A 00 N O O

WO 03/065252 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 03/065252 Al

7 August 2003 (07.08.2003) PCT
(51) International Patent Classification”: GOO6F 17/30, (74)
12/06
(21) International Application Number: PCT/US03/03067
(81

(22) International Filing Date: 3 February 2003 (03.02.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/353,487 1 February 2002 (01.02.2002) US
(71) Applicant and
(72) Inventor: FAIRWEATHER, John [US/US]; 1649

Wellesley Drive, Santa Monica, CA 90405 (US).

34

Agents: THIESSEN, Kendall, L. et al.; Gibson, Dunn &
Crutcher LLP ,, 1801 California Street, Suite 4100, Denver,
CO 80202 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FIL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR MANAGING MEMORY

(57) Abstract: A new memory tuple is described that creates both a handle as

310

well as a reference (510) to an item (430) within the handle (430). The refer-

ence is created using an offset value that defines the physical offset of the data

Nextlte
MoveT L. 320
MoveFro | 330
Paren

/N
// e
Nextite

MoveT

MoveFro
Paren

7/—\—- 420

Nextite
" MoveT
MoveFro

Paren

%——wsm

> Nextite {
MoveT

MoveFro
Paren

D e . B
N

520

430

within the memory block. Thereafter, if references are passed in terms of their
offset value, this value will be the same in any copy of the handle regardless of
the machine. In a distributed computing environment, equivalence between han-
dles is established in a single transaction between two communicating machines.
Thereafter, the two machines can communicate about specific handle contents
simply by using offsets.

WO 03/065252

AT TV 0O AR

SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv)) for US only

Published:
— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/065252 PCT/US03/03067

SYSTEM AND METHOD FOR MANAGING MEMORY
Inventor: John Fairweather

BACKGROUND OF THE INVENTION

The Macintosh Operating system ("OS"), like all OS layers, provides an API where
applications can allocate and de-allocate arbitrary sized blocks of memory from a heap.
There are two basic types of allocation, viz: handles and pointers. A pointer is a non-
relocatable block of memory in heap (referred to as *p in the C programming language,
hereinafter “C”), while a handle is a non-relocatable reference to a relocatable block of
memory in heap (referred to as **h in C). In general, handles are used in situations where the
size of an allocation may grow, as it is possible that an attempt to grow a pointer allocation
may fail due to the presence of other pointers above it. In many operating systems (including
OS X on the Macintosh) the need for a handle is removed entirely as a programmer may use
the memory management hardware to convert all logical addresses to and from physical

addresses.

The most difficult aspect of using handle based memory, however, is that unless the
handle is ‘locked’, the physical memory allocation for the handle can move around in
memory by the memory manager at any time. Movement of the physical memory allocation
is often necessary in order to create a large enough contiguous chunk for the new block size.
The change in the physical memory location, however, means that one cannot ‘de-reference’
a handle to obtain a pointer to some structure within the handle and pass the pointer to other -
systems as the physical address will inevitably become invalid. Even if the handle is locked,
any pointer value(s) are only valid in the current machine’s memory. If the structure is
passed to another machine, it will be instantiated at a different logical address in memory and
all pointer references from elsewhere will be invalid. This makes it very difficult to
efficiently pass references to data. What is needed, then, is a method for managing memory
references such that a reference can be passed to another machine and the machine would be
able to retrieve or store the necessary data even if the physical address of the data has been
changed when transferred to the new machine or otherwise altered as a result of changes to

the data.

WO 03/065252 PCT/US03/03067

SUMMARY OF THE INVENTION

The following invention provides a method for generating a memory reference that is
capable of being transferred to different machine or memory location without jeopardizing
access to relevant data. Specifically, the memory management system and method of the
present invention creates a new memory tuple that creates both a handle as well as a reference
to an item within the handle. In the latter case, the reference is created using an offset value
that defines the physical offset of the data within the memory block. If references are passed
in terms of their offset value, this value will be the same in any copy of the handle regardless
of the machine. In the context of a distributed computing environment, all that then remains
is to establish the equivalence between handles, which can accomplished in a single
transaction between two communicating machines. Thereafter, the two machines can

communicate about specific handle contents simply by using offsets.

The minimum reference is therefore a tuple comprised of the handle together with the
offset into the memory block, we shall call such a tuple an ‘ET_ViewRef” and sample code
used to create such a tuple 100 in C is provided in Figure 1. Once this tuple has been created,
it becomes possible to use the ET_ViewRef structure as the basic relocatable handle
reference in order to reference structures internal to the handle even when the handle may
move. The price for this flat memory model is the need for a wrapper layer that transparently
handles the kinds of manipulations described above during all de-referencing operations,
however, even with such a wrapper, operations in this flat memory model are considerably

faster that corresponding OS supplied operations on the application heap.

