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SYSTEMS AND METHODS FOR IMPROVING LOW DOSE VOLUMETRIC 

CONTRAST-ENHANCED MRI 

CROSS-REFERENCE TO RELATED APPLICATION 

[0001] This application claims priority to U.S. Provisional Application No. 62/905,689 filed on 

September 25, 2019, the content of which is incorporated herein in its entirety 

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH 

[0002] This invention was made with government support under Grant No. R44 EB027560 

awarded by the National Institutes of Health. The government has certain rights in the invention.  

BACKGROUND 

[0003] Contrast agents such as Gadolinium-based contrast agents (GBCAs) have been used in 

approximately one third of Magnetic Resonance imaging (MRI) exams worldwide to create 

indispensable image contrast for a wide range of clinical applications, but pose health risks for 

patients with renal failure and are known to deposit within the brain and body for patients with 

normal kidney function. Recently, deep learning technique has been used to reduce GBCA dose 

in volumetric contrast-enhanced MRI, but challenges in generalizability remain due to variability 

in scanner hardware and clinical protocols within and across sites.  

SUMMARY 

[0004] The present disclosure provides improved imaging systems and methods that can address 

various drawbacks of conventional systems, including those recognized above. Methods and 

systems as described herein can improve image quality with reduced dose level of contrast agent 

such as Gadolinium-Based Contrast Agents (GBCAs). In particular, a generalized deep learning 

(DL) model is utilized to predict contrast-enhanced images with contrast dose reduction across 

different sites and scanners.  

[0005] Traditionally, contrast agent such as Gadolinium-Based Contrast Agents (GBCAs) and 

others has been used in a wide range of contrast-enhanced medical imaging such as Magnetic 

Resonance Imaging (MRI), or nuclear magnetic resonance imaging, for examining pathology, 

predicting prognosis and evaluating treatment response for gliomas, multiple sclerosis (MS), 

Alzheimer's disease (AD), and the like. GBCAs are also pervasive in other clinical applications 

such as evaluation of coronary artery disease (CAD), characterization of lung masses, diagnosis 

of hepatocellular carcinoma (HCC), imaging of spinal metastatic disease. In 2006, an association 

between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) in 
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patients with impaired renal function was identified. Other acute side-effects of GBCAs in 

subjects with normal renal function include hypersensitivity, nausea, and chest pain.  

Subsequently, in 2017, U.S. FDA issued warnings and safety measures related to Gadolinium 

retention, while the regulatory bodies of Canada, Australia and other countries issued similar 

warnings. In addition to safety advisories, the European Medicines Agency has suspended the 

use of linear GBCAs. Gadolinium retention has not only been reported in the CNS tissue in the 

form of hyper-intensities on non-enhanced TIW MRI, but also in other parts of the body.  

Environmental sustainability concerns are also being raised as gadolinium is an emerging water 

pollutant. Other disadvantages of contrast-enhanced scans include patient inconvenience during 

intravenous injection, prolonged scan time, and an overall increase in imaging costs. Even though 

GBCAs have a good pharmacovigilance safety profile, there is a clear need for dose reduction 

due to the abovementioned safety issues and concerns. In particular, it is desirable to provide a 

safe imaging technique where the contrast dose can be reduced regardless the properties or type 

of the contrast materials without comprising the imaging quality or introducing additional safety 

issues.  

[0006] Recent developments in Deep learning (DL) or machine learning (ML) techniques enable 

it as a potential alternative to the use of contrast dose. DL/ML has found a plethora of 

applications in medical imaging which includes denoising, super-resolution and modality 

conversion of, e.g., MRI to CT, T1 to T2. DL model has the potential to be used for generating 

contrast-enhanced images using a small fraction of the standard dose and the pre-contrast images.  

Although such method may be able to reduce dose levels while maintaining non-inferior image 

quality, the DL enhanced images often suffer from artifacts such as streaks on a reformat image 

(e.g., reformatted volumetric image or reconstructed 3D image viewed from different planes, 

orientations or angles).  

[0007] There exists a need for providing a robust DL model that is generalized for (sometimes 

agnostic to) diverse clinical settings such as different scanner vendors, scan protocols, patient 

demographics, and clinical indications. Such a model is also desired to produce artifact-free 

images and support a variety of clinical use cases such as multiplanar reformat (MPR) for 

oblique visualizations of 3D images, thus enabling the model to be deployed and integrated 

within a standard clinical workflow.  

[0008] Systems and methods described herein can address the abovementioned drawbacks of the 

conventional solutions. In particular, the provided systems and methods may involve a DL model 

including a unique set of algorithms and methods that improve the model robustness and 
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generalizability. The algorithms and methods may include, for example, multi-planar reconstruc

tion, 2.5D deep learning model, enhancement-weighted LI, perceptual and adversarial losses 

algorithms and methods, as well as pre-processing algorithms that are used to pre-process the 

input pre-contrast and low-dose images prior to the model predicting the corresponding contrast

enhanced images.  

[0009] In an aspect, a method is provided for computer-implemented method for improving 

image quality with reduced dose of contrast agent. The method comprises: acquiring, using a 

medical imaging apparatus, a medical image of a subject with a reduced dose of contrast agent; 

reformatting the medical image of the subject in multiple orientations to generate a plurality of 

reformat medical images; and applying a deep network model to the plurality of reformat medical 

images to generate a predicted medical image with improved quality.  

[0010] In a related yet separated aspect, a non-transitory computer-readable storage medium 

including instructions that, when executed by one or more processors, cause the one or more 

processors to perform operations. The operations comprise: acquiring, using a medical imaging 

apparatus, a medical image of a subject with a reduced dose of contrast agent; reformatting the 

medical image of the subject in multiple orientations to generate a plurality of reformat medical 

images; and applying a deep network model to the plurality of reformat medical images to 

generate a predicted medical image with improved quality.  

[0011] In some embodiments, the medical imaging apparatus is a transforming magnetic 

resonance (MR) device. In some embodiments, the medical image is a 2.5D volumetric image.  

[0012] In some embodiments, the multiple orientations include at least one orientation that is not 

in the direction of the scanning plane. In some embodiments, the method or the operations further 

comprise rotating each of the plurality of reformat medical images into various angles to generate 

a plurality of rotated reformat medical images. In some cases, the deep network model is applied 

to the plurality of rotated reformat medical images to output a plurality of predicted images. The 

plurality of predicted images as an output of the deep network model are rotated to be aligned to 

a scanning plane. In some instances, the method or the operations further comprise averaging the 

plurality of predicted images after rotated to be aligned to the scanning plane to generate the 

predicted medical image with improved quality. In some embodiments, the predicted medical 

image with improved quality is obtained by averaging a plurality of predicted medical images 

corresponding to the plurality of the reformat medical images.  

[0013] Additionally, methods and systems of the present disclosure may be applied to existing 

systems without a need of a change of the underlying infrastructure. In particular, the provided 
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methods and systems may reduce the dose level of contrast agent at no additional cost of 

hardware component and can be deployed regardless of the configuration or specification of the 

underlying infrastructure.  

