GRID) meal 

detection algorithm, according to an exemplary embodiment.  

[0030] FIG. 9 depicts a chart providing a comparison in median glucose concentration 

and interquartile range (top) and mean insulin pump administration (bottom) between 

conservative static tuning (plotted in blue - continuous line) and adaptive tuning (plotted in 

yellow - discontinuous line) of an MPC controller, the simulated protocol including three 

unannounced meals compensated using the glucose rate increase detector (GRID) meal 

detection algorithm, according to an exemplary embodiment.  

[0031] FIG. 10 depicts a block diagram if an apparatus incorporating an MPC controller, 

according to an exemplary embodiment.  

[0032] FIG. 11 depicts a flowchart describing the process to adaptively tune an MPC 

controller, according to an exemplary embodiment.  

[0033] FIG. 12 depicts adaptation scheme for parameters R (top) and R (bottom).  

[0034] FIG. 13 depicts the Mean and standard deviation of the control performance 

metrics of the zMPC controller for the Default, Aggressive, Conservative, and Adaptive 

tuning, according to an exemplary embodiment.  

[0035] The present disclosure is susceptible to various modifications and alternative 

forms, and some representative embodiments have been shown by way of example in the 

drawings and will be described in detail herein. It should be understood, however, that the 

inventive aspects are not limited to the particular forms illustrated in the drawings. Rather, 

the disclosure is to cover all modifications, equivalents, and alternatives falling within the 

spirit and scope of the disclosure as defined by the appended claims.
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Detailed Description of the Drawings 

[0036] Embodiments will be described below in more detail with reference to the 

accompanying drawings. The following detailed descriptions are provided to assist the 

reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems 

described herein and equivalent modifications thereof. Accordingly, various changes, 

modifications, and equivalents of the methods, apparatuses, and/or systems described herein 

will be apparent to those of ordinary skill in the art. Moreover, descriptions of well-known 

functions and constructions may be omitted for increased clarity and conciseness.  

[0037] The terms used in the description are intended to describe embodiments only, and 

shall by no means be restrictive. Unless clearly used otherwise, expressions in a singular from 

include a meaning of a plural form. In the present description, an expression such as 

"comprising" or "including" is intended to designate a characteristic, a number, a step, an 

operation, an element, a part or combinations thereof, and shall not be construed to preclude 

any presence or possibility of one or more other characteristics, numbers, steps, operations, 

elements, parts or combinations thereof.  

[0038] It will be understood to those skilled in the art that the disclosure described herein 

may apply to any type of special-purpose or general-purpose computer, including a 

standalone computer or portion thereof.  

[0039] The present disclosure describes quantifying the model prediction accuracy by a 

rigorous analysis of the prediction residuals, and calculating a "Trust Index," to be used as a 

tuning tool in a closed-loop algorithm. The integration of the information from the prediction 

residuals into the control algorithm is used to achieve a new generation of adaptive control 

algorithms. These algorithms act aggressively to eliminate both hyper-glycemia and hypo

glycemia in case of good confidence in the glucose profile, determined by a continuous 

glucose monitor (CGM) according to an exemplary embodiment, and act conservative in case 

of poor CGM quality, in-turn providing a safer and more effective glucose control.  

[0040] The above described results may be achieved by calculating optimal insulin 

dosage by solving an optimization problem in which a scalar index is minimized by 

penalizing relative input deviations and glucose predictions out of the reference zone. The 

controller's tuning parameters are the penalizations of the input variable (insulin). Positive 

and negative relative inputs may be penalized differently, as will be described in greater 

detail below.  

[0041] The in silico simulations and results analyzed in the various figures below were 

achieved using Matlab R2013b (Mathworks, Natick,MA) as the platform. However, other
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such programs might be used for the same simulations and analysis. The p-values for 

statistical comparison where calculated using non-parametric random permutations methods.  

The datasets were generated using the Universities of Virginia / Padova metabolic simulator, 

which has been accepted by the FDA in lieu of animal trials. The simulator implements ten 

parameter combinations that represent the inter-patient variability equivalent to the general 

diabetic population. A key part of the simulator is a model of the CGM noise based on 

different probabilistic distributions. The CGM error is different for each execution of the 

software, introducing an even larger variability in every simulation, even for simulations of 

the same in silico patient. The variability introduced by the random number generator for 

each simulation impedes a clear comparison of the ten in silico patients under different 

treatments. To minimize this effect, every in silico subject is simulated ten times under every 

scenario to sum a total of 100 datasets. By doing this, the noise introduced by the CGM error 

model is averaged over the different simulations of each in silico subject, while still 

maintaining the variability that the CGM model introduces on the experiments. The above 

described scenarios are used as exemplary embodiment to achieve simulations and compare 

results between statically and adaptively tuned MPC controlled. It should be noted that the 

disclosure is not limited to the above exemplary embodiment and different datasets, 

simulators and methods may be used to achieve the simulations and results.  

