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ITERATIVE MULTI-SCALE METHOD FOR FLOW IN POROUS MEDIA

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application for patent claims the benefit of provisional patent application
United States Serial No. 61/104,154, filed October 9, 2008, which the entirety of the

application is incorporated herein by reference.

TECHNICAL FIELD

[0002] The disclosure generally relates to computer-implemented simulators for
characterizing fluid flow within subsurface formations, and more particularly, to computer-
implemented simulators that use multi-scale methods to simulate fluid flow within subsurface

formations.

BACKGROUND

[0003] Natural porous media, such as subterrancan reservoirs containing hydrocarbons, are
typically highly heterogeneous and complex geological formations. While recent advances,
specifically in characterization and data integration, have provided for increasingly detailed
reservoir models, classical simulation techniques tend to lack the capability to honor the fine-
scale detail of these structures. Various multi-scale methods have been developed to deal

with this resolution gap.

[0004] These multi-scale methods, which can be used for simulation of fluid flow in a
subterranean reservoir, can be categorized into multi-scale finite-element (MSFE) methods,
mixed multi-scale finite-element (MMSFE) methods, and multi-scale finite-volume (MSFV)
methods. These methods aim to reduce complexity of the reservoir model by incorporating

the fine-scale variation of coefficients into a coarse-scale operator. This is similar to
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upscaling methods, which target coarse-scale descriptions based on effective, tensorial
coefficients; however, multi-scale methods also allow for reconstruction of the fine-scale
velocity field from a coarse-scale pressure solution. If a conservative fine-scale velocity field
is obtained, which typically the MMSFE and MSFV methods can provide, the velocity field
can then be used to solve the saturation transport equations on the fine grid. It will be
appreciated by one skilled in that art, that for problems arising from flow and transport in

porous media, a conservative velocity is desired for the transport calculations.

[0005] These multi-scale methods can be applied to compute approximate solutions at
reduced computational cost. The multi-scale solutions can differ from the reference solutions
that are computed with the same standard numerical scheme on the fine grid. While the
permeability fields characterized by two separable scales typically converge with respect to
coarse-grid refinement, these methods may not converge in the absence of scale separation
due to error introduced by multi-scale localization assumptions.  For instance, error
introduced by a multi-scale method, with respect to the coarse cells, is typically prominent in
the presence of large coherent structures with high permeability contrasts, such as nearly

impermeable shale layers, where no general accurate localization assumption exists.

[0006] Multi-scale methods that are based on local numerical solutions of the fine-scale
problem and thus honor the provided permeability field can be used to derive
transmissibilities for the coarse problem. The quality of multi-scale results depends on the
localization conditions employed to solve the local fine-scale problems. Previous methods
have employed global information, such as an initial global fine-scale solution, to enhance
the boundary conditions of the local problems. However, these methods may not provide

value for fluid flow problems with high phase viscosity ratios, frequently changing boundary

-0



WO 2010/042746 PCT/US2009/060044

conditions, or varying well rates. Other methods have iteratively improved the coarse-scale
operator. For instance, the adaptive local-global (ALG) upscaling approach is based on
global iterations to obtain a self-consistent coarse-grid description. Recently, ALG was also
employed to improve the local boundary conditions in the multi-scale finite volume element
method (ALG-MSFVE). While the ALG method has shown to be more accurate than local
upscaling methods and leads to asymptotic solutions for a large number of iterations, the
solutions typically can be different from standard fine-scale solutions and the error due to

ALG can be problem dependent.

SUMMARY

[0007] Computer-implemented iterative multi-scale methods and systems are provided for
simulation of anisotropic, heterogencous domains. For example, a system and method can be
configured to achieve simulation of structures where accurate localization assumptions
cannot be made. The iterative method and system facilitates smoothing of the solution field
by applying line relaxation in the spatial directions. The iterative smoothing procedure can
be applied in fewer than all time steps of a computation. As an example, a system and
method can include creating a fine grid, a coarse grid and a dual coarse grid, calculating dual
basis functions on the dual coarse control volumes of the dual coarse grid by solving local
elliptic problems, integrating a source term of an elliptic pressure equation over each coarse
cell of the coarse grid, and for at least one timestep in a plurality of timesteps, calculating a
pressure using an iterative method, where the pressure calculated using the iterative method

in the at least one timestep can be used to model fluid flow in the subsurface reservoir.

[0008] As another example, a multi-scale computer-implemented method and system is

provided for use in modeling fluid flow in a subsurface reservoir. The system and method
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can include creating a fine grid defining a plurality of fine cells associated with a geological
formation of the subsurface reservoir, a coarse grid defining a plurality of coarse cells having
interfaces between the coarse cells, the coarse cells being aggregates of the fine cells, and a
dual coarse grid defining a plurality of dual coarse control volumes, the dual coarse control
volumes being aggregates of the fine cells and having boundaries bounding the dual coarse
control volumes. In this example, the basis functions can be calculated on the dual coarse
control volumes by solving local elliptic problems, and a source term of an elliptic pressure

equation can be integrated over each coarse cell. The fine grid can be an unstructured grid.

[0009] For at least one timestep in a plurality of timesteps, the computation can include
calculating a pressure using an iterative method. In an example, the iterative method can
include, for each iteration: applying a smoothing scheme to a solution for the pressure over a
fine grid from a previous iteration to provide a smoothed fine-grid pressure; calculating
correction functions using the smoothed fine-grid pressure; applying a restriction operation
that includes the correction functions to solve for the pressure over a coarse grid; and
applying a prolongation operation to the pressure solved over the coarse grid to reconstruct an
updated solution for the pressure over the fine-grid. The pressure calculated using the
iterative method in the at least one timestep can be used to model fluid flow in a subsurface
reservoir. In an example, the steps of the iterative method can be repeated until the solution

for the pressure over the fine-grid converges.

[0010] In another example, a system and method can include, prior to calculating the
pressure using the iterative method, a step of initializing the value for the pressure in the fine
cells of a fine grid by setting that value equal to zero. The solution for the pressure over the

fine grid in can be calculated using the calculated basis functions and the integrated source
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term. In yet another example, a system and method can include re-computing the dual basis
functions and the correction functions in a timestep and over the dual coarse control volumes
where a change of the mobility coefficient of the local elliptic problems exceeds a

predetermined threshold value.

[0011] The step of applying the smoothing scheme to the solution of the pressure over the
fine grid can include applying a line-relaxation smoothing operation. Applying the line-
relaxation smoothing operation can include: applying a linear operator that has a tri-diagonal
structure to the solution of the pressure over the fine grid to provide a linear system of

equations; and solving the linear system of equations using a Thomas algorithm.

[0012] A system and method can include outputting or displaying the pressure calculated

using the iterative method in the at least one timestep.

