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(57) ABSTRACT 

The present invention relates generally to an optimized 
memory architecture for computer systems and, more par 
ticularly, to integrated circuits that implement a memory Sub 
system that is comprised of internal memory and control for 
external memory. The invention includes one or more shared 
high-bandwidth memory Subsystems, each coupled over a 
plurality of buses to a display Subsystem, a central processing 
unit (CPU) subsystem, input/output (I/O) buses and other 
controllers. Additional buffers and multiplexers are used for 
the Subsystems to further optimize system performance. 
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COMPUTER SYSTEM CONTROLLER 
HAVING INTERNAL MEMORY AND 
EXTERNAL MEMORY CONTROL 

RELATED APPLICATIONS 

0001. This patent application is a continuation application 
of U.S. patent application Ser. No. 09/541,413, filed on Mar. 
31, 2000 now abandoned entitled “Computer System Con 
troller Having Internal Memory and External Memory Con 
trol.” naming Neal Margulis as inventor, which is a continu 
ation application of U.S. patent application Ser. No. 08/926, 
666, filed on Sep. 9, 1997, now U.S. Pat. No. 6,118,462, 
which resulted from a continuation-in-part application of 
U.S. patent application Ser. No. 08/886.237, filed on Jul. 1, 
1997, entitled “Computer System Having a Common Display 
Memory and Main Memory, naming Neal Margulis as 
inventor, now U.S. Pat. No. 6,057,862, the disclosures of 
which are incorporated by reference. 

BACKGROUND OF THE INVENTION 

0002 1. Field of the Invention 
0003. The present invention relates generally to a memory 
architecture for computer systems and more particularly to a 
memory Subsystem comprised of internal memory and con 
trol for external memory. 
0004 2. Discussion of Prior Art 
0005. A typical personal computer system has a central 
processing unit (CPU) with an external main memory and has 
a graphics display Subsystem with its own memory Sub 
system. Part of this memory subsystem is a frame buffer that 
provides the output to the display, and part of this subsystem 
may be used for off-screen operations. However, the graphics 
display Subsystem memory and the main system's pool of 
memory do not share data efficiently or move data efficiently 
from one memory Subsystem to the other. Another typical 
personal computer system has a single memory Subsystem for 
both the CPU and the graphics subsystem. The performance 
of this type of computer system is lower than that of computer 
systems that have separate memory Subsystems for the graph 
ics display subsystem and for the CPU. Even though these 
single external memory systems can Support a cache memory 
for the CPU, their overall performance is still lower because 
the memory bandwidth is shared between the graphics and 
CPU subsystems. These computer systems are very limited in 
their ability to achieve good performance for both the CPU 
and graphics Subsystems. In order to be cost effective, these 
systems typically use a lower cost main memory that is not 
optimized for the special performance needs of graphics 
operations. 
0006 For systems that use a single external memory sub 
system to perform all of their display refresh and drawing 
operations, performance is compromised by the memory 
bandwidth for these operations being shared with the memory 
bandwidth for the CPU. "Refresh' is the general term for 
taking the information contained in a frame buffer memory 
and sequentially transferring the information by rows to a 
palette digital-to-analog converter (DAC) to be displayed on 
an output device such as a monitor, TV or flat panel display. 
The frame buffer's entire contents needs to be transferred to 
the output device continuously for the displayed image to be 
visible. In the case of a monitor, this refresh is performed 
typically between 75 and 95 times per second. For high 
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resolution color systems, the refresh process consumes an 
appreciable portion of the total bandwidth available from the 
memory. 
0007. In addition to the refresh bandwidth, the graphics 
Subsystem performs drawing operations that also consume an 
appreciable amount of bandwidth. In the case of 2-D graphics 
acceleration the drawing operations include Bit-BLt (Bit 
Block Transfers), line drawing and other operations that use 
the same common pool of memory. Intel and other companies 
in the PC industry have designed an advanced peripheral port 
(AGP) bus and an associated system architecture for combin 
ing graphics and chipsets. AGP is a second private bus 
between the main memory controller chipset and the graphics 
display Subsystems. AGP and the associated system architec 
ture allow the storage of 3-D texture memory in the main 
memory that can be accessed by the graphics Subsystem. This 
is one limited use of shared main memory for a graphics 
function. However, because there is a single bus between the 
graphics Subsystem and the main memory controller chipset, 
this bus limits the system performance. This single bus is 
shared by all CPU commands to the graphics controller, any 
CPU direct reads or writes of display data, all texture fetches 
from main memory and any other transfers of display infor 
mation that is generated or received from the CPU or I/O 
Subsystems (i.e. video data from a capture chip or a decoder). 
0008 AGP is designed to overcome the above-described 
performance limitations from using the main memory Sub 
system for display refresh and drawing operations. AGP sys 
tems overcome these limitations by a brute force requirement 
that the graphics subsystem on the AGP bus have a separate 
frame buffer memory subsystem for screen refresh and draw 
ing operations. Using frame buffer memory is a good solution 
for eliminating the performance penalties associated with 
drawing and refresh operations. Meanwhile, as a frame buffer 
is always required, AGP systems do not allow for screen 
refresh to be performed from the main system memory. This 
does not allow the optimization of refreshing all or part of the 
screen from main memory. 
0009. Additionally, the drawing operations must be per 
formed in the graphics display memory and are therefore 
performed by the graphics Subsystem controller. Also limit 
ing the dedicated frame buffer system flexibility, the graphics 
subsystem controller can not efficiently draw into the main 
system memory. 
0010 Separating the frame buffer memory from the main 
system memory duplicates the input/output (I/O) system 
data. For example, this occurs in a system where video data 
enters the system over an I/O bus through a system controller 
and then is stored in the main system memory. If the data is 
displayed, it needs to be copied into the frame buffer. This 
creates a second copy of the data, transfer of which requires 
additional bandwidth. 
0011. Another alternative is to have a peripheral bus asso 
ciated with the graphics controller where the I/O data is 
transferred to the frame buffer. While this allows display of 
the data without additional transfers over a system bus, the 
data remains local to the display subsystem. The CPU or main 
I/O Systems can not access the data without using a system 
bus. For systems with a shared memory subsystem, the I/O 
data enters a shared memory region. It is then available to 
either the display subsystem or the CPU. 
0012 FIG. 1 shows a diagram of a standard, prior art 
memory architecture 100. A CPU subsystem 102 is connected 
to a subsystem 104 which is connected to an external system 
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Random Access Memory (RAM) 110 and to a peripheral 
component interface (PCI) bus 112. Subsystem 104 contains 
a system controller 106 and a graphics controller 108 that is 
connected to a display (not shown in FIG. 1). The system has 
a single external memory subsystem 110 for both the graphics 
display and CPU 102. 
0013 FIG. 2 is a diagram of the current state-of-the art 
personal computer memory architecture 200 having separate 
memories for the CPU and for the graphics display. A CPU 
subsystem 204 is connected to a system controller 206 that is 
connected to an external system RAM 210 and to a PCI bus 
216. System controller 206 is also connected through a dedi 
cated AGP bus 214 to a graphics controller 208 that is con 
nected to a graphics RAM 212, which is external or integrated 
with the controller, and to a display 202. CPU subsystem 204 
can not treat graphics RAM 212 as an extension of system 
RAM 210, and graphics subsystem 208 can not use system 
memory 210 for display refresh. 
0014 What is needed is an integrated system controller 
that Supports a memory architecture which combines internal 
and external memory in which common memory can be used 
for display memory and main memory, without having inad 
equate bandwidth access to the common memory to impair 
performance. 

