
(19) United States
US 201200.07873A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0007873 A1
Margulis (43) Pub. Date: Jan. 12, 2012

(54) COMPUTER SYSTEM CONTROLLER
HAVING INTERNAL MEMORY AND
EXTERNAL MEMORY CONTROL

(76) Inventor: Neal Margulis, Woodside, CA (US)

(21) Appl. No.: 121562.983

(22) Filed: Sep. 18, 2009

Related U.S. Application Data

(63) Continuation of application No. 09/541,413, filed on
Mar. 31, 2000, now abandoned, which is a continua
tion of application No. 08/926,666, filed on Sep. 9,
1997, now Pat. No. 6,118,462, which is a continuation
in-part of application No. 08/886.237, filed on Jul. 1,
1997, now Pat. No. 6,057,862.

PERPHERAL COMPONEN
INTERFACE

(PC) 332

ACCELERATED GRAPHICS PORT
(AGP) 334 338

Publication Classification

(51) Int. Cl.
G09G 5/36 (2006.01)
G06F 2/02 (2006.01)

(52) U.S. Cl. 345/545: 711/170; 711/E12.002
(57) ABSTRACT

The present invention relates generally to an optimized
memory architecture for computer systems and, more par
ticularly, to integrated circuits that implement a memory Sub
system that is comprised of internal memory and control for
external memory. The invention includes one or more shared
high-bandwidth memory Subsystems, each coupled over a
plurality of buses to a display Subsystem, a central processing
unit (CPU) subsystem, input/output (I/O) buses and other
controllers. Additional buffers and multiplexers are used for
the Subsystems to further optimize system performance.

300

322 MC 4 SUB :
EMORY SYSTEM

324 MC2 SUB 31E
EMORY SYSTEM OPTIONAL

32 TO

E. I/O
BRIDGE DEVICES

HIGH SPEED SERIAL I/O

Patent Application Publication Jan. 12, 2012 Sheet 1 of 12 US 2012/0007873 A1

s S.

Patent Application Publication Jan. 12, 2012 Sheet 2 of 12 US 2012/0007873 A1

s
D

2
2

US 2012/0007873 A1 Jan. 12, 2012 Sheet 3 of 12 Patent Application Publication

SEKOJA£ICI O/I TWNOÏAIO

#88(dÐV) JAIOA SOIH?y?0 (13.IV (1313.00W 28€.(104)

US 2012/0007873 A1 Jan. 12, 2012 Sheet 4 of 12 Patent Application Publication

3?ÚNG 0/1 0];

30IMÉICI AWIASICI 0\,

US 2012/0007873 A1 Jan. 12, 2012 Sheet 5 of 12 Patent Application Publication

$ $IÐ

O/I TWINGS (133dS HÐIH O99 390IHA 0/I QI, 999

?IOSSCHOOHd /SOIHdWRIÐ

US 2012/0007873 A1 Jan. 12, 2012 Sheet 6 of 12 Patent Application Publication

9? ?i?SÅSHQS WWWII N nais, Sans nyui £ WOELSÄSHTIS AWAII

289 099 929 939 #29

WOW!!! 8.OŽKI 30WKI JOŽICI NOWI IOWI

HKO?I?AS WJWCI

919

: STANNYHO
WJWCI O/I
† 19(INW gig ÐNISS300Hd

0?9

Patent Application Publication Jan. 12, 2012 Sheet 7 of 12 US 2012/0007873 A1

N

2 Q5.
s s

S3 N Di Cs 2 y
2 St. s S. S.
O

s
O r N C

S S S.

s N
d A. A q i f

a d A
CC O 53 N 53 2
S S. S Ns

A. O a

d d A
t

N q ca 3
s s s N

Patent Application Publication Jan. 12, 2012 Sheet 8 of 12 US 2012/0007873 A1

3.

S : s :

s
g :

Patent Application Publication Jan. 12, 2012 Sheet 9 of 12 US 2012/0007873 A1

s 3. s s

: i
5 s

M
O

d

N. 3. a. C as S s

2

CO
d

C

US 2012/0007873 A1 Jan. 12, 2012 Sheet 10 of 12

(OSK)

