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SYSTEMS AND METHODS FOR SURFACE NORMALS SENSING WITH
POLARIZATION

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims priority to and the benefit of U.S. Provisional Patent
Application No. 62/911,952, filed in the United States Patent and Trademark Office
on October 7, 2019, U.S. Provisional Patent Application No. 62/942,113, filed in the
United States Patent and Trademark Office on November 30, 2019, and U.S.
Provisional Patent Application No. 63/001,445, filed in the United States Patent and
Trademark Office on March 29, 2020, the entire disclosures of which are
incorporated by reference herein.

FIELD
[0002] Aspects of embodiments of the present disclosure are generally related to
image sensor and processing systems and methods of using the same.

BACKGROUND

[0003] Sensor systems and imaging systems such as radar, lidar, cameras (e.g.,
visible light and/or infrared cameras), and the like detect objects and features in the
environment through the interactions of electromagnetic radiation with the
environment. For example, camera systems and lidar systems detect light reflected
off of objects in a scene or in an environment. Likewise, radar systems transmit
lower frequency electromagnetic waves (e.g., radio frequency or microwave
frequency) and determine properties of the objects based on the reflections of those
signals. Other sensor systems may use other forms of radiation, such as pressure
waves or sound waves in the case of ultrasound imaging.

[0004] The above information disclosed in this Background section is only for
enhancement of understanding of the present disclosure, and therefore it may
contain information that does not form the prior art that is already known to a person
of ordinary skill in the art.

SUMMARY

[0005] Aspects of embodiments of the present disclosure relate to systems and
methods for augmentation of sensor systems and imaging systems using
polarization. According to some aspects of embodiments of the present disclosure,
sensors configured to detect the polarization of received electromagnetic radiation is
used to augment the performance or behavior of other imaging modalities, such as
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cameras configured to detect the intensity of light without regard to the polarization
of the light. In some aspects of embodiments of the present disclosure, sensors
configured to detect the polarization of received electromagnetic radiation are used
to form images that would otherwise be formed using comparative imaging systems
such as digital cameras. Some aspects of embodiments of the present disclosure
relate to camera systems configured to detect the polarization of light.

[0006] According to some embodiments of the present invention, there is
provided a method of performing surface profilometry, the method including:
receiving one or more polarization raw frames of a printed layer of a physical object
undergoing additive manufacturing, the one or more polarization raw frames being
captured at different polarizations by one or more polarization cameras; extracting
one or more polarization feature maps in one or more polarization representation
spaces from the one or more polarization raw frames; obtaining a coarse layer depth
map of the printed layer; generating one or more surface-normal images based on
the coarse layer depth map and the one or more polarization feature maps; and
generating a 3D reconstruction of the printed layer based on the one or more
surface-normal images.

[0007] In some embodiments, the one or more polarization feature maps in the
one or more polarization representation spaces include: a degree of linear
polarization (DOLP) image in a DOLP representation space; and an angle of linear
polarization (AOLP) image in an AOLP representation space.

[0008] In some embodiments, the one or more polarization cameras include: a
first polarization camera configured to capture a first partition of a print bed on which
the printed layer of the physical object resides; and a second polarization camera at
a distance from the first polarization camera and configured to capture a second
partition of the print bed.

[0009] In some embodiments, the obtaining the coarse layer depth map of the
printed layer includes: constructing the coarse layer depth map based on a parallax
shift between polarization raw frames captured by the first and second polarization
cameras.

[0010] In some embodiments, the obtaining the coarse layer depth map of the
printed layer includes: receiving a computer-aided-design (CAD) layer model
corresponding to the printed layer of the physical object.

[0011] In some embodiments, the generating the one or more surface-normal
images includes: determining a pose of the printed layer with respect to each of the
one or more polarization cameras; transforming the coarse layer depth map into one
or more camera spaces corresponding to the one or more polarization cameras to
generate one or more transformed coarse layer depth maps; and correcting the one
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or more surface-normal images based on the one or more transformed coarse layer
depth maps.

[0012] In some embodiments, the generating the 3D reconstruction of the printed
layer includes: integrating surface normals of the one or more surface-normal
images over a sample space to determine a shape of a surface of the printed layer.
[0013] According to some embodiments of the present invention, there is
provided a surface profilometry system including: one or more polarization cameras
including a polarizing filter, the one or more polarization cameras being configured to
capture polarization raw frames at different polarizations; and a processing system
including a processor and memory storing instructions that, when executed by the
processor, cause the processor to perform: receiving one or more polarization raw
frames of a printed layer of a physical object undergoing additive manufacturing, the
one or more polarization raw frames being captured at different polarizations by the
one or more polarization cameras; extracting one or more polarization feature maps
in one or more polarization representation spaces from the one or more polarization
raw frames; obtaining a coarse layer depth map of the printed layer; generating one
or more surface-normal images based on the coarse layer depth map and the one or
more polarization feature maps; and generating a 3D reconstruction of the printed
layer based on the one or more surface-normal images.

[0014] In some embodiments, the one or more polarization feature maps in the
one or more polarization representation spaces include: a degree of linear
polarization (DOLP) image in a DOLP representation space; and an angle of linear
polarization (AOLP) image in an AOLP representation space.

[0015] In some embodiments, the one or more polarization cameras include: a
first polarization camera configured to capture a first partition of a print bed on which
the printed layer of the physical object resides; and a second polarization camera at
a distance from the first polarization camera and configured to capture a second
partition of the print bed.

[0016] In some embodiments, the obtaining the coarse layer depth map of the
printed layer includes: constructing the coarse layer depth map based on a parallax
shift between polarization raw frames captured by the first and second polarization
cameras.

[0017] In some embodiments, the obtaining the coarse layer depth map of the
printed layer includes: receiving a computer-aided-design (CAD) layer model
corresponding to the printed layer of the physical object.

[0018] In some embodiments, the generating the one or more surface-normal
images includes: determining a pose of the printed layer with respect to each of the
one or more polarization cameras; transforming the coarse layer depth map into one
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or more camera spaces corresponding to the one or more polarization cameras to
generate one or more transformed coarse layer depth maps; and correcting the one
or more surface-normal images based on the one or more transformed coarse layer
depth maps.

[0019] In some embodiments, the generating the 3D reconstruction of the printed
layer includes: integrating surface normals of the one or more surface-normal
images over a sample space to determine a shape of a surface of the printed layer.
[0020] In some embodiments, the memory further stores instructions that, when
executed by the processor, cause the processor to further perform: providing the 3D
reconstruction of the printed layer to a 3D printing system as a control feedback,
wherein the 3D printing system being configured to additively manufacture the
physical object layer by layer.

[0021] In some embodiments, operations of the one or more polarization
cameras, the processing system, and the 3D printing system are synchronized via a
synchronization signal.

[0022] According to some embodiments of the present invention, there is
provided a method of capturing a 3D image of a face, the method including:
receiving one or more polarization raw frames of the face, the one or more
polarization raw frames being captured at different polarizations by a polarization
camera at a distance from the face; extracting one or more polarization feature maps
in one or more polarization representation spaces from the one or more polarization
raw frames; and generating a 3D reconstruction of the face based on the one or
more polarization feature maps via a facial reconstruction neural network.

[0023] In some embodiments, the one or more polarization feature maps in the
one or more polarization representation spaces include: a degree of linear
polarization (DOLP) image in a DOLP representation space; and an angle of linear
polarization (AOLP) image in an AOLP representation space.

[0024] In some embodiments, the one or more polarization feature maps include
estimated surface normals, and the extracting the one or more polarization feature
maps includes: generating the estimated surface normals based on the one or more
polarization raw frames.

[0025] In some embodiments, the facial reconstruction neural network is trained
to compute corrected surface normals based on the estimated surface normals, and
to generate the 3D reconstruction of the face based on the corrected surface
normals.

[0026] In some embodiments, the facial reconstruction neural network includes a
trained polarized convolutional neural network (CNN).
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[0027] According to some embodiments of the present invention, there is
provided a 3D imaging system for capturing a 3D image of a face, the 3D imaging
system including: a polarization camera including a polarizing filter and configured to
capture one or more polarization raw frames at different polarizations; and a
processing system including a processor and memory storing instructions that, when
executed by the processor, cause the processor to perform: receiving one or more
polarization raw frames of the face, the one or more polarization raw frames being
captured at different polarizations by the polarization camera; extracting one or more
polarization feature maps in one or more polarization representation spaces from the
one or more polarization raw frames; and generating a 3D reconstruction of the face
based on the one or more polarization feature maps via a facial reconstruction neural
network.

[0028] In some embodiments, the one or more polarization feature maps in the
one or more polarization representation spaces include: a degree of linear
polarization (DOLP) image in a DOLP representation space; and an angle of linear
polarization (AOLP) image in an AOLP representation space.

[0029] In some embodiments, the one or more polarization feature maps include
estimated surface normals, and the extracting the one or more polarization feature
maps includes: generating the estimated surface normals based on the one or more
polarization raw frames.

[0030] In some embodiments, the facial reconstruction neural network is trained
to compute corrected surface normals based on the estimated surface normals, and
to generate the 3D reconstruction of the face based on the corrected surface
normals.

[0031] In some embodiments, the facial reconstruction neural network includes a
trained polarized convolutional neural network (CNN).

[0032] According to some embodiments of the present invention, there is
provided a method of capturing a 3D image of a face, the method including:
receiving one or more polarization raw frames of the face, the one or more
polarization raw frames being captured at different polarizations by a polarization
camera; extracting estimated polarization cues from the one or more polarization raw
frames; generating estimated surface normals based on the estimated polarization
cues; generating an initial coarse depth map of the face; refining the estimated
polarization cues and the initial coarse depth map to generate refined polarization
cues and a refined depth map; generating corrected surface normals based on the
refined polarization cues and the refined depth map; and generating a 3D
reconstruction of the face based on the corrected surface normals.
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[0033] In some embodiments, the generating the initial coarse depth map of the
face includes: receiving a 2D color image of the face; and computing the initial
coarse depth map based on the 2D color image of the face.

[0034] In some embodiments, the generating the initial coarse depth map of the
face includes: receiving a 3D model of a generic human face; and generating the
initial coarse depth map based on the 3D model of the generic human face.

[0035] In some embodiments, the method further includes: providing the
estimated surface normals and the corrected surface normals to a facial
reconstruction neural network as a set of training data.

[0036] According to some embodiments of the present invention, there is
provided a method of computing a prediction, the method including: receiving a
surface-normal image corresponding to an object, the surface-normal image
including surface-normal information for each pixel of the image; and computing the
prediction based on the surface-normal image.

[0037] In some embodiments, a red color value, a green color value, and blue
color values of a pixel of the surface normal image encode an x-axis component, a y-
axis component, and a z-axis component of a surface normal of the object at the
pixel.

[0038] In some embodiments, the red, green, and blue color values of the pixel
are respectively the x-axis component, the y-axis component, and the z-axis
component of the surface normal of the object at the pixel.

[0039] In some embodiments, the prediction is a probability vector, the computing
the prediction includes supplying the surface-normal image to a trained classffier,
and the trained classifier is configured to identify image characteristics of the
surface-normal image and to output the probability vector, each element of the
probability vector being a probability value corresponding to one of possible image
characteristics.

[0040] In some embodiments, the trained classifier includes a plurality of
statistical models corresponding to the possible image characteristics.

[0041] In some embodiments, the image characteristics include facial
expressions or object types.

[0042] In some embodiments, the object includes a vehicle, a face, or a body.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] The accompanying drawings, together with the specification, illustrate
example embodiments of the present disclosure, and, together with the description,
serve to explain the principles of the present disclosure.
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[0044] FIG. 1A is a schematic block diagram of a system using a polarization
camera according to some embodiments of the present invention.

[0045] FIG. 1B is a perspective view of a polarization camera module according
to some embodiments of the present disclosure.

[0046] FIG. 1C is a cross sectional view of a portion of a polarization camera
module according to one embodiment of the present disclosure.

[0047] FIG. 1D is a perspective view of a stereo polarization camera system
according to one embodiment of the present disclosure.

[0048] FIGS. 2A, 2B, 2C, and 2D provide background for illustrating the
segmentation maps computed by a comparative approach and semantic
segmentation or instance segmentation based on polarization raw frames according
to aspects of embodiments of the present disclosure.

[0049] FIG. 3 is a high-level depiction of the interaction of light with transparent
objects and non-transparent objects.

[0050] FIG. 4 is a flowchart of a method for estimating polarization cues under
parallax ambiguities according to one embodiment of the present disclosure.

[0051] FIG. 5A is a perspective view of a multi-spectral stereo polarization
camera system according to one embodiment of the present disclosure.

[0052] FIG. 5B is a view of a multi-spectral stereo polarization camera system
according to one embodiment of the present disclosure, along a direction parallel to
the optical axis of the multi-spectral stereo polarization camera system.

[0053] FIG. 5C depicts cut-away side views of example individual polarization
cameras of a multi-spectral stereo polarization camera system according to one
embodiment of the present disclosure.

[0054] FIG. 6A is a block diagram of processing circuit for computing surface
characterization outputs based on polarization data according to one embodiment of
the present invention.

[0055] FIG. 6B is a flowchart of a method for performing surface characterization
based on input images to compute a surface characterization output according to
one embodiment of the present invention.

[0056] FIG. 7A is a block diagram of a feature extractor according to one
embodiment of the present invention.

[0057] FIG. 7B is a flowchart depicting a method according to one embodiment of
the present invention for extracting features from polarization raw frames.

[0058] FIG. 8Ais an illustration of a Greek bust statue being scanned by an
exemplary implementation of the imaging setup proposed in this invention.

[0059] FIG. 8B is a flowchart of a method for 3D surface reconstruction using
polarization according to one embodiment of the present disclosure.
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[0060] FIG. 9Ais an illustration of a flat surface of refractive index n, being
scanned by an exemplary implementation of the imaging setup according to one
embodiment of the present invention.

[0061] FIG. 9B is a flowchart of a method for 3D surface reconstruction of flat or
geometrically simple surfaces using polarization according to one embodiment of the
present disclosure.

[0062] FIG. 10A is a block diagram of various components of the surface
profilometry system, according to some embodiments of the present disclosure.
[0063] FIG. 10B is a schematic diagram illustrating the spatial relation of the one
or more polarization camera modules of the surface profilometry system and the
print bed, according to some embodiments of the present disclosure.

[0064] FIG. 10C is a flow diagram of a method for performing surface profilometry
based on polarization raw images, according to some embodiments of the present
disclosure.

[0065] FIG. 11A illustrates the 3D imaging system utilizing a neural network for
3D reconstruction, according to some embodiments of the present disclosure.

[0066] FIG. 11B illustrates the 3D imaging system using a coarse depth map for
3D reconstruction, according to some embodiments of the present disclosure.

[0067] FIG. 12 is a block diagram of a predictor, according to one embodiment of
the present invention.

DETAILED DESCRIPTION

[0068] The detailed description set forth below is intended as a description of
example embodiments of a system and method for 3D imaging and processing using
light polarization, provided in accordance with the present disclosure, and is not
intended to represent the only forms in which the present disclosure may be
constructed or utilized. The description sets forth the features of the present
disclosure in connection with the illustrated embodiments. It is to be understood,
however, that the same or equivalent functions and structures may be accomplished
by different embodiments that are also intended to be encompassed within the scope
of the disclosure. As denoted elsewhere herein, like element numbers are intended
to indicate like elements or features.

[0069] FIG. 1A is a schematic block diagram of a system using a polarization
camera according to some embodiments of the present invention. In the
arrangement shown in FIG. 1A, a scene 1 includes transparent objects 2 (e.g.,
depicted as a ball such as a glass marble, a cylinder such as a drinking glass or
tumbler, and a plane such as a pane of transparent acrylic) that are placed in front of
opaque matte objects 3 (e.g., a baseball and a tennis ball). A polarization camera 10
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has a lens 12 with a field of view, where the lens 12 and the camera 10 are oriented
such that the field of view encompasses the scene 1. The lens 12 is configured to
direct light (e.g., focus light) from the scene 1 onto a light sensitive medium such as
an image sensor 14 (e.g., a complementary metal oxide semiconductor (CMOS)
image sensor or charge-coupled device (CCD) image sensor).

[0070] The polarization camera 10 further includes a polarizer or polarizing filter
or polarization mask 16 placed in the optical path between the scene 1 and the
image sensor 14. According to some embodiments of the present disclosure, the
polarizer or polarization mask 16 is configured to enable the polarization camera 10
to capture images of the scene 1 with the polarizer set at various specified angles
(e.g., at 45° rotations or at 60° rotations or at non-uniformly spaced rotations).
[0071] As one example, FIG. 1A depicts an embodiment where the polarization
mask 16 is a polarization mosaic aligned with the pixel grid of the image sensor 14 in
a manner similar to a red-green-blue (RGB) color filter (e.g., a Bayer filter) of a color
camera. In a manner similar to how a color filter mosaic filters incoming light based
on wavelength such that each pixel in the image sensor 14 receives light in a
particular portion of the spectrum (e.g., red, green, or blue) in accordance with the
pattern of color filters of the mosaic, a polarization mask 16 using a polarization
mosaic filters light based on linear polarization such that different pixels receive light
at different angles of linear polarization (e.g., at 0°, 45°, 90°, and 135°, or at 0°, 60°
degrees, and 120°). Accordingly, the polarization camera 10 using a polarization
mask 16 such as that shown in FIG. 1A is capable of concurrently or simultaneously
capturing light at four different linear polarizations. One example of a polarization
camera is the Blackfly® S Polarization Camera produced by FLIR® Systems, Inc. of
Wilsonville, Oregon.

