
(19) United States
US 2004.0024971A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0024971 A1
Bogin et al. (43) Pub. Date: Feb. 5, 2004

(54) METHOD AND APPARATUS FOR WRITE
CACHE FLUSH AND FILL MECHANISMS

(76) Inventors: Zohar Bogin, Folsom, CA (US);
Steven J. Clohset, San Francisco, CA
(US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD, SEVENTH
FLOOR
LOS ANGELES, CA 90025 (US)

(21) Appl. No.: 10/631,353

(22) Filed: Jul. 30, 2003

Related U.S. Application Data

(62) Division of application No. 09/667,405, filed on Sep.
21, 2000, now Pat. No. 6,658,533.

Publication Classification

(51) Int. Cl. .. G06F 12/08

41

Choose entry
to flush

42
Compare address

of chosen
entry with

other entries

Matching
entries
found?

A5

Flush chosen
entry and

matching entries

46

Continue

(52) U.S. Cl. .. 711/135

(57) ABSTRACT

A write cache that reduces the number of memory accesses
required to write data to main memory. When a memory
write request is executed, the request not only updates the
relevant location in cache memory, but the request is also
directed to updating the corresponding location in main
memory. A separate write cache is dedicated to temporarily
holding multiple write requests So that they can be organized
for more efficient transmission to memory in burst transferS.
In one embodiment, all writes within a predefined range of
addresses can be written to memory as a group. In another
embodiment, entries are held in the write cache until a
minimum number of entries are available for writing to
memory, and a least-recently-used mechanism can be used
to decide which entries to transmit first. In yet another
embodiment, partial writes are merged into a Single cache
line, to be written to memory in a single burst transmission.

40

Y

Flush chosen
entry

Patent Application Publication Feb. 5, 2004 Sheet 1 of 6 US 2004/0024971 A1

12 -

Cache

17 -

16

Graphics Queue
Contr

18
Mem

15 Contr

Bus Contr

13

7 Memory
10 -

Fig. 1 Prior Art

Patent Application Publication Feb. 5, 2004 Sheet 2 of 6 US 2004/0024971 A1

22

Cache

27 24

Graphics I/O Contr
Contr

26

Queue

25

Bus Cont 28
Mem
Contr

7 23
20

Memory

Fig. 2

Patent Application Publication Feb. 5, 2004 Sheet 3 of 6 US 2004/0024971 A1

294
Control
Logic

291 292

Write Cache Storage Dispatcher

293

Address
Translation

209

Fig. 3

Patent Application Publication Feb. 5, 2004 Sheet 4 of 6 US 2004/0024971 A1

41

Choose entry
to flush

/ "
42

Compare address
of chosen
entry with

other entries

Matching
entries
found?

Flush chosen
entry

45

Flush chosen
entry and

matching entries

46

Continue

Fig. 4

Patent Application Publication Feb. 5, 2004 Sheet 5 of 6 US 2004/0024971 A1

50

Z 51

Monitor number
of cache entries

52
LOW

threshold

exceeded?

53

Set low
priority

54 High
threshold
exceeded?

55

Set high
priority

56 -
Choose first
entry to flush

57
Flush the chosen

entry and
related entries

Patent Application Publication Feb. 5, 2004 Sheet 6 of 6 US 2004/0024971 A1

61
60

/
Execute partial

Write to
Write Cache

62 is cache
line already in
Write Cache?