Patent Application Publication

US 2012/0007873 A1 Jan. 12, 2012 Sheet 11 of 12 Patent Application Publication

II '6IJ,

(TVNOILIO) HOLW'IndINYn wiwq

8 b) ?III 2III
9?II

?ÅLSÄS{{f\S HOSS, KOOMd ?WIdSIG OL

US 2012/0007873 A1 Jan. 12, 2012 Sheet 12 of 12 Patent Application Publication

ZI ?IÐ

N HOSSEKOO!!!! 50NI\WRICI 9 NOSSZIOO!!!! 3)NIMWICI /SOIHdVÆÐ

US 2012/0007873 A1

COMPUTER SYSTEM CONTROLLER
HAVING INTERNAL MEMORY AND
EXTERNAL MEMORY CONTROL

RELATED APPLICATIONS

0001. This patent application is a continuation application
of U.S. patent application Ser. No. 09/541,413, filed on Mar.
31, 2000 now abandoned entitled “Computer System Con
troller Having Internal Memory and External Memory Con
trol.” naming Neal Margulis as inventor, which is a continu
ation application of U.S. patent application Ser. No. 08/926,
666, filed on Sep. 9, 1997, now U.S. Pat. No. 6,118,462,
which resulted from a continuation-in-part application of
U.S. patent application Ser. No. 08/886.237, filed on Jul. 1,
1997, entitled “Computer System Having a Common Display
Memory and Main Memory, naming Neal Margulis as
inventor, now U.S. Pat. No. 6,057,862, the disclosures of
which are incorporated by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates generally to a memory
architecture for computer systems and more particularly to a
memory Subsystem comprised of internal memory and con
trol for external memory.
0004 2. Discussion of Prior Art
0005. A typical personal computer system has a central
processing unit (CPU) with an external main memory and has
a graphics display Subsystem with its own memory Sub
system. Part of this memory subsystem is a frame buffer that
provides the output to the display, and part of this subsystem
may be used for off-screen operations. However, the graphics
display Subsystem memory and the main system's pool of
memory do not share data efficiently or move data efficiently
from one memory Subsystem to the other. Another typical
personal computer system has a single memory Subsystem for
both the CPU and the graphics subsystem. The performance
of this type of computer system is lower than that of computer
systems that have separate memory Subsystems for the graph
ics display subsystem and for the CPU. Even though these
single external memory systems can Support a cache memory
for the CPU, their overall performance is still lower because
the memory bandwidth is shared between the graphics and
CPU subsystems. These computer systems are very limited in
their ability to achieve good performance for both the CPU
and graphics Subsystems. In order to be cost effective, these
systems typically use a lower cost main memory that is not
optimized for the special performance needs of graphics
operations.
0006 For systems that use a single external memory sub
system to perform all of their display refresh and drawing
operations, performance is compromised by the memory
bandwidth for these operations being shared with the memory
bandwidth for the CPU. "Refresh' is the general term for
taking the information contained in a frame buffer memory
and sequentially transferring the information by rows to a
palette digital-to-analog converter (DAC) to be displayed on
an output device such as a monitor, TV or flat panel display.
The frame buffer's entire contents needs to be transferred to
the output device continuously for the displayed image to be
visible. In the case of a monitor, this refresh is performed
typically between 75 and 95 times per second. For high

Jan. 12, 2012

resolution color systems, the refresh process consumes an
appreciable portion of the total bandwidth available from the
memory.
0007. In addition to the refresh bandwidth, the graphics
Subsystem performs drawing operations that also consume an
appreciable amount of bandwidth. In the case of 2-D graphics
acceleration the drawing operations include Bit-BLt (Bit
Block Transfers), line drawing and other operations that use
the same common pool of memory. Intel and other companies
in the PC industry have designed an advanced peripheral port
(AGP) bus and an associated system architecture for combin
ing graphics and chipsets. AGP is a second private bus
between the main memory controller chipset and the graphics
display Subsystems. AGP and the associated system architec
ture allow the storage of 3-D texture memory in the main
memory that can be accessed by the graphics Subsystem. This
is one limited use of shared main memory for a graphics
function. However, because there is a single bus between the
graphics Subsystem and the main memory controller chipset,
this bus limits the system performance. This single bus is
shared by all CPU commands to the graphics controller, any
CPU direct reads or writes of display data, all texture fetches
from main memory and any other transfers of display infor
mation that is generated or received from the CPU or I/O
Subsystems (i.e. video data from a capture chip or a decoder).
0008 AGP is designed to overcome the above-described
performance limitations from using the main memory Sub
system for display refresh and drawing operations. AGP sys
tems overcome these limitations by a brute force requirement
that the graphics subsystem on the AGP bus have a separate
frame buffer memory subsystem for screen refresh and draw
ing operations. Using frame buffer memory is a good solution
for eliminating the performance penalties associated with
drawing and refresh operations. Meanwhile, as a frame buffer
is always required, AGP systems do not allow for screen
refresh to be performed from the main system memory. This
does not allow the optimization of refreshing all or part of the
screen from main memory.
0009. Additionally, the drawing operations must be per
formed in the graphics display memory and are therefore
performed by the graphics Subsystem controller. Also limit
ing the dedicated frame buffer system flexibility, the graphics
subsystem controller can not efficiently draw into the main
system memory.
0010 Separating the frame buffer memory from the main
system memory duplicates the input/output (I/O) system
data. For example, this occurs in a system where video data
enters the system over an I/O bus through a system controller
and then is stored in the main system memory. If the data is
displayed, it needs to be copied into the frame buffer. This
creates a second copy of the data, transfer of which requires
additional bandwidth.
0011. Another alternative is to have a peripheral bus asso
ciated with the graphics controller where the I/O data is
transferred to the frame buffer. While this allows display of
the data without additional transfers over a system bus, the
data remains local to the display subsystem. The CPU or main
I/O Systems can not access the data without using a system
bus. For systems with a shared memory subsystem, the I/O
data enters a shared memory region. It is then available to
either the display subsystem or the CPU.
0012 FIG. 1 shows a diagram of a standard, prior art
memory architecture 100. A CPU subsystem 102 is connected
to a subsystem 104 which is connected to an external system

US 2012/0007873 A1

Random Access Memory (RAM) 110 and to a peripheral
component interface (PCI) bus 112. Subsystem 104 contains
a system controller 106 and a graphics controller 108 that is
connected to a display (not shown in FIG. 1). The system has
a single external memory subsystem 110 for both the graphics
display and CPU 102.
0013 FIG. 2 is a diagram of the current state-of-the art
personal computer memory architecture 200 having separate
memories for the CPU and for the graphics display. A CPU
subsystem 204 is connected to a system controller 206 that is
connected to an external system RAM 210 and to a PCI bus
216. System controller 206 is also connected through a dedi
cated AGP bus 214 to a graphics controller 208 that is con
nected to a graphics RAM 212, which is external or integrated
with the controller, and to a display 202. CPU subsystem 204
can not treat graphics RAM 212 as an extension of system
RAM 210, and graphics subsystem 208 can not use system
memory 210 for display refresh.
0014 What is needed is an integrated system controller
that Supports a memory architecture which combines internal
and external memory in which common memory can be used
for display memory and main memory, without having inad
equate bandwidth access to the common memory to impair
performance.