[0014] Additional aspects and advantages of the present disclosure will become readily apparent 

to those skilled in this art from the following detailed description, wherein only illustrative 

embodiments of the present disclosure are shown and described. As will be realized, the present 

disclosure is capable of other and different embodiments, and its several details are capable of 

modifications in various obvious respects, all without departing from the disclosure.  

Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as 

restrictive 

INCORPORATION BY REFERENCE 

[0015] All publications, patents, and patent applications mentioned in this specification are 

herein incorporated by reference to the same extent as if each individual publication, patent, or 

patent application was specifically and individually indicated to be incorporated by reference. To 

the extent publications and patents or patent applications incorporated by reference contradict the 

disclosure contained in the specification, the specification is intended to supersede and/or take 

precedence over any such contradictory material.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0016] The novel features of the invention are set forth with particularity in the appended claims.  

A better understanding of the features and advantages of the present invention will be obtained 

by reference to the following detailed description that sets forth illustrative embodiments, in 

which the principles of the invention are utilized, and the accompanying drawings (also "Figure" 

and "FIG." herein), of which: 

[0017] FIG. 1 shows an example of a workflow for processing and reconstructing magnetic 

resonance imaging (MRI) volumetric image data.  

[0018] FIG. 2 shows an example of data collected from the two different sites.  

[0019] FIG. 3 shows the analytic results of a study.  

[0020] FIG. 4 schematically illustrates a magnetic resonance imaging (MRI) system in which an 

imaging enhancer of the presenting disclosure may be implemented.  

[0021] FIG. 5 shows an example of a scan procedure or scanning protocol utilized for 

collecting the experiment data in the study.  

[0022] FIG. 6 illustrates an example of a reformat MPR reconstructed image that have a quality 

improved over the reformat MRI image generated using the conventional method.  
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[0023] FIG. 7 shows an example of a pre-processing method, in accordance with some 

embodiments herein.  

[0024] FIG. 8 shows an example of a U-Net style encoder-decoder network architecture, in 

accordance with some embodiments herein.  

[0025] FIG. 9 shows an example of the discriminator, in accordance with some embodiments 

herein.  

[0026] FIG. 10 shows an experiment including data distribution and heterogeneity of a study 

dataset from three institutions, three different manufacturers, and eight different scanner models.  

[0027] FIG. 11 schematically illustrates systems and methods that are utilized to monotonically 

improve the image quality.  

[0028] FIG. 12 shows examples of pre-contrast, low-dose, full-dose ground truth image data and 

synthesized images along with the quantitative metrics for cases from different sites and 

scanners.  

[0029] FIG. 13 shows examples illustrating effect of the number of rotation angles in MPR on 

the quality of the output image and processing time.  

DETAILED DESCRIPTION 

[0030] While various embodiments of the invention have been shown and described herein, it 

will be obvious to those skilled in the art that such embodiments are provided by way of example 

only. Numerous variations, changes, and substitutions may occur to those skilled in the art 

without departing from the invention. It should be understood that various alternatives to the 

embodiments of the invention described herein may be employed.  

[0031] Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance 

imaging (MRI) exams and have been indispensable for monitoring treatment and investigating 

pathology in myriad applications including angiography, multiple sclerosis and tumor detection.  

Recently, the identification of prolonged gadolinium deposition within the brain and body has 

raised safety concerns about the usage of GBCAs. Reducing the GBCA dose reduces the degree 

of deposition, but also degrades contrast enhancement and tumor conspicuity. A reduced dose 

exam that retains contrast enhancement is therefore greatly relevant for patients who need 

repeated contrast administration (e.g., multiple sclerosis patients) and are at high risk of 

gadolinium deposition (e.g., children).  

[0032] Though MRI, Gadolinium-based contrast agents, MRI data examples are primarily 

provided herein, it should be understood that the present approach can be used in other imaging 

modality contexts and/or other contrast-enhanced imaging. For instance, the presently described 
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approach may be employed on data acquired by other types of tomographic scanners including, 

but not limited to, computed tomography (CT), single photon emission 

computed tomography (SPECT) scanners, Positron Emission Tomography (PET), functional 

magnetic resonance imaging (fMRI), or various other types of imaging scanners or techniques 

wherein a contrast agent may be utilized for enhancing the contrast.  

[0033] Deep learning (DL) framework has been used to reduce GBCA dose levels while 

maintaining image quality and contrast enhancement for volumetric MRI. As an example, a DL 

model may use a U-net encoder-decoder architecture to enhance the image contrast from a low

dose contrast image. However, the conventional DL models may only work well with scans from 

a single clinical site without considering generalizability to different sites with different clinical 

workflows. Moreover, the conventional DL models may evaluate image quality for individual 2D 

slices in the 3D volume, even though clinicians frequently require volumetric images to visualize 

complex 3D enhancing structures such as blood vessels and tumors from various angles or 

orientations.  

[0034] The present disclosure provides systems and methods that can address various drawbacks 

of conventional systems, including those recognized above. Methods and systems of the 

presenting disclosure capable of improving model robustness and deployment in real clinical 

settings. For instance, the provided methods and systems are capable of adapting to different 

clinical sites, each with different MRI scanner hardware and imaging protocols. In addition, the 

provided methods and systems may provide improved performance while retaining multi-planar 

reformat (MPR) capability to maintain the clinician workflow and enable oblique visualizations 

of the complex enhancing microstructure.  

[0035] Methods and systems herein may provide enhancements to the DL model to tackle real

world variability in clinical settings. The DL model is trained and tested on patient scans from 

different hospitals across different MRI platforms with different scanning planes, scan times, and 

resolutions, and with different mechanisms for administering GBCA. The robustness of the DL 

models may be improved in these settings with improved generalizability across a heterogeneity 

of data.  

Multi-planar reformat (MPR) 

[0036] In a conventional DL pipeline, 2D slices from the 3D volume may be separately 

processed and trained with standard 2D data augmentation (e.g. rotations and flips). The choice 

of a 2D model is often motivated by memory limitations during training, and performance 

requirements during inference. In some cases, DL framework may process the data in a "2.5D" 
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manner, in which multiple adjacent slices are input to a network and the central slice is predicted.  

However, both 2D and 2.5D processing may neglect the true volumetric nature of the acquisition.  

As the 3D volume is typically reformatted into arbitrary planes during the clinical workflow 

(e.g., oblique view, views from orientations/angles that are oblique to the scanning 

plane/orientation), and sites may use a different scanning orientation as part of their MRI 

protocol, 2D processing can lead to images with streaking artifacts in the reformat volumetric 

images (e.g., reformat into planes that are orthogonal to the scanning plane).  

