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SYSTEM AND METHOD FOR VIRTUAL MODELING OF INDOOR SCENES FROM
IMAGERY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of US Provisional Application number
62/819,817, filed 18-MAR-2019, which is incorporated in its entirety by this reference.

TECHNICAL FIELD

[0002] This invention relates generally to the computer vision field, and more
specifically to a new and useful system and method for providing virtual models of

indoor scenes from imagery in the computer vision field.

BACKGROUND

[0003] Generating an accurate and believable virtual model of an indoor space is
oftentimes desirable, as accurate virtual models can be used in many applications,
including Augmented Reality (AR) and Virtual Reality (VR), home improvement and
interior design, indoor robotics, real estate visualization, architecture and modeling, and
more.

[0004] While generating an accurate and believable virtual model of an indoor
space from everyday imagery (also known as indoor perception or indoor 3D
reconstruction) is highly desirable, such indoor perception is a known hard problem for
computer vision without specialized hardware. Conventional, passive, photographic

three-dimensional (3D) computer vision methods typically fail indoors for three
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reasons. First, most popular 3D reconstruction techniques are based on the detection
and matching of visually distinctive small visual patches (e.g., features, keypoints, or
other visually distinctive patches), and triangulating them as the camera moves. These
techniques do not work well in most indoor environments (which tend to be dominated
by blank walls and ceilings, uniform visual texture, repeating visual patterns from man-
made objects, transparent or reflective surfaces, and viewpoint variant lighting),
because there tends to be a severe scarcity of distinctive visual features on the most
salient surfaces. Second, indoor perception is made more challenging due to the
lighting conditions of indoor environments which can have light levels which are orders
of magnitude darker than outdoor environments. Low light conditions can inject digital
camera sensor noise and motion blur into photography that further hinders the success
of visual patch triangulation techniques by damaging any subtle texture present in the
scene. Third, conventional 3D keypoint triangulation computer vision algorithms often
ignore other important salient details that humans readily use for indoor perception.
These include architectural wall seams and perspective lines, shadows and illumination
shapes, piecewise planar regions and segmentation boundaries, known objects, known
scales and relationships, gravity, and other essential semantics of the scene.

[0005] Furthermore, today’s consumer tools aren’t adequate for mass-scale
virtual modeling of indoor spaces. Images and videos, including 360-degree images, do
not provide accurate, 3D-aware models of a room. Users may opt to produce their own
computer-aided design (CAD) models using simple architectural modeling tools. This is
laborious and impractical for modeling the fine details of complex architecture or
furnishing, and it fails to provide realistic room imagery or perceptual realism.
Professional architectural CAD services can be used to manually create and render
synthetic CGI models of indoor spaces, but these services are expensive and require a
significant lead time (e.g., hundreds or thousands of dollars and days or weeks of delay).
Finally, live AR applications can provide an acceptable 3D rendering of virtual objects
floating over live video of the environment. However, the user must be physically
standing in the room while holding the interaction device, which limits usage and

functionality of the model; in particular, the physical collocation constraint precludes
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users from using their room models in other locations and on other devices.
Furthermore, by requiring a real- or near-real time (e.g., 30 frames per second (FPS) or
other FPS) performance constraint on mobile devices, the quality and detail of model
construction is severely restricted.

[0006] Thus, there is a need in the computer vision field to create new and useful
systems and methods for providing practical, consumer-scale, indoor modeling, which
can yield both 3D room geometry, combined with photorealistic photography, without
requiring adoption of specialized hardware. This invention provides such new and

useful systems and methods.

BRIEF DESCRIPTION OF THE FIGURES

[0007] FIGURE 1 is a schematic representation of the system.
[0008] FIGURE 2 is a schematic representation of the method.
[0009] FIGURE 3 is a schematic representation of the method.
[0010] FIGURE 4 is an embodiment of the method.

[0011] FIGURE 5 is an embodiment of the method.

[0012] FIGURE 6 is an embodiment of the method.

[0013] FIGURE 7 is a variant of the method.

[0014] FIGURE 8 is an embodiment of the method.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] The following description of the preferred embodiments of the invention is
not intended to limit the invention to these preferred embodiments, but rather to enable

any person skilled in the art to make and use this invention.

1. Overview.
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[0016] As shown in FIGURES 2-3, a method for providing virtual models of
indoor scenes can include: capturing scene data S100, determining low-level scene
information S200, generating virtual scene information S300, determining high-level
scene information S400, determining refined scene information S500, and transmitting
the virtual model S600, but can additionally or alternatively include any other suitable
elements. An example of the method is depicted in FIGURE 7.

[0017] As shown in FIGURE 1, a system for providing virtual models of indoor
scenes can include: a platform 110, one or more devices, one or more engines, one or
more repositories, and/or any other suitable elements.

[0018] In a first example of the system and/or method, as shown in FIGURE 4:
the scene data from S100 can be used in S200, S300, S400, and/or S500; the virtual
scene information from S200 can be used in S300, S400, S500, and/or S600; the visual
scene information from S300 can be used in S400, S500, and/or S600; the high-level
scene information from S400 can be used in S200, S300, S500, and/or S600; and the
refined scene information from S500 can be used in S600.

[0019] In a second example of the system and/or method, as shown in FIGURE 5,
the method can include: generating a precursor geometric representation and/or a
scene prior from the scene data; and determining a geometric representation tailored
for determining an accurate scene component using a trained scene component neural
network. The scene component neural network can be trained based on one or more
scene priors associated with the component. The scene component neural network can
be biased with scene priors associated with the component (e.g., as an input) during
inference.

[0020] In a third example of the system and/or method, as shown in FIGURE 6,
the above elements, as described for FIGURE 5, can be used to determine multiple
dense geometric representations, each tailored to a respective scene component, by
biasing a set of scene component neural networks with a respective scene component
prior. The dense geometric representations, and optionally the scene data, can be fused

using a fusion module to determine the final dense geometric representation.
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2, Benefits.

[0021] This method can confer several benefits over conventional methods for
generating a virtual room model from imagery.

[0022] First, the method is neither time intensive nor energy intensive. In one
embodiment, a virtual model of a room will be generated in a time frame on the order of
seconds or minutes, rather than days or weeks. Furthermore, in various embodiments,
the method is computer automated or near-automated, thus drastically reducing the
time to completion. In examples, the duration between image sampling to model
generation (and/or use) can be less than a week, less than a day, less than a threshold
number of hours (e.g., 48 hours, 10 hours, 5 hours, 1 hour, or any other suitable number
of hours), less than a threshold number of minutes (e.g., 120 minutes, 60 minutes, 30
minutes, 10 minutes, 5 minutes, or any other suitable number of minutes), less than a
threshold number of seconds (e.g., 60 seconds, 30 seconds, 15 seconds, 1 second, etc.),
or be any other suitable duration.

[0023] Second, the method detects the geometry of a room from images, which
can be used in many applications, such as AR or VR, home improvement and interior
design, indoor robotics, real estate visualization, architecture and modeling, and other
applications.

[0024] Third, the method can be performed with minimum burden or effort on
the part of a user. In particular, no laborious measurements or CAD interaction duties
need to be taken manually by the end user.

[0025] Fourth, the method can enable more flexible and compelling user
experiences by storing the model on internet cloud servers and allowing portable use of
the model from any location, which frees the user from the collocation requirement
imposed by conventional AR applications to interact with a room model. For example,
users can use portable 3D models while visiting physical stores, on websites, within
digital ad units, on the train, at work, at home with their feet up on the couch, or in any
other suitable register.

[0026] Fifth, variants of the method can leverage conventional smartphones, and

do not require specialized hardware (such as VR headsets or high-resolution laser depth
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sensors) to generate useful models. However, variants of the method can accept
specialized hardware outputs to further refine virtual model generation.

[0027] Sixth, the method permits the capture of more expansive and immersive
fields of view without specialized lenses or cameras, to offer increased perceptual
realism, context, and a sense of immersion into the virtual scene (e.g. wide or tall
imagery, imagery mimicking human core field of view, imagery mimicking human
binocular field of view, 180 degree or 360 degree views, cylindrical or spherical
panoramic views, ability to rotate/pan/zoom within a scene, ability to change viewpoint
within a scene, etc.).

[0028] Seventh, the method achieves special detection and awareness of walls and
floors and ceilings, which are dominant planar surfaces with low textures that often
cannot be accurately detected by computer vision methods. This can be used for
applications involving placing, manipulating, or removing objects from the virtual room
model while maintaining the accuracy of the space.

[0029] Eighth, the method permits fine segmentation of objects, enabling
foreground occlusions, interaction with objects, and the ability to modify the scene. For
example, this can enable a user to interactively change the color of wall paint or flooring,
place rugs underneath furniture, place items on top of or behind other items, or
otherwise modify the virtual model of the physical space.

[0030] Ninth, the method estimates lighting from photography and geometry, so

that virtual objects can be added to the model and lit in a plausibly realistic manner.

3. System.

[0031] The system, preferably performs the method, including: one or more
engines, one or more clients, a platform 110, one or more repositories, and/or any other
suitable elements. An example of the system is shown in FIGURE 1.

[0032] The one or more engines of the system function to perform one or more
processes of the method. The engines can include: a stitcher engine 120, a
photogrammetry engine 121, a machine learning engine 122, a light estimator engine

125, a feature detector and tracker engine 127, a SLAM engine 103, a computation
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photography engine 104, a rendering engine 106, a lighting engine 107, and/or any other
suitable engine. The one or more engines can be included in the platform and/or the
user device 100. The engines can include one or more: rule sets, heuristic sets, neural
networks, data, and/or other data construct. Each engine is preferably connected to one
or more of the other engines, but can alternatively be isolated. One or more instances of
each engine can be executed (e.g., serially, concurrently) for each instance of the method
(e.g., for each user, each set of scene data, etc.). One or more instances of the engine can
be executed on: the device 100, the platform 110, and/or other processing system. Each
engine can perform one or more of the method processes, sub-processes, process
variants, and/or other process.