[0013] As another example, a multi-scale computer-implemented method and system for use
in modeling fluid flow in a subsurface reservoir can include computing a model using a finite
volume method in a plurality of timesteps. The model can include one or more variables
representative of fluid flow in the subsurface reservoir, where at least one of the one or more
variables representative of fluid flow is responsive to calculated basis functions. The
computing can include calculating basis functions on dual coarse control volumes of a dual
coarse grid by solving local elliptic problems, integrating a source term of an elliptic pressure
equation over each coarse cell of a coarse grid, and for at least one timestep of the plurality of
timesteps, calculating a pressure using an iterative method. The results from the computed
model, including the pressure calculated using the iterative method in the at least one

timestep, can be used to model fluid flow in the subsurface reservoir.
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[0014] The iterative method can include, for each iteration: applying a smoothing scheme to
a solution for the pressure over a fine-grid from a previous iteration to provide a smoothed
fine-grid pressure; calculating correction functions using the smoothed fine-grid pressure;
solving for the pressure on a coarse grid using the correction functions; and reconstructing a
solution for the pressure over the fine-grid using the result from solving for the pressure on

the coarse grid. In an example, the smoothing scheme can include applying » smoothing
steps, where », 18 a positive integer greater than 1. In another example, solving for the

pressure on the coarse grid can include calculating the right-hand side of the linear system for
the pressure over the coarse-grid using the correction functions, and solving for the pressure
on the coarse grid using the calculated right-hand side of the linear system for the pressure
over the coarse-grid. The steps of the iterative method can be repeated until the solution for

the pressure over the fine-grid converges.

[0015] A system and method can include outputting or displaying the computed model

including the pressure calculated using the iterative method in the at least one timestep.

[0016] In another example, a system and method can include re-computing the basis
functions and the correction functions in the timestep and over the dual coarse control
volumes where a change of the mobility coefficient of the local elliptic problems exceeds a
predetermined threshold value. In another example, the system and method can include re-
computing the correction functions in a timestep where the source term exceeds a

predetermined limit.

[0017] A step of applying a smoothing scheme to the solution of the pressure over a fine grid

can include applying a line-relaxation smoothing operation, including: applying a linear
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operator that has a tri-diagonal structure to the solution of the pressure over the fine grid to
provide a linear system of equations; and solving the linear system of equations using a

Thomas algorithm.

[0018] A system for use in modeling fluid flow in a geological formation of a subsurface
reservoir using a model is also provided. The system can including one or more data
structures resident in a memory for storing data representing a fine grid, a coarse grid, a dual
coarse grid, and dual basis functions calculated on the dual coarse control volumes by solving
local elliptic problems; software instructions, for executing on one or more data processors,
to compute the model using a finite volume method in at least two timesteps, and a visual
display for displaying fluid flow in the geological formation of the subsurface reservoir using
the computed model, including the pressure calculated using the iterative method in the at
least two timestep. The model can include one or more variables representative of fluid flow
in the subsurface reservoir, where at least one of the one or more variables representative of
fluid flow is responsive to calculated basis functions. The computing can include calculating
the basis functions on the dual coarse control volumes by solving local elliptic problems;
integrating a source term of an elliptic pressure equation over each coarse cell; and for at least

one timestep of the at least two timesteps, calculating a pressure using an iterative method.

[0019] The iterative method can include, for each iteration: applying a smoothing scheme to
a solution for the pressure over the fine-grid from a previous iteration to provide a smoothed
fine-grid pressure; calculating correction functions using the smoothed fine-grid pressure;
solving for the pressure on the coarse grid using the correction functions; and reconstructing a
solution for the pressure over the fine-grid using the result from solving for the pressure on

the coarse grid.
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[0020] As an illustration of an area of use for such techniques, the techniques can be used
with a method for operating a subsurface reservoir to achieve improved production of a
reservoir fluid (e.g., oil) from a geological formation of the subsurface reservoir. For
example, a system and method can include injecting a displacement fluid into a portion of the
geological formation of the subsurface reservoir, and applying a reservoir fluid production
process to the subsurface reservoir under at least one operational condition that is derived
based on the results from executing the steps of any of the foregoing techniques. Nonlimiting
examples of operational conditions are displacement fluid injection rate, reservoir fluid
production rate, viscosity ratio of displacement fluid to reservoir fluid, location of injection of
the displacement fluid, location of production of the reservoir fluid, displacement fluid
saturations, reservoir fluid saturations, displacement fluid saturations at different pore

volumes injected, and reservoir fluid saturations at different pore volumes injected.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Figure 1 is a block diagram of an example computer structure for use in modeling
fluid flow in a subsurface reservoir.

[0022] Figure 2 is a schematic view of a 2D grid domain showing an enlarged coarse cell.

[0023] Figure 3A is an illustration of a surface graph showing a 2D basis function.

[0024] Figure 3B is an illustration of a surface graph showing a 2D correction function.

[0025] Figure 4 is a flowchart illustrating steps used in a reservoir simulator employing an

iterative multi-scale method.
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[0026] Figure 5 is a flowchart illustrating multi-grid steps used in a reservoir simulator

employing an iterative multi-scale method.

[0027] Figure 6A is a schematic view of a 2D grid showing a homogenous domain.

[0028] Figure 6B is a schematic view of a 2D heterogencous mobility field.

[0029] Figure 7A is an illustration of numerical convergence histories in a homogeneous

isotropic domain.

[0030] Figure 7B is an illustration of numerical convergence histories in a heterogencous

isotropic domain.

[0031] Figure 7C is an illustration of numerical convergence histories in a homogeneous

anisotropic domain.

[0032] Figure 7D is an illustration of numerical convergence histories in a heterogencous

anisotropic domain.

[0033] Figure 8A is an illustration of convergence histories in a heterogencous domain for

n, =10 and various aspect ratios.

[0034] Figure 8B is an illustration of convergence rates in a heterogeneous domain for #, as

a function of aspect ratio.

[0035] Figure 9A is an illustration of convergence rates in a heterogencous domain for

various aspect ratios as a function of »_.
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[0036] Figure 9B is an illustration of effective convergence rates in a heterogencous domain

for various aspect ratios as a function of »_.

[0037] Figure 10 is an illustration of convergence rates for various homogeneous —isotropic

domain sizes.

[0038] Figure 11A is an illustration of convergence rates in a heterogencous domain for a

number of smoothing steps as a function of upscaling factors.

[0039] Figure 11B is an illustration of convergence rates in a heterogencous domain for

various aspect ratios as a function of upscaling factors.

[0040] Figures 12A — 12D are schematic views of a 2D domain showing a mobility field for

various angles.

[0041] Figure 13 is a schematic view of a 2D domain showing wells having a source and sink

of strength ¢ = % 1/ (AXA)/).

[0042] Figure 14A is an illustration of convergence rates in a domain for various aspect ratios

and smoothing steps.

[0043] Figure 14B is an illustration of convergence rates in a domain for various upscaling

factors and smoothing steps.

[0044] Figures 15A — 15D are illustrations of spectra in a homogeneous — isotropic domain

for no-flow boundary conditions and various values of 77 .
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[0045] Figure 16A is an illustration of eigenvectors with the largest eigenvalues of the

spectra shown in Figure 15A.

[0046] Figure 16B is an illustration of corresponding residuum of the spectra shown in

Figure 15A.

[0047] Figure 16C is an illustration of eigenvectors with the largest eigenvalues of the

spectra shown in Figure 15C.

[0048] Figure 16D is an illustration of corresponding residuum of the spectra shown in
Figure 15C.
[0049] Figures 17A and 17B are illustrations of spectra in a heterogencous — isotropic

domain for no-flow boundary conditions and various values of 72 .

[0050] Figure 18A is an illustration of corresponding residuum for eigenvectors with the ten

largest eigenvalues of the spectra shown in Figure 16A.

[0051] Figure 18B is an illustration of corresponding residuum for eigenvectors with the ten

largest eigenvalues of the spectra shown in Figure 16B.

[0052] Figure 19A is an illustration of the eigenvector with the largest eigenvalue of the

spectra shown in Figure 17A.

[0053] Figure 19B is an illustration of the corresponding residuum of the spectra shown in

Figure 17A.