[0037] Methods and systems described herein may beneficially eliminate the artifacts (e.g., 

streaking artifacts) in reformat images thereby enhancing the image quality with reduced contrast 

dose. As described above, reformatting a 3D volume image to view the image in multiple planes 

(e.g., orthogonal or oblique planes) is common in a standard clinical workflow. In some cases, 

though training a model to enhance the 2.5D image may reduce the streaking artifacts in the 

plane of acquisition, reformatting to other orientations may still cause streaking artifacts.  

Methods and systems as described herein may enable artifact-free visualizations in any selected 

plane or viewing direction (e.g., oblique view). Additionally, the model may be trained to learn 

intricate or complex 3D enhancing structures such as blood vessels or tumors.  

[0038] FIG. 1 shows an example of a workflow for processing and reconstructing MRI 

volumetric image data. As illustrated in the example, the input image 110 may be image slices 

that are acquired without contrast agent (e.g., pre-contrast image slice 101) and/or with reduced 

contrast dose (e.g., low-dose image slice 103). In some cases, the raw input image may be 2D 

image slices. A deep learning (DL) model such as a U-net encoder-Decoder 111 model may be 

used to predict an inference result 112. While the DL model 111 may be a 2D model that is 

trained to generate an enhanced image within each slice, it may produce inconsistent image 

enhancement across slices such as streaking artifacts in image reformats. For instance, when the 

inference result is reformatted 113 to generate a reformat image in the orthogonal direction 114, 

because the input 2D image 110 matches the scanning plane, the reformat image 114 may contain 

reformat artifacts such as streaking artifacts in the orthogonal directions.  

[0039] Such reformat artifacts may be alleviated by adopting a multi-planar reformat (MPR) 

method 120 and using a 2.5D trained model 131. The MPR method may beneficially augment the 

input volumetric data in multiple orientations. As shown in FIG. 1, a selected number of input 

slices of the pre-contrast or low-dose images 110 may be stacked channel-wise to create a 2.5D 

volumetric input image. The number of input slices for forming the 2.5D volumetric input image 

can be any number such as at least two, three, four, five, six, seven, eight, nine, ten slices may be 
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stacked. In some cases, the number of input slices may be determined based on the 

physiologically or biochemically important structures in regions of interest such as 

microstructures where a volumetric image without artifacts are highly desired. For instance, the 

number of input slices may be selected such that microstructure (e.g., blood vessels or tumors) 

may be mostly contained in the input 2.5D volumetric image. Alternatively or additionally, the 

number of slices may be determined based on empirical data or selected by a user. In some cases, 

the number of slices may be optimized according the computational power and/or memory 

storage of the computing system.  

[0040] Next, the input 2.5D volumetric image may be reformatted into multiple axes such as 

principal axes (e.g., sagittal, coronal, and axial) to generate multiple reformatted volumetric 

images 121. The multiple orientations for reformatting the 2.5D volumetric images may be in any 

suitable directions that need not be aligned to the principal axes. Additionally, the number of 

orientations for reformatting the volumetric images can be any number greater than one, two, 

three, four, five and the like so long as at least one of the multiple reformatted volumetric images 

is along an orientation that is oblique to or orthogonal to the scanning plane.  

[0041] At inference stage, each of the multiple reformatted volumetric images may be rotated by 

a series of angles to produce a plurality of rotated reformat volumetric images 122 thereby 

further augmenting the input data. For example, each of the three reformatted volumetric images 

121 (e.g., sagittal, coronal, and axial) may be rotated by five equispaced angles between 0 - 90' 

resulting in 15 volumetric images 122. It should be noted that the angle step and the angle range 

can be in any suitable range. For example, the angle step may not be a constant and the number 

of rotational angles can vary based on different applications, cases, or deployment scenarios. In 

another example, the volumetric images can be rotated across any angle range that is greater 

than, smaller than or partially overlapping with 0 - 90'. The effect of the number of the rotational 

angles on the predicted MPR images are described later herein.  

[0042] The plurality of rotated volumetric 2.5D images 122 may then be fed to the 2.5D trained 

model 131 for inference. The output of the 2.5D trained model includes a plurality of contrast

enhanced 2.5 D volumetric images. In some cases, the final inference result 132, which is 

referred to as the "MPR reconstruction ", may be an average of the plurality of contrast-enhanced 

2.5 D volumetric images after rotating back to the original acquisition/scanning plane. For 

instance, the 15 enhanced 2.5 D volumetric images may be rotated back to be aligned to the 

scanning plane and the mean of such volumetric images is the MPR reconstruction or the final 

inference result 132. The plurality of predicted 2.5 D volumetric images may be rotated to be 
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aligned to the original scanning plane or the same orientation such that an average of the plurality 

of 2.5D volumetric images may be computed. The plurality of enhanced 2.5D volumetric images 

may be rotated to be aligned to the same direction that may or may not be in the original 

scanning plane. The MPR reconstruction method beneficially allows to add a 3D context to the 

network while benefitting from the performance gains of 2D processing.  

[0043] As illustrated in FIG. 1, when the MIPR reconstruction image 132 is reformatted 133 into 

a plane orthogonal to the original acquisition plane, the reformat image 135 does not present 

streaking artifacts. The quality of the predicted MPR reconstruction image may be quantified by 

quantitative image quality metrics such as peak signal to noise ratio (PSNR), and structural 

similarity (SSIM). The image quality metrics are calculated for the conventional model 111 and 

the presented model 131, and an example of the result showing the quality of the reformat images 

114, 135 and ground truth 140 are illustrated in FIG. 3.  

Data collection 

[0044] In an example, under RB approval and patient consent, the scanning protocol was 

implemented in two sites. FIG. 2 shows the example of data collected from the two sites. 24 

patients (16 training, 8 testing) were recruited from Site 1 and 28 (23 training, 5 testing) from 

Site 2. Differences between scanner hardware and protocol are highlighted in Table 1. In 

particular, the two sites used different scanner hardware, and had great variability in scanning 

protocol. Notably, Site 1 used power injection to administer GBCA, while Site 2 used manual 

injection, leading to differences in enhancement time and strength.  

[0045] As an example of collecting data for training the model, multiple scans with reduced dose 

level as well as a full-dose scan may be performed. The multiple scans with reduced dose level 

may include, for example, a low-dose (e.g., 10%) contrast-enhanced MRI and a pre-contrast 

(e.g., zero contrast) may be performed. For instance, for each participant, two 3D Ti-weighted 

images were obtained: pre-contrast and post-10% dose contrast (0.01 mmol/kg). For training and 

clinical validation, the remaining 90% of the standard contrast dose (full-dose equivalent, 100%

dose) was administrated and a third 3D Ti-weighted image (100%-dose) was obtained. Signal 

normalization is performed to remove systematic differences (e.g., transmit and receive gains) 

that may have caused signal intensity changes between different acquisitions across different 

scanner platforms and hospital sites. Then, nonlinear affine co-registration between pre-dose, 

10%-dose, and 100%-dose images are performed. The DL model used a U-Net encoder-decoder 

architecture, with the underlying assumption that the contrast-related signal between pre-contrast 

and low-dose contrast-enhanced images was nonlinearly scaled to the full-dose contrast images.  
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Additionally, images from other contrasts such as T2 and T2 -FLAIR can be included as part of 

the input to improve the model prediction.  