SUMMARY OF THE INVENTION

0015 The present invention resides in a memory architec
ture having one or more high bandwidth memory Subsystems
where some of the memory subsystems are external to the
controller and some of the memory Subsystems are internal.
Each of the high bandwidth memory subsystems is shared
and connected over a plurality of buses to a display Sub
system, a central processing unit (CPU) Subsystem, input/
output (I/O) buses and other controllers. A display subsystem
is configured to receive various video and graphics type data
from the high-speed memory Subsystems and to process it for
display refresh. Additional buffers and caches are used for the
Subsystems to optimize system performance. The display
refresh path includes processing of the data from the memory
subsystem for output to the display, where the data enters the
shared memory subsystems from an I/O subsystem, from the
CPU subsystem or from the graphics subsystem.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 is a diagram of a prior art memory architec
ture for a computer system;
0017 FIG. 2 is a diagram of another prior art memory
architecture for a computer system;
0018 FIG.3 is a diagram of an embodiment of a computer
system having a common display memory and main memory
of integrated and external memory;
0019 FIG. 4 is a diagram of an embodiment of the system
with a common display memory and main memory;
0020 FIG.5 is a diagram of a full-function embodiment of
the new enhanced system with a common display memory
and main memory;
0021 FIG. 6 is a diagram of an embodiment of a data
switch with both internal and external memory channels;
0022 FIG. 7 is a diagram of an embodiment of a 4x4
crossbar data Switch;
0023 FIG. 8 is a diagram of an embodiment of an arbitra
tion and data Switch control architecture;

Jan. 12, 2012

0024 FIG. 9 is a diagram of an embodiment of a multi
bank IRAM subsystem;
0025 FIG. 10 is a diagram of an embodiment of an IRAM
subsystem with a single bank IDRAM with row buffers:
0026 FIG. 11 is a diagram of an embodiment of a data
switch with multiple IRAM subsystems each using multiple
row buffers; and
0027 FIG. 12 is a diagram of an IRAM memory architec
ture applied more strictly to a graphics drawing and display
Subsystem independent of the main memory architecture.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0028. The present invention resides in a memory architec
ture having one or more shared high-bandwidth memory
Subsystems that are both internal and external to the system
controller. Each of the high-bandwidth memory subsystems
is connected over a plurality of buses to the display sub
system, the central processing unit (CPU) Subsystem, the
input/output (I/O) buses and other controllers. The display
Subsystem is configured to receive various video and graphics
data types for processing and display refresh from the high
speed shared memory. Additional buffers and caches are used
for the Subsystems to optimize the system.
(0029 FIG. 3 shows a system block diagram 300 of an
embodiment of the present invention, including a CPU sub
system 308 connected to an enhanced system controller 310
which is in turn connected through memory channel EMC1
322 to a memory subsystem 314 and through memory chan
nel EMC2324 to a memory subsystem 316. Each memory
channel includes independent controls and contains multiple
banks of memory. Enhanced system controller 310 is also
connected to an input/output bridge 312, display output
devices 330, a PCI bus 332, an advanced peripheral port
(AGP) 334, and a high-speed serial I/O port 336. Integrated
into the enhanced system controller are additional internal
memory Subsystems, each with their own control and data
channels.
0030. A low cost multimedia personal computer system is
achieved by optimizing a system with respect to memory
bandwidth to share one or more common memory Sub
systems for aspects of display memory and main system
memory. The FIG. 3 common memory subsystem allows
sharing the available bandwidth as well as sharing the pool of
memory. The shared memory subsystem bandwidth can be
allocated either to display operations or the primary CPU and
main I/O system. The common pool of memory is allocated,
depending on the application and operating system, to Sup
port display memory Such as textures or buffers. Alterna
tively, the common pool of memory can be allocated to the
rest of the system to support CPU code, data or peripheral
system Swap areas for I/O devices in the system. Additionally,
the common pools of memory, either internal or external, can
be dynamically shared with common data used by both the
display Subsystem and the other system functions.
0031 FIG. 4 shows a system block diagram 400 of an
embodiment of the present invention, including a CPU sub
system controller 402 connected to a graphic? drawing and
display Subsystem 404, a memory channel data Switch and
control unit 406, an arbitration and control unit 408 and a
peripheral I/O control unit 440. CPU subsystem controller
402 is also connected to a CPU subsystem (not shown).
Graphic? drawing and display Subsystem 404 is connected to
a display device (not shown), the memory channel data Switch

US 2012/0007873 A1

and control unit 406 and the arbitration and control unit 408.
The memory channel data switch and control unit 406 is also
connected to memory channels MC1426 and MC2 428 (not
shown). The peripheral I/O control unit 410 is also connected
to an I/O bridge 430 (not shown).
0032. There are two data buses in the FIG. 4 implementa

tion. One data bus (DATA1) 420 is primarily used by the CPU
Subsystem for accessing the common memory. A second data
bus (DATA2) 422 is primarily used by the graphics drawing
and display subsystem 404. Having two data buses allows
concurrent accesses of memory by the CPU controller 402
and by graphics drawing and display Subsystem 404. Periph
eral and I/O controller 440 shares the data bus of either CPU
controller 402 or graphics drawing and display Subsystem
404.