[0054] Figures 20A and 20B are illustrations of permeability fields in a domain for the top

and bottom layers of a 3D SPE10 test case.
-11 -
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[0055] Figures 21A and 21B are illustrations of convergence histories of the permeability

fields shown in Figures 20A and 20B.

[0056] Figure 22 is an illustration of convergence histories of the permeability fields shown

in Figure 20B.

[0057] Figure 23A is an illustration of a domain having two almost impermeable shale layers.

[0058] Figure 23B is an illustration of convergence histories of the permeability field of the

domain shown in Figure 23A.

[0059] Figure 24A is an illustration of the fine-scale reference solution of a two-phase

saturation map for the top layer of a 3D SPEI10 test case.

[0060] Figure 24B is an illustration of the iterative multi-scale solution of a two-phase

saturation map for the top layer of a 3D SPEI10 test case.

[0061] Figure 24C is an illustration of the original multi-scale finite volume solution of a

two-phase saturation map for the top layer of a 3D SPEI10 test case.

[0062] Figure 25A is an illustration of the fine-scale reference solution of a two-phase
saturation map for a domain having two almost impermeable shale layers as shown in Figure

23A.

[0063] Figure 25B is an illustration of the iterative multi-scale solution of a two-phase
saturation map for a domain having two almost impermeable shale layers as shown in Figure

23A.
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[0064] Figure 25C is an illustration of the original multi-scale finite volume solution of a
two-phase saturation map for a domain having two almost impermeable shale layers as

shown in Figure 23A.

[0065] Figure 26 illustrates an example computer system for use in implementing the

methods.

DETAILED DESCRIPTION

[0066] Figure 1 depicts a block diagram of an example computer-implemented system for
use in modeling fluid flow in a subsurface reservoir using a model. The system utilizes

multi-scale physics to analyze fluid flow within the subsurface reservoir.

[0067] The system can include a computation module 2 for performing the computations
discussed herein. The computation of the model can be performed at process 4 on a system
of grids (e.g., a fine grid, a coarse grid, and a dual coarse grid) as discussed in herein. Dual
basis functions can be calculated at process 6 on the dual coarse control volumes of the dual
coarse grid by solving local elliptic problems 8 for fluid flow in porous media. The model
can include one or more variables 12 representative of fluid flow in the subsurface reservoir,

wherein at least one of these variables is responsive to the calculated dual basis functions.

[0068] At process 10 in Figure 1, a source term of an elliptic pressure equation is integrated
over cach coarse cell, and at process 11, for at least one timestep in a plurality of timesteps, a
pressure is calculated using an iterative method, as discussed herein. The pressure calculated
using the iterative method in the at least one timestep can be used to model fluid flow in the

subsurface reservoir.

-13 -
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[0069] A multi-scale finite volume (MSFV) method is used for computing the model.
Performance of the MSFV method can include calculating the dual basis functions on the
dual control volumes of the dual coarse grid by solving elliptic problems (at process 6 of

Figure 1).

[0070] A result of the computation can be a pressure that is used to model fluid flow in the
subsurface reservoir, or a computed model comprising the pressure calculated using the
iterative method in the at least one timestep that is used to model fluid flow in the subsurface

TeServoir.

[0071] The solution or result 14 of the computation can be displayed or output to various
components, including but not limited to, a visual display, a user interface device, a computer
readable storage medium, a monitor, a local computer, or a computer that is part of a

network.

[0072] To explain an embodiment of a MSFV method, consider the elliptic problem

-V-(4- Vp)=g¢q (Equation 1)

on the domain €2 with the boundary conditions Vp ‘R = f and p(x) =g at 691 and
892, respectively. Note that o€ = an U 692 is the whole boundary of the domain

(2 and R is the outward unit normal vector. The mobility tensor A s positive definite and

the right-hand sides ¢ , f and & are specified fields. The MSFV method in this
embodiment is designed to efficiently compute approximate solutions of Equation (1) for

highly heterogeneous coefficients A and right-hand sides ¢ , such as for mobility fields.
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Such mobility fields depict a high variance, complex correlation structures and typically can

be governed by a large range of length scales.

[0073] To illustrate further an MSFV technique, Figure 2 depicts a grid system which
includes a fine-scale grid 100, a conforming primal coarse-scale grid 200 shown in solid line,

and a conforming dual coarse-scale grid 300 shown in dashed line. The fine-scale grid 100 is

comprised of a plurality of fine cells 110. The primal coarse-scale grid 200 has M primal

coarse cells 210 and is constructed on the fine-scale grid 100 such that each primal coarse cell
210, €2, (k e[l, M ]), is comprised of multiple fine cells 110. The dual coarse-scale
grid 300, which also conforms to the fine-scale grid 100, can be constructed such that each

dual coarse control volume or cell 310, Q° (h e[l, N ]), is comprised of multiple fine

cells 110. For example in Figure 2, both the primal coarse cells 210 and dual coarse cells 310

contain 11 x 11 fine cells. Each dual coarse cell 310 depicted in Figure 2 is defined by nodes

320, X, , of the dual coarse-scale grid 300. As illustrated in Figure 2, each primal coarse cell

210 (Q k ) contains exactly one node 320, X, , in its interior. Generally, each node 320 is

centrally located in each primal coarse cell 210. For example, the dual coarse-scale grid 300
can be constructed by connecting nodes 320 contained within adjacent primal coarse cells
210. One skilled in the art will appreciate that the primal coarse-scale and dual coarse-scale
grids can be much coarser than the underlying fine grid 300 on which the mobility field is
represented. It is also emphasized that the multi-scale finite volume method is not limited to
the grids shown in Figure 2, as very irregular grids or decompositions can be employed, as

well as other sized grids such as the coarse cells containing 5 x 5or 7 x 7 fine cells.
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[0074] The reduction of degrees of freedom to describe the pressure field on the fine-scale

grid 100 (fine pressure P ) can be achieved through the approximation

Py (x)~ p'(x) = Z|:ZCDZ (X)p; + P’ (x):| (Equation 2)

where P, are the pressure values at X, nodes 320. The basis functions can be represented

h : : h : :
as @, and the correction function as @”. Opposed to classic finite-clement methods, the

basis functions and correction functions are typically not analytical functions. For example,

the basis functions and correction functions can be local numerical solutions of Equation (1)
A o : : o :
on (" without and with right-hand side, respectively. Localization can be achieved by

employing reduced problem boundary conditions at Q" , which is equivalent to

@" V) (A-Vo!)-i")=0 (Equation 3)

and

(ﬁh . V)((ﬂ, . Vq)h) " ) =" (Equation 4)

at 0Q" with 1" being the unit normal vector pointing out of Q" At the dual-grid nodes

~ h
X, which belong to Q" , CDZ(X ,) = 5kz and P (x,) =0. By construction, outside

Y h h . . . .
Q" | the D © and D" can be set to zero. An illustration of 2D basis and correction

functions is shown in Figure 3A-B, where Figure 3A shows the 2D basis function and Figure

3B shows the 2D correction function.
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. . = . '
[0075] To derive a linear system for the coarse pressure values P, one can substitute P of

Equation (2) into Equation (1) and integrate over ﬁl , which leads to
|5V (A VphdQ==[ V| AV Z[Z@kpk +c1>hj dQ

= Iﬁz qu (Equation 5)

forall [ € [1, M ]. With the Gauss theorem one obtains

N M
_jaﬁl ZZ(ZPkV(DZ +V(Dh) .nldrz (Equation 6)

h=1 \ k=l

M=
B

N
Pyl (- A-v! )am,dr+ ;j@ (CA-v')-mdr = J 940

=
Il

1

=5
Il

1

which results in the linear system
Ay Dy = b, (Equation 7)

for P, with

N
A, :Zjagl( A-VO!)-7,dl

Equation &
P (Eq )

and
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N
bz = Jﬁl qu - hzz;‘[aﬁl (_ A-VO' ) ﬁldr (Equation 9)

The unit normal vector 17, points out of Q ;. Note that the right-hand side b, also contains

O - , i h
the effects of the fine-scale fluxes across 02 ; induced by the correction functions O

[0076] With P, and the superposition of Equation (2) one obtains the fine-scale pressure
p' , which is an approximation of the fine-scale reference solution P, . In the MSFV

method the difference between p' and P, can be solely due to the localization assumption

of Equation (4), i.e., with
h ~h ~p o~
ro= (n . VX(/{ . fo)° n ) at 0Q" Vhe [I,N] (Equation 10)
the two fine-scale pressure fields become identical.

