OpPIC (12) (19) (CA) Demande-Application

OFFICE DE LA PROPRIETE

CIPO

CANADIAN INTELLECTUAL

ProPERTY OFFICE 2H AD 2,221,661
22) 1997/11/20
3) 1999/05/20

INTELLECTUELLE DU CANADA

(72) ZELSTER, Rafael, CA

(72) BERTIN, Greg, CA

(72) HAMMERSCHMIDT, George, CA

(71) CROSSKEYS SYSTEMS CORPORATION, CA
51) Int.CL.S HO4L 12/26

(549) RECOUVREMENT DE TRANSACTIONS
534) TRANSACTION ROLL FORWARD

Main Atme Atme 1 Atme 2
Atme logging Atmc Atm
Daemon Logging Log

f egmon ] —D}imc

(4
ging
Base

The Atme Logging Daemon Datz? Required For Logging and Playback
1. Log transaction. 'Swltch Address
2, Play Back Transaction *Time
3. Backup Switch *Application
4. Restore Switch *User 1d
*Description
*Data

(57) In a method of monitoring transactions in a network application, a transaction log is maintained at a node, and a
separate log is maintained. A playback is implemented which relies on the application to replay the original knowledge
context of the transaction, and if this replayed mechanism fails, a transaction rollback mechanism is invoked to restore
both the application and the node to a mutually consistent state.

I*I Industrie Canada  Industry Canada



CA 02221661 1997-11-20

ABSTRACT OF THE DISCLOSURE

In a method of monitoring transactions in a network application, a transaction log
is maintained at a node, and a separate log is maintained. A playback is implemented
which relies on the application to replay the original knowledge context of the
transaction, and if this replayed mechanism fails, a transaction rollback mechanism is

invoked to restore both the application and the node to a mutually consistent state.



CA 02221661 1997-11-20

TRANSACTION ROLL FORWARD

This invention relates to a method of monitoring network transactions, for

example, in a wide area network controlled by network management software.

The Telecommunications Management Network (TMN) model, developed by the
International Telecommunications Union (ITU), defines three areas: Element

Management, Network Management and Service Management.

The Element Manager Layer controls the information exchange between network
elements or groups of network elements. Functions within this layer communicate with
the Network Management Layer by relaying element status and performance to a network

management system (NMS).

The Network Management Layer in the TMN Model covers the end-to-end
management of an entire network. It contains an overview of the network and knows how
elements relate to each other. Focusing on network usage, traffic patterns, bandwidth
availability and performance monitoring, the Network Management Layer interacts with
the Service Management Layer by exchanging network status information for customer
and service data. Responsibilities of the Network Management Layer include: controlling
and coordinating the network view of all network elements within its domain,
provisioning and modifying network capabilities for customer-service support,
maintaining statistical, log and other data about the network and interacting with the

Service Management, Layer on performance, usage and availability.

The Service Management Layer is the service provider's first point of contact with
customers for all service transactions, including service requests and fault reporting,
interaction with other service providers, and maintaining statistical data and interaction

between services.

The present “state of the art” transaction roll-forward on a network element is to
log all node (network element) affecting transactions from the last node backup. In the
event of a failure all logs are re-applied to the node. A major shortcoming to this
approach is the fact that the node has a limited context. The node logs only incorporates
node affecting transaction not necessary element or network management transactions.

For example an element management transaction “X” may be composed of node

-1-



CA 02221661 1997-11-20

transactions a, b and c. In the event of a failure the node will try and replay a, b and c. If
a fails, b and ¢ should not be applied because they are part of X which needs to be fully
applied or not at all. The node logs have no knowledge of X. The result will be that the

node and the applications supporting the node are in a inconsistent state.
An object of the invention is to overcome this problem.

According to the present invention there is provided a method of monitoring
transactions in a network application, wherein a transaction log is maintained at a node, a
separate log is maintained, a playback is implemented which relies on the application to
replay the original knowledge context of the transaction, and if this replayed mechanism
fails, a transaction rollback mechanism is invoked to restore both the application and the

node to a mutually consistent state.

By implementing transaction logging our solution now maintains a log similar to
the nodes. We then implement a playback which relies on the application to replay the
original knowledge of the context of the transaction. If this “replayed” transaction fails
than the applications transaction rollback mechanism is invoked and restores both the

application and the node to a mutually consistent state.

By implementing centralized transaction logging our solution now maintains a log
similar to the nodes. We then implement a playback which relies on the application to
replay the original knowledge of the context of the transaction. If this “replayed”
transaction fails than the applications transaction rollback mechanism is invoked and
restores both the application and the node to a mutually consistent state. When we
implement a playback we also ensure that the log is played back in a synchronized

fashion to ensure node and application consistency.