[0046] FIG. 5 shows an example of a scan procedure or scanning protocol 500 utilized for 

collecting data for the studies or experiments shown in FIGs. 2, 3, and 10-12. In the illustrated 

scan protocol, each patient underwent three scans in a single imaging session. Scan 1 was pre

contrast 3D Ti-weighted MRI, followed by Scan 2 with 10% of the standard dose of 0.1 

mmol/kg. Images from Scan 1 and 2 were used as input to the DL network. Ground truth images 

were obtained from Scan 3, after administering the remaining 90% of the contrast dose (i.e., full 

dose).  

[0047] During inference, after deployment of the provided systems, only one scan without 

contrast agent (e.g., similar to scan 1), or a scan with reduced contrast dose (e.g., similar to scan 

2) may be performed. Such input image data may then be processed by the trained model to 

output a predicted MPR reconstructed image with enhanced contrast. In some cases, after 

deploying the model to a clinical site, a user (e.g., physician) may be permitted to choose a 

reduced dose level that can be any level in the range from 0 to 30% for acquiring the medical 

image data. It should be noted that depending on the practical implementation and user 

desired dose reduction level, the reduced dose level can be any number in a range greater 

than 3 0 %.  

Inter-site generalizability 

[0048] The conventional model may be limited by evaluating patients from a single site with 

identical scanning protocol. In real clinical settings, each site may tailor its protocol based on the 

capabilities of the scanner hardware and standard procedures. For example, a model trained on 

Site 2 may perform poorly on cases from Site 1 (FIG. 2, middle).  

[0049] The provided DL model may have improved generalizability. The DL model may be 

trained with a proprietary training pipeline. For example, the training pipeline may comprise first 

scaling each image to a nominal resolution of 1 mm3 and in-plane matrix size of 256x256, 

followed by applying the MPR processing. As the DL model is fully convolutional, inference can 

be run at the native resolution of the acquisition without resampling.  

[0050] Based on the qualitative and quantitative results, the addition of MPR processing, 

resolution re-sampling, and inter-site training led to great improvement in model robustness and 

generalizability. In optional embodiments, the model may be a full 3D model. For instance, the 

model may be a 3D patch-based model that may alleviate both MPR processing, and memory 

-10-



WO 2021/061710 PCT/US2020/052123 

usage. The provided training methods and model framework may be applied to different sites 

with different scanner platforms, and/or across different MRI vendors.  

Network architecture and processes 

[0051] FIG. 6 schematically illustrates another example of an MPR reconstructed image 624 that 

have improved quality compared to the MRI image predicted using the conventional method 611.  

The workflow 600 for processing and reconstructing MRI volumetric image data 623 and the 

reformat MPR reconstructed image 624 can be the same as those as described in FIG. 1. For 

example, the input image 610 may include a plurality of 2D image slices that are acquired 

without contrast agent (e.g., pre-contrast image slice) and/or with reduced contrast dose (e.g., 

low-dose image slice). The input images may be acquired in a scanning plane (e.g., axial) or 

along a scanning orientation. A selected number of the image slices are stacked to form a 2.5D 

volumetric input image which is further processed using the multiplanar reconstruction (MPR) 

method 620 as described above.  

[0052] For example, the input 2.5D volumetric image may be reformatted into multiple axes 

such as principal axes (e.g., sagittal, coronal, and axial) to generate multiple reformatted 

volumetric images (e.g., SAG, AX, COR). It should be noted that the 2.5D volumetric image can 

be reformatted into any orientations that may or may not be aligned with the principal axes.  

[0053] Each of the multiple reformatted volumetric images may be rotated by a series of angles 

to produce a plurality of rotated reformat images. For example, each of the three reformatted 

volumetric images (e.g., sagittal, coronal, and axial) may be rotated by five angles between 0 

90° resulting in 15 rotated reformat volumetric images. The multiple reformatted volumetric 

images (e.g., sagittal, coronal, and axial) may or may not be rotated at the same angle or rotated 

into the same number of orientations.  

[0054] The plurality of rotated volumetric images 122 may then be processed by the trained 

model 621 to produce a plurality of enhanced volumetric images. In some cases, the MPR 

reconstruction image 623 or the inference result image is the average of the plurality of inference 

volumes after rotating back to the original plane of acquisition. The MPR reconstruction image 

when is reformatted to be viewed at a selected orientation (e.g., orthogonal/oblique to the 

scanning plane), the reformat image 624 may not contain streaking artifacts compared to the 

reformat image obtained using the single inference method 611 and/or the single inference 

model.  
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Network architecture and data processing 

[0055] Using the multiplanar reconstruction (MPR) technique, the deep learning model may be 

trained with volumetric images (e.g., augmented 2.5D images) such as from the multiple 

orientations (e.g., three principal axes). The model may be a trained deep learning model for 

enhancing the quality of volumetric MRI images acquired using reduced contrast dose. In some 

embodiments, the model may include an artificial neural network that can employ any type of 

neural network model, such as a feedforward neural network, radial basis function network, 

recurrent neural network, convolutional neural network, deep residual learning network and the 

like. In some embodiments, the machine learning algorithm may comprise a deep learning 

algorithm such as convolutional neural network (CNN). Examples of machine learning 

algorithms may include a support vector machine (SVM), a naive Bayes classification, a random 

forest, a deep learning model such as neural network, or other supervised learning algorithm or 

unsupervised learning algorithm. The model network may be a deep learning network such as 

CNN that may comprise multiple layers. For example, the CNN model may comprise at least an 

input layer, a number of hidden layers and an output layer. A CNN model may comprise any 

total number of layers, and any number of hidden layers. The simplest architecture of a neural 

network starts with an input layer followed by a sequence of intermediate or hidden layers, and 

ends with output layer. The hidden or intermediate layers may act as learnable feature extractors, 

while the output layer in this example provides 2.5D volumetric images with enhanced quality 

(e.g., enhanced contrast). Each layer of the neural network may comprise a number of neurons 

(or nodes). A neuron receives input that comes either directly from the input data (e.g., low 

quality image data, image data acquired with reduced contrast dose, etc.) or the output of other 

neurons, and performs a specific operation, e.g., summation. In some cases, a connection from an 

input to a neuron is associated with a weight (or weighting factor). In some cases, the neuron 

may sum up the products of all pairs of inputs and their associated weights. In some cases, the 

weighted sum is offset with a bias. In some cases, the output of a neuron may be gated using a 

threshold or activation function. The activation function may be linear or non-linear. The 

activation function may be, for example, a rectified linear unit (ReLU) activation function or 

other functions such as saturating hyperbolic tangent, identity, binary step, logistic, arcTan, 

softsign, parameteric rectified linear unit, exponential linear unit, softPlus, bent identity, 

softExponential, Sinusoid, Sinc, Gaussian, sigmoid functions, or any combination thereof 

[0056] In some embodiments, the network may be an encoder-decoder network or a U-net 

encoder-decoder network. A U-net is an auto-encoder in which the outputs from the encoder

half of the network are concatenated with the mirrored counterparts in the decoder-half of the 
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network. The U-net may replace pooling operations by upsampling operators thereby increasing 

the resolution of the output.  

