wo 20197112972 A1 |0 000 00000 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
13 June 2019 (13.06.2019)

(10) International Publication Number

WO 2019/112972 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 21/57 (2013.01)

(21) International Application Number:
PCT/US2018/063686

(22) International Filing Date:

03 December 2018 (03.12.2018)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

62/596,081 07 December 2017 (07.12.2017) US
62/596,099 07 December 2017 (07.12.2017) US
16/206,092 30 November 2018 (30.11.2018) US

(71) Applicant: APPLE INC. [US/US]; One Apple Park Way,
Cupertino, California 95014 (US).

(72) Inventors: DE CESARE, Joshua P.; One Apple Park
Way, Cupertino, California 95014 (US). PAASKE, Timo-

thy R.; One Apple Park Way, Cupertino, California 95014
(US). KOVAH, Xeno S.; One Apple Park Way, Cuperti-
no, California 95014 (US). SCHLEJ, Nikolaj, One Apple
Park Way, Cupertino, California 95014 (US). WILCOX,
Jeffrey R.; One Apple Park Way, Cupertino, California
95014 (US). DOSHI, Hardik K., One Apple Park Way,
Cupertino, California 95014 (US). ALDERFER, Kevin H.,
One Apple Park Way, Cupertino, California 95014 (US).
KALLENBERG, Corey T.; One Apple Park Way, Cuper-
tino, California 95014 (US).

(74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL, P.C.; SEEGERS, Paul T., P.O. Box 398,
Austin, Texas 78767-0398 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(54) Title: METHOD AND APPARATUS FOR BOOT VARIABLE PROTECTION

TofFrom Network
10
™ Network iF
14
Aux Processer 12 SHC
122
k4
——
o —TPCH
3 o il
_______ F -
e o g
| Boot Code 2 : b18
S ! ; <
) o mm e e,
b i L
! : Verification i Processor
i Code 11 123
| ; Lad To/From
NV Sior2f | Peripheral
----------- ¢ k Devices
¥ To
\ Display
Boot Codde .
Fig. 1
Verification
Code
NV Sfor 121

Vesified Boot Code
To Main Processor
{via PCH)

s

Main Processor

18

3

Main Memory

iz

(57) Abstract: A method and apparatus for protecting boot variables is disclosed. A computer system includes a main processor and
an auxiliary processor. The auxiliary processor is associated with a non-volatile memory that stores variables associated with boot code
that is also stored thereon. The main processor may send a request to the auxiliary processor to alter one of the variables stored in
the non-volatile memory. Responsive to receiving the request, the auxiliary processor may execute a security policy to determine if
the main processor meets the criteria for altering the variable. If the auxiliary processor determines that the main processor meets the
criteria, it may grant permission to alter the variable.

[Continued on next page]

WO 2019/112972 A [IN 000000 0000 OO0

KR,KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

METHOD AND APPARATUS FOR BOOT VARIABLE PROTECTION

Technical Field
[0001] This disclosure is directed to computer systems, and more particularly, to security during

the booting of computer systems.

Description of the Related Art

[0002] The beginning of operation in a computer system begins with a process known as boot, or
“booting up.” Firmware in a computer system may provide the first instructions that are
executed by a processor in order to begin the boot process. From there, the processor may
execute instructions to perform functions such as configuring I/O drivers, loading an operating
system kernel, and so forth. Upon successful completion of the boot process, the computer
system is ready for normal operation.

[0003] One of the times that a computer may be vulnerable to attacks by malicious software is
during the boot process. Accordingly, many computer systems are designed with extra security
measures to ensure that they are not compromised during the boot process. Despite these
measures, an attacker may nevertheless gain access to the system, e.g., to an operating system
kernel. Once the attacker has gained access, the firmware used to boot the system can be altered,
variables used in booting the computer system can be altered, and information can be stolen.

Thus, the computer itself may be compromised, as may one or more users of the system.

SUMMARY
[0004] A method and apparatus for protecting boot variables is disclosed. In one embodiment,
computer system includes a main processor and an auxiliary processor. The auxiliary processor is
associated with a non-volatile storage that stores variables associated with boot code that is also
stored thereon. The main processor may send a request to the auxiliary processor to alter one of
the variables stored in the non-volatile storage. Responsive to receiving the request, the auxiliary
processor may execute a security policy to determine if the main processor meets the criteria for
altering the variable. If the auxiliary processor determines that the main processor meets the
criteria, it may grant permission to alter the variable.
[0005] In one embodiment, the criteria include determining if the main processor is operating in
a recovery mode and if the main processor has provided proper credentials (e.g., a password or
some other form of identification information). If the auxiliary processor determines that the

main processor is not operating in the recovery mode, has not provided the proper credentials, or

1

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

both, then it may inhibit the main processor from altering the variable. Operating in the recovery
mode comprises the main processor operating in a mode the computer system may operate with a
reduced set of capabilities relative to a normal operating system.

[0006] During a system boot procedure, the main processor may request access (e.g., read
access) to various ones of the variables stored in the non-volatile memory. The auxiliary
processor may request that the main processor provide proper credentials, if not already
provided. Responsive to determining that the main processor has provided the proper credentials,
the auxiliary processor may allow the main processor access to the variable. The auxiliary
processor may further limit access to variables stored on the non-volatile memory to one at a

time.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The following detailed description refers to the accompanying drawings, which are now

briefly described.

[0008] Fig. 1 is a block diagram of one embodiment of a computer system having main and
auxiliary processors.

[0009] Fig. 2 is a simplified flow diagram illustrating a boot procedure in one embodiment of a
computer system.

[0010] Fig. 3 is a flow diagram illustrating additional details of a boot procedure for one
embodiment of a computer system.

[0011] Fig. 4 a simplified flow diagram illustrating another embodiment of a boot procedure for
a computer system.

[0012] Fig. 5 is a flow diagram illustrating one embodiment of operations in a recovery operating
system.

[0013] Fig. 6 is a block diagram illustrating information stored in one embodiment of a non-
volatile memory implemented on an auxiliary processor.

[0014] Fig. 7A is a block diagram of additional details of one embodiment of an auxiliary
processor.

[0015] Fig. 7B is a diagram illustrating information exchanges between various units in
attempting to modify a variable in one embodiment.

[0016] Fig. 8 is a flow diagram of one embodiment of a method for determining whether a

variable stored in non-volatile memory may be overwritten.

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

[0017] Fig. 9 is a flow diagram of one embodiment of a method for determining whether to grant

access to a variable stored in a non-volatile memory during a system boot procedure.