[0033] The system can be used with or include one or more device modules,
which function to execute one or more method processes. The device modules can
include: an end user application 101, a camera sensor controller 102, a platform API
108, such as for interfacing with the platform, an administrator application 109, and/or
any other suitable elements. The end user application 101 can be a native application, a
browser application, and/or another client.

[0034] The device modules are preferably executed by a device 100. The device
100 can function as or include: a capture device (e.g., that captures scene data), a
display device, an interaction device (e.g., that receives user inputs), or as any other
suitable device. The capture device can include one or more sensors, such as optical
sensors (e.g., cameras), depth sensors (e.g., LIDAR, radar, projected light,
steereocameras, etc.), inertial sensors (e.g., IMU, gyroscope), light sensors, color
temperature sensors, location sensors (e.g., GPS), and/or other sensors. Examples of the
device 100 include: smartphones, tablets, smart watches, cameras, and/or other devices.
[0035] The system preferably includes a platform 110, which can function to
determine the virtual model. The platform can include a client API, such as for
interfacing with the one or more clients. The platform is preferably remote from the
device 100, but can alternatively be part of the device 100. The platform can be hosted
by a remote computing system (e.g., server system), a distributed computing system,

and/or other computing system.
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[0036] The system can include one or more datastores, including: a training data
datastores, a room imagery datastores, an associated capture data datastores, a model
datastores, and/or any other suitable datastores. The datastores can be hosted by the

platform 110, by the device 100, and/or other computing system.

4. Method.

[0037] As shown in FIGURE 2 and FIGURE 3, a method for providing virtual
models of indoor scenes can include: capturing scene data S100, determining low-level
scene information S200, generating virtual scene information S300, determining high-
level scene information S400, determining refined scene information S500, and
transmitting the virtual model S600, but can additionally or alternatively include any
other suitable elements.

[0038] The method functions to generate a dense, accurate virtual model of a
scene. The scene can be a physical space, more preferably an indoor space, but (e.g., a
room) additionally or alternatively an outdoor space.

[0039] The virtual model of the scene can include: one or more virtual scene
visual representations (VSVR), a VSVR-aligned geometric representation, plane
information, surface normal information, lighting information, and/or other
information. The virtual model components are preferably aligned with the VSVR (e.g.,
aligned to the VSVR coordinate system, to VSVR pixels, or other VSVR reference point),
but can misaligned (e.g., within a predetermined margin of error), or otherwise aligned.
The virtual model components are preferably dense, but can be semi-dense or sparse.
[0040] The virtual scene visual representation (VSVR) represents the visual
appearance of the scene from one or more viewpoints (vantage points). The VSVR can
be generated from the scene imagery (e.g., with or without the capture data). The VSVR
(e.g., immersive photo, interactive panorama, immersive panorama, etc.) is preferably
presented to the user, but can be otherwise used. The VSVR is preferably photorealistic,
but can additionally or alternatively be immersive, not be photorealistic, or otherwise
characterized. The VSVR can be static and/or dynamic (e.g., wherein a user can move

between different vantage points, pan within a VSVR, zoom into a VSVR region, etc.).
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The VSVR preferably has an extended horizontal and/or vertical field of view (e.g., 90°
or wider, 115° or wider, between 90° to 120°, a photo sphere, 360-degree photo, etc.),
but can have another FOV. Examples of VSVR can include: a single scene image or
multiple scene images, with varying fields of view (FOV) (e.g., 57, 90, 180, 270, 280,
290, 300, 310, 320, 330, 340, 350, 360 degrees, etc.); panoramic images (wide and/or
tall) represented as planar, cylindrical, or spherical projections (photo sphere), and/or
an interactive panorama, an immersive panorama, or any other panorama; free
viewpoint walk throughs; VR experiences; or other representations of the visual
appearance of a space from one or more viewpoints.

[0041] The VSVR-aligned geometric representation functions to represent the
geometry of the physical scene. The VSVR-aligned geometric representation is
preferably aligned with the VSVR (e.g., shares a common reference point), and can
share a field of view (FOV) and/or point of view (POV) with the VSVR. The VSVR-
aligned geometric representation preferably includes position data, but can additionally
or alternatively include planes, surface normals, masks, and/or other data. The VSVR-
aligned geometric representation can include a position for each pixel (and/or a subset
thereof) within the VSVR, but can include meshes, convex hulls or other geometric
representations. In one example, the VSVR-aligned geometric representation includes a
depth map of the VSVR field of view from the VSVR point of view. However, the VSVR-
aligned geometric representation can include a point cloud, or include any other suitable
geometric representation. The VSVR-aligned geometric representations can additionally
or alternatively be otherwise configured or defined.

[0042] The plane information functions to represent the planes within the scene.
The planes can represent the key planes (e.g., walls, floor, ceiling), object planes, and/or
other planes. The plane information can include: plane equations (e.g., defining the
plane pose, etc.), plane boundaries, a plane normal vector (e.g., extending normal from
the plane body), surface normal and point on the plane, surface normal and orthogonal
depth from the device (camera), and/or other plane parameters.

[0043] The surface normal information functions to define the orientation of each

surface within the scene. The surface normal information can include a surface normal
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vector (e.g., with a direction and magnitude) for each of a set of VSVR pixels or VS-
aligned geometric representation voxel, but can be otherwise defined.

[0044] The lighting information functions to define parameters of the scene
lighting, such that shadows and highlights can be realistically generated and rendered.
The lighting information can include one or more: light source location, light source
pose, light source type (e.g., diffuse, collimated, spot lighting), light direction, light
parameters (e.g., intensity, color temperature, hue, saturation, etc.), environment maps,
intrinsic highlight maps, and/or other information.

[0045] The virtual model components can be determined based on scene
information or other data. The scene information can include: scene data, scene
features, capture device characterization, one or more geometric representations,
segmentation masks, surface normals, and/or planes.

[0046] The scene data can include scene imagery, associated capture data (e.g.,
SLAM data, inertial data, light data, depth data, etc.), depth sensor data, and/or any
other data sampled by the capture device.

[0047] The scene imagery can include still images, video, and/or any other
imagery. The scene imagery can depict a scene from one or more vantage points (e.g.,
POVs). The scene imagery preferably includes RGB imagery, but can additionally or
alternatively include other visual channels.

[0048] The still images of the scene imagery are preferably high quality, such that
each image can include: a predetermined dots per inch (e.g., 250 dpi, 300 dpi, 350 dpi,
400 dpi, etc.), a predetermined width (e.g., 1000 pixels, 2000 pixels, 3000 pixels, 4000
pixels 5000 pixels, etc.), a predetermined length (e.g., 1000 pixels, 2000 pixels, 3000
pixels, 4000 pixels 5000 pixels, etc.), and/or any other characteristic.

[0049] The associated capture data can include: poses of the capture device (3D),
gravity vector, camera intrinsics (e.g., from manufacturer and based on the currently
active photography settings), camera extrinsics (e.g., from the capture device SLAM
engine, otherwise determined), camera settings (e.g. shutter speed, aperture, ISO, white
balance, focus settings, focus rack motion, etc.), ambient environment data (e.g., audio,

etc.), ambient lighting parameters (e.g., ambient brightness, light color temperature,
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etc.), capture device inertial data (e.g. IMU, gyroscopes, accelerometers, positions,
velocities, acclerations, etc.), geolocation, 2D feature points, 3D scene points, planes,
objects, a set of scene scan geometric representation(s), a set of additional scene scan
geometric representation(s), camera poses, and/or any other suitable data. The
associated capture data can be associated with each video frame, each still image,
and/or associated with any other image or data.

[0050] The scene features can include low-level features, high-level features,
and/or other features. The scene features can be generated by the capture device (e.g.,
by the end user application), by the method, or otherwise generated.

[0051] The low-level features (pixel-level features) can include: lines, points,
gradients, patches, keypoints, depths, depthmaps, and/or any other suitable features.
[0052] The high-level features (contextual features) can include: edges, wall
seams, vanishing points, segments, objects, and/or any other suitable features.

[0053] The capture device characteristics can include: shutter speed, exposure,
lens intrinsics (e.g., intrinsics matrix), sampling rate, sensor versions (e.g., firmware,
hardware version, etc.), and/or other characteristics.

[0054] The geometric representations function to represent scene geometry, and
can include: depth maps (scene geometry from a specific POV), point clouds, and/or any
other suitable elements. The method can generate and leverage multiple geometric
representations of the scene (e.g., redundant geometric representations of the scene),
and selectively fuse different portions of different geometric representations together to
generate the final VSVR-aligned geometric representation.

[0055] Examples of geometric representations that can be generated and/or used
include: scene scan and/or position representations from S120 - S150 (e.g., 3D scene
points and/or 3D camera poses from SLAM/ ARKit / ARCore, etc.; sparse and medium
accuracy); depth sensor geometric representation from S220 (e.g., sparse or dense, high
accuracy); SLAM geometric representation from S240 (e.g., sparse and medium
accuracy); SFM geometric representation from S250 (e.g., dense and high accuracy);
dense geometric representation from S260 (e.g., dense and low accuracy); MVS

geometric representation from S270 (e.g., semi-dense and high accuracy); a set of

11
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outlier removed geometric representations from S280 (e.g., density depends on input
geometric representation; higher accuracy); a set geometric representations from S320
(e.g., density and accuracy depends on input geometric representation; aligned with
VSVR POV); rough geometric representation from S430 (e.g., dense and medium
accuracy); prior-enhanced geometric representation from S520 (e.g., dense and high
accuracy); scaled geometric representation from S570 (e.g., dense, scaled, highest
accuracy); final geometric representation from S590 (e.g., fused point cloud or depth
map; dense, scaled, highest accuracy); and/or other geometric representations of the
scene or portions thereof.

[0056] The depth maps can include information relating to the depths and/or
distances (e.g., along the z-axis) of the scene from a particular vantage point (e.g.,
camera POV), and can additionally or alternatively include (x, y) coordinates of the
objects in the scene.