[0072] While the above description relates to some possible implementations of a
polarization camera using a polarization mosaic, embodiments of the present
disclosure are not limited thereto and encompass other types of polarization
cameras that are capable of capturing images at multiple different polarizations. For
example, the polarization mask 16 may have fewer than four polarizations or more
than four different polarizations, or may have polarizations at different angles than
those stated above (e.g., at angles of polarization of. 0°, 60°, and 120° or at angles
of polarization of 0°, 30°, 60°, 90°, 120°, and 150°). As another example, the
polarization mask 16 may be implemented using an electronically controlled
polarization mask, such as an electro-optic modulator (e.g., may include a liquid
crystal layer), where the polarization angles of the individual pixels of the mask may
be independently controlled, such that different portions of the image sensor 14
receive light having different polarizations. As another example, the electro-optic
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modulator may be configured to transmit light of different linear polarizations when
capturing different frames, e.g., so that the camera captures images with the entirety
of the polarization mask set, sequentially, to different linear polarizer angles (e.g.,
sequentially set to: O degrees; 45 degrees; 90 degrees; or 135 degrees). As another
example, the polarization mask 16 may include a polarizing filter that rotates
mechanically, such that different polarization raw frames are captured by the
polarization camera 10 with the polarizing filter mechanically rotated with respect to
the lens 12 to transmit light at different angles of polarization to image sensor 14.
Furthermore, while the above examples relate to the use of a linear polarizing filter,
embodiments of the present disclosure are not limited thereto and also include the
use of polarization cameras that include circular polarizing filters (e.g., linear
polarizing filters with a quarter wave plate). Accordingly, in some embodiments of
the present disclosure, a polarization camera uses a polarizing filter to capture
multiple polarization raw frames at different polarizations of light, such as different
linear polarization angles and different circular polarizations (e.g., handedness).
[0073] As aresult, the polarization camera 10 captures multiple input images 18
(or polarization raw frames) of the scene including the surface under inspection 2 of
the object under inspection 1 (also referred to as the observed object). In some
embodiments, each of the polarization raw frames 18 corresponds to an image taken
behind a polarization filter or polarizer at a different angle of polarization ¢, (e.g., 0
degrees, 45 degrees, 90 degrees, or 135 degrees). Each of the polarization raw
frames 18 is captured from substantially the same pose with respect to the scene 1
(e.g., the images captured with the polarization filter at O degrees, 45 degrees, 90
degrees, or 135 degrees are all captured by a same polarization camera 100 located
at a same location and orientation), as opposed to capturing the polarization raw
frames from disparate locations and orientations with respect to the scene. The
polarization camera 10 may be configured to detect light in a variety of different
portions of the electromagnetic spectrum, such as the human-visible portion of the
electromagnetic spectrum, red, green, and blue portions of the human-visible
spectrum, as well as invisible portions of the electromagnetic spectrum such as
infrared and ultraviolet.

[0074] In some embodiments of the present disclosure, such as some of the
embodiments described above, the different polarization raw frames are captured by
a same polarization camera 10 and therefore may be captured from substantially the
same pose (e.g., position and orientation) with respect to the scene 1. However,
embodiments of the present disclosure are not limited thereto. For example, a
polarization camera 10 may move with respect to the scene 1 between different
polarization raw frames (e.g., when different raw polarization raw frames
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corresponding to different angles of polarization are captured at different times, such
as in the case of a mechanically rotating polarizing filter), either because the
polarization camera 10 has moved or because objects 3 have moved (e.g., if the
object is on a moving conveyor system). In some embodiments, different
polarization cameras capture images of the object at different times, but from
substantially the same pose with respect to the object (e.g., different cameras
capturing images of the same surface of the object at different points in the conveyor
system). Accordingly, in some embodiments of the present disclosure, different
polarization raw frames are captured with the polarization camera 10 at different
poses or the same relative pose with respect to the objects 2 and 3 being imaged in
the scene 1.

[0075] The polarization raw frames 18 are supplied to a processing circuit 100,
described in more detail below, which computes a characterization output 20 based
on the polarization raw frames 18. In the embodiment shown in FIG. 1A, the
characterization output 20 is an instance segmentation map identifying instances of
different objects 2 and 3 that are present in the scene 1.

[0076] FIG. 1B is a perspective view of a polarization camera module according
to some embodiments of the present disclosure. FIG. 1C is a cross sectional view of
a portion of a polarization camera module according to one embodiment of the
present disclosure.

[0077] Some aspects of embodiments of the present disclosure relate to a
polarization camera module in which multiple polarization cameras (e.g., multiple
cameras, where each camera has a polarizing filter in its optical path) are arranged
adjacent to one another and in an array and may be controlled to capture images in
a group (e.g., a single trigger may be used to control all of the cameras in the system
to capture images concurrently or substantially simultaneously). The polarizing filters
in the optical paths of each of the cameras in the array cause differently polarized
light to reach the image sensors of the cameras. The individual polarization cameras
in the camera system have optical axes that are substantially perpendicular to one
another, are placed adjacent to one another (such that parallax shift between
cameras is substantially negligible based on the designed operating distance of the
camera system to objects in the scene, where larger spacings between the cameras
may be tolerated if the designed operating distance is large), and have substantially
the same field of view, such that the cameras in the camera system capture
substantially the same view of a scene 1, but with different polarizations.

[0078] For example, in the embodiment of the polarization camera module 10’
shown in FIG. 1B, four cameras 10A’, 10B’, 10C’, and 10D’ are arranged in a 2x2
grid to form a camera array or camera system, where the four cameras have
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substantially parallel optical axes. The four cameras may be controlled together such
that they capture images substantially simultaneously and using the same exposure
settings (e.g., same aperture, length of exposure, and gain or “ISO” settings). In
various embodiments of the present disclosure, each of the separate cameras 10A’,
10B', 10C’', and 10D’ includes a different polarizing filter.

[0079] FIG. 1C shows a cross sectional view of two of the polarization cameras
10A" and 10B' shown in FIG. 1B. As seen in FIG. 1C, each a polarization camera
(10A" and 10B’) system includes a corresponding lens, a corresponding image
sensor, and a corresponding polarizing filter. In particular, polarization camera 10A’
includes lens 12A’, image sensor 14A', and polarizing filter 16A". Likewise,
polarization camera 10B' includes lens 12B’, image sensor 14B’, and polarizing filter
16B'".

[0080] In some embodiments of the present disclosure, each of the cameras in
the camera system 10" has a corresponding polarizing filter that is configured to filter
differently polarized light. For example, in the embodiment shown in FIGS. 1B and
1C, polarizing filter 16A' of camera 10A’ may be a linear polarizing filter oriented at
an angle of 0°, polarizing filter 16B' of camera 10B' may be a linear polarizing filter
oriented at an angle of 45°, polarizing filter 16C' of camera 10C' may be a linear
polarizing filter oriented at an angle of 90°, and polarizing filter 16D’ of camera 10D’
may be a linear polarizing filter oriented at an angle of 135°. In some embodiments,
one or more of the cameras may include a circular polarizer. In some embodiments
of the present disclosure, the camera system 10’ includes polarizing filters configured
to filter light in at least two different polarizations. In some embodiments of the
present disclosure, the camera system 10’ includes polarizing filters configured to
filter light in at least three different polarizations.

[0081] While not shown in FIG. 1C, in some embodiments of the present
disclosure, each polarization camera may also include a color filter having a mosaic
pattern such as a Bayer filter, such that individual pixels of the image sensors 14
receive light corresponding to, for example, red (R), green (G), and blue (B) portions
of the spectrum, such that each camera captures light in a visible portion of the
electromagnetic spectrum in accordance with a mosaic pattern. In some
embodiments, a demosaicing process is used to compute separate red, green, and
blue channels from the raw data. In some embodiments of the present disclosure,
each polarization camera may be used without a color filter or with filters used to
transmit or selectively transmit various other portions of the electromagnetic
spectrum, such as infrared light.

[0082] FIG. 1D is a perspective view of a stereo polarization camera system
according to one embodiment of the present disclosure. In some applications,
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stereo vision techniques are used to capture multiple images of scene from different
perspectives. As noted above, in some embodiments of the present disclosure,
individual polarization cameras within a camera system are placed adjacent to one
another such that parallax shifts between the cameras is substantially negligible
based on the designed operating distance of the camera system to the subjects
being imaged. In stereo polarization camera systems, some of the individual
polarization cameras are spaced apart such that parallax shifts are significant and
detectable for objects in the designed operating distance of the camera system. This
enables the distances to various surfaces in a scene (the “depth”) to be detected in
accordance with a magnitude of a parallax shift (e.g., larger parallax shifts in the
locations of corresponding portions of the images indicate that those corresponding
portions are on surfaces that are closer to the camera system and smaller parallax
shifts indicate that the corresponding portions are on surfaces that are farther away
from the camera system). These techniques for computing depth based on parallax
shifts are sometimes referred to as Depth from Stereo.

[0083] Accordingly, FIG. 1D depicts a stereo polarization camera system 10"
having a first polarization camera module 10-1" and a second polarization camera
module 10-2" having substantially parallel optical axes and spaced apart along a
baseline 10-B. In the embodiment shown in FIG. 1D, the first polarization camera
module 10-1" includes polarization cameras 10A", 10B", 10C", and 10D" arranged in
a 2x2 array similar to that shown in FIGs. 1B and 1C. Likewise, the second
polarization camera module 10-2" and includes polarization cameras 10E", 10F",
10G", and 10H" arranged in a 2x2 array, and the overall stereo polarization camera
module 10" includes eight individual polarization cameras (e.g., eight separate image
sensors behind eight separate lenses). In some embodiments of the present
disclosure, corresponding polarization cameras of polarization camera modules 10-
1" and 10-2" are configured to capture polarization raw frames with substantially the
same polarizations. For example, cameras 10A" and 10E" may both have linear
polarizing filters at a same angle of 0°, cameras 10B" and 10F" may both have linear
polarizing filters at a same angle of 45°, cameras 10C" and 10G" may both have
linear polarizing filters at a same angle of 90°, and cameras 10D" and 10H" may both
have linear polarizing filters at a same angle of 135°.

[0084] Embodiments of the present disclosure are not limited to the particular
embodiment shown in FIG. 1D. In some embodiments, a stereo polarization camera
system includes three or more polarization camera modules, where each polarization
camera module includes multiple polarization cameras arranged in an array and is
configured, using polarizing filters, to capture polarization raw frames of different
polarizations. As noted above, in some embodiments of the present disclosure, one
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or more of the individual polarization cameras of a polarization camera module may
include a color filter and, as such, one or more of the polarization cameras in a
stereo polarization camera module may also include a color filter.

[0085] In some embodiments of the present disclosure, a stereo polarization
camera system includes a plurality of polarization camera modules that are spaced
apart along one or more baselines, where each of the polarization camera modules
includes a single polarization camera configured to capture polarization raw frames
with different polarizations, in accordance with embodiments such as that described
above with respect to FIG. 1A. For example, in some embodiments of the present
disclosure, the polarization camera of each module may include a polarization mask
(e.g., similar to the polarization mask shown in FIG. 1A) such that each individual
polarization camera captures images where the pixels detect light in accordance with
a mosaic pattern of different polarizing filters (e.g., polarizing filters at different
angles). For example, in the embodiment shown in FIG. 1A, each 2x2 block of
pixels of the polarization mask includes linear polarizers at linear polarization angles
of 0°, 45°, 90°, and 135°. In other embodiments of the present disclosure, the
individual polarization cameras may include mechanically or electronically
controllable polarizing filters, as discussed above with respect to FIG. 1A, to enable
the polarization cameras to capture polarization raw frames of different polarizations.
[0086] While the above embodiments specified that the individual polarization
camera modules or the polarization cameras that are spaced apart along one or
more baselines in the stereo polarization camera system have substantially parallel
optical axes, embodiments of the present disclosure are not limited thereto. For
example, in some embodiment of the present disclosure, the optical axes of the
polarization camera modules are angled toward each other such that the polarization
camera modules provide differently angled views of objects in the designed working
distance (e.g., where the optical axes cross or intersect in the neighborhood of the
designed working distance from the stereo camera system).

[0087] FIGS. 2A, 2B, 2C, and 2D provide background for illustrating the
segmentation maps computed by a comparative approach and semantic
segmentation or instance segmentation based on polarization raw frames according
to aspects of embodiments of the present disclosure. In more detail, FIG. 2A is an
image or intensity image of a scene with one real transparent ball placed on top of a
printout of photograph depicting another scene containing two transparent balls
(“spoofs”) and some background clutter. FIG. 2B depicts a segmentation mask as
computed by a Mask Region-based Convolutional Neural Network (Mask R-CNN)
identifying instances of transparent balls overlaid on the intensity image of FIG. 2A
using different patterns of lines, where the real transparent ball is correctly identified
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as an instance, and the two spoofs are incorrectly identified as instances. In other
words, the Mask R-CNN algorithm has been fooled into labeling the two spoof
transparent balls as instances of actual transparent balls in the scene.

[0088] FIG. 2C is an angle of linear polarization (AOLP) image computed from
polarization raw frames captured of the scene according to one embodiment of the
present invention. As shown in FIG. 2C, transparent objects have a very unique
texture in polarization space such as the AOLP domain, where there is a geometry-
dependent signature on edges and a distinct or unique or particular pattern that
arises on the surfaces of transparent objects in the angle of linear polarization. In
other words, the infrinsic texture of the transparent object (e.g., as opposed to
extrinsic texture adopted from the background surfaces visible through the
transparent object) is more visible in the angle of polarization image of FIG. 2C than
it is in the intensity image of FIG. 2A.

[0089] FIG. 2D depicts the intensity image of FIG. 2A with an overlaid
segmentation mask as computed using polarization data in accordance with an
embodiment of the present invention, where the real transparent ball is correctly
identified as an instance using an overlaid pattern of lines and the two spoofs are
correctly excluded as instances (e.g., in contrast to FIG. 2B, FIG. 2D does not
include overlaid patterns of lines over the two spoofs). While FIGS. 2A, 2B, 2C, and
2D illustrate an example relating to detecting a real transparent object in the
presence of spoof transparent objects, embodiments of the present disclosure are
not limited thereto and may also be applied to other optically challenging objects,
such as transparent, translucent, and non-matte or non-Lambertian objects, as well
as non-reflective (e.g., matte black objects) and multipath inducing objects.

[0090] Accordingly, some aspects of embodiments of the present disclosure
relate to extracting, from the polarization raw frames, tensors in representation space
(or first tensors in first representation spaces, such as polarization feature maps) to
be supplied as input to surface characterization algorithms or other computer vision
algorithms. These first tensors in first representation space may include polarization
feature maps that encode information relating to the polarization of light received
from the scene such as the AOLP image shown in FIG. 2C, degree of linear
polarization (DOLP) feature maps, and the like (e.g., other combinations from Stokes
vectors or transformations of individual ones of the polarization raw frames). In
some embodiments, these polarization feature maps are used together with non-
polarization feature maps (e.g., intensity images such as the image shown in FIG.
2A) to provide additional channels of information for use by semantic segmentation
algorithms.
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[0091] While embodiments of the present invention are not limited to use with
particular computer vision algorithms for analyzing images, some aspects of
embodiments of the present invention relate to deep learning frameworks for
polarization-based detection of optically challenging objects (e.g., transparent,
translucent, non-Lambertian, multipath inducing objects, and non-reflective or very
dark objects), where these frameworks may be referred to as Polarized
Convolutional Neural Networks (Polarized CNNs). This Polarized CNN framework
includes a backbone that is suitable for processing the particular texture of
polarization and can be coupled with other computer vision architectures such as
Mask R-CNN (e.g., to form a Polarized Mask R-CNN architecture) to produce a
solution for accurate and robust characterization of transparent objects and other
optically challenging objects. Furthermore, this approach may be applied to scenes
with a mix of transparent and non-transparent (e.g., opaque objects) and can be
used to characterize transparent, translucent, non-Lambertian, multipath inducing,
dark, and opaque surfaces of the object or objects under inspection.

[0092] Polarization feature representation spaces

[0093] Some aspects of embodiments of the present disclosure relate to systems
and methods for extracting features from polarization raw frames in operation 650,
where these extracted features are used in operation 690 in the robust detection of
optically challenging characteristics in the surfaces of objects. In contrast,
comparative techniques relying on intensity images alone may fail to detect these
optically challenging features or surfaces (e.g., comparing the intensity image of FIG.
2A with the AOLP image of FIG. 2C, discussed above). The term “first tensors” in
“first representation spaces” will be used herein to refer to features computed from
(e.g., extracted from) polarization raw frames 18 captured by a polarization camera,
where these first representation spaces include at least polarization feature spaces
(e.g., feature spaces such as AOLP and DOLP that contain information about the
polarization of the light detected by the image sensor) and may also include non-
polarization feature spaces (e.g., feature spaces that do not require information
regarding the polarization of light reaching the image sensor, such as images
computed based solely on intensity images captured without any polarizing filters).
[0094] The interaction between light and transparent objects is rich and complex,
but the material of an object determines its transparency under visible light. For
many transparent household objects, the majority of visible light passes straight
through and a small portion (~4% to ~8%, depending on the refractive index) is
reflected. This is because light in the visible portion of the spectrum has insufficient
energy to excite atoms in the transparent object. As a result, the texture (e.g.,
appearance) of objects behind the transparent object (or visible through the
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transparent object) dominate the appearance of the transparent object. For
example, when looking at a transparent glass cup or tumbler on a table, the
appearance of the objects on the other side of the tumbler (e.g., the surface of the
table) generally dominate what is seen through the cup. This property leads to some
difficulties when attempting to detect surface characteristics of transparent objects
such as glass windows and glossy, transparent layers of paint, based on intensity
images alone.