[0018] Although the embodiments disclosed herein are susceptible to various modifications and
alternative forms, specific embodiments are shown by way of example in the drawings and are
described herein in detail. It should be understood, however, that drawings and detailed
description thereto are not intended to limit the scope of the claims to the particular forms
disclosed. On the contrary, this application is intended to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the disclosure of the present application as
defined by the appended claims.

EE R4S

[0019] This disclosure includes references to “one embodiment,” “a particular embodiment,”

2 ¢

“some embodiments,” “various embodiments,” or “an embodiment.” The appearances of the

phrases “in one embodiment,” “in a particular embodiment,” “in some embodiments,” “in
various embodiments,” or “in an embodiment” do not necessarily refer to the same embodiment.
Particular features, structures, or characteristics may be combined in any suitable manner
consistent with this disclosure.

[0020] Within this disclosure, different eniities {which may variously be referred to as “unils,”

“circuits,” other components, eic.) may be described or claimed as “configured” to perform one

or more tasks or operations. This formulahon—I/entity] configured to [perform one or more
tasks}—is used herein to refer to structure {ie, something phvsical, such as an electronic
circtut}). More specifically, this formulation 18 used to indicate that this structwre is arranged o
perform the one or more tasks during operation. A structure can be said to be “configwred to”
perform some task even if the structure 15 not currently being operated. A “credit distnibution
circuit configured to distribute credits to a plurality of processor cores” is intended to cover, for
example, an integrated circuit that has circuitry that performs this function during operation, even
if the mnitegrated circuit i guestion 15 not currently berng used {e.g., a power supply 15 not
connected to it). Thus, an entity described or recited as “configured 10” perform some task refers
1o something physical, such as a device, circuit, memory storing program instructions executable
to implement the tagk, efc. This phrase is not used herein to refer (o something intangible.

[0021] The term “configured (07 15 not intended to mean “configurable 10.” An unprogrammed
FPGA, for example, would not be considered to be “configured to” perform some specific

function, although it may be “configurable to” perform that function afier programming.

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

[0022] Reciting in the appended claims that a structure is “configured to” perform one or more
tasks is expressly intended not to invoke 35 U.S.C. § 112(f) for that claim element. Accordingly,
none of the claims in this application as filed are intended to be interpreted as having means-plus-
function elements. Should Applicant wish to invoke Section 112(f) during prosecution, it will
recite claim elements using the “means for” [performing a function] construct.

[0023] As used herein, the term “based on™ is used to describe one or more factors that affect a
determination. This term does not foreclose the possibility that additional factors may affect the
determination. That is, a determination may be solely based on specified factors or based on the
specified factors as well as other, unspecified factors. Consider the phrase “determine A based
on B.” This phrase specifies that B is a factor that is used to determine A or that affects the
determination of A. This phrase does not foreclose that the determination of A may also be
based on some other factor, such as C. This phrase is also intended to cover an embodiment in
which A is determined based solely on B. As used herein, the phrase “based on” is synonymous
with the phrase “based at least in part on.”

[0024] As used herein, the phrase “in response to” describes one or more factors that trigger an
effect. This phrase does not foreclose the possibility that additional factors may affect or
otherwise trigger the effect. That is, an effect may be solely in response to those factors, or may
be in response to the specified factors as well as other, unspecified factors. Consider the phrase
“perform A in response to B.” This phrase specifies that B is a factor that triggers the
performance of A. This phrase does not foreclose that performing A may also be in response to
some other factor, such as C. This phrase is also intended to cover an embodiment in which A is
performed solely in response to B.

[0025] As used herein, the terms “first,” “second,” etc. are used as labels for nouns that they
precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.), unless stated
otherwise. For example, in a register file having eight registers, the terms “first register” and
“second register” can be used to refer to any two of the eight registers, and not, for example, just
logical registers O and 1.

[0026] When used in the claims, the term “or” is used as an inclusive or and not as an exclusive
or. For example, the phrase “at least one of X, y, or z” means any one of x, y, and z, as well as
any combination thereof.

[0027] In the following description, numerous specific details are set forth to provide a thorough
understanding of the disclosed embodiments. One having ordinary skill in the art, however,

should recognize that aspects of disclosed embodiments might be practiced without these specific

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

details. In some instances, well-known circuits, structures, signals, computer program instruction,

and techniques have not been shown in detail to avoid obscuring the disclosed embodiments.

DETAILED DESCRIPTION

[0028] Turning now to Fig. 1, a block diagram of one embodiment of a computer system is
shown. The embodiment of computer system 10 is exemplary and is not intended to be limiting.
The various units shown here may be implemented as integrated circuits, or as parts thereof.
[0029] Computer system 10 in the embodiment shown includes a main processor 18 and an
auxiliary processor 12. Main processor 18 may be one of a number of different types of
processors used in various types of computer systems. In one embodiment, main processor 18
may be a general purpose processor designed to execute software of a variety of types. In some
embodiments, main processor 18 may be a multi-core processor. Multi-core embodiments may
be homogeneous (e.g., each core has substantially the same architecture) or heterogeneous (e.g.,
one or more of the cores may have a substantially different architecture relative to other cores).
In heterogeneous multi-core embodiments, the various processor cores may be optimized for
different goals. For example, one processor core may be optimized for maximum performance
(e.g., in instructions executed per unit time), while another processor core may be optimized to
for power efficiency (e.g., to minimize power consumed for various processing workloads).
[0030] In addition to one or more processor cores, main processor 18 may also include a memory
controller that is coupled to main memory 17. The memory controller implemented on main
processor 18 may interface with the cores and other functional circuit blocks implemented on the
same integrated circuit die. Furthermore, other functional circuit blocks implemented elsewhere
in computer system 10 may also interface with the memory controller implemented on main
processor 18 for access to main memory 17.

[0031] Computer system 10 in the embodiment shown includes platform controller hub (PCH)
14 coupled to main processor 18. PCH 14 may include a number of different functional circuit
blocks used to provide interfacing and communications with other portions of computer system
10. For example, PCH 14 in the embodiment shown is coupled to a network interface 15 (e.g.,
such as network interface chip or card) to provide communications between computer system 10
and other systems coupled to a network. PCH 14 may also include a display controller, a real-
time clock circuit, and an I/O controller, among other functional circuit blocks. PCH 14 may
facilitate an interface with various types of peripherals on corresponding bus types. Such bus

types may include PCI/PCle, USB, and other commonly known communications buses. It is

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

noted that embodiments are possible and contemplated wherein function of PCH 14 are
incorporated into main processor 18, and thus the disclosure is not limited to embodiments in
which these units are separate entities.