0033. This implementation shows a shared address and
control (A&C) bus 424. Arbitration and control unit 408 is
responsible for responding to requests from CPU subsystem
controller 402, graphics drawing and display Subsystem 404
and peripheral and I/O control unit 440, and scheduling their
memory accesses. Arbitration and control unit 408 includes a
set of configuration and state registers (not shown) that pro
cesses requests intelligently. Additionally, the request proto
col specifies the amount of data required by the requester.
Arbitration and control unit 408 processes the requests with
the objectives of maximizing concurrency of the two data
buses, optimizing for the length of the transfers and assuring
that the latency for requests does not compromise system
performance.
0034) To meet these conflicting objectives, arbitration and
control unit 408 tracks the state of the memory channels as
well as the latency of the requests. Arbitration and control unit
408 breaks a single request from a subsystem into multiple
requests to the memory channels. By doing this, the latency
and memory bursts are optimized. Also, the requesting Sub
systems request very long bursts of data without concern for
unbalancing the system throughput and without having to
reuse the A&C bus 424.

0035 FIG. 5 shows a system block diagram 500 of an
embodiment of an enhanced CPU subsystem controller 504
connected by with a data bus 532 to a memory channel data
switch and controller 512 and connected by a control bus 542
to an arbitration and control unit 518. System 500 also
includes a graphic? drawing processor Subsystem 506 con
nected by a data bus 534 connected to memory channel data
switch and controller 512 and connected by a control bus 546
to arbitration and control block 518. System 500 also includes
a display processor subsystem 508 connected by a data bus
536 to the memory channel data switch and controller 512 and
with a control bus 548 connected to the arbitration and control
unit 518. FIG. 5 also shows the memory channel data switch
and controller 512 is connected to an integrated processor 510
by a data bus 530, connected to a peripheral bus control unit
514 by data bus 538, connected to a direct I/O control unit 516
by a data bus 540 and the data switch control unit 520.
Memory channel data switch and controller 512 has outputs
for internal memory channels IMC1522 through IMCN 524
and external memory channels EMC1526 through EMCM
528.

0036 FIG. 5 shows the peripheral bus control unit 514 is
connected by control bus 550 to the arbitration and control
unit 518 and connected to two buses PCI 554 and AGP 556.
The direct I/O control unit 516 is connected by control bus
552 to the arbitration and control unit 518 and connected to an

Jan. 12, 2012

I/O bridge 558 and a high-speed serial I/O port 560. FIG. 5
shows the integrated processor 510 is connected by control
bus 544 to the arbitration and control unit 518.

0037 FIG. 5 shows a more extensive implementation 500
of the base system 400 described in FIG. 4. System 500
includes more potentially concurrent data buses, additional
A&C buses and additional requester Subsystems such as the
integrated processor 510. Note that the graphics drawing and
display processor is broken into two requester Subsystems,
the graphics drawing processor Subsystem 506 and the dis
play processor subsystem 508, each with their own paths to
memory channel data switch and controller unit 512 and to
arbitration and control unit 518. The multiple graphics draw
ing processor Subsystems 506 are broken up to each Support
multiple data paths in a more elaborate system. The display
processor subsystem 508 also includes a separate data path.
0038. The integrated processor 510 included in FIG. 5
performs any number of functions. Examples include a geom
etry and lighting engine for 3-D graphics, an MPEG-2
decoder, an audio processor or some type of audio or video
compression engine. Any of these Subsystems would include
a processor and local memory. A hierarchical memory struc
ture is also possible as an implementation of the system of
FIG. 5 where a separate memory channel data switch includ
ing IRAM subsystems can be more closely linked with the
multiple graphics/drawing processor Subsystems and the dis
play processor Subsystem.
0039 FIG. 6 shows a diagram of an embodiment of a data
switch 600 that connects the subsystem channels A-Z with the
memory channels (MC). There are N internal memory sub
systems (IRAM subsystem 1 through IRAM subsystem N)
with respective control and data buses (internal memory
channels) labeled IMC1 through IMCN. Additionally, there
are M external memory Subsystem buses (external memory
channels) shown labeled EMC1 through EMCM. Each MC is
independent as far as the control and data path structure. The
data switch 600 allows the subsystem data channels A-Z to
concurrently access Some number of the memory channels
MC.

0040 FIG. 7 shows a diagram of an embodiment of a 4x4
crossbar data switch 700. The system controller outputs for
subsystem A 702, B 704, C 706 and D 708 can be routed
selectively by means of switches SNA 718, SNB 720, SNC
722 and SND 724 to memory channels MC1710, MC2 712,
MC3714 and MC4 716, where N can be 1, 2, 3, or 4. While
the actual configuration of the Switch varies in the implemen
tation, FIG. 7 shows the complete capabilities for four sub
system controllers and four memory channels. The crossbar
data switch 700 allows four separate data paths to be concur
rent through the switch. When any one controller is utilizing
one of the memory channels, the other controllers are not
blocked from accessing the other three memory controllers.
0041. A crossbar switch can be designed to be bi-direc
tional or unidirectional. In the case of unidirectional Switches,
both a set of read switches and a set of write switches may be
needed. Not all Switches in a system need to be as complex as
a crossbar switch. Much simpler switches and MUX based
switches can be used and still achieve good overall perfor
mance. In the simplest case, a Switch may be a connection
point between a Subsystem channel and a memory channel. A
simpler switch architecture is particularly useful for the
multi-bank and multiple row buffer configurations shown
later in FIGS. 9 and 10 respectively.