WO 03/065252 PCT/US03/03067

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates sample code used to create the minimum reference ‘tuple’ of the

present invention,

Figure 2 illustrates a drawing convention that is used to describe the interrelationship

between sub-layers in one embodiment of the present invention;

Figure 3 illustrates a sample header block that may be used to practice the present

invention;
Figure 4 illustrates a simple initial state for a handle containing multiple structures;

Figure 5 illustrates the type of logical relationships that may be created between

structures in a handle following the addition of a new structure;

Figure 6 illustrates a sample of a handle after increasing the size of a given structure

within the handle beyond its initial physical memory allocation;

Figure 7 illustrates the manner in which a handle could be adapted to enable unlimited

growth to a given structure within the handle;
Figure 8 illustrates the handle after performing an undo operation;

Figure 9 illustrates a handle that has been adapted to include a time axis in the header

field of the structures within the handle;

Figure 10 illustrates the manner in which the present invention can be used to store

data as a hierarchical tree; and

Figure 11 illustrates the process for using the memory model to sort structures within

a handle.

WO 03/065252 PCT/US03/03067

DETAILED DESCRIPTION

Descriptive Conventions

In order to graphically describe the architectural components and interrelations that
comprise the software, this document adopts a number of formalized drawing conventions.
In general, any given software aspect is built upon a number of sub-layers. Referring now to
figure 2, a block diagram is provided that depicts these sub-layers as a ‘stack’ of blocks. The
lowest block is the most fundamental (generally the underlying OS) and the higher block(s)
are successive layers of abstraction built upon lower blocks. Each such block is referred to

interchangeably as either a module or a package.

The first, an opaque module 200, is illustrated as a rectangular in Figure 2A. An
opaque module 200 is one that cannot be customized or altered via registered plug-ins. Such
a form generally provides a complete encapsulation of a given area of functionality for which

customization is either inappropriate or undesirable.

The second module, illustrated as T-shaped form 210 in Figure 2B, represents a
module that provides the ability to register plug-in functions that modify its behavior for
particular purposes. In Figure 2A, these plug-ins 220 are shown as ‘hanging’ below the
horizontal bar of the module 210. In such cases, the module 210 provides a complete
‘logical’ interface to a certain functional capability while the plug-ins 220 customize that
functionality as desired. In general, the plug-ins 220 do not provide a callable API of their
own. This methodology provides the benefits of customization and flexibility without the
negative effects of allowing application specific knowledge to percolate any higher up the
stack than necessary. Generally, most modules provide a predefined set of plug-in behaviors
so that for normal operation they can be used directly without the need for plug-in

registration.

In any given diagram, the visibility of lower layers as viewed from above, implies that
direct calls to that layer from higher-level layers above is supported or required as part of
normal operation. Modules that are hidden vertically by higher-level modules, are not

intended to be called directly in the context depicted.

WO 03/065252 PCT/US03/03067

Figure 2C illustrates this descriptive convention. Module 230 is built upon and makes
use of modules 235, 240, and 245 (as well as what may be below module 245). Module 230,
235 and 240 make use of module 245 exclusively. The functionality within module 240 is
completely hidden from higher level modules via module 230, however direct access to

modules 250 and 235 (but not 245) is still possible.

In Figure 2D, the Viewstructs memory system and method 250 is illustrated. The
ViewStructs 250 package (which implements the memory model described herein) is layered
directly upon the heap memory encapsulation 280 provided by the TBFilters 260,
TrapPatches 265, and WidgetQC 270 packages. These three packages 260, 265, 270 form the
heap memory abstraction, and provide sophisticated debugging and memory tracking
capabilities that are discussed elsewhere. When used elsewhere, the terms ViewStructs or

memory model apply only to the contents of a single handle within the heap.

To reference and manipulate variable sized structures within a single memory
allocation, we require that all structures start with a standard header block. A sample header
block (called an ET_Hdr) may be defined in C programming language as illustrated in Figure
3. For the purpose of discussing the memory model, we shall only consider the use of
ET Offset fields 310, 320, 330, 340. The word ‘flags’ 305, among other things, indicates the
type of record follows the ET_Hdr. The ‘version’ 350 and ‘date’ fields 360 are associated
with the ability to map old or changed structures into the latest structure definition, but these

fields 350, 360 are not necessary to practice the invention and are not discussed herein.