[0077] For a wide range of examples, the MSFV method with 7 =0 can lead to accurate
results. In other words, the reduced problem boundary conditions typically provide a good

localization assumption.

[0078] For multiphase problems, a conservative fine-scale velocity field can maintain mass-

balance of the transported phase saturations. The velocity

u=-1-Vp' (Equation 11)
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fulfills this requirement in a weak sense, that is, while it is conservative for each coarse

volume Qk , it 18 not conservative at the fine-scale. Therefore, a further step can be applied
to solve saturation transport on the fine grid. To reconstruct a conservative fine-scale

velocity field #" , which is consistent with u', the additional local problems
y p

~V-(A-Yp{)=¢ on Q; (Equation 12)
with

(A-Vp;)-m, =(A-Vp')-n, at 0Q, (Equation 13)
are solved. The velocity field

_|A-Vp] on &

a A-Vp' at aﬁk (Equation 14)

n

for all k €[1, M ] is conservative (provided P" is obtained with a conservative scheme)
and can be employed to solve transport equations on the fine grid. For multiphase subsurface
flow problems, for example, saturation transport may be calculated explicitly or implicitly.

Since the mobility A can depend on the saturations in the implicit version, iterations can be
performed between the pressure Equation (1), which is solved with the MSFV method, and

the transport equations. Good efficiency can be achieved when the transport equations are

solved implicitly on the individual domains Q r - A Schwarz overlap scheme can then be

employed to couple the local solutions. With this technique, which can be very efficient for
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hyperbolic problems, the low computational complexity of the overall MSFV method can be

maintained for multiphase flow.

[0079] The MSFV method can be adaptive, which provides several benefits to the user. For

example, the conservative velocity reconstruction described above can be required in coarse

cells Qk where fine-scale transport is of interest. Moreover, the basis and correction

functions can advantageously be stored and reused for subsequent time steps. The basis and

. . . ~ .
correction functions can be recomputed in dual cells (" where changes of the coefficient

A exceeds a specified limit. Additionally, the correction functions can be recomputed when

the right-hand side ¢ exceeds a specified limit. In order to make the MSFV method more

applicable for simulation of fluid flow within a subterranean reservoir, the MSFV method can
be extended to cover factors such as compressibility, gravity, and complex well schemes.
These extended versions of the MSFV method can prove to be effective for computation of a

wide range of examples for which the multi-scale and fine-scale solutions are in agreement.

[0080] An iterative MSFV (i-MSFV) method is discussed. As already pointed out, the

difference between the MSFV solution p' and the fine scale reference pressure Py can be
due to the localization assumptions, such that p' and Py become identical if the boundary

conditions obtained through Equation (4) are employed in fulfillment of 7 ’ which is given

in Equation (10). However, Equation (10) can require a priori knowledge of P s .
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[0081] A convergent iterative procedure to improve the localization boundary conditions,
. . . . h
which does not depend on P, can be used. Therefore, the iterative improvement of 7 can

be written as

rh(t) = (Nh VX(Z Vp'(t)) ) at 85;1 Vhe [1, N] (Equation 15)

The superscript () denotes the iteration level and

(1) _ ng o /(t) h—(1t) JXCRY
Py =5"-p Z Z(kak +@ (Equation 16)

is the smoothed MSFV fine-scale pressure approximation, where S is a linear smoothing

operator and 77, represents the number of smoothing steps. One skilled in the art will

: : : Ay
recognize that the correction functions O can be based on the local boundary

h h(l‘ -1)
conditions of Equation (4) with V' = F

[0082] For a more compact presentation of the iterative MSFV (i-MSFV) method, the fine-

h h h h
grid values of p;, p' , CDk , and D" can be ordered in vectors p;, p', (I)k, and P

' ! h h
with entries [ps ]i , [p ],' , [(Dk ]i , and [(D ]i , respectively. The linear equations

involved in this iterative procedure can be expressed in matrix form by writing

(-1

h Ak r(t—l)] h
@ N CZJ [p s Vi T Ei (Equation 17)
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J_ e N i (Equation 18)

N
'(1) _[ ns] [ h] — () [ h("l)l)
[ps i S U;(q)k jpk +|® ' (Equation 19)
=1
A0
Equation (17) corresponds to the localized problems for the correction functions O , s

following from the original elliptic equation of Equation (1) with the boundary condition of
Equation (4) defined according to Equation (15). The terms on the right-hand side express

(t-1) D

h -
the linear dependence of O on the smoothed pressure field p;( at the previous

iterative step (due to the iterative boundary condition of Equation (15)) and on the source
term ¢ of the elliptic problem, respectively. Equation (18) corresponds to the coarse-scale
problem of Equation (5), and is equivalent to Equations (7) - (9). Finally, Equation (19)

expresses the iterative reconstruction formula of Equation (16). Combining Equations (17),

(18), and (19) and introducing the identity matrix I, the following linear relation can be

obtained:

o] =I5 ) S lot] e ,) )

/

=4
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N
N [S " ]ij hzz; [([CDZ ]j Ak_llD g T 1 Jq )C;r][p ;(H) ]’ (Equation 20)

R
A4

r(t-1) r(t)
a

between the smoothed fine-scale pressure fields P nd P, ", at two consccutive

iteration steps.

[0083] A process flowchart of the i-MSFV method 400 is shown in Figure 4. The fine-scale
pressure is initialized in step 410. For example, in step 410 the fine-scale pressure can be set
to zero. Basis functions are computed in step 420 and the right-hand side of the elliptic
pressure equation is integrated over each coarse volume in step 430. One skilled in the art

will appreciate that these steps can be performed once and can then be followed by the main

iteration loop. At the beginning of each iteration of step 440, 77, smoothing steps 441 can be

applied, and the smoothed fine-scale pressure is employed to compute the correction
functions in step 443. The correction functions are used to obtain the right-hand side of the
linear system for the coarse pressure, which is shown in step 445. At the end of each

iteration, the coarse system is solved in step 447 and the new fine-scale pressure
approximation is reconstructed in step 449. The components of the vector P can be the

actual pressure values at the dual coarse-grid nodes. This process can be expressed in
algorithmic form such that it can be employed for use in a reservoir simulator to simulate

fluid flow within a subterranean reservoir:

e . 1(¢=0)
initialize P

h
Vh: Vk: compute basis functions D k
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calculate O ; Equation (18)

for £ =1 to number of i-MSFV iterations {

p p

r=) (=)
! =

for i =1 to 1, {

1 (t-1)
Y

-1
P =9- p'(t ) ; smoothing step

}

. . A (-1
Vh: compute correction function O ; based on Ps( )

calculate b = 0+DC- P;(H) + DE ; Equation (18)