63

Copy cache line
from main memory
into Write cache

64

Update
cache line

Fig. 6 65

Continue

US 2004/0024971 A1

METHOD AND APPARATUS FOR WRITE CACHE
FLUSH AND FILL MECHANISMS

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The invention pertains generally to computer sys
tems. In particular, it pertains to a write cache for writing
data to memory.
0003 2. Description of the Related Art
0004. Because processors can typically operate at much
faster Speeds than their main memory, most computer Sys
tems now use high-Speed cache memory as local memory
that the processor can acceSS for most of its needs. However,
although cache memory is fast, it is also much more expen
sive than the dynamic random access memory (DRAM)
typically used for main memory, and the amount of available
cache memory is typically only a fraction of the amount of
DRAM memory in the system. Since much software
involves repetitive eXecution of the same code, it is feasible
to copy the code about to be executed from main memory
into cache memory, where it can then be repetitively
executed at high Speed. Because copying from a slower
memory also takes time, many computer Systems have a
hierarchy with multiple levels of cache, with each Subse
quent level being faster and Smaller than the one below it,
and main memory at the bottom of the hierarchy.
0005) Whenever a processor (CPU) or other device
executes a write function, it is changing the contents of one
or more memory locations. Due to the cached memory
Structure, this change happens first in the cache memory
from which the processor is executing. This data must then
be updated in main memory (and any lower levels of cache
memory) to maintain consistency and preserve the change
for future use. Since burst transferS are generally more
efficient overall than individual word or byte transfers, the
data is written back to main memory in blocks of predeter
mined size, with each block containing whatever changes
were made to the data in that block.

0006. Many conventional systems employ write-through
cache. In a write-through cache memory System, each time
data is written (i.e., changed) into cache, the changed cache
line is written back to memory So that cache and main
memory will be in agreement and other devices reading the
changed memory location will not be reading "Stale' data
that is no longer correct. This is typically done by writing
each changed block of data to a buffer, or queue, from where
it can be written back to memory as the competing demands
on the memory System allow.

0007. A conventional system 10 is shown in FIG. 1. A
CPU 11 is closely coupled to a cache memory 12, which
contains the code and data currently being executed and also
the code and data that was recently executed. Data that has
been written to cache is also written to main memory 13 by
transmitting it to I/O control logic 14, from where it is placed
into write queue 16 to await its turn to be written into
memory 13.
0008. As it exits write queue 16, the appropriate address
and data Signals are presented to memory controller 18,
which opens the page in memory 13 and writes the data to
the Selected locations within that page. Graphics controller

Feb. 5, 2004

17 can also read and write data to memory, as can multiple
devices on the input-output (I/O) buses interfaced to bus
controller 15, so I/O control logic 14 arbitrates the write
requests from these various Sources and places them into
write queue 16.
0009 Since multiple devices can try to write data to main
memory 13 at the same time, write queue 16 allows the
memory System to collect these competing memory
requests, but it does nothing to change the order or grouping
of the data being written to memory. There are Several
deficiencies in this conventional proceSS:

0010) 1) Since the various sections of memory that
are being changed may belong in Scattered pages of
memory, multiple pages of memory must be sequen
tially opened and closed. Opening a page of memory
is time-consuming, Sequentially opening Several can
Significantly affect the efficiency of memory opera
tions.

0011) 2) Writing several blocks of data into a page
separately is inefficient. But the order in which those
blocks are accepted and written is Somewhat ran
dom, and conventional Systems have no mechanism
to Save up a group of related blocks and organize
them for a Smaller number of burst transmissions.

0012 3) Various parts of the data in a single cache
line may be written at different times. Initiating a
Separate block of writes for each one is inefficient,
but conventional Systems have no mechanism to
collect Separate partial writes to the same cache line
for a single burst transmission.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 shows a computer system of the prior art.
0014 FIG. 2 shows a computer system of the invention.
0.015 FIG. 3 shows a block diagram of the write cache
logic.

0016 FIG. 4 shows a flow chart of a flush sequence
involving Spatial location.
0017 FIG. 5 shows a flow chart of triggering a flush
operation.