[0095] FIG. 3 is a high-level depiction of the interaction of light with transparent
objects and non-transparent (e.g., diffuse and/or reflective) objects. As shown in
FIG. 3, a polarization camera 10 captures polarization raw frames of a scene that
includes a transparent object 302 in front of an opaque background object 303. A
light ray 310 hitting the image sensor 14 of the polarization camera 10 contains
polarization information from both the transparent object 302 and the background
object 303. The small fraction of reflected light 312 from the transparent object 302
is heavily polarized, and thus has a large impact on the polarization measurement, in
contrast to the light 313 reflected off the background object 303 and passing through
the transparent object 302.

[0096] Similarly, a light ray hitting the surface of an object may interact with the
shape of the surface in various ways. For example, a surface with a glossy paint
may behave substantially similarly to a transparent object in front of an opaque
object as shown in FIG. 3, where interactions between the light ray and a transparent
or translucent layer (or clear coat layer) of the glossy paint causes the light reflecting
off of the surface to be polarized based on the characteristics of the transparent or
translucent layer (e.g., based on the thickness and surface normals of the layer),
which are encoded in the light ray hitting the image sensor. Similarly, as discussed
in more detail below with respect to shape from polarization (SfP) theory, variations
in the shape of the surface (e.g., direction of the surface normals) may cause
significant changes in the polarization of light reflected by the surface of the object.
For example, smooth surfaces may generally exhibit the same polarization
characteristics throughout, but a scratch or a dent in the surface changes the
direction of the surface normals in those areas, and light hitting scratches or dents
may be polarized, attenuated, or reflected in ways different than in other portions of
the surface of the object. Models of the interactions between light and matter
generally consider three fundamentals: geometry, lighting, and material. Geometry
is based on the shape of the material. Lighting includes the direction and color of the
lighting. Material can be parameterized by the refractive index or angular
reflection/transmission of light. This angular reflection is known as a bi-directional
reflectance distribution function (BRDF), although other functional forms may more

17-



10

15

20

25

30

35

WO 2021/071995 PCT/US2020/054645

accurately represent certain scenarios. For example, the bidirectional subsurface
scattering distribution function (BSSRDF) would be more accurate in the context of
materials that exhibit subsurface scattering (e.g. marble or wax).

[0097] A light ray 310 hitting the image sensor 16 of a polarization camera 10 has
three measurable components: the intensity of light (intensity image/I), the
percentage or proportion of light that is linearly polarized (degree of linear
polarization/DOLP/p), and the direction of that linear polarization (angle of linear
polarization/AOLP/¢). These properties encode information about the surface
curvature and material of the object being imaged, which can be used by the
predictor 710 to detect transparent objects, as described in more detail below. In
some embodiments, the predictor 710 can detect other optically challenging objects
based on similar polarization properties of light passing through translucent objects
and/or light interacting with multipath inducing objects or by non-reflective objects
(e.g., matte black objects).

[0098] Therefore, some aspects of embodiments of the present invention relate to
using a feature extractor 700 to compute first tensors in one or more first
representation spaces, which may include derived feature maps based on the
intensity I, the DOLP p, and the AOLP ¢. The feature extractor 700 may generally
extract information into first representation spaces (or first feature spaces) which
include polarization representation spaces (or polarization feature spaces) such as
“polarization images,” in other words, images that are extracted based on the
polarization raw frames that would not otherwise be computable from intensity
images (e.g., images captured by a camera that did not include a polarizing filter or
other mechanism for detecting the polarization of light reaching its image sensor),
where these polarization images may include DOLP p images (in DOLP
representation space or feature space), AOLP ¢ images (in AOLP representation
space or feature space), other combinations of the polarization raw frames as
computed from Stokes vectors, as well as other images (or more generally first
tensors or first feature tensors) of information computed from polarization raw
frames. The first representation spaces may include non-polarization representation
spaces such as the intensity I representation space.

[0099] Measuring intensity I, DOLP p, and AOLP ¢ at each pixel requires 3 or
more polarization raw frames of a scene taken behind polarizing filters (or polarizers)
at different angles, ¢,,,; (€.9., because there are three unknown values to be
determined: intensity I, DOLP p, and AOLP ¢. For example, the FLIR® Blackfly® S

Polarization Camera described above captures polarization raw frames with
polarization angles ¢,,,; at O degrees, 45 degrees, 90 degrees, or 135 degrees,
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thereby producing four polarization raw frames L denoted herein as Iy, 145, Ig,

and 1135.
[00100] The relationship between L and intensity I, DOLP p, and AOLP ¢ at

each pixel can be expressed as:

Iy = 1(1+pcos(2(6 — bpor))) (1)
[00101] Accordingly, with four different polarization raw frames I¢pol (I, 145, 19,
and I35), a system of four equations can be used to solve for the intensity I, DOLP
p, and AOLP ¢.
[00102] Shape from Polarization (SfP) theory (see, e.g., Gary A Atkinson and
Edwin R Hancock. Recovery of surface orientation from diffuse polarization. IEEE
transactions on image processing, 15(6):1653-1664, 2006) states that the
relationship between the refractive index (n), azimuth angle (6,) and zenith angle
(8,) of the surface normal of an object and the ¢ and p components of the light ray
coming from that object follow the following characteristics when diffuse reflection is
dominant:

1\ .
(n - ﬁ) sin?(6,)
1.2
2 +2n% — (n + ﬁ) sin? 8, + 4 cos 6,/ n? — sin? 6,

p= (2)

¢ =0, (3)

and when the specular reflection is dominant:

(02 2 _qin2
2 sin“ 8, cos 8, \/n* — sin- 0,

P =07 sin? 0, —n?sin? 0, + 2sin* 6,

¢=0a—% (5)

[00103] Note that in both cases p increases exponentially as 8, increases and if
the refractive index is the same, specular reflection is much more polarized than
diffuse reflection.

[00104] Accordingly, some aspects of embodiments of the present disclosure
relate to applying SfP theory to detect the shapes of surfaces (e.g., the orientation of
surfaces) based on the raw polarization frames 18 of the surfaces. This approach
enables the shapes of objects to be characterized without the use of other computer
vision techniques for determining the shapes of objects, such as time-of-flight (ToF)
depth sensing and/or stereo vision techniques, although embodiments of the present
disclosure may be used in conjunction with such techniques.
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[00105] More formally, aspects of embodiments of the present disclosure relate to
computing first tensors 50 in first representation spaces, including extracting first
tensors in polarization representation spaces such as forming polarization images (or
extracting derived polarization feature maps) in operation 650 based on polarization
raw frames captured by a polarization camera 10.
[00106] Light rays coming from a transparent objects have two components: a
reflected portion including reflected intensity I,., reflected DOLP p,., and reflected
AOLP ¢, and the refracted portion including refracted intensity I, refracted DOLP p;,
and refracted AOLP ¢.. The intensity of a single pixel in the resulting image can be
written as:
I =1 + I (6)

[00107] When a polarizing filter having a linear polarization angle of ¢, is placed
in front of the camera, the value at a given pixel is:

Igpor = I (14 pr c0s (2(br = bpor))) + I (1 + pe cos (2(de = bpor))) (7)
[00108] Solving the above expression for the values of a pixel in a DOLP p image

and a pixel in an AOLP ¢ image interms of I, p,., ¢,, I;, pe, and ¢:

p= \/(Irpr)z + (Itpt)z + 21pelrpr COS(2(¢r B ¢t))
B L+ 1,

(8)

Lpr Sin(2(¢r B ¢t))
Lot 1 w%ﬂ@—¢gﬁ+¢r ®)
tPt T LrPr
[00109] Accordingly, equations (7), (8), and (9), above, provide a model for forming
first tensors 50 in first representation spaces that include an intensity image I, a
DOLP image p, and an AOLP image ¢ according to one embodiment of the present
disclosure, where the use of polarization images or tensor in polarization
representation spaces (including DOLP image p and an AOLP image ¢ based on
equations (8) and (9)) enables the reliable detection of optically challenging surface
characteristics of objects that are generally not detectable by comparative systems
that use only intensity I images as input.
[00110] In more detall, first tensors in polarization representation spaces (among
the derived feature maps 50) such as the polarization images DOLP p and AOLP ¢
can reveal surface characteristics of objects that might otherwise appear textureless
in an intensity I domain. A transparent object may have a texture that is invisible in
the intensity domain I because this intensity is strictly dependent on the ratio of I, /I,
(see equation (6)). Unlike opaque objects where I, = 0, transparent objects
transmit most of the incident light and only reflect a small portion of this incident light.
As another example, thin or small deviations in the shape of an otherwise smooth
surface (or smooth portions in an otherwise rough surface) may be substantially

¢ = arctan(
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invisible or have low contrast in the intensity I domain (e.g., a domain that does not
encode polarization of light), but may be very visible or may have high contrast in a
polarization representation space such as DOLP p or AOLP ¢.

[00111] As such, one exemplary method to acquire surface topography is to use
polarization cues in conjunction with geometric regularization. The Fresnel
equations relate the AOLP ¢ and the DOLP p with surface normals. These
equations can be useful for detecting optically challenging objects by exploiting what
Is known as polarization patterns of the surfaces of these optically challenging
objects. A polarization pattern is a tensor of size [M, N, K] where M and N are
horizontal and vertical pixel dimensions, respectively, and where K is the polarization
data channel, which can vary in size. For example, if circular polarization is ignored
and only linear polarization is considered, then K would be equal to two, because
linear polarization has both an angle and a degree of polarization (AOLP ¢ and
DOLP p). Analogous to a Moire pattern, in some embodiments of the present
disclosure, the feature extraction module 700 extracts a polarization pattern in
polarization representation spaces (e.g., AOLP space and DOLP space).

[00112] While the preceding discussion provides specific examples of polarization
representation spaces based on linear polarization in the case of using a polarization
camera having one or more linear polarizing filters to capture polarization raw frames
corresponding to different angles of linear polarization and to compute tensors in
linear polarization representation spaces such as DOLP and AOLP, embodiments of
the present disclosure are not limited thereto. For example, in some embodiments of
the present disclosure, a polarization camera includes one or more circular polarizing
filters configured to pass only circularly polarized light, and where polarization
patterns or first tensors in circular polarization representation space are further
extracted from the polarization raw frames. In some embodiments, these additional
tensors in circular polarization representation space are used alone, and in other
embodiments they are used together with the tensors in linear polarization
representation spaces such as AOLP and DOLP. For example, a polarization
pattern including tensors in polarization representation spaces may include tensors
in circular polarization space, AOLP, and DOLP, where the polarization pattern may
have dimensions [M, N, K], where K is three to further include the tensor in circular
polarization representation space.

[00113] Accordingly, some aspects of embodiments of the present disclosure
relate to supplying first tensors in the first representation spaces (e.g., including
feature maps in polarization representation spaces) extracted from polarization raw
frames as inputs to a predictor for computing or detecting surface characteristics of
transparent objects and/or other optically challenging surface characteristics of
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objects under inspection. These first tensors may include derived feature maps
which may include an intensity feature map I, a degree of linear polarization (DOLP)
p feature map, and an angle of linear polarization (AOLP) ¢ feature map, and where
the DOLP p feature map and the AOLP ¢ feature map are examples of polarization
feature maps or tensors in polarization representation spaces, in reference to feature
maps that encode information regarding the polarization of light detected by a
polarization camera.

[00114] In some embodiments, the feature maps or tensors in polarization
representation spaces are supplied as input to, for example, detection algorithms
that make use of SfP theory to characterize the shape of surfaces of objects imaged
by the polarization cameras 10. For example, in some embodiments, in the case of
diffuse reflection, equations (2) and (3) are used to compute the zenith angle (6,)
and the azimuth angle (6,) of the surface normal of a surface in the scene based on
the DOLP p and the index of refraction n. Likewise, in the case of specular
reflection, equations (3) and (5) are used to compute the zenith angle (6,) and the
azimuth angle (6,) of the surface normal of a surface in the scene based on the
DOLP p and the index of refraction n. As one example, a closed form solution for
computing the zenith angle (8,) based on Equation (2) according to one embodiment

of the present disclosure in accordance with the following steps:
2 2

1 1
aa = (n——) +p<n+—>

n n
bb = 4p(n? + 1)(aa — 4p)
cc = bb? + 16p%(16p? — aa?)(n? — 1)?

dd — Vee
2(16p?% — aa?)
8, = asindd

[00115] Additional details on computing surface normal directions based on
polarization raw frames can be found, for example, in U.S. Pat. Nos. 10,260,866 and
10,557,705 and Kadambi, Achuta, et al. "Polarized 3D: High-quality depth sensing
with polarization cues." Proceedings of the IEEE International Conference on
Computer Vision. 2015, the entire disclosures of which are incorporated by reference
herein.

[00116] Computing Polarization Cues from Multi-camera Arrays

[00117] Ordinarily, multipolar cues are obtained from a monocular viewpoint.
Existing methods use multipolar filters (e.g., a polarization mask as shown in FIG.
1B) or multiple CCD or CMOS sensors to multiplex different polarization channels in
a single view (e.g., multiple sensors behind a single lens system) or time multiplexed

systems (e.g., where different polarization raw frames are captured at different times,
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such as sequentially captured, which may require that the scene 1 remain
substantially or constant from one capture to the next in order for the views to be the
same). In particular, the techniques described above for calculating polarization
cues such as the angle of linear polarization (AOLP) ¢ and the degree of linear
polarization (DOLP) p generally assume that the polarization raw frames are
captured from the same viewpoint.

[00118] However, there are some circumstances in which the above assumption of
a single viewpoint may not hold. For example, polarization raw frames
corresponding to different polarization states may be captured from different
viewpoints when using a polarization camera array that includes multiple polarization
cameras at different locations, such as the embodiments shown in FIGS. 1C, 1D,
and 1E. While placing the individual polarization cameras closer together may
reduce error, physical constraints (e.g., the size of the individual polarization
cameras, such as the size and shape of their corresponding packaging as well as
lenses and image sensors contained therein) may limit the placement of the
polarization cameras.

[00119] Accordingly, some aspects of embodiments of the present disclosure
relate to systems and methods for computing polarization cues such as AOLP ¢ and
DOLP p from polarization raw frames captured from different viewpoints, such as by
using an array of polarization cameras. Generally, this involves a technique for
decoupling parallax cues due to the different positions of the separate polarization
cameras and the desired polarization cues. This is challenging because parallax
cues and polarization cues are linked in that both the parallax between two views
and the sensed polarization are related to the geometry of the relationship between
the polarization cameras and the imaged surface. The comparative approaches to
obtaining AOLP and DOLP assume that the polarization channels are acquired from
the same viewpoint and therefore applying comparative techniques to the data
captured by the array of polarization cameras likely results in errors or ambiguity.
[00120] FIG. 4 is a flowchart 400 of a method for estimating polarization cues
under parallax ambiguities according to one embodiment of the present disclosure.
[00121] In the embodiment shown in FIG. 4, polarization raw frames captured from
a plurality of different viewpoints, such as by an array of polarization cameras such
as that shown in FIGS. 1B, 1C, and 1D are supplied as input to the process. In
some embodiments of the present disclosure, estimates of the DOLP p and AOLP ¢
in accordance with embodiments of the present disclosure are computed by a
processing circuit 100 through an iterative process. Note that the estimated DOLP p
and estimated AOLP ¢ correspond to tensors (e.g., two dimensional tensors) having
aspect ratios corresponding to the polarization raw frames, e.g., where the values of
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the DOLP p tensor and AOLP ¢ tensor correspond to the estimated degree of linear
polarization and the angle of linear polarization in various portions of the captured
polarization raw frames.

[00122] In operation 410, the processing circuit computes an initial estimated
DOLP p, and an initial estimated AOLP ¢, using the Stokes vectors (e.g., in
accordance with equations (10) and (11), above or, more specifically, in accordance
with equations (8) and (9). These initial estimated DOLP p, and AOLP ¢, will likely
be incorrect due to the parallax shift between the different individual polarization
cameras of the polarization camera array 10'.

[00123] In operation 430, the processing circuit 100 estimates the geometry of the
surfaces of the scene depicted in the polarization raw frames. In some embodiments
of the present disclosure, the processing circuit 100 uses a view correspondence-
based approach to generate a coarse model of the scene using parallax from the
stereo view of the scene, due to the offset between the locations of the cameras in
the array (e.g., using depth from stereo techniques, as discussed, for example, in
Kadambi, A. et al. (2015)). In operation 450, this coarse geometry may then be
refined using the current calculated DOLP p; and AOLP ¢; values (initially, i = 0)
(see, e.g., U.S. Pat. Nos. 10,260,866 and 10,557,705 and Kadambi, A. et al. (2015)).
[00124] The estimated geometry computed in operation 450 is then used to update
the estimated values of the DOLP p and the AOLP ¢. For example, in an i-th
iteration, a previously calculated DOLP p;_; and a previously calculated AOLP ¢;_,
may be used to compute the estimated geometry in operation 450 and, in operation
470, the processing system 100 refines the DOLP and AOLP calculations based on
the new estimated geometry to compute new estimates DOLP p; and AOLP ¢;,.
[00125] In operation 490, the processing system 100 determines whether to
continue with another iteration of the process of estimating the DOLP p and AOLP ¢.
In more detail, in some embodiments, a change in the DOLP Ap is computed based
on the difference between the updated DOLP p; and the previously calculated DOLP
pi—1 (€.9., |pi — pi—1|). Likewise, a change in the AOLP A¢ is computed based on
the difference between the updated AOLP ¢; and the previously calculated AOLP
¢i_1 (€.9., |¢p; — P;_1]). If either of these changes in polarization cues (e.g., both Ap
and A¢) is greater than corresponding threshold values (e.g., p;; and ¢, ) across the
computed tensors, then the process continues by using the updated DOLP p; and
AOLP ¢; to refine the coarse model in operation 450, and then updating the DOLP
and AOLP values based on this new estimated geometry. If both of the changes in
the polarization cues are less than their corresponding thresholds, then the
estimation process is complete and the estimated DOLP p; and AOLP ¢; are output
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from the estimation process, and may be used in computing further processing
outputs, such as surface normal maps, instance segmentation maps, etc.