[0042] The simulations, under this exemplary embodiment depicted in the drawings, 

consist in twenty four hours of CGM data with three unannounced meals of increasing 

carbohydrates load (50 g, 75 g and 100 g). Every simulation was preceded by two hours of 

open-loop monitoring as a warm up period. During that time the in silico subject received the 

appropriate basal insulin. In order to minimize the postprandial glucose excursion a meal 

detection algorithm was used (Glucose Rate Increase Detector, GRID). This algorithm 

triggered an alarm when certain conditions of glucose concentration and glucose trend were 

met, and an insulin compensation dose was administered, equivalent to a prandial bolus 

strategy. The compensation bolus was the equivalent to a 75 g carbohydrate (CHO) meal 

correction, based on the patient's insulin-to-carbohydrate ratio. GRID also incorporates 

routines for patient safety including an algorithm that avoids delivering extra insulin 

according to recent insulin delivery history, and a security interlock in case of missing CGM 

samples.  

[0043] The chosen controller, Zone MPC controller (zMPC), was developed originally by 

Grosman et al. using a constant glucose reference band, and implementing very simple 

models for the insulin and meal inputs to the system. This control scheme was later expanded



WO 2017/123805 - 8- PCT/US2017/013248 

by improving the prediction model, using a control oriented prediction strategy proposed by 

van Heusden et al. Further functionalities were added to the controller and to the prediction 

model by Gondhalekar et al, implementing different penalization weights for insulin delivery 

larger or smaller than the patient's basal rate. The cost function for the MPC problem is 

explained below. The formulae provided below are based on the conventional controllers 

provided in the above references: 

Np N,-1 

J(-) : z + (,R2a + fiu) 

k=1 k=O 

U:k max(uk- UBASAL,0) Vk 2 

u :k min(uk- UBASAL,0) Vke 0 

where Ny prediction horizon, and Nu is the control horizon and Zk is the output error, 

understood as the distance of the glucose prediction to the glucose safe zone. Uk is the insulin 

input, and UBASAL is the patient's basal insulin.  

[0044] The current disclosure describes using R and R parameters to adaptively tune the 

controller. Both parameters modulate the insulin delivery, but R penalizes insulin actions 

greater than the basal rate of the patient, while f acts on the insulin action when it is being 

suppressed below basal rate. Increasing the value of R penalizes higher insulin values and 

tends to make the controller more conservative, delivering less insulin. Increasing the value 

of R impedes insulin attenuation / suspension, tending to give more insulin, making the 

controller more aggressive.  

[0045] An aggressive controller is prone to deliver more insulin. It would act fast to 

counter hyperglycemic excursions, and it would be slow to suspend insulin infusion in 

presence of hypoglycemia.  

[0046] On the other hand, a conservative controller delivers less insulin overall. It shuts 

down pump infusion fast to minimize hypoglycemia, but it reacts slow to hyperglycemic 

excursions.  

[0047] According to an exemplary embodiment, two different sets of parameters are 

selected: 1) very aggressive design R=500, R=300; 2) very conservative design R=50000, 

P=10. These will be used to compare the simulation results between statically tuned and 

adaptively tuned MPC controllers.
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[0048] It should be noted that the ratio between R and P provides a measurement of the 

asymmetry of the controller, but this ratio is not enough to characterize the aggressiveness of 

the controller. The magnitude of R and P separately penalizes the input costs (as shown in 

equation 1) relatively to the weight of the output error, which is fixed.  

[0049] Referring now to the drawings, wherein like reference numerals refer to like 

features throughout the several views, there is shown in FIG. 1, a logarithmic forgetting 

function applied to the residuals, according to an exemplary embodiment.  