[0057] The point clouds can include (X, y, z) coordinates of points of the scene.
The point cloud can collate multiple depth maps into a representation of the scene based
on transformation matrices. Each depth map can be determined from the point cloud
based on a transformation matrix that projects the points of the point cloud through a
virtual lens associated with the vantage point of the depth map. The point cloud can
additionally or alternatively be otherwise related to the depth map.

[0058] The visual information can include the scene imagery, the updated scene
imagery, the VSVR, and/or any other suitable imagery.

[0059] Each process and/or sub-process can be performed using one or more of
the captured or generated scene information, and output one or more instances (e.g.,
versions) of the same or different scene information type.

[0060] Each process and/or sub-processes of the method can be performed using
one or more sets of: rules, heuristics, neural networks, and/or any other suitable
algorithm of the same or different type, to generate different versions of the same or
different type of data. The data can be generated or processed by one or more modules

(e.g., each executing the same or different sets of algorithms or processes).
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[0061] Portions of the method (or instances of the same subprocess) can generate
redundant versions of the same scene information with the same or different: coverage,
density, accuracy, precision, or other characteristic.

[0062] All or components of the scene information (e.g., point clouds, depth
maps, surface normals, etc.) can be: fully dense, dense, semi-dense, sparse, and/or have
another density (e.g., along a continuum). Fully dense scene information can include
data points for every pixel of the field of view (e.g., frame). Dense scene information
(which can overlap with fully dense scene information) can include data points for every
pixel or voxel (e.g., above a dense predetermined proportion of the pixels or voxels, such
as 90%, 95%, 99%, etc.) of the FOV (e.g., panorama). Semi-dense scene information can
have data points for a proportion of points (e.g., pixels or voxels) of the FOV that is
between sparse and dense (e.g., within a predetermined range of the pixels or voxels,
such as between 10% and 90%, etc.). Sparse scene information can include data points
for less than a sparse predetermined proportion of the points within the FOV (e.g., 50%,
40%, 30%, 20%, 10%, 5%, etc.). However, different densities can be otherwise defined.
[0063] All or components of the scene information can have high accuracy,
medium accuracy, low accuracy, and/or another accuracy (e.g., along a continuum).
High accuracy can be less than first predetermined threshold of error (e.g., less than
10%, 5%, 1%, 0.1% error). Medium accuracy can be less than second predetermined
threshold of error; between a predetermined error range (e.g., less than 60%, 50%. 40%,
30%, error). Low accuracy can be higher than third predetermined threshold of error
(e.g., 40%, 50% 60%, 70% error). However, the accuracies can be otherwise defined.
[0064] All or portions of the method can be performed: using depth maps aligned
with the VSVR or geometric representations (e.g., depth maps, point clouds) that are
independent from the VSVR.

[0065] All or portions of the method can be performed: locally on the user device,
by a remote computing system (e.g., server system), distributed system, and/or any

other suitable computing system.
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[0066] All or portions of the method can be performed: in series, in parallel,
iteratively, or in any other suitable order for one or more user sessions (e.g., sets of
scene information).

[0067] The captured and/or generated data can be stored: in the same data

datastore, different data datastores, or otherwise stored.

4.1 Capturing scene data S100

[0068] The method preferably includes capturing scene data S100, which
functions to generate scene imagery and associated capture data encompassing at least a
predetermined field of view from a predetermined number of vantage points (points of
view). The scene data can be generated onboard the capture device using one or more of
the engines (e.g., SLAM engine, computational photography engine, photogrammetry
engine, etc.), the end user application, and/or other engine or module.

[0069] S100 is preferably performed before S200 and/or S300, but can
additionally or alternatively be performed at any other suitable time, such as after one
or more of the method processes to increase the amount of scene data for generating the
virtual model. S100 can be performed concurrently and/or serially, by one or more user
devices. S100 can be performed using one or more capture methods which can be
dependent on or independent from the outputs of other capture methods. The one or
more capture methods can be performed using the camera sensor controller, which can
function to control aspects of the camera and the resulting scene data (e.g., guiding
positioning of the camera, controlling focus, reducing handshake or motion blur,
adjusting white balance or color correction, enhancing exposure, aligning images, and
any other suitable aspects of the camera). However, S100 can be otherwise performed.
[0070] In variants, S100 can include one or more of: providing the user with
guidelines to capture imagery from a vantage point S110, generating 3D camera poses
and 3D scene points using the SLAM engine S120, capturing scene video by scanning a
scene S130, capturing scene images S140, capturing scene data from a second vantage
point S150, uploading the scene imagery and associated capture data to the platform

S190, and/or any other suitable process.
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[0071] Providing the user with guidelines to capture imagery from a vantage point
S110 functions to determine the scene data based on pre-determined capture process
including a predetermined set of camera motion guidelines and/or a random camera
motion pattern, and to ensure that the user captures sufficient data for subsequent
virtual model generation. S110 can include presenting the set of camera motion
guidelines to the user on the user device (e.g., scene FOV coverage, scene POVs,
residency time for each scene region, etc.). S110 can include guiding the user through
the capture process (e.g., guiding the user though each guideline, such as to ensure the
still images of the scene are overlapping, to ensure the video footage is captured from a
particular vantage point and/or angle, to ensure high quality associated capture data,
ete.).

[0072] Generating 3D camera poses and 3D scene points using the SLAM engine
S120 functions to determine the SLAM data when moving the user device in a pre-
determined configuration (e.g., figure 8, circle, square, etc.), such as during Si10.
However, camera poses and scene points can be otherwise captured in-situ.

[0073] Capturing scene video by scanning a scene S130 functions to generate:
scene video (e.g., compressed, raw) from one or more vantage points, a set of scene scan
geometric representations(s), camera poses, images with parallax, images with a
predetermined amount of overlap, threshold number of frames collectively
encompassing a predetermined field-of-view (FOV), threshold number of frames
collectively encompassing predetermined number of point-of-view (POV), such as for
parallax, and/or generate any other suitable information. S130 can be performed based
on the 3D camera poses and 3D scene points determined in S120, based on the scene
data, and/or based on any other information. S130 can be performed during S120, S110,
and/or at another time. S130 can include: processes for achieving sufficient parallax,
such as guiding the user to wave the user device to capture two or more perspectives of a
scene, wherein each perspective is separated by a pre-determined threshold (e.g., 0.5
meters, 1 meter, 2 meters, etc.); processes for capturing enough scene imagery, such as
guiding the user to capture scene imagery for a predetermined threshold of time (e.g.,

10-20 seconds), guiding the user to capture particular portions of the scene; guiding

15



WO 2020/191109 PCT/US2020/023449

user video capture based on timers, number of frames, color feedback, 3D data about
the room as it is obtained from the SLAM engine, and/or any other suitable feedback
element; and/or otherwise guiding video capture. S130 can include sampling video (e.g.,
a time series of frames), audio, and/or other data. S130 can additionally or alternatively
include collecting 3D camera poses for each video frame (or a subset thereof) using the
SLAM engine and/or any other suitable element.

[0074] Capturing scene images S140 functions to determine still images from one
or more vantage points. S140 can optionally additionally include determining one or
more camera poses associated with the still images; determining a gravity vector,
and/or determining any other suitable information. In a first variant, S140 can include
capturing still images of the scene. In a second variant, S140 can include directing the
user to move the user device in a specific way to capture scene imagery while filming
video (e.g., using the video frames to determine still images; during S130). In a third
variant, S140 includes extracting video frames for use as the still images. However, the
scene images can be otherwise determined.

[0075] Capturing scene data from a second vantage point S150 functions to
determine second scene imagery and/or second associated capture data. S150 can be
optional. S150 can be repeated one or more times for any number of vantage points
(e.g., 1, 2, 3, ..., n additional vantage points, etc.). The second vantage point preferably is
more than a predetermined threshold away from the first vantage point (e.g., 1 meter, 2
meters, 3 meters, 4 meters, 5 meters, 10 meters, etc.), but can alternatively be less than
a threshold distance away. S150 can include: facilitating performance of S130 and/or
S140 at the second vantage point (e.g., instructing the user to select and move to the
second vantage point); additionally or alternatively performing Si20 at the second
vantage point; and/or any other suitable process.

[0076] Uploading the scene data to the platform Si90, function to transmit
compressed data (e.g., images, video, inertial data, geolocation data, etc.) and/or
uncompressed data (e.g., one or more scene data elements, one or more associated data
elements, etc.) to the platform (e.g., using the platform API). S190 can be performed

based on data collected from one or more S100 processes. S190 can transmit data
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wirelessly (e.g., over the Internet, over a cellular connection, LAN, etc.), over a wired
connection, and/or otherwise transmit the scene data.

4.2 Determining low-level scene information S200

[0077] The method preferably includes determining low-level scene information
S200, which functions to extract low-level scene information from the scene data. The
low-level scene information can include local, pixel-based features, basic
characterizations of the user device and scene, such as including: updated scene imagery
(e.g., from S210), geometric features (e.g., from S230), new and/or refined camera pose
estimates (e.g., from S250), one or more of the following geometric representations:
depth sensor geometric representation (e.g., from S220), SLAM geometric
representation (e.g., from S240), dense geometric representation (e.g., from S260),
MVS geometric representation (e.g., from S270), a set of outlier removed geometric
representations (e.g., from S280), and/or any other geometric representation; and/or
other features.

[0078] S200 can generate one or more models for a given type of low-level scene
information (e.g., multiple depth maps of the scene generated from different processes).
Multiple models for a given type of scene information can be redundant (e.g.,
representative of the same scene, with the same or different densities, accuracies, or
other parameters), complimentary, or otherwise related.

[0079] S200 can be performed after S100, during S100, after one or more
processes of S400, and/or at any other suitable time. S200 can be performed based on
the scene data (e.g., all, different subsets thereof, etc.), data generated by other
subprocesses of S200, and/or other data. S200 can be performed using one or more
extraction algorithms, including: computer vision algorithms, visual feature extractors,
photogrammetry processes (e.g., SLAM, SfM, MVS), optical flow, interpolation
processes, and/or any other suitable techniques and/or processes.

