

(19) 대한민국특허청(KR) (12) 등록특허공보(B1)

B23K 35/26 (2006.01) B23K 35/02 (2006.01)

2023년10월26일

10-2023-0153519

2023년11월06일

2021년10월13일

WO 2019/094243

PCT/US2018/058477

10-2023-7036741(분할)

특허 10-2020-7015370

2018년10월31일

(51) 국제특허분류(Int. Cl.)

(52) CPC특허분류

(21) 출원번호

(65) 공개번호

(43) 공개일자

(62) 원출원

C22C 13/02 (2006.01)

B23K 35/262 (2013.01)

B23K 35/0227 (2013.01)

(22) 출원일자(국제) 2018년10월31일

(85) 번역문제출일자 2023년10월25일

국제공개일자 2019년05월16일

*는 심사관에 의하여 인용된 문헌

62/583,939 2017년11월09일 미국(US) 16/022,345 2018년06월28일 미국(US)

심사청구일자

원출원일자(국제)

심사청구일자

(86) 국제출원번호

(87) 국제공개번호

(56) 선행기술조사문헌 US20160056570 A1* US20170066089 A1* KR1020140074362 A KR1019970010891 B1

(30) 우선권주장

- (45) 공고일자 2024년11월19일
- (11) 등록번호 10-2732357
- (24) 등록일자 2024년11월15일
- (73) 특허권자
 알파 어셈블리 솔루션스 인크.
 미국, 06702 코네티컷, 워터버리, 프라이트 스트
 리트 245

등록특허 10-2732357

(72) 발명자
하스나인, 엠디
미국 60025 일리노이 글렌뷰 할렘 에비뉴 155 일
리노이 툴 웍스 인크. 내
크오, 릭 와이

미국 60025 일리노이 글렌뷰 할렘 에비뉴 155 일 리노이 툴 웍스 인크. 내

(74) 대리인 특허법인(유)남아이피그룹, 특허법인 남앤남

전체 청구항 수 : 총 10 항

심사관 : 나만호

(54) 발명의 명칭 극한 환경에서의 전자 응용을 위한 고 신뢰성 무연 땜납 합금

(57) 요 약

무연 땜납 합금은 주석에 기초하며 은, 구리, 비스무트, 코발트 및 티타늄을 포함한다. 합금은 안티몬, 니켈, 또는 둘 모두를 추가로 포함할 수 있다. 은은 땜납의 3.1 중량% 내지 3.8 중량%의 양으로 존재한다. 구리는 땜 납의 0.5 중량% 내지 0.8 중량%의 양으로 존재한다. 비스무트는 땜납의 0.0 중량%(또는 1.5 중량%) 내지 약 3.2

(뒷면에 계속)

대표도 - 도17

중량%의 양으로 존재할 수 있다. 코발트는 땜납의 0.03 중량% 내지 약 1.0 중량%(또는 0.05 중량%)의 양으로 존재한다. 티타늄은 땜납의 0.005 중량% 내지 0.02 중량%의 양으로 존재한다. 안티몬은 땜납의 1.0 중량% 내지 3.0 중량%의 양으로 존재할 수 있다. 땜납의 잔부는 주석이다.

(52) CPC특허분류 **B23K 35/025** (2013.01) **C22C 13/02** (2013.01)

명세서

청구범위

청구항 1

무연 땜납 합금으로서,

3.1 내지 3.8 중량%의 은;

0.5 내지 0.8 중량%의 구리;

1.5 내지 3.2 중량%의 비스무트;

0.05 내지 1.0 중량%의 코발트;

1.0 내지 3.0 중량%의 안티몬;

0.005 내지 0.02 중량%의 티타늄; 및

잔부의 주석과 임의의 불가피한 불순물로 이루어지는, 무연 땜납 합금.

청구항 2

삭제

청구항 3

삭제

청구항 4

제1항에 있어서, 은은 3.8 중량%인 무연 땜납 합금.

청구항 5

제1항에 있어서, 구리는 0.8 중량%인 무연 땜납 합금.

청구항 6

제1항에 있어서, 비스무트의 함량은 1.5 내지 3.0 중량%인 무연 땜납 합금.

청구항 7

제6항에 있어서, 비스무트는 1.5 중량%인 무연 땜납 합금.

청구항 8

제6항에 있어서, 비스무트는 3.0 중량%인 무연 땜납 합금.

청구항 9

제1항에 있어서, 코발트는 0.05 중량%인 무연 땜납 합금.

청구항 10

제1항에 있어서, 안티몬은 1.0 중량%인 무연 땜납 합금.

청구항 11

제1항에 있어서, 안티몬은 1.5 중량%인 무연 땜납 합금.

청구항 12

제1항에 있어서, 티타늄은 0.008 중량%인 무연 땜납 합금.

삭제

- 청구항 14
- 삭제
- 청구항 15
- 삭제
- 청구항 16
- 삭제
- 청구항 17
- 삭제
- 청구항 18
- 삭제
- 청구항 19
- 삭제
- 청구항 20
- 삭제
- 청구항 21
- 삭제
- 청구항 22

삭제

청구항 23

삭제

발명의 설명

기 술 분 야

- [0001] <u>관련 출원에 대한 상호 참조</u>
- [0002] 본 출원은, 2017년 11월 9일자로 출원되고 발명의 명칭이 "극한 환경에서의 전자 응용을 위한 고 신뢰성 무연 땜납 합금"(HIGH RELIABILITY LEAD-FREE SOLDER ALLOY FOR ELECTRONIC APPLICATIONS IN EXTREME ENVIRONMENTS)인 미국 가특허 출원 제62/583,939호와 2018년 6월 28일자로 출원되고 발명의 명칭이 "극한 환경 에서의 전자 응용을 위한 고 신뢰성 무연 땜납 합금"인 미국 특허 출원 제16/022,345호에 대한 이득을 주장한다. 미국 가특허 출원 제62/583,939호 및 미국 특허 출원 제16/022,345호의 전체가 본 명세서에 참고로 포함된다.
- [0003] <u>기술분야</u>
- [0004] 본 개시는 일반적으로 전자 응용을 위한 무연 땜납 합금에 관한 것이다.