[0032] PCH 14 may also include power management circuitry. The power management circuitry
may perform actions such as power and/or clock gating of idle functional circuit blocks, restoring
power/clock to circuit blocks exiting a sleep state, adjusting operating voltages for varying
operating conditions, and so forth.

[0033] Auxiliary processor 12 in the embodiment shown may perform a number of functions that
support operations of computer system 10. In the simplified embodiment shown, auxiliary
processor 12 includes a system management controller (SMC) 122 and a processor 123.
Auxiliary processor 12 may include a number of other functional circuit blocks that are not
shown here for the sake of simplicity. A more detailed embodiment of auxiliary processor 12 is
discussed below. In the illustrated embodiment, auxiliary processor 12 is coupled to a non-
volatile storage 121 that is external thereto (and may be removable from computer system 10 and
transferred to another system). However, as shown by the dashed lines, alternate embodiments
are possible and contemplated in which non-volatile storage 121 is implemented on auxiliary
processor 12. In various embodiment, NV storage may be directly accessible by auxiliary storage
121, but not directly accessible by main processor 18 or any other agent within computer system
10.

[0034] Auxiliary processor 12 also includes a mechanism for storing a unique identifier, ID 19.
In one embodiment, a bank of fuses may be used to store ID 19 as a unique combination of
blown and unblown fuses. Embodiments that store ID 19 in a non-volatile storage circuit (e.g.,
read-only memory, or ROM), or other suitable mechanism are also possible and contemplated.
[0035] NV storage 121 in the embodiment shown may store information that may be used by
computer system 10 to conduct various operations. As shown herein, NV storage 121 stores boot
code in a binary format that may be executed by main processor 18 during a system boot (e.g.,
start-up) procedure. In one embodiment, the NV storage 121 is the sole source of boot code. NV
storage 121 also stores verification code that may be executed by processor 123 to verify the boot
code. Execution of the verification code may determine if the boot code is uncorrupted and/or has
not been subject to tampering. This may include comparing a hash of the boot code to a known
hash value, verifying the presence of a manufacturer’s signature, and so on. Furthermore, the
verification may include determining that the boot code is associated with an identifier that is

unique to that particular computer system. Auxiliary processor 12 in the embodiment shown is

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

configured to access and release the boot code for transfer to main processor 18 (via PCH 14)
after it has been successfully verified. In one embodiment, the boot code includes code
conforming to the unified extensible firmware interface (UEFI) specification. However, the
disclosure herein is not intended to be limiting to this specification, and thus embodiments in
which the boot code conform to other specifications, formats, etc., are possible and contemplated.
[0036] NV storage 121 may also store variables used to set certain parameters and/or used by
main processor 18 during the execution of the boot code. In some embodiments, NV storage 121
may store information to enable different operating systems to be utilized by computer system 10
according to inputs from a user during the boot procedure. In addition to information for boot
services, runtime information may also store on NV storage 121. In general, NV storage 121 may
store any information used to provide an interface between an operating system executing on
main processor 18 and system firmware. Furthermore NV storage 121 may also store information
used to ensure the security of computer system 10 against various types of attacks (e.g., malware,
etc.).

[0037] NV storage 121 may be implemented using any suitable type of memory technology that
enables contents stored thereon to remain even after power has been removed. In one
embodiment, NV storage 121 may be implemented using flash memory. However, other types of
memory (e.g., EPROM) may be used to implement NV storage 121 in other embodiments.

[0038] Processor 123 in the embodiment shown may perform various functions related to
security of computer system 10. Among these functions is controlling access to and verifying the
information stored in NV storage 121. For example, processor 123 may perform verification of
the boot code to insure the integrity of its contents before it is release to the main processor for
execution. Processor 123 may also operate in conjunction with a mailbox mechanism discussed
in further detail below.

[0039] During a boot procedure, main processor 18 may request access (e.g., read access) to
variables stored in NV storage 121. Processor 123 may control access to a given variable by
determining if main processor 18 is authorized access thereto, and may also limit access to one
variable at any given time (e.g., one per request). Similarly, if access to a variable is requested at
any time during system operation by main processor 123 or another agent, processor 123 may
control access thereto in a similar manner. Processor 123 may also may perform a comparison of
a hash of the boot code to an expected value in order to verify the information is uncorrupted.
[0040] SMC 122 in the embodiment shown may perform various management functions

pertaining to computer system 10. Such functions include causing the main processor 18 to

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

remain in a reset state upon system startup until such time that it is ready to receive verified boot
code from auxiliary processor 12. Upon processor 123 completing successful verification of boot
code during a system boot procedure, SMC 122 may provide an indication to PCH that the boot
code is ready to be conveyed to main processor 18. Power management circuitry in PCH 14 may
then release main processor 18 and send a request for the boot code to auxiliary processor 12.
Responsive to the request, auxiliary processor 12 may provide the boot code to PCH 14, which
may then relay it to main processor 18. Main processor 18 may then begin execution of the boot
code to continue the boot procedure.

[0041] Fig. 2 is a simplified flow diagram illustrating a boot procedure in one embodiment of a
computer system. Method 200 may be performed by various embodiments of the hardware
disclosed herein. It is further contemplated that hardware embodiments not explicitly disclosed
herein may also carry out method 200, and may thus fall within the scope of this disclosure.
[0042] As shown herein, method 200 illustrates various method tasks performed by an auxiliary
processor and a main processor. Generally speaking, in the boot procedure discussed herein, an
auxiliary processor may begin booting prior to the main processor. As part or at completion of
the boot procedure for the auxiliary processor, boot code used by the main processor may be
verified by circuitry within the auxiliary processor. Such verification may include ensuring that
the boot code is uncorrupted, and has any necessary signatures (e.g., signed by the manufacturer).
Upon successful verification, the boot code may be conveyed to the main processor for
execution. Such a boot procedure may be referred to as a secure boot, as the verification of the
boot code by secure circuitry within the auxiliary processor.

[0043] Method 200 begins with the access of a secure read-only memory (ROM) to begin the
boot procedure (block 205). The secure ROM may store code that is executed by processing
circuitry within the auxiliary processor in the booting. The secure ROM in various embodiments
is located within the auxiliary processor. Furthermore, the secure ROM may be invisible to any
component external to the auxiliary processor.

[0044] In block 210, an operating system (OS) used by the auxiliary processor is booted, and a
system management controller (SMC) within the auxiliary processor may be started. The OS
booted by the auxiliary system may be separate from that used by the main processor during
normal system operations. Starting the SMC may include applying power thereto or otherwise
removing it from a reset state.