[00126] Multi-spectral stereo with Polarization Imaging

[00127] In many circumstances, such as in remote sensing, multi-spectral images
of scenes are capable of capturing information that would otherwise be hidden from
view. For example, multi-spectral or hyper-spectral imaging is capable of detecting
surface properties of scenes, such as detecting soil properties like moisture, organic
content, and salinity, oil impacted soils, which may be useful in agriculture. As
another example, multi-spectral imaging may enable the detection of camouflaged
targets, such as military vehicles under partial vegetation cover or small military
objects within relatively larger pixels. As a further example, multi-spectral imaging
enables material identification and mapping, such as detecting the presence or
absence of materials in relief geography, mapping of heavy metals and other toxic
wastes in mining areas. Multi-spectral imaging also enables the detection of the
presence of particular materials, such as water/oil spills (this is of particular
importance to indoor robots so they can avoid or perform path planning around these
spills and for robotic vacuum cleaners to detect, locate, and clean up spills and other
small, dark, and/or specular dirt). Multi-spectral imaging may also be used for
material inspection, such as detecting cracks and rust in industrial equipment such
as industrial boilers and railway tracks, in which failure can be extremely hazardous
and where recovery can be expensive.

[00128] In these above examples, computer vision techniques that use
comparative and standard color images (e.g., red, green, and blue images) as input,
may not be able to detect these types of objects, but the use of multi-spectral or
hyper-spectral imaging, combined with polarization information, may provide
additional cues that can be detected and recognized by computer vision algorithms
and instance detection techniques (e.g., using trained convolutional neural
networks).

[00129] Generally, the spectral radiance of a surface measures the rate of photons
reflected from a surface as a function of surface area, slope, and incident
wavelength. The spectral radiance function of most natural images are regular
functions of wavelengths which makes it possible to represent these using a low-
dimensional linear model. In other words, the spectral representation of light
reflected from the surface can be represented as a linear combination of spectral

basis functions:
n
S = z w;B; (1)
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[00130] where w; are the linear weights, B; represents the spectral basis function,
and n is the dimensionality of the system. Related work in the area of spectral
radiance profiles of natural objects show that, for the most part, the spectral radiance
of natural objects can be represented accurately by five or six linear basis functions.
[00131] Accordingly, some aspects embodiments of the present disclosure, relate
to collecting spectral information simultaneously with polarization information using a
stereo imaging pair wherein each camera system (or camera module) of the stereo
pair includes a camera array that allows for capturing both the spectral and
polarization information.

[00132] FIG. 5A is a perspective view of a multi-spectral stereo polarization
camera system according to one embodiment of the present disclosure.
Embodiments of a multi-spectral stereo polarization camera system as shown in FIG.
5A are substantially similar to the stereo polarization camera system shown in FIG.
1E in that FIG. 5A depicts a multi-spectral stereo polarization camera system 510
having a first polarization camera module 510-1" and a second polarization camera
module 510-2" having substantially parallel optical axes and spaced apart along a
baseline 510-B. In the embodiment shown in FIG. 5A, the first polarization camera
module 510-1" and includes polarization cameras 510A", 510B", 510C", and 510D"
arranged in a 2x2 array similar to that shown in FIG. 1C and 1D. Likewise, the
second polarization camera module 510-2" and includes polarization cameras
510E", 510F", 510G", and 510H" arranged in a 2x2 array, and the overall multi-
spectral stereo polarization camera module 510 includes eight individual polarization
cameras (e.g., eight separate image sensors behind eight separate lenses). In some
embodiments of the present disclosure, corresponding polarization cameras of
polarization camera modules 510-1" and 510-2" are configured to capture
polarization raw frames with substantially the same polarizations. For example,
cameras 510A" and 510E" may both have linear polarizing filters at a same angle of
0°, cameras 510B" and 510F" may both have linear polarizing filters at a same angle
of 45°, cameras 510C" and 510G" may both have linear polarizing filters at a same
angle of 90°, and cameras 510D" and 510H" may both have linear polarizing filters at
a same angle of 135°.

[00133] FIG. 5B is a view of a multi-spectral stereo polarization camera system
according to one embodiment of the present disclosure, along a direction parallel to
the optical axis of the multi-spectral stereo polarization camera system. FIG. 5C
depicts cut-away side views of example individual polarization cameras of a multi-
spectral stereo polarization camera system according to one embodiment of the
present disclosure. As shown in FIG. 5C, each of the individual polarization cameras
(e.g., 510A", 510B", 510E", and 510F") includes a corresponding color filter 518
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(e.g., 518A", 518B", 518E", and 518F") in the optical path of the individual
polarization camera, in addition to a corresponding lens 512, a corresponding image
sensors 514, and a corresponding polarizing filter 516. While FIG. 5C depicts the
color filter 518 as being within a housing and behind the lens 512, embodiments of
the present disclosure are not limited thereto. For example, in some embodiments,
the color filter 518 is located in front of the lens 512. Likewise, in some
embodiments, the polarizing filter is located in front of the lens 512.

[00134] In the embodiment shown in FIG. 5B, each of the individual polarization
cameras includes a color filter that transmits light in only one corresponding portion
of the visible spectrum (as opposed to a Bayer filter, which has a mosaic pattern and
that typically transmits light in three different portions of the spectrum corresponding
to red, green, and blue light). In the example embodiment shown in FIG. 5B, first
polarization camera 510A" has a color filter 518A" that is configured to transmit light
in ared (R) portion of the spectrum, second polarization camera 510B" has a color
filter 518B" that is configured to transmit light in a first green (G1) portion of the
spectrum, third polarization camera 510C" has a color filter 518C" that is configured
to transmit light in a second green (G2) portion of the spectrum (which may be
different from the first green portion G1 of the spectrum, e.g., with a peak shifted by
15 to 20 nm), and fourth polarization camera 510D" has a color filter 518D" that is
configured to transmit light in a blue (B) portion of the spectrum. Together, the four
polarization cameras of the first polarization camera module 510-1" capture light at
four different polarization states (e.g., four different linear polarizations of 0°, 45°,
90°, and 135°) and four different colors (e.g., R, G1, G2, and B). In the particular
embodiment shown in FIG. 5B, for example, the first polarization camera 510A"
captures red light polarized at 0°, the second polarization camera 510B" captures
first green light polarized at 45°, the third polarization camera 510C" captures
second green light polarized at 90°, and the fourth polarization camera 510D"
captures blue light polarized at 135°. However, embodiments of the present
disclosure are not limited thereto. For example, in various embodiments the color
filters may be associated with different polarizing filters.

[00135] In a similar manner, the individual polarization cameras (e.g., cameras
510E", 510F", 510G", and 510BH") of the second polarization camera module 510-2"
includes a separate color filter 518 that are configured to transmit light in different
portions of the electromagnetic spectrum and different from one another. In some
embodiment of the present invention, each of the color filters of the second
polarization camera module 510-2" transmits light in a portion of the spectrum that is
shifted by some amount (e.g., where the peak of the spectral profile of the color filter
is shifted, either toward the longer wavelengths or toward shorter wavelengths, by
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about 10 nanometers to about 20 nanometers) from the corresponding color filter in
the first polarization camera module 510-1".

[00136] In the example embodiment shown in FIG. 5B, fifth polarization camera
510E" has a color filter 518E" that is configured to transmit light in a red (R’) portion
of the spectrum that is shifted by about 10 to 20 nanometers from the spectrum R
transmitted by corresponding color filter 518A" of the corresponding polarization
camera 510A" of the first polarization camera module 510-1". Likewise, sixth
polarization camera 510F" has a color filter 518F" that is configured to transmit light
in a first green (G1') portion of the spectrum that is shifted by about 10 to 20
nanometers from the spectrum G1 transmitted by corresponding color filter 518B" of
the corresponding polarization camera 510B" of the first polarization camera module
510-1" (and, in some embodiments, also a different spectrum from spectrum G2).
The seventh polarization camera 510G" has a color filter 518G" that is configured to
transmit light in a second green (G2') portion of the spectrum that is shifted by about
10 to 20 nanometers from the spectrum G2 transmitted by corresponding color filter
518C" of the corresponding polarization camera 510C" of the first polarization
camera module 510-1" (and, in some embodiments, also a different spectrum for
spectrum G1). The eighth polarization camera 510H" has a color filter 518H" that is
configured to transmit light in a blue (B') portion of the spectrum that is shifted by
about 10 to 20 nanometers from the spectrum B transmitted by corresponding color
filter 518D" of the corresponding polarization camera 510D" of the first polarization
camera module 510-1".

[00137] Together, the four polarization cameras of the second polarization camera
module 510-2" capture light at four different polarization states (e.g., four different
linear polarizations of 0°, 45°, 90°, and 135°) and four different colors (e.g., R', G1/,
G2', and B') that are also different from the four colors captured by the first
polarization camera module 510-1". As a result, the multi-spectral stereo
polarization camera system 510 shown in FIGS. 5A, 5B, and 5C is configured to
detect light of eight different colors and at four different polarization angles.

[00138] While some embodiments of the present disclosure are described in detail
above with respect to FIGS. 5A, 5B, and 5C, embodiments of the present disclosure
are not limited thereto. For example, as noted above, in some embodiments of the
present disclosure, each polarization camera module may include only three
polarization cameras. In some embodiments, the three individual polarization
cameras may include corresponding linear polarizers with linear polarization filters at
0°, 45°, and 90° or at 0°, 60°, and 120°. In some embodiments, the three individual
polarization cameras of the first polarization camera module have corresponding
color filters to transmit red (R), green (G), and blue (B) light having corresponding
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first spectral profiles, and the three individual polarization cameras of the second
polarization camera module may have corresponding color filters to transmit red (R’),
green (G'), and blue (B') light having second spectral profiles that are different from
the first spectral profile (e.g., where each of the second spectral profiles is shifted
from corresponding first spectral profiles by 10 to 20 nm).
[00139] In addition, while some embodiments of the present disclosure are
described above with respect to color filters that transmit different portions of the
visible electromagnetic spectrum, embodiments of the present disclosure are not
limited thereto, and may also include the use of color filters that selectively transmit
light in other portions of the electromagnetic spectrum, such as infrared light or
ultraviolet light.
[00140] In some embodiments of the present disclosure, the two different
polarization camera modules of the multi-spectral stereo polarization camera system
include polarization cameras that are configured to capture polarization raw frames
of different polarization states (e.g., different polarization angles), such as using a
polarization mask as shown in FIG. 1B or a mechanically or electronically
controllable polarizing filter. According to some embodiments of the present
disclosure, each polarization camera further includes a color filter configured to filter
light in a plurality of colors in accordance to a mosaic pattern such as a Bayer
pattern, where each polarization camera may have a different color filter to enable
multi-spectral or hyper-spectral capture. For example, in some embodiments, a first
polarization camera of a stereo pair includes a first color filter configured to capture
light inthe R, G1, G2, B spectra (or R, G, B spectra), as described above, and a
second polarization camera of the stereo pair includes a second color filter
configured to capture light in the R', G1', G2', B' spectra (or R, G', B'), as described
above.
[00141] Some aspects of embodiments of the present disclosure relate to
capturing multi-spectral scenes using hardware arrangements such as those
discussed above by determining the spectral basis functions for representation. By
estimating the spectral power distribution of scene illumination and using the spectral
reflectivity function of the Macbeth color chart, it is possible to simulate a set of basis
functions B representing that illumination. This becomes especially feasible when
estimating the spectral profile of natural sunlight for outdoor use as is typically the
case with multispectral imaging for geo-spatial applications. Once the spectral basis
functions are determined, it is straightforward to determine the spectral coefficients
for each scene by simply solving for w (weights) in the following equation

p=TS =TBw (2)
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[00142] where, p represents the pixel values in the different spectral (color)
channels (e.g., eight different color channels R, G1, G2, B, R', G1', G2', and B'), T
represents the spectral responsivities of the various spectral channels (e.g., the
captured values), B represents the spectral basis functions, and w represents the
coefficients for the basis functions.

[00143] Accordingly, applying equation (13) above enables computation of per-
pixel polarization information as well as spectral information.

[00144] The multi-spectral or hyper-spectral information computed from multi-
spectral hardware, such as that described above, maybe supplied as inputs to other
object detection or instance segmentation algorithms (e.g., using convolutional
neural networks that are trained or retrained based on labeled multi-spectral
polarization image training data), or may be supplied as inputs to classical computer
vision algorithms (e.g., such as for detecting the depth of surfaces based on parallax
shift of multi-spectral and polarization cues) for detecting the presence of objects in
the scenes imaged by stereo multi-spectral polarization camera systems according
to embodiments of the present disclosure.

[00145] While some embodiments of the present disclosure as described above
relate to multi-viewpoint multi-spectral polarization imaging using a stereo camera
system (e.g., a stereo pair), embodiments of the present disclosure are not limited
thereto. For example, in some embodiments of the present disclosure, a multi-
spectral camera system (e.g., using a camera system configured to capture six or
more different spectra, such as R, G, B, R', G', and B', as discussed above) sweeps
across multiple viewpoints over time, such as when an object of interest is located on
a conveyor belt that passes through the field of view of the camera system, or where
the camera system moves across the field of view of the object of interest.

[00146] As one example, for applications in satellite imaging one has the added
advantage of viewing the scene from multiple angles that are highly correlated. The
systematic way in which satellites move in straight lines above a given point on the
ground allows satellites to obtain highly correlated multi-spectral and polarization
data of the surfaces of the ground for each viewing angle across a wide range of
viewing angles. Accordingly, in some embodiments of the present disclosure, a
processing system 100 determines, for each point on the ground, the optimal angle
at which the degree of polarization (DOLP) signal is strongest, thereby providing a
strong correlation as to its surface orientation. See, e.g., equations (2) and (4). In
addition, because specularity is generally highly viewpoint dependent, most of the
views of a given surface will be non-specular, such that equation (2) may be
sufficient to compute the orientation of the surface being imaged, without needing to

-30-



10

15

20

25

30

35

WO 2021/071995 PCT/US2020/054645

select between the non-specular (or diffuse) equation versus the specular equation
(4).

[00147] In addition, satellite imaging enables the capture of images of objects
captured from very different viewpoints. This large baseline enables the estimation
of coarse distances of ground-based objects by leveraging multispectral imaging with
polarization and parallax shifts due to the large changes in position. Detecting these
coarse distances provides information for disaster management, power transmission
line monitoring, and security. For example, utility companies are concerned with the
uncontrolled growth of vegetation in and around power transmission and distribution
lines due to risks of fire or damage to the transmission lines. By imaging the areas
around the power lines from different viewpoints, detecting the parallax shift of the
objects when viewed from different viewpoints enables estimations of the surface
height of the vegetation and the height of the transmission and distribution lines.
Accordingly, this enables the automatic detection of when ground vegetation reaches
critical thresholds with respect to proximity of said lines with respect to vegetation
growth. To monitor such data both at day and night, some embodiments of the
present disclosure relate to fusing polarization data with thermal sensors (e.g.,
infrared sensors) to provide clear heat signatures irrespective of illumination
conditions.

[00148] Image Segmentation using Polarimetric Cues

[00149] Some aspects of embodiments of the present disclosure relate to
performing instance segmentation using polarimetric cues captured in accordance
with embodiments of the present disclosure. Some techniques for performing
instance segmentation using polarimetric cues are described in more detail in U.S.
Provisional Patent Application No. 62/942,113, filed in the United States Patent and
Trademark Office on November 30, 2019 and U.S. Provisional Patent Application
No. 63/001,445, filed in the United States Patent and Trademark Office on March 29,
2020, the entire disclosures of which are incorporated by reference herein.

[001560] FIG. 6A is a block diagram of processing circuit 100 for computing surface
characterization outputs based on polarization data according to one embodiment of
the present invention. FIG. 6B is a flowchart of a method 600 for performing surface
characterization based on input images to compute a surface characterization output
according to one embodiment of the present invention.

[00151] According to various embodiments of the present disclosure, the
processing circuit 100 is implemented using one or more electronic circuits
configured to perform various operations as described in more detail below. Types
of electronic circuits may include a central processing unit (CPU), a graphics
processing unit (GPU), an artificial intelligence (Al) accelerator (e.g., a vector
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processor, which may include vector arithmetic logic units configured efficiently
perform operations common to neural networks, such dot products and softmax), a
field programmable gate array (FPGA), an application specific integrated circuit
(ASIC), a digital signal processor (DSP), or the like. For example, in some
circumstances, aspects of embodiments of the present disclosure are implemented
in program instructions that are stored in a non-volatile computer readable memory
where, when executed by the electronic circuit (e.g., a CPU, a GPU, an Al
accelerator, or combinations thereof), perform the operations described herein to
compute a characterization output 20 from input polarization raw frames 18. The
operations performed by the processing circuit 100 may be performed by a single
electronic circuit (e.g., a single CPU, a single GPU, or the like) or may be allocated
between multiple electronic circuits (e.g., multiple GPUs or a CPU in conjunction with
a GPU). The multiple electronic circuits may be local to one another (e.g., located
on a same die, located within a same package, or located within a same embedded
device or computer system) and/or may be remote from one other (e.g., in
communication over a network such as a local personal area network such as
Bluetooth®, over a local area network such as a local wired and/or wireless network,
and/or over wide area network such as the internet, such a case where some
operations are performed locally and other operations are performed on a server
hosted by a cloud computing service). One or more electronic circuits operating to
implement the processing circuit 100 may be referred to herein as a computer or a
computer system, which may include memory storing instructions that, when
executed by the one or more electronic circuits, implement the systems and methods
described herein.