[0057] In some embodiments, the model for enhancing the volumetric image quality may be 

trained using supervised learning. For example, in order to train the deep learning network, pairs 

of pre-contrast and low-dose images as input and the full-dose image as the ground truth from 

multiple subjects, scanners, clinical sites or databases maybe provided as training dataset.  

[0058] In some cases, the input datasets may be pre-processed prior to training or inference.  

FIG. 7 shows an example of a pre-processing method 700, in accordance with some 

embodiments herein. As shown in the example, the input data including the raw pre-contrast, 

low-dose, and full-dose image (i.e., ground truth) may be sequentially preprocessed to generate 

preprocessed image data 710. The raw image data may be received from a standard clinical 

workflow, as a DICOM-based software application or other imaging software applications. As an 

example, the input data 701 may be acquired using a scan protocol as described in FIG. 5. For 

instance, three scans including a first scan with zero contrast dose, a second scan with a reduced 

dose level and a third scan with full dose may be operated. The reduced dose image data used for 

training the model, however, can include images acquired at various reduced dose level such as 

no more than 1%, 5%, 10%, 15%, 20%, any number higher than 20% or lower than 1%, or any 

number in-between. For example, the input data may include image data acquired from two 

scans including a full dose scan as ground truth data and a paired scan at a reduced level (e.g., 

zero dose or any level as described above). Alternatively, the input data may be acquired using 

more than three scans with multiple scans at different levels of contrast dose. Additionally, the 

input data may comprise augmented datasets obtained from simulation. For instance, image data 

from clinical database may be used to generate low quality image data mimicking the image data 

acquired with reduced contrast dose. In an example, artifacts may be added to raw image data to 

mimic image data reconstructed from images acquired with reduced contrast dose.  

[0059] In the illustrated example, pro-processing algorithm such as skull-stripping 703 may be 

performed to isolate the brain image from cranial or non-brain tissues by eliminating signals from 

extra-cranial and non-brain tissues using the DL-based library. Based on the tissues, organs and 

use application, other suitable preprocessing algorithms may be adopted to improve the 

processing speed and accuracy of diagnosis. In some cases, to account for patient movement 

between the three scans, the low-dose and full-dose images may be co-registered to the pre

contrast image 705. In some cases, given that the transmit and receive gains may vary for 

different acquisitions, signal normalization may be performed through histogram equalization 
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707. Relative intensity scaling may be performed between the pre-contrast, low-dose, and full

dose for intra-scan image normalization. As the multi-institutional dataset include images with 

different voxel and matrix sizes, the 3D volume may be interpolated to an isotropic resolution of 

0.5mm 3 and wherever applicable, zero-padded images at each slice to a dimension of 512 x 512.  

The image data may have sufficiently high resolution to enable the DL network to learn small 

enhancing structures, such as lesions and metastases. In some cases, scaling and registration 

parameters may be estimated on the skull-stripped images and then applied to the original images 

709. The preprocessing parameters estimated from the skull-stripped brain may be applied to the 

original images to obtain the preprocessed image volumes 710.  

[0060] Next, the preprocessed image data 710 is used to train an encoder-decoder network to 

reconstruct the contrast-enhanced image. The network may be trained with an assumption that 

the contrast signal in the full-dose is a non-linearly scaled version of the noisy contrast uptake 

between the low-dose and the pre-contrast images. The model may not explicitly require the 

difference image between low-dose and pre-contrast.  

[0061] FIG. 8 shows an example of a U-Net style encoder-decoder network architecture 800, in 

accordance with some embodiments herein. In the illustrated example, each encoder block has 

three 2D convolution layers (3 x3) with ReLU followed by a maxpool (2 x 2) to downsample the 

feature space by a factor of two. The decoder blocks have a similar structure with maxpool 

replaced with upsample layers. To restore spatial information lost during downsampling and 

prevent resolution loss, decoder layers are concatenated with features of the corresponding 

encoder layer using skip connections. The network may be trained with a combination of LI 

(mean absolute error) and structural similarity index (SSIJM) losses. Such U-Net style encoder

decoder network architecture may be capable of producing a linear 1Ox scaling of the contrast 

uptake between low-dose and zero-dose, without picking up noise along with the enhancement 

signal.  

[0062] As shown in FIG. 8, the input data to the network may be a plurality of augmented 

volumetric images generated using the MPR method as described above. In the example, seven 

slices each of pre-contrast and low-dose images are stacked channel-wise to create a 14-channel 

input volumetric data for training the model to predict the central full-dose slices 803.  

Enhancement and weighted L] loss 

[0063] In some situations, even after signal normalization and scaling is applied, the difference 

between the low-dose and pre-contrast images may have enhancement-like noise perturbations 

which may mislead training of the network. To make the network pay more attention to the 
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actual enhancement regions, the Li loss may be weighted with an enhancement mask. The mask 

is continuous in nature and is computed from the skull-stripped difference between low-dose and 

pre-contrast images, normalized between 0 and 1. The enhancement mask can be considered as a 

normalized smooth version of the contrast uptake.  

Perceptual and adversarial losses 

[0064] It is desirable to train the network to focus on the structural information in the areas of 

enhancement as well as high frequency and texture details which are crucial for making confident 

diagnostic decisions. A simple combination of LI and structural similarity index (SSIM) losses 

may tend to suppress high-frequency signal information and the obtained results may have a 

smoother appearance, which is perceived as a loss of image resolution. To address this issue, a 

perceptual loss from a convolutional network (e.g., VGG-19 network consisting of 19 layers 

including 6 convolution layers, 3 Fully connected layer, 5 MaxPool layers and 1 SoftMax layer 

which is pre-trained on ImageNet dataset) is employed. The perceptual loss is effective in style

transfer and super-resolution tasks. For example, the perceptual loss can be computed from the 

third convolution layer of the third block (e.g., block3 conv3) of a VGG-19 network, by taking 

the mean squared error (MSE) of the layer activations on the ground truth and prediction.  

[0065] In some cases, to further improve the overall perceptual quality, an adversarial loss is 

introduced through a discriminator, trained in parallel to the encoder-decoder network, to predict 

whether the generated image is real or fake. FIG. 9 shows an example of the discriminator 900, 

in accordance with some embodiments herein. The discriminator 900 has a series of spectral 

normalized convolution layers with Leaky ReLU activations and predicts a 32 x 32 patch. Unlike 

a conventional discriminator, which predicts a binary value (e.g., 0 for fake and 1 for real), the 

"patch discriminator" 900 predicts a matrix of probabilities which helps in the stability of the 

training process and faster convergence. The spectral normalized convolution layer employs a 

weight normalization technique to further stabilize discriminator training. The patch 

discriminator, as shown in FIG. 9, can be trained with MSE loss, and Gaussian noise may be 

added to the inputs for smooth convergence.  