US 2012/0007873 A1

0042. For example, if subsystem A is accessing channel
MC3, the switch labeled S3A is active. Concurrently, sub
system B may be accessing channel MC4 with switch S4B
closed, and subsystem C may access channel MC1 with
switch SIC, while subsystem D accesses channel MC2
through switch S2D. If a subsystem needs to connect to a
memory channel that is in use by another Subsystem, it is
blocked and must wait.
0043 FIG. 8 shows a diagram of an embodiment of an
arbitration and data switch control architecture 800. The con
figuration registers 802 and status registers 804 receive an
address from input 850, a read from input 852, a write from
input 854 and data from input 856 and output control infor
mation via controls bus 816 to the memory channel request
unit 806 and the switch subsystem control units A808, B 810,
through M 812. The memory channel request unit 806 pro
duce signals on control lines for each memory Subsystems
MCRA 818, MCRB 820, MCRC 822 through MCRN 824.
Switch subsystem control unit A 808 produces signals on
lines S1A 826, S2A828, S3A 830, through SNA 832. Switch
subsystem control unit B 810 produces signals on lines S1B
834, S2B 836, and S3B 838 through SNB 840. Switch sub
system control unit M 812 produces signals on lines S1M
842, S2M844, and S3M846 through SNM848. Each control
block has N number of control lines. For the 4x4 Switch
shown in FIG. 7, N and Mare both 4.
0044) The configuration registers 802 are set to reflect the
nature of the Subsystem controller. These characteristics can
include the burst lengths, the latency tolerance and other
addressing information. Configuration information is also
required for the memory channel information. The status
registers 804 track both pending requests from the switch
subsystem controllers 808, 810 and 812 and the status of the
memory channels 818, 820, 822 and 824.
0045 Arbitration controller unit 814 receives memory
requests from each of subsystems 808, 810 and 812. By using
the configuration register 802 information as the status infor
mation, arbitration controller unit 814 acknowledges requests
at appropriate times and signals memory channel request unit
806 and switch subsystem controllers 808, 810 and 812 to
cycle through the memory requests.
0046 Arbitration controller unit 814 ensures that the sub
systems that have maximum latency tolerances are not com
promised. Additionally, arbitration controller unit 814 maxi
mizes the total bandwidth of the system to achieve the best
performance. In some cases bursts are not broken up so that
they can complete the use of a memory channel. In other
cases, a single Subsystem controller request is broken up and
filled with multiple memory channel accesses.
0047 FIG.9 shows an embodiment of an internal memory
subsystem 900 including a memory subsystem controller
(MSC) 960, a data multiplexer (MUX) 910 and multiple
banks of memory 920, 930, 940, and 950. The MSC 960
receives a memory channel request via line 958 when a sub
system controller requests a memory access within the
address region associated with this memory Subsystem. The
MSC 960 controls the multiplexer 910 and the IRAM banks
(920 through950) to fulfill the data request. In the case of a
read, the MSC 960 determines which IRAM bank contains
the requested data and adjusts the MUX 910 control so that
the IMC data bus 902 receives the data from the appropriate
IRAM bank.

0048. The MSC 960 must handle various size data
requests. The IRAM bank width can be independent from the

Jan. 12, 2012

width of the IMC data path902. The MSC960 uses the MUX
910 logic to ensure that the appropriate data is transferred in
the appropriate order to the IMC 902. This is an effective
means for the MSC 960 to take advantage of the wide data
paths available from IRAM banks 920 through950. Multiple
data transfers on the IMC902 are accommodated by propor
tionally fewer IRAM bank accesses.
0049 Additionally, the configuration of the memory bank
allows fast sequential accesses. A bank of memory is defined
as a row-column array of storage cells. Typically in DRAM,
an entire row of the array is enabled with a single access. This
allows any data within that row to be accessed quickly. If an
access to a different row address within the same bank of
IRAM occurs, a “pre-charge” penalty is incurred and the
access is delayed. To avoid the likelihood of this occurrence,
this example shows multiple banks employed in the memory
Subsystem.
0050. While an internal memory subsystem can be
designed as a singular bank, there are performance advan
tages to using multiple banks of memory. FIG. 9 shows four
banks of IRAM920 through950 multiplexed by multiplexer
910 onto a single internal memory channel (IMC)902, which
improves the effective throughput of the IMC 902. For
example, the IRAM banks (920 through950) are interleaved
so that sequential accesses occur to different banks. This is
particularly helpful in the case that the IRAM bank is slower
than the maximum IMC data rate.

0051. In the case of DRAM, the IRAM banks (920 through
950) are interleaved on a bank basis both to take advantage of
the page mode access within a bank and to hide the page miss
penalty by changing banks when crossing a page boundary.
The memory sequencer for the IRAM Subsystem manages the
banks to maximize bandwidth based on the memory access
patterns. This involves either pre-charging the DRAM bank
whenever a new bank is accessed or keeping a page active in
each bank of memory.
0052. The data bus 902 may be connected directly to a
processing or 10 Subsystem data bus instead of going through
an additional Switch. This saves an additional level of switch
ing. In order to allow the IRAM bank data to be shared in this
type of configuration, the IRAM banks can also be connected
to additional MUXs (not shown). Each additional MUX con
nects the IRAM banks to a separate processing or I/O sub
system data bus.
0053 FIG. 10 shows an embodiment of a memory sub
system 1000 including a memory subsystem controller
(MSC) 1022, a single bank of IDRAM 1002, a set of bi
directional row buffers 1004 through 1018 and an optional
MUX 1020. The MSC 1022 controls the interaction between
the optional MUX 1020, row buffers 1004 through 1018 and
IDRAM 1002. The request is fulfilled by the controller asso
ciated with IMC 1026-1032. The MSC 1022 receives a
Memory Channel Request on line 1024 for data that corre
spond to the memory address range of the given internal
memory subsystem 1000. The MSC 1022 controls the data
transfers between the IDRAM bank 1002 and the row buffers
1004-1018 as well as controlling the transfers between the
row buffers 1004 through 1018 and the optional MUX 1020
for Selection of the row buffer data on line 1026 to the IMC.
When the MSC 1022 receives a new read request, it accesses
the IDRAM array 1002 storing the requested data. The com
plete row of data from the IDRAM array is then transferred to
a row buffer and then from the row buffer through optional
MUX 1020 onto line 1026 to the IMC. In the case of a request