Referring now to Figure 4, Figure 4 illustrates a simple initial state for a handle
containing multiple structures. The handle contains two distinct memory structures, structure
410 and structure 420. Each structure is preceded by a header record, as previously
illustrated in Figure 3, which defines its type (not shown) and its relationship to other
structures in the handle. As can be seen from the diagram, the ‘NextItem’ field 310 is simply
a daisy chain where each link simply gives the relative offset from the start of the referencing
structure to the start of the next structure in the handle. Note that all references in this model
are relative to the start of the referencing structure header and indicate the (possibly scaled)
offset to the start of the referenced structure header. The final structure in the handle is
indicated by a header record 430 with no associated additional data where ‘Nextltem =0’.
By following the ‘Nextltem’ daisy chain it is possible to examine and locate every structure
within the handle.

WO 03/065252 PCT/US03/03067

As the figure illustrates, the ‘parent’ field 340 is used to indicate parental relationships
between different structures in the handle. Thus we can see that structure B 420 is a child of
structure A 410. The terminating header record 430 (also referred to as an ET_Null record)
always has a parent field that references the immediately preceding structure in the handle.
Use of the parent field in the terminating header record 430 does not represent a "parent"
relationship, it is simply a convenience to allow easy addition of new records to the handle.
Similarly, the otherwise meaningless ‘moveFrom’ field 330 for the first record in the handle
contains a relative reference to the final ET _Null. This provides an expedient way to locate
the logical end of the handle without the need to daisy chain through the ‘nextltem’ fields for
each structure.

Referring now to Figure 5, Figure 5 illustrates the logical relationship between the
structures after adding a third structure C 510 to the handle. As shown in Figure 5, structure
C 510 is a child of B 420 (grandchild of A 410). The insertion of the new structure involves
the following steps:

1) If necessary, grow the handle to make room for C 510, C’s header 520, and the
trailing ET_Null record 430;

2) Overwrite the previous ET_Null 430 with the header and body of structure C 5 10.

3) Setup C’s parent relationship. In the illustrated example, structure C 510 isa
child of B 420, which is established by pointing the ‘parent' field of C's header file
520 to the start of structure B 420.

4) Append a final ET_Null 530, with parent referenced to C's header 520.

5) Adjust the ‘moveFrom’ field 330 to reflect the offset of the new terminating
ET_Null 530.

In addition to adding structures, the present invention must handle growth within
existing structures. If a structure, such as structure B 420, needs to grow, it is often
problematic since there may be another structure immediately following the one being grown
(structure C 510 in the present illustration). Moving all trailing structures down to make
enough room for the larger B 420 is one way to resolve this issue but this solution, in addition
to being extremely inefficient for large handles, destroy the integrity of the handle contents,

as the relative references within the original B structure 420 would be rendered invalid once

WO 03/065252 PCT/US03/03067

such a shift had occurred. The handle would then have to be scanned looking for such
references and altering them. The fact that structures A 410, B 420, and C 510 will generally
contain relative references over and above those in the header portion make this impractical
without knowledge of all structures that might be part of the handle. In a dynamic computing
environment such knowledge would rarely, if ever, be available, making such a solution

impractical and in many cases impossible.

For these reasons, the header for each structure further includes a moveFrom and
moveTo fields. Figure 6 illustrates the handle after growing B 420 by adding the enlarged B’
structure 610 to the end of the handle. As shown, the original B structure 420 remains where
it is and all references to it (such as the parent reference from C 510) are unchanged. B 420
is now referred to as the “base record” whereas B' 610 is the “moved record”. Whenever any
reference is resolved now, the process of finding the referenced pointer address using C code

is:

src = address of referencing structure header
dst=src + ET_Offset value for the reference
if (dst->moveTo)

dst = dst + dst->moveTo -- follow the move

Further whenever a new reference is created, the process of finding the referenced

pointer using C code is:

src = address of referencing structure header
dst = address of referenced structure header
if (dst->moveFrom)

dst = dst + dst->moveFrom,;
ref value = dst - src

Thus, the use of the moveto and movefrom fields ensures that no references become

invalid, even when structures must be moved as they grow.

Figure 7 illustrates the handle when B 420 must be further expanded into B" 710. In
this case the ‘moveTo’ of the base record 420 directly references the most recent version of
the structure, in this example B" 710. Correspondingly, the record B’ 710 now has a
‘moveFrom’ 720 field that references the base record 420. B’s moveFrom 720 still refers
back to B 420 and indeed if there were more intermediate records between B 420 and B>
(such as B' 610 in this example) the ‘moveTo’ and ‘moveFrom’ fields for all of the records
420, 610, 710 would form a doubly linked list. Once each of these records 420, 610, 710

WO 03/065252 PCT/US03/03067

have been linked, it is possible to re-trace through all previous versions of a structure using
these links. For example, one could find all previous versions of the record starting with B"
710 by following the 'movefrom' field 720 to the base record 420 and then following the
‘nextItem’ link of each record until a record with a ‘moveFrom’ referencing the base record
420 is found. Alternatively, and perhaps more reliably, one could look for structures whose
‘moveTo’ field references record 420 and then work backward through the chain to find

earlier versions.