배경기술

[0005] 뗌납 합금은 다양한 전자 장치를 제조 및 조립하는 데 널리 사용된다. 전통적으로, 땜납 합금은 주석-납계 합 금이었다. 주석-납계 합금은 적합한 융점 및 페이스티 범위(pasty range), 습윤(wetting) 특성, 연성 및 열 전 도성을 포함하는 원하는 재료 특성을 갖는 땜납을 제조하는데 사용되었다. 그러나, 납은 광범위한 유해 효과를 야기할 수 있는 고도로 독성이고 환경적으로 유해한 재료이다. 그 결과, 원하는 재료 특성을 갖는 무연 땜납 합금을 생성하는 데에 연구가 집중되어 왔다.

발명의 내용

해결하려는 과제

[0006] 본 개시는, 소정의 종래 기술 합금과 비교하여, 극고온 및 극저온 기후에서 더 낮은 과냉각 온도, 개선된 열-기 계적 신뢰성, 및 고온 내크리프성(creep resistance)을 제공하는 고 신뢰성 무연 땜납 합금을 제공하고자 한다.

과제의 해결 수단

- [0007] 본 개시의 일 태양에 따르면, 무연 합금은 3.1 내지 3.8 중량%의 은; 0.5 내지 0.8 중량%의 구리; 0.0 내지 3.2
 중량%의 비스무트; 0.03 내지 1.0 중량%의 코발트; 0.005 내지 0.02 중량%의 티타늄; 및 잔부의 주석을 임의의 불가피한 불순물과 함께 포함한다. 선택적으로, 합금은 0.01 내지 0.1 중량%의 니켈을 추가로 포함할 수 있다.
- [0008] 본 개시의 다른 태양에 따르면, 무연 합금은 3.8 중량%의 은; 0.7 중량%의 구리; 1.5 중량%의 비스무트; 0.05 중량%의 코발트; 0.008 중량%의 티타늄; 및 잔부의 주석을 임의의 불가피한 불순물과 함께 포함한다. 선택적으 로, 합금은 0.05 중량%의 니켈을 추가로 포함할 수 있다.
- [0009] 본 개시의 다른 태양에 따르면, 무연 합금은 3.1 내지 3.8 중량%의 은; 0.5 내지 0.8 중량%의 구리; 0.0 내지 3.2 중량%의 비스무트; 0.05 내지 1.0 중량%의 코발트; 1.0 내지 3.0 중량%의 안티몬; 0.005 내지 0.02 중량% 의 티타늄; 및 잔부의 주석을 임의의 불가피한 불순물과 함께 포함한다. 선택적으로, 합금은 0.01 내지 0.1 중 량%의 니켈을 추가로 포함할 수 있다.
- [0010] 본 개시의 다른 태양에 따르면, 무연 합금은 3.8 중량%의 은; 0.8 중량%의 구리; 1.5 중량%의 비스무트; 0.05 중량%의 코발트; 1.0 중량%의 안티몬; 0.008 중량%의 티타늄; 및 잔부의 주석을 임의의 불가피한 불순물과 함께 포함한다. 선택적으로, 합금은 0.05 중량%의 니켈을 추가로 포함할 수 있다.
- [0011] 전술한 일반적인 설명 및 하기의 상세한 설명 둘 모두는 다양한 실시 형태를 기술하며 청구된 요지의 속성 및 특징을 이해하기 위한 개요 또는 골자(framework)를 제공하도록 의도된다는 것이 이해되어야 한다. 첨부 도면 은 다양한 실시 형태의 추가의 이해를 제공하기 위해 포함되며, 본 명세서에 포함되어 본 명세서의 일부를 구성 한다. 도면은 본 명세서에 기술된 다양한 실시 형태를 예시하며, 상세한 설명과 함께 청구된 요지의 원리 및 작동을 설명하는 역할을 한다.

도면의 간단한 설명

[0012] 특허 또는 출원 파일은 컬러로 작성된 적어도 하나의 도면을 포함한다. 컬러 도면(들)을 갖는 이러한 특허 또 는 특허 출원 공보의 사본은 신청 및 필요한 요금의 지불 시 특허청에 의해 제공될 것이다.

하기는 첨부 도면에 도시된 예의 설명이다. 도면은 반드시 축척대로 도시된 것은 아니며, 도면의 소정 특징부 및 소정 도시는 명료함 또는 간결함을 위해 일정한 비율로 또는 개략적으로 과장되게 도시될 수 있다.

도 1a는 캐스팅된 그대로의 조건에서의 종래 기술의 SAC305 합금의 SEM 현미경 사진이다.

도 1b는 섭씨 125도에서 24시간 동안 에이징된 종래 기술의 SAC305 합금의 SEM 현미경 사진이다.

도 2a는 캐스팅된 그대로의 조건에서의 본 개시에 따른 합금의 SEM 현미경 사진이다.

도 2b는 섭씨 125도에서 24시간 동안 에이징된 본 개시에 따른 합금의 SEM 현미경 사진이다.

도 3은 종래 기술의 SAC305 합금에 대한 시차 주사 열량법(DSC) 차트이다.

도 4는 본 개시에 따른 합금에 대한 시차 주사 열량법(DSC) 차트이다.