[0045] Method 200 continues with the ongoing boot of the auxiliary OS, which includes loading

a kemel and various drivers (block 215). The drivers may include any drivers used to operate

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

other components on the auxiliary processor, such as those that may be used to facilitate
communications with external devices (e.g., a platform controller hub, main processor, etc.).
[0046] Upon completion of the auxiliary OS boot procedure in this particular embodiment, a
verification of the boot code is performed (block 220). Verification of the boot code may
generally ensure that the boot code has not been subject to tampering or inadvertent corruption.
The verification may also include ensuring that the boot code is associated with an identifier that
is unique to the computer system.

[0047] At this point method 200, the booting of the main processor may begin. The boot code
may be conveyed by the auxiliary processor to the main processor (block 225), and a backlight of
the computer system display may come on. Upon its receipt, the main processor may begin
executing the boot code. Executing the boot code may include executing a boot loader routine for
a main OS (block 230). As defined herein, the main OS may be that which is used by the
computer system during normal operations, and through which a user interacts with the computer
system. As the boot loader is executed, a manufacturer logo may appear on the system display.
[0048] Responsive to the execution of the boot loader, the main OS is invoked, with the main
processor causing the activation of the system kernel and various system drivers (block 235).
Upon completing the activation of the system kemel and drivers, the boot procedure may be
complete, and the computer system may be ready for operations by a user (block 240).

[0049] Fig. 3 is a flow diagram illustrating additional details of a boot procedure for one
embodiment of a computer system. Method 300 provides further illustration of the operations
carried about by the auxiliary and main processors, as well as the SMC implemented on the
auxiliary processor.

[0050] Responsive to initial power being applied to the computer system (e.g., the computer
system is plugged into a wall outlet), a boot of the auxiliary processor along with verification of
boot code for a main processor is performed (block 305). In conjunction with the boot of the
auxiliary processor, SMC firmware may be initialized. Once the SMC firmware is running (block
320), it may provide an indication of the same to other circuitry within the auxiliary processor.
When the SMC firmware is running, it may send a request to a power management unit (PMU) in
the computer system to allow power to be applied to certain portions, such as a bus to enable
communications between the auxiliary processor and other units within the system.

[0051] After completing the boot process, if no other external interaction with the computer

system has taken place, the auxiliary processor may enter a wait state (block 310). Similarly, the

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

SMC may either remain running or may be placed into a power gated state while idle (block
330).

[0052] Responsive to user input (e.g., a user pressing a power button on the computer system),
the boot procedure may continue. The user input may cause the SMC to exit the power gated
state if it is not otherwise active. If the remaining circuitry in the auxiliary processor is in a wait
state (block 335, yes), a wakeup signal may be sent thereto by the SMC. Responsive to receiving
the wake signal, any circuitry within auxiliary processor that is in a wait state may be brought
into a fully active state. After the wake signal has been sent to the other circuitry in the auxiliary
processor, or the auxiliary processor was already in a fully awakened state (block 335, no), the
SMC may send a signal to the power management unit to wake the PCH (block 345).

[0053] When the PCH is in the awakened state, the SMC may transmit a signal thereto (block
350) in order to indicate that the boot code has been verified and is ready to be conveyed to the
main processor. The PCH may then release the main processor from the reset state (block 360).
The auxiliary processor may then release the boot code for transfer (block 355), with the PCH
responding by transferring the boot code to the main processor (block 365). Thereafter, the main
processor may execute the boot code to load an OS and complete the boot procedure.

[0054] In some embodiments of a computer system according to this disclosure, booting of the
main and auxiliary processor may occur concurrently. The may enable an overall faster boot
procedure to occur. As part of such a boot procedure, a manufacturer logo may appear on a
display of the computer system earlier than it would relative to the embodiment discussed in
conjunction with Fig. 2. As a part of this boot procedure, verification of the main boot code (i.e.
the boot code for the main processor) may occur before the auxiliary processor is fully booted.
Fig. 4 is a simplified block diagram of one such embodiment.

[0055] Method 400 begins with processing circuitry within the auxiliary processor accessing
secure ROM and beginning the boot procedure (block 405). As part of the execution of the code
from the secure ROM, the SMC is started and verification of the boot code is performed (block
410). Upon successful completion of the verification process, the boot code may be forwarded to
the main processor (block 425), and execution of the same may begin. Thus, at this point of the
boot procedure, both the auxiliary and main processors are concurrently booting.

[0056] The auxiliary processor may complete its booting by loading the auxiliary OS kernel and
various drivers (block 415), executing code from the secure ROM until the booting of the

auxiliary OS is complete (block 420). The manufacturer’s logo may appear on a display of the

10

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

computer system while the main processor is executing the boot code received thereby, and while
the auxiliary processor is still executing code from the secure ROM.

[0057] The main processor may continue its boot procedure by invoking a boot loader to load the
OS (block 430). Thereafter, the main OS kemnel and drivers may be loaded and activated (block
435). Thereafter, the boot procedure may complete itself, and the computer system may be ready
for operation by a user (block 440).

[0058] As previously noted, part of the boot code verification process in some embodiments of a
computer system may include determining whether the boot code is associated with a unique
identifier for the computer system. Associating the boot code with an identifier unique to a
particular system (or particular chip in the system) may be known as “personalization.” Through
personalization, a particular instance of boot code (or other information) may be uniquely
associated with a particular system such that the same code would be prevented from executing
on another system. Boot code that is executable on a particular system based on a unique
identifier may be said to be personalized to that particular system. It is further noted that some
computer systems may be capable of loading different operating systems (e.g., based on a user
selection at boot time). In such systems, personalization may be enabled for each of the different
operating systems that are available for execution thereon.

[0059] In many computer systems, integrated circuits such as a main processor may have their
own, unique identifier. The identifier may be implemented by, e.g., blowing fuses in the
integrated circuit, storing the identifier in a portion of a non-volatile memory, or by other
mechanisms. This unique identifier may also be embedded into files that also include the boot
code. When the boot code is verified, the identifier may be checked along with the known
identifier of the computer system to ensure there is a match. If there is no match, the boot may
not proceed with the current boot code, and other mechanisms may be invoked. In such a case,
the computer system may enter a recovery mode, or operate using a recovery OS. In the recovery
mode/OS, the computer system may have a reduced set of capabilities relative to a normal OS
through which normal operations are conducted (e.g., by a user, with full system capabilities
activated and ready).