[0066] The function for configuring the network model can be formulated as below: 

[0067] G* = argminG[ GANLGAN(G)+ LLuMeh.G + ssIMLssmG)+ VGGLVGG(G)] 

[0068] where Mean is the enhancement mask and the adversarial loss LGAN can be written as LGAN 

= maxDLGAN(G, D), where G is the U-Net generator and D is the patch-discriminator. The loss 

weights hL, SSIM, IVGG and GAN can be determined empirically. With the abovementioned 
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processes and methods, a single model is trained to make accurate predictions on images from 

various institutions and scanners.  

Example 

[0069] FIG. 3 shows an example of analytic results of a study to evaluate the generalizability 

and accuracy of the provided model. In the illustrated example, the results show comparison of 

ground-truth (left), original model (middle), and proposed model (right) inference result on a test 

case from Site 1 (red arrow shows lesion conspicuity). The conventional model was trained on 

data from Site 2 only. This example is consistent with the MRI scanning data illustrated in FIG.  

2. The provided model was trained on data from both sites, and used MPR processing and 

resolution resampling. In this study, the result qualitatively shows the effect of MPR processing 

on one example from the test set. By averaging the result of many MPR reconstructions, 

streaking artifacts that manifest as false enhancement are suppressed. As shown in FIG. 3, one 

slice of a ground-truth contrast-enhanced image (left) is compared to the inference results from 

the model trained on Site 2 (middle) and the model trained on Sites 1 and 2 simultaneously 

(right). By accounting for differences in resolution and other protocol deviations, the provided 

model demonstrates qualitative improvement in generalizability. Quantitative image quality 

metrics such as peak signal to noise ratio (PSNR), and structural similarity (SSIM) were 

calculated for all the conventional model and the presented model. The average PSNR and SSIM 

on the test set for the conventional and presented model was 32.81 dB (38.12 dB) and 0.872 

(0.951), respectively. Better image quality may be achieved using the methods and systems in the 

present disclosure.  

[0070] In the study as illustrated in FIG. 3, a deep learning (DL) framework as described 

elsewhere herein is applied for low-dose (e.g., 10%) contrast-enhanced MRI. For each 

participant, two 3D Ti-weighted images were obtained: pre-contrast and post-10% dose contrast 

(0.01 mmol/kg). For training and clinical validation, the remaining 90% of the standard contrast 

dose (full-dose equivalent, 100%-dose) was administrated and a third 3D Ti-weighted image 

(100%-dose) was obtained. Signal normalization was performed to remove systematic 

differences (e.g., transmit and receive gains) that may have caused signal intensity changes 

between different acquisitions across different scanner platforms and hospital sites. Then, 

nonlinear affine co-registration between pre-dose, 10%-dose, and 100%-dose images were 

performed. The DL model used a U-Net encoder-decoder architecture, with the underlying 

assumption that the contrast-related signal between pre-contrast and low-dose contrast-enhanced 
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images was nonlinearly scaled to the full-dose contrast images. Images from other contrasts such 

as T2 and T2 -FLAIR can be included as part of the input to improve the model prediction.  

[0071] As another example of an experiment in connection with FIG. 10- FIG. 13, data 

distribution and heterogeneity of a study dataset from three institutions, three different 

manufacturers, and eight different scanner models are shown in FIG. 10. The study 

retrospectively identified 640 patients (323 females; 52 16 years), undergoing clinical brain 

MRI exams from three institutions, three scanner manufacturers and eight scanner models using 

different institutional scan protocols, including different imaging planes, field strengths, voxel 

sizes, matrix sizes, use of fat suppression, contrast agents and injection methods. The clinical 

indications included suspected tumor, post-op tumor follow-up, routine brain, and others 

requiring MRI exams with GBCAs. Each subject underwent 3D pre-contrast Tlw imaging, 

followed by a low-dose contrast-enhanced Tlw scan with 10% (0.01 mmol/kg) of the standard 

dose (0.1 mmol/kg). For training and evaluation, a third 3D Tlw image was obtained with the 

remaining 90% (0.09 mmol/kg) of the full dose, which was considered as the ground truth. All 

three acquisitions were made in a single imaging session, and the patients did not receive any 

additional gadolinium dose compared to the standard protocol.  

[0072] Out of 640 cases, the model as shown in FIG. 11 was trained with 56 cases, and 13 

validation cases were used to fine-tune the hyper-parameters and empirically find the optimal 

combination of loss weights. To ensure that the model generalizes well across sites and vendors, 

the train and validation sets consisted of approximately an equal number of studies from all the 

institutions and scanner manufacturers (refer FIG. 10). The remaining 571 cases were held-out 

for testing and model evaluation. The model was implemented in Python 3.5 using Keras with 

Tensorflow backend and was trained on Nvidia Tesla V100 (SXM2 32GB) GPU for 100 epochs 

with a batch size of 8. Model optimization was performed using Adam optimizer with a learning 

rate of 0.001.  

[0073] The model is quantitatively evaluated using a plurality of metrics. Peak signal-to-noise 

ratio (PSNR) is the scaled version of pixel-wise differences, whereas structural similarity index 

(SSIM) is sensitive to changes in local structure and hence captures the structural aspect of the 

predicted image with respect to the ground truth. Using the 571 test cases, the model was 

quantitatively evaluated using the PSNR and SSIM metrics, computed between the true full-dose 

and synthesized images. These values were compared with the PSNR and SSIM values between 

low-dose and full-dose images. Per-site and per-scanner metrics were also calculated and 

compared to prove model generalizability.  
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[0074] From the test set, a subset of images from 26 patients (13 males; 58 15 years), with 

different types and grades of enhancing tumor cases (either pre- or post-operative) were 

identified and used for an in-depth evaluation of model performance. These enhancing tumor 

cases were similar to the training dataset in terms of heterogeneity and were acquired using the 

same scanning protocol as shown in FIG. 5. A binary assessment was performed to find if the 

enhancement pattern agreed without any false positives or false negatives (with true full-dose 

images as the reference). When present, image artifacts in the synthesized images were recorded 

and the image artifacts are proved to be reduced with aid of the provided model.  

[0075] To further validate that the model predictions were similar to the full-dose ground truth, 

automatic tumor segmentation is performed on the 26 enhancing tumor cases. The variant of the 

model applied, used only post-contrast images to segment the tumor core. As per the 

requirements of the segmentation model, the ground truth and predicted full-dose images were 

skull-stripped, interpolated to 1 mm 3 resolution and co-registered to an anatomical template. The 

evaluation is performed by computing the Dice scores of the predicted tumor core between the 

segmented masks of the ground-truth and those created using the synthesized images.  