도 5는 본 개시에 따른 합금에 대한 시차 주사 열량법(DSC) 차트이다. 도 6은 본 개시에 따른 합금에 대한 시차 주사 열량법(DSC) 차트이다. 도 7은 본 개시에 따른 합금에 대한 시차 주사 열량법(DSC) 차트이다. 도 8은 본 개시에 따른 합금에 대한 시차 주사 열량법(DSC) 차트이다. 도 9a는 본 개시에 따른 두 합금의 습윤 시간과 종래 기술의 SAC305 합금의 습윤 시간 사이의 비교를 나타내는 막대 차트(bar chart)이다. 도 9b는 본 개시에 따른 두 합금의 최대 습유력과 종래 기술의 SAC305 합금의 최대 습유력 사이의 비교를 나타 내는 막대 차트이다. 도 10a는 본 개시에 따른 합금의 확산비(spread ratio)와 종래 기술의 SAC305 합금의 확산비 사이의 비교를 나 타내는 막대 차트이다. 도 10b는 본 개시에 따른 합금의 확산성(spreadability)과 종래 기술의 SAC305 합금의 확산성 사이의 비교를 나 타내는 막대 차트이다. 도 11a는 3개의 상이한 기재(substrate) 상에서 본 개시에 따른 합금의 확산비를 나타내는 막대 차트이다. 도 11b는 3개의 상이한 기재 상에서 본 개시에 따른 합금의 확산성을 나타내는 막대 차트이다. 도 12a는 260℃에서 본 개시에 따른 합금의 구리 와이어 용해 속도와 종래 기술의 SAC305 합금의 구리 와이어 용해 속도 사이의 비교를 나타내는 선 차트(line chart)이다. 도 12b는 280℃에서 본 개시에 따른 합금의 구리 와이어 용해 속도와 종래 기술의 SAC305 합금의 구리 와이어 용해 속도 사이의 비교를 나타내는 선 차트이다. 도 13a는 260℃에서 본 개시에 따른 합금의 구리 와이어 용해 속도와 종래 기술의 SAC305 합금의 구리 와이어 용해 속도를 비교하는 일련의 비교용 광학 현미경 사진을 나타낸다. 도 13b는 280℃에서 본 개시에 따른 합금의 구리 와이어 용해 속도와 종래 기술의 SAC305 합금의 구리 와이어 용해 속도를 비교하는 일련의 비교용 광학 현미경 사진을 나타낸다. 도 14a는 본 개시에 따른 합금의 경도와 종래 기술의 SAC305 합금의 경도 사이의 비교를 나타내는 막대 차트이 다. 도 14b는 본 개시에 따른 합금의 경도와 종래 기술의 SAC305 합금의 경도 사이의 비교를 나타내는 막대 차트인 데, 두 합금 모두 150℃에서 등온적으로 에이징된 것이었다. 도 15는 본 개시에 따른 합금 및 종래 기술의 SAC305 합금에 대한 응력-변형률 곡선을 나타내는 선 차트이다. 도 16은 본 개시에 따른 합금의 최대 인장 강도와 종래 기술의 SAC305 합금의 최대 인장 강도의 비교를 나타내 는 막대 차트이다. 도 17은 캐스팅된 그대로 및 150℃에서 144시간 동안 에이징한 후 둘 모두의, 본 개시에 따른 합금 및 종래 기 술의 SAC305 합금에 대한 시간의 함수로서의 크리프 변형률(creep strain)을 나타내는 선 차트이다. 도 18a는 150℃에서 240, 720, 및 1440시간 동안 에이징한 후의, 본 개시에 따른 합금과 하부의 구리 기재 사이 의 계면의 일련의 현미경 사진을 나타낸다. 도 18b는 150℃에서 240, 720, 및 1440시간 동안 에이징한 후의, 종래 기술의 SAC305 합금과 하부의 구리 기재 사이의 계면의 일련의 현미경 사진을 나타낸다. 도 19는 본 개시에 따른 합금 및 종래 기술의 SAC305 합금에 대한 150℃에서의 에이징 시간의 함수로서의 총 IMC 두께를 나타내는 선 차트이다. 도 20은 본 개시에 따른 합금 및 종래 기술의 SAC305 합금에 대한 150℃에서의 에이징 시간의 함수로서의 Cu₃Sn IMC 두께를 나타내는 선 차트이다.

전술한 개요뿐만 아니라 하기의 상세한 설명은 도면과 함께 읽을 때 더 잘 이해될 것이다. 청구범위는 도면에 도시된 배열 및 수단으로 제한되지 않는다는 것이 이해되어야 한다. 또한, 도면에 도시된 외관은 장치의 언급

된 기능을 달성하기 위해 이용될 수 있는 많은 장식적 외관들 중 하나이다.

발명을 실시하기 위한 구체적인 내용

- [0013] 하기의 상세한 설명에서, 본 개시의 실시 형태들의 완전한 이해를 제공하기 위해 특정 세부 사항들이 기술될 수 있다. 그러나, 개시된 예들이 이들 특정 세부 사항의 일부 또는 전부가 없이도 실시될 수 있다는 것이 당업자 에게 명백하게 될 것이다. 간결함을 위해, 잘 알려진 특징 또는 공정은 상세히 기술되지 않을 수 있다. 또한, 유사하거나 동일한 도면 부호가 공통의 또는 유사한 요소를 식별하는 데 사용될 수 있다.
- [0014] 특히 극한 환경에서, 다양한 전자 응용에 적합한 신규한 무연 땜납 합금 조성물이 하기에 기술되어 있다. 이들 땜납 합금 조성물은 다양한 형태로 사용될 수 있다. 예를 들어, 땜납 합금 조성물은 바(bar), 와이어, 땜납 분 말, 땜납 페이스트, 또는 다른 미리 결정된 예비성형체(preform)의 형태로 사용될 수 있다. 이들 땜납 합금 조 성물은 주석계, 특히 주석-은-구리(때때로 "SAC"로 지칭됨)계이다.
- [0015] 사물 인터넷(Internet of Things, IoT)이 개시됨에 따라, 전자 장치는 점점 더 까다로운 작동 환경에 적용되고 있어, 전력 밀도가 더 높아지게 된다. 그 결과, 더 높은 온도에서 작동할 수 있는 땜납이 전자 조립체 산업에 서 절박하게 요구된다. 자동차, 기차, 항공우주, 석유 시추, 다운홀(downhole) 가스 탐사, 및 전력 스테이션과 같은 전력 전자 응용의 작동 온도는 종종 100℃ 내지 200℃에서 변한다. 장시간 동안 승온에 노출된 땜납 조인 트는 종종 그의 기계적 강도 및 구조적 완전성을 상실한다.
- [0016] 소량의 코발트를 주석-은-구리 땜납에 첨가하는 것은 과냉각 온도를 현저히 감소시키고 큰 Ag₃Sn 소판의 형성을 감소시킨다(그렇지 않으면 소판의 형성은 불량한 기계적 성능으로 이어질 수 있다). 또한, 코발트 및 티타늄을 첨가하는 것의 상승적 효과는 미세화되고(refined) 균일하고 안정한 미세구조를 야기한다. 그러한 미세구조는 땜납 조인트의 피로 수명을 현저히 향상시킬 수 있다. 주석-은-구리 합금에 대한 첨가제로서, 비스무트 및 안 티몬 둘 모두는 주석 매트릭스 중에 용해되고 고용체 강화제로서 작용하며, 이는 특히 가혹한 환경에서 땜납의 기계적 특성 및 열-기계적 신뢰성을 개선한다.
- [0017] 표 1 내지 표 5에 나타낸 조성물은 소정의 종래 기술 합금보다 우수한 바람직한 특성을 나타내는 것으로 밝혀졌다. 예를 들어, 표 1 내지 표 5에 기재된 무연 땜납 조성물은, 소정의 종래 기술 합금과 비교하여, 극고온 및 극저온 기후에서 더 낮은 과냉각 온도, 합리적인 습윤 및 확산 성능, 개선된 열기계적 신뢰성, 및 고온 내크리 프성을 제공한다.
- [0018] 표 1은 주석, 은, 구리, 비스무트, 코발트, 및 티타늄을 포함하는 본 개시에 따른 몇몇 조성물을 제공한다. 선 택적으로, 이들 조성물은 니켈을 추가로 포함할 수 있다.
- [**0019**] [표 1]