5O _ p-D

solve coarse system A - P ; Equation (18)

reconstruct p'(l) ; Equation (2)

[0084] The i-MSFV method can be interpreted as a multi-grid method, where differential
equations are solved using a hierarchy of discretizations. The i-MSFV method can include
smoothing, restriction, and prolongation steps which are typical operations employed in

multi-grid methods. For example, the i-MSFV method can include a smoothing step to

. . . . 1(t=1) - . .
improve the approximate fine-grid solution P , a restriction step to obtain the right-hand

: -1 : . —
side B of the coarse grid system that can be used for solving the pressure values p(t),

and a prolongation step to acquire the updated fine-grid solution.
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[0085] In Figure 5, the i-MSFV method 500, schematically depicted as a multi-grid method,

includes applying 72, smoothing steps 510 to improve the approximate fine-grid pressure

-1
solution P e . For example, smoothing steps 510 can be performed by an iterative linear

solver. The smoothed fine-grid pressure can be employed to update the correction functions

JACD]
O . One skilled in the art will appreciate that the coarse-grid operator A , which is

. . h . . .
based on the basis functions P & » can be constructed a single time; whereas, the correction

: KD N : :
functions D can undergo iterative refinement. The updated correction functions

A : - : :
O can be used in a subsequent restriction step 520 to obtain the right-hand side of the

linear system for the coarse pressure. In particular, restriction step 520 leads to the right-

: -1 : : :
hand side B of the coarse grid system, which can be used for solving the pressure values

[_)(t) at the dual coarse-grid nodes in step 530. For example, the coarse system can be solved
. . . =O _ 4-1p -1 .
with any suitable solver by solving P~ = Ab . Due to the typically extreme

coarsening factors, the coarse problem can be small enough to be solved directly. Once the

coarse system is solved, the updated fine-grid pressure solution p'(l) can be obtained
through prolongation shown in step 540. Prolongation can be achieved simply by

superimposing the correction functions plus the basis functions weighted with the new coarse

pressure values. The reconstructed approximation of the fine-grid pressure 550, p'(l), can

then be used for the next iteration # = +1 shown in step 560.

[0086] Although shown here for two grid levels, the i-MSFV method can be extended for

more complex cycles. Moreover, it can be seen from the operations in Figures 4 and 5 that
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no assumptions regarding the topologies of the fine-scale and coarse-scale grids are made.
For example, the same methodology can be applied for unstructured fine grids, and instead of
coarse grids one can employ appropriate domain decompositions. The smoothing scheme
can be utilized to achieve robustness and good convergence. For example, consistent line-
relaxation works very well as a smoothing scheme due to the effectiveness of line-relaxation
to distribute the residuum from the coarse-scale dual cell boundaries across the domain.
Moreover, line-relaxation can depend weakly on the grid aspect ratio and on the level of
anisotropy. One skilled in the art will appreciate that a different smoothing scheme can be

used for unstructured fine grids.

[0087] Regarding fine-scale smoothing, the following is provided. As already mentioned
herein, line-relaxation (LR) is one possibility to smooth the approximate fine-grid solution

1(t-1)
D

. However, other smoothing schemes can be used. To illustrate a smoothing scheme,

line-relaxation can be employed in an example i-MSFV implementation. Therefore, consider

the fine-scale system
M-p,=R (Equation 21)

which results form a conservative finite-volume discretization of Equation (1) on the fine

grid. For simplicity, assume that the grid lines are parallel to the x-, y- and z-directions of a

Cartesian coordinate system. The linear operator can be split as M=M_ +M y T M _,

where M x,y,- represent the discretizations of the elliptic operator in the corresponding

coordinate directions. If one operator plus the diagonal components of the other ones are

treated implicitly, the following iterative scheme is obtained:
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(M, +diag(M, +M.))- p* =R—-(M, + M, —diag(M, + M) p’
(Equation 22)

(My +diag(Mx +MZ)).pu+2/3 — R—(Mx +M, —diag(Mx +MZ)),pu+1/3
(Equation 23)

(0, i, < 0 ) = R~ {01+, —aaslor, 1, )p
(Equation 24)

where P is the approximate solution after the © — th line-relaxation step and diag (M x)

represents the matrix with the diagonal of M _ . In this scheme, the three lincar systems (22)
- (24) are solved sequentially at each iteration. For a two-point flux approximation, the linear
operators M x,y,z have a tri-diagonal structure and the systems (22) - (24) can be solved, for

example with the Thomas algorithm, which has a linear complexity. Moreover, the three
linear operators can further be split into independent linear systems for each grid line. This
property can be useful for massive parallel computing, which can be advantageously used in
the field of reservoir simulation. This iterative line-relaxation solver can be convergent, but

for big problems the rate can be slow. In this multi-scale framework, however, few line-

. r(t-1 . o
relaxation steps can be applied to smooth P = sufficiently for an effective improvement

of the local boundary conditions. The optimum number of smoothing steps per i-MSFV

iteration can be case dependent.

EXAMPLE NUMERICAL RESULTS

[0088] The convergence rate of the i-MSFV method can be assessed. The first set of

examples discussed below are based on a test case consisting of a rectangular 2D domain
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with constant pressure and no-flow conditions at the vertical and horizontal boundaries,
respectively. For the discretization, an equidistant Cartesian fine grid with 44 x 44 cells was
used and in addition, for the i-MSFV method, a 4 x 4 coarse grid was employed (Figure 6A).
Since each coarse cell is composed of 11x11 fine cells, the upscaling factor is 11 in each
coordinate direction. For the following examples, homogeneous and heterogencous mobility

fields and domains with various aspect ratios @ (horizontal to vertical dimension) are

considered. The size of each fine cell is Ax X Ay with Ax =1= OCA)/ . One skilled in the
art will appreciate that a case with isotropic mobility and Ax = oAy is numerically

identical to a case with AX = Ay and a mobility which is larger by a factor of o’ in the y-

direction.

[0089] The homogencous examples with ﬂij = 5l~j also include a source with

q= 1/ (AxAY) and a sink with ¢ = —1/ (AxAy) distributed over the fine cells; the fine

cells are depicted in black in Figure 6A. For the heterogencous cases, the mobility field that
is depicted in Figure 6B, which has a natural logarithm (/r) variance of 6.66 and mean of
—0.29, was used. These cases are a part of the top layer of a three-dimensional SPE10 test
case [M.A. Christic and M.J. Blunt. Tenth SPE comparative solution project: A comparison
of upscaling techniques. SPE 66599, presented at The SPE Symposium on Reservoir

Simulation, Houston, TX, February, 2001.].

[0090] Figure 7 shows the base-10 logarithm (log) of the maximum error in the domain, i.c.

log( &) with € = ||p' — Py "OO , as a function of i-MSFV iterations and smoothing steps (per

iteration), #2,, for the homogencous (Figures 7A and 7C) and heterogeneous (Figures 7B and
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7D) cases with & =1 (Figures 7A and 7B) and @ = 10 (Figures 7C and 7D). For the cases

there exists a minimum 72, for which the i-MSFV method converges. The best convergence

can be observed for the homogeneous isotropic (& = 1) case and the worst convergence for

the heterogeneous case with & = 10.