[0076] FIG. 11 schematically illustrates systems and methods are utilized to monotonically 

improve the image quality. The example is shown for a sagittally acquired MR image with an 

enhancing frontal tumor. Vertical streaks can be seen in the axial reformat of the 2.5D model 

result as shown in panel a, which was fixed by MPR training and inference as shown in panel b.  

Adding perceptual and adversarial losses further improves the texture inside the tumor and 

restored overall perceptual quality as shown panel c. Additionally, weighting the Li loss with the 

smooth enhancement mask matched the enhancement pattern to that of the ground truth, as 

shown in panel d. The monotonic increase in the metrics with respect to the ground truth (as 

shown in panel e) also illustrates the improvement of model. Below table shows the model 

improvement for each of the proposed technical solutions for the 26 enhancing tumor cases.  

Metric UNet 2D (35) UNet 2.5D + MPR +VGG & GAN + Enhancement mask* 

PSNR (dB) 31.84 4.88 32.38 4.67 33.56 5.19 34.28 4.88 35.22 ± 4.79 

SSIM 0.88 0.06 0.89 0.06 0.90 0.06 0.92 0.05 0.93 ± 0.04 

[0077] FIG. 12 shows pre-contrast, low-dose, full-dose ground truth and synthesized images 

along with the quantitative metrics for cases from different sites and scanners. The metrics show 

that the model with the proposed technical improvements performed better than the original 

model (with metrics 31.84±4.88 dB, 0.88±0.06). The best performing model used MPR with five 

rotations with a combination of SSIJM, perceptual, adversarial, and enhancement weighted L1 
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losses. For a 512 x 512 x 300 volume, preprocessing and inference of the best model took about 

135 seconds on a GeForce RTX 2080 (16 GB) GPU.  

[0078] FIG. 13 shows examples of different number of rotations and the corresponding effect on 

the quality of the image and the performance. The effect of the number of rotation angles in MPR 

as shown in FIG. 13 provides that greater number of angles may reduce the horizontal streaks 

inside the tumor (better quality), while it may also increase the inference time. When deploy a 

trained model to a physical site, the number of rotations and different angles may be determined 

based on the desired image quality and deployment environment (e.g., computational power, 

memory storage, etc.).  

System overview 

[0079] The provided DL framework for low-dose contrast-enhanced MRI is capable of reducing 

the dosage of GBCA for contrast-enhanced MRI while preserving image quality and avoiding 

degradation in contrast enhancement. The robustness and generalizability of the DL model is 

improved thereby allowing for improved adaptation to various applications across a 

heterogeneous patient and site population. FIG. 4 schematically illustrates a magnetic resonance 

imaging (MRI) system 400 in which an imaging enhancer 440 of the presenting disclosure may 

be implemented. The MRI system 400 may comprise a magnet system 403, a patient transport 

table 405 connected to the magnet system, and a controller 401 operably coupled to the magnet 

system. In one example, a patient may lie on the patient transport table 405 and the magnet 

system 403 would pass around the patient. The controller 401 may control magnetic fields and 

radio frequency (RF) signals provided by the magnet system 403 and may receive signals from 

detectors in the magnet system 403.  

[0080] The MRI system 400 may further comprise a computer system 410 and one or more 

databases operably coupled to the controller 401 over the network 430. The computer system 

410 may be used for implementing the volumetric MR imaging enhancer 440. The volumetric 

MR imaging enhancer 440 may implement the DL framework and methods described herein. For 

example, the volumetric MR imaging enhancer may employ the MPR reconstruction method and 

various other training algorithms, and data processing methods described herein. The computer 

system 410 maybe used for generating an imaging enhancer using training datasets. Although 

the illustrated diagram shows the controller and computer system as separate components, the 

controller and computer system can be integrated into a single component.  

[0081] The computer system 410 may comprise a laptop computer, a desktop computer, a central 

server, distributed computing system, etc. The processor may be a hardware processor such as a 
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central processing unit (CPU), a graphic processing unit (GPU), a general-purpose processing 

unit, which can be a single core or multi core processor, or a plurality of processors for parallel 

processing. The processor can be any suitable integrated circuits, such as computing platforms or 

microprocessors, logic devices and the like. Although the disclosure is described with reference 

to a processor, other types of integrated circuits and logic devices are also applicable. The 

processors or machines may not be limited by the data operation capabilities. The processors or 

machines may perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit, or 16 bit data operations.  

[0082] The MRI system 400 may include one or more databases 420 that may utilize any suitable 

database techniques. For instance, structured query language (SQL) or "NoSQL" database may 

be utilized for storing the reconstructed/reformat image data, raw collected data, training 

datasets, trained model (e.g., hyper parameters), weighting coefficients, rotation angles, rotation 

numbers, orientation for reformat reconstruction, etc. Some of the databases may be implemented 

using various standard data-structures, such as an array, hash, (linked) list, struct, structured text 

file (e.g., XML), table, JSON, NOSQL and/or the like. Such data-structures may be stored in 

memory and/or in (structured) files. In another alternative, an object-oriented database may be 

used. Object databases can include a number of object collections that are grouped and/or linked 

together by common attributes; they may be related to other object collections by some common 

attributes. Object-oriented databases perform similarly to relational databases with the exception 

that objects are not just pieces of data but may have other types of functionality encapsulated 

within a given object. If the database of the present disclosure is implemented as a data-structure, 

the use of the database of the present disclosure may be integrated into another component such 

as the component of the present invention. Also, the database may be implemented as a mix of 

data structures, objects, and relational structures. Databases maybe consolidated and/or 

distributed in variations through standard data processing techniques. Portions of databases, e.g., 

tables, may be exported and/or imported and thus decentralized and/or integrated.  

[0083] The network 430 may establish connections among the components in the MRI platform 

and a connection of the MRI system to external systems. The network 430 may comprise any 

combination of local area and/or wide area networks using both wireless and/or wired 

communication systems. For example, the network 430 may include the Internet, as well as 

mobile telephone networks. In one embodiment, the network 430 uses standard communications 

technologies and/or protocols. Hence, the network 430 may include links using technologies such 

as Ethernet, 802.11, worldwide interoperability for microwave access (WiMAX), 2G/3G/4G/5G 

mobile communications protocols, InfiniBand, PCI Express Advanced Switching, etc. Other 

networking protocols used on the network 430 can include multiprotocol label switching 
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(MPLS), the transmission control protocol/Internet protocol (TCP/IP), the User Datagram 

Protocol (UDP), the hypertext transport protocol (HTTP), the simple mail transfer protocol 

(SMTP), the file transfer protocol (FTP), and the like. The data exchanged over the network can 

be represented using technologies and/or formats including image data in binary form (e.g., 

Portable Networks Graphics (PNG)), the hypertext markup language (HTML), the extensible 

markup language (XML), etc. In addition, all or some of links can be encrypted using 

conventional encryption technologies such as secure sockets layers (SSL), transport layer 

security (TLS), Internet Protocol security (IPsec), etc. In another embodiment, the entities on the 

network can use custom and/or dedicated data communications technologies instead of, or in 

addition to, the ones described above.  