SUMMARY OF THE INVENTION 

0015 The present invention resides in a memory architec 
ture having one or more high bandwidth memory Subsystems 
where some of the memory subsystems are external to the 
controller and some of the memory Subsystems are internal. 
Each of the high bandwidth memory subsystems is shared 
and connected over a plurality of buses to a display Sub 
system, a central processing unit (CPU) Subsystem, input/ 
output (I/O) buses and other controllers. A display subsystem 
is configured to receive various video and graphics type data 
from the high-speed memory Subsystems and to process it for 
display refresh. Additional buffers and caches are used for the 
Subsystems to optimize system performance. The display 
refresh path includes processing of the data from the memory 
subsystem for output to the display, where the data enters the 
shared memory subsystems from an I/O subsystem, from the 
CPU subsystem or from the graphics subsystem. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0016 FIG. 1 is a diagram of a prior art memory architec 
ture for a computer system; 
0017 FIG. 2 is a diagram of another prior art memory 
architecture for a computer system; 
0018 FIG.3 is a diagram of an embodiment of a computer 
system having a common display memory and main memory 
of integrated and external memory; 
0019 FIG. 4 is a diagram of an embodiment of the system 
with a common display memory and main memory; 
0020 FIG.5 is a diagram of a full-function embodiment of 
the new enhanced system with a common display memory 
and main memory; 
0021 FIG. 6 is a diagram of an embodiment of a data 
switch with both internal and external memory channels; 
0022 FIG. 7 is a diagram of an embodiment of a 4x4 
crossbar data Switch; 
0023 FIG. 8 is a diagram of an embodiment of an arbitra 
tion and data Switch control architecture; 
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0024 FIG. 9 is a diagram of an embodiment of a multi 
bank IRAM subsystem; 
0025 FIG. 10 is a diagram of an embodiment of an IRAM 
subsystem with a single bank IDRAM with row buffers: 
0026 FIG. 11 is a diagram of an embodiment of a data 
switch with multiple IRAM subsystems each using multiple 
row buffers; and 
0027 FIG. 12 is a diagram of an IRAM memory architec 
ture applied more strictly to a graphics drawing and display 
Subsystem independent of the main memory architecture. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0028. The present invention resides in a memory architec 
ture having one or more shared high-bandwidth memory 
Subsystems that are both internal and external to the system 
controller. Each of the high-bandwidth memory subsystems 
is connected over a plurality of buses to the display sub 
system, the central processing unit (CPU) Subsystem, the 
input/output (I/O) buses and other controllers. The display 
Subsystem is configured to receive various video and graphics 
data types for processing and display refresh from the high 
speed shared memory. Additional buffers and caches are used 
for the Subsystems to optimize the system. 
(0029 FIG. 3 shows a system block diagram 300 of an 
embodiment of the present invention, including a CPU sub 
system 308 connected to an enhanced system controller 310 
which is in turn connected through memory channel EMC1 
322 to a memory subsystem 314 and through memory chan 
nel EMC2324 to a memory subsystem 316. Each memory 
channel includes independent controls and contains multiple 
banks of memory. Enhanced system controller 310 is also 
connected to an input/output bridge 312, display output 
devices 330, a PCI bus 332, an advanced peripheral port 
(AGP) 334, and a high-speed serial I/O port 336. Integrated 
into the enhanced system controller are additional internal 
memory Subsystems, each with their own control and data 
channels. 
0030. A low cost multimedia personal computer system is 
achieved by optimizing a system with respect to memory 
bandwidth to share one or more common memory Sub 
systems for aspects of display memory and main system 
memory. The FIG. 3 common memory subsystem allows 
sharing the available bandwidth as well as sharing the pool of 
memory. The shared memory subsystem bandwidth can be 
allocated either to display operations or the primary CPU and 
main I/O system. The common pool of memory is allocated, 
depending on the application and operating system, to Sup 
port display memory Such as textures or buffers. Alterna 
tively, the common pool of memory can be allocated to the 
rest of the system to support CPU code, data or peripheral 
system Swap areas for I/O devices in the system. Additionally, 
the common pools of memory, either internal or external, can 
be dynamically shared with common data used by both the 
display Subsystem and the other system functions. 
0031 FIG. 4 shows a system block diagram 400 of an 
embodiment of the present invention, including a CPU sub 
system controller 402 connected to a graphic? drawing and 
display Subsystem 404, a memory channel data Switch and 
control unit 406, an arbitration and control unit 408 and a 
peripheral I/O control unit 440. CPU subsystem controller 
402 is also connected to a CPU subsystem (not shown). 
Graphic? drawing and display Subsystem 404 is connected to 
a display device (not shown), the memory channel data Switch 
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and control unit 406 and the arbitration and control unit 408. 
The memory channel data switch and control unit 406 is also 
connected to memory channels MC1426 and MC2 428 (not 
shown). The peripheral I/O control unit 410 is also connected 
to an I/O bridge 430 (not shown). 
0032. There are two data buses in the FIG. 4 implementa 