0018 FIG. 6 shows a flow chart of a partial write
operation.

DETAILED DESCRIPTION OF THE
INVENTION

0019. The invention incorporates a write cache to collect
the various portions of data to be written back to main
memory, and organizes them in a more efficient manner
before writing the data to memory.
0020 FIG. 2 shows a simplified block diagram of a
system 20 of the invention. CPU 21, cache memory 22,
memory 23, bus controller 25 and graphics controller 27 can
operate much as before. In one embodiment, those devices
can be unchanged from their prior art counterparts processor
11, cache memory 12, memory 13, bus controller 15 and
graphics controller 27. However, system 20 includes write
cache 29, which can be used to collect write data that is
destined for writing into memory 23, and organize that data

US 2004/0024971 A1

in Specific ways So that fewer overall writes may be neces
Sary than in conventional Systems.
0021) Whenever CPU21 performs a data write function,
that data is written not only to cache memory 22 for
immediate use by the currently executing Software, but is
also written to main memory 23 so that main memory 23
will have an updated version of the data. It is important that
main memory be updated within a reasonable time, because
it is unpredictable how soon that data will be read from main
memory 23 to be used again. If CPU21 reads the previously
written data for Some other use, it is likely that the read
operation will retrieve the data from cache memory 22,
where it was initially written. In that case, it is relatively
unimportant whether the data has yet been updated in main
memory 23. However, if CPU 21 reads the data after a
Substantial delay, it is possible that the cache line containing
that data will have been purged from cache memory 22, and
the data will have to be retrieved from main memory 23. In
that case, it is imperative that CPU 21 retrieves the latest
version of the data, So it is important that the write data has
been written to main memory 23 by that time.
0022. Other devices, such as graphics controller 27 and
bus controller 25, may also perform read and write opera
tions to memory, but they generally do not have access to
cache memory 22, So they must deal Solely with main
memory 23. When performing a read, it is important that
they read the latest version of the data, So this increases the
need to update main memory 23 as Soon as is feasible after
CPU 21 has changed it. One embodiment of the invention
therefore implements a write-through cache System, So that
every write by the CPU is immediately sent to I/O controller
24 for updating main memory 23 through write queue 26.
0023 Graphics controller 27 and bus controller 25 can
also write data to main memory, So they can transmit write
data destined for queue 26, from where it will be written to
main memory. Writes from CPU 21, bus controller 25, and
graphics controller 27 may come at any time relative to each
other. In a conventional System, these writes may therefore
be randomly intermingled in queue 26 on a first-come, first
Served basis, potentially resulting in multiple separate writes
to the same block of memory.
0024 Write cache 29 can be strategically placed between
I/O controller 24 and write queue 26 so that the write data
can be temporarily Stored and reorganized in ways that
reduce the number of write operations to memory 23,
thereby improving the efficiency of the overall memory
System.

0.025 A data write operation writes data to a particular
location. Since CPU 21 operates primarily out of cache
memory, in one embodiment this write operation can write
data first to cache memory 22. At the same time, or shortly
thereafter, the same data can be sent to I/O controller 24 for
Writing to the location in main memory that corresponds to
the location in cache that was just updated. I/O controller 24
can then transmit this data to write cache 29, where it can be
organized with other write data for efficient transmission to
write queue 26. Write queue 26 can buffer the data and
present it to memory controller 28 in the same order in
which it was received from write cache 29. Memory con
troller 28 can then write the data into main memory 23.
Since a memory takes a predetermined amount of time to
read or write data, and the data requests may come at

Feb. 5, 2004

unpredictable times, write queue 26 can Smooth out the
process by holding any data that comes in faster than it can
be written to memory.

0026 FIG. 3 shows a more detailed view of write cache
29. Write cache 29 can receive memory write requests in the
form of data and address information from I/O controller 24.
The details of I/O controller 24 are not shown. However,
those familiar with computer architecture will appreciate
that it can contain interfaces to a processor bus, a graphics
controller, at least one bus controller, and write cache 29, as
well as arbitration and control logic to control the flow of
data between those interfaces. When the data and address
information is received over bus 201, that information can
be stored in write cache Storage 291, which can be a memory
circuit. The term “bus' in this context refers to a connection
containing multiple lines to move data between two or more
points. Overall control of operations within write cache 29
can be provided by control logic 294. The addresses stored
in write cache storage 291 can be provided over bus 202 to
cache lookup logic 295, which can compare a portion of the
address of the incoming request (either read or write) with
the current contents of the write cache. If the address
matches, the block of data containing the address of the
request already exists in the write cache. This is useful in
partial cache writes, which are described later.