원소	조성 범위 1.1 (중량%)	조성 범위 1.2 (중량%)	조성 범위 1.3 (중량%)	조성 범위 1.4 (중량%)	조성 범위 1.5 (중량%)
은 (Ag)	2.0 - 5.0	3.1 – 3.8	3.1 – 3.8	3.1 – 3.8	3.1 – 3.8
구리 (Cu)	0.2 – 1.2	0.5 – 0.9	0.5 – 0.8	0.5 – 0.9	0.5 - 0.8
비스무트 (Bi)	0.0 - 5.0	0.0 - 3.2	1.5 – 3.8	0.0 - 3.2	1.5 – 3.8
코발트 (Co)	0.0 - 1.0	0.01 - 0.2	0.03 - 0.05	0.03 - 0.2	0.03 - 0.05
티타늄 (Ti)	0.0 – 0.02	0.005 - 0.02	0.005 – 0.008	0.005 - 0.02	0.005 – 0.008
니켈 (Ni)				0.01 - 0.1	0.01 - 0.1
주석 (Sn)	잔부	잔부	잔부	잔부	잔부

[0020]

[0021] 표 2는 구체적인 예로서 나타나 있는 본 개시에 따른 몇몇 더 많은 조성물을 제공한다.

[**0022**] [표 2]

원소	실시예 2.1 (중량%)	실시예 2.2 (중량%)	실시예 2.3 (중량%)	실시예 2.4 (중량%)	실시예 2.5 (중량%)
은 (Ag)	3.8	3.8	3.8	3.8	3.8
구리 (Cu)	0.8	0.8	0.8	0.8	0.8
비스무트 (Bi)	1.5	1.5	1.5	3.0	3.0
코발트 (Co)		0.03	0.05		0.05
티타늄 (Ti)		0.008	0.008		0.008
주석 (Sn)	잔부	잔부	잔부	잔부	잔부

[0023]

[0024] 표 3은 주석, 은, 구리, 비스무트, 코발트, 티타늄, 및 안티몬을 포함하는 본 개시에 따른 몇몇 조성물을 제공 한다. 선택적으로, 이들 조성물은 니켈을 추가로 포함할 수 있다.

[0025] [표 3]

원소	조성 범위 3.1 (중량%)	조성 범위 3.2 (중량%)	조성 범위 3.3 (중량%)	조성 범위 3.4 (중량%)	조성 범위 3.5 (중량%)
은 (Ag)	2.0 - 5.0	3.1 – 3.8	3.1 – 3.8	3.1 – 3.8	3.1 – 3.8
구리 (Cu)	0.2 – 1.2	0.5 – 0.9	0.5 – 0.8	0.5 – 0.9	0.5 - 0.8
비스무트 (Bi)	0.0 - 5.0	0.0 - 3.2	1.5 – 3.8	0.0 - 3.2	1.5 – 3.8
코발트 (Co)	0.001 – 1.0	0.03 - 0.2	0.03 – 0.05	0.03 - 0.2	0.03 - 0.05
티타늄 (Ti)	0.005 - 0.02	0.005 - 0.02	0.005 - 0.008	0.005 - 0.02	0.005 - 0.008
안티몬 (Sb)	0.0 - 5.0	1.0 - 3.0	1.0 – 3.0	1.0 - 3.0	1.0 - 3.0
니켈 (Ni)				0.01 – 0.1	0.01 - 0.1
주석 (Sn)	잔부	잔부	잔부	잔부	잔부

[0026]

[0027] 표 4는 구체적인 예로서 나타나 있는 본 개시에 따른 몇몇 더 많은 조성물을 제공한다.

[0028] [표 4]

원소	실시예 4.1 (중량%)	실시예 4.2 (중량%)	실시예 4.3 (중량%)	실시예 4.4 (중량%)	실시예 4.5 (중량%)	실시예 4.6 (중량%)
은 (Ag)	3.8	3.8	3.8	3.8	3.8	3.2
구리 (Cu)	0.8	0.8	0.8	0.8	0.8	0.8
비스무트 (Bi)	1.5	1.5	1.5	3.0	3.0	3.0
코발트 (Co)		0.03	0.05		0.05	0.05
티타늄 (Ti)		0.008	0.008		0.008	0.008
안티몬 (Sb)	1.0	1.0	1.0	1.5	1.5	3.0
주석(Sn)	잔부	잔부	잔부	잔부	잔부	잔부

[0029]

[0030] 표 5는 구체적인 예로서 나타나 있는 본 개시에 따른 몇몇 더 많은 조성물을 제공한다.