[0060] Fig. 5 is a flow diagram illustrating one embodiment of operations in a recovery operating
system. More particularly, method 500 illustrates one embodiment of a methodology where a
system may eventually be booted after an initial verification failure in which the identifier of the

boot code did not match that of the system identifier.

11

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

[0061] Method 500 begins with the initiation of a boot procedure which includes a verification of
the boot code (block 505). Additionally, the verification may include checking an identifier of the
boot code against a unique identifier associate with the computer system (e.g., an identifier
embedded in the main processor). If the verification does not fail (block 510, no), then the
method may continue at block 530 with the continuation and eventual completion of the boot
process.

[0062] If the verification fails (block 510, yes) e.g., because the identifier associated with the
boot code does not match the unique system identifier, then the computer system may enter a
recovery mode/OS and the manufacture may be contacted with a request to send a signed file
(block 515). In sending the request, the unique identifier of the computer system may be
included, along with other relevant information, such as type of computer, system configuration,
and so on. The manufacturer may then generate a file or files that include the boot code. These
files may be associated with the unique system identifier and may each be signed by the
manufacturer. Upon completion of file generation, the manufacturer may send the files back to
the requesting computer system (block 520).

[0063] Once the files have been received, they may be stored in the system. The newly received
signed files may be added to storage while retaining any previously signed files (block 523).
Thereafter, the boot procedure may be re-started by performing a re-verification with the newly
received/signed files (block 525). Upon completing the re-verification, the boot process may
continue to completion (block 530).

[0064] Fig. 6 is a block diagram illustrating information stored in one embodiment of a non-
volatile memory implemented on an auxiliary processor. In the embodiment shown, NV storage
121 includes a payload 131, a manifest 132, and a set of variables 135. Payload 131 includes boot
code 138, while manifest 132 includes a hash 139 that may be used as part of a verification of the
boot code 138. In some embodiments, a single file may include at least the payload 131 and
manifest 132, although these may be separate as shown here. Furthermore, multiple instances of
these files may be present in some embodiments. For example, in a computer system capable of
booting into multiple, different operating system, multiple instances of payload 131 (with
corresponding, multiple instances of boot code 138) may be present. A boot procedure in such a
system may include a user selecting which operating system to which the computer is to be
booted. For embodiments which are capable of booting into multiple, different operating

systems, personalization may be performed for each individual operating system.

12

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

[0065] During the verification process, circuitry in the auxiliary processor may create a hash
from the boot code 138. This hash may be compared with the hash 139 in manifest 132. If the
boot code has not been altered in any way, the hash created from the boot code should match
hash 139. As with the files discussed above, multiple instances of hash 139 may be present to
support personalization for corresponding ones of multiple boot code files and corresponding
operating systems.

[0066] The manifest may also include other information, such as a signature from the
manufacturer, identification information, and so on. In the embodiment shown, manifest 132
includes an ID hash 191, which may be used in checking a unique identifier (e.g., ID 19 on
auxiliary processor 12 of Fig. 1) during certain operations (e.g., boot). Circuitry in the auxiliary
processor may create a hash from ID 19, and compare that with ID hash 191 in order to perform
the ID verification as part of the personalization discussed above. In addition to the boot code
138, payload 131 may also include other information, such as type and version information.
[0067] Variables 135 may include a wide variety of information. Variables may include system
configuration variables regarding drivers to invoke, operational modes, security related variables,
variables used in the boot process, and so forth.

[0068] Access to the variables stored in NV storage 121 may be tightly controlled by the
auxiliary processor. Responsive to receiving a request for access to a variable stored in NV
storage 121, auxiliary processor 12 may execute a security policy to determine whether variables
may be overwritten and/or deleted and whether they may be accessed by the requesting agent,
such as the main processor. Executing the security policy may include executing code to
determine whether the requesting agent meets various criteria for performing the desired
operations with the requested variable. The criteria may include credentials such as a password,
an identifier or other information. Furthermore, as will be discussed below, embodiments are
possible and contemplated wherein the auxiliary processor may control access to variables such
that only one variable at a time may be accessed. The various mechanisms for protecting
variables stored in NV storage 121 will now be discussed in further detail with reference to Fig.
7A, along with other aspects of an embodiment of an auxiliary processor.

[0069] Tuming now to Fig. 7A, a block diagram of illustrating further details of auxiliary
processor 12 is depicted. In the illustrated embodiment, auxiliary processor 12 includes at least
one processor 123, ID 19, secure mailbox 145, and SMC 122. Within SMC 122 is included a
doorbell mechanism 155 (hereinafter ‘doorbell 155°)—a memory used to store an indication

signaling the presence of information in mailbox 145 such as requests for information or other

13

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

actions. In some embodiments, auxiliary processor 12 may include more (or less) components
than shown in Fig. 7. For example, embodiments including cryptography circuitry are possible
and contemplated. Through mechanisms such as the secure mailbox 145, auxiliary processor 12
implements a secure circuit that protects internal resources, e.g., such as NV storage 121 and the
contents stored therein.

[0070] Secure mailbox 145, in one embodiment, includes an inbox and an outbox. As shown
herein, secure mailbox 145 is coupled to processor 123 and a PCH (e.g. PCH 14 in Fig. 1). Both
the inbox and the outbox may be first-in, first-out buffers (FIFOs) for data. The buffers may have
any size (e.g. any number of entries, where each entry is capable of storing data from a read/write
operation). Particularly, the inbox may be configured to store write data from write operations
sourced from components external to auxiliary processor 12. The outbox may store write data
from write operations sourced by processor 123 (As used herein, a “mailbox mechanism” refers
to a memory circuit that temporarily stores 1) an input for a secure circuit until it can be retrieved
by the circuit and/or 2) an output of a secure circuit until it can be retrieved by an external
circuit).

[0071] In some embodiments, software executing on main processor 18 (or various hardware
such as peripherals not otherwise shown) may request services of a component or components
within auxiliary processor 12 via an application programming interface (API) supported by an
operating system of computer system 10—i.e., a requester may make API calls that request
services of some component within. These calls may cause an operating system executing on
processor 18 to write corresponding requests to secure mailbox 145, which are then retrieved and
analyzed by processor 123 to determine whether it should service the requests. By isolating the
components within auxiliary processor 12 in this manner, overall security of the system may be
enhanced.