0027. Once it has been determined that a specific entry in
write cache storage 291 will be flushed, or dispatched,
meaning that it will be written from write cache 29 to
memory and purged from write cache Storage. 291, the
address and associated valid bits can be passed to flush
dispatcher 292 over bus 206. An “entry” can be a cache line,
which can be 64 bytes in size. Page lookup logic 296 can
receive the most significant bits of the address over bus 203
of the entry being flushed to memory, and compare them
with the equivalent bits of all other valid address entries in
the cache. This can be used to determine whether other
entries are within the same block of memory and should be
flushed together as a related group. The size of the block
being thus considered can be programmable. This feature is
described later in more detail. Data to be flushed can be
presented to address translation logic 293 over bus 207.

0028. An address conversion step can be performed
before the data is sent to the memory controller. In most
modern computer Systems, the Software operates with Vir
tual addresses rather than physical ones. This allows the
computer to physically interface with much more memory
than the Software can comprehend. These virtual addresses
must be converted to the assigned physical addresses before
the address and data information is actually presented to
memory. Since the addresses presented to write cache 29 by
I/O controller 24 are virtual addresses, these can be con
verted to the actual physical addresses by address translation
logic 293. Such virtual-to-physical address translation pro
ceSSes are well known in the computer field, and are not
described in further detail herein.

0029. Once the address translation has taken place, the
physical address can be presented over bus 208 to write
queue 26 in preparation for the write operation to memory
controller 28. When memory controller 28 is ready to accept
a write request, it can receive the physical memory address
information over bus 209, and the associated data informa
tion over bus 210. Since flush dispatcher 292, address

US 2004/0024971 A1

translator 293, and write queue 26 are concerned primarily
with addresses rather than the associated data, it may not be
necessary to funnel the associated data through these
devices. In one embodiment the data is simply held in write
cache Storage logic 291, and presented to memory controller
28 at the same time as the associated address information.

0030 The logic for organizing the data in write cache 29
can perform multiple functions, either separately or together.
Some of the processes that can be performed by this logic
are described in more detail below:

0031 Spatial Locality
0032) Write cache 29 can flush entries to memory based
on the proximity of the various entries to each other. For
example, if Several Sequentially flushed entries are within
the same memory page, that page of physical memory will
only have to be opened once, and all the related entries can
be written into it before another page of memory is opened.
Since opening a page of memory can be time-consuming,
this can result in a significant Savings in time. ProXimity
does not have to be based on pages, but may also be based
on other block sizes as well, Such as eight cache lines. A
cache line can be 64 bytes, So a block size of eight cache
lines in that case would be 512 bytes beginning on a cache
line boundary. The block size to be used in these compari
Sons can be programmable, which can be used to tune the
memory System for efficient operation with the particular
System parameters. In one embodiment, the block Size can
be reprogrammed on the fly, So that block size can be
dynamically changed to tune the memory system for the
application currently running.

0033. Various criteria can be used to determine which
entry in the write cache will be flushed first. Once that
decision has been made, other entries that are within the
same block can be identified and flushed. For example, when
a flushing operation begins, the oldest entry may be flushed.
Then page lookup logic 296 can be used to identify all other
entries in write cache 29 that are within the same block, by
performing a comparison of the first chosen address with all
other entries in the write cache. This comparison can be
performed with a content addressable memory (CAM) func
tion. In one embodiment, block size is determined by
ignoring a specific number of the least Significant bits, and
performing the compare only on the bit positions above that
range. This allows a quick and Simple comparison with a
block size that is a power of two, for example, 128 bytes or
512 bytes. Flushing can continue as long as entries remain
in write cache that are within the defined block.