[0031] [표 5]

원소	실시예 5.1 (중량%)	실시예 5.2 (중량%)	실시예 5.3 (중량%)	실시예 5.4 (중량%)	실시예 5.5 (중량%)
은 (Ag)	3.8	3.8	3.8	3.8	3.8
구리 (Cu)	0.7	0.7	0.8	0.8	0.8
비스무트(Bi)	1.5	1.5	1.5	3.0	3.0
코발트 (Co)		0.03	0.05		0.05
티타늄 (Ti)		0.008	0.008		0.008
안티몬 (Sb)			1.0	1.0	1.5
니켈 (Ni)	0.05	0.05	0.05	0.05	0.05
주석(Sn)	잔부	잔부	잔부	잔부	잔부

[0032]

- [0033] 주석-은-구리(Sn-Ag-Cu) 시스템에 대한 비스무트(Bi), 안티몬(Sb), 코발트(Co) 및/또는 티타늄(Ti)의 제어된 첨 가가 합금의 결정립 구조를 미세화하고 합금의 기계적 강도를 증가시키는 데 사용된다. 더 구체적으로, 코발트 가 합금에 첨가되어 결정립 구조를 미세화하고 과냉각 온도를 감소시킬 수 있다. 또한, 코발트 및 티타늄을 첨 가하는 것의 상승적 효과는 미세화되고 균일하고 안정한 미세구조를 야기한다. 그러한 미세구조는 땜납 조인트의 의 피로 수명을 현저히 향상시킨다. 주석-은-구리 시스템에 대한 첨가제로서, 비스무트 및 안티몬 둘 모두가 주석에 용해되고 합금에 첨가되어 고용체 강화를 제공하고 그에 따라, 특히 가혹한 환경에서, 합금의 기계적 특성 및 임의의 생성되는 땜납 조인트의 열 사이클 신뢰성을 개선할 수 있다. 또한, 비스무트는 합금의 고상선 온도를 감소시키고 그의 표면 장력을 감소시켜, 습윤성을 개선한다. 안티몬은 합금의 기계적 강도를 증가시킨다. 선택적으로, 합금의 기계적 특성을 추가로 개선하기 위해 니켈이 첨가될 수 있다. 또한, 합금의 내산화성을 개선하기 위해 게르마늄 또는 인과 같은 원소가 첨가될 수 있다. 본 출원에서 청구된 특정 조성 범위를 통해 달성되는 전술된 메커니즘들 사이의 적절한 상승 작용(synergy)은, 특히 가혹한 환경에서, 합금의 기계적 특성 및 열 사이클에 대한 임의의 생성되는 땜납 조인트의 저항성을 최적화하게 된다.
- [0034] 개시된 조성물 범위는 소정의 종래 기술 합금보다 우수한 탁월한 열 피로 저항성 및 내크리프성을 나타내는 것으로 밝혀졌다. 본 명세서에 기재된 고 신뢰성 무연 땜납 조성물은 극고온 및 극저온 기후에서 과냉각 온도의 현저한 감소, 합리적인 습윤 및 확산 성능, 개선된 열기계적 신뢰성, 및 고온 내크리프성을 제공한다. 개시된 땜납 조성물은 현저히 감소된 과냉각 온도, 및 개선된 열기계적 신뢰성 및 내크리프성을 나타내는 것으로 밝혀 졌다. 큰 Ag₃Sn 소판이 형성되는 것이 방지된다. 개시된 땜납 조성물은 자동차, 기차, 항공우주, 석유 시추, 다운홀 가스 탐사, 및 전력 스테이션에서의 응용을 포함하지만 이로 한정되지 않는 고온 또는 가혹한 환경에서 의 전자 응용에 적합하다.
- [0035] 도 1a 및 도 1b는 96.5 중량%의 주석, 3.0%의 은, 및 0.5 중량%의 구리를 포함하는 종래 기술의 합금 ("SAC305")의 표면의 영역들의 주사 전자 현미경("SEM") 현미경 사진을 나타낸다. 도 2a 및 도 2b는 표 4에 나 타낸 실시예 4.5의 조성물에 따른 합금의 표면의 영역들의 SEM 현미경 사진을 나타낸다. 도 1a 및 도 2a는 캐 스팅된 그대로의 합금을 나타내는 반면; 도 1b 및 도 2b는 125℃의 온도에서 24시간 동안 에이징한 후의 합금을 나타낸다. SEM 현미경 사진으로부터 알 수 있는 바와 같이, SAC305 합금의 결정립 구조(도 1a 및 도 1b에 나타 나 있음)는 승온에서 에이징하는 동안 조대화된다. 대조적으로, 실시예 4.5 합금은 125℃에서 에이징하는 동안 그의 더 미세하고 더 균일한 결정립 구조를 유지한다(도 2a를 도 2b와 비교). 미세구조는 Ag₃Sn 및 Cu₆Sn₅ 침전 물을 함유하며, 비스무트 및 안티몬은 각각 주석 매트릭스 중에 용해되고, 이는 고용체 강화를 제공한다. 코발 트 및 티타늄은 미세-합금화 원소로서 작용하여 미세구조를 미세화한다. 미세하게 분포된 Ag₃Sn 및 Cu₆Sn₅ 침전 물 및 고용체 강화는, 특히 가혹한 환경에서, 승온에서 에이징 동안 미세구조를 안정화시킨다.

[**0036**] [표 6]

합 금	합금 조성	가열 개시, T ₁	냉각 개시,	과냉각	페이스티
		(3)	T ₂ (°C)	$(\Delta T = T_1 -$	범위 (℃)
				T ₂)	
종 래	Sn-0.5Cu-	217	197	2 0	4
기술의	3 A g				
SAC305					
합 금					
실시예	Sn-0.8Cu-	217.16	219.85	12.32	2.4
4.1	3.8Ag-				
	1.5Bi-				
	1.0Sb				
실시예	Sn-0.8Cu-	217.46	208.68	10.31	3.62
4.2	3.8 A g -				
	1.5Bi-				
	1.0Sb				
	0.03Co-				
	0.00811				
실시예	Sn-0.8Cu-	217.56	213.04	4.52	3.28
4.3	3.8Ag-				
	1.5B1-				
	1.050-				
	0.0300-				
신시에	Sp-0.8Cu-	213 73	107 65	16.08	5.92
· 글 · 이 · 에 4 · 4	3 8 A g_ 3 B i_	215.75	197.05	10.00	5.72
4,4	1.5Sh				
심시예	Sn-0.8Cu-	213.96	206.47	7.49	6.55
4.5	3.8Ag-3Bi-				
	1.5Sb-				
	0.05CO-				
	0.008Ti				
실시예	Sn-0.8Cu-	215.18	223.51	8.35	5.67
4.6	3.2Ag-3Bi-				
	3 S b -				
	0.05CO-				
	0.008Ti				