[0084] Whenever the term "at least," "greater than," or "greater than or equal to" precedes the 

first numerical value in a series of two or more numerical values, the term "at least," "greater 

than" or "greater than or equal to" applies to each of the numerical values in that series of 

numerical values. For example, greater than or equal to 1, 2, or 3 is equivalent to greater than or 

equal to 1, greater than or equal to 2, or greater than or equal to 3.  

[0085] Whenever the term "no more than," "less than," or "less than or equal to" precedes the 

first numerical value in a series of two or more numerical values, the term "no more than," "less 

than," or "less than or equal to" applies to each of the numerical values in that series of numerical 

values. For example, less than or equal to 3, 2, or 1 is equivalent to less than or equal to 3, less 

than or equal to 2, or less than or equal to 1.  

[0086] As used herein A and/or B encompasses one or more of A or B, and combinations thereof 

such as A and B. It will be understood that although the terms "first," "second," "third" etc. are 

used herein to describe various elements, components, regions and/or sections, these elements, 

components, regions and/or sections should not be limited by these terms. These terms are 

merely used to distinguish one element, component, region or section from another element, 

component, region or section. Thus, a first element, component, region or section discussed 

herein could be termed a second element, component, region or section without departing from 

the teachings of the present invention.  

[0087] The terminology used herein is for the purpose of describing particular embodiments only 

and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" 

and "the" are intended to include the plural forms as well, unless the context clearly indicates 

otherwise. It will be further understood that the terms "comprises" and/or "comprising," or 

"includes" and/or "including," when used in this specification, specify the presence of stated 
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features, regions, integers, steps, operations, elements and/or components, but do not preclude the 

presence or addition of one or more other features, regions, integers, steps, operations, elements, 

components and/or groups thereof 

[0088] Reference throughout this specification to "some embodiments," or "an embodiment," 

means that a particular feature, structure, or characteristic described in connection with the 

embodiment is included in at least one embodiment. Thus, the appearances of the phrase "in 

some embodiment," or "in an embodiment," in various places throughout this specification are 

not necessarily all referring to the same embodiment. Furthermore, the particular features, 

structures, or characteristics may be combined in any suitable manner in one or more 

embodiments 

[0089] While preferred embodiments of the present invention have been shown and described 

herein, it will be obvious to those skilled in the art that such embodiments are provided by way of 

example only. It is not intended that the invention be limited by the specific examples provided 

within the specification. While the invention has been described with reference to the 

aforementioned specification, the descriptions and illustrations of the embodiments herein are not 

meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will 

now occur to those skilled in the art without departing from the invention. Furthermore, it shall 

be understood that all aspects of the invention are not limited to the specific depictions, 

configurations or relative proportions set forth herein which depend upon a variety of conditions 

and variables. It should be understood that various alternatives to the embodiments of the 

invention described herein may be employed in practicing the invention. It is therefore 

contemplated that the invention shall also cover any such alternatives, modifications, variations 

or equivalents. It is intended that the following claims define the scope of the invention and that 

methods and structures within the scope of these claims and their equivalents be covered thereby.  
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CLAIMS 

WHAT IS CLAIMED IS: 

1. A computer-implemented method for improving image quality with reduced dose of 

contrast agent, the method comprising: 

(a) acquiring, using a medical imaging apparatus, a medical image of a subject with a 

reduced dose of contrast agent; 

(b) reformatting the medical image of the subject in multiple orientations to generate a 

plurality of reformat medical images; and 

(c) applying a deep network model to the plurality of reformat medical images to generate a 

predicted medical image with improved quality.  

2. The computer-implemented method of claim 1, wherein the medical imaging apparatus 

is a transforming magnetic resonance (MR) device.  

3. The computer-implemented method of claim 1, wherein the medical image is a 2.5D 

volumetric image.  

4. The computer-implemented method of claim 1, wherein the multiple orientations 

include at least one orientation that is not in the direction of the scanning plane.  

5. The computer-implemented method of claim 1, further comprising rotating each of the 

plurality of reformat medical images into various angles to generate a plurality of rotated reformat 

medical images.  

6. The computer-implemented method of claim 5, further comprising applying the deep 

network model to the plurality of rotated reformat medical images to output a plurality of predicted 

images.  

7. The computer-implemented method of claim 6, wherein the plurality of predicted 

images are rotated to be aligned to a scanning plane.  

8. The computer-implemented method of claim 7, further comprising averaging the 

plurality of predicted images after rotated to be aligned to the scanning plane to generate the 

predicted medical image with improved quality.  

9. The computer-implemented method of claim 1, wherein the predicted medical image 

with improved quality is obtained by averaging a plurality of predicted medical images 

corresponding to the plurality of the reformat medical images.  

10. The computer-implemented method of claim 1, wherein parameters of the deep 

learning model are tuned based at least in part on a perceptual loss or adversarial loss.  
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11. A non-transitory computer-readable storage medium including instructions that, when 

executed by one or more processors, cause the one or more processors to perform operations 

comprising: 

(a) acquiring, using a medical imaging apparatus, a medical image of a subject with a 

reduced dose of contrast agent; 

(b) reformatting the medical image of the subject in multiple orientations to generate a 

plurality of reformat medical images; and 

(c) applying a deep network model to the plurality of reformat medical images to generate a 

predicted medical image with improved quality.  

12. The non-transitory computer-readable storage medium of claim 11, wherein the medical 

imaging apparatus is a transforming magnetic resonance (MR) device.  

13. The non-transitory computer-readable storage medium of claim 11, wherein the medical 

image is a 2.5D volumetric image.  

14. The non-transitory computer-readable storage medium of claim 1, wherein the multiple 

orientations include at least one orientation that is not in the direction of the scanning plane.  

15. The non-transitory computer-readable storage medium of claim 1, wherein the 

operations further comprise rotating each of the plurality of reformat medical images into various 

angles to generate a plurality of rotated reformat medical images.  

16. The non-transitory computer-readable storage medium of claim 15, wherein the 

operations further comprise applying the deep network model to the plurality of rotated reformat 

medical images to output a plurality of predicted images.  

17. The non-transitory computer-readable storage medium of claim 16, wherein the 

plurality of predicted images are rotated to be aligned to a scanning plane.  

18. The non-transitory computer-readable storage medium of claim 17, wherein the 

operations further comprise averaging the plurality of predicted images after rotated to be aligned 

to the scanning plane to generate the predicted medical image with improved quality.  

19. The non-transitory computer-readable storage medium of claim 11, wherein the 

predicted medical image with improved quality is obtained by averaging a plurality of predicted 

medical images corresponding to the plurality of the reformat medical images.  

20. The non-transitory computer-readable storage medium of claim 11, wherein parameters 

of the deep learning model are tuned based at least in part on a perceptual loss or adversarial loss.  
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