[0091] Figure 8A shows the convergence histories for the heterogencous test case as a

function of @ with 7, = 10. The slope decreases as O increases, but eventually it
approaches an asymptotic value. This observation is confirmed by the plot in Figure 8B,
which shows the convergence rate (average slope between log( € )=—2 and log(€)=—8) as a
function of @& and 7 for the heterogenecous case. For & > 20, the convergence dependence

on the aspect ratio becomes negligible. This demonstrates that the i-MSFV method can be
applied for cases with very large aspect ratios and/or extreme anisotropies. For comparison,
the convergence rates (multiplied with 100) are also shown for the line relaxation method,

which can be employed as a smoother within the i-MSFV algorithm, shown in Figure 8§B.

[0092] Figure 9A illustrates how the convergence rate increases with #,. To estimate the

optimal number of smoothing steps per iteration, the assumption is made that the amount of

computational work to calculate the correction functions, to solve the coarse problem, and to

’ : : : :
reconstruct P corresponds to ﬂ times the computational work required for one smoothing

step. This leads to the relation:

Convergence Rate

l+n, /B

Effective Convergence Rate = (Equation 25)
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This can be a measure for the error reduction, if the computational work equivalent to one
MSFYV iteration (without smoothing nor reconstruction of a conservative velocity field) is

invested. Figure 9B shows the effective convergence rates for various aspect ratios o as

functions of 77, where ﬂ is assumed to be one.

[0093] To analyze the computational cost associated with the i-MSFV method as a function
of the problem size, the number of fine cells in the homogeneous isotropic test case was
increased successively by adding coarse-grid cells each comprised of 11x11 fine cells.
Figure 10 depicts the convergence rates for 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x§, 9x9, and

10x10 coarse grids. The log—log plot shows that the convergence rate (for constant n, = 10)

for the i-MSFV method, which is indicated by a dashed line, can be insensitive to the fine-
grid size in comparison to the convergence rate of the line relaxation solver, which is
indicated by a solid line. Moreover, calculation steps in the i-MSFV algorithm, other than
solving the global coarse-scale problem, can be performed locally and independently.
Therefore, since up to very large cases the cost for solving the coarse system can be virtually
negligible, the i-MSFV method can be a very efficient linear solver for large, stiff problems,
and it can be used for massive parallel computing which can be employed in the field of

reservoir simulation.

[0094] Another parameter of interest is the upscaling factor. Figures 11A-B show the

convergence rate for the heterogencous case with upscaling factors [' of 11 x 11, 7 x 7, and

5 x 5. In Figure 11A, the convergence rates are shown as functions of & with constant 7, =

10 and in Figure 11B, they are depicted as functions of #2; with constant & = 5. One skilled

in the art will appreciate that the optimal choice of I depends on the size of the fine grid and
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on the computational cost of the individual algorithmic components. Therefore, the optimal

choice of I depends highly upon the coarse-scale solver .

[0095] Four sets of 20 realizations of log-normally distributed mobility fields with spherical
variogram and dimensionless correlation lengths ¥/, = 0.5 and ¥, = 0.02 are generated

using sequential Gaussian simulations. For each set, variance and mean of ln(i) are 2.0

and 3.0, respectively. As depicted in Figure 12, the angles @ between the long correlation

length and vertical domain boundaries (or vertical grid lines orientation) are 0° (Figure 12A),
15° (Figure 12B), 30° (Figure 12C), and 45° (Figure 12D). For cach case, a 100 x 100 fine
grid and a 20 % 20 coarse grid was employed. At the boundaries of the quadratic domain, no-

flow conditions were applied and at the lower left and upper right corners (cells (3,3) and
(97,97)), a source and a sink of equal strength (q ==x 1/ (AxAy) ) were imposed; these cells
are indicated by a black dot in Figure 13. Figures 14A and 14B show the mean convergence
rates as functions of @ for various #,, @, and I" . For example, Figure 14A depicts @ = 1
and & =5 and Figure 14B depicts a 5 x 5 and 7 x 7 upscaling factor. As shown in Figures
14A and 14B, there can be a significant difference in the convergence rates. However, in

general, the convergence rate can decrease with increasing layering orientation angle 6.

[0096] Regarding spectral analysis of the i-MSFV method, the following are discussed. The
convergence assessment of the i-MSFV method may also be observed by analyzing the

).
in

*(ng
spectrum of the associated iteration matrix, i.e., according to Equation (20), of A
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1@ _ %) 1(t+1) *
Py = A " P +b (Equation 26)

o *(ny oy oy
The iteration procedure converges if eigenvalues of A ‘ )lay within the unit-disc of the

complex plane.

*
[0097] Various spectra of A () for the homogenecous anisotropic test case with no flow
conditions at all boundaries are depicted in Figures 15A — 15D. Fine and coarse grids consist

of 44 x 44 and 4 x 4 cells, respectively, and Figures 15A — 15D refer to iteration matrices

based on various #2;. In particular, Figure 15A is for 7 = 0, Figure 15B is for % = 1,

Figure 15C is for 1, = 2, and Figure 15D is for 77, = 5. These results confirm those
presented in Figure 7A, such that at least two smoothing steps may be required for

convergence of the homogeneous-isotropic case. It is noted that, unlike the matrix M of the

*
fine-scale problem of Equation (21), A () 1S not symmetric and possesses non-real

*(n
cigenvalues. Eigenvalues of A () are clustered around the negative real axis, which
implies that the approximate solution at successive iteration steps oscillates around the exact

one.

[0098] The cigenfunctions P associated with the largest eigenvalues are plotted in Figures

16A-D together with the corresponding residuum P = V-A-Vp in the discrete

fulfillment of Equation (1) without right-hand side. Figure 16A is an illustration of
eigenvectors with the largest eigenvalues of the spectra shown in Figure 15A. Figure 16B is
an illustration of corresponding residuum in the fulfillment of Equation 1 without the right

hand side of the spectra shown in Figure 15A. Figure 16C is an illustration of eigenvectors

-32 -



WO 2010/042746 PCT/US2009/060044

with the largest eigenvalues of the spectra shown in Figure 15C. Figure 16D is an illustration

of corresponding residuum in the fulfillment of Equation 1 without the right hand side of the

spectra shown in Figure 15C. Only the results for 72, = 0 (unstable) and 77, = 2 (stable) are

shown. In both cases, the residuum is largest at the dual-cell boundaries and without

smoothing it is zero everywhere else. This is in agreement with the fact that any non-

smoothed solution p' fulfills Equation (1) exactly inside the coarse dual cells. The

smoothing steps efficiently redistribute the residuum and reduce its maximum amplitude.

*
Consequently, the eigenvectors of A () become amplified for 72, = 0 and are damped for

*
[0099] In Figures 17A and 17B, spectra of the iteration matrix A ) can be observed for

cases with heterogeneous isotropic mobility fields with no flow boundary conditions. Again,

fine and coarse grids consist of 44 x 44 and 4 x 4 cells, respectively. Figure 17A is for 7, =
0 and Figure 17B is for 7, = 5. In Figures 18A and 18B, the largest values of the residua
associated with the ten least stable eigenvectors for 72, = 0 and 7 = 5, respectively, are
presented. Notice the discontinuous distribution in Figure 18A for the case with #; =0. The
residuum gets distributed by the 72, = 5 smoothing steps (Figure 18B). Finally, Figures 19A

and 19B depict the least stable eigenvector for 72, = 5 and its residuum.