The invention can be applied to any situation where a node is modified by a multi

stage transaction and may at a later time need to be restored.

The invention will now be described in more detail, by way of example only, with

reference to the accompanying drawings, in which:-

Figure 1 is an overview of an ATM network to which the inventive system may be

applied;



CA 02221661 1997-11-20

Figure 2 is an overview of a system in accordance with the invention;
Figure 3 shows a roll forward of transactions;

Figure 4 shows a cross connect creation; and

Figure 5 shows a cross connect roll forward.

Figure 1 shows the general architecture of a system to which the invention is
applicable. An ATM network manager is managed by a commander 2 implementing the
present invention, which communicates with the network manager via a protocol Qs,

which is a published interface from Newbridge Networks Corporation.

Roll forward is required on a node after a catastrophe. The major assumptions

behind this design are:
1. The customer has a failing switch

2. Returning as many components of the switch to service as fast as possible is by far the

most important task.

3. The switch must be in a consistent state at the end of the recovery to reduce

requirement for manual intervention.
4. A clear log of failed RollForward transactions must be provided to the customer.

This feature is intended for use by customers when a catastrophic event has
caused the EWSX switch to require a reboot from a backup. This feature enables
returning the Node to the state it was just before the catastrophe by performing a roll

forward of transactions sent to the Node since the last backup.

The ATM-C Roll Forward is a product which supports the Siemens EWSXpress
V3 ATM switch and applications. It provides a mechanism for the recovery of the Node
from a catastrophe via the roll forward of transactions performed on the Node since a

backup was performed.

A central process on the ATMC is receiving messages containing information on
all transactions performed on the Node. The feature logs the transactions in separate file
for each node. Applications, such as CR, SS7 etc. are using the ATMC API Logging
function to send the logging messages to the proper ATMC controlling the Node. It is

-3-



CA 02221661 1997-11-20

assumed that only transactions that are successfully applied to the node are logged. This
implies that the logging of transactions must be done by the application only at the end of
the transaction. The transaction itself contains a time stamp indicating when it has started.

This information is used for the sequence of roll forward.

The Roll Forward of transactions enables the restoration of the Node Database to
its state from before a catastrophic failure. Proper recovery of all the data requires
synchronization between all the applications controlling the Node. This feature controls
the sequence at which transaction that were applied to the node before the crash are
being send to the node. This feature reads the log file generated by the logging

mechanism.

The Logging and Roll Forward mechanism of the ATMC require that all

applications that are acting on the Node use both of the following interfaces:
e Logging interface to log all changes to the Node
e Roll Forward Interface - To enable roll forward of all actions performed on the node.

The logging interface is part of the CKATMCAPI class and contains the following
function

void ATMCClient :: LogOperations (ATMCAddressType Atmc, // Address of the ATMC Used for logging
char *NodeDn, // The DN of the Node for that operation
time_t StartTime, // The time at which the operation started.
char *Application, // Application Name
char *Description, // String representation of the action - used for manual roll forward
unsigned long DataSize, // Size of the data to be logged for the event
void *Data, // The transaction data
long Delay = 0, // Specify amount of time in milliseconds to wait before executing next command

int WaitCompletion = 1 // Indicates if the Roll Forward mechanism should wait for completion of this command
before sending the next one.

);
Application name : Is a string used for identification of the application logging the

transaction. This is displayed to the user during the Manual roll

forward (See section Error! Reference source not found.) and as



CA 02221661 1997-11-20

an identifier to the roll forward mechanism of the application

performing the transaction during the roll forward.

Description: A user readable string containing all the information used by the
transaction. This information allows the user to screen out

transactions during roll forward.

Data: This is the binary data used for roll forward. This information is

send back to the application during roll forward.
DataSize: The size of the data in bytes.

WaitCompletion:  See below.

During roll forward the application will send roll forward request to all the

applications that logged actions.

The following pseudo code illustrates a typical applications written for roll

forward:
Fd = RollForwardOpen ()
for ever {
select on fd and others
if (message on fd) { // E.G. Roll Forward
RollForwardGetTransaction
Process Transaction
RollForwardSendConfirmation
} else { // Message from other sources

something else



CA 02221661 1997-11-20

Following are the interfaces for roll forward:

int RollForwardOpen ()

This interface opens a socket connection that accepts messages from the Roll
forward Application. The return value is a file descriptor that can be use in a select

statement.
int RollForwardHasTransaction ()

This application returns 1 if there is an action waiting for roll forward in the
message queue. 0 is returned if there are no messages in the queue. This is not an
indication that the roll forward is done see Error! Reference source not found.Error!