tion. One data bus (DATA1) 420 is primarily used by the CPU 
Subsystem for accessing the common memory. A second data 
bus (DATA2) 422 is primarily used by the graphics drawing 
and display subsystem 404. Having two data buses allows 
concurrent accesses of memory by the CPU controller 402 
and by graphics drawing and display Subsystem 404. Periph 
eral and I/O controller 440 shares the data bus of either CPU 
controller 402 or graphics drawing and display Subsystem 
404. 

0033. This implementation shows a shared address and 
control (A&C) bus 424. Arbitration and control unit 408 is 
responsible for responding to requests from CPU subsystem 
controller 402, graphics drawing and display Subsystem 404 
and peripheral and I/O control unit 440, and scheduling their 
memory accesses. Arbitration and control unit 408 includes a 
set of configuration and state registers (not shown) that pro 
cesses requests intelligently. Additionally, the request proto 
col specifies the amount of data required by the requester. 
Arbitration and control unit 408 processes the requests with 
the objectives of maximizing concurrency of the two data 
buses, optimizing for the length of the transfers and assuring 
that the latency for requests does not compromise system 
performance. 
0034) To meet these conflicting objectives, arbitration and 
control unit 408 tracks the state of the memory channels as 
well as the latency of the requests. Arbitration and control unit 
408 breaks a single request from a subsystem into multiple 
requests to the memory channels. By doing this, the latency 
and memory bursts are optimized. Also, the requesting Sub 
systems request very long bursts of data without concern for 
unbalancing the system throughput and without having to 
reuse the A&C bus 424. 

0035 FIG. 5 shows a system block diagram 500 of an 
embodiment of an enhanced CPU subsystem controller 504 
connected by with a data bus 532 to a memory channel data 
switch and controller 512 and connected by a control bus 542 
to an arbitration and control unit 518. System 500 also 
includes a graphic? drawing processor Subsystem 506 con 
nected by a data bus 534 connected to memory channel data 
switch and controller 512 and connected by a control bus 546 
to arbitration and control block 518. System 500 also includes 
a display processor subsystem 508 connected by a data bus 
536 to the memory channel data switch and controller 512 and 
with a control bus 548 connected to the arbitration and control 
unit 518. FIG. 5 also shows the memory channel data switch 
and controller 512 is connected to an integrated processor 510 
by a data bus 530, connected to a peripheral bus control unit 
514 by data bus 538, connected to a direct I/O control unit 516 
by a data bus 540 and the data switch control unit 520. 
Memory channel data switch and controller 512 has outputs 
for internal memory channels IMC1522 through IMCN 524 
and external memory channels EMC1526 through EMCM 
528. 

0036 FIG. 5 shows the peripheral bus control unit 514 is 
connected by control bus 550 to the arbitration and control 
unit 518 and connected to two buses PCI 554 and AGP 556. 
The direct I/O control unit 516 is connected by control bus 
552 to the arbitration and control unit 518 and connected to an 
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I/O bridge 558 and a high-speed serial I/O port 560. FIG. 5 
shows the integrated processor 510 is connected by control 
bus 544 to the arbitration and control unit 518. 