[0072] SMC 122 in the embodiment shown may perform various ones of the functions as
discussed above (in reference to Fig. 1). Additionally, as shown here, the illustrated embodiment
includes doorbell 155. Doorbell 155 may be used by, e.g., components external to SMC 122 (on
or off of auxiliary processor 12) to indicate that certain operations are requested. For example
(and as discussed in further detail below), if a main processor wishes to modify a variable stored
in the NV storage 121 coupled to auxiliary processor 12, it may cause the variable (or associated
information) to be deposited in secure mailbox 145 while also sending an indication to doorbell

155 (“ringing” the doorbell). SMC 122 may then, for example, notify processor 123, that a

14

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

request for modification of a variable is present, with corresponding information deposited in
secure mailbox 145,

[0073] Processor 123, in one embodiment, is configured to process commands received from
various sources in computing device 10 (e.g. from main processor 18) and may use various
secure peripherals to accomplish the commands. In various embodiments, processor 123 may
execute securely loaded software that facilitates implementing functionality descried with respect
to auxiliary processor 12. This software may include encrypted program instructions loaded
from, e.g., a trusted zone in NV storage 121. Furthermore, processor 123 may limit access to
variables used by main processor 18 during a boot procedure. For example, in one embodiment,
during the boot procedure, processor 123 may limit access to variables from NV storage 121 to
one variable at a time. Thus, main processor 18 may be required to send separate requests for
each variable it wishes to access.

[0074] Control of access to variables may also require that a requesting agent meet certain
criteria. For example, main processor 18 may be required to provide credentials such as the
unique identifier discussed above, a password, or other information that indicates that it is
authorized to access the variables. Furthermore, any agent that wishes to alter (e.g., overwrite or
change) or delete a variable may also be required to provide credentials indicating they are
authorized to perform such actions.

[0075] Processor 123 may also perform functions to verify boot code used by main processor 18
during the boot procedure. For example, referring back to Fig. 6, processor 123 may perform a
comparison of hash 139 stored as part of manifest 132 to a hash of boot code 138. If the hashes
match, processor 123 may then allow the boot code to be released and provided to main
processor 18. Otherwise, the boot code is not released, and alternate procedures may be taken to
boot computer system 10 (e.g., obtaining files signed and verified by the manufacturer).

[0076] Fig. 7B is a diagram illustrating information exchanges between various units in
attempting to modify a variable in one embodiment. The discussion of method 700 below is in
the context of the hardware embodiments discussed above with reference to Figs. 1 and 7A.
However, it is noted method 700 may be carried out on other hardware embodiments not
explicitly discussed herein.

[0077] Method 700 begins with the execution of a variable API (application programming
interface) call executed on the main processor of a computer system. Responsive to the execution
of the variable API call, the doorbell in the SMC is rung, while the variable (or an indication of

which variable is to be modified) is forwarded to the mailbox. Responsive to the ringing of the

15

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

doorbell mechanism in the SMC, the SMC notifies the processor core of the auxiliary processor
(e.g., processor 123 of Fig. 7A) to process a storage command for the NV storage. When this
command is processed, the auxiliary processor retrieves variable data from the NV storage and
deposits it into the mailbox.

[0078] In addition to depositing information regarding the variable into the mailbox, the
auxiliary processor also executes a security policy related to the variable. In particular, execution
of the security policy is used to determine if the requesting agent (in this case, the main
processor) has authorization to modify the variable. If executing the security policy indicates that
the main processor is not authorized, a fail message is deposited in the mailbox. If the main
processor is authorized according to the security policy, the auxiliary processor may then cause
the variable to be modified. Upon completion, the modified variable is then saved to NV storage.
Additionally, an indication that the variable was successfully modified is deposited in the
mailbox.

[0079] The main processor may receive an indication regarding whether the modification of the
variable was successful or not from the mailbox. In particular, the main processor may poll the
mailbox, with the mailbox returning the status to the main processor.

[0080] Fig. 8 is a flow diagram of one embodiment of a method for determining whether a
variable stored in non-volatile memory may be overwritten. Method 800 may be performed by
the auxiliary processor discussed above using processor 123 and secure mailbox 145. However,
other embodiments of an auxiliary processor may also be able to perform the method shown
herein, and thus may fall within the scope of this disclosure.

[0081] It is noted that while method 800 is directed to a main processor sending requests, the
broader methodology contemplated herein may allow for other agents sending the same types of
requests. Thus, the use of the main processor in the illustrated embodiment should be considered
exemplary.

[0082] Method 800 begins with the main processor sending a request to the auxiliary processor
to alter a variable stored in NV memory (block 805). Altering the variable may comprise deleting
the variable, changing the value of a variable, or overwriting the variable. In sending the request,
the main processor may include an address along with information indicative of the nature of the
request. As discussed above, if the address is not directed to the inbox portion of the secure
mailbox, the request may be denied without any traffic entering the auxiliary processor.

[0083] An auxiliary processor (e.g., processor 123 of Fig. 7A) may determine if the main

processor meets the criteria for the request, e.g., by executing a security policy. For example, the

16

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

processor 123 may, through execution of the security policy, determine if the main processor has
provided an identifier, a password, or other information that would indicate authorization to alter
the variable. Furthermore, in some embodiments, the altering of at least some variables may be
limited to certain modes of operation, such as a recovery mode. Thus, the mode of operation may
also be criteria considered for the altering of variables.

[0084] If the main processor does not meet the criteria for altering the variables (block 810, no),
alterations of the variable are made (block 820). In some embodiments, the auxiliary processor
may cause an indication to be sent to the main processor that its request has been denied.
However, embodiments in which no indication of the request denial is sent are also possible and
contemplated.

[0085] If it is determined that all criteria have been met for altering the variable (block 810, yes),
then the altering may be allowed to proceed (block 815). If the value of the variable is to be
changed or overwritten, the secure processor may alter the variable and complete the operation
by writing the desired information to the NV storage. If the variable is to be deleted, the auxiliary
processor may carry out the actual deletion by removing the variable from NV storage.

[0086] Fig. 9 is a flow diagram of one embodiment of a method for determining whether to grant
access to a variable stored in a non-volatile memory during a system boot procedure. It is noted
that while the exemplary embodiment is directed to a boot procedure, portions of method 900
may be performed outside of the boot procedure, and thus are contemplated as alternate
embodiments. Furthermore, while method 900 contemplates access requests made by a main
processor, embodiments are possible and contemplated in which other agents request access to
variables stored in an NV memory of an auxiliary processor.