0034 FIG. 4 shows a flow chart 40 of this process. At
step 41, an entry is chosen to be flushed from write cache by
Writing it to memory. Various criteria can be used to make
the choice. At Step 42 the address of the chosen entry, or at
least an upper portion of the address, can be compared with
the addresses of all the other entries in the write cache. At
Step 43, it is determined whether the comparison found any
matches in the write cache. If no matches were found, the
chosen entry can be flushed at step 44. However, if one or
more matches were found, the chosen entry and all the
matching entries can be flushed at Step 45. In either case,
after the flushing operation is complete, processing can
continue at Step 46.
0035. The organization of flow chart 40 implies that
nothing is flushed until the comparisons have been made and

Feb. 5, 2004

related entries identified. However, in one embodiment, the
chosen entry can begin the flushing process before or during
the time the comparisons are being conducted. This can Save
time by performing the comparison operation in parallel
with the first flushing operation.
0036 Triggers to Initiate a Flush Operation
0037 Entries can be flushed based on how long they have
been in the write cache, with the oldest entries being flushed
first. The relative “age” of the entries can be determined by
assigning a counter value to each entry as it is placed in write
cache 29, and incrementing the counter after each assign
ment. The entries with the Smallest values were entered first
and are therefore the oldest entries. A pseudo least-recently
used (LRU) mechanism can be used to initiate the flushing
operation. The write cache can Stall (not flush any entries) as
long as the total number of entries in write cache Storage 291
is less than a predetermined low threshold value. Once the
number of entries exceeds the low threshold, the oldest entry
can be flushed first, followed by other entries determined to
be associated with the oldest entry. The entries thus associ
ated with the oldest entry can be determined by various
criteria, Such as the Spatial location criteria previously
described. It should be noted that the first entry to be flushed
can also be based on other criteria, without affecting the use
of a low threshold to initiate flushing.
0038. Once a flush operation has been triggered as
described above, the end of the flushing operation may be
based on other criteria. In one embodiment, after all related
entries have been flushed, write cache 29 will again examine
the number of entries remaining in write cache 29, and will
stall until that value exceeds the low threshold.

0039. A high threshold can also be used to affect the
flushing operation. Memory operations can have high or low
priority, with all high priority operations being interleaved
So that no high priority memory acceSS will have to wait too
long for its turn. Low priority operations, on the other hand,
will typically have to wait until all high priority operations
have been completed. Write flushing operations can nor
mally be assigned to low priority. However, if the number of
entries in write cache Storage 291 exceeds a high threshold
value (which is higher than the low threshold value), the
resulting flushing operations can be assigned to the high
priority category. This can prevent write cache Storage 291
from being unable to accept new entries because it filled to
capacity while the flushing operations were waiting for
other, higher-priority, memory operations to complete. In
one embodiment, write cache 29 can hold 16 cache lines,
with a low threshold value of 4 cache lines and a high
threshold value of 8 cache lines.

0040 FIG. 5 shows a flow chart 50 of this process. At
step 51, the number of entries in the write cache is moni
tored. If the number of entries does not exceed the low
threshold value, monitoring continues by looping through
steps 51 and 52. Once the number of entries exceeds the low
threshold value, processing moves to Step 53, where the
priority for flushing operations can be set or retained at the
low priority level. AS previously described, this can cause
the memory operations triggered by flushing to wait on all
high priority memory operations to complete. At Step 54, the
number of entries in write cache is checked to see if it also
exceeds the high threshold value. If it does, the priority for
flushing operations can be set at the high priority level. With