[0037]

- [0038] 도 3 내지 도 8에 나타낸 바와 같이, 시차 주사 열량법("DSC")에 의해 땜납 합금의 용융 특성을 결정하였다. 땜납 합금에 대해 과냉각(즉, 가열 개시 온도와 냉각 개시 온도 사이의 온도 차이)을 측정하였다. 결정의 침전 이 자발적인 것이 아니라 활성화 에너지를 필요로 하기 때문에 과냉각이 일어난다. 도 3은 96.5 중량%의 주석, 3.0 중량%의 은, 및 0.5 중량%의 구리를 포함하는 종래 기술의 SAC305 합금에 대한 DSC 곡선을 나타낸다. 도 4, 도 5, 도 6, 도 7 및 도 8은 각각 표 4에 나타낸 실시예 4.1, 실시예 4.2, 실시예 4.3, 실시예 4.4, 및 실 시예 4.5의 조성물에 따른 합금에 대한 DSC 곡선을 나타낸다. 또한, DSC 분석으로부터의 데이터가 표 6에 나타 나 있다.
- [0039] 주석-은-구리(Sn-Ag-Cu) 땜납의 높은 과냉각 거동은 용융된 주석 땜납이 고화되기 어렵다는 것을 나타낸다. 높 은 과냉각은 액체상으로부터 고체상을 핵화시키는 데 있어서의 어려움에 기인한다. 큰 과냉각은 주석 덴드라이 트, 공융 미세구조, 일차 금속간 화합물(Ag₃Sn, Cu₆Sn₅)과 같은 미세구조 특징에 영향을 줄 수 있으며, 이는 결 국 땜납의 기계적 특성에 영향을 미친다. 그러한 과냉각은 땜납 조인트의 신뢰성에 심각한 영향을 미칠 수 있 으며 조인트들이 상이한 시점에 고화되는 불리한 상황을 야기할 수 있다. 이는 고화된 조인트로의 응력 집중을 초래하여 기계적 파괴를 야기할 수 있다. 예를 들어, SAC305 합금은 과냉각 온도가 20℃이다. 대조적으로, 본 개시에 따른 합금은 실시예 4.3 합금에 대해 나타난 바와 같이, 예를 들어 4.5℃만큼 낮은 더 작은 과냉각을 나 타낸다.
- [0040] 도 3과 도 4 내지 도 8을 비교함으로써, 그리고 표 6을 검토함으로써 알 수 있는 바와 같이, 실시예 합금 중 몇 몇은 종래 기술의 SAC305 합금과 비교하여 과냉각의 뚜렷한 감소를 나타낸다. 예를 들어, 종래 기술의 SAC305 합금의 경우, 가열 개시(T₁)는 217℃이고, 냉각 개시(T₂)는 197℃이므로, 20℃의 과냉각(ΔT)을 제공한다. 실 시예 4.3 합금의 경우, T₁은 대략 217.5℃이고 T₂는 대략 213℃이므로, 대략 4.5℃의 과냉각(ΔT)을 제공한다.
- [0041] 도 9a 및 도 9b는 종래 기술의 SAC305 합금, 실시예 4.3 합금, 및 실시예 4.5 합금의 습윤 시간(도 9a) 및 최대 습윤력(도 9b) 사이의 비교를 나타낸다. 습윤 실험은 IPC(국제 전자 산업 표준 협회(Association Connecting Electronics Industries)) 표준 IPC-TM-650에 따라 수행하였다. 이러한 표준은 총 습윤 시간 및 최대 습윤력 을 결정하는 것을 수반하는 습윤 밸런스 시험(wetting balance test)을 포함한다. 더 짧은 습윤 시간은 더 높 은 습윤성에 상응한다. 더 짧은 습윤 시간 및 더 높은 습윤력은 더 우수한 습윤 성능을 반영하며, 주어진 납땜 공정 하에서의 확산 및 필렛(fillet) 형성과 상관된다. 도 9a 및 도 9b는 실시예 4.3 및 실시예 4.5 합금의 습 윤 특성이 종래 기술의 SAC305 합금보다 우수하다(또는 최소한 그에 필적한다)는 것을 나타낸다.

[0042] 땜납의 습윤 성능은 또한 확산비 및 확산성의 관점에서 표현될 수 있다. 확산 면적은 납땜 패드 기재 상에 얼마나 많은 땜납이 존재하는지를 나타내며, 확산비로서 표시될 수 있다. IPC(IPC J-STD-004B, TM 2.4.46) 및 JIS Z 3197 표준에 따라 확산 시험을 수행하였다. 세 가지 상이한 기재: 무피복(bare) 구리(Cu), 유기 납땜성 보존제(Organic Solderability Preservative; OSP) 코팅된 구리, 및 무전해 니켈 침지 금(Electroless Nickel Immersion Gold; ENIG) 도금된 구리에 대해 확산비 및 확산성을 조사하였다. 땜납 합금(원형 예비성형체)을 플 릭스를 사용하여 시험되는 기재 상에 용융시켰다. 시험 전과 후에 광학 현미경을 사용하여 습윤된 면적을 측정 하였다. 확산비는 리플로(reflow)/용융 후의 습윤된 면적을 리플로/용융 전의 습윤된 면적으로 나누어서 계산 한다. 땜납 높이를 측정하여 확산성(또는 확산 인자)을 계산하였다. 확산성은 하기 식을 사용하여 계산하였으며, 여기서 S_R = 확산성, D = 땜납의 직경(구형인 것으로 가정), H = 확산 땜납의 높이, 및 V = 땜납의 부피(g/ cm)(시험된 땜납의 질량 및 밀도로부터 추정)이다:

$$S_R = \frac{D-H}{D} \times 100$$

[0043]

(여기서, D = 1.248 × V¹/₃)