[0050] The method and device described in the current disclosure to quantify the trust of 

the model prediction makes use of the available information provided by the residuals of the 

predictions of that same model. Each of the Ny residuals (rest) is stored in a pool of the most 

recent Nf residuals, resulting in a matrix N, x Nr. The residual at time t and for a k steps 

ahead prediction is defined as: 

resin = ytk-CGMt Vk c Z N 4 
rk :::::Ykt-k - 1G~'kezj 4 

where Ykt-k is the predicted glucose by the model at time t that was predicted k 

samples in the past. CGMt is the current glucose values. The residuals are penalized using the 

forgetting function: 

fee t t-. log(Nf - i + 1).VC ZNfV Np 
resk= resk - N ViEog ,Vk E Z 5 

where t stands for the current time, restI are the progressively more distant 

residuals, and rest, is its analog penalized residual. Note that for each timestamp t each of 

the residuals is penalized differently. More recent residuals are considered equally 

meaningful in the pool of residuals, and the relevance of older residuals decays fast when 

approaching the limit Nf = 60 samples. The normalized decay function is depicted in Figure 

1. It should be noted that the depicted normalized forgetting function is merely an exemplary 

embodiment and both the limit and the forgetting function can be altered if required for 

testing of other algorithms, per the choice of the designer.  

[0051] As can be seen in FIG. 1, a residual decay is depicted by potting the decay over 

time, according to an exemplary embodiment.  

[0052] If the calculated residuals are very large, the predictions are considered to be poor 

and the tuning of the controller is considered at its best when it is relaxed, i.e. conservative.
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On the other hand, if the residuals are low, a more aggressive approach towards tuning the 

controller is preferred.  

[0053] Every row (frst) of the penalized residuals comprises an empirical sample of the 

probabilistic distribution of errors of the prediction model at current time t and predicted k 

samples before. A good estimation of the confidence interval of the current prediction error 

can be calculated from the fifth and ninety-fifth percentiles, according to an exemplary 

embodiment, of this sample. The below formulae provide the definition of intervals from 

residual distribution: 

Bk = max(percentilegs(resI),0) Vk E Z 6 

B = min(percentiles(rest),0) Vk E Z Np kk1 7 

where Pk and 9k are the empirically defined upper and lower boundaries of the 

confidence interval of the k steps ahead prediction error, and percentile,(-) is the x-th 

percentile function. Both boundaries are defined strictly positive or negative in order to 

smooth the initialization of the algorithm. Note that both boundaries are dependent on the 

residual pool at the current time t, so they must be considered as time-varying values. For 

simplicity, the sub-index k is dropped from now on, and only the first row of the residuals 

pool is used for the calculation of the trust index. Similarly, only the one step-ahead 

prediction is considered relevant hereinafter, however the disclosure is not limited thereto.  

[0054] The trust index function is designed to obtain a scalar value that comprises both 

the uncertainty of the previous model predictions and the coherence of the new measurement 

with that uncertainty. The trust index may be calculated as follows: 

Tt:= I - I + dH(CGMt, [F + yt,+ + ]) 8 

0 if x E [a,b] 
dH(X, a,b]) := x -b if x > b 9 

a-x if x<a 

where dH(X, [a, b]) stands for the Hausdorff distance from a point x to an interval 

[a, b], and yt stands for the model's prediction of the current CGM sample. The trust index is 

low whenever the confidence interval is small, and it grows whenever the boundaries grow, 

or if the current experimental measurement falls out of the bounds. The boundaries are not 

fixed either, and eventually, will grow whenever enough measurements fall out of the 

bounds, permanently increasing the trust index (until the forgetting algorithm catches up). A
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very high confidence is defined by design at Tt ! 5 [] and the lowest possible confidence 
cIL 

corresponds to a trust index value of Tt ;> 30 [g 

[0055] FIG. 2 depicts a relationship between confidence on the current measurement and 

the aggressiveness of the current tuning, according to the adaptive MPC controller.  

[0056] The trust index in FIG. 2 is implemented into the closed-loop scheme presented by 

relating it to the aggressiveness tuning of the controller, as illustrated in Figure 2.  

[0057] As can be seen in FIG. 2, a high trust confidence rating corresponds to an 

aggressive tuning of the MPC controller and a low trust confidence rating corresponds to a 

conservative tuning of the MPC controller.  

[0058] Every possible scenario of the correlation between the trust index and the 

controller aggressiveness is explained in the table depicted in FIG. 3.  

[0059] FIG. 3 depicts a table describing controller behavior based on the glucose scenario 

and trust index value, according to an exemplary embodiment.  