[00100] Following is a discussion of application to subsurface flow. In typical

incompressible subsurface reservoir flow simulations, the pressure in the porous media is

governed by Equation (1). As in the examples herein, the mobility A typically has a
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complex distribution with high variance and sharp contrasts. It can be a function of the rock
permeability K , the fluid phase saturations and the fluid viscositics. For single-phase flow

of a fluid with viscosity /{ one can write A=k/ M. The expression for multiphase flow

can be based on the relative permeability concept and can be expressed as
A=k "k -
- =17 / K, (where 1 p 18 the number of fluid phases). The relative

k

permeabilities ™7, can be specified for each fluid phase J as functions of the saturations.

While 4 does not change with time in single-phase flow simulations, it evolves if multiple
fluid phases are transported through the reservoir. For the following examples, the right-hand
side of Equation (1) is non-zero only at the well. Therefore, no capillary pressure difference

between the fluid phases and no gravity are considered.

[00101] Regarding single-phase flow, the following are discussed. The convergence
behavior of the i-MSFV method for single-phase flow in particularly challenging reservoirs
can be investigated in the following examples. The rectangular 2D domain can be discretized
by a Cartesian, equidistant 220 % 55 fine-scale grid. No-flow conditions are applied at the
bottom and top walls; at the left and right boundaries constant dimensionless pressure values
of 1 and 0 are applied, respectively. Permeability fields from the top and bottom layers of the
3D SPE 10 test case are shown in Figures 20A and 20B and the corresponding convergence
histories for the permeability fields are shown in Figures 21A and 21B, respectively, where a
20%5 coarse grid was employed. As with previous examples, the error can be defined as the
logarithm of the maximum absolute difference between the approximate i-MSFV and the

reference fine-scale pressure values. While for the top layer a good convergence rate can be
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achieved with 77, = 10 (Figure 21A), approximately 250 smoothing steps can be applied for

optimal convergence with the bottom layer permeability field (Figure 21B). However, in this
example, many more smoothing steps can be applied if line relaxation is employed as an
iterative linear solver (~10’ iterations can be performed to reduce the error by five orders of
magnitude). Moreover, Figure 22 illustrates that the number of smoothing steps can be
reduced dramatically, if a coarsening factor of I =5 x 5 (and fine grid of 220 x 60) instead

of I' =11 x 11 (and fine grid of 220 x 55) is employed.

[00102] As a further example, a rectangular domain with two almost impermeable

shale layers is considered (Figure 23A); the mobility in the shale layers is 10"’ times smaller
than in the rest of the domain. The equidistant Cartesian fine grid consists of 55 x 55 cells
and the coarse grid for the i-MSFV method contains 5 X 5 volumes. Again, no-flow
conditions are applied at the bottom and top boundaries and at the left and right sides the

dimensionless pressure values are set equal to 1 and 0, respectively. Figure 23B shows the

convergence histories with 72, = 10 for various aspect ratios.

[00103] Regarding multi-phase flow, the following are discussed. As already pointed

out, in multiphase flow simulations the mobility A and therefore the pressure field evolve
with time as the phase saturations are transported through the domain. One skilled in the art
will recognize that this also affects the localization boundary conditions, which continuously
experience changes in the whole domain even where the mobility remains constant.
Consequently, in a straight forward application of the i-MSFV method for multiphase flow,
correction functions can be re-computed multiple times for each time-step. Although the
number of i-MSFYV iterations can be reduced by the good initial condition obtained from the
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previous time step, such an approach can be more expensive than the original MSFV method.
However, infrequently updating the localization boundary conditions for the re-computation
of the correction functions can be sufficient to obtain highly accurate solutions. While in this
example a converged solution is computed at the beginning of a simulation, the same
localization boundary conditions can be used for a number of subsequent time steps and can
be updated infrequently, such as each tenth time step by applying a single iteration.
Therefore, for the major part of the simulation, the original MSFV method with slightly
modified correction functions can be employed and both basis and correction functions can
be updated in regions where the total mobility changes are significant. The computational
cost of this algorithm can be comparable with the one of the original MSFV method.

However, the accuracy of the solutions can be improved dramatically.

[00104] The i-MSFV method with infrequently updating the localization conditions is

tested for two-phase flow scenarios with a viscosity ratio ,uz/ M, of 10. The relative

2
permeability krl,z =S 1,2 (where S1,2 = [0,1] are the phase saturations) is used for the

first example and kﬁ,z =S 1,2 is used for the second example. The permeability fields of

Figures 20A and 23A are employed and the rectangular domains are discretized by 220 x 55
and 55 x 55 fine grids, respectively. In both examples, coarse grids consisting of volumes
containing 11 x 11 fine cells with an aspect ratio of 10 are used and no-flow conditions are
applied at the whole domain boundary. Initially, the domains are saturated with a first
viscous fluid and a less viscous fluid is injected into the fine cell (0, 0). In the first scenario,
production occurs from cell (220, 55) and in the second scenario from cell (55, 55). For the
numerical solution of the phase transport equation, an explicit scheme was employed.
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Figures 24 and 25 show the saturation maps for the two test cases after 0.165 pore volume
injected (PVI). The i-MSFV method that updates the correction function boundary
conditions every 10th time step (shown in Figures 24B and 25B) can lead to results that are
virtually identical with the fine-scale reference solutions shown in Figures 24A and 25A.
The MSFV solutions that are shown in 23C and 24C of show significant deviations from the

reference.

[00105] While in the foregoing specification this invention has been described in
relation to certain preferred embodiments thereof, and many details have been set forth for
purpose of illustration, it will be apparent to those skilled in the art that the invention is
susceptible to alteration and that certain other details described herein can vary considerably

without departing from the basic principles of the invention.

[00106] It is further noted that the systems and methods may be implemented on
various types of computer architectures, such as for example on a single general purpose
computer or workstation, or on a networked system, or in a client-server configuration, or in
an application service provider configuration. An exemplary computer system suitable for
implementing the methods disclosed herein is illustrated in Figure 26. As shown in Figure
26, the computer system to implement one or more methods and systems disclosed herein can
be linked to a network link which can be, e.g., part of a local area network to other, local
computer systems and/or part of a wide area network, such as the Internet, that is connected
to other, remote computer systems. For example, the methods and systems described herein
may be implemented on many different types of processing devices by program code
including program instructions that are executable by the device processing subsystem. The

software program instructions may include source code, object code, machine code, or any
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other stored data that is operable to cause a processing system to perform the methods and
operations described herein. As an illustration, a computer can be programmed with
instructions to perform the various steps of the flowcharts shown in Figures 4 and 5, and

various steps of the processes of the block diagram shown in Figure 1.

[00107] It is further noted that the systems and methods may include data signals
conveyed via networks (e.g., local area network, wide area network, internet, combinations
thereof), fiber optic medium, carrier waves, wireless networks, and combinations thereof for
communication with one or more data processing devices. The data signals can carry any or

all of the data disclosed herein that is provided to or from a device.