[0080] In variants, S200 can include: processing scene imagery S210, processing
depth sensor and/or software depth estimation S220, detecting geometric features
S230, determining one or more geometric representations using RGB and/or RGBD

SLAM S240, determining one or more geometric representations using structure from
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motion (SfM) S250, determining dense geometric representations S260, determining
one or more geometric representations using multi-view stereo S270, rejecting
geometric representation outliers S280, and/or any other suitable process.

[0081] Processing scene imagery S210 functions to determine scene imagery that
is more suitable for subsequent processing. S210 can be based on the scene imagery
determined in S100 and /or any other suitable data. S210 can include processing the
scene data, including: denoising, cropping, saturation and hue adjustment, exposure
enhancement, sharpening, HDR adjustment, and/or otherwise processing the scene
imagery. Additionally or alternatively, S210 can include: identifying and removing bad
imagery (e.g., outliers, blurry images), and/or selecting adequate scene imagery for
subsequent use (e.g., covering certain parts of the scene, based on a set of rules,
thresholds, heuristics, image characteristics, etc.). However, S210 can include any other
suitable elements.

[0082] Processing depth sensor and/or software depth estimation data S220
functions to determine a depth sensor geometric representation. S220 can be performed
based on a depth sensor geometric representation determined from the depth sensor
integrated into the user device and/or images and/or video frames from S100. S220 can
include: filtering and denoising geometric representations based on known
characteristics of the depth sensor; densifying depth sensor data; depth edge sharpening
depth sensor data; registering depth sensor data to scene imagery (e.g., visual RGB data
of each image and/or frame); using depth sensor intrinsics and extrinsics to project
depth data into a point cloud; using the camera intrinsics and extrinsics to project
points of a point cloud back into the RGB camera to register the points with RGB images
and/or frames to determine a particular depth map; and/or creating geometric meshes
from depth sensor data. However, S220 can include any other suitable processes.

[0083] Detecting geometric features S230, which can function to determine low-
level geometric features including one or more of the following: lines, points, or other
geometric or visual features. S230 can be performed using the feature detector and
tracker engine 127 or another system. S230 can be performed based on one or more of

the following: updated scene imagery from S210, scene imagery and/or associated
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capture data from S100, and/or any other suitable information. S230 can be performed
using optical flow techniques, visual tracking, line extractors, point extractors, visual
feature extraction algorithms (e.g., ORB, BRISK, etc.), and/or any other suitable
processes. However, geometric features can be otherwise determined.

[0084] Determining one or more geometric representations using SLAM S240
functions to determine one or more SLAM geometric representations, 3D camera poses,
and/or any other suitable information. SLAM methodologies that can be used include:
visual-Inertial SLAM, RGB SLAM RGBD slam, and/or other SLAM engines. S240 can be
performed based on scene imagery, associated capture data, and/or any other suitable
data. However, S240 can include any other suitable elements.

[0085] Determining one or more geometric representations using structure from
motion (SfM) S250 functions to determine: 3D points; updated camera poses, which can
include updated positions and orientations of the camera for every image and/or frame
(or a subset thereof); updated camera intrinsics; and/or other information. S250 can be
performed based on: the associated capture data, more specifically camera poses from
S100, video, image series, and/or any other scene data or information. S250 can be
performed using SfM techniques and/or any other suitable techniques. However, S250
can include any other suitable elements.

[0086] Determining dense geometric representations S260 functions to
determine one or more dense geometric representations of the scene. S260 can be
performed based on: updated scene imagery from S210, scene imagery and/or
associated capture data from S100, sparse geometric representations, including one or
more scene scan geometric representations from S130, secondary scene scan geometric
representations from S150, depth sensor geometric representations from S220 (which
can be used in addition to or alternative to SLAM data), RGB and/or RGBD SLAM
geometric representation from S240, and/or any other suitable information from
another process. S260 can be performed using one or more: neural networks,
interpolation techniques (e.g., averaging, bilateral filtering, edge aware smoothing,
nearest-neighbor interpolation, Kriging interpolation, spline interpolation, natural

neighbor interpolation, Barnes interpolation, bilinear interpolation, triangulation,
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variational optimization, Poisson or Delaunay surface reconstruction, etc.), and/or any
other suitable processes. However, S260 can include any other suitable elements.

[0087] Determining one or more geometric representations using multi-view
stereo (MVS) S270 functions to determine one or more MVS geometric representations.
S270 can be performed based on camera poses, such as the updated camera poses from
S250, and/or the camera poses determined in S100; camera intrinsics and/or extrinsics
from the scene data and/or from other S200 processes; updated scene imagery from
S210 and/or scene imagery from S100; and/or any other suitable information. S270 can
be performed using MVS algorithms and/or any other suitable other suitable
algorithms. However, S270 can include any other suitable elements.

[0088] In variants, S200 can include rejecting geometric representation outliers
S280, which can function to determine set of outlier-removed geometric representations
by rejecting outlying points from one or more geometric representations. S280 can be
performed based on the gravity vector determined in S140, optionally the semantic
segmentation determined in S420, and/or any other suitable information. Outliers can
be removed from one or more of the geometric representations determined by the
method, including: the scene scan position representations from S130, the additional
scene scan position representation from Si150, the depth sensor geometric
representation from S220, the RGB and/or RGBD SLAM geometric representation from
S240, the geometric representations from S250, the dense geometric representation
from S260, the MVS geometric representations S270, and/or any other suitable
geometric representation. S280 can be performed based on a set of rules, heuristics,
neural networks, and/or any other suitable algorithm. S280 can include: comparing
geometric representations to one or more other geometric representations and rejecting
inconsistent points; comparing geometric representations to a high-accuracy geometric
representation; and/or any other suitable comparison. S280 can include removing
points based on relative depths of the points, such as removing points where depths are
not supported because there are no and/or insufficient nearby points, where depths
deviate from a known plane (e.g., floor plane), where depths induce visual discrepancies

(e.g., color consistency), where depths exceed predetermined thresholds (lie beyond the
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floor, are greater than a predetermined threshold distance from the camera, such as
outside of an estimated scene area), and/or any other process for removing points based

on depths. However, S280 can include any other suitable elements.

4.3 Generating virtual scene information S300

[0089] The method preferably includes generating virtual scene information
S300, which can function to generate virtual scene information including: virtual scene
visual representation (VSVR) (e.g., from S310), VS aligned data (e.g., from S320),
and/or any other suitable information. S300 can be performed after S100, S250, and/or
S400; before S400, S500, and/or S600, in parallel with S260, S270, and/or S280,
and/or at any other suitable time. S300 can be performed based on scene imagery from
S100, updated scene imagery from S200, camera intrinsics and/or extrinsics, one or
more geometric representations determined in S100 and/or S200, and/or any other
suitable information. In variants, when S300 is performed after S400, S300 can be
performed based on the high-level scene information determined by S400.

[0090] In variants, S300 can include: generating the virtual scene virtual
representation S310, generating VS aligned data S320, and/or any other suitable
element.

[0091] Generating the virtual scene virtual representation S310 functions to
determine the VSVR, a virtual scene (VS) mapping table (e.g., mapping source pixel in
source image to VSVR pixel; mapping source image segments to VSVR segments and
transformations, etc.), and/or any other suitable information. S310 can be performed
based on the scene imagery from S100, the updated scene imagery from S210, the
updated camera poses from S250, camera intrinsics and/or extrinsics, one or more
geometric representations determined in S100 and/or S200, optionally the high-level
scene information from S400, and/or any other suitable information. S310 can be
performed using panorama stitching algorithms and/or any other suitable techniques.
Additionally or alternatively, S310 can include any other suitable elements.

[0092] Generating VS-aligned data S320 functions to determine one or more:

depth maps from the VSVR point of view that are aligned with the VSVR (e.g., wherein
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each pixel or a subset thereof is associated with a depth value); VS aligned versions of
one or more of the inputs to S320; and/or other output. S320 can be performed based
on: the VS mapping table, geometric representations from S200 and S100, geometric
features from S230, optionally the geometric representation from S590, optionally high-
level scene information from S400 (e.g., edges from S410, semantic segmentation from
S420), dense depth from S430, surface normals from S440), and/or any other suitable
information. S320 can be performed after S100, S200, and/or S400, before S400
and/or S500, wherein subsequent processes can use the VSVR-aligned versions of the
respective geometric representations as inputs.

[0093] In a first wvariation, S320 can generate VS-aligned geometric
representations by using the VS pixel mapping. In this variant, S320 can include:
identifying a pixel in the input geometric representation associated with same source
pixel as the VSVR’s pixel and assigning the pixel to the VS algined geometric
representation’s pixel or voxel that is associated with the respective VSVR’s pixel to
determine the VS aligned geometric representation. However, the VS-aligned geometric
representation can be otherwise determined.

[0094] In a second variation, S320 can include re-projecting points from point
clouds of the one or more geometric representations (e.g., based on camera intrinsics
and extrinsics) through a virtual camera to determine the VS aligned geometric

representations. However, S320 can be otherwise performed.

4.4 Determining high-level scene information S400

[0095] The method preferably includes determining high-level scene information
S400, which functions to determine information that is generated based on scene
context (e.g., the entirety of the image, such as the VSVR, scene imagery from S100,
and/or updated scene imagery from S200; associated capture data; other features; etc.).
High-level scene information can include: high-level geometric features (e.g., from
S410), segmentation masks (e.g., from S420), rough geometric representations (e.g.,

from S430), surface normal values (e.g., from S440), metric scale sparse depths from
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objects of known size (e.g., from S450), and/or any other suitable information. S400 can
be performed before S500, before and/or after S300, and/or at any other suitable time.
[0096] Variants of S400 can include: determining high-level geometric features
S410, segmenting the scene information S420, determining one or more rough
geometric representations S430, determining surface normals S440, determining metric
scale sparse depths from objects of known size S450, and/or any other suitable
elements. The variants of S400 can be performed in parallel, in series, and/or in any
suitable combination. The variants of S400 can be performed based on one or more of
the following: virtual scene information from S300 (e.g., VSVR, VSVR-aligned
geometric representations, etc.), scene imagery and/or associated capture data from
S100, and/or any other suitable information. Generally, the variants of S400 can be
performed using neural networks, heuristics, equations, and/or any other suitable
process.