[0060] As can be seen in FIG. 3, under a high trust index the controller delivers insulin 

freely and aggressively to prevent hyperglycemia, and the controller reduces insulin delivery 

and may deliver basal insulin if excursions are small and predicted glucose is rising to 

prevent hypoglycemia. On the other hand, under a low trust index, the controller refrains on 

acting aggressively, but still delivers insulin to prevent hyperglycemia, and the controller 

shuts off the pump and may not deliver insulin even if model predictions indicate rising 

glucose levels to prevent hypoglycemia.  

[0061] According to an exemplary embodiment, for a Tt <5 mg/dL (high trust on the 

predictions) the aggressive tuning is selected, that is, R =800, R =500. On the other hand, 

when the index surpasses the upper limit Tt > 30 mg/dL, the conservative tuning is used: 

R=50000, R'=10. Anywhere in between those thresholds both R and R are linear functions 

of Tt for every time stamp t, that is, the controller gains are updated in real time as Tt is 

updated. This dependence of the tuning parameters on Tt, which ultimately makes them 

dependent on time, is what defines the aggressiveness tuning as adaptive. A graphical 

representation of the adaptation of both parameters, according to the exemplary embodiment, 

is discussed in more detail below with reference to FIG. 12.  

[0062] While referencing FIGS. 4, 5 and 6 results of using a aggressively tuned, a 

conservatively tuned and an adaptively tuned MPC controller will be compared.  

[0063] As discussed above, according to an exemplary embodiment, for a trust index 

value of Tt ! 5 [!] the aggressive tuning for the asymmetrical MPC controller is selected,
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i.e. R=500, R=300. On the other hand, when the index surpasses the upper limit Tt 

30[2] the conservative tuning is used, i.e. R=50000, R=10. Anywhere in between both 
cIL 

controller parameters are tuned linearly with Tt for every timestamp t.  

[0064] The simulations performed using the UVA/Padova simulator aim at comparing the 

dynamic modulation of the tuning parameters of the MPC controller (adaptively tuned) to the 

two static MPC tuning states described above as "aggressive" and "conservative".  

[0065] FIG. 4 depicts a control variability grid analysis for 10 in silico subjects from the 

UVA/Padova metabolic simulator using an aggressive tuning of the MPC controller, 

according to an exemplary embodiment.  

[0066] The control variability grid analysis chart for the "aggressive" controller scheme 

is shown in FIG. 4, with hyper- and hypo-glycemia events (E-zone) reported for 12/100 

simulations, while the mean and 1-sigma ellipse falls completely within the B-zone, 

considered safe.  

[0067] FIG. 5 depicts a control variability grid analysis for 10 in silico subjects from the 

UVA/Padova metabolic simulator using a conservative tuning of the MPC controller, 

according to an exemplary embodiment.  

[0068] In FIG. 5, the control variability grid analysis chart for the "conservative" 

controller is shown, displaying not a single simulation in the E-zone, but 8 simulations where 

located in zone C and 8 in zone D. The centroid is displaced to the left with respect to the 

case displayed in FIG. 4, as expected from a more conservative controller.  

[0069] FIG. 6 depicts a control variability grid analysis for 10 in silico subjects from the 

UVA/Padova metabolic simulator using an adaptive tuning of the MPC controller, according 

to an exemplary embodiment.  

[0070] In FIG. 6, the control variability grid analysis chart for the adaptive scheme is 

displayed. As with the conservative case, no simulations are placed in the E-zone, but 15/100 

simulations fall in the D-zone. The centroid is displaced to the left slightly less than that in 

the case of FIG. 5.  

[0071] Metrics are reported as mean plus-minus standard deviation of the in silico 

population. The performance metrics for the "default," "aggressive," and "conservative" 

tuning are statistically compared to the proposed adaptive algorithm. In the bolus strategy, the 

adaptive controller shows very similar performance (in mean glucose and time in range) to 

that of the "default" controller. However, the adaptive strategy is able to reduce significantly 

the time spent in hypoglycemia (0.01% vs 0.0%, p < .005). Hypoglycemia is also rarely seen
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when using the conservative controller, but at the cost of a higher average glucose (137 

mg/dL vs 134 mg/dL, p <.005).  

[0072] In the GRID scenario, the adaptive algorithm shows significantly lower average 

glucose than the conservative tuning (149 mg/dL vs 154 mg/dL, p < .005). Furthermore, the 

proposed algorithm shows a significant reduction in hypoglycemia with respect to the 

aggressive case (0.16% vs 1.04%, p < .005), with minimal increase in average glucose and 

good time in the safe glucose range. The time in hypoglycemia is not different for the 

conservative case and the proposed adaptive algorithm. Time in hypoglycemia for the 

proposed adaptive algorithm is significantly lower than for the default controller (0.16% vs 

0.67%, p < .005), but in this case at the cost of a higher average glucose. However, the time 

in range for the proposed algorithm is not significantly different than that of the default 

tuning. Performance metrics for the above described exemplary embodiment is further 

discussed later, in reference to Fig. 13.  