Reference source not found.

int RollForwardGetTransaction (unsigned short &DataSize, void * &Data, int
&NeedConfirmation)

This enables the application to get the next action from the roll forward interface.
The first parameter is the size of the logged data. The second parameter a void pointer to
the logged Data. The third parameter indicates whether the roll forward process is going
to wait for a completion message from the application, when it is set to 1 the application
must use RollForwardSendConfmhation once it is safe to roll forward the next
transaction. This is set to 1 only if the WaitCompletion flag was set to 1 when the

application has logged the transaction.

The return value of this command is: 0 - Fail 1 - Data Available 2 - Done with roll

forward
void RollForwardSendConfirmation (int Status = 1)

This command must be used if the WaitCompletion Flag was set to 1 in the
RollForwardGetAction request. Use this function to indicate to the roll forward
mechanism that the application is ready to receive the next transaction. This function is

used only by applications that set the WaitCompletion flag in the logging record.

When the Status flag is set to 0 the RollForward mechanism assumes that the

transaction has failed and will generate the appropriate log to the customer.



CA 02221661 1997-11-20

On startup the roll forward application will get the information of the node
requiring roll forward, the time at which the last backup has been performed. (This
feature assumes that the backup generation was already applied to the node). Then, It will
scan the log file and determine the list of applications that were active during the time

from the backup.

The roll forward application will attempt to connect to all the applications
obtained in the previous step. If any of the application fails to respond the roll forward

application prompts the user to start the application manually on the appropriate machine.

As long as not all transactions from the log have been rolled forward the roll

forward application will:
¢ send transactions to the appropriate application
e Wait for the proper reply.

During manual roll forward the RollForward application prompts the user before

each transaction is send to the other applications for execution.

As long as not all actions from the log have been rolled forward the RollForward

application will:
e Prompt the user for the execution of the next command
e Abort or skip command as per user input or
e send actions to the appropriate application
e Wait for the proper reply.
See Figure 2 above

The Roll Forward application will send a Finish message to all the other

applications.

It is assumed that all logged operations were:



CA 02221661 1997-11-20

Authenticated - That during the initial invocation of the transaction the application has
verified that the user have the adequate credentials that enable him to carry

on the specific operation.

Successful - During the roll forward of the commands it is also assurhed that all
commands logged through the logging mechanism were successfully

applied to the Switch.

Error recovery during roll forward is via the existing transaction roll backward of
the applications. Transaction roll backward is designed as part of standard transaction
handling. During roll forward the built in Roll Backward of transactions should work as
during normal operation. Since roll forward is done for transactions that were
successfully applied to the node, it is anticipated that this mechanism will rarely be
invoked. However, in the case of hardware failure, during roll forward, of one of the
modules on the Node a transaction may abort. In this case the transaction should behave
the same way as it would under normal conditions - that is roll backward. This will leave
the Switch in the most consistent way possible. Logs indicating the failure will appear in
a standard log. Since we do not necessarily have a GUI connected to the applications the
SendConfirmation message to the RollForward mechanism s/hould indicate the failure so

that the Roll Forward mechanism can generate additional required logs.

It is known that this mechanism not manage to completely restore the Node to its

original condition under the following conditions:

1. A race condition between two applications or transactions while setting an attribute
for the same object. In this case there is no way to determine which application will

be the last to set the attribute, and therefor to assure proper operation.
2. There is a physical problem with one of the components on the Switch.

The following applications are known to be using the logging and roll forward

API stubs at the release 2 time frame:
e ATMC base.

e (Call Routing



CA 02221661 1997-11-20

e SS7
e Q3PS
e Autocraft

The following example is an example of creation of a cross connect. This type of
operation is a very typical one on the ATMC and at any given time we might have

multiple cross connect transactions in operation.

As can be seen from the above figures, using cross Q3 roll forward will result in
reversing the state of the two object. That is the connection represented by Object 1 will
be inactive while the connection represented by Object 2 is going to be active. This is in
contrast to the original state of the connections where the connection represented by

Object 1 was active and the connection represented by object 2 was inactive.

Q3 logging at the object level is the original proposal prepared for CR/SS7. In this
design the application is logging the Q3 objects just before they send the command to the
Node. Using Vertel this implies that before sending commands to the node the application
can translate the Vertel object to a BER representation using the Vertel “Ber Encode”

template then send the information to the logging mechanism using a function as follows:

void ATMCClient :: LogOperations (ATMCAddressType Atmc, // Address of the ATMC Used for logging
char *NodeDn, // The DN of the Node for that operation
time_t StartTime, // The time at which the operation started.
char *Application, // Application Name
char *Description, // String representation of the action - used for manual roll forward
long DataSize, // Size of the data to be logged for the event
void *Data, // The BER of the transaction object
long Delay = 0, // Specify amount of time in milliseconds to wait before executing next command

int WaitCompletion = 1 // Indicates if the Roll Forward mechanism should wait for completion of this command
before sending the next one.