US 2012/0007873 A1

for a series of data, the row buffer data is routed so that the
request is filled in a burst manner on the IMC 1026. All of the
row data remains in the row buffer.
0054) The MSC 1022 fulfills subsequent data requests to
different rows in the same manner without affecting the data
stored in the other row buffers. These requests can be to the
same or different IMCs. When a data read occurs to an
address where the corresponding data already resides in the
row buffer, the row buffer fulfills the read request directly
without needing an additional IDRAM bank 1002 access.
Having multiple rows of data in the row buffers for fast access
achieves very high performance for typical access patterns to
a memory Subsystem.
0055 MSC 1022 handles the control of writes to the
memory Subsystem in a similar manner. One skilled in the art
of cache controller design is familiar with the following com
plications that result from having the IDRAM data tempo
rarily cached in row buffers 1004 through 1018. Ifa data write
occurs to a row of data that is already present in a row buffer,
the write is simply done to the row buffer, and that row buffer
is tagged as having the most recent copy of the data. This tag,
referred to as “dirty,’ is significant as it requires that data be
stored to the IDRAM array at some time and any subsequent
reads to that row of data must be fulfilled with the most recent
“dirty” data and not the “stale' data existing in the array.
0056. There are further implementation tradeoffs when
dirty data is written back to the array. Similarly, there is a need
to design implementation tradeoffs for data writes to
addresses not currently contained within a row buffer. The
primary options are “allocation on write' where the complete
row is read out of the array so that writes can occur to the row
buffer. A simpler implementation simply “writes through
data writes to the IDRAM bank 1002 for locations that are not
currently present in a row buffer.
0057. An implementation detail for the allocation of row
buffers corresponding to the memory locations is the tradeoff
between performance and simplicity of implementation. In
the simplest case, a row buffer is “direct mapped to a fixed
number of potential memory array rows. In the most flexible
and most complex case, any row buffer corresponds to any
IDRAM row and is said to be “fully associative.” Intermedi
ate complexity of design of a “set associative' mapping is
possible where more than one row buffer corresponds to each
fixed set of IDRAM rows.
0058 Another complexity results from the set and fully
associative mapping schemes where a row buffer replacement
algorithm must be implemented. Since more than one row
buffer can contain the data for a given row access, an algo
rithm is needed to choose which row buffer to replace for the
new access. The preferred embodiment employs a type of
"Least Recently Used’ (LRU) replacement algorithm.
0059. Designing a single bank of IDRAM 1002 may have
Some advantages as compared to a multi-bank design for area
and power savings. To achieve greater performance from a
single bank IDRAM 1002, temporary row buffers 1004
through 1018 are used to store memory reads and writes.
These temporary row buffers 1004 through 1018 multi-port
the memory bank.
0060 Multi-porting is an extension of the dual-port
approach that has long been used in specialty video RAMs
(VRAMs). VRAMs include both a random access port and a
serial access port. The serial access port uses data from a
serial access memory (SAM) that is loaded in a single cycle
from a RAM array. The VRAMs allow simultaneously acess

Jan. 12, 2012

ing both the SAM data and the random data. VRAMs also
allow data to be input serially into the SAM and then trans
ferred in a single cycle into the main RAM.
0061 The row buffers accomplish the same general func
tion as a SAM does. The row buffers, like a SAM register,
allow the contents an entire very wide row of RAM to be
transferred in a single cycle into the row buffer. Unlike serial
accesses to the SAM in a VRAM system, with the row buffers
on-chip, the data path to the internal memory channel can be
arbitrarily wide. Additionally, data steering logic is included
in the data path so that data from the DRAM bank is trans
ferred on the most optimal data lines of the IMC 1026.
0062. Different subsystems use row buffers differently.
For a function such as display refresh, the refresh controller
makes a memory address request. The corresponding row of
memory is transferred into a row buffer. The memory con
troller transfers the requested amount of data from the row
buffer to the refresh controller. The memory transfer typically
requires less data than the complete row buffer contents.
When the refresh controller performs the next sequential
request, the data is already in the row buffer ready to transfer.
0063. The CPU subsystem in a non-graphics application
performs a cache line fill from a memory address correspond
ing to an IDRAM bank. The IDRAM row is transferred to the
row buffer and the cacheline data is transferred through to the
cache data channel. The row buffer is presumably larger than
the cache-line size such that any additional cache line fills
corresponding to the same row buffer address range are filled
without needing to re-access the IDRAM bank.
0064. Furthermore, multiple row buffers contain valid
data at a given time. Accesses to different row buffers occur
sequentially without losing the ability to return to active row
buffers that contain valid data. Using the two examples above,
a partial read of row buffer 1 (RB1) occurs online 1026 to the
IMC as part of screen refresh. Next the CPU performs a cache
line fill over the IMC 1026 from RB2. The refresh then
continues from RB1 as the next burst of transfers over the
IMC 1026.