This method, in which the last ‘grown’ structure moves to the end of the handle, has
the beneficial effect that the same structure is often grown many times in sequence and in
these cases we can optionally avoid creating a series of intermediate ‘orphan’ records.
References occurring from within the bodies of structures may be treated in a similar manner
to those described above and thus by extrapolation one can see that arbitrarily complex
collections of cross-referencing structures can be created and maintained in this manner all

within a single ‘flat” memory allocation.

The price for this flat memory model is the need for a wrapper layer that transparently
handles the kinds of manipulations described above during all de-referencing operations,
however, even with such a wrapper, operations in this flat memory model are considerably
faster that corresponding OS supplied operations on the application heap. Regardless of
complexity, a collection of cross-referencing structures created using this approach is
completely ‘flat’ and the entire ‘serialization’ issue is avoided when passing such collections

between processors. This is a key requirement in a distributed data-flow based environment.

In addition to providing the ability to grow and move structures without impacting the
references in other structures, another advantage of the ‘moveTo’/’moveFrom’ approach is
inherent support for ‘undo’. FIGURE 8 illustrates the handle after performing an ‘undo’ on

the change from B’ to B*’. The steps involved for ‘undo’ are provided below:

src = base record (i.e., B)

dst = locate ‘moved’ record (i.e. B’*) by following ‘moveTo’ of base record
prev = locate last record in handle whose ‘moveTo’ references dst
src->moveTo = prev — src;

The corresponding process for ‘redo’ (which restores the state to that depicted after
B’ was first added) is depicted below:
rsrc = base record (i.e., B) J

WO 03/065252 PCT/US03/03067

dst = locate ‘moved’ record (i.e. B*) by following ‘moveTo’ of base record
if (dst->moveTo)

nxt = dst + dst->moveTo
src->moveTo = nxt - src;

This process works because of the fact that ‘moveTo’ fields are only followed once when
referencing via the base record. The ability to trivially perform undo/redo operations is very
useful in situations where the structures involved represent information being edited by the

user, it is also an invaluable technique for handling the effects of a time axis in the data.

One method for maintaining a time axis is by using a date field in the header of each
structure. In this situation, the undo/redo mechanism can be combined with a ‘date’ field 910
in the header that holds the date when the item was actually changed. This process is

illustrated in Figure 9 (some fields have been omitted for clarity).

This time axis can also be used to track the evolution of data over time. Rather than using
the 'moveTo' fields to handle growing structures, the ‘moveTo' fields could be used to
reference future iterations of the data. For example, the base record could specify that it
stores the high and low temperatures for a given day in Cairo. Each successive record within
that chain of structures could then represent the high and low temperatures for a given date
910, 920, 930, 940. By using the ‘date’ fields 910, 920, 930, 940 in this fashion, the memory
system and method can be used to represent and reference time-variant data, a critical
requirement of any system designed to monitor, query, and visualize information over time.
Moreover, this ability to handle time variance exists within the ‘flat’ model and thus data can
be distributed throughout a system while still retaining variance information. This ability
lends itself well to such things as evolving simulations, database record storage and

transaction rollback, and animations.

Additionally, if each instance of a given data record represents a distinct version of
the data designed for a different ‘user’ or process, this model can be used to represent data
having multiple values depending on context. To achieve this, whatever variable is driving
the context is simply used to set the ‘moveTo’ field of the base record, much like time was
used in the example above. This allows the model to handle differing security privileges,
data whose value is a function of external variables or state, multiple distinct sources for the
same datum, configuration choices, user interface display options, and other multi-value

situations.

WO 03/065252 PCT/US03/03067

A “flags’ field could also be used in the header record and can be used to provide
additional flexibility and functionality within the memory model. For example, the header
could include a ‘flag’ field that is split into two parts. The first portion could contain
arbitrary logical flags that are defined on a per-record type basis. The second portion could
be used to define the structure type for the data that follows the header. While the full list of
all possible structure types is a matter of implementation, the following basic types are

examples of types that may be used and will be discussed herein:

kNullRecord — a terminating NULL record, described above.
kStringRecord — a ‘C’ format variable length string record.

kSimplexRecord — a variable format/size record whose contents is described by a
type-id.

kComplexRecord —a ‘collection’ element description record (discussed below)

kOrphanRecord — a record that has been logically deleted/orphaned and no longer has
any meaning.