);

During the roll forward of the transaction the Roll Forward agent will perform

similar tasks to the ones described above. The only difference between is that instead of

-9.



CA 02221661 1997-11-20

sending the Q3 actions to the applications for execution the BER data of the Q3 actions is
converted to a Vertel Object representing the Q3 command (Using features of the Vertel
Stack T.B.D) and the action is than sent to the Node for execution. Q3 is a standards

based interface for managing network elements. The Siemens EWSX V3 is managed via

a Q3 interface.

Logging at the Socket level is similar to the design described in the previous
section, except that instead of the application calling a special function for the purpose of
logging of the commands the data is intercepted and logged at the MP120 Daemon. This

design has the following problems:
e Requires modification of the MP120 (Vertel).
¢ Does not support any other stack such as the one used by Q3PS.

e Selection of ‘actions’ during the roll forward is very hard since there is no information

as for the generating application and user (Official requirement).

-10 -



CA 02221661 1997-11-20

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A method of monitoring transactions in a network application, wherein a
transaction log is maintained at a node, a separate log is maintained, a playback is
implemented which relies on the application to replay the original knowledge context of
the transaction, and if this replayed mechanism fails, a transaction rollback mechanism is

invoked to restore both the application and the node to a mutually consistent state.

2. A method as claimed in claim 1, wherein a centralized log is maintained similar to
the log at the nodes, and when a playback is implemented the log is played back in a

synchronized manner to ensure node and application consistency.

-11 -



CA 0222

1661 1997-11-20

ATM Management Architecture

Net I Service
@- 48020 Integrator Coordinator
"TNSR
Qs SNMP (M) Qs, CMIP
| « Network Topology
Subscriber vy Ms.':.':;:;.::

\

Qs NCt NC]
vy
45020 ROAMT
% : scops of the document
SNMP 3
Qs: also mentioned as @
“interaction interface”

Figure 1
Main Atmc Atmc 1 Atmc 2
Atmc logging Atmc Atme
Daemon Logging Logging

The Atmc Logging Daemon

1. Log transaction.

2. Play Back Transaction

3. Backup Switch
4. Restore Switch

Data Required For Logging and Playback
*Switch Address

*Time

*Application

*User Id

*Description

*Data

Figure 2




CA 02221661 1997-11-20

Roll
Appl App2 Node
Forward PP PP
First
i Apply Q3
Transaction .
tTransaction ) actions to
/ Switch
First Reply _ /
ndConfirmatign ()
Second
Transaction tTransacti ApPly Q3
actions to
/ Switch
Second Reply /
ndConfirmation (
Figure 3
Cross Connect Chyject can be created in an inactive state and than it’s state can be modified to enabled. When
creating the xoon you specify the two VPIs and send the request 1o the ATMC fabric (1 and 2). The reply fromthe ATMC
fabric (1r and 2r) contains the DN of the xoon. I you send two requests there is
1o guarantee as for which is going to be processed first so the second (2) ey be exeouted befre the first as demmonstrated in the
following figgre resulting in roquest 1 creating object 2 and request 2 creating object 1.
The objects are created inactive and T will assurre that transaction A will activeate it’s cross connect (Cbject 2) and transaction B
will not
Transaction A Transaction B
1 Greate xoon Object
2 Create xoon Chject
2r Created Cbject 1
Ir Crented Chject 2
3 Set cbject 2 state to
active.

Figure 4

fraks wOlerk



CA 02221661 1997-11-20

During Roll forward we create both objects in the order recorded in the log. The result is that we create
the object for vpil and vpi2 first resulting in creation of object 1 and only then we create object 2. The
next transaction in the log is to modify object 2 state to active resulting in a swap in the object states.

an; 1 e
Create an xcon . acg:cobject 3
Object .

Roll Forward:
1. Create Xcon object
Creates object 1
2. Create xcon object
Creates object 2
3. Change Object 2 attribute to active

Himks wOlerke



Main Atme Atmc 1 Atm

c?2
Atmc logging Atmc Atm
Daemon Logging Log

A

The Atme Logging Daemon Datz? Required For Logging and Playback
1. Log transaction. 'Swltch Address
2, Play Back Transaction *Time
3. Backup Switch *Application
4. Restore Switch *Userld
*Description

*Data



	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - CLAIMS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - REPRESENTATIVE_DRAWING