0037 FIG. 5 shows a more extensive implementation 500 
of the base system 400 described in FIG. 4. System 500 
includes more potentially concurrent data buses, additional 
A&C buses and additional requester Subsystems such as the 
integrated processor 510. Note that the graphics drawing and 
display processor is broken into two requester Subsystems, 
the graphics drawing processor Subsystem 506 and the dis 
play processor subsystem 508, each with their own paths to 
memory channel data switch and controller unit 512 and to 
arbitration and control unit 518. The multiple graphics draw 
ing processor Subsystems 506 are broken up to each Support 
multiple data paths in a more elaborate system. The display 
processor subsystem 508 also includes a separate data path. 
0038. The integrated processor 510 included in FIG. 5 
performs any number of functions. Examples include a geom 
etry and lighting engine for 3-D graphics, an MPEG-2 
decoder, an audio processor or some type of audio or video 
compression engine. Any of these Subsystems would include 
a processor and local memory. A hierarchical memory struc 
ture is also possible as an implementation of the system of 
FIG. 5 where a separate memory channel data switch includ 
ing IRAM subsystems can be more closely linked with the 
multiple graphics/drawing processor Subsystems and the dis 
play processor Subsystem. 
0039 FIG. 6 shows a diagram of an embodiment of a data 
switch 600 that connects the subsystem channels A-Z with the 
memory channels (MC). There are N internal memory sub 
systems (IRAM subsystem 1 through IRAM subsystem N) 
with respective control and data buses (internal memory 
channels) labeled IMC1 through IMCN. Additionally, there 
are M external memory Subsystem buses (external memory 
channels) shown labeled EMC1 through EMCM. Each MC is 
independent as far as the control and data path structure. The 
data switch 600 allows the subsystem data channels A-Z to 
concurrently access Some number of the memory channels 
MC. 

0040 FIG. 7 shows a diagram of an embodiment of a 4x4 
crossbar data switch 700. The system controller outputs for 
subsystem A 702, B 704, C 706 and D 708 can be routed 
selectively by means of switches SNA 718, SNB 720, SNC 
722 and SND 724 to memory channels MC1710, MC2 712, 
MC3714 and MC4 716, where N can be 1, 2, 3, or 4. While 
the actual configuration of the Switch varies in the implemen 
tation, FIG. 7 shows the complete capabilities for four sub 
system controllers and four memory channels. The crossbar 
data switch 700 allows four separate data paths to be concur 
rent through the switch. When any one controller is utilizing 
one of the memory channels, the other controllers are not 
blocked from accessing the other three memory controllers. 
0041. A crossbar switch can be designed to be bi-direc 
tional or unidirectional. In the case of unidirectional Switches, 
both a set of read switches and a set of write switches may be 
needed. Not all Switches in a system need to be as complex as 
a crossbar switch. Much simpler switches and MUX based 
switches can be used and still achieve good overall perfor 
mance. In the simplest case, a Switch may be a connection 
point between a Subsystem channel and a memory channel. A 
simpler switch architecture is particularly useful for the 
multi-bank and multiple row buffer configurations shown 
later in FIGS. 9 and 10 respectively. 



US 2012/0007873 A1 

0042. For example, if subsystem A is accessing channel 
MC3, the switch labeled S3A is active. Concurrently, sub 
system B may be accessing channel MC4 with switch S4B 
closed, and subsystem C may access channel MC1 with 
switch SIC, while subsystem D accesses channel MC2 
through switch S2D. If a subsystem needs to connect to a 
memory channel that is in use by another Subsystem, it is 
blocked and must wait. 
0043 FIG. 8 shows a diagram of an embodiment of an 
arbitration and data switch control architecture 800. The con 
figuration registers 802 and status registers 804 receive an 
address from input 850, a read from input 852, a write from 
input 854 and data from input 856 and output control infor 
mation via controls bus 816 to the memory channel request 
unit 806 and the switch subsystem control units A808, B 810, 
through M 812. The memory channel request unit 806 pro 
duce signals on control lines for each memory Subsystems 
MCRA 818, MCRB 820, MCRC 822 through MCRN 824. 
Switch subsystem control unit A 808 produces signals on 
lines S1A 826, S2A828, S3A 830, through SNA 832. Switch 
subsystem control unit B 810 produces signals on lines S1B 
834, S2B 836, and S3B 838 through SNB 840. Switch sub 
system control unit M 812 produces signals on lines S1M 
842, S2M844, and S3M846 through SNM848. Each control 
block has N number of control lines. For the 4x4 Switch 
shown in FIG. 7, N and Mare both 4. 
0044) The configuration registers 802 are set to reflect the 
nature of the Subsystem controller. These characteristics can 
include the burst lengths, the latency tolerance and other 
addressing information. Configuration information is also 
required for the memory channel information. The status 
registers 804 track both pending requests from the switch 
subsystem controllers 808, 810 and 812 and the status of the 
memory channels 818, 820, 822 and 824. 
0045 Arbitration controller unit 814 receives memory 
requests from each of subsystems 808, 810 and 812. By using 
the configuration register 802 information as the status infor 
mation, arbitration controller unit 814 acknowledges requests 
at appropriate times and signals memory channel request unit 
806 and switch subsystem controllers 808, 810 and 812 to 
cycle through the memory requests. 
0046 Arbitration controller unit 814 ensures that the sub 
systems that have maximum latency tolerances are not com 
promised. Additionally, arbitration controller unit 814 maxi 
mizes the total bandwidth of the system to achieve the best 
performance. In some cases bursts are not broken up so that 
they can complete the use of a memory channel. In other 
cases, a single Subsystem controller request is broken up and 
filled with multiple memory channel accesses. 
0047 FIG.9 shows an embodiment of an internal memory 
subsystem 900 including a memory subsystem controller 
(MSC) 960, a data multiplexer (MUX) 910 and multiple 
banks of memory 920, 930, 940, and 950. The MSC 960 
receives a memory channel request via line 958 when a sub 
system controller requests a memory access within the 
address region associated with this memory Subsystem. The 
MSC 960 controls the multiplexer 910 and the IRAM banks 
(920 through950) to fulfill the data request. In the case of a 
read, the MSC 960 determines which IRAM bank contains 
the requested data and adjusts the MUX 910 control so that 
the IMC data bus 902 receives the data from the appropriate 
IRAM bank. 