[0097] Determining high-level geometric features S410 functions to determine
high-level geometric features. The high-level geometric features can include: edges (e.g.,
points at the edge of an object to define where an object ends), wall seams, horizontal
lines, vanishing points, and/or any geometric feature. S410 can be performed based on
the visual information, one or more geometric representations from one or more of
S100, S200, and/or S300, and more specifically, depth maps and/or surface normals of
the geometric representations, optionally camera intrinsics and/or extrinsics, and/or
any other suitable information. S410 can be performed using: a perceptual edge
detector, such as BDCN; a line segment detector, such as LCNN; a multiscale classical
line detector, such as MCMLSD, and/or any other suitable detector. Additionally or
alternatively, S410 can be performed based on a set of rules, heuristics, neural networks,
and/or any other suitable algorithm.

[0098] Segmenting the scene information S420 functions to determine
segmentation mask(s) for the scene. For example, S420 can determine a class label (e.g.,
“floor”, “wall”, “couch”, etc.) for every pixel (or a subset thereof) of: the scene imagery
(or a subset thereof), the VSVR, the geometric representations (e.g., associated based on

the labels determined for source pixels from source images underlying the geometric
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representation voxel), and/or for any other suitable information. S420 can be
performed based on: visual information from Si00 and/or S300, the high level
geometric features from S410, and/or any other suitable information. S420 can be
performed using edge-aware multi-scale neural networks, semantic segmentation
techniques, instance segmentation techniques, a set of rules, heuristics, neural
networks, and/or any other suitable algorithm.

[0099] In a specific example, S420 is performed using an edge-aware multi-scale
neural network. The network can process multiple versions of the visual imagery each
version having a different resolution, ranging up to 2560x2560, but can additionally or
alternatively have resolutions above 2560x2560. The predictions from the multiple
versions can be merged using weighted averaging, label-wise-heuristics, and/or any
other suitable technique. In variants, higher resolution semantic predictions can receive
higher weights near perceptual-edge boundaries and lower weights near non-
perceptual-edge regions. However, S420 can include any other suitable elements.
[00100] Determining one or more rough geometric representations S430 functions
to determine a different geometric representation of the scene (e.g., with different
accuracies, densities, and/or noise from other generated geometric representations).
The rough geometric representation is preferably dense, but can alternatively be semi-
dense, and/or preferably inaccurate, but can alternatively be accurate. For example, the
rough geometric representations can include estimated depths per pixel (or a subset
thereof) of the visual information. S430 can be performed based on the visual
information, optionally camera intrinsics, and/or any other suitable information. S430
can be performed using a monocular depth NNs (e.g., MonodepthBTS), any other
suitable neural networks, alternatively a set of rules, heuristics, and/or any other
suitable algorithm. However, S430 can include any other suitable elements.

[00101] Determining surface normals S440 functions to determine surface normal
values for each pixel (or a subset thereof) of the visual information. S440 is preferably
performed based on the visual information and can additionally be performed based on
the camera intrinsics, and/or any other suitable information. S440 is preferably

performed using one or more neural networks, such as Framenet, but can additionally
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or alternatively, be performed using a set of rules, heuristics, and/or any other suitable
algorithm. However, S440 can include any other suitable elements.

[00102] Determining metric scale sparse depths from objects of known size S450
functions to determine one or more object depth maps for each known object found in
the scene with metric scale depth data for each pixel (or a subset thereof) of the visual
information. S400 can be performed based on the visual information, and/or any other
suitable information. S400 can include: identifying known objects in the scene,
determining known object physical dimensions, scaling the geometric representation
(and/or data) based on the known object’s relationship with the geometric
representation and/or data, and/or computing depths of each object in the scene based
on the known object’s physical dimensions.

[00103] In a first specific example, S450 can include identifying any piece of paper
having a standard size (e.g., A4, letter, legal, etc.) and/or a specially designed fiducial
marker printed on it, searching the images of the visual information for the known
colors and shape of the fiducial marker; identifying the bounds/mask of the marker
based on these known colors and shape; determining the identified object’s physical
dimensions and/or pixel size based on the bounds/mask of the identified marker; and
determining one or more object depth maps for each known object based on the physical
dimensions.

[00104] In a second specific example, S450 can include identifying objects using
one or more neural networks trained for object instance recognition; using the identified
objects to determine physical dimensions and/or pixel size of the identified objects; and
determining one or more object depth maps for each known object based on the physical

dimensions and/or pixel size. However, S450 can include any other suitable elements.

4.5 Determining refined scene information S500

[00105] The method preferably includes determining refined scene information
S500, which functions to synthesize multiple data sources to generate refined scene
information (e.g., high accuracy scene information), scale the scene information to a

common scale (metric scale), and/or perform any other suitable functionality. The
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refined scene information can be sent to the user, to other method processes, and/or be
otherwise used. The refined scene information can be metric scaled (e.g., to metric units,
imperial units, etc.). The refined scene information can include: VSVR aligned
geometric representation, refined planes (e.g., refined walls, refined floors, refined
ceilings, etc.), refined segmentation masks, lighting information, and/or any other
suitable information. S500 is preferably performed after S100, S200, S300, and S400,
but can be performed at any other suitable time. S500 is preferably performed based on:
the high level scene information from S400, the virtual scene information from S300,
the low-level scene information from S200, the scene imagery and/or associated capture
data from S100, and/or any other suitable information. The information used to
perform S500 can be scaled and/or unscaled.

[00106] In variants, S500 can include: determining floor planes S510, determining
prior-enhanced geometric representations S520, refining segmentation masks S530,
enhancing occlusion edges S550, determining wall planes S560, adjusting the depth
maps to a common scale S570, estimating lighting information S580, generating a final
geometric representation S590, and/or any other suitable processes.

[00107] Determining floor planes S510 functions to determine plane information
for one or more floor planes. The planes can be scaled and/or unscaled. S510 can be
performed based on the associated capture data, more specifically the gravity vector
from S140, one or more geometric representations, including: the MVS geometric
representations (e.g., from S270) and/or the rough geometric representations (e.g.,
from S430), the segmentation masks (e.g., from S420), and/or any other suitable
information. S510 can be performed using random sample consensus (RANSAC) to
identify a plane that matches all 3D points which are labelled “floor” in the
segmentation masks. S510 can optionally include constraining RANSAC, such as to
search for a plane perpendicular to gravity. Additionally or alternatively, S510 can be
performed using a set of rules, heuristics, neural networks, and/or any other suitable
algorithm. However, S510 can include any other suitable elements.

[00108] Determining prior-enhanced geometric representations S520 functions to

determine one or more dense geometric representations that are accurate for one or
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more scene components (e.g., object, floor, wall, labels, surface normals, edges, field of
view, etc.). S520 can determine one or more prior-enhanced geometric representations
(e.g., with confidence scores on a per-model, per-pixel basis, per-region basis, or other
basis). Different S520 models generating different prior-enhanced geometric
representations can be optimized for a given scene component or characteristic (e.g.,
planes; occlusions; etc.), but can additionally or alternatively be optimized for all scene
components, optimized for multiple scene components, trained to generate different
geometric representations (e.g., redundant geometric representations), and/or
otherwise constructed. For example, S530 can determine a floor enhanced geometric
representation, an occlusion enhanced geometric representation, and/or any other
suitable enhanced geometric representation.

[00109] S520 can be performed using one or more neural networks, which can be
trained to output a dense geometric representation for a given scene component (e.g.,
training a wall neural network by penalizing deviation away from a known wall). Each
scene component can be associated with one or more neural networks (e.g., wherein
multiple neural networks generate redundant versions for the given scene component).
Each neural network can be associated with one or more scene components (e.g.,
configured to generate high-accuracy data for the given scene component).

[00110] In a first variation, each neural network can be configured to generate a
dense geometric representation for a different scene component, wherein each scene
component is associated with one or more neural networks.

[00111] In a second variation, one or more neural networks can be configured to
generate different a dense geometric representation for a given scene component.
[00112] In a third variation, a single neural network can be configured to generate
one or more dense geometric representations of the scene.

[00113] S520 can be performed based on one or more scene priors. The scene
priors preferably include refined scene priors (e.g., from S510, S530-S560), accurate
scene priors (e.g., from S100, S200, S300, S400), predetermined scene priors (e.g., a
“gold standard” prior or target prior), precursor geometric representations from S100,

S200, S300, S400, and/or other scene priors. The scene priors preferably include the
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most accurate version of a given scene component (or associated reference point, such
as a wall seam for a wall) from the previously-determined scene information, but can
additionally or alternatively include the average value for the given scene component
(e.g., determined from redundant votes or measurements of the scene component)
and/or other version of the given scene component. Additionally or alternatively, the
scene priors can include any other suitable elements determined by the method. The
scene priors can be selected for use based on: a set of rules, heuristics, confidence
scores, and/or any other suitable criteria. Different scene priors can be selected for
different algorithms (e.g., neural networks), but the scene priors can be otherwise
selected.

[00114] In examples, the scene priors can include: one or more geometric
representations from S100, S200, S300, S400 (predetermined for each neural network,
dynamically selected based on a confidence metric, etc.), surface normals from S440,
refined planes from all (or a subset thereof) of S510, S560, and/or S570, refined
segmentation masks from S530 and S570 and/or unrefined segmentation masks from
S420, and/or any other suitable information.