By examining the structure type field of a given record, the memory wrapper layer is
able to determine ‘what’ that record is and more importantly, what other fields exist within
the record itself that also participate in the memory model, and must be handled by the
wrapper layer. The following definition describes a structure named ‘kComplexRecord’ and

will be used to illustrate this method:

typedef struct ET_Complex // Collection element record
ET_Hdr hdr; // Standard header
ET Offset /* ET_SimplexPtr */ valueR; // value reference
ET_TypelD typelD; // ID of this type
ET_Offset /* ET_ComplexPtr */ nextElem; // next elem. link
ET_Offset /* ET_ComplexPtr */ prevElem; // prev. elem. link
ET_Offset /* ET_ComplexPtr */ childHdr; // First child link
ET Offset /* ET ComplexPtr */ childTail; // Last child link

} ET Complex;

The structure defined above may be used to create arbitrary collections of typed data
and to navigate around these collections. It does so by utilizing the additional ET_Offset
fields listed above to create logical relationships between the various elements within the

handle.

10

WO 03/065252 PCT/US03/03067

Figure 10 illustrates the use of this structure 1010 to represent a hierarchical tree
1020. The ET_Complex structure defined above is sufficiently general, however, that
virtually any collection metaphor can be represented by it including (but not limited to) arrays
(multi-dimensional), stacks, rings, queues, sets, n-trees, binary trees, linked lists etc. The
‘moveTo’, ‘moveFrom’ and ‘nextltem’ fields of the header have been omitted for clarity.
The ‘valueR’ field would contain a relative reference to the actual value associated with the
tree node (if present), which would be contained in a record of type ET_Simplex. The type
ID of this record would be specified in the “typeID’ field of the ET_Complex and, assuming
the existence of an infrastructure for converting type IDs to a corresponding type and field
arrangement, this could be used to examine the contents of the value (which could further

contain ET_Offset fields as well).

As Figure 10 illustrates, ‘A’ 1025 has only one child (namely ‘B’ 1030), both the
‘childHdr’ 1035 and ‘childTail’ 1040 fields reference ‘B’ 1030, this is in contrast to the
‘childHdr’> 1045 and ‘childTail’ 1070 fields of ‘B’ 1030 itself which reflect the fact that ‘B’
1030 has three children 1050, 1055, 1060. To navigate between children 1050, 1055, 1060,
the doubly-linked ‘nextltem’ and ‘previtem’ fields are used. Finally the ‘parent’ field from
the standard header is used to represent the hierarchy. It is easy to see how simply by
manipulating the various fields of the ET_Complex structure, arbitrary collection types can
be created as can a large variety of common operations on those types. In the example of the
tree above, operations might include pruning, grafting, sorting, insertion, rotations, shifts,
randomization, promotion, demotion etc. Because the ET_Complex type is ‘known’ to the
wrapper layer, it can transparently handle all the manipulations to the ET_Offset fields in
order to ensure referential integrity is maintained ‘during all such operations. This ability is
critical to situations where large collections of disparate data must be accessed and

distributed (while maintaining ‘flatness’) throughout a system.

Figure 11 illustrates the process for using the memory model to “sort” various
structures. A sample structure, named ET_String 1100, could be defined in the following

manner (defined below) to perform sorting on variable sized structures:

typedef struct ET_String // String Structure

ET_Hdr hdr; // Standard header
ET Offset /* ET_StringPtr */ nextString; // ref. to next string

char theStringl 0 1; // C string (size varies)
} ET String; ‘

11

WO 03/065252 PCT/US03/03067

Prior to the sort, the ‘nextString’ fields 1110, 1115, 1120, 1125 essentially track the
‘nextltem’ field in the header, indeed ‘un-sort’ can be trivially implemented by taking
account of this fact. By accessing the strings in such a list by index (i.e., by following the
‘nextString’ field), users of such a ‘string list” abstraction can manipulate collections of
variable sized strings. When combined with the ability to arbitrarily grow the string records
as described previously (using ‘moveTo’ and ‘moveFrom’), a complete and generalized
string list manipulation package is relatively easy to implement. The initial ‘Start’ reference
1130 in such a list must obviously come from a distinct record, normally the first record in
the handle. For example, one could define a special start record format for containers
describing executable code hierarchies. The specific implementation of these ‘start® records
are not important. What is important, however, is that each record type contain a number of
ET_Offset fields that can be used as references or ‘anchors’ into whatever logical

collection(s) is represented by the other records within the handle.

The process of deleting a structure in this memory model relates not so much to the
fields of the header record itself, but rather to the fields of the full structure and the logical
relationships between them. In other words, the record itself is not deleted from physical
memory, rather it is logically deleted by removing from all logical chains that reference i.
The specific manner in which references are altered to point “around” the deleted record will
thus vary for each particular record type. Figure 12 illustrates the situation after deleting
“Dog” 1125 from the string list 1100 and ‘C* 1050from the tree 1020.