[0087] Method 900 begins with the performing of a boot procedure, including the verification of
main processor boot code by the auxiliary processor (block 905). In one embodiment, the boot
code may be accessed solely from the NV storage associated with (e.g., coupled to) the auxiliary
processor. Upon completing the verification, the main boot code may be conveyed to the main
processor, where it may be executed to begin the main processor portion of the boot procedure
(block 910). During the boot procedure, the main processor may send a request to the auxiliary
processor for access (e.g., read access) to a variable stored within the NV storage (block 915).
Responsive to the request, a secure processor or other circuitry within the auxiliary processor
may execute a security policy to determine if the main processor is authorized access to the

variable.

17

10

15

WO 2019/112972 PCT/US2018/063686

[0088] If it is determined that the main processor is authorized access to the variable (block 920,
yes), the auxiliary processor may grant the request and allow access by the main processor (block
925). Access to the variable may depend on the nature of the request. For example, if the request
is a read request, a secure processor may read the variable from the NV storage and deposit it in
an outbox portion of the mailbox. Thereafter, the variable may be forwarded to the main
processor.

[0089] If more variables are to be accessed (block 930, yes), the method may return to block 915
and the cycle may repeat as necessary. If no more variables are to be access (block 930, no), then
the boot procedure may continue running to completion (block 935).

[0090] In the event that it is determined that the main processor is not authorized to access the
variable (block 920, no), the boot procedure may be discontinued and the computer system may
initiate recovery procedures (block 940). For example, the computer system may be re-directed
to enter a recovery mode responsive to the denial of a request to a variable during the boot
procedure.

[0091] Numerous variations and modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended that the following claims be

interpreted to embrace all such variations and modifications.

18

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

WHAT IS CLAIMED IS:

1. A method, comprising:

a first processor receiving a request from a second processor to alter a first variable
associated with boot code of the second processor, wherein the receiving includes the second
processor storing the request in a mailbox circuit and sending a separate indication of the storing
to the first processor;

in response to the indication and the request, the first processor evaluating a security
policy to determine whether the second processor meets criteria for altering the first variable; and

the first processor granting permission to the second processor to alter the first variable
responsive to determining that the second processor meets the criteria for altering the first

variable.

2. The method of claim 1, wherein the first processor is configured to inhibit the second
processor from altering the first variable responsive to determining that the second processor
does not meet the criteria for altering the first variable, wherein the first variable is stored in a
non-volatile memory external to the first processor and accessible to the second processor via the

first processor.

3. The method of claim 1, wherein the evaluating includes determining whether the second
processor is operating in a recovery mode that provides a reduced set of capabilities relative to a

set of capabilities available during execution of an operating system by the second processor.

4, The method of claim 1, wherein the evaluating includes determining whether the second

processor has provided proper credentials for altering the first variable.

5. The method of claim 1, wherein the first variable is one of a plurality of boot variables

accessed during a boot procedure in which the boot code is executed by the second processor.

6. The method of claim 5, further comprising:
the second processor requesting access to one of the plurality of boot variables during a
boot procedure, wherein the first processor evaluates the security policy during the boot

procedure to determine whether to grant access to the one of the plurality of variables.

19

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

7. The method of claim 5, wherein the first processor is configured to limit access to the

plurality of variables by the second processor to a single one of the boot variables at a given time.

8. The method of claim 5, further comprising:

the second processor conveying a request to the first processor to delete one of the
plurality of variables;

responsive to receiving the request, the first processor evaluating the security policy to
determine whether the second processor is authorized to delete the one of the plurality of
variables; and

responsive to determining that the second processor is authorized, the first processor

granting permission to the second processor to delete the one of the plurality of variables.

9. The method of claim 5, further comprising:
the first processor adding a new variable to the plurality of variables; and

the first processor setting attributes associated with the new variable.

10. The method of claim 9, wherein the attributes associated with the new variable include
one or more of the following:

an operating mode in which the new variable may be altered;

an indication as to whether the new variable can be deleted; and

credentials required for access to the new variable.

11. A computer system comprising:

a main processor;

an auxiliary processor; and

a non-volatile memory a plurality of variables stored therein, wherein the main processor
is configured to use the plurality of variables during a boot procedure;

wherein the auxiliary processor is configured to:

receive, at a mailbox circuit, a request to alter a first variable of the plurality of

variables by the main processor;

receive an indication of the request being received at the mailbox circuit;

20

10

15

20

25

30

WO 2019/112972 PCT/US2018/063686

in response to the request and the indication, enforce a security policy that
includes determining whether the main processor meets criteria for altering the first variable; and
grant permission to alter the first variable to the main processor responsive to

determining that the main processor meets criteria for altering the variable.

12. The computer system of claim 11, wherein the auxiliary processor is configured to:
deny the main processor access to the first variable responsive to determining that

the main processor has not met the criteria for altering the variable.

13. The computer system of claim 11, wherein the criteria include a criterion that the main

processor is operating in a recovery mode.

14. The computer system of claim 11, wherein the criteria include a criterion that the main

processor has provided proper credentials for altering the first variable.

15. The computer system of claim 11, wherein the auxiliary processor is configured to:

verify boot code of the main processor during the boot procedure.

16. The computer system of claim 15, wherein the boot code is stored in the non-volatile

memory with the first variable.

17. The computer system of claim 11, wherein the auxiliary processor is configured to:
receive a request from the main processor to delete one of the plurality of variables; and
determine whether to allow deletion of the one of the plurality of variables based on at

least a current operating mode of the main processor and credentials provided by the main

Processor.

18. A method, comprising:

an auxiliary processor in a computer system receiving a request at a mailbox circuit of an
auxiliary processor, wherein the request is from a main processor of the computer system to alter
a first one of a plurality of boot variables stored in a non-volatile memory accessible to the

auxiliary processor;

21

10

15

WO 2019/112972 PCT/US2018/063686

the auxiliary processor evaluating a security policy to determine whether to grant the
main processor permission to alter the first boot variable, wherein determining whether to grant
the main processor access includes the auxiliary processor:
determining whether the main processor is operating in recovery mode; and
determining whether the main processor has provided authorization credentials for
altering the first boot variable; and
the auxiliary processor granting permission to the main processor to alter the first boot
variable to determining that the main processor is operating in the recovery mode and has

provided the authorization credentials.
19. The method of claim 18, wherein the non-volatile memory is external to the auxiliary
processor, and wherein the plurality of boot variables include variables defined in a unified

extensible firmware interface (UEFT) specification.

20. The method of claim 18, wherein the request is received during a boot procedure of the

main processor in which the auxiliary processor verifies boot code of the main processor.