0065. The IMC data buses 1026-1032 could be connected
directly to a processing or I/O subsystem data bus instead of
going through an additional Switch. This saves an additional
level of switching. Similarly, the row buffer data lines 1040
1054 could optionally be connected directly to a processing
or Subsystem data bus instead of going through the optional
MUX 1020. Alternatively row buffer data lines 1040-1054
could be directly connected to the system data switch instead
of going through the optional MUX 1020.
0.066 FIG. 11 shows a system 1100 including subsystem
data channels A-Z connected by a data switch 1110 to internal
memory channels IMC 1112-1114 with internal memory sub
systems and external memory channels (EMC) 1116, 1118.
Each IDRAM subsystem includes a bank of IDRAM 1120, a
Memory Subsystem Controller (MSC) 1130, a set of row
buffers 1140, a MUX 1150 for transferring the appropriate
row buffer data onto the IMC 1112 and an optional Data
Manipulator 1160 that is detailed below.
0067. The improvement over the previous embodiments is
the hybrid approach of combining multiple IDRAM banks
each with a multitude of row buffers. As shown in FIG. 11, the
internal memory subsystems 1102, 1104 each contain row
buffers that correspond to a bank of IDRAM. The data switch
1110 has one or more channels into each IDRAM memory
subsystem where the IMCs 1112, 1114 are multiplexed into
row buffers. The MSC is responsible for controlling the trans

US 2012/0007873 A1

fers of the IDRAM data with the row buffers as well as
coordinating the IMC channels 1112, 1114 to the appropriate
row buffers. Alternatively, the data switch 1110 could MUX a
row buffer from each IDRAM bank directly to a subsystem
data channel.
0068 Also shown within each IDRAM memory sub
system 1102,1104 is an optional data manipulator (DM) e.g.,
1160. The data manipulator 1160 contains storage elements
that act as a second level of caching, as well as a simple
Arithmetic Logic Unit (ALU), and is managed by the MSC
1130. The advantage of having the data manipulator 1160
within the IDRAM memory subsystem 1102 is the higher
performance that is achieved. The data manipulator 1160 is
the full width of the row buffers, or wider, without the need to
increase the width of the IMC 1112, 1114 or the data Switch
1110, and operates at data rates higher than the rates of data
passing through the data switch 1110. This local optimization
improves the performance for operations that occur within an
IDRAM bank. Any operations that involve data in more than
one IDRAM bank still need to utilize the data switch 1110
data paths.
0069. The MSC 1130 can control the DM 1160 such that
operations over the IMC 1112 that would be read-modify
write operations can be satisfied within the IDRAM memory
subsystem with a simple write operation. U.S. Pat. No. 5,544,
306, which is incorporated by reference, describes techniques
for achieving this, where a Frame Buffer Dynamic Random
Access Memory converts read-modify-write operations such
as Z-Buffer compare and red-blue-green (RBG) alpha blend
ing into a write-only operation.
0070. The FIG. 12 IRAM memory architecture 1200 is
applied to a graphics drawing and display Subsystem inde
pendent of the main memory architecture. The multi-banked,
row buffered or combined hybrid approach is combined with
multiple graphics drawing engines and a local display con
troller to complete a very high performance graphics system.
Each graphics/drawing processor (GDP) 1220, 1230, 1240
and 1250 has a path into the data switch 1210. Each IRAM
subsystem (1260, 1270, 1280 and 1290) also has a path into
the data Switch. Additionally, the display processor Sub
system and a path to main memory have connection points
(1292 and 1294) into the data switch 1210. Each IDRAM
Subsystem can be a combination of multiple banks of
memory, row buffers and data manipulators as described with
reference to earlier figure.
0071. The GDPs operate in parallel to manipulate image
data for display. Each GDP may have local registers, buffers
and cache memory. The GDPs can each operate on different
IRAM subsystem data, or multiple GDPs may operate on data
in one IRAM subsystem. The GDPs may each be responsible
for the complete graphics pipeline of operations such as trans
form, lighting, set-up and rendering. Alternatively, each GDP
may perform one of the stages of the graphics pipeline. Ide
ally the GDPs will be flexible enough that, depending on the
particular application being performed, the system will oper
ate in the most efficient configuration.
0072. In the case where multiple GDPs are rendering data,
the rendered data is not always in a regular structure repre
senting a frame buffer. The Display Processor Subsystem
(DPS) can be provided with the mapping information and
reconstruct the display information from the various stored
rendering information. The DPS reconstructs the image scan
line-by-Scanline so that the data can be sent out and displayed
properly. The DPS also performs operations such as Scaling

Jan. 12, 2012

and filtering that are better suited to being performed in this
back end path than by the GDPs.
0073. The path to the main memory data switch may be
used by both the GDPs and the DPS. In the case of the GDPs,
large textures or other elements requiring large amounts of
storage can be read in by the GDPs and processed. In some
cases the raw or processed data is cached in the IRAM sub
systems or the data is simply used and only the resulting data
stored locally. The display processor subsystem utilizes the
path to main memory for constructing the output display. The
output consists of data, from both the GDPs as well as from
other elements, such as video data that are stored in the main
system memory. The DPS constructs the output scan-line by
scan-line from the data stored in either IRAM subsystems or
main memory.
0074 The architecture shown in FIG. 12 can be extended
to system that is not related to graphics. Instead of multiple
graphics/drawing processors, a system could include mul
tiple compute engines each with their own registers, local
memory or cache memory as needed. The IRAM subsystem
architectures described earlier are equally applicable to
improved performance for computationally complex algo
rithms performed across multiple compute engines. The com
pute engines can operate in parallel on different data elements
for concurrency. Alternatively, the compute engines can oper
ate in series each performing a stage of the overall processing.
Applications where these approaches can be utilized include
signal processing, compression, de-compression and com
munications.
0075 An enhanced system with a common display
memory and main memory preferably includes separate con
trols for each memory Subsystem, an arbitration controller
that takes the requests from multiple processor or peripheral
Subsystems, and a memory data path so that by a memory
Subsystem provides memory data to a processor or peripheral
Subsystem without preventing additional processor or periph
eral Subsystems from accessing other memory Subsystems.
0076 An enhanced system can include a partial drawing
buffer where a graphics engine can write a portion of the
display output data and transfer the portion of the display
output data to a common memory Subsystem for use during
Subsequent display updates after a display frame has been
processed. An enhanced system preferably includes a com
plete drawing buffer where a graphics engine can store the
complete display output data and transfer the display output
data for Subsequent display updates.
0077. An enhanced system preferably includes a graphics
controller to perform 3-D graphics functions, a texture cache
to provide data for the graphics controller, and an order buffer
where the graphics controller can fetch data.
0078 For a 3-D graphics controller, one of the key aspects
of 3-D processing is determining which objects, and Subse
quently which pixels of which objects, are visible for a given
frame. Many objects of a given 3-D image may be occluded
from a viewpoint by another object's pixels. To insure that the
pixels from the proper object are in front and properly dis
played, the 3-D system includes what is generally referred to
as a Z-buffer or an order buffer. The order buffer is used to
determine if the triangles or pixels of a new object are to be
displayed for a given frame based on their position relative to
the viewpoint. The earlier in a graphics pipeline that the
ordering is performed, the less computation is needed to
render pixels that will not ultimately be visible for a scene.
However, it is sometimes just simpler to perform the complete