[001562] As shown in FIG. 6A, in some embodiments, a processing circuit 100
includes a feature extractor or feature extraction system 700 and a predictor 710
(e.g., a classical computer vision prediction algorithm and/or a trained statistical
model such as a trained neural network) configured to compute a prediction output
20 (e.g., a statistical prediction) regarding surface characteristics of objects based on
the output of the feature extraction system 700. Various embodiments of the present
disclosure are described herein in the context of surface characterization in
circumstances where surface features may be optically challenging to detect, and/or
where polarization-based imaging techniques provide information on surface normal
that may otherwise be difficult to obtain, embodiments of the present disclosure are
not limited thereto. For example, some aspects of embodiments of the present
disclosure may be applied to techniques for characterizing the surfaces of objects
made of materials or have surface characteristics that are optically challenging to
detect, such as surfaces of translucent objects, multipath inducing objects, objects
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that are not entirely or substantially matte or Lambertian, and/or very dark objects.
These optically challenging objects include objects and surface characteristics
thereof that are difficult to resolve or detect through the use of images that are
capture by camera systems that are not sensitive to the polarization of light (e.g.,
based on images captured by cameras without a polarizing filter in the optical path or
where different images do not capture images based on different polarization
angles). For example, these surface characteristics may have surface appearances
or colors that are very similar to the surfaces on which the characteristics appear
(e.g., dents have the same color as the underlying material and scratches on
transparent materials such as glass may also be substantially transparent). In
addition, while embodiments of the present disclosure are described herein in the
context of detecting optically challenging surface characteristics, embodiments of the
present disclosure are not limited to detecting only optically challenging surface
defects. For example, in some embodiments, a predictor 710 is configured (e.g., a
statistical model is trained using training data) to detect both surface characteristics
that are optically challenging as well as surface characteristics that are robustly
detectable without using polarization information.

[001563] Polarization may be used to detect surface characteristics or features that
would otherwise be optically challenging when using intensity information (e.g., color
intensity information) alone. For example, polarization information can detect
changes in geometry and changes in material in the surfaces of objects. The
changes in material (or material changes), such as boundaries between different
types of materials (e.g., a black metallic object on a black road or a colorless liquid
on a surface may both be substantially invisible in color space, but would both have
corresponding polarization signatures in polarization space), may be more visible in
polarization space because differences in the refractive indexes of the different
materials cause changes in the polarization of the light. Likewise, differences in the
specularity of various materials cause different changes in the polarization phase
angle of rotation, also leading to detectable features in polarization space that might
otherwise be optically challenging to detect without using a polarizing filter.
Accordingly, this causes contrast to appear in images or tensors in polarization
representation spaces, where corresponding regions of tensors computed in
intensity space (e.g., color representation spaces that do not account for the
polarization of light) may fail to capture these surface characteristics (e.g., where
these surface characteristics have low contrast or may be invisible in these spaces).
Examples of optically challenging surface characteristics include: the particular
shapes of the surfaces (e.g., degree of smoothness and deviations from ideal or
acceptable physical design tolerances for the surfaces); surface roughness and
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shapes of the surface roughness patterns (e.g., intentional etchings, scratches, and
edges in the surfaces of transparent objects and machined parts), burrs and flash at
the edges of machined parts and molded parts; and the like. Polarization would also
be useful to detect objects with identical colors, but differing material properties, such
as scattering or refractive index.

[00154] In addition, as discussed above, polarization may be used to obtain the
surface normals of objects based on the degree of linear polarization (DOLP) p and
the angle of linear polarization (AOLP) ¢ computed from the polarization raw frames
based on, for example, equations (2), (3), (4), and (5). These surface normal, in
turn, provide information about the shapes of the surfaces.

[001565] As shown in FIG. 6B and referring, for example, to FIG. 1B, in operation
610 the processing circuit 100 captures polarization raw frames 18 of surfaces in a
scene 1. For example, in some embodiments, the processing circuit 100 controls
one or more polarization cameras 10 (e.g., one or more individual polarization
cameras, which may be organized into polarization camera arrays and/or stereo
polarization camera systems that include multiple polarization camera modules) to
capture polarization raw frames 18 depicting a surfaces of object in a scene 1.
[00166] FIG. 7A is a block diagram of a feature extractor 700 according to one
embodiment of the present invention. FIG. 7B is a flowchart depicting a method
according to one embodiment of the present invention for extracting features from
polarization raw frames. In the embodiment shown in FIG. 7A, the feature extractor
700 includes an intensity extractor 720 configured to extract an intensity image 1 52
in an intensity representation space (e.g., in accordance with equation (7), as one
example of a non-polarization representation space) and polarization feature
extractors 730 configured to extract features in one or more polarization
representation spaces. In some embodiments of the present disclosure, the intensity
extractor 720 is omitted and the feature extractor does not extract an intensity image
1 52. In the embodiment shown in FIG. 7A, the features extracted in polarization
representation spaces (e.g., DOLP p and AOLP ¢) are supplied to a surface normals
calculator 780 to compute surface normals 58 of objects in the scene.

[001567] As shown in FIG. 7B, the extraction of polarization images in operation
650 may include extracting, in operation 651, a first tensor in a first polarization
representation space from the polarization raw frames from a first Stokes vector. In
operation 652, the feature extractor 700 further extracts a second tensor in a second
polarization representation space from the polarization raw frames. For example,
the polarization feature extractors 730 may include a DOLP extractor 740 configured
to extract a DOLP p image 54 (e.g., a first polarization image or a first tensor in
accordance with equation (8) with DOLP as the first polarization representation
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space) and an AOLP extractor 760 configured to extract an AOLP ¢ image 56 (e.g.,
a second polarization image or a second tensor in accordance with equation (9), with
AOLP as the second polarization representation space) from the supplied
polarization raw frames 18. In addition, in various embodiments, the feature
extraction system 700 extracts two or more different tensors (e.g., n different
tensors) in two or more representation spaces (e.g., n representation spaces), where
the n-th tensor is extracted in operation 614. As discussed above, in some
embodiments of the present disclosure, the polarization feature extractors 730
extract polarization features in polarization representation spaces including both
linear polarization representation spaces (e.g., tensors in the aforementioned AOLP
and DOLP representation spaces extracted from polarization raw frames captured
with a linear polarizing filter) and circular polarization representation spaces (e.g.,
tensors extracted from polarization raw frames captured with a circular polarizing
filter). In various embodiments, the representation spaces include, but are not
limited to, polarization representation spaces.

[00158] The polarization representation spaces may include combinations of
polarization raw frames in accordance with Stokes vectors. As further examples, the
polarization representations may include modifications or transformations of
polarization raw frames in accordance with one or more image processing filters
(e.g., afilter to increase image contrast or a denoising filter). The feature maps 52,
54, and 56 in first polarization representation spaces may then be supplied to a
predictor 710 for detecting surface characteristics based on the feature maps 50.
[001569] While FIG. 7B illustrates a case where two or more different tensors are
extracted from the polarization raw frames 18 in more than two different
representation spaces, embodiments of the present disclosure are not limited
thereto. For example, in some embodiments of the present disclosure, exactly one
tensor in a polarization representation space is extracted from the polarization raw
frames 18. For example, one polarization representation space of raw frames is
AOLP ¢ and another is DOLP p (e.g., in some applications, AOLP may be sufficient
for detecting surface characteristics of transparent objects or surface characteristics
of other optically challenging objects such as translucent, non-Lambertian, multipath
inducing, and/or non-reflective objects).

[00160] Furthermore, as discussed above with respect to FIG. 7A, in some
embodiments of the present disclosure, one or more feature vectors are computed
based on features computed from other representation spaces. In the particular
example shown in FIG. 7A, the surface normals calculator 780 computes surface
normals of surfaces in the imaged scene 1 in surface normals space (e.g., azimuth
angle 6, and zenith angle 8,) based on the computed AOLP ¢ and DOLP p tensors.
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In some embodiments, the surface normal are encoded using Cartesian coordinates
(e.g., a three-dimensional vector indicating a direction of the surface normal). The
computed surface normals 58 may be included among the features 50 extracted by
the feature extractor 700.

[00161] Accordingly, extracting features such as polarization feature maps,
polarization images, and/or surface normals from polarization raw frames 18
produces first tensors 50 from which optically challenging surface characteristics
may be detected from images of surfaces of objects under inspection. In some
embodiments, the first tensors extracted by the feature extractor 700 may be
explicitly derived features (e.g., hand crafted by a human designer) that relate to
underlying physical phenomena that may be exhibited in the polarization raw frames
(e.g., the calculation of AOLP and DOLP images in linear polarization spaces and
the calculation of tensors in circular polarization spaces, as discussed above). In
some additional embodiments of the present disclosure, the feature extractor 700
extracts other non-polarization feature maps or non-polarization images, such as
intensity maps for different colors of light (e.g., red, green, and blue light) and
transformations of the intensity maps (e.g., applying image processing filters to the
intensity maps). In some embodiments of the present disclosure the feature
extractor 700 may be configured to extract one or more features that are
automatically learned (e.g., features that are not manually specified by a human)
through an end-to-end supervised training process based on labeled training data.
In some embodiments, these learned feature extractors may include deep
convolutional neural networks, which may be used in conjunction with traditional
computer vision filters (e.g., a Haar wavelet transform, a Canny edge detector, a
depth-from-stereo calculator through block matching, and the like).

[00162] Augmenting 3D Surface Reconstruction with Polarization Imaging
[00163] Some aspects of embodiments of the present disclosure relate to recover
high quality reconstructions of closed objects. In some embodiments of the present

surface reconstruction is used in conjunction with high quality three-dimensional (3D)
models of the objects, such as computer-aided-design (CAD) models of the objects
to be scanned to resolve ambiguities arising from a polarization-based imaging
process. Previous attempts have devised methods for unknown geometry without
having access to CAD models.

[00164] Capturing a high quality 3D reconstruction of a physical object for which a
high-quality 3D computer model already exists is important in a variety of contexts,
such as quality control in the fabrication and/or manufacturing of objects. For
example, in the case of additive manufacturing or 3D printing, a designer may create
a 3D model of an object and supply the 3D model to a 3D printer, which fabricates a
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physical object based on the 3D model. During or after the 3D printing process, the
physical object fabricated by the 3D printer may be scanned using a stereo
polarization camera system according to some embodiments of the present
disclosure, and the captured polarization data may be used to assist in the 3D
reconstruction of the surfaces of the physical object. This 3D reconstruction can
then be compared, in software, to the designed 3D model to detect defects in the 3D
printing process. Similar techniques may be applied to other manufacturing
processes, such as for creating 3D reconstructions of the shapes of objects created
through other manufacturing processes such as injection molding, die-casting,
bending, and the like.

[00165] As one example, a stereo polarization camera system, such as that
described above with respect to FIG. 1D, is used to image an object that is intended
to be reconstructed in 3D, e.g., to create a 3D model of the object automatically from
the captured polarization raw frames. Due to practical manufacturing constraints
and/or defects in the manufacturing process, the surface of the object may have
sparse irregularities, and may not be ideally smooth. These irregularities may
appear as high frequency variations on the surface. High frequency variations (HFV)
appear due to 3 scenarios:

[00166] First, there could be regions on the object surface that have valid high-
frequency variations (e.g., designed and intended to be present). For example,
when creating a replica of a Greek bust or statue, details near the eyes and hair of
the scanned 3D model may also be present in the high-quality 3D model that was
used to guide the fabrication of the physical object.

[00167] Second, there may be regions on the object surface that have high-
frequency variations due to blemishes, defects, or other damage on the surface. For
example, in the case of 3D printing or additive manufacturing, high frequency
patterns may arise due to the layer-wise manufacturing process, causing a “steeped”
appearance to surfaces of the object. As another example, an injection molding
process may leave seams or flashing in the produced object where the two parts of
the mold meet. These details are not reflected in the high-quality 3D model.

[00168] Third, combinations of the first and second forms of high frequency
variations may occur physically close to one another (e.g., flashing may appear near
the hair of the replica of the bust, thereby causing additional lines to appear in the
hair).

[00169] High-frequency variations due to details are desirable on the real object,
while the HFVs due to irregularities are not. However, it is important to be able to
recover both of these kinds of HFVs in the 3D reconstruction for the purposes of
inspection and profilometry. While some of these HFV details as well as
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irregularities may not be recovered by a commercially available 3D scanner (due to
poor resolution arising from quantization error & other noise sources), embodiments
of the present disclosure are able to handle these cases, as discussed in more detail
below. Some exemplary implementations may make use of an additional structured
lighting projector device to illuminate the object if the object has no visual features.
Some embodiments of the present disclosure relate to the use of passive illumination
(e.g., based on ambient lighting in the scene).

[00170] FIG. 8Ais an illustration of a Greek bust statue being scanned by an
exemplary implementation of the imaging setup proposed in this invention. Three
types of High-Frequency-Variation (HFV) details are annotated (801A: desirable
details such as hair and eyes; 801B: undesirable blemishes & defects near the
cheek & nose; and 801C: a combination of cases A & B in close proximity with each
other). These HFVs may not be recovered using standard 3D imaging techniques.
Aspects of embodiments of the present invention relate to handling all of these
cases. FIG. 8B is a flowchart of a method for 3D surface reconstruction using
polarization according to one embodiment of the present disclosure.

[00171] In some embodiments of the present disclosure, in operation 810,
polarization raw frames 18 are captured of an object from multiple viewpoints using,
for example, a stereo polarization camera system as describe above with respect to
FIG. 1D. A set of four separate polar-angle images (0, 45, 90, 135) can be extracted
from each of the raw images acquired. These may be denoted as P, and P.,. In
exemplary implementations of this setup, the cameras may be in housed in standard
stereo configurations (optical axes parallel to each other), or other configurations
(e.g., where the optical axes intersect with each other).

[00172] In operation 820, degree and Angle of Linear Polarization (DOLP p and
AOLP ¢) may be computed from Stokes vector formulation for both cameras using
P-, and P, as described above. These may be denoted as p¢q, ¢c1, P2, @and ¢es.
Surface normals (e.g., Zenith 6, and Azimuth 8,) from polarization can be obtained
using shape from polarization (SFP) using DOLP p and AOLP ¢ as discussed above
with respect to equations (2), (3), (4), and (5) for both cameras C1 and C2 (e.g.,
based on polarization raw frames P.; and P.,). These surface normal from the two
viewpoints may be denoted as Np,;., and Np;, .

[00173] However, these surface normals suffer from Azimuthal 6, ambiguity by an
angle of 1T, which can be disambiguated and corrected by using the CAD reference
model as a constraint (e.g., by selecting the azimuthal angle 6, that results in a
surface that has the smaller distance or error with respect to the reference model).
Accordingly, low-frequency noise (e.g., ambiguity by an angle of 1) can be resolved
using the reference model.
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[00174] Depending on whether the object is dielectric or non-dielectric (taking cues
from the strength of DOLP), an appropriate DOLP computation model may be
employed to estimate the zenith angle as discussed above. In some embodiments,
the material may be assumed to be dielectric with a refractive index of 1.5 because
the refractive index of dielectrics is typically in the range [1.3, 1.6], and that this
variation causes negligible change in DOLP p. In cases where the material is non-
dielectric, the accuracy of the estimated zenith angle would suffer from refractive
distortion. Refractive error in zenith is a low-frequency phenomenon and therefore
may also be corrected by leveraging the reference model to use as a prior for
resolving the refractive error.

[00175] Normals Np,;.. and Np,;., may both independently be integrated over a
sample space (Q) to recover the entire surface off the object or a part of the surface
of the object (e.g., the surface normals indicate the slope of the surfaces of the
object and therefore integrating over the slopes, after accounting for the direction of
the normal versus the orthogonal direction of the slope, recovers the underlying
shape of the object). The surface recovered from such integration should match the
shape constrained by the CAD reference model. Differences between the surface
recovered from integration and the reference model may indicate defective portions
of the physical object.

[00176] In addition to only relying on the CAD model for resolving ambiguities and
errors in 3D reconstruction based on polarization data from one polarization camera
(or one polarization camera array), some aspects of embodiments of the present
disclosure relate to further improving the quality of the 3D reconstruction by
enforcing view-point consistency between the cameras of the stereo polarization
camera system.