22

PCT/US2018/063686

WO 2019/112972

110

I
Atowsyy ey

87
H0SSB004] LBy

{(Hod e}
A0S583044 ULl Of

8007 jo0Y PRILSA

}

SIOREN WOIH/0 |

11 1015 AN
8p07}
uonEolLIBA
i)
- apos joog
Asydsicy
of /
se0iA8(] N o
[ieydusy v [ETOISAN |
woi/o] . S _
ect oepop m
nnnnnnnnn]
w [et = "
t gy]
L1 9pop joog | |
R
= g o o e n e 4
>) R Qﬁw &
|t
el | g
S 7T 108500014 X0y
gl
HOM]D
A1 JiOMjN N

WO 2019/112972

Aux. Processor

2110

Access Secure ROM, begin

0o o
22 3
h &

|

Boot Aux OS, Start SMC
Sy
210

[

Aux OS5, Kemnel, Drivers
2189

!

Aux OS Boot Complefs;
Verification of Boot Code

PCT/US2018/063686

Main. Processor

200
/

220
— Backlight
B — Manufacturer Logo
B Bo0 COMplete

Fig. ?

Boot Code to Main Frocessor
225

'

Boot Loadsr
230

'

Main O5, Kernel, Drivers
238

I

Boot Complete/User Space
240

Time

WO 2019/112972

Aux Processor

Aux Processor;
Verify Main

Code
308

.g initial Power

310

SMC

Perform Boot of

SMC Firmware

Running 320

Procassar Boot

Aux Procin

319

Awake/Wait State §

¥

SMC Request to
P 32§

SMC Running/
Power Gated
334

i
! User Input
i
i
§ N
! L Proc in Waif? g
i N
i §
| Yes
{ &
Exit Wait State Signal to Wake No
315 340
i
. S—
i Signal PMU to
? Wake PCH 345
i
i
i &
? Signal fo PCH X
; when Woke 350 g
i
! i
i :
?
: o
i
]
i

PCT/US2018/063686

Release Main
Processor from
Reset Stafe 260

PCH Transfers
Boot Cods fo
Main Processor

365

Main Processor
Executes Boot
Code, Completes
Boot Procedure
370

WO 2019/112972 PCT/US2018/063686

4/10

Aux. Processor Main. Processor

Access Secure ROM, begin
Boot
405

'

Boot Aux 08, Start SMC: E
Verification of Boot Code E é,

/ 400

416

:

Aux OS, Kernsl, Drivers
415

Boot Code to Main Frocessor
425

v Manufacturer
Logo

Aux OS Beot Complete
420

I

Boot Loader
430

!

Main OS, Kernel, Drivers
435

:

Boot Complete/User Space
440

crrerenBonmenenens 3001 0TI

Fig. 4

WO 2019/112972

Fig. 5

YO

5/10

Begin

Begin Boat
Process, Perform
Yerification
505

Nerification s,
Faifi?
. S0

Yes

¥

Contact
Manufacturer
Through Nefwork,
Regquest
Manufacturer
Signed File
515

v

Send Mew Signed
File to Computer
System
520

s

Add New Signed
File fo Storage;
Retain Previous

Signed File(s)
523

3

Perform Re-
Verification Using
Signed File
825

¥

Confiniue/
Complete Boot
Frocedure

PCT/US2018/063686

500

WO 2019/112972 PCT/US2018/063686

6/10

Pavioad 131
Hoot Code 138

1D Hash 19

2

Manifest 132
Hash 139

Variables 135

NV Memory 121

Fig. 6

PCT/US2018/063686

WO 2019/112972

710

V. O
Ier
obRio}s AN
&
.
— J0SS8304 XN
- 77T ¢k o Xy
6L Jf B ossesoid
A
24
OIS
2 .
XOgeyy SInes GG1 feqioog

-

A 4

HOd woio]

PCT/US2018/063686

WO 2019/112972

8/10

80 idV S1q8lBA

Hagiood oS bury

g/ b4

10888304 UiEpy

] i

I i

i i

i i

i i

i i

§ |

f i

i i

i i

B afiessapy sseaong M w

m Lmay €8900ng : w

: : : abeiois ANy !

| | i IR ES

! ! i

m w siqeuen Aoy w

_ _ i

m | i

i m !

i i 8504 {

_ i

i i i

i i saiofod i

i | AHIN08S 5,8GBLEA HOSYD i

m i i

i i i i

i i i i

m : BIB 2IGBLEA 190 : w

| | i

| - ﬁ_ . ~ 1 {

| pueWILon sRI0IS AN ; m

w §8800Ud 0} Jossatpld Xiiy Ao 3 m w
1

| | } i

| § i

m Xoqyely of ejgesEn ; m
Rn

m gl ! !

; ; . 4

IS XOGEN 10558204 XY abei05 AN

00/ /

L

WO 2019/112972

No

< Processor

Inhibit Alteiing of
Variable
320

8910

Begin

Main Processor
Sends Request te
Aux Processor fo

Alter Variable in

NV Memory
805

Does Main

§1¢

Yes

i

Afiow Altering of
Variable
815

Meet Criteria?

PCT/US2018/063686

800
/

WO 2019/112972 PCT/US2018/063686

1010

Begin

900

Begin Boat
Procedurs; Verify
Boot Code in Aux

Processar

oy
<

v

Provide Boot
Code fo Main
Processor; Begin
Main Processor
Exacution of Boot
Code

§10

Main Frocessor §
Sends Request to§
Aux Processor for
Fi 0. 9 A.ccew' to)

Yariable in NV
Storage
044
R

Yes

“Is Main Processor e,
Authorized Access? D Yas

No
820
Allow Main
Frocessor To
. . Access Yariable

Discontinue Boot 925

Procedurs, Initiate —
Recover

Procedure
940
More

Variables?
830

rNO

Complete Boot
Procedure
834

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/063686

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/57
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 9 202 061 B1 (POLZIN R STEPHEN [US] ET 1-20
AL) 1 December 2015 (2015-12-01)
Y column 3, Tine 44 - column 21, line 17 1-20

Y US 2013/212369 Al (IMTIAZ IMRAN [GB] ET 1-20
AL) 15 August 2013 (2013-08-15)
paragraph [0024] - paragraph [0069]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 February 2019

Date of mailing of the international search report

21/03/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Pinto, Ranl

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/063686
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 9202061 Bl 01-12-2015 US 9202061 B1 01-12-2015
US 2014089650 Al 27-03-2014
US 2013212369 Al 15-08-2013 CN 103124973 A 29-05-2013
EP 2619701 Al 31-07-2013
JP 5745061 B2 08-07-2015
JP 2013538404 A 10-10-2013
US 2013212369 Al 15-08-2013
WO 2012038211 Al 29-03-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