[00115] S520 can additionally feed scene imagery, geometric representations,
and/or other scene information as inputs into the neural network during inference.
[00116] S520 can include biasing the one or more of neural networks with the
scene priors during inference (e.g., tending to cause the NNs to generate results as close
to the scene prior as possible). Additionally or alternatively, S520 can include:
constraining the neural networks with the scene priors during inference, including the
scene priors as inputs during inference, and/or otherwise using the scene priors during
inference.

[00117] In specific examples, S520 can be performed using Alternating-Direction
Neural Networks (ADNN), feed forward networks that concatenate the scene priors as
an additional input channel (e.g., in addition to scene imagery, geometric
representation(s), etc.); late fusion algorithms; recurrent generalizations of feed-
forward networks that allow for parameter learning using backpropagation; neural

networks that penalize deviations from the scene prior values; neural networks that
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enforce constraints by treating scene priors as unknown latent variables, wherein the
constraints can be injected as input channel, as a side channel (e.g., input into
intermediate neural network layer), and/or otherwise injected and/or constrained;
and/or other neural networks with other characteristics. Additionally or alternatively,
S520 can be performed using any other suitable neural network or module that can
include adjusting a penalty during training or inference to target certain characteristics,
and/or a set of rules, heuristics, and/or any other suitable algorithm. However, S520
can include any other suitable element.

[00118] Refining segmentation masks S530, which can function to determine
refined segmentation labels per pixel (or a subset thereof) in one or more models. S530
can be performed based on one or more inputs, including: segmentation masks from
S420, one or more prior-enhanced geometric representations from S520 (e.g.,
segmentation-enhanced geometric representations), one or more geometric
representations from S200, surface normals from S440, floor planes from S510 and/or
S560, VSVR from S310, and/or any other suitable information. In a specific example,
S530 can be performed based on refined planes from S510 and/or S560, one or more
prior-enhanced geometric representations from S520, high level information from S400
and/or any other suitable information. In some embodiments, one or more inputs of
S530 can be treated as sources of truth for segmentation mask refinement (e.g., high
accuracy inputs).

[00119] S530 can be performed using techniques to refine segmentation labels,
such as using a semantic-segmentation-refiner that functions to refine an initial
semantic-segmentation of a geometric feature or scene component (e.g., plane, object)
using the geometry of the scene. In one example, the semantic-segmentation-refiner can
include refining false positive floor geometric features by considering floor pixels in the
segmentation map (e.g., pixels with a high probability of being a floor pixel) with a
point-to-feature distance (e.g., height above floor) and/or a normal's deviation that is
above a defined threshold; and optionally refining the geometric feature’s false negatives
using similar heuristics with an inverse logic. In some embodiments, the semantic-

segmentation-refiner can include considering superpixels that are grouped using
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normals, color, and/or other shared characteristics instead of individual pixels. In some
embodiments, the semantic-segmentation-refiner optionally includes refining only
regions (e.g., contiguous regions, near-contiguous regions that are separated by less
than a threshold separation distance or number of pixels) that have high-coverage (e.g.,
higher than a threshold surface area, proportion of the geometric scene, etc.) with highly
reliable geometric representation data (e.g., high accuracy data, such as the Ss10
output). The geometric features can include: planes (e.g., floors, walls, ceilings), objects,
and/or other scene components. Additionally or alternatively, S530 can be performed
using a set of rules, heuristics, neural networks, and/or any other suitable algorithm.
However, S530 can include any other suitable elements.

[00120] Enhancing occlusion edges Ss50 functions to refine a geometric
representation (e.g., depth map, dense depth map) in a way that respects and improves
the depth edges it contains. Depth edges are places in the scene where the depth
changes abruptly (e.g., change between adjacent pixels or pixel regions exceed a
predetermined threshold), but can be otherwise defined. An example of a depth edge
includes where the depth of a table drops away sharply at the far edge of the table. S550
can determine one or more edge-enhanced geometric representations, which can
include edges of: planes, objects, and/or other scene geometry. S550 can be performed
based on: surface normals, the VSVR, a prior-enhanced geometric representation (e.g.,
from S520), other geometric representations, and/or other scene information. S550 can
be performed using: an occlusion-edge-enhancer module; a set of rules; heuristics;
neural networks, and/or any other suitable algorithm. The occlusion-edge-enhancer
module can enhance a geometric representation (e.g., depth-map) by preserving its
edges and smoothing its planar surfaces. In one example, the enhancement corresponds
to a guided filter (e.g., on a geometric representation) that uses a dissimilarity cost
function where weights leverage normals and surface color consistency (e.g., determined
from corresponding pixels from surface normal maps and/or the VRVR, respectively).
[00121] Determining wall planes S560 functions to determine: wall plane
equations, wall plane instances, and/or other wall plane parameters. S560 can be

performed based on one or more of: surface normal values (e.g., from S440), refined
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segmentation masks (e.g., from S530), floor plane equations (e.g., from S510), gravity
(e.g., from S100), visual features (lines, seams, vanishing lines, etc.) (e.g., from S410,
S230), geometric representations (e.g., from S200, S520), and/or other scene
information. S560 can be determined using: deep learning, image-based 3D geometry, a
set of rules, heuristics, neural networks, and/or any other suitable algorithm. In one
example, S560 includes: estimating wall plane instances using vertical lines (combining
lines from S410 and gravity from S100) and surface normals S440; fusing 3D points
from S200 and dense depth S520, optionally under planarity constraints; and deriving
initial plane equations for each wall plane instance based on the fused 3D points (e.g.,
wherein the lines and gravity are aligned, such as pixel-aligned, with the fused 3D
points). The initial wall plane equations can then be corrected using vanishing points for
the respective wall instance. The respective detected lines (e.g., from S410) and/or
gravity (e.g., from S100) can be used to estimate vanishing points for each respective
wall instance, but the vanishing lines can be otherwise determined. The resultant wall
plane equations for adjacent wall instances are then optionally transformed to be
orthogonal to each other (e.g., to be exactly Manhattan) if their estimated plane
equations are nearly orthogonal, resulting in an accurate wall orientation for typical
indoor room geometries. S560 can then include determining the wall distance away
from the virtual camera (e.g., to scale the plane equations). The wall distance can be
determined using one or more methods, depending on the available wall information
and/or accuracy of the wall information. In a first example, the scaled geometric
representations (e.g., point cloud from S200) can be used to determine the wall distance
when the scaled geometric representation includes sufficient points on the wall (e.g., a
predetermined number of points in the wall region of the scene, predetermined number
of points associated with a “wall” label from the semantic segmentation, etc.). In a
second example, the lines associated with a wall-floor intersection (e.g., determined by
combining semantic segmentation from S530 with lines from S410) can be used to
determine the wall distance by calculating the wall distance based on the wall-floor
intersection and the (scaled) floor plane equation (e.g., from S510). In a second

example, the lines associated with a wall-wall intersection (e.g., determined by
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combining semantic segmentation from S530 with lines from S410) can be used to
determine the wall distance by calculating the distance of the an unscaled wall using its
intersection with an already scaled wall. However, S560 can be otherwise performed.
[00122] Adjusting the geometric representations to a common scale S570 functions
to scale the geometric representation and plane equations so that they accurately
measure the real-world size of the room and the objects it contains (e.g., to metric
scale). S570 can be performed after S100, S200, S300, S400, S510 and S520. Can run
before or after the other modules in S500. S570 preferably determines one or more
scaled geometric representations, and can optionally determine a set of scaled plane
equations and/or other scaled scene information. S570 can be determined based on a
scale reference, and can scale scene information. The scene information can include: all
or a portion of the geometric representations from S100, S200, S300, S400, S500, such
as geometric representations from S520 or S550; plane equations (e.g., refined plane
equations from S560); and/or other scene information. The scale reference can include:
metric scaled 3D points and 3D camera poses (from SLAM); refined camera poses from
S250; objects of known size detected in images and/or video frames in S450; scaled
depth sensor data; and/or other scale references.

[00123] In a first variation, S570 includes scaling the (dense) geometric
representations based on common physical points represented in both scaled sensor
data and the dense geometric representation. This variation can include: scaling an
input geometric representation by matching a set of metric scaled 3D points with points
within the input geometric representation; selecting accurate scaled 3D points (e.g.,
from the SLAM data, from augmented reality engine), identifying corresponding points
in the input geometric representation, and calculating an optimal scaling factor based
on the 3D point scale and the corresponding points (e.g., using RANSAC ); and/or
otherwise scaling the geometric representations based on a shared physical point.
[00124] In a second variation, S570 includes: determining a transformation that
aligns SLAM camera poses which are already metric scaled (e.g., from S120, S130, S140,
etc.) with the updated camera poses (e.g., from S250), such as using RANSAC. This

transformation can determine the scale, rotation and translation that best aligns the two
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sets of camera poses (e.g., aligns the poses with the least deviation, least penalty, highest
confidence score, etc.). The scale component from the transformation can then be used
to scale the input geometric representations and/or plane equations to metric scale.
[00125] In a third variation, S570 includes: aligning the geometric representations
based on detected known objects, and calculating a transformation based on object’s
depth and dimensions in the geometric representation and the object’s known real-
world dimensions. Examples of known objects include: a Coke™ can, printed fiducial
markers, generic standard-size piece of paper (e.g., 8 1/2 x 11” paper), specific known
furniture items, and/or other objects.

[00126] In a fourth variation, S570 includes: scaling the geometric representations
based on depth sensor points, which are associated with scaled depth readings (e.g.,
metric scaled depth), such as using RANSAC.

[00127] However, S570 can be otherwise performed.