[00177] Accordingly, while some embodiments of the present disclosure relate to
computing estimated surface normal as described above through operation 830
shown in FIG. 8B, some embodiments of the present disclosure relate to further
refining the estimated surface normals. Still referring to FIG. 8B, in operation 840,
the high-quality CAD reference model is aligned to orientation of the physical object
based on visual keypoints that are estimated on the object in the polarization raw
frames captured by the two cameras P., and P,.,. These keypoints are correlated
with the same set of keypoints in the CAD reference model to obtain the six degree
of freedom (6DoF) pose of the object with respect to the cameras using Perspective-
N-Point (PnP) (see, e.g., Fischler, M. A.; Bolles, R. C. (1981). "Random Sample
Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography”. Communications of the ACM. 24 (6): 381-395.) and/or
random sample consensus (RANSAC). Use of multiple registered cameras at
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different viewpoints enables a more accurate pose reconstruction than using a single
camera having a single viewpoint, although embodiments of the present disclosure
are not limited thereto and single view PnP may also be used. The CAD reference
model may be transformed into the camera spaces corresponding to the different
camera modules of the stereo camera system (e.g., transforming the pose of the
CAD reference model to the pose of the actual physical object with respect to the
camera system), thereby aligning the reference model to the physical object. In the
case of two cameras, this may be denoted as CAD., and CAD.,. Surface normals
are then extracted from CAD., and CAD., (e.g., based on the orientations of surfaces

with respect to the virtual cameras corresponding to the camera modules of the
stereo camera system). These reference surface normals may be denoted as N¢yp,.,

and Ncp.,-

[00178] The transformed CAD reference model can then be used as a guidance
constraint to correct high frequency azimuthal 1T ambiguity as well as the low
frequency scaling error in zenith due to refractive distortion. Corrected normals will
have consistency between the 2 cameras due to Multiview PnP, making this
approach more robust. In more detail, in operation 850, the estimated normals
Npoi., @nd Np,;., computed (in operation 830) from the polarization raw frames P,
and P, from the two cameras are then corrected to compute corrected normals
Corrected_Npg., and Corrected_Np,,.,. The relative poses between the corrected
normals should be consistent with the relative pose between the cameras (Ng4p,,
and N¢4p.,). This imposes additional pose-consistency constraints, thereby making
SFP-normal correction more robust in general, and specifically in the case of fronto-
parallel facets where Zenith 6, is close to 0° (or O radians), which tend to have noisy
estimated normal due to poor strength of the DOLP p along the viewing direction.
However, any given facet will be less likely to be fronto-parallel to both the camera
modules of a stereo polarization camera system, given the spacing (or baseline)
between the camera modules. Accordingly, regions with higher DOLP may be voted
and selected from across the multiple cameras to recover more robust surface
normal for surfaces that are fronto-parallel to a subset of the camera modules.
[00179] In some circumstances, specularity causes problems in surface
reconstruction because the surface texture information is lost due to oversaturation
in the intensity of the image. This causes estimated normals on a specular patch to
be highly noisy. According to some embodiments of the present disclosure, the
polarization camera system includes multiple cameras (e.g., two or more) that are
viewing overlapping regions of the scene from multiple viewpoints (e.g., a stereo
polarization camera system) spaced apart by a baseline . Specularity is generally a
highly viewpoint dependent issue. That is, specularity is less likely to be observed
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by all the cameras in a setup such as the arrangement shown in FIG. 1D, where
different cameras have different viewpoints of surfaces of an object.

[00180] In more detail, some aspects of embodiments of the present disclosure
relate to automatically recovering robust surface normals, even in highly specular
materials, by imaging the surfaces from multiple viewpoints. Under most lighting
conditions, it is highly unlikely that any given patch of a surface will appear specular
to all of the cameras in a stereo multi-view camera system.

[00181] Accordingly, in some embodiments of the present disclosure, a voting
mechanism may be employed to reject normals from a specular patch observed in a
particular camera, while selecting the normals from the other cameras for the
particular patch, that are more likely to be consistent with each other as well as the
CAD model. For example, surface normals may be computed based on the
polarization raw frames captured from each of the polarization camera modules in
the stereo polarization camera array. If the surface normals computed based on the
polarization raw frames are highly inconsistent with one another (e.g., more than a
threshold angular distance apart), then the computed surface normals that are
closest to the surface normals of the reference model are assumed to be the correct
values.

[00182] In other embodiments of the present disclosure, specular patches may be
detected automatically by identifying saturated pixels in the polarization raw frames.
The saturation of the pixels is used to suggest that the particular patch may be
observing specularity and therefore information in that region may be inaccurate.
[00183] In still other embodiments of the present disclosure, the stereo camera
system includes more than two polarization camera modules (e.g., three or more
polarization camera modules) which image the surfaces of the objects from different
viewpoints. Accordingly, a voting mechanism may be employed, in which the
surface normals computed based on the polarization raw frames captured by the
various cameras are clustered based on similarity (after transforming the surface
normals to correspond to a same frame of reference, such as one of the polarization
camera modules). Because most of the polarization camera modules are unlikely to
observe specularity, most of the calculated normals should be consistent, within an
error range. Accordingly, the clustering process may identify outliers in the
calculated surface normals, as caused by the specular artifacts.

[00184] A pseudocode description of an algorithm for normals correction based on
voting with a CAD reference model prior is presented in more detail as follows. As
notation:

[00185] N_P_C1 - shape-from-polarization (SFP) normals in Camera1

[00186] N_P_C2 - SFP normals in Camera2
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[00187] N_CAD_C1 - Normals in CAD reference model aligned with the object
pose with respect to Camera1

[00188] N_CAD_C2 - Normals in CAD reference model aligned with the object
pose with respect to Camera2

[00189] Trans_C2_C1 - Camera2’s pose with respect to Camera1 obtained
through extrinsic and intrinsic camera calibration (e.g., determined by imaging
calibration targets visible to both Camera1 and Camera2)

[00190] Trans_CAD_C1 - Transform used to align CAD reference model with the
object in Camera1 image space obtained through multiview PnP

[00191] Trans_CAD_C2 - Transform used to align CAD reference model with the
object in Camera2 image space obtained through multiview PnP

[00192] (~) - Consistency operator

[00193] The consistency operator (~) may be modeled as a distance metric (e.g., a
cosine similarity based angular distance metric) computed between the normals
being compared for consistency. If the angular distance is less than a threshold, the
normals being compared are consistent with each other, else not (!~). The normals
being compared are transformed into the same coordinate frame (master-camera or
Cameral image space in this case) using the transforms listed above before
applying the consistency operator (~).

[00194] Pseudocode implementation of voting based on CAD reference
model prior:

For each pixel normal in N_P_C1 (master camera image space, in this case
Camera):

# Case 1: SFP normals in both cameras are consistent with CAD (No
ambiguity)
if (N_P_C1~N_P_C2)&& (N_P_C1~N_CAD_C1)&& (N_P_C2 ~
N_CAD_C2) then:
retain N_P_C1 or Trans_C2_C1*(N_P_C2) depending on which of the
2 camera normals are more aligned (consistent) with the CAD model

# Case 2: SFP normals in the 2 cameras are consistent with each
other, but both are inconsistent with CAD normal (HFV Blemish/defect on
surface)

else if (N_P_C1~N_P_C2)&& (N_P_C1!~N_CAD_C1)&& (N_P_C2 !~
N_CAD_C2) then:

retain N_P_CA1
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# Case 3: SFP normals in only one of the cameras are consistent with
CAD (specularity / fronto parallel issue in the other camera)
else if (N_P_C1~N_CAD_C1) && (N_P_C2 |~ N_CAD_C2) then:
retain N_P_C1 #specularity / fronto parallel facet issue in CameraZ2
else if (N_P_C2 ~N_CAD_C2) && (N_P_C1 I~ N_CAD_C1) then:
retain Trans_C2_C1*(N_P_C2) #specularity / fronto parallel facet issue
in Camerat

# Case 4: SFP normals in both cameras are inconsistent with each
other, as well as with CAD

else if (N_P_C1 !~ N_CAD_C1) && (N_P_C2 I~ N_CAD_C2) && (N_P_C1
I~ N_P_C2) then:

retain N_CAD_C1

[00195] In some embodiments of the present disclosure, the corrected surface
normals Corrected_Npo;, @and Corrected_Np,,., are integrated over sample space
(Q) to synthesize a 3D reconstruction of the object imaged by the stereo polarization
camera system.
[00196] While the embodiments discussed above relate to the 3D reconstruction of
3D objects based on a high-quality 3D model such as a CAD design model, some
aspects of embodiments of the present disclosure further relate to 3D reconstruction
of generally flat surfaces or surfaces having known, simple geometry, using multi-
view polarized camera system such as that shown in FIG. 1D. The simple geometry
case may apply to circumstances where the objects to be analyzed are unknown, but
can be approximated using, for example, flat planes, spheres, and other simple
parametric curves of known geometry. For example, flat planes may apply to many
surfaces in an environment for a self-driving vehicle, such as the surface of a road,
as well as walls and signage. In addition, depending on the resolution and/or
accuracy demanded by a particular application, many surfaces may be approximated
as being locally flat.
[00197] FIG. 9A is an illustration of a flat surface of refractive index n, being
scanned by an exemplary implementation of the imaging setup according to one
embodiment of the present invention. For particular applications in profilometry and
inspection, this surface is examined for its smoothness. Ideally, this surface is
desired to be smooth. Practically, due to defects/wear and tear, there may be
sparse irregularities 901 at random locations on this otherwise flat surface 902.
These irregularities manifest as High-Frequency-Variation (HFV) details that may not
be recovered using standard 3D imaging techniques due to noise and poor
resolution. However, embodiments of the present invention are able to recover
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these HFV irregularities leveraging polarization in conjunction with flatness and multi-
view constraints.

[00198] Accordingly, for the sake of discussion, some embodiments of the present
disclosure relate to detecting random, sparse irregularities on an otherwise
substantially smooth surface (e.g., a substantially flat surface). As a motivating
example, embodiments of the present disclosure may be used to detect potholes in a
road using a stereo polarization camera system, such that a self-driving vehicle can
avoid those potholes, as practical based on traffic conditions. As another motivating
example, embodiments of the present disclosure may be used to detect surface
defects in surfaces with generally simple geometries, such as detecting surface
irregularities in the smoothness of a pane of glass or in a sheet of metal.

[00199] In some embodiments of the present disclosure, a multi-view polarization
camera system may further include a structured light projector 903 configured to
project patterned light onto a scene to provide additional detectable surface texture
for the depth from stereo processes to match between views (e.g., using block
matching) for measuring parallax shifts. In some circumstances, the structured light
projector is configured to project infrared light and the camera system includes
cameras configured to detect infrared light along with light in other spectral bands.
Any following analysis of the surfaces may then be performed based on the data
collected in the other spectral bands such that the projected pattern is not
inadvertently detected as defects in the surface of the material.

[00200] FIG. 9B is a flowchart of a method 900 for 3D surface reconstruction of flat
or geometrically simple surfaces using polarization according to one embodiment of
the present disclosure.

[00201] In a manner similar to that described above, in some embodiments of the
present disclosure, in operation 910, polarization raw frames 18 are captured of a
scene (e.g., including substantially flat or smooth surfaces) from multiple viewpoints
using, for example, a stereo polarization camera system as describe above with
respect to FIG. 1D. A set of four separate polar-angle images (0, 45, 90, 135) can
be extracted from each of the raw images acquired. These may be denoted as P,
and P;,. In exemplary implementations of this setup, the cameras may be in housed
in standard stereo configurations (optical axes parallel to each other), or other
configurations (e.g., where the optical axes intersect with each other).

[00202] In operation 920, degree and Angle of Linear Polarization (DOLP p and
AOLP ¢) may be computed from Stokes vector formulation for both cameras using
P-, and P, as described above. These may be denoted as p¢q, ¢c1, P2, @and ¢es.
[00203] In operation 930, surface normals (e.g., Zenith 8, and Azimuth 6,) from
polarization can be obtained using shape from polarization (SFP) using DOLP p and
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AOLP ¢ as discussed above with respect to equations (2), (3), (4), and (5) for both
cameras C1 and C2 (e.g., based on polarization raw frames P.; and P.,). Depending
on whether the object is dielectric or non-dielectric (taking cues from the strength of
DOLP), an appropriate DOLP computation model may be employed to estimate the
zenith angle as discussed above. In some embodiments, the material may be
assumed to be dielectric with a refractive index of 1.5 because the refractive index of
dielectrics is typically in the range [1.3, 1.6], and that this variation causes negligible
change in DOLP p. In cases where the material is non-dielectric, the accuracy of the

estimated zenith angle would suffer from refractive distortion.
[00204] These surface normal from the two viewpoints may be denoted as Np,,,,

and Np,,.,. However, these surface normals suffer from Azimuthal 6, ambiguity by
an angle of 1T, which can be disambiguated and corrected by using the coarse depth
map as a constraint (e.g., by selecting the azimuthal angle 9, that results in a
surface that has the smaller distance or error with respect to the reference model).
Accordingly, low-frequency noise (e.g., ambiguity by an angle of 1) can be resolved
using the coarse depth map created from the stereo view of the scene.

[00205] In addition, in operation 940, a coarse depth map (CDM) is computed
based on the parallax shift between pairs of cameras in the stereo polarization
camera system, based on depth-from-stereo approaches (e.g., where larger parallax
shifts indicate surfaces that are closer to the camera system and smaller parallax
shifts indicate that surfaces are farther away). As noted above, in some
embodiments, the stereo polarization camera system includes a structured light
illumination system, which may improve the matching of corresponding portions of
the images when the surfaces do not have intrinsic texture or other visual features.
In operation 940, the computed coarse depth map is also aligned to the image
spaces corresponding the viewpoints €1 and C2 (e.g., using the relative pose and
the extrinsic matrices from the camera calibration), where the coarse depth maps

corresponding to these image spaces are denoted CDM., and CDM_,.
[00206] In operation 950, the estimated normals as Np,,., and Np,,., are corrected

based on normals are obtained from the CDM N¢p ., @and Nepy,., to compute
corrected surface normals Corrected_Np,,; ., @and Corrected_Np,;.,. In some
embodiments of the present disclosure, these normals are computed from the CDM
using the Plane Principal Component method described in Kadambi et al. 2015, cited

above. In more detail, in some embodiments, the normals computed from the CDM,
Ne¢pm,, @nd Nepy ., @re used as guidance to correct high frequency azimuthal

ambiguity as well as refractive error zenith distortion in Ny, , jointly taking into

account multi-view consistency with camera P;,. These corrected normals are also
more robust than otherwise noisy SFP normals in case of fronto-parallel facets as
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well as specularity, as described above. In some embodiments, the flatness prior of
the surface (or other simple geometric shape of the surface) is also used to further
refine the zenith distortion. In particular, estimated normals Np,,;., and Np,,;., should
generally be flat, and therefore the normals from the recovered surface (apart from
areas with local surface irregularities) should be approximately 90 degrees and
parallel to each other in each of the cameras. In some embodiments of the present
disclosure, a voting scheme is used to perform the normals correction.
[00207] A pseudocode description of an algorithm for normals correction based on
voting with a flat surface prior is presented in more detail as follows. As notation:
[00208] N_P_C1 - shape-from-polarization (SFP) normals in Camera1
[00209] N_P_C2 - SFP normals in Camera2
[00210] CDM - Coarse Depth Map
[00211] N_CDM_C1 - Normals in CDM in Cameral image space
[00212] N_CDM_C2 - Normals in CDM in Camera2 image space
[00213] Trans_C2_C1 - Relative pose of Camera2 with respect to Camera1
obtained through extrinsic and intrinsic camera calibration
[00214] Trans_CDM_C1 - Transform used to align CDM with the object in
Cameral image space
[00215] Trans_CDM_C2 - Transform used to align CDM with the object in
Camera2 image space
[00216] (~) - Consistency operator
[00217] obeys_flatness() - operator that checks if the normals being selected
obey a flatness constraint
[00218] The consistency operator (~) may be modeled as a distance metric (e.g., a
cosine similarity based angular distance metric) computed between the normals
being compared for consistency. If the angular distance is less than a threshold, the
normals being compared are consistent with each other, else not (!~). The normals
being compared are transformed into the same coordinate frame (master-camera or
Cameral image space in this case) using the transforms listed above before
applying the consistency operator (~).
[00219] Pseudocode implementation of voting based on flatness prior:
For each pixel normal in N_P_C1:

# Case 1: SFP normals in both cameras are consistent with CDM &
Obey Flatness Constraints (No ambiguity)

if (N_P_C1~N_P_C2)&& (N_P_C1~N_CDM_C1) && (N_P_C2 ~
N_CDM_C2) && obeys_flatness(N_P_C1)==True &&
obeys_flatness(N_P_C2)==True then:
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retain N_P_C1 or Trans_C2_C1 (N_P_C2) depending on which of the
2 camera normals are more aligned (consistent) with the CDM+Flatness Constraint

# Case 2: SFP normals in the 2 cameras are consistent with each
other, but both are inconsistent with CDM normal (HFV Blemish/defect on
surface)

else if (N_P_C1~N_P_C2)&& (N_P_C1!~N_CDM_C1) && (N_P_C2 !~
N_CDM_C2) then:

retain N_P_CA1

# Case 3: SFP normals in only one of the cameras are consistent with
CDM+Flatness Constraints (specularity / fronto parallel issue in the other
camera)

else if (N_P_C1~N_CDM_C1) & (N_P_C2 I~ N_CDM_C2) &&
obeys_flathess(N_P_C1)==True then:

retain N_P_C1 #specularity / fronto parallel facet issue in CameraZ2
else if (N_P_C2 ~N_CDM_C2) & (N_P_C1 !I~N_CDM_C1) &&
obeys_flatness(N_P_C2)==True then:
retain Trans_C2_C1 (N_P_C2) #specularity / fronto parallel facet issue
in Camerat

# Case 4: SFP normals in both cameras are inconsistent with each
other, as well as with CDM
else if (N_P_C1!~N_CDM_C1) & (N_P_C2 I~ N_CDM_C2) &&
(N_P_C1 !~ N_P_C2) then:
retain N_CDM_C1
[00220] In some embodiments, the corrected surface normals Corrected_Np,,.,
and Corrected_Np,;., are used to reconstruct the shape of the surface object. For

example, in some embodiments, a sparse matrix inverse algorithm can be applied
(as described in Kadambi et al. 2015) to estimate the revised depth coordinates of
the surface. These revised depth coordinates have a higher resolution than the
initial depth obtained from standard 3D imaging techniques (stereo, time of flight,
etc.).