When being deleted, the deleted record is generally ‘orphaned’. In order to more
easily identify the record as deleted, a record may be set to a defined record type, such as
‘kOrphanRecord’. This record type could be used during compression operations to identify
those records that have been deleted. A record could also be identified as deleted by
confirming that it is no longer referenced from any other structure within the handle. Given
the complete knowledge that the wrapper layer has of the various fields of the structures
within the handle, this condition can be checked with relative ease and forms a valuable

double-check when particularly sensitive data is being deleted.

The compression process involves movement of higher structures down to fill the gap
and then the subsequent adjustment of all references that span the gap to reduce the reference

offset value by the size of the gap being closed during compression. Once again, the fact that

12

WO 03/065252 PCT/US03/03067

the wrapper layer has complete knowledge of all the ET_Offset fields within the structures in

the handle make compression a straightforward operation.

The foregoing description of the preferred embodiment of the invention has been
presented for the purposes of illustration and description. For example, the term “handle”
throughout this description is addressed as it is currently used in the Macintosh OS. This
term should not be narrowly construed to only apply to the Macintosh OS, however, as the
method and system could be used to enhance any sort of memory management system. The
descriptions of the header structures should also not be limited to the embodiments described.
While the defined header structures provide examples of the structures that may be used, the
plurality of header structures that could in fact be implemented is nearly limitless. Indeed, it
is the very flexibility afforded by the memory management system that serves as its greatest
strength. For these reasons, this description is not intended to be exhaustive or to limit the
invention to the precise form disclosed. Many modifications and variations are possible in
light of the above teaching. In particular due to the simplicity of the model, hardware based
implementations can be envisaged. It is intended that the scope of the invention be limited

not by this detailed description, but rather by the claims appended hereto.

13

WO 03/065252 PCT/US03/03067

CLAIMS

I claim the following inventions:
1. A method for storing data, comprising the steps of:

obtaining a non-relocatable reference to a possibly relocatable block of

memory;

creating one or more memory structures to be stored within the block of

memory, such memory structures having space allocated for a header and a data portion;

creating a header for a memory structure, wherein such header includes a field
for linking to the next memory structure in the memory block and a field for identifying
additional data structures unique to a particular type of memory structure; and

storing said header within the corresponding memory structure.

2. The method of claim 1, wherein the method further comprises the step of
assigning values to the fields in the header using one or more offset values, said offset values
representing the physical memory offset between the start of the block of memory and the
memory structure being linked, or the signed physical offset between the headers of the

referencing and referenced structures involved in the reference.

3. The method of claim 1, wherein the method further comprises the step of
assigning values to the fields in the header using one or more offset values, said offset values
representing the signed physical offset between the headers of the referencing and referenced

structures involved in the reference.

4. The method of claim 1, wherein the process of requesting a non-relocatable
block of memory includes requesting a handle from the memory manager in the Macintosh

operating system environment.

5. The method of claim 1, wherein the process for creating a header for a
memory structure includes creating headers that have a field for storing a date associated with

the memory structure.

14

WO 03/065252 PCT/US03/03067

6. The method of claim 1, wherein the process for creating a header for a
memory structure includes creating headers that have a field for storing the parent-child

relationship between two or more memory structures.
7. The method of claim 1, wherein the method further includes

a header type that indicates the end of the list of memory structures within the

memory block, and

a starting memory block, which holds entry point references into the other

structures held within the memory block.

8. The method of claim 1, wherein the step for creating a header for a memory
structure includes creating headers that have a field for identifying the type of data, as distinct
from the type of header, associated with the memory structure.

9. The method of claim 1, further including the step of creating a field within a
header to identify orphaned memory structures.

10. The method of claim 1, wherein the step of creating a header includes
assigning values to one or more fields within the header, such values including the physical

offset between the start of the block of memory to the start of each memory structure.

11. The method of claim 1, wherein the step of creating a header includes
assigning values to one or more fields within the header, such values including the signed

relative memory offset between the referencing and referenced headers.
12. A system for storing data, the system comprising;
obtaining a non-relocatable reference to a block of memory;

one or more memory structures stored within the block of memory, such

memory structures having space allocated for a header and a data portion;

a header, stored within the memory structure, that includes fields for linking to

one or more memory structures that are related to the first memory structure; and

15

WO 03/065252 PCT/US03/03067

13. The system of claim 12, wherein the field for linking to one or more memory
structures that are related to the first memory structure includes a move to field for linking to

alternate memory structures of the referencing memory structure within the block of memory.

14. The system of claim 13, wherein the ‘moved’ fields for linking to/from
another memory structure are comprised of an offset value, wherein the offset value is the
physical memory offset between the start of the memory block and the start of the linked

memory structure.