US 2004/0024971 A1

this priority, memory operations triggered by flushing will
not have to wait for all high priority memory operations to
complete. If the number of entries does not exceed the high
threshold value at step 54, step 55 is skipped and the low
priority Status is retained. In either case, once priority is Set,
the first entry for flushing is chosen at step 56. As previously
described, various methods may be used to choose which
entry will be flushed first. At step 57, the chosen entry and
all related entries can then be flushed. Once this happens,
processing can return to Step 51 to examine the number of
entries in the write cache again.
0041 Partial Writes
0.042 Although a write operation by a CPU or other
device can involve writing an entire cache line, a write can
also involve only a part of a cache line, and may involve
writing as little as one byte. When these partial writes are
Sent to write cache 29, they can be merged into the associ
ated cache line if that cache line is already Stored in write
cache 29. However, if no data in that cache line has
previously been stored (at least not since it was last flushed),
there will be no cache line to merge the partial write into. In
this instance, the pertinent cache line can be retrieved from
main memory and Stored in write cache 29, where it can then
be updated with the partial write information. Once placed
in write cache 29, that cache line can remain available for
updating by any further partial writes that occur before the
cache line is finally flushed and written back to main
memory. Whether the cache line had to be retrieved or not,
this process can have the effect of merging multiple partial
writes into a single cache line before flushing the cache line
to main memory, thereby converting what could be multiple
memory transferS into a single burst transfer.
0043. The determination of whether the cache line asso
ciated with a partial write is already in write cache 29 can be
determined by cache lookup logic 295, which can compare
the upper bits of the address of the partial write with the
corresponding address bits of the entries residing in write
cache 29. If a match is found, the relevant cache line is
already in write cache 29 and can be updated with the partial
write. If a match is not found, the relevant cache line is not
in write cache 29, and must be retrieved from main memory
as previously described and placed in write cache 29 before
it can be updated with the partial write.
0044 FIG. 6 shows a flow chart 60 of this process. At
Step 61, a partial write is executed to the write cache. At Step
62, the contents of the write cache are examined to deter
mine if the cache line that includes the address of the partial
write is already in the write cache. If not, that cache line is
retrieved from main memory at Step 63 and placed into the
write cache: Whether the cache line was already in cache, or
placed in cache at Step 63, the cache line is then updated at
step 64 by writing the data of the partial write into the correct
location(s) in the cache line. Processing can then continue
normally at step 65 with full writes, partial writes, or
whatever else occurs while waiting for a triggering event to
initiate a flush of that cache line. For example, if additional
partial writes occur to the Same cache line, the cache line can
be updated with those partial writes, except that the cache
line will already be in write cache, So retrieving it from main
memory would not be necessary.
004.5 The invention can be implemented in hardware or
as a method. The invention can also be implemented as

Feb. 5, 2004

instructions Stored on a machine-readable medium, which
can be read and executed by at least one processor to
perform the functions described herein. A machine-readable
medium includes any mechanism for Storing or transmitting
information in a form readable by a machine (e.g., a com
puter). For example, a machine-readable medium can
include read only memory (ROM); random access memory
(RAM); magnetic disk storage media; optical storage media;
flash memory devices, electrical, optical, acoustical or other
form of propagated Signals (e.g., carrier waves, infrared
Signals, digital signals, etc.), and others.
0046) The foregoing description is intended to be illus
trative and not limiting. Variations will occur to those of skill
in the art. Those variations are intended to be included in the
invention, which is limited only by the Spirit and Scope of the
appended claims.

We claim:
1. An apparatus, comprising:

write cache Storage to Store cache lines of write data;
a flush dispatcher coupled to the write cache Storage to

dispatch the cache lines to memory;
control logic to:

Select a first cache line with a first address in the write
cache Storage for dispatching,

determine if a Second cache line in the write cache
Storage has a Second address within a predetermined
range of the first address, and

dispatch the first and Second cache lines if the Second
address is within the predetermined range of the first
address.

2. The apparatus of claim 1, wherein the predetermined
range is programmable.

3. The apparatus of claim 1, wherein control logic to
Select a first cache line includes logic to Select an oldest
cache line in the write cache Storage.

4. A method, comprising:
receiving a plurality of write requests and Storing the

plurality of write requests in a plurality of cache lines
in a write cache Storage;

Selecting a first one of the plurality of cache lines for
dispatching to a memory, wherein the first one of the
plurality of cache lines has a first address,

determining if a Second one of the plurality of cache lines
has a Second address within a predetermined range of
the first address;

dispatching the first and Second ones of the plurality of
cache lines to the memory if the Second address is
within the predetermined range of the first address, and

dispatching the first one but not the Second one of the
plurality of cache lines to the memory if the Second
address is not within the predetermined range of the
first address.