[0073] For a complete comparison, the mean glucose, time in target range, time in 

hypoglycemia and time in hyperglycemia for the whole cohort of the in silico population is 

depicted in the table in FIG. 7. FIG. 7 depicts a table providing a performance comparison 

metric of an MPC controller tuned aggressively, conservatively and adaptively, according to 

an exemplary embodiment. The performance metrics for both the "aggressive" and 

"conservative" tuning are statistically compared to the adaptive algorithm.  

[0074] As can be seen in FIG. 7, the adaptive algorithm shows significantly lower 

average glucose than the conservative tuning. The adaptive algorithm furthermore, shows a 

significant reduction in hypoglycemia with respect to the aggressive case, with minimal 

increase in average glucose and good time in the safe glucose range. The time in 

hypoglycemia is not different for the conservative case and the adaptive algorithm. The time 

in hyperglycemia is no better for the adaptive controller than it is for the conservative case, 

and the aggressive controller improves over the other two cases significantly.  

[0075] The control variability grid analysis chart for the aggressive tuning in Figure 4 

shows a very different performance than those of the conservative and adaptive controllers 

(Figures 5 and 6), with multiple cases of mild and severe hypoglycemia. However, little 

information can be extracted by comparing the conservative and adaptive controllers. Both 

figures are very similar, with the centroid and the deviation ellipse being placed in a very 

similar position. However, when looking at FIG. 7, the adaptive tuning of the controller 

parameters shows better performance, clearly decreasing the average glucose from 153.7 

mg/dL to 149.3 mg/dL, while increasing the time in range (70-180 mg/dL) from 71.9% to
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74.7%. The numerical results also show that there is no significant difference between the 

time spent in hypoglycemia (BG<70 mg/dL) for the conservative tuning at 0.02% and the 

adaptive tuning at 0.06%. Control variability grid analysis charts are usually very informative 

for spotting severe hypoglycemia cases and large glucose excursions. This is especially true 

in the postprandial periods where glucose can reach very high levels. However, the 

information control variability grid analysis charts provide may be insufficient to assess the 

performance of a long term controller.  

[0076] The results for the adaptive tuning are very promising as indicated in FIG. 7, 

improving the performance of the existing conservative controller without increasing the risk 

of hypoglycemia to the patient. The time in range is still not as good as it is for the aggressive 

controller, but the aggressive scenario supposed a much greater danger to the patient than the 

adaptive case in terms of hypoglycemic risk. The exemplary embodiment of the trust index 

implemented in this controller allows achievement of better control for the user by good use 

of already available information and without any additional risk to the patient's health.  

[0077] FIG. 8 depicts a chart providing a comparison in median glucose concentration 

and interquartile range (top) and mean insulin pump administration (bottom) between 

aggressive static tuning (plotted in blue - continuous line) and adaptive tuning (plotted in 

yellow - discontinuous line) of an MPC controller, the simulated protocol including three 

unannounced meals compensated using the glucose rate increase detector (GRID) meal 

detection algorithm, according to an exemplary embodiment.  

[0078] In FIG. 8 the glucose concentration and insulin infusion of the adaptive scenario 

and the aggressive controller are plotted overlapping the interquartile range. The insulin bolus 

delivered after the meals is evident for the three unannounced meals, showing very clear 

spikes shortly after the meal ingestion, as the algorithm takes some time to detect each meal.  

[0079] FIG. 9 depicts a chart providing a comparison in median glucose concentration 

and interquartile range (top) and mean insulin pump administration (bottom) between 

conservative static tuning (plotted in blue - continuous line) and adaptive tuning (plotted in 

yellow - discontinuous line) of an MPC controller, the simulated protocol including three 

unannounced meals compensated using the glucose rate increase detector (GRID) meal 

detection algorithm, according to an exemplary embodiment.  