0048. The MSC 960 must handle various size data 
requests. The IRAM bank width can be independent from the 
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width of the IMC data path902. The MSC960 uses the MUX 
910 logic to ensure that the appropriate data is transferred in 
the appropriate order to the IMC 902. This is an effective 
means for the MSC 960 to take advantage of the wide data 
paths available from IRAM banks 920 through950. Multiple 
data transfers on the IMC902 are accommodated by propor 
tionally fewer IRAM bank accesses. 
0049 Additionally, the configuration of the memory bank 
allows fast sequential accesses. A bank of memory is defined 
as a row-column array of storage cells. Typically in DRAM, 
an entire row of the array is enabled with a single access. This 
allows any data within that row to be accessed quickly. If an 
access to a different row address within the same bank of 
IRAM occurs, a “pre-charge” penalty is incurred and the 
access is delayed. To avoid the likelihood of this occurrence, 
this example shows multiple banks employed in the memory 
Subsystem. 
0050. While an internal memory subsystem can be 
designed as a singular bank, there are performance advan 
tages to using multiple banks of memory. FIG. 9 shows four 
banks of IRAM920 through950 multiplexed by multiplexer 
910 onto a single internal memory channel (IMC)902, which 
improves the effective throughput of the IMC 902. For 
example, the IRAM banks (920 through950) are interleaved 
so that sequential accesses occur to different banks. This is 
particularly helpful in the case that the IRAM bank is slower 
than the maximum IMC data rate. 

0051. In the case of DRAM, the IRAM banks (920 through 
950) are interleaved on a bank basis both to take advantage of 
the page mode access within a bank and to hide the page miss 
penalty by changing banks when crossing a page boundary. 
The memory sequencer for the IRAM Subsystem manages the 
banks to maximize bandwidth based on the memory access 
patterns. This involves either pre-charging the DRAM bank 
whenever a new bank is accessed or keeping a page active in 
each bank of memory. 
0052. The data bus 902 may be connected directly to a 
processing or 10 Subsystem data bus instead of going through 
an additional Switch. This saves an additional level of switch 
ing. In order to allow the IRAM bank data to be shared in this 
type of configuration, the IRAM banks can also be connected 
to additional MUXs (not shown). Each additional MUX con 
nects the IRAM banks to a separate processing or I/O sub 
system data bus. 
0053 FIG. 10 shows an embodiment of a memory sub 
system 1000 including a memory subsystem controller 
(MSC) 1022, a single bank of IDRAM 1002, a set of bi 
directional row buffers 1004 through 1018 and an optional 
MUX 1020. The MSC 1022 controls the interaction between 
the optional MUX 1020, row buffers 1004 through 1018 and 
IDRAM 1002. The request is fulfilled by the controller asso 
ciated with IMC 1026-1032. The MSC 1022 receives a 
Memory Channel Request on line 1024 for data that corre 
spond to the memory address range of the given internal 
memory subsystem 1000. The MSC 1022 controls the data 
transfers between the IDRAM bank 1002 and the row buffers 
1004-1018 as well as controlling the transfers between the 
row buffers 1004 through 1018 and the optional MUX 1020 
for Selection of the row buffer data on line 1026 to the IMC. 
When the MSC 1022 receives a new read request, it accesses 
the IDRAM array 1002 storing the requested data. The com 
plete row of data from the IDRAM array is then transferred to 
a row buffer and then from the row buffer through optional 
MUX 1020 onto line 1026 to the IMC. In the case of a request 
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for a series of data, the row buffer data is routed so that the 
request is filled in a burst manner on the IMC 1026. All of the 
row data remains in the row buffer. 
0054) The MSC 1022 fulfills subsequent data requests to 
different rows in the same manner without affecting the data 
stored in the other row buffers. These requests can be to the 
same or different IMCs. When a data read occurs to an 
address where the corresponding data already resides in the 
row buffer, the row buffer fulfills the read request directly 
without needing an additional IDRAM bank 1002 access. 
Having multiple rows of data in the row buffers for fast access 
achieves very high performance for typical access patterns to 
a memory Subsystem. 
0055 MSC 1022 handles the control of writes to the 
memory Subsystem in a similar manner. One skilled in the art 
of cache controller design is familiar with the following com 
plications that result from having the IDRAM data tempo 
rarily cached in row buffers 1004 through 1018. Ifa data write 
occurs to a row of data that is already present in a row buffer, 
the write is simply done to the row buffer, and that row buffer 
is tagged as having the most recent copy of the data. This tag, 
referred to as “dirty,’ is significant as it requires that data be 
stored to the IDRAM array at some time and any subsequent 
reads to that row of data must be fulfilled with the most recent 
“dirty” data and not the “stale' data existing in the array. 
0056. There are further implementation tradeoffs when 
dirty data is written back to the array. Similarly, there is a need 
to design implementation tradeoffs for data writes to 
addresses not currently contained within a row buffer. The 
primary options are “allocation on write' where the complete 
row is read out of the array so that writes can occur to the row 
buffer. A simpler implementation simply “writes through 
data writes to the IDRAM bank 1002 for locations that are not 
currently present in a row buffer. 
0057. An implementation detail for the allocation of row 
buffers corresponding to the memory locations is the tradeoff 
between performance and simplicity of implementation. In 
the simplest case, a row buffer is “direct mapped to a fixed 
number of potential memory array rows. In the most flexible 
and most complex case, any row buffer corresponds to any 
IDRAM row and is said to be “fully associative.” Intermedi 
ate complexity of design of a “set associative' mapping is 
possible where more than one row buffer corresponds to each 
fixed set of IDRAM rows. 
0058 Another complexity results from the set and fully 
associative mapping schemes where a row buffer replacement 
algorithm must be implemented. Since more than one row 
buffer can contain the data for a given row access, an algo 
rithm is needed to choose which row buffer to replace for the 
new access. The preferred embodiment employs a type of 
"Least Recently Used’ (LRU) replacement algorithm. 
0059. Designing a single bank of IDRAM 1002 may have 
Some advantages as compared to a multi-bank design for area 
and power savings. To achieve greater performance from a 
single bank IDRAM 1002, temporary row buffers 1004 
through 1018 are used to store memory reads and writes. 
These temporary row buffers 1004 through 1018 multi-port 
the memory bank. 
0060 Multi-porting is an extension of the dual-port 
approach that has long been used in specialty video RAMs 
(VRAMs). VRAMs include both a random access port and a 
serial access port. The serial access port uses data from a 
serial access memory (SAM) that is loaded in a single cycle 
from a RAM array. The VRAMs allow simultaneously acess 
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ing both the SAM data and the random data. VRAMs also 
allow data to be input serially into the SAM and then trans 
ferred in a single cycle into the main RAM. 
0061 The row buffers accomplish the same general func 
tion as a SAM does. The row buffers, like a SAM register, 
allow the contents an entire very wide row of RAM to be 
transferred in a single cycle into the row buffer. Unlike serial 
accesses to the SAM in a VRAM system, with the row buffers 
on-chip, the data path to the internal memory channel can be 
arbitrarily wide. Additionally, data steering logic is included 
in the data path so that data from the DRAM bank is trans 
ferred on the most optimal data lines of the IMC 1026. 
0062. Different subsystems use row buffers differently. 
For a function such as display refresh, the refresh controller 
makes a memory address request. The corresponding row of 
memory is transferred into a row buffer. The memory con 
troller transfers the requested amount of data from the row 
buffer to the refresh controller. The memory transfer typically 
requires less data than the complete row buffer contents. 
When the refresh controller performs the next sequential 
request, the data is already in the row buffer ready to transfer. 
0063. The CPU subsystem in a non-graphics application 
performs a cache line fill from a memory address correspond 
ing to an IDRAM bank. The IDRAM row is transferred to the 
row buffer and the cacheline data is transferred through to the 
cache data channel. The row buffer is presumably larger than 
the cache-line size such that any additional cache line fills 
corresponding to the same row buffer address range are filled 
without needing to re-access the IDRAM bank. 
0064. Furthermore, multiple row buffers contain valid 
data at a given time. Accesses to different row buffers occur 
sequentially without losing the ability to return to active row 
buffers that contain valid data. Using the two examples above, 
a partial read of row buffer 1 (RB1) occurs online 1026 to the 
IMC as part of screen refresh. Next the CPU performs a cache 
line fill over the IMC 1026 from RB2. The refresh then 
continues from RB1 as the next burst of transfers over the 
IMC 1026. 