5. The method of claim 4, wherein selecting a first one
includes Selecting an oldest of the plurality of cache lines.

6. The method of claim 4, further comprising program
ming the predetermined range before Selecting.

US 2004/0024971 A1

7. A machine-readable medium having Stored thereon
instructions, which when executed by a processor cause Said
processor to perform:

receiving a plurality of write requests and Storing the
plurality of write requests in a plurality of cache lines
in a write cache Storage;

Selecting a first one of the plurality of cache lines for
dispatching to a memory, wherein the first one of the
plurality of cache lines has a first address,

determining if a Second one of the plurality of cache lines
has a Second address within a predetermined range of
the first address;

dispatching the first and Second ones of the plurality of
cache lines to the memory if the first address is within
the predetermined range of the Second address, and

dispatching the first one but not the Second one of the
plurality of cache lines to the memory if the Second
address is not within the predetermined range of the
first address.

8. The medium of claim 7, wherein selecting a first one
includes Selecting an oldest of the plurality of cache lines.

9. The medium of claim 7, further comprising program
ming the predetermined range before Selecting.

10. An apparatus, comprising:
write cache Storage to Store cache lines of write data;
a flush dispatcher coupled to the write cache Storage to

dispatch the cache lines to memory;
control logic to:

dispatch at least one of the cache lines to memory if the
number of cache lines in the write cache Storage
exceeds a first predetermined value; and

not dispatch any of the cache lines to memory if the
number of cache lines in the write cache Storage does
not exceed the first predetermined value.

11. The apparatus of claim 10, wherein the control logic
is further to:

dispatch the at least one of the cache lines with a high
priority if the number of cache lines in the write cache
Storage exceeds a Second predetermined value higher
than the first predetermined value; and

dispatch the at least one of the cache lines with a low
priority if the number of cache lines in the write cache
Storage does not exceed the Second predetermined
value.

12. The apparatus of claim 10, wherein the control logic
is further to dispatch an oldest one of the cache lines first if
the number of cache lines in the write cache Storage exceeds
the first predetermined value.

13. A method, comprising:
Storing write requests in cache lines of write data in write

cache Storage;
dispatching at least one of the cache lines to memory if the
number of cache lines in the write cache Storage
exceeds a first predetermined value; and

not dispatching any of the cache lines to memory if the
number of cache lines in the write cache Storage does
not exceed the first predetermined value.

Feb. 5, 2004

14. The method of claim 13, wherein dispatching further
includes:

dispatching the at least one of the cache lines with a high
priority if the number of cache lines in the write cache
Storage exceeds a Second predetermined value higher
than the first predetermined value; and

dispatching the at least one of the cache lines with a low
priority if the number of cache lines in the write cache
Storage does not exceed the Second predetermined
value.

15. The method of claim 13, wherein dispatching further
includes dispatching an oldest one of the cache lines first if
the number of cache lines in the write cache Storage exceeds
the first predetermined value.

16. A machine-readable medium having Stored thereon
instructions, which when executed by a processor cause Said
processor to perform:

Storing write requests in cache lines of write data in write
cache Storage;

dispatching at least one of the cache lines to memory if the
number of cache lines in the write cache Storage
exceeds a first predetermined value; and

not dispatching any of the cache lines to memory if the
number of cache lines in the write cache Storage does
not exceed the first predetermined value.

17. The medium of claim 16, wherein dispatching further
includes:

dispatching the at least one of the cache lines with a high
priority if the number of cache lines in the write cache
Storage exceeds a Second predetermined value higher
than the first predetermined value; and

dispatching the at least one of the cache lines with a low
priority if the number of cache lines in the write cache
Storage does not exceed the Second predetermined
value.

18. The medium of claim 16, wherein dispatching further
includes dispatching an oldest one of the cache lines first if
the number of cache lines in the write cache Storage exceeds
the first predetermined value.