[0080] In Figure 9 the same plotting as FIG. 8 is done in a comparison between the 

conservative and the adaptive controllers. Again, the insulin bolus delivered after the meals is 

evident for the three unannounced meals, showing very clear spikes shortly after the meal 

ingestion, as the algorithm takes some time to detect each meal.
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[0081] The median blood glucose time series shown in the top block of Figure 8 shows 

little to no difference in the postprandial period after the first meal of the simulation, which 

was the smallest of the three (50g CHO). The same conclusion can be extracted when looking 

at Figure 9. Glucose excursions from such a small meal may be countered by the controller 

independently of the tuning. On the other two meals, clear differences on the median glucose 

can be observed, being the aggressive glucose lower than the proposed adaptive tuning, and 

lower than the conservative case. This shows that in the presence of a severe hyperglycemic 

event, the adaptive controller is allowed to deliver more insulin than the conservative 

controller. It is also clear, based on the depicted exemplary embodiments, that the adaptive 

controller delivers this insulin at the safest time, i.e. when the model predictions are accurate, 

reducing the occurrence of postprandial hypoglycemic events.  

[0082] Average insulin delivery, shown in the bottom plots of figures 8 and 9, displays no 

oscillatory behavior for the proposed algorithm or the static tuning scenarios. Average 

postprandial insulin delivery is lower in the adaptive tuning controller than in the aggressive 

static case, which explains the lower occurrence of hypoglycemia shown in FIG 7. As for the 

conservative versus adaptive case, there seems to be no difference on the average value of 

insulin delivered at any time of the simulation.  

[0083] All the meals were not announced to the controller, but a meal detection algorithm 

based solely on the CGM measurements was implemented, according to the depicted 

exemplary embodiment. The action taken at the detection of each meal is displayed as large 

insulin spikes in the bottom plots of Figures 8 and 9. The use of a meal detection algorithm 

influences the performance of the controller when the meals are unannounced as it is 

reproduced in the simulation results presented above.  

[0084] FIG. 10 depicts a block diagram if an apparatus incorporating an MPC controller, 

according to an exemplary embodiment.  

[0085] As can be seen in FIG. 10, an exemplary embodiment of an artificial pancreas 

apparatus 10000 may incorporate a memory/storage 10001, and an MPC controller 10002.  

The MPC controller may further incorporate a processor 10003. Although a single processor 

is depicted in FIG. 10, the disclosure is not limited thereto and the MPC controller may 

incorporate a plurality of processors, according to other exemplary embodiments.  

[0086] FIG. 11 depicts a flowchart describing the process to adaptively tune an MPC 

controller, according to an exemplary embodiment.  

[0087] The process starts at step 1101 where model predictions are performed on glucose 

concentrations. Based on the model predictions, residuals are determined in step 1102. The
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residual may be determined using formula no. 4 recited above, according to an exemplary 

embodiment.  

[0088] Further, in step 1103, a forgetting function is used to penalize the residuals in step 

1103. The penalized residual may be calculated using formula no. 5 recited above, according 

to an exemplary embodiment. At step 1104, upper and lower boundary of the confidence 

estimate in the penalized residuals are calculated. Formulae nos. 6 and 7 can be used for such 

a calculation according to an exemplary embodiment.  

[0089] The calculated upper and lower boundary is then used to calculate the trust index 

in step 1105. The trust index may be calculated using formulae nos. 8 and 9 recited above, 

according to an exemplary embodiment.  

[0090] At step 1106, the calculated trust index is used to adaptively tune the MPC 

controller.  

[0091] A novel strategy for adaptive tuning of a zone based MPC controller has been 

described above and its application to a virtual cohort of people with type 1 diabetes.  

Repeated residuals from the model predictions are stored and a scalar trust index is deduced 

quantifying the uncertainty of the model predictions and the coherence of the glucose sample 

at each step, as further detailed using the flowchart of FIG. 11. The MPC controller is then 

tuned in real time based on the value of the trust index. As can be seen from the simulation 

comparisons depicted n FIGS. 4-9, the adaptive strategy results in better glucose control than 

the conservative counterpart, while producing less hypoglycemic episodes and no abnormal 

insulin delivery profiles were observed upon the application of the adaptive strategy.  

Delivery of insulin is then controlled based on the adaptively tuned MPC controller.  

[0092] FIG. 12 depicts adaptation scheme for parameters R (top) and R (bottom).  

[0093] As can be seen, for trust values close to 100% (almost perfect predictions) the 

parameters assume the aggressive configuration (R=800, R =500). On the other hand, at a 

low trust, the parameters are set to the conservative mode (R=50000, P =10), according to an 

exemplary embodiment.  