0065. The IMC data buses 1026-1032 could be connected 
directly to a processing or I/O subsystem data bus instead of 
going through an additional Switch. This saves an additional 
level of switching. Similarly, the row buffer data lines 1040 
1054 could optionally be connected directly to a processing 
or Subsystem data bus instead of going through the optional 
MUX 1020. Alternatively row buffer data lines 1040-1054 
could be directly connected to the system data switch instead 
of going through the optional MUX 1020. 
0.066 FIG. 11 shows a system 1100 including subsystem 
data channels A-Z connected by a data switch 1110 to internal 
memory channels IMC 1112-1114 with internal memory sub 
systems and external memory channels (EMC) 1116, 1118. 
Each IDRAM subsystem includes a bank of IDRAM 1120, a 
Memory Subsystem Controller (MSC) 1130, a set of row 
buffers 1140, a MUX 1150 for transferring the appropriate 
row buffer data onto the IMC 1112 and an optional Data 
Manipulator 1160 that is detailed below. 
0067. The improvement over the previous embodiments is 
the hybrid approach of combining multiple IDRAM banks 
each with a multitude of row buffers. As shown in FIG. 11, the 
internal memory subsystems 1102, 1104 each contain row 
buffers that correspond to a bank of IDRAM. The data switch 
1110 has one or more channels into each IDRAM memory 
subsystem where the IMCs 1112, 1114 are multiplexed into 
row buffers. The MSC is responsible for controlling the trans 
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fers of the IDRAM data with the row buffers as well as 
coordinating the IMC channels 1112, 1114 to the appropriate 
row buffers. Alternatively, the data switch 1110 could MUX a 
row buffer from each IDRAM bank directly to a subsystem 
data channel. 
0068 Also shown within each IDRAM memory sub 
system 1102,1104 is an optional data manipulator (DM) e.g., 
1160. The data manipulator 1160 contains storage elements 
that act as a second level of caching, as well as a simple 
Arithmetic Logic Unit (ALU), and is managed by the MSC 
1130. The advantage of having the data manipulator 1160 
within the IDRAM memory subsystem 1102 is the higher 
performance that is achieved. The data manipulator 1160 is 
the full width of the row buffers, or wider, without the need to 
increase the width of the IMC 1112, 1114 or the data Switch 
1110, and operates at data rates higher than the rates of data 
passing through the data switch 1110. This local optimization 
improves the performance for operations that occur within an 
IDRAM bank. Any operations that involve data in more than 
one IDRAM bank still need to utilize the data switch 1110 
data paths. 
0069. The MSC 1130 can control the DM 1160 such that 
operations over the IMC 1112 that would be read-modify 
write operations can be satisfied within the IDRAM memory 
subsystem with a simple write operation. U.S. Pat. No. 5,544, 
306, which is incorporated by reference, describes techniques 
for achieving this, where a Frame Buffer Dynamic Random 
Access Memory converts read-modify-write operations such 
as Z-Buffer compare and red-blue-green (RBG) alpha blend 
ing into a write-only operation. 
0070. The FIG. 12 IRAM memory architecture 1200 is 
applied to a graphics drawing and display Subsystem inde 
pendent of the main memory architecture. The multi-banked, 
row buffered or combined hybrid approach is combined with 
multiple graphics drawing engines and a local display con 
troller to complete a very high performance graphics system. 
Each graphics/drawing processor (GDP) 1220, 1230, 1240 
and 1250 has a path into the data switch 1210. Each IRAM 
subsystem (1260, 1270, 1280 and 1290) also has a path into 
the data Switch. Additionally, the display processor Sub 
system and a path to main memory have connection points 
(1292 and 1294) into the data switch 1210. Each IDRAM 
Subsystem can be a combination of multiple banks of 
memory, row buffers and data manipulators as described with 
reference to earlier figure. 
0071. The GDPs operate in parallel to manipulate image 
data for display. Each GDP may have local registers, buffers 
and cache memory. The GDPs can each operate on different 
IRAM subsystem data, or multiple GDPs may operate on data 
in one IRAM subsystem. The GDPs may each be responsible 
for the complete graphics pipeline of operations such as trans 
form, lighting, set-up and rendering. Alternatively, each GDP 
may perform one of the stages of the graphics pipeline. Ide 
ally the GDPs will be flexible enough that, depending on the 
particular application being performed, the system will oper 
ate in the most efficient configuration. 
0072. In the case where multiple GDPs are rendering data, 
the rendered data is not always in a regular structure repre 
senting a frame buffer. The Display Processor Subsystem 
(DPS) can be provided with the mapping information and 
reconstruct the display information from the various stored 
rendering information. The DPS reconstructs the image scan 
line-by-Scanline so that the data can be sent out and displayed 
properly. The DPS also performs operations such as Scaling 