- [0044] 도 10a는 2가지 상이한 온도(260℃ 및 300℃)에서 무피복 구리 기재 상의 종래 기술의 SAC 합금과 비교한 실시 예 4.6 합금의 확산비를 나타낸다. 도 10b는 2가지 상이한 온도(260℃ 및 300℃)에서 종래 기술의 SAC 합금과 비교한 실시예 4.6 합금의 확산성을 나타낸다.
- [0045] 도 11a는 255℃에서 3가지 상이한 구리 기재(OSP, 무피복 구리, 및 ENIG) 상의 실시예 4.6 합금의 확산비 사이 의 비교를 나타낸다. 도 11b는 255℃에서 3가지 상이한 구리 기재(OSP, 무피복 구리, 및 ENIG) 상의 실시예 4.6 합금의 확산성 사이의 비교를 나타낸다.
- [0046] 도 12a, 도 12b, 도 13a, 및 도 13b는 260℃에서(도 12a 및 도 13a) 그리고 280℃에서(도 12b 및 도 13b) 종래 기술의 SAC305 합금의 구리 용해 속도와 실시예 4.3 합금(합금-M)의 구리 용해 속도 사이의 비교를 나타낸다. 이들 도면에서 알 수 있는 바와 같이, 구리 용해 속도는 종래 기술의 SAC305 합금과 비교하여 실시예 4.3 합금 의 경우 더 느리다. 세척하고, 탈지하고, 산 용액 중에서 세정하고, 헹구고, 건조시킨 순수 구리 와이어를 사 용하여 구리 용해 시험을 수행하였다. 시험은 2가지 온도, 즉 260℃ 및 280℃에서 수행하였다. 구리 와이어를 용응된 땜납에 5초, 10초, 및 20초 동안 노출시켰다. 면적 측정 및 분석을 수행하는 것을 비롯하여, 구리 와이 어의 단면을 광학 현미경으로 분석하였다.
- [0047] 도 14a는 종래 기술의 SAC305 합금과 비교한 실시예 4.5 합금의 경도 값을 나타낸다. 막대 차트로부터 알 수 있는 바와 같이, 실시예 4.5 합금의 경도는 종래 기술의 SAC305 합금의 대략 2배이다. 도 14b는 종래 기술의 SAC305 합금과 비교한 실시예 4.6 합금의 경도 값을 나타낸다. 캐스팅된 그대로, 150℃에서 144시간 에 이징 후, 및 150℃에서 720시간 에이징 후의 경도 시험의 결과를 나타내는 도 14b에 나타낸 바와 같이, 실시예 4.6 합금은 종래 기술의 SAC305 합금과는 대조적으로 에이징 후에 경도를 유지한다.
- [0048] 본 개시에 따른 합금의 열팽창 계수(CTE)를 또한 측정하였다. 땜납의 CTE와 하부 기재의 CTE 사이의 부정합 (mismatch)은 주기적 로딩 동안 피로 파괴로 이어질 수 있다. CTE 부정합이 증가함에 따라, 전단 변형률도 증 가하며, 이는 구성요소의 열 사이클 수명을 감소시킨다. CTE 부정합으로 인해 응력 집중 부위에서 균열이 시작 되고 전파될 수 있다. 땜납 조인트에서의 균열 발생은 땜납의 CTE와 하부 기재의 CTE 사이의 차이를 감소시킴 으로써 감소될 수 있다. 표 7은 예시적인 하부 기재의 CTE를 참조하여 종래 기술의 SAC305 합금과 비교한 본 개시에 따른 합금의 CTE를 나타낸다.
- [0049] [표 7]

합금	합금/기재 조성	온도 범위 ℃	CTE, ppm/⁰C
SAC305	Sn-3.0Ag-0.5Cu	30 - 150	24.0
실시예 4.6	Sn-0.8Cu-3.8Ag-3Bi- 1.5Sb-0.05Co- 0.008Ti	30 - 150	22.88
실시예 기재	구리	30 - 150	16.7

[0050]

[0051] 종래 기술의 SAC305 합금과 비교한 본 개시에 따른 예시적인 합금(실시예 4.6 합금)의 인장 응력-변형률 차트가 도 15에 나타나 있다. 캐스팅 땜납을 기계가공하고, 100 mm × 6 mm × 3 mm 크기의 직사각형 조각으로 절단하

였다. 샘플을 150℃에서 최대 720시간 동안 등온적으로 에이징하였다. 10⁻² s⁻¹의 변형률로 실온에서 인장 시 험을 수행하였다. 합금의 최대 인장 강도 및 항복 강도가 표 8에 나타나 있다. 실시예 4.6 합금에 나타나 있 는 인장 강도의 상당한 개선은 비스무트의 첨가 및 고용체 강화 효과로 인한 것일 수 있다. 실시예 4.6 합금은 종래 기술의 SAC305 합금보다 더 연성인 것으로 또한 나타나 있다. 150℃에서 에이징한 후의 실시예 4.6 합금 및 종래 기술의 SAC305 합금의 인장 강도 특성이 도 16에 나타나 있다. 실시예 4.6 합금 및 종래 기술의 SAC305 합금 둘 모두는 승온에서 에이징 후에 최대 인장 강도의 감소를 나타내지만, 이 감소는 인장 강도의 약 42% 감소를 나타내는 종래 기술의 SAC305 합금의 경우 상당히 더 현저하다.