[0094] FIG. 13 depicts the Mean and standard deviation of the control performance 

metrics of the zMPC controller for the Default, Aggressive, Conservative, and Adaptive 

tuning, according to an exemplary embodiment. The performance metrics for the exemplary 

embodiments described above in the disclosure are depicted in FIG. 13.
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[0095] "p" values are calculated to show significance between the proposed (adaptive) 

and other 3 controllers. Values with an asterisk show statistical significance (p < .05) between 

the proposed tuning and the default column, as can be seen in FIG. 13.  

[0096] When comparing strategies GRID and Bolus from FIG 13, a larger disparity can 

be observed for the results of each controller configuration for the GRID strategy. This is a 

direct result of the prandial bolus dosing limiting the amount of insulin that the controller is 

able to utilize in the postprandial period, which is one of the safety mechanisms implemented 

in the controller structure. This yields, for the bolus strategy, more homogeneous results than 

those of the GRID strategy. As for the GRID strategy results, the adaptive controller produces 

significantly larger average glucose than the default controller configuration (149 mg/dL vs 

147 mg/dL), according to an exemplary embodiment.  

[0097] However, this difference is clinically irrelevant, with an estimated AIC (based on 

the average glucose) of 6.81% for the adaptive control and 6.74% for the default controller 

configuration, according to an exemplary embodiment. The "AIC-average glucose" 

regression was calculated following: AIC =(avg _ glucose + 46.7)/ 28.7. The performance 

difference is not significant when looking at the time in range (7 4 .6 % vs 75% p = .12), 

according to an exemplary embodiment. Furthermore, the adaptive scheme is able to 

significantly reduce the time spent in hypoglycemia, down to 0.16% from the 0.67% of the 

default controller configuration. The time spent in hypoglycemia for the adaptive scheme is 

not significantly different than that achieved by the conservative controller configuration.  

Similarly to what was observed for the bolus strategy experiment, the conservative controller 

produces a higher average glucose than that of the adaptive control, while also showing a 

significantly lower time in range. The aggressive controller is able to lower the average 

glucose more than any of the other configurations, at the cost of much higher frequency of 

hypoglycemia (1%), according to an exemplary embodiment.  

[0098] The present disclosure is not limited to the precise construction and compositions 

disclosed herein; any and all modifications, changes, and variations apparent from the 

foregoing descriptions are within the spirit and scope of the disclosure as defined in the 

appended claims. Moreover, the present concepts expressly include any and all combinations 

and sub combinations of the preceding elements and aspects. An implementation of an 

apparatus that falls within the inventive concept does not necessarily achieve any of the 

possible benefits outlined above: such benefits are dependent on the specific use case and 

specific implementation, and the possible benefits mentioned above are simply examples.
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[0099] Although the concepts have been described above with respect to the various 

embodiments, it is noted that there can be a variety of permutations and modifications of the 

described features by those who are familiar with this field, only some of which have been 

presented above, without departing from the technical ideas and scope of the features, which 

is defined by the appended claims.  

[00100] Further, while this specification contains many features, the features should not be 

construed as limitations on the scope of the disclosure or the appended claims. Certain 

features described in the context of separate embodiments can also be implemented in 

combination. Conversely, various features described in the context of a single embodiment 

can also be implemented in multiple embodiments separately or in any suitable sub

combination.  

[00101] Although the drawings describe operations in a specific order and/or show 

specific arrangements of components, one should not interpret that such specific order and/or 

arrangements are limited, or that all the operations performed and the components disclosed 

are needed to obtain a desired result. There are numerous hardware and software devices that 

can be configured to forward data units in the manner described in the present disclosure with 

respect to various embodiments. Accordingly, other implementations are within the scope of 

the following claims.
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CLAIMS 

1. A method of adaptively tuning a Model Predictive Control (MPC) controller, using at 

least one processor, the method comprising: 

determining, using at least one of said at least one processor, a plurality of residuals, 

wherein each of the plurality of residuals is based on a difference between a measured 

glucose value and a glucose value predicted by a model at a previous time among of a 

plurality of time samples in the past; 

storing, in a memory, the determined residuals; 

calculating a trust index, using at least one of said at least one processor, by 

quantifying uncertainty of the model using the stored residuals; 

tuning the MPC controller, in real time, using at least one of said at least one 

processor, based on the calculated value of the trust index; and 

determining an amount of insulin to be delivered by an insulin pump based on insulin 

amounts determined by the tuned MPC controller.  