Jan. 12, 2012 

and filtering that are better suited to being performed in this 
back end path than by the GDPs. 
0073. The path to the main memory data switch may be 
used by both the GDPs and the DPS. In the case of the GDPs, 
large textures or other elements requiring large amounts of 
storage can be read in by the GDPs and processed. In some 
cases the raw or processed data is cached in the IRAM sub 
systems or the data is simply used and only the resulting data 
stored locally. The display processor subsystem utilizes the 
path to main memory for constructing the output display. The 
output consists of data, from both the GDPs as well as from 
other elements, such as video data that are stored in the main 
system memory. The DPS constructs the output scan-line by 
scan-line from the data stored in either IRAM subsystems or 
main memory. 
0074 The architecture shown in FIG. 12 can be extended 
to system that is not related to graphics. Instead of multiple 
graphics/drawing processors, a system could include mul 
tiple compute engines each with their own registers, local 
memory or cache memory as needed. The IRAM subsystem 
architectures described earlier are equally applicable to 
improved performance for computationally complex algo 
rithms performed across multiple compute engines. The com 
pute engines can operate in parallel on different data elements 
for concurrency. Alternatively, the compute engines can oper 
ate in series each performing a stage of the overall processing. 
Applications where these approaches can be utilized include 
signal processing, compression, de-compression and com 
munications. 
0075 An enhanced system with a common display 
memory and main memory preferably includes separate con 
trols for each memory Subsystem, an arbitration controller 
that takes the requests from multiple processor or peripheral 
Subsystems, and a memory data path so that by a memory 
Subsystem provides memory data to a processor or peripheral 
Subsystem without preventing additional processor or periph 
eral Subsystems from accessing other memory Subsystems. 
0076 An enhanced system can include a partial drawing 
buffer where a graphics engine can write a portion of the 
display output data and transfer the portion of the display 
output data to a common memory Subsystem for use during 
Subsequent display updates after a display frame has been 
processed. An enhanced system preferably includes a com 
plete drawing buffer where a graphics engine can store the 
complete display output data and transfer the display output 
data for Subsequent display updates. 
0077. An enhanced system preferably includes a graphics 
controller to perform 3-D graphics functions, a texture cache 
to provide data for the graphics controller, and an order buffer 
where the graphics controller can fetch data. 
0078 For a 3-D graphics controller, one of the key aspects 
of 3-D processing is determining which objects, and Subse 
quently which pixels of which objects, are visible for a given 
frame. Many objects of a given 3-D image may be occluded 
from a viewpoint by another object's pixels. To insure that the 
pixels from the proper object are in front and properly dis 
played, the 3-D system includes what is generally referred to 
as a Z-buffer or an order buffer. The order buffer is used to 
determine if the triangles or pixels of a new object are to be 
displayed for a given frame based on their position relative to 
the viewpoint. The earlier in a graphics pipeline that the 
ordering is performed, the less computation is needed to 
render pixels that will not ultimately be visible for a scene. 
However, it is sometimes just simpler to perform the complete 
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rendering of a triangle and then on a pixel-by-pixel basis 
decide whether or not to update the display based on the value 
in the order buffer. 
007.9 For systems with a single 3-D controller, accessing 
the order buffer is a key bandwidth consideration. Therefore, 
as with textures, it is advantageous to have a cache or buffer 
for the ordering information. For systems with multiple 3-D 
controllers, each 3-D controller may be permitted to operate 
asynchronously to balance the computation load and increase 
the system throughput. An order buffer that is accessible to 
each of the controllers allows asynchronous processing to 
occur and still be sure that the proper pixels from each object 
will end up in view. 
0080 Those skilled in the art will recognize that this 
invention can be implemented with additional Subsystems 
connected in series or in parallel to the disclosed Subsystems, 
depending on the application. Therefore, the present inven 
tion is limited only by the following claims. 
What is claimed is: 
1. A computer system comprising: 
a memory controller, 
a common display memory and main memory comprising 