[00128] Estimating lighting information S580 functions to determine lighting
information for the scene, which can enable shadows and shading to be determined and
rendered for new virtual objects added to the scene and/or virtual object removal from
the scene. S580 can determine lighting information, such as the number of light
sources; light source parameters, such as pose (e.g., (X, y, z) position, orientation, etc.),
light type (e.g., ambient, point, diffused, etc.; represented as a value wherein each value
corresponds to a light type, such as a binary flag for point vs. diffused), size, or other
parameters; light parameters, such as lighting intensity, light hue, saturation, color
temperature, or other parameters; and/or other lighting information. S580 can be
performed based on: the VSVR (e.g., from S310), scene imagery (e.g., from S100),
semantic segmentation (e.g., from S420 or S530), and/or other scene information. S580
can be performed by: finding the ambient light condition of the scene (e.g., based on
brightness of planes, such as the brightness of the ceiling plane); determining
illumination metrics based on the exposure of each image (e.g., exposure of the camera
while capturing each source image); determining light source locations of light sources
that are turned on (e.g., higher light intensity than surrounding regions); determining

area light locations (e.g., based on semantic segmentation, such as window locations;
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based on shadows and highlights, etc.); determining intrinsic highlights (e.g., pattern on
a plane, such as a wall, that is due to light and/or not an object on the wall); determining
external lighting information (e.g., from external databases based on the auxiliary
capture data, such as the time of day and the position of the sun in the geographic
region), and/or otherwise determined. In a specific example, S580 includes estimating
ambient lighting by processing image segments that are likely lit by ambient lighting
only (e.g. ceiling). The ambient intensity is recovered as the mean value of Value within
the HSV color space. S580 can then include determining artificial light sources (e.g.,
point and directional light sources), using semantic segments associated with light
sources (e.g., lamp and window segments, respectively). These segments (e.g., lamp and
window segments) are further confirmed to be lights using color analysis within the
HSV space. Once the artificial lights are detected, the light parameters can be derived
using the full 3D model of the scene.

[00129] However, S580 can be otherwise performed.

[00130] Optional generating a final geometric representation S590 functions
output a high accuracy single geometric representation of the scene. The final geometric
representation can be a depth map, a point cloud, and/or other geometric
representation. In variants, S590 outputs a VSVR-aligned geometric representation of
the scene; alternatively, the final geometric representation can not be VSVR-aligned,
and is passed to S320 for VSVR-alignment. S590 can be performed: after S100, S200,
S300, S400, the rest of S500; and/or at any other suitable time. S590 can be performed:
once per scene; multiple times per scene (e.g., from same or different POV); and/or any
number of times for any number of scenes. S590 can be performed based on: high-
accuracy scene information (scaled, unscaled), and/or lower-accuracy scene
information. Examples of high-accuracy scene information that can be used include:
prior-enhanced geometric representations from S520 (e.g., one or more for each scene
component); metric scaled geometric representations from S570; metric scaled plane
equations from S570; refined segmentation masks from S530; high-accuracy data from
S200; the VSVR from S310; and/or any other suitable scene information. S590 can be

performed using: late fusion; piecewise fusion (e.g., different scene component pieces
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from different scene information is selected and fused into the final geometric
representation); and/or otherwise performed. In one variation, S590 generates the final
geometric representation according to a set of rules and/or a cascade of
transformations. In this variation, each input is associated with a different scene
component (e.g., that the given input has a high-accuracy-version of), wherein the
geometric data for the scene component is extracted from the respective input and fused
into the final geometric representation (e.g., by copying the geometric data into the final

geometric representation, etc.). However, S590 can be otherwise performed.

4.6 Transmitting the virtual model S600

[00131] The method preferably includes transmitting the virtual model S600,
which can function to package and/or send one or more elements of the refined scene
information from S500, as well as the VSVR from S300, for use on the end user
application 101. In variants, S600 functions to change the format of the data to generate
a compact data package. In variants, S600 functions to change the format of the data to
generate an updated package more suitable for use one the end user application 101
(e.g., more compatible with the runtime libraries available in that environment, more
efficient to render as 3D graphics, etc.). S600 can be performed after all of S100-S500,
and/or after one or more of S100-S500, and/or at any other suitable time.

[00132] In variants, S600 can include determining a data package S610, optionally
facilitating manual review S620, transmitting the data package S630, and/or any other
suitable processes.

[00133] In variants, S600 can include determining a data package S610. S610 can
be performed based on one or more final scene information elements, including: the
refined scene information from S500 (e.g., VSVR from S310, refined plane equations
from S560 and/or S510, refined segmentation masks from S530, final geometric
representation from S590/ S320, light source from S580, and/or any other suitable
elements. Additionally or alternatively, S600 can be performed based on all elements
(or a subset thereof) of: the refined scene information from S500, the high-level scene

information from S400, the virtual scene information from S300, the virtual scene
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information from S200, and/or the scene data from S100. The final scene information
elements are preferably all metric scaled and aligned with the VSVR, but can
additionally or alternatively be aligned with the final geometric representation,
unscaled, or otherwise configured.

[00134] S610 can include determining a data package that includes the virtual
model, which can include compressed, re-encoded and/or raw versions of the elements
used to perform S610, an encoded virtual scene visual representation (e.g., wherein the
VSVR dimensions can be 4000 x 2000 + 20%, and/or any other suitable dimension),
plane equations (e.g., one or more plane rotation matrices), segmentation masks, a
fused dense depth map which can be encoded with an encoding scheme, lighting
information, and/or any other suitable elements. S610 can be performed based on
element selection criteria (e.g., based on the hardware and/or software of a user device).
S610 can be performed based on a set of rules, heuristics, neural networks, and/or any
other suitable algorithm. However, S610 can include any other suitable elements.
[00135] Optionally facilitating manual review S620 functions to manually adjust
the scene information. S620 can be performed before S610, before S600, before S630,
after S610, and/or at any other suitable time. S620 can be performed for each iteration
of the method, in response to a metric satisfying a predetermined condition, and/or at
any other suitable time. The metric can be a confidence level, an accuracy level, and/or
any other suitable metric. The predetermined condition can be the metric falling below
threshold value, and/or any other suitable condition. However, S620 can include any
other suitable elements.

[00136] Transmitting the data package S630 functions to transmit the data
package to one or more user devices (e.g., to the end user application 101), to the model
datastore, and/or to any other suitable endpoint. S630 can be performed in response to
a scene request receipt (e.g., identifying the data package or the scene), completion of
S100-S500, and/or in response to any other suitable event. In a first specific example,
the data package is transmitted to one or more user devices in response to receipt of a
scene request (e.g., identifying the scene, the user associated with the scene, etc.). In a

second example, S600 can include uploading the data package to the remote computing
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system (e.g., the platform) for subsequent distribution to and/or use on the end user

application 101. However, S600 can include any other suitable elements.

5. MNlustrative examples

[00137] In an illustrative example, a method for generating a virtual model
representative of a physical scene includes: receiving scene data, captured in-situ within
the physical scene; generating a virtual scene visual representation (VSVR) based on the
scene data; determining scene information based on the VSVR and the scene data,
wherein the scene information includes segmentation masks, wall planes, and a floor
plane; generating a plurality of dense depth maps for the physical scene by biasing a set
of neural networks, each configured to generate a dense depth map of the plurality, with
the scene information as prior knowledge during inference; generating a final
segmentation masks, final wall planes, and a final floor plane based on the plurality of
dense depth maps; generating a virtual model includes fusing different scene
components from the plurality of dense depth maps into the virtual model; and
transmitting the VSVR, the virtual model, the final segmentation masks, the final wall
planes, and the final floor plane to a user. In an embodiment of this example, the virtual
model is aligned with the VSVR and includes a depth for each pixel of the VSVR. In an
embodiment of this example, the scene information further includes redundant depth
maps, different from the dense depth maps, wherein the redundant depth maps
comprise depth maps captured as scene data and depth maps generated using different
photogrammatic techniques from the scene data. In an embodiment of this example, the
neural networks comprise recurrent feed-forward networks that learn parameters using
backpropagation.

[00138] In a second illustrative example, a method for generating a virtual model
representative of a physical scene includes: receiving scene data, captured in-situ within
the physical scene; determining scene information based on the scene data, wherein the
scene information includes segmentation masks, wall planes, and a floor plane;
generating a plurality dense geometric representations of the physical scene by biasing a

set of neural networks, each configured to generate a dense geometric representation of
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the plurality, with the scene information as prior knowledge during inference;
generating a virtual scene visual representation (VSVR) based on the scene data;
determining the virtual model, wherein the virtual model includes a physical position
for each pixel of the VSVR, wherein the physical position is determined from the
plurality of dense geometric representations; and transmitting the VSVR and the virtual
model to a user.

[00139] In an embodiment of this example, the virtual model is a VSVR-aligned
depth map and scaled to standard units.

[00140] In an embodiment of this example, the scene data includes a plurality of
source images; wherein each pixel in the VSVR is associated with a source pixel in a
source image from the plurality of source images; wherein each voxel in each dense
geometric representation is associated with a source pixel in a source image from the
plurality of source images; wherein each point in the virtual model is associated with a
pixel in the VSVR; and wherein each point in the virtual model is associated with a
position from a voxel of the dense geometric representations, wherein the voxel shares a
common source pixel with the respective VSVR pixel.

[00141] In an embodiment of this example, the VSVR is generated before
generating the dense geometric representations, wherein the dense geometric
representations are generated based on the VSVR.

[00142] In an embodiment of this example, determining the scene information
includes determining the scene information using a set of photogrammetric techniques,
the set of photogrammetric techniques includes at least one of: structure from motion,
multi-view stereo, simultaneous localization and mapping, and optical flow.

[00143] In an embodiment of this example, determining the scene information
includes determining redundant variants of the scene information using different
techniques.

[00144] In an embodiment of this example, different neural networks of the set are
biased with a different one of: the segmentation masks, the wall planes, and the floor

plane.
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[00145] An embodiment of this example further includes transmitting final wall
planes, final floor planes, and final segmentation masks to the user. This embodiment
can optionally further include generating the final segmentation masks based on the
segmentation masks and the dense geometric representations.

[00146] In an embodiment of this example, the set of neural networks comprise
recurrent alternating direction neural networks.

[00147] In an embodiment of this example, determining the virtual model includes
fusing different scene components from each of the dense geometric representations
into a final dense geometric representation. In this embodiment, each of the dense
geometric representations can be aligned with the VSVR, wherein the final dense
geometric representation is the virtual model.