2. The method of claim 1, wherein 

the determining further comprises determining the residual at time t and for a 

prediction k steps ahead using the formula: 

t N resk Ykt-k - CGMt Yk E Z 

where Ykit-k represents predicted glucose by the model at time t that was predicted 

k samples in the past, Ny represents prediction horizon and CGMt represents current 

glucose values.  

3. The method of claim 1 or 2, wherein the storing further comprises storing each of the Ny 

residuals (rest) in a pool of most recent Nf residuals, resulting in a matrix Ny x Nf.  

4. The method according to any one of claims 1 to 3, further comprising: 

penalizing, using at least one of said at least one processor, the determined residuals 

using a forgetting function, wherein 

the forgetting function is determined using the formula: 

ti. log(Nf - i + 1) N N res-k = res- - Vi E k 
kj=rs log Nf VE i 1
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where t represents current time, rest-i represent progressively more distant 

residuals, and frs represents the penalized residual.  

5. The method of claim 4, wherein for each timestamp t each residual is penalized 

differently.  

6. The method according to any one of claims 1 to 5, wherein tuning the controller 

comprises decreasing an aggressiveness of the MPC controller if the trust index is below 

a threshold.  

7. The method according to any one of claims 1 to 5, wherein tuning the controller 

comprises increasing an aggressiveness of the MPC controller if the trust index is above 

a threshold.  

8. The method of claim 4 or 5, further comprising: 

calculating, using at least one of said at least one processor, an estimate of a 

confidence interval of a current prediction error based on the penalized residuals using 

the formula: 

B, = max(percentile,(fr-s), 0) Vk E ZNp k 1 

where Bk is an empirically defined boundary of the confidence interval of a 

prediction error k steps ahead, and percentile,(fres) represents x-th percentile function 

of the penalized residual at time t and for a prediction k steps ahead.  

9. The method of claim 8, wherein the calculating the estimate of the confidence interval 

comprises calculating an empirically defined upper boundary 1k and an empirically 

defined lower boundary bk using the formula: 

Bk max(percentilegs(fres),0) VkE ZNp k 0) 1 

B = min(percentiles(fres),0) Vk E Z 

10. The method of claim 9, wherein the calculating the trust index comprises calculating the 

trust index based on the calculated empirically defined upper boundary Pk and the 

calculated empirically defined lower boundary Bk using the formula: 

Tt: =Bk- k+dH(CGM,[P+yt,3+yt])
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0 if x E [a,b] 
dH(x,[a,b]):= x-b if x>b 

a-x if x<a 

where dH (x, [a, b]) represents Hausdorff distance from a point x to an interval [a, b], 

and Yt represents model's prediction of current CGM sample.  

11. A method of insulin delivery using an artificial pancreas, the artificial pancreas including 

at least one processor, the method comprising: 

determining, using at least one of said at least one processor, a plurality of residuals, 

wherein each of the plurality of residuals is based on a difference between a measured 

glucose value and a glucose value predicted by a model at a previous time among of a 

plurality of time samples in the past; 

storing, in a memory, the determined residuals; 

calculating a trust index, using at least one of said at least one processor, by 

quantifying uncertainty of the model using the stored residuals; 

tuning a model prediction control (MPC) controller, in real time, using at least one 

of said at least one processor, based on the calculated value of the trust index; and 

controlling, using at least one of said at least one processor, the delivery of insulin 

based on insulin amounts determined by the tuned MPC controller.  

12. An artificial pancreas apparatus for insulin delivery, the artificial pancreas comprising: 

at least one non-transitory memory operable to store program code; 

a model prediction control (MPC) controller including at least one processor 

operable to read said program code and operate as instructed by said program code, said 

program code causing the at least one processor to: 

determine a plurality of residuals, wherein each of the plurality of residuals is based 

on a difference between a measured glucose value and a glucose value predicted by a 

model at a previous time among of a plurality of time samples in the past; 

store, in the at least one non-transitory memory, the determined residuals; 

calculate a trust index by quantifying uncertainty of the prediction models using 

the stored residuals; 

tune the MPC controller in real time based on the calculated value of the trust index; 

and
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determine an amount of insulin to be delivered by an insulin pump of the artificial 

pancreas based on the tuned MPC controller.  

13. The artificial pancreas apparatus of claim 12, wherein tuning the MPC controller, 

in real time, based on the calculated value of the trust index comprises increasing the 

aggressiveness of the MPC controller if the trust index is above a threshold and decreasing the 

aggressiveness of the MPC controller if the trust index is below the threshold.


























	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