[00221] Surface defects and irregularities may then be detected based on
detecting normals that are noisy or erroneous or that otherwise dis-obey pose
consistency across the different camera modules of the stereo polarization camera
system. In some circumstances, these sparse irregularities are especially apparent
in standing out in different proportions across the DOLP images calculated for each
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of the views. In other words, portions of the normals map that violate the assumption
of flatness or otherwise smoothness of the surface may actually be non-smooth
surfaces, thereby enabling the detection of sparse irregularities in a surface that is
assumed to be generally smooth.

[00222] A Multi-Camera Polarization Enhanced System for Real-time Visualization
based Feedback Control

[00223] A number of industrial applications of imaging involve viewing volumes
that are fixed and in controlled lighting conditions. For example, 3D printers have a
fixed size print bed and the viewing volume that corresponds to this print bed is a
controlled environment in terms of illumination, temperature, and humidity.

[00224] Aspects of the present disclosure are directed to a surface profilometry
system configured to capture the surface profiles, layer-by-layer, of the objects being
printed. This allows for the synthesis of a 3D model at the end of the print job. This
may be of great use to an end customer as it allows one to understand the deviation
of the printed object from its design target and thereby capture manufacturing
tolerances on an object by object basis. For manufacturing of mission critical parts
this information assumes even more importance. In addition, the layer-by-layer
surface profile captured by the surface profilometry system allows the 3D printer to
use that information to take corrective action if necessary to improve the print
process and correct for any printed anomalies.

[00225] FIG. 10A is a block diagram of various components of the surface
profilometry system 1000, according to some embodiments of the present
disclosure. FIG. 10B is a schematic diagram illustrating the spatial relation of the
one or more polarization camera modules 10’ of the surface profilometry system
1000 and the print bed 1004, according to some embodiments of the present
disclosure.

[00226] Referring to FIGS. 10A-10B, in some embodiments, the surface
profilometry system 1000 includes a 3D printing system 1002 for printing (e.g.,
additively manufacturing) a physical object 1006 on a print bed 1004, one or more
polarization camera modules 10’ for imaging the surface profiles, layer-by-layer, of
the objects being printed on the print bed 1004, and a processing system 100 for
processing the polarization raw images 18 captured by the one or more polarization
camera modules 10'. As described above with reference to FIGS. 1B-1C, each of
the one or more polarization camera modules 10' is an array (e.g., a 2x2 array) of
polarization cameras, where each polarization camera has a linear polarization filter
of a specific angle (for example, 0°, 45°, 90°, and 135°).

[00227] For each layer of the object 1006 being printed by the 3D printing system
1002, the processing circuit 100 receive polarization raw frames 18 that correspond
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to said printed layer of the object 1006. The processing circuit 100 extracts
polarization cues from the polarization raw frames 18 and, with the aid of a coarse
layer depth map, generates surface-normal images (also referred to as “normal
images”). The processing circuit 100 then generates a corresponding 3D surface
profile of the layer being printed. In some examples, this 3D surface profile may be
used in post-processing analysis to determine deviations of the printed object 1006
from its design target on a layer-by-layer basis, which can be used to improve the
printing process or enhance understanding of printing tolerances. Further, the
processing circuit 100 may provide the 3D surface profile to the printing system 1002
as feedback (e.g., as a control feedback), which may allow the printing system 1002
to take corrective action in real time (e.g., by correcting printed anomalies). The
operations of the printing system 1002, the one or more polarization camera
modules 10', and the processing circuit 100 may be synchronized by virtue of a
synchronization signal supplied by the printing system 1002 or an external controller.
In some examples, once a layer of the object 1006 is printed, the one or more
polarization camera modules 10’ capture the polarization raw images, and the
processing circuit 100 completes the processing of these images to generate a 3D
profile of the layer, before the printing system 1002 prints the subsequent layer (or
before it begins printing the subsequent layer).

[00228] In some examples, in order to capture details of the object 1006 with
sufficient resolution, the surface profilometry system 1000 may be positioned close
enough to the print bed 1004 that the diagonal field of view subtended from the
camera may exceed an angular threshold (e.g., 100°). In such scenarios, using a
single camera with a large field of view lens may present optical distortions or
modulation transfer function (MTF) problems, wherein at large field heights the lens
distortion effects may become so severe that the system MTF degrades significantly.
[00229] Accordingly, in some examples, the active area of the print bed 1004 is
partitioned into two one more regions, each region of which is covered by a different
polarization camera module 10’ in a manner that the diagonal field of view of the
region to be covered does not exceed the angular threshold (e.g., 100°). This may
lead to good control over field distortion and system MTF across all field heights. In
some examples, each adjacent pair of partitions has an overlapping region which
falls within the field of view of the corresponding adjacent polarization camera
modules 10'. The overlapping region may aid in the alignment of images captured
by the adjacent polarization camera modules 10". However, embodiments of the
present disclosure are not limited thereto, and the overlapping region may be
negligibly small or non-existent, and alignment may be performed without the aid of
an overlap region. According to some examples, image alignment may be

-49-



10

15

20

25

30

35

WO 2021/071995 PCT/US2020/054645

performed based on prior calibrations using knowledge of the position and
orientation of each polarization camera modules 10' relative to the print bed 1004.
The prior calibrations may be encoded as an extrinsic matrix of rotation and
translation, which may be stored at the processing system 100.

[00230] In embodiments in which a single polarization camera modules 10’ is used
per partition, the processing circuit 100 may derive the coarse depth map from the
3D CAD layer model used by the 3D printing system to print the layer of the object
1006 being observed. However, embodiments of the present invention are not
limited thereto. According to some embodiments, a pair of polarization camera
modules 10’ (such as the stereo polarization camera system 10" described with
reference to FIG. 1D) may be utilized by the surface profilometry system 1000 to
capture the polarization cues of each partition of the print bed 1004. In such
embodiments, the processing circuit 100 may construct the coarse depth map based
on the parallax shift between the polarization raw frames captured by the pair (e.g.,
by the stereo polarization camera system 10"), as described above with respect to
FIG. 1D, or may derive the coarse depth maps from the 3D CAD layer model.
[00231] FIG. 10C is a flow diagram of a method 1100 for performing surface
profilometry of an object undergoing additive manufacturing based on polarization
raw images, according to some embodiments of the present disclosure.

[00232] In some embodiments, the processing circuit 100 performs the method
1100 for each layer, or for each one of a subset of layers, of the object 1006 being
printed.

[00233] In operation 1102, the processing circuit 100 receives polarization raw
frames captured of a printed layer of the 3D object using one or more polarization
camera modules 10'. The processing circuit 100 then extracts polarization feature
maps or polarization images from polarization raw frames, in operation 1104. In so
doing, the processing circuit 100 computes, based on the polarization images,
degree and angle of linear polarization (DOLP p and AOLP ¢) from Stokes vector
formulation for each of the one or more cameras polarization camera modules 10’
(similarly to operation 920 of FIG. 9B).

[00234] In operation 1106, the processing circuit 100 obtains the coarse layer
depth map corresponding to the layer of the object 1006 being printed. In some
examples, the coarse layer depth map may be the CAD layer model provided by the
printing system 1002. In examples in which the surface profilometry system 1000
utilizes a pair of polarization camera modules 10’ (e.g., the stereo polarization
camera system 10"), rather than a single polarization camera module 10, for
capturing the polarization cues of each partition of the print bed 1004, the processing
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circuit 100 may construct the coarse depth map based on the parallax shift between
the polarization raw frames captured by the pair.

[00235] In operation 1108, the processing circuit 100 generates surface-normal
images based on the coarse layer depth map and the polarization images. As
described above, in some embodiments, the processing circuit 100 calculates
surface normals (e.g., Zenith 8, and Azimuth 8,) from the polarization images by
using shape from polarization (SFP) technique as discussed above with respect to
equations (2), (3), (4), and (5) for each of the one or more polarization camera
modules 10'. The processing circuit 100 then determines the pose of the layer being
printed with respect to each of the one or more polarization camera modules 10’
using Perspective-N-Point (PnP), and transforms the coarse layer depth map into the
camera space(s) corresponding to the one or more polarization camera modules 10’
of the surface profilometry system 1000 (as, e.g., described with reference to
operation 840 of FIG. 8B). The transformed coarse layer depth map(s)
corresponding to the one or more camera modules 10" are used by the processing
circuit 100 as guidance constraints to correct high frequency azimuthal mambiguity
as well as the low frequency scaling error in zenith due to refractive distortion, and
thus generate the corresponding one or more corrected surface-normal images,
which may be robust to noisy SFP normals in cases of fronto-parallel facets and
specularity. In embodiments in which the surface profilometry system 1000
constructs the coarse depth map based on the parallax shift between the polarization
raw frames captured by a pair of polarization camera modules 10’ (e.g., the stereo
polarization camera system 10"), may refine the coarse layer depth model and the
polarization cues (e.g., DOLP p and AOLP ¢) using operations 450-490 described
with reference to FIG. 4.

[00236] In operation 1110, the processing circuit 100 generates a 3D
reconstruction of layer being printed based on the corrected surface-normal
image(s). As described above, the corrected surface normal(s) may be
(independently) integrated over a sample space (Q) to recover the shape of the
entire surface of the printed layer or a portion thereof within the corresponding
partition for each camera module 10'. In examples in which the print bed 1004 is
divided into two or more partitions with corresponding two or more camera modules
10, the recovered shape of each partition may be aligned and merged with the
recovered shape(s) of the adjacent partition(s) to arrive at the 3D reconstruction of
the entire layer being printed. In some examples, the alignment and merging may be
performed at the stage of the corrected surface-normal images, and the resulting
merged surface-normal image may correspond to the entire layer being printed. This
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3D reconstruction, according to some embodiments, may have a higher resolution
than what can be obtained by 3D imaging techniques of the related art.

[00237] The surface recovered from such integration is expected to match the
shape constrained by the CAD layer model, and differences between the surface
recovered from integration and the CAD layer model may indicate defective portions
of the printed layer.

[00238] Long Range 3D face Scans

[00239] Face recognition is an important biometric recognition process that
enables authentication of the user in numerous security and surveillance
applications. Among existing authentication methods, 3D face scans are potentially
more robust with lower false acceptance rates (FAR) and false rejection rates (FRR).
As such, there has been growing interest in the field of 3D face authentication.
However, 3D face scans using traditional means may not be easy to implement
robustly. For instance, in mobile systems, active illumination is used to project a
pattern on a user’s face and then the projected pattern is sensed to retrieve the
depth of key feature points. This technology is widely used but has a number of
problems, which include: the added cost and power consumption resulting from
using active illumination, the limited range of active illumination, as well as the
inability to work reliably in all environmental conditions (e.g., lighting conditions).
[00240] Some aspects of embodiments of the present disclosure relate to a 3D
imaging system that leverages light polarization and neural networks to 3D scan of a
face.

[00241] FIG. 11A illustrates the 3D imaging system 1100, according to some
embodiments of the present disclosure.

[00242] In some embodiments, the 3D imaging system 1100 includes the
polarization camera module 10, the feature extractor 700, and a facial reconstruction
neural network 1104. The polarization camera module 10', which is placed at a
distance from the observed face 1102, images the face 1102 and produces a
corresponding polarization raw image 18'. The distance between the observed face
1102 and the polarization camera module 10’ is not particularly limited and may be
any suitable distance as long as the ability to capture the face 1102 is not limited by
the optics of the polarization camera module 10’. The feature extractor 700
computes the feature maps 50, which include surface normals (e.g., estimated
surface normals) 58, based on the polarization raw image 18’ via the process
described above with respect to FIGS. 7A-7B. According to some embodiments, the
facial reconstruction neural network 1104 generates a detailed 3D reconstruction
1106 of the observed face 1102 based on (e.g., based solely on) the feature maps
50 (e.g., the surface normals 58). In some embodiments, the facial reconstruction
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neural network 1104 is trained to compute corrected surface normals
(Corrected_Np,,., and Corrected_Np,,., as described above with respect to FIGS.
8B and 9B, for example) based on the estimated surface normals 58, and to
generate the 3D reconstruction 1106 of the face 1102 based on the corrected
surface normals.

[00243] According to some embodiments, the facial reconstruction neural network
1104, which may be a polarized CNN, is trained to correlate a wide variety of feature
maps (e.g., surface normals) with detailed 3D reconstructions of faces from which
the feature maps were generated.

[00244] Accordingly, aspects of some embodiments of the present disclosure are
related to a 3D imaging system capable of generating a plurality of
enhanced/detailed 3D facial reconstructions based on faces captured by one or
more polarization camera module 10'.

[00245] FIG. 11B illustrates the 3D imaging system 1110, according to some
embodiments of the present disclosure.

[00246] In some embodiments, the 3D imaging system 1110 includes one or more
polarization camera modules 10’ for capturing one or more polarization raw
frames/images 18, and a processing system 100 for generating a 3D reconstruction
1106' of the observed face 1102’ based on the one or more polarization raw images
18.

[00247] In some embodiments, the one or more polarization camera modules 10’
include a least first and second polarization camera modules 10-1" and 10-2' (such
as the stereo polarization camera system 10"), which capture polarization raw
frames 18 from at least two viewpoints, and the processing system 100 generates its
own coarse depth map based on the polarization raw frames 18. In some
embodiments, the processing system 100 computes an initial estimate of DOLP p
and AOLP ¢ for each of the at least two viewpoints, computes estimated surface
normals from the initial estimate of DOLP p and AOLP ¢ for each of the at least two
view points, and estimates the face geometry based on the polarization raw frames
18 (as in, e.g., operations 410 and 430 of FIG. 4). Then for each view point, the
processing system 100 may proceed to refine this initial coarse face model from the
perspective of that view point and the corresponding polarization cues to arrive at
refined/corrected polarization cues (e.g., in accordance with the operations 450, 470,
and 490 of FIG. 4). The processing system 100 then computes refined/corrected
surface normals from the polarization cues for each of the at least two view points.
In some embodiments, the processing system 100 independently integrates the
surface normals from each view point over sample space (Q) to synthesize a 3D
reconstruction of the face 1102' from that perspective.
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[00248] Here, each pair of estimated surface normals and the corresponding 3D
reconstruction associated with a particular view point form one set of training data for
the 3D imaging system 1100 of FIG. 11A. By repeating this process for different
faces (e.g., a large number of faces), sufficient training data may be collected to train
the facial reconstruction neural network 1104 to generate 3D facial reconstructions
based on estimated surface normals from a single polarization camera module 10'.
[00249] While the 3D imaging system 1110 may generate the initial coarse depth
map of the observed face 1102' based on triangulation (i.e., the parallax shift
between two or more polarization camera modules 10'), embodiments of the present
invention are not limited thereto.

[00250] For instance, in some embodiments, the 3D imaging system 1110 further
includes a coarse depth map generator 1112 that may generate the initial coarse
face model based on a monocular 2D color image (e.g., RGB or RGBG image) of the
observed face 1102'. This 2D color image may be captured by one of the
polarization camera modules 10’ that is capable of capturing color information in
addition to polarization data, or may be captured by a separate conventional color
camera (e.g., RGB camera) that has a field of view similar to that of the one or more
polarization camera modules 10'. The coarse depth map generator 1112 may utilize
an algorithm for depth estimation, or a neural network trained to estimate depth
information, based on a 2-dimensional image (e.g., using the inverse square law),
and thus obtains an initial coarse depth map or model of the observed face 1102'. In
some other embodiments, 3D imaging system 1110 may further include a depth
sensor configured to measure depth from focus/defocus, motion, etc., and the
coarse depth map generator 1112 may generate the initial coarse face model based
on input from the depth sensor . According to some further embodiments, the
coarse depth map generator 1112 may provide a model of a generic human face
(e.g., an average human face or a 3D morphable model (3DMM) of a face) to the
processing system 100 to be used as the initial coarse face model that is then
refined as described above. In such embodiments, the processing system 100 may
align the model of the generic face provided by the coarse depth map generator
1112 to the image spaces corresponding to the viewpoint(s) of the one or more
polarization camera modules 10', as described above with reference to operation
840 of FIG. 8B.

[00251] Slope-Net: Using Surface normal information for creation of object
signatures

[00252] and face signatures.

[00253] Object and face understanding are important problems to solve. The
applications of object recognition and understanding are numerous, such as fashion
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design, product recognition, sorting, and more. Face emotion detection and face
recognition may be important for applications such as driver monitoring, user
authentication (e.g., in the areas of automatic payments, security, etc.), general
surveillance, and the like. Both of object recognition and facial understanding rely on
being able to take pixels from an image, and converting them into a signature, or
representation, that doesn’t change from image to image. The field of representation
learning in machine learning is currently dedicated to the task of predicting complex
inputs onto low dimensional manifolds. Generally, the lower the dimension of the
data manifold, the easier it is to learn these representations. Standard RGB images,
which do not contain surface normal information, may include a great deal of scene-
specific information about texture, lighting, etc. The face/object recognition
algorithms of the related art learn this manifold through learning an embedding
space, i.e., a relatively low-dimensional space into which each image (which is a
high-dimensional vector) is translated to a low dimensional vector. This training
process may be very slow and prone to divergence.

[00254] In contrast, an image with just the surface normals does not contain any
texture or lighting information, which lowers the complexity of the manifold that must
be learnt. This may allow for quicker and more accurate learning.

[00255] Some aspects of embodiments of the present disclosure relate to
generating surface-normal images of various objects and/or faces and compiling one
or more libraries of such surface-normal images for later processing. According to
some embodiments, in the surface-normal image, the red, green, and blue values of
each of the pixels encode surface normal information at that pixel. In some
embodiments, the first, second, and third values of the RGB values for a pixel
respectively represent the x-axis component, the y-axis component, and the z-axis
component of the surface normal at that pixel. In some examples, the first, second,
and third values may be red, green, and blue values, respectively; however,
embodiments of the present invention are not limited thereto, and the first, second,
and third values may be blue, red, and green values, respectively, or any other
ordering of these values. To achieve consistency across the library of surface-
normal images and to enable ease of use in post-processing, the x-,y-, and z-axis
components of the surface normals are mapped to the same ones of the RGB values
in all surface-normal images of the library (this may be referred to as mapping
consistency).