at least one internal memory Subsystem contained in the 
memory controller and at least one external memory 
subsystem outside of the memory controller; 

at least one multi-use memory channel operatively coupled 
to the at least one internal memory Subsystem and the at 
least one external memory Subsystem; 

a memory channel data Switch coupled to the memory 
controller and configured to dynamically allocate the at 
least one multi-use memory channel; and 

a central processing unit (CPU) Subsystem controller oper 
ably coupled to the memory channel data Switch and the 
memory controller, the CPU configured to output con 
trol signals to the memory channel data Switch and the 
memory controller. 

2. The computer system of claim 1 further comprising a 
multiplexer configured to selectively couple at least one 
external memory Subsystem to one of the at least one multi 
use memory channels. 

3. The computer system of claim 2 wherein one of the at 
least one internal memory Subsystem and the at least one 
external memory Subsystem is a display memory Subsystem 
configured to be able to function as main system memory. 

4. The computer system of claim 1 wherein one of the at 
least one internal memory Subsystem and the at least one 
external memory Subsystem is a display memory Subsystem 
configured to be able to function as main system memory. 

5. The computer system of claim 1 wherein at least one of 
the at least one internal memory Subsystem and the at least 
one external memory Subsystem includes a data manipulator 
containing a plurality of data storage elements. 

6. The computer system of claim 1 further comprising a 
complete drawing buffer configured to permit a graphics 
engine to store display output data and transfer the display 
output data for Subsequent display updates. 

7. The computer system of claim 1 further comprising a 
computer display, a complete drawing buffer and a graphics 
engine, wherein the graphics engine is configured to be able 
to store output data in the drawing buffer for output to the 
computer display and to Subsequently transfer the output data 
to the computer display for display updates. 
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8. A computer system comprising: 
a display; 
a memory controller; 
common display memory and main memory comprising at 

least one of an internal memory Subsystem included 
within the memory controller and configured to coop 
eratively couple therewith, and at least one of an external 
memory Subsystem outside of the memory controller 
and configured to cooperatively couple therewith: 

a plurality of memory channels operatively coupled to the 
common display memory and main memory, at least one 
of the plurality of memory channels configured as a 
multi-use memory channel; 

a memory channel data Switch operably coupled to the 
memory controller and to the plurality of memory chan 
nels and configured to allocate selected ones of the plu 
rality of memory channels between the at least one inter 
nal memory Subsystem and the at least one external 
memory Subsystem; 

a central processing unit (CPU) Subsystem controller oper 
ably coupled to the memory channel data Switch and the 
memory controller and configured to produce output 
signals to be applied to the memory channel data Switch 
and memory controller; 

a graphics/drawing and display Subsystem operably 
coupled to the CPU subsystem controller, the memory 
channel data Switch and the memory controller, the 
graphics/drawing and display Subsystem being config 
ured to provide output signals to the memory channel 
data Switch and the memory controller; 

an arbitration and control engine operably coupled to the 
CPU subsystem controller, the graphics/drawing and 
display Subsystem, the arbitration and control engine 
being configured to provide output signals to the CPU 
Subsystem controller and to the graphics/drawing and 
display Subsystem; and 

a peripheral bus controller operably coupled to the memory 
channel data switch, the memory controller and the arbi 
tration and control engine and configured to provide 
output signals to the memory channel data Switch, the 
memory controller and the arbitration and control 
engine. 

9. The computer system of claim 8 wherein at least one of 
the at least one internal memory Subsystem and the at least 
one external memory subsystem includes DRAM memory. 

10. The computer system of claim 9 wherein at least one of 
the at least one internal memory Subsystem and the at least 
one external memory Subsystem comprises a data manipula 
tor containing a plurality of storage elements. 

11. The computer system of claim 8 wherein at least one of 
the at least one internal memory Subsystem and the at least 
one external memory Subsystem comprises a data manipula 
tor containing a plurality of storage elements. 

12. The computer system of claim 8 further comprising a 
computer display, a complete drawing buffer and a graphics 
engine, wherein the graphics engine can store output data in 
the drawing buffer for output to the computer display and 
Subsequently transfer the output data to the computer display 
for display updates. 