[0052]

[표 8]

합금	합금 조성	최대 인장 강도 (MPa)	항복 강도 (MPa)
SAC305	Sn-3.0Ag-0.5Cu	57.72 ± 0.24	49.72 ± 0.19
실시예 4.6	Sn-0.8Cu-3.8Ag-3Bi- 1.5Sb-0.05Co- 0.008Ti	84.11 ± 1.37	79.42 ± 1.48

[0053]

- [0054] 크리프 변형은 높은 상동 온도(homologous temperature)가 수반되기 때문에 마이크로전자 패키징에서의 땜납 조 인트의 주요 파괴 모드이다. 땜납은 패키지 내의 칩과 다른 층들 사이의 상이한 열팽창 계수(CTE)로 인해 열기 계적 응력을 경험한다. 이러한 응력은 긴 이용 기간(period of service)에 걸쳐 소성 변형을 야기할 수 있다. 땀납 합금은 실온에서도 크리프 변형을 겪을 수 있다. 실생활 응용에서, 전자 모듈은 -40℃ 내지 +125℃의 온 도 범위에 걸쳐 작동할 수 있으며, 이는 0.48 내지 0.87 T_m(땜납의 용융 온도의 분율)의 범위이다. 응력을 받 고 있는 장치의 경우, 이는 급속 크리프 변형 범위이다. 따라서, 무연 땜납에서의 크리프 변형에 대한 완전한 이해가 전자 패키징 산업에 중요한 관심사이다. 캐스팅 땜납을 기계가공하고, 120 mm × 6 mm × 3 mm 크기의 직사각형 조각으로 절단하였다. 샘플을 150℃에서 최대 144시간 동안 등온적으로 에이징하였다. 10 MPa의 응 력 수준에서 실온에서 크리프 시험을 수행하였다. 도 17에 나타낸 바와 같이, 실시에 4.6 합금은 종래 기술의 SAC305 합금과 비교하여 우수한 내크리프성을 나타낸다. 실시예 합금에 의해 나타나는 내크리프성은 미세구조 를 미세화하기 위한 미세합금의 첨가 및 고용체 및 침전 경질화와 같은 강화 메커니즘으로 인한 것일 수 있다.
- [0055] 납땜 작업 동안, 고체 기재로부터의 재료가 용해되고 땜납과 혼합되어, 금속간 화합물(IMC)이 형성되게 한다. 얇고, 연속적이며, 균일한 IMC 층이 양호한 접합을 위해 중요한 경향이 있다. IMC가 없다면, 땜납/전도체 조인 트가 약해지는 경향이 있는데, 그 이유는 접합에서 야금 상호작용이 일어나지 않기 때문이다. 그러나, 계면에 서의 두꺼운 IMC 층은 땜납 조인트의 신뢰성을 저하시킬 수 있는데, 그 이유는 두꺼운 IMC 층이 취성일 수 있기 때문이다. 노출 시간 및 온도의 함수로서 땜납과 OSP 기재 사이에 형성된 IMC 층을 검사하였다. 땜납 합금을 OSP 기재 상에서 용융시키고, 플럭스를 사용하여 일렉트로버트 옴니엑셀 7 존 리플로 오븐(Electrovert OmniExcel 7 Zone Reflow oven)에서 리플로시켰다. 이어서, 땜납 합금 샘플을 150℃의 승온에 최대 1440시간 동안 노출시켰다. 상이한 에이징 기간에 IMC 층을 평가하였다.
- [0056] 도 18a 및 도 18b는 150℃에서 최대 1440시간 동안 에이징한 후의 실시예 4.6 합금의 IMC 층 성장과 SAC305 합 금의 IMC 층 성장 사이의 비교를 나타낸다. 이들 도면에서 알 수 있는 바와 같이, 실시예 4.6 합금 및 SAC305 합금 둘 모두는 IMC 층 성장을 나타낸다. 그러나, SAC305 합금은, (예를 들어, 720시간 동안 에이징 후) 커켄 들 공극(Kirkendall void)의 존재에 의해 나타나는 바와 같이, 취성의 징후를 나타낸다. 두 합금 모두가 땜납 과 구리 기재 사이의 경계에서의 Cu₆Sn₅ 및 Cu₃Sn 층의 형성을 나타낸다. 도 19는 에이징 시간의 함수로서의 총 IMC 두께를 나타낸다. 도 19에 나타낸 바와 같이, SAC305 합금에 대한 IMC 층은 실시예 4.6 합금에서보다 훨씬 더 두껍다. 미세구조를 미세화하기 위한 미세합금의 첨가는 확산을 제한할 수 있으며, 따라서 또한 총 IMC 성 장을 제한할 수 있다. 실시예 4.6 합금에서의 더 낮은 IMC 두께는 아마도 실시예 4.6 합금이 승온에서의 더 긴 수명 응용에 적합하게 한다. 도 20은 에이징 시간의 함수로서의 총 Cu₃Sn 두께를 나타낸다. Cu₆Sn₅와 Cu 기재 사이의 계면에서, 두 합금 모두에 대해 Cu₃Sn의 새로운 IMC 층이 형성된다. 실시예 4.6 합금에서, 미세합금의 첨가는 Cu₃Sn의 성장을 억제하며, 이는 커켄들 공극의 형성을 제한할 수 있다.
- [0057] 본 명세서에 기술된 요소들 중 일부는 선택적인 것으로 명시적으로 식별되는 반면, 다른 요소는 이러한 방식으로 식별되지 않는다. 이와 같이 식별되지 않더라도, 일부 실시 형태에서, 이들 다른 요소 중 일부는 필수적인 것으로 해석되도록 의도되지 않으며, 당업자에게 선택적인 것으로 이해될 것이라는 것에 유의해야 할 것이다.

[0058]

본 개시가 소정의 구현 형태들을 참조하여 기술되었지만, 본 방법 및/또는 시스템의 범위로부터 벗어남이 없이 다양한 변경이 이루어질 수 있고 등가물이 대체될 수 있음이 당업자에 의해 이해될 것이다. 또한, 본 개시의 범위로부터 벗어남이 없이 특정 상황 또는 재료를 본 개시의 교시에 맞추기 위해 많은 수정이 이루어질 수 있다. 예를 들어, 개시된 예의 시스템, 블록, 및/또는 다른 구성요소는 조합, 분할, 재배열, 및/또는 달리 수 정될 수 있다. 따라서, 본 개시는 개시된 특정 구현 형태로 제한되지 않는다. 대신에, 본 개시는, 문자 그대 로 그리고 균등론 하에서의 둘 모두로, 첨부된 청구범위의 범위 내에 속하는 모든 구현 형태를 포함할 것이다.

도면

도면1a

도면1b

도면2a

*도면2*b

도면9a

도면9b

도면10a

도면10b

도면11a

도면11b

도면12a

도면12b

도면13a

도면13b

도면14a

도면14b

도면18a

도 18a

도면18b

도 18b