19. An apparatus, comprising:
write cache Storage to receive a plurality of partial write

requests for merging into associated cache lines of
write data;

a flush dispatcher coupled to the write cache Storage to
dispatch the cache lines to memory;

control logic to:
determine if a first cache line associated with a first of

the plurality of partial write requests is Stored in the
write cache Storage;

if the first cache line is not stored in the write cache
Storage:

retrieve the first cache line from memory;
Store the retrieved first cache line in the write cache

Storage; and
merge the first of the plurality of partial write

requests into the retrieved first cache line.

US 2004/0024971 A1

20. The apparatus of claim 19, wherein the control logic
is further to merge a Second of the plurality of partial write
requests into the retrieved first cache line if the retrieved first
cache line is associated with the Second of the plurality of
partial write requests.

21. The apparatus of claim, 19, wherein the control logic
is further to merge the first of the plurality of partial write
requests into the first cache line if the first cache line is
determined to be stored in the write cache Storage.

22. A method, comprising:
receiving a plurality of partial write requests for merging

into associated cache lines of write data in write cache
Storage;

determining if a first cache line associated with a first of
the plurality of partial write requests is Stored in the
write cache Storage; and

if the first cache line is not stored in the write cache
Storage:

retrieving the first cache line from memory;
Storing the retrieved first cache line in the write cache

Storage; and
merging the first of the plurality of partial write

requests into the retrieved first cache line.
23. The method of claim 22, further comprising merging

a Second of the plurality of partial write requests into the
retrieved first cache line if the retrieved first cache line is
asSociated with the Second of the plurality of partial write
requests.

24. The method of claim 22, further comprising merging
the first of the plurality of partial write requests into the first
cache line if the first cache line is Stored in the write cache
Storage.

25. A machine-readable medium having Stored thereon
instructions, which when executed by a processor cause Said
processor to perform:

receiving a plurality of partial write requests for merging
into associated cache lines of write data in write cache
Storage;

determining if a first cache line associated with a first of
the plurality of partial write requests is Stored in the
write cache Storage; and

if the first cache line is not stored in the write cache
Storage:

retrieving the first cache line from memory;
Storing the retrieved first cache line in the write cache

Storage; and
merging the first of the plurality of partial write

requests into the retrieved first cache line.
26. The medium of claim 25, further comprising merging

a Second of the plurality of partial write requests into the

Feb. 5, 2004

retrieved first cache line if the retrieved first cache line is
asSociated with the Second of the plurality of partial write
requests.

27. The medium of claim 25, further comprising merging
the first of the plurality of partial write requests into the first
cache line if the first cache line is Stored in the write cache
Storage.

28. An apparatus, comprising:
write cache Storage to receive write requests and to Store

cache lines of write data;
a flush dispatcher coupled to the write cache Storage to

dispatch the cache lines to memory;
control logic to:

Select a first cache line with a first address in the write
cache Storage for dispatching,

dispatch the first cache line to memory if the number of
cache lines in the write cache Storage exceeds a first
predetermined value;

not dispatch any of the cache lines to memory if the
number of cache lines in the write cache Storage does
not exceed the first predetermined value;

determine if a Second cache line in the write cache
Storage has a Second address within a predetermined
range of the first address,

dispatch the Second cache line if the Second address is
within the predetermined range of the first address,

determine if a third cache line associated with a par
ticular one of a plurality of partial write requests is
Stored in the write cache Storage;

if the third cache line is not stored in the write cache
Storage:

retrieve the third cache line from memory;
store the retrieved third cache line in the write cache

Storage; and
merge the particular one of the plurality of partial

write requests into the retrieved third cache line.
29. The apparatus of claim 28, wherein the predetermined

range is programmable.
30. The apparatus of claim 28, wherein the control logic

is further to:

dispatch the first cache line with a high priority if the
number of cache lines in the write cache Storage
exceeds a Second predetermined value higher than the
first predetermined value; and

dispatch the first cache line with a low priority if the
number of cache lines in the write cache Storage
exceeds the first predetermined value and does not
exceed the Second predetermined value.

k k k k k