US 2012/0007873 A1

rendering of a triangle and then on a pixel-by-pixel basis
decide whether or not to update the display based on the value
in the order buffer.
007.9 For systems with a single 3-D controller, accessing
the order buffer is a key bandwidth consideration. Therefore,
as with textures, it is advantageous to have a cache or buffer
for the ordering information. For systems with multiple 3-D
controllers, each 3-D controller may be permitted to operate
asynchronously to balance the computation load and increase
the system throughput. An order buffer that is accessible to
each of the controllers allows asynchronous processing to
occur and still be sure that the proper pixels from each object
will end up in view.
0080 Those skilled in the art will recognize that this
invention can be implemented with additional Subsystems
connected in series or in parallel to the disclosed Subsystems,
depending on the application. Therefore, the present inven
tion is limited only by the following claims.
What is claimed is:
1. A computer system comprising:
a memory controller,
a common display memory and main memory comprising

at least one internal memory Subsystem contained in the
memory controller and at least one external memory
subsystem outside of the memory controller;

at least one multi-use memory channel operatively coupled
to the at least one internal memory Subsystem and the at
least one external memory Subsystem;

a memory channel data Switch coupled to the memory
controller and configured to dynamically allocate the at
least one multi-use memory channel; and

a central processing unit (CPU) Subsystem controller oper
ably coupled to the memory channel data Switch and the
memory controller, the CPU configured to output con
trol signals to the memory channel data Switch and the
memory controller.

2. The computer system of claim 1 further comprising a
multiplexer configured to selectively couple at least one
external memory Subsystem to one of the at least one multi
use memory channels.

3. The computer system of claim 2 wherein one of the at
least one internal memory Subsystem and the at least one
external memory Subsystem is a display memory Subsystem
configured to be able to function as main system memory.

4. The computer system of claim 1 wherein one of the at
least one internal memory Subsystem and the at least one
external memory Subsystem is a display memory Subsystem
configured to be able to function as main system memory.

5. The computer system of claim 1 wherein at least one of
the at least one internal memory Subsystem and the at least
one external memory Subsystem includes a data manipulator
containing a plurality of data storage elements.

6. The computer system of claim 1 further comprising a
complete drawing buffer configured to permit a graphics
engine to store display output data and transfer the display
output data for Subsequent display updates.

7. The computer system of claim 1 further comprising a
computer display, a complete drawing buffer and a graphics
engine, wherein the graphics engine is configured to be able
to store output data in the drawing buffer for output to the
computer display and to Subsequently transfer the output data
to the computer display for display updates.

Jan. 12, 2012

8. A computer system comprising:
a display;
a memory controller;
common display memory and main memory comprising at

least one of an internal memory Subsystem included
within the memory controller and configured to coop
eratively couple therewith, and at least one of an external
memory Subsystem outside of the memory controller
and configured to cooperatively couple therewith:

a plurality of memory channels operatively coupled to the
common display memory and main memory, at least one
of the plurality of memory channels configured as a
multi-use memory channel;

a memory channel data Switch operably coupled to the
memory controller and to the plurality of memory chan
nels and configured to allocate selected ones of the plu
rality of memory channels between the at least one inter
nal memory Subsystem and the at least one external
memory Subsystem;

a central processing unit (CPU) Subsystem controller oper
ably coupled to the memory channel data Switch and the
memory controller and configured to produce output
signals to be applied to the memory channel data Switch
and memory controller;

a graphics/drawing and display Subsystem operably
coupled to the CPU subsystem controller, the memory
channel data Switch and the memory controller, the
graphics/drawing and display Subsystem being config
ured to provide output signals to the memory channel
data Switch and the memory controller;

an arbitration and control engine operably coupled to the
CPU subsystem controller, the graphics/drawing and
display Subsystem, the arbitration and control engine
being configured to provide output signals to the CPU
Subsystem controller and to the graphics/drawing and
display Subsystem; and

a peripheral bus controller operably coupled to the memory
channel data switch, the memory controller and the arbi
tration and control engine and configured to provide
output signals to the memory channel data Switch, the
memory controller and the arbitration and control
engine.

9. The computer system of claim 8 wherein at least one of
the at least one internal memory Subsystem and the at least
one external memory subsystem includes DRAM memory.

10. The computer system of claim 9 wherein at least one of
the at least one internal memory Subsystem and the at least
one external memory Subsystem comprises a data manipula
tor containing a plurality of storage elements.

11. The computer system of claim 8 wherein at least one of
the at least one internal memory Subsystem and the at least
one external memory Subsystem comprises a data manipula
tor containing a plurality of storage elements.

12. The computer system of claim 8 further comprising a
computer display, a complete drawing buffer and a graphics
engine, wherein the graphics engine can store output data in
the drawing buffer for output to the computer display and
Subsequently transfer the output data to the computer display
for display updates.