15. The system of claim 12, wherein the ‘moved’ fields for linking to/from
another memory structure are comprised of an offset value, wherein the offset value is the
signed physical memory offset between the referencing and referenced headers of the two

structures involved.

16. The system of claim 13, wherein the header is further comprised of a field for

storing a date.

17. The system of claim 16, wherein the field included within the header for
storing the date is assigned the date upon which the data contained within the data portion of

the memory structure was first collected, stored, or updated.

18. The systems of 16, wherein the ‘moved’ fields stores a series of memory
structures relating to a single logical base structure can be altered to cause the base to

reference one of a number of alternative versions of the structure.

19. The systems of 18, wherein the control of the particular value of the ‘moved’

fields is based on an algorithm.

20. The system of claim 18, wherein the system further comprises means for
providing wrapper support, such wrapper support means enabling alteration of the ‘moved’

references to an earlier state using a specific date, current state, or any other algorithm

21. The system of claim 18, wherein the system further comprises means for
providing wrapper support, such wrapper support means enabling alteration of the ‘moved’

references to the current state.

16

WO 03/065252 PCT/US03/03067

22. The system of claim 18, wherein the system further comprises means for
providing wrapper support, such wrapper support means enabling alteration of the ‘moved’

references to an earlier state using an algorithm.

17

PCT/US03/03067

WO 03/065252

110

E

{"ipu, (ndieys) - nd(iidieyo) = 18SHOAU} "JA |pY = MSINBY)'IA)
_ (IAd IPYY4TEIMIIA OL H1d duleps#
(19SPOBUIIA + (MBIABULIA,) (1d4eyd)) ()Y Ld OL 43YMIIA sulep#

NdISUMBIA 13, JOHUMSIA 1T [
JOSHOBUl jesyo 13
‘MBIABU) S|pueH

_ onas pmcwam
J8syo 13 2l JjopadAy

WO 03/065252

PCT/US03/03067

2110

wzn A B
\
200 Q |
220

- 26 TrapPatches | WidgetQC
265~ ;()TP_) (V?Q_)

210

FIG.2A FI1G.2B

N
()]
o
|N
(3]
ll\)
o
{an]

—— 250

—— 260

- 270

— 280

FIG.2D

PCT/US03/03067

WO 03/065252

310

€old

uoleslo Jo ayep J/

dl Jojealo R Jaquinu UoISIaA ainjonys J/
alnjonyis Buiousiayai Jo yuaied o) jal J/

WO} paaow ussq sey ainjonJjs alaym o} Jal J/
O} POACLU U3 Sky aInjonlis aleym o} Jal //
8|puey Ui Way Ixau 0} jal J/

wiBldoyN Aq pasn sbeyy ojweukq g ones

UpH 13 {
‘[elsep Jeyosun
:UoISI8A Jeyosun

‘Juaied 1°sy0 13
‘woli4srow 19sy0 13
‘0] 8A0ow 1°sSy0 13
weyIxau 18syQO 13
'sbBeyy zew w
IPH ™ 13 jonus yjepadA)

WO 03/065252

310

/

Nextlte

MoveT

Nt 300

MoveFro

— 330

Paren

410

2z

N1 340

Nextlte

MoveT

MoveFro

Paren

v

Nextite

MoveT

430

MoveFro

Paren

FIG.4

4110

PCT/US03/03067

310

/

Nextlte

ey e

MoveT

— 320

MoveFro

— 330

Paren

-—

7%

— 340

p—
T~ 410

~— | Nextlte

g [

MoveT

MoveFro

Paren

7

—— 420

—» | % Nextlte

" MoveT

MoveFro

Paren

v

)

- 510

——> Nexilte

MoveT

430

MoveFro

Paren

FIG.5

WO 03/065252 PCT/US03/03067

510
- Nextlte ~— - Nextite < —
MoveT MoveT
MoveFro MoveFro
Paren Paren
7 %
v P
Nextlte il Bl —p Nextlte e
MoveT | — MoveT | —
MoveFro \ MoveFro
Paren Paren
// //
/_/*420 ///«.__ 420
/] /
Nexiite Nextlte
MoveT 510 MoveT
MoveFro MoveFro
Paren Paren
4 7
v 9%
— Nextlte |- . Nextlte
MoveT MoveT
MoveFro MoveFro
— Paren — Paren
// //
/// 600 /// | 610
7 7
—— Nextlte — Nextlie [¢— -—
MoveT MoveT
MoveFro MoveFrop~—— 720
Paren Paren
7
FIG.6 //? 710
— Nextite
MoveT
MoveFro
Paren