[00256] Each surface-normal image within the library may be associated with a
label or tag that identifies and/or characterizes the object captured by the image.
The surface-normal images within a library may all be associated with a particular
class of objects (e.g., vehicles, bikes, animals, traffic lights, pedestrians, faces, etc.).
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For example, a library may contain surface-normal image of various types of
vehicles, such as trucks, sport utility vehicles (SUVs), vans, sedans, etc, and each
surface-normal image within this library may be labeled to identify the vehicle type.
In another example, a library may include surface-normal image of various human
facial expressions, each being labeled with the associated captured expression (e.g.,
laugh, smile, frown, surprise, disgust, etc.).

[00257] The labeling of the surface-normal images may be done manually (e.g.,
labeled by a human) or may be performed by a machine (e.g., a computer) when
synthesized images are used to generate the surface-normal images.

[00258] Each surface-normal image may be generated using the techniques
described above. For example, an object may be imaged via a polarization camera
module 10’ or the stereo polarization camera system 10" and the feature extractor
700 may generate the corresponding surface-normal image, as described above with
respect to FIGS. 6A, 7A and 7B. In some embodiments, the surface normal for each
pixel are encoded using Cartesian coordinates (e.g., three-dimensional vectors
indicating a direction of the surface normal) into the RGB values.

[00259] According to some embodiments, the one or more libraries are used to
train different machine learning algorithms (e.g., predictor/classifiers). In some
examples, a library of surface-normal images corresponding to human faces may be
used to train a classifier (e.g., facial expression classifier) to identify different
emotional states. In so doing, a classifier, such as the predictor 710, is trained to
correlate the facial normal images with the corresponding labels, which may indicate
the emotional state captured by the image. This classifier may then be used to
identify emotional states of a captured face based solely on the surface normals of
an observed face. Similarly, the classifier may be trained to recognize intent, gaze,
physical wellness, gait, and/or the like based on normal images of human faces or
human bodies.

[00260] In other examples, the classifier (e.g., the predictor 710) may be trained to
identify different types of vehicles, such as trucks, SUVs, vans, sedans, etc., by
using surface-normal images from a library containing labeled normal images of
various vehicle types.

[00261] FIG. 12 is a block diagram of a predictor 710, according to one
embodiment of the present invention.

[00262] According to some embodiments, the predictor 710 includes a trained
classifier that classifies the input surface-normal image 50’ input into one or more
categories. For example, the trained classifier may compute a characterization
output 20 that includes a vector (e.g., a probability vector) having a length equal to
the number of different possible image characteristics (e.g., facial expressions or
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vehicle types) that the classifier is trained to detect, where each value in the vector
corresponds to a confidence that the input surface-normal image 50’ depicts the
corresponding image characteristic. In some embodiments, the predictor 710
includes a plurality of statistical models (e.g., 712, 714 ... 716, etc.) associated with
different types of image characteristics, and each model provides a confidence level
that the input surface-normal image 50’ matches the associated image characteristic.
For example, when the image characteristics are facial expressions, each of the
models of the predictor 710 may be associated with corresponding one of laugh,
smile, frown, surprise, etc, and the predictor 710 may output a vector, where each
element in the vector is a confidence/probability value corresponding to one of a
laugh, smile, frown, surprise, etc.

[00263] The classifier may be trained to input surface-normal images 50’ of a fixed
size and a particular mapping consistency. For example, the first, second, and third
values of the RGB values for a pixel of the surface-normal image 50’ respectively
represent the x-axis component, the y-axis component, and the z-axis component of
the surface normal at that pixel. The classifier may include, for example, a support
vector machine, a deep neural network (e.g., a deep fully connected neural network),
and the like.

[00264] In embodiments in which the classifier utilizes a neural network such as a
convolutional neural network (e.g., a Polarization Mask R-CNN), the training process
may include updating the weights of connections between neurons of various layers
of the neural network in accordance with a backpropagation algorithm and the use of
gradient descent to iteratively adjust the weights to minimize an error (or loss)
between the output of the neural network and the labeled training data.

[00265] The operations performed by the constituent components of the surface
profilometry system and the various 3D imaging systems of the present disclosure
may be performed by a “processing circuit” or “processor’ that may include any
combination of hardware, firmware, and software, employed to process data or digital
signals. Processing circuit hardware may include, for example, application specific
integrated circuits (ASICs), general purpose or special purpose central processing
units (CPUs), digital signal processors (DSPs), graphics processing units (GPUs), and
programmable logic devices such as field programmable gate arrays (FPGAs). In a
processing circuit, as used herein, each function is performed either by hardware
configured, i.e., hard-wired, to perform that function, or by more general-purpose
hardware, such as a CPU, configured to execute instructions stored in a non-transitory
storage medium. A processing circuit may be fabricated on a single printed wiring
board (PWB) or distributed over several interconnected PWBs. A processing circuit
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may contain other processing circuits; for example, a processing circuit may include
two processing circuits, an FPGA and a CPU, interconnected on a PWB.

[00266] It will be understood that, although the terms "first", "second", "third", etc.,
may be used herein to describe various elements, components, regions, layers,
and/or sections, these elements, components, regions, layers, and/or sections
should not be limited by these terms. These terms are used to distinguish one
element, component, region, layer, or section from another element, component,
region, layer, or section. Thus, a first element, component, region, layer, or section
discussed below could be termed a second element, component, region, layer, or
section, without departing from the scope of the inventive concept.

[00267] The terminology used herein is for the purpose of describing particular
embodiments and is not intended to be limiting of the inventive concept. As used
herein, the singular forms "a" and "an" are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be further understood that
the terms "include", "including"”, "comprises", and/or "comprising", when used in this
specification, specify the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements, components, and/or
groups thereof. As used herein, the term "and/or" includes any and all combinations
of one or more of the associated listed items. Further, the use of "may" when
describing embodiments of the inventive concept refers to "one or more
embodiments of the inventive concept”. Also, the term "exemplary" is intended to
refer to an example or illustration.

[00268] As used herein, the terms "use", "using", and "used" may be considered
synonymous with the terms "utilize", "utilizing", and "utilized", respectively.

[00269] Further, the use of “may” when describing embodiments of the inventive
concept refers to “one or more embodiments of the inventive concept.” Also, the
term “exemplary” is intended to refer to an example or illustration.

[00270] While the present invention has been described in connection with certain
exemplary embodiments, it is to be understood that the invention is not limited to the
disclosed embodiments, but, on the contrary, is intended to cover various
modifications and equivalent arrangements included within the spirit and scope of
the appended claims, and equivalents thereof.
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WHAT IS CLAIMED IS:

1. A method of performing surface profilometry, the method comprising:

receiving one or more polarization raw frames of a printed layer of a physical
object undergoing additive manufacturing, the one or more polarization raw frames
being captured at different polarizations by one or more polarization cameras;

extracting one or more polarization feature maps in one or more polarization
representation spaces from the one or more polarization raw frames;

obtaining a coarse layer depth map of the printed layer,;

generating one or more surface-normal images based on the coarse layer
depth map and the one or more polarization feature maps; and

generating a 3D reconstruction of the printed layer based on the one or more
surface-normal images.

2. The method of claim 1, wherein the one or more polarization feature
maps in the one or more polarization representation spaces comprise:

a degree of linear polarization (DOLP) image in a DOLP representation
space; and

an angle of linear polarization (AOLP) image in an AOLP representation
space.

3. The method of claim 1, wherein the one or more polarization cameras
comprise:

a first polarization camera configured to capture a first partition of a print bed
on which the printed layer of the physical object resides; and

a second polarization camera at a distance from the first polarization camera
and configured to capture a second partition of the print bed.

4. The method of claim 3, wherein the obtaining the coarse layer depth
map of the printed layer comprises:

constructing the coarse layer depth map based on a parallax shift between
polarization raw frames captured by the first and second polarization cameras.

. The method of claim 1, wherein the obtaining the coarse layer depth
map of the printed layer comprises:

receiving a computer-aided-design (CAD) layer model corresponding to the
printed layer of the physical object.
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6. The method of claim 1, wherein the generating the one or more
surface-normal images comprises:

determining a pose of the printed layer with respect to each of the one or
more polarization cameras;

transforming the coarse layer depth map into one or more camera spaces
corresponding to the one or more polarization cameras to generate one or more
transformed coarse layer depth maps; and

correcting the one or more surface-normal images based on the one or more
transformed coarse layer depth maps.

7. The method of claim 1, wherein the generating the 3D reconstruction of
the printed layer comprises:

integrating surface normals of the one or more surface-normal images over a
sample space to determine a shape of a surface of the printed layer.

8. A surface profilometry system comprising:
one or more polarization cameras comprising a polarizing filter, the one or
more polarization cameras being configured to capture polarization raw frames at
different polarizations; and
a processing system comprising a processor and memory storing instructions
that, when executed by the processor, cause the processor to perform:
receiving one or more polarization raw frames of a printed layer of a
physical object undergoing additive manufacturing, the one or more polarization raw
frames being captured at different polarizations by the one or more polarization
cameras;
extracting one or more polarization feature maps in one or more
polarization representation spaces from the one or more polarization raw frames;
obtaining a coarse layer depth map of the printed layer,;
generating one or more surface-normal images based on the coarse
layer depth map and the one or more polarization feature maps; and
generating a 3D reconstruction of the printed layer based on the one or
more surface-normal images.

9. The surface profilometry system of claim 8, wherein the one or more
polarization feature maps in the one or more polarization representation spaces
comprise:

a degree of linear polarization (DOLP) image in a DOLP representation
space; and
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an angle of linear polarization (AOLP) image in an AOLP representation
space.

10.  The surface profilometry system of claim 8, wherein the one or more
polarization cameras comprise:

a first polarization camera configured to capture a first partition of a print bed
on which the printed layer of the physical object resides; and

a second polarization camera at a distance from the first polarization camera
and configured to capture a second partition of the print bed.

11.  The surface profilometry system of claim 9, wherein the obtaining the
coarse layer depth map of the printed layer comprises:

constructing the coarse layer depth map based on a parallax shift between
polarization raw frames captured by the first and second polarization cameras.

12.  The surface profilometry system of claim 8, wherein the obtaining the
coarse layer depth map of the printed layer comprises:

receiving a computer-aided-design (CAD) layer model corresponding to the
printed layer of the physical object.

13.  The surface profilometry system of claim 8, wherein the generating the
one or more surface-normal images comprises:

determining a pose of the printed layer with respect to each of the one or
more polarization cameras;

transforming the coarse layer depth map into one or more camera spaces
corresponding to the one or more polarization cameras to generate one or more
transformed coarse layer depth maps; and

correcting the one or more surface-normal images based on the one or more
transformed coarse layer depth maps.

14.  The surface profilometry system of claim 8, wherein the generating the
3D reconstruction of the printed layer comprises:

integrating surface normals of the one or more surface-normal images over a
sample space to determine a shape of a surface of the printed layer.

15.  The surface profilometry system of claim 8, wherein the memory further
stores instructions that, when executed by the processor, cause the processor to
further perform:
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providing the 3D reconstruction of the printed layer to a 3D printing system as
a control feedback,

wherein the 3D printing system being configured to additively manufacture the
physical object layer by layer.

16.  The surface profilometry system of claim 15, wherein operations of the
one or more polarization cameras, the processing system, and the 3D printing
system are synchronized via a synchronization signal.

17. A method of capturing a 3D image of a face, the method comprising:

receiving one or more polarization raw frames of the face, the one or more
polarization raw frames being captured at different polarizations by a polarization
camera at a distance from the face;

extracting one or more polarization feature maps in one or more polarization
representation spaces from the one or more polarization raw frames; and

generating a 3D reconstruction of the face based on the one or more
polarization feature maps via a facial reconstruction neural network.

18. The method of claim 17, wherein the one or more polarization feature
maps in the one or more polarization representation spaces comprise:

a degree of linear polarization (DOLP) image in a DOLP representation
space; and

an angle of linear polarization (AOLP) image in an AOLP representation
space.

19. The method of claim 17, wherein the one or more polarization feature
maps comprise estimated surface normals, and
wherein the extracting the one or more polarization feature maps comprises:
generating the estimated surface normals based on the one or more
polarization raw frames.

20. The method of claim 19, wherein the facial reconstruction neural network
is trained to compute corrected surface normals based on the estimated surface
normals, and to generate the 3D reconstruction of the face based on the corrected
surface normals.

21. The method of claim 17, wherein the facial reconstruction neural network
comprises a trained polarized convolutional neural network (CNN).
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22. A 3D imaging system for capturing a 3D image of a face, the 3D
imaging system comprising:
a polarization camera comprising a polarizing filter and configured to capture
one or more polarization raw frames at different polarizations; and
a processing system comprising a processor and memory storing instructions
that, when executed by the processor, cause the processor to perform:
receiving one or more polarization raw frames of the face, the one or
more polarization raw frames being captured at different polarizations by the
polarization camera;
extracting one or more polarization feature maps in one or more
polarization representation spaces from the one or more polarization raw frames;
and
generating a 3D reconstruction of the face based on the one or more
polarization feature maps via a facial reconstruction neural network.

23.  The 3D imaging system of claim 22, wherein the one or more
polarization feature maps in the one or more polarization representation spaces
comprise:

a degree of linear polarization (DOLP) image in a DOLP representation
space; and

an angle of linear polarization (AOLP) image in an AOLP representation
space.

24. The 3D imaging system of claim 22, wherein the one or more
polarization feature maps comprise estimated surface normals, and
wherein the extracting the one or more polarization feature maps comprises:
generating the estimated surface normals based on the one or more
polarization raw frames.

25. The 3D imaging system of claim 8, wherein the facial reconstruction
neural network is trained to compute corrected surface normals based on the
estimated surface normals, and to generate the 3D reconstruction of the face based
on the corrected surface normals.

26. The 3D imaging system of claim 22, wherein the facial reconstruction
neural network comprises a trained polarized convolutional neural network (CNN).
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27. A method of capturing a 3D image of a face, the method comprising:

receiving one or more polarization raw frames of the face, the one or more
polarization raw frames being captured at different polarizations by a polarization
camera;

extracting estimated polarization cues from the one or more polarization raw
frames;

generating estimated surface normals based on the estimated polarization
cues

generating an initial coarse depth map of the face;

refining the estimated polarization cues and the initial coarse depth map to
generate refined polarization cues and a refined depth map;

generating corrected surface normals based on the refined polarization cues
and the refined depth map; and

generating a 3D reconstruction of the face based on the corrected surface
normals.

28. The method of claim 27, wherein the generating the initial coarse depth
map of the face comprises:

receiving a 2D color image of the face; and

computing the initial coarse depth map based on the 2D color image of the
face.

29. The method of claim 27, wherein the generating the initial coarse depth
map of the face comprises:

receiving a 3D model of a generic human face; and

generating the initial coarse depth map based on the 3D model of the generic
human face.

30.  The method of claim 27, further comprising:
providing the estimated surface normals and the corrected surface normals to a
facial reconstruction neural network as a set of training data.

31. A method of computing a prediction, the method comprising:

receiving a surface-normal image corresponding to an object, the surface-
normal image comprising surface-normal information for each pixel of the image; and

computing the prediction based on the surface-normal image.
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32. The method of claim 31, wherein a red color value, a green color value,
and blue color values of a pixel of the surface normal image encode an x-axis
component, a y-axis component, and a z-axis component of a surface normal of the
object at the pixel.

33.  The method of claim 32, wherein the red, green, and blue color values
of the pixel are respectively the x-axis component, the y-axis component, and the z-
axis component of the surface normal of the object at the pixel.

34. The method of claim 31, wherein the prediction is a probability vector,

wherein the computing the prediction comprises supplying the surface-normal
image to a trained classifier, and

wherein the trained classifier is configured to identify image characteristics of
the surface-normal image and to output the probability vector, each element of the
probability vector being a probability value corresponding to one of possible image
characteristics.

35. The method of claim 34, wherein the trained classifier comprises a
plurality of statistical models corresponding to the possible image characteristics.

36. The method of claim 34, wherein the image characteristics comprise
facial expressions or object types.

37. The method of claim 31, wherein the object comprises a vehicle, a
face, or a body.
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Continued from Box IIf -- Observations where unity of invention is lacking

The inventions listed as Groups I-lIl do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features:
Group | includes special technical features of surface prolimetry applied to a physical object undergoing additive manufacturing, not
included in the other groups.

Group Il includes special technical features relating to of capturing a 3D image of a face, not included in the other groups.

Group Il includes the special technical feature of computing a prediction based on a the surface-normal image of an object, not included
in the other groups.

Common Technical Features:

The only technical features shared by Groups I-ill that would otherwise unify the groups, is that Groups I-11l all involve processing
surface-normal images and Groups | and |l both involve one or more polarization cameras capturing raw image frames and processing
image data based on a coarse layer depth map.

However, these shared technical features do not represent a contribution ovér prior art, because the shared technical features are
disclosed by US 2016/0261844 A1 to Massachusetts Institute of Technology (hereinafter 'M.L.T.").

M.L.T. discloses processing surface-normal images and one or more polarization cameras (102) capturing raw image frames and
processing image data based on a coarse layer depth map from depth camera (101) (Fig 1A, abstract, para [0058)).

As the shared technical features were known in the art at the time of the invention, they cannot be considered special technical features
that would otherwise unify the groups.

Therefore, Groups |-l lack unity under PCT Rule 13.
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