[00108] The systems’ and methods’ data (e.g., associations, mappings, data input, data
output, intermediate data results, final data results) may be stored and implemented in one or
more different types of computer-implemented data stores, such as different types of storage
devices and programming constructs (e.g., RAM, ROM, Flash memory, flat files, databases,
programming data structures, programming variables, IF-THEN (or similar type) statement
constructs). It is noted that data structures describe formats for use in organizing and storing
data in databases, programs, memory, or other computer-readable media for use by a
computer program. As an illustration, a system and method can be configured with one or
more data structures resident in a memory for storing data representing a fine grid, a coarse
grid, a dual coarse grid, and dual basis functions calculated on the dual coarse control
volumes by solving local elliptic problems. Software instructions (executing on one or more
data processors) can access the data stored in the data structure for generating the results

described herein).
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[00109] An embodiment of the present disclosure provides a computer-readable
medium storing a computer program executable by a computer for performing the steps of
any of the methods disclosed herein. A computer program product can be provided for use in
conjunction with a computer having one or more memory units and one or more processor
units, the computer program product including a computer readable storage medium having a
computer program mechanism encoded thereon, wherein the computer program mechanism
can be loaded into the one or more memory units of the computer and cause the one or more
processor units of the computer to execute various steps illustrated in the flow chart of

Figures 4 and 5, and various steps of the processes of the block diagram shown in Figure 1.

[00110] The computer components, software modules, functions, data stores and data
structures described herein may be connected directly or indirectly to each other in order to
allow the flow of data needed for their operations. It is also noted that a module or processor
includes but is not limited to a unit of code that performs a software operation, and can be
implemented for example as a subroutine unit of code, or as a software function unit of code,
or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script
language, or as another type of computer code. The software components and/or
functionality may be located on a single computer or distributed across multiple computers

depending upon the situation at hand.

[00111] It should be understood that as used in the description herein and throughout

(13 EE Y
a

the claims that follow, the meaning of an,” and “the” includes plural reference unless
the context clearly dictates otherwise. Also, as used in the description herein and throughout

the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly

dictates otherwise. Finally, as used in the description herein and throughout the claims that
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follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may

be used interchangeably unless the context expressly dictates otherwise.
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WHAT IS CLAIMED IS:

1. A multi-scale computer-implemented method for use in modeling fluid flow in a
subsurface reservoir, the method comprising;:
creating a fine grid defining a plurality of fine cells associated with a geological
formation of the subsurface reservoir, a coarse grid defining a plurality of coarse
cells having interfaces between the coarse cells, the coarse cells being aggregates
of the fine cells, and a dual coarse grid defining a plurality of dual coarse control
volumes, the dual coarse control volumes being aggregates of the fine cells and
having boundaries bounding the dual coarse control volumes;
calculating basis functions on the dual coarse control volumes by solving local elliptic
problems;
integrating a source term of an elliptic pressure equation over each coarse cell; and
calculating a pressure using an iterative method comprising, for each iteration:
(1) applying a smoothing scheme to a solution for the pressure over the fine
grid from a previous iteration to provide a smoothed fine-grid pressure;
(i1) calculating correction functions using the smoothed fine-grid pressure
from step (i);
(iii) applying a restriction operation comprising the correction functions from
step (i1) to solve for the pressure over the coarse grid; and
(iv) applying a prolongation operation to the pressure solved over the coarse
grid from step (ii1) to reconstruct an updated solution for the pressure over

the fine-grid;
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wherein the pressure calculated using the iterative method is used to model fluid flow
in the subsurface reservoir.

2. The method of claim 1, wherein steps (1) to (iv) are repeated until the solution for the
pressure over the fine-grid converges.
3. The method of claim 1, further comprising outputting or displaying the pressure
calculated using the iterative method.
4. The method of claim 1, further comprising, prior to calculating the pressure using the
iterative method, a step of initializing the value for the pressure in the fine cells by setting the
value equal to zero.
5. The method of claim 1, wherein the solution for the pressure over the fine grid in step
(1) s calculated using the calculated basis functions and the integrated source term.
6. The method of claim 1, wherein the iterative method is performed for a plurality of
timesteps and the dual basis functions and the correction functions are re-computed in at least
one timestep over the dual coarse control volumes where a change of the mobility coefficient
of the local elliptic problems exceeds a predetermined threshold value.
7. The method of claim 1, wherein the smoothing scheme of step (i) comprises applying

n, smoothing steps, where #_ 1s a positive integer greater than 1.

8. The method of claim 1, wherein the step of applying the smoothing scheme to the
solution of the pressure over the fine grid comprises applying a line-relaxation smoothing
operation, the line-relaxation smoothing operation comprising:
applying a linear operator that has a tri-diagonal structure to the solution of the
pressure over the fine grid to provide a linear system of equations; and

solving the linear system of equations using a Thomas algorithm.
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9. The method of claim 1, wherein the prolongation operation comprises the correction
functions superimposed with basis functions that have been weighted with the values for the
pressure obtained from step (iii).
10.  The method of claim 1, wherein the calculating the pressure using the iterative
method is performed for at least one timestep in a plurality of timesteps.
11.  The method of claim 1, wherein the iterative method is performed for a plurality of
timesteps and the correction functions are re-computed in at least one timestep where the
source term exceeds a predetermined limit.
12. The method of claim 1, wherein the applying the restriction operation comprising the
correction functions from step (ii) to solve for the pressure over the coarse grid of step (iii)
comprises:
calculating the right-hand side of the linear system for the pressure over the coarse-
grid using the correction functions from step (ii); and
solving for the pressure on the coarse grid using the calculated right-hand side of the
linear system for the pressure over the coarse-grid.
13. A computer-implemented system for use in modeling fluid flow in a geological
formation of a subsurface reservoir using a model, the system comprising;:
one or more data structures resident in a memory for storing data representing a fine grid,
a coarse grid, a dual coarse grid, and dual basis functions calculated on the dual
coarse control volumes by solving local elliptic problems; and
software instructions, for executing on one or more data processors, to compute the model

using a finite volume method in at least two timesteps; wherein:

- 43 -



WO 2010/042746 PCT/US2009/060044

the model comprises one or more variables representative of fluid flow in the
subsurface reservoir, wherein at least one of the one or more variables
representative of fluid flow is responsive to calculated basis functions;
the computing comprises:
calculating the basis functions on the dual coarse control volumes by solving
local elliptic problems;
integrating a source term of an elliptic pressure equation over each coarse cell;
and
for at least one timestep of the at least two timesteps, calculating a pressure
using an iterative method, the iterative method comprising, for each
iteration:

(1) applying a smoothing scheme to a solution for the pressure over the
fine-grid from a previous iteration to provide a smoothed fine-grid
pressure;

(i1) calculating correction functions using the smoothed fine-grid pressure
from step (i);

(iii) solving for the pressure on the coarse grid using the correction
functions from step (ii); and

(iv) reconstructing a solution for the pressure over the fine-grid using the
result from step (iii); and

a visual display for displaying fluid flow in the geological formation of the subsurface
reservoir using the computed model, comprising the pressure calculated using the

iterative method in the at least two timesteps.
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14. A method for operating a subsurface reservoir to achieve improved production of a
reservoir fluid from a geological formation of the subsurface reservoir, comprising:
injecting a displacement fluid into a portion of the geological formation of the
subsurface reservoir; and
applying a reservoir fluid production process to the subsurface reservoir under at least
one operational condition that is derived based on the pressure calculated using
the iterative method from any one of claims 1 and 13.
15.  The method of claim 14, wherein the at least one operational condition is
displacement fluid injection rate, reservoir fluid production rate, viscosity ratio of
displacement fluid to reservoir fluid, location of injection of the displacement fluid, location
of production of the reservoir fluid, displacement fluid saturations, reservoir fluid saturations,
displacement fluid saturations at different pore volumes injected, or reservoir fluid saturations

at different pore volumes injected.
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