FIG.7

WO 03/065252

6/10

Nextltem
MoveTo
MoveFrom

— Parent

///'\-610

Nextitem j——————

Parent

Nextltem
MoveTo
MoveFrom
Parent

yd
Nextltem
MoveTo
MoveFrom
Parent

v
Nextltem
MoveTo

MoveFrom

\§

MoveTo
MoveFrom

——p= Nextitem

Parent

%/410

e

t

L 510

N

MoveTo
MoveFrom

Parent

710

FIG.8

PCT/US03/03067

WO 03/065252 PCT/US03/03067

710

Nextitem
MoveTo
MoveFrom
Parent .
Date | =Jan1 2000/

%%

910

Nextltem
MoveTo
MoveFrom 920
Parent)’

| Dale_|=Jan 232000
7
7

—p| Nextltem [«
MoveTo
MoveFrom

Parent Oj ?
/ Date |=Feb7200

//B/ /
Nextltem [«
MoveTo
MoveFrom 940

Parent
Date |=July 24 2000

0
%

yd

30

TIME AXIS DATE = MARCH 4 2000

FIG.9

WO 03/065252 PCT/US03/03067

8/10

@_/- 1025

1035 Parent
‘ PrevElem|NextElem| _ 1040
— NChildHdr [ChidTall

V 1030 @

—> —> —p Parent
1070
_\ PrevElem|NextElem Vs ‘

ChildHdr |ChildTail [
| ValueR [: g
©_,-1050
— Parent / ‘ \
PrevElem{NextElem|—
ChildHdr |ChildTail @ @ @
]ValueR |

@_/— 1055 EQUIVALENT TREE STRUCTURE

— Parent | <
PrevElem|NextElem|—
ChildHdr |ChildTail

| ValueR]
@/— 1060

e
Parent P

PrevElem|NextElem
ChildHdr {ChildTail

| ValueR |

w FIG.10

WO 03/065252 PCT/US03/03067

910
110 110
—
START —p | nextString | — nextString | <&——
theString="Cat” theString="Cat”
1115 '
- Pt Va 1115
nextString | —— nextString |-
theString="Zebra” 1130 theString="Zebra"
A~ 1120 1120
nextString | & ST/‘\JRT._._> nextString L
theString="Camel” theString="Camel”
1125 Ya 1125
nextString | -<—— b | NEXSiring
theString="Dog" theString="Dog”
BEFORE SORTING AFTER SORTING

1100/

FIG.11

WO 03/065252

1110
Va

nextString | <———
theString="Cat”

1115
» [nextString [/~
theString="Zebra"

1130

1120

START;"> nextString
theString="Camel"

1125
nextString s

theString="Dog"

FIG.12A

PCT/US03/03067

10110

®/~ 1025

Parent
PrevElem|NextElem
— |{ ChildHdr |ChildTail
| ValueR |

| 1030

> Parent

PrevElem|NextElem
— ChildHdr |ChildTail |-

| ValueR |
@,,- 1050

Parent
PravElem{NextElem
ChildHdr |ChildTail

| ValueR |
@/- 1055

— Parent
PrevElem|NextElem|
ChildHdr [ChildTail

[ValueR |
(E)——1060

-t
-

Parent
————1 PrevElem|NextElem
ChildHdr [ChildTail

FIG.12B

INTERNATIONAL SEARCH REPORT International application No.
PCT/US08/08067

A, CLASSIFICATION OF SUBJECT MATTER
IPC(7) :Go6F 17/30, 12/06
USCL :707/100, 101, 108; 711/161
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 707/100, 101, 103; 711/161

Documentation searched other than minimum documentation to the extent that such documents are included in the-fields

seprehee

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

%

Y ~US 5,680,616 A (WILLIAMS et al.) 21 October 1997, 1-22

the entire paper is relevant

Y .| US 5,628,007 A (NEVAREZ) 06 May 1997, 1-22
the entire paper is relevant

Y, P —{ US 6,490,666 B1 (CABRERA et al.) 03 December 2002, 1-22
the entire paper is relevant

Y,P ~ US 6,502,097 B1 (CHAN et al.) 31 December 2002, 1-22
the entire paper is relevant

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: T later document published after the international filing date or priority
A d . . date and not in conflict with the application but cited to understand
A ocument defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
wpn i . : . . "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered nosel or cannot be considered to involve an inventive step
" document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other o . . . R
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
el document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means

being obvious to a person skilled in the art

upy document published prior to the international filing date but later ngy

d f th tent famil
than the priority date claimed ocument member of the same pa smiy

Date of the actual completion of the international search Date of mailing of the international search report

13 MAY 2009 19 JUN 2003

. I
Name and mailin% address of the ISA/US Authorized officer
Comrlgx(i;slloner of Patents and Trademarks 0/5696\/\

Box
Washington, D.C. 20231 THUY PARDO
Facsimile No. (703) 305-3230 Telephone No. (708) 305-1091

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