[00148] An embodiment of this example further includes scaling the dense
geometric representations based on a common physical point represented in both scaled
sensor data and the dense geometric representation. In this embodiment, the scaled
sensor data can optionally include a scaled 3D point generated by an augmented reality
engine executing on a capture device, wherein the capture device captures the scene
data.

[00149] In an embodiment of this example, the dense geometric representations
include at least one of: a floor enhanced geometric representation, a wall enhanced
geometric representation, and an occlusion enhanced geometric representation.

[00150] In an embodiment of this example, the VSVR includes a photorealistic
panoramic image.

[00151] A third illustrative example of the system and/or method is shown in
FIGURE 8.

[00152] In this specific example, the method includes performing specific
examples of the following variants in series: S110, S120, S130, iteratively performing
S140 and S150 for a predetermined number of vantage points, S190, S230, S250, S270,
S310, S410, S420, S440, S430, S280, S320, S570, S510, S530, S550, S650, S590, S580,
S610, and S630.
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[00153] In particular, the specific example of the method can include (with specific
examples of the variants of S100): instructing a user on preferred motion of the device
and where to aim the device S110; initializing RGB and/or RGBD SLAM with proper
device motion S120; instructing the user to slowly wave the device with visual guidance
to scan an area of interest (e.g., video) S130; capturing 5 overlapping still photos (mostly
rotation motion) S140; asking the user to take big step to the side and aim the device
back at scene S150; and uploading the images and data (e.g., metadata, 3D metric poses,
gravity estimates 2D matches, sparse 3D metric points, etc.) to the datastore S190 and
showing upload progress.

[00154] The specific example of the method can additionally include (with specific
examples of the variants of S200): detecting, matching, and/or triangulating keypoints
and line segments S230 (e.g., reading and/or writing 2D and 3D keypoints and/or line
segments to the datastore); running structure from motion using still photos, video, and
3D priors to get better poses and sparse 3D points S250 (e.g., reading and/or writing
improved camera poses and sparse 3D points to the datastore); running PatchMatch
multi-view stereo with camera poses S270 (e.g., reading and/or writing semi-dense 3D
points to the datastore); and rejecting outlier values from previously generated data
S280 (e.g., reading noisy data from and writing cleaned up data to the datastore).
[00155] The specific example of the method can additionally include (with specific
examples of the variants of S300): stitching the 5 images into a wide angle panorama,
using coarse alignment from poses and matches, and fine alignment using 2D and 3D
content preserving local warps S310 (e.g., reading images from and writing large FOV
images to the datastore); and mapping previously generated data into panorama image
formats S320 (e.g., reading data from and writing panoramic depthmaps, panoramic
normal maps, and panoramic segment maps to the datastore).

[00156] The specific example of the method can additionally include (with specific
examples of the variants of S400): using neural networks to find lines (e.g. LCNN,
BDCN, etc.) S410 (e.g., reading images and other data from and writing line segments to
the datastore); using neural networks to find object bounds (e.g. DeepLabv3) S420 (e.g.,

reading images and other data from and writing segmentation maps to the datastore);
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using neural nets to find dense depth (e.g., MonodepthBTS) S430 (e.g., reading images
and other data and writing depth maps to the datastore); and using neural networks to
find surface normals (e.g. FrameNet) S440 (e.g., reading images and other data from
and writing normal maps to the datastore).

[00157] The specific example of the method can additionally include (with specific
examples of the variants of S500): finding the metric height of the camera from floor
using metric 3D points, gravity vectors, and floor segmentation S510 (e.g., reading depth
maps and capture data from and writing metric camera heights and floor plane equation
to the datastore); using neural networks engineered to take input and side channel
sparse priors to estimate dense depths even in low texture areas S520 (e.g., reading
images and other data from and writing depth maps to the datastore); improving the
segmentation boundaries for better occlusion using depths and edges S530 (e.g.,
reading segment maps from and writing improved panoramic segment maps to the
datastore); improving depthmap edges using image processing, depth densification,
bilateral filtering S550 (e.g., reading depth maps from and writing refined depth maps
to the datastore); making walls straighter and more Manhattan consistent and can
output wall equations S560 (e.g., reading images and other data from and writing
refined depth maps and wall plane equations to the datastore); converting all data sets
into common metric scale using estimated 3D metric points & poses, segmentation, and
outlier rejection S570; estimating light sources, lightmaps and lighting attributes S580
(e.g., reading images and other data from and writing light sources, light attributes, and
light maps to the datastore); and fusing together all geometry models into a consistent
mesh and generating a dense depthmap S590 (e.g., reading depth maps and equations
from and writing refined depth maps and refined equations to the datastore).

[00158] The specific example of the method can additionally include (with specific
examples of the variants of S600): packaging essential data for clients into bundle with a
manifest S610 (e.g., reading the refined and fused information from and writing the
virtual model bundle to the datastore); and staging room model bundle in a location
accessible by client APIs and registering its availability S630 (e.g., registering the model

availability in the datastore).
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[00159] Embodiments of the system and/or method can include every combination
and permutation of the various system components and the various method processes,
wherein one or more instances of the method and/or processes described herein can be
performed asynchronously (e.g., sequentially), concurrently (e.g., in parallel), or in any
other suitable order by and/or using one or more instances of the systems, elements,
and/or entities described herein.

[00160] As a person skilled in the art will recognize from the previous detailed
description and from the figures and claims, modifications and changes can be made to
the preferred embodiments of the invention without departing from the scope of this

invention defined in the following claims.
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CLAIMS

We Claim:

1.

A method for generating a virtual model representative of a physical scene,

comprising:

2.

receiving scene data, captured in-situ within the physical scene;

generating a virtual scene visual representation (VSVR) based on the scene data;
determining scene information based on the VSVR and the scene data, wherein
the scene information comprises segmentation masks, wall planes, and a floor
plane;

generating a plurality of dense depth maps for the physical scene by biasing a set
of neural networks, each configured to generate a dense depth map of the
plurality, with the scene information as prior knowledge during inference;
generating a final segmentation masks, final wall planes, and a final floor plane
based on the plurality of dense depth maps;

generating a virtual model, comprising fusing different scene components from
the plurality of dense depth maps into the virtual model; and

transmitting the VSVR, the virtual model, the final segmentation masks, the final

wall planes, and the final floor plane to a user.

The method of claim 1, wherein the virtual model is aligned with the VSVR and

comprises a depth for each pixel of the VSVR.

3.

The method of claim 1, wherein the scene information further comprises

redundant depth maps, different from the dense depth maps, wherein the redundant

depth maps comprise depth maps captured as scene data and depth maps generated

using different photogrammatic techniques from the scene data.
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4.

The method of claim 1, wherein the neural networks comprise alternating-

direction neural networks that learn parameters using backpropagation.

5.

A method for generating a virtual model representative of a physical scene,

comprising:

6.

receiving scene data, captured in-situ within the physical scene;

determining scene information based on the scene data, wherein the scene
information comprises segmentation masks, wall planes, and a floor plane;
generating a plurality dense geometric representations of the physical scene by
biasing a set of neural networks, each configured to generate a dense geometric
representation of the plurality, with the scene information as prior knowledge
during inference;

generating a virtual scene visual representation (VSVR) based on the scene data;
determining the virtual model, wherein the virtual model comprises a physical
position for each pixel of the VSVR, wherein the physical position is determined
from the plurality of dense geometric representations; and

transmitting the VSVR and the virtual model to a user.

The method of claim 5, wherein the virtual model is a VSVR-aligned depth map

and scaled to standard units.

The method of claim 5:

wherein the scene data comprises a plurality of source images;

wherein each pixel in the VSVR is associated with a source pixel in a source image
from the plurality of source images;

wherein each voxel in each dense geometric representation is associated with a
source pixel in a source image from the plurality of source images;

wherein each point in the virtual model is associated with a pixel in the VSVR;

and
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e wherein each point in the virtual model is associated with a position from a voxel
of the dense geometric representations, wherein the voxel shares a common

source pixel with the respective VSVR pixel.

8. The method of claim 5, wherein the VSVR is generated before generating the
dense geometric representations, wherein the dense geometric representations are
generated based on the VSVR.

9. The method of claim 5, wherein determining the scene information comprises
determining the scene information using a set of photogrammetric techniques, the set of
photogrammetric techniques comprises at least one of: structure from motion, multi-

view stereo, simultaneous localization and mapping, and optical flow.

10.  The method of claim 5, wherein determining the scene information comprises

determining redundant variants of the scene information using different techniques.

11. The method of claim 5, wherein different neural networks of the set are biased

with a different one of: the segmentation masks, the wall planes, and the floor plane.

12.  The method of claim 5, further comprising transmitting final wall planes, final

floor planes, and final segmentation masks to the user.

13.  The method of claim 12, further comprising generating the final segmentation

masks based on the segmentation masks and the dense geometric representations.

14.  The method of claim 5, wherein the set of neural networks comprise alternating-

direction neural networks.
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15.  The method of claim 5, wherein determining the virtual model comprises fusing
different scene components from each of the dense geometric representations into a

final dense geometric representation.

16.  The method of claim 15, wherein each of the dense geometric representations is
aligned with the VSVR, wherein the final dense geometric representation is the virtual

model.

17.  The method of claim 5, further comprising scaling the dense geometric
representations based on a common physical point represented in both scaled sensor

data and the dense geometric representation.

18.  The method of claim 17, wherein the scaled sensor data comprises a scaled 3D
point generated by an augmented reality engine executing on a capture device, wherein

the capture device captures the scene data.
19. The method of claim 5, wherein the dense geometric representations comprise at
least one of: a floor enhanced geometric representation, a wall enhanced geometric

representation, and an occlusion enhanced geometric representation.

20. The method of claim 5, wherein the VSVR comprises a photorealistic panoramic

image.

21. A system configured to implement the method of any of the preceding claims, the

system comprising: a user interface connected to a remote computing system.

22. A system configured to implement the method of any of the preceding claims, the

system comprising: a platform connected to a user interface.
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