OO O 00 O

0 01/41365 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 June 2001 (07.06.2001)

O 00O O

(10) International Publication Number

WO 01/41365 Al

(51) International Patent Classification’: HO04L 12/24,
H04Q 3/00
(21) International Application Number: PCT/GB00/04540

(22) International Filing Date:
29 November 2000 (29.11.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

99309633.8 1 December 1999 (01.12.1999) EP

(71) Applicant (for all designated States except US): BRITISH
TELECOMMUNICATIONS PUBLIC LIMITED

COMPANY [GB/GB]; 81 Newgate Street, London EC1A
7AJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SKINGSLEY,

David [GB/GB]; 40 Lark Rise, Martlesham Heath, Ip-
swich, Suffolk IP5 3SB (GB). BARRETT, Mark, Alan
[GB/GBJ; 24 Foxglove Avenue, Needham Market, Suffolk
IP6 8]1J (GB).

(74) Agent: DUTTON, Erica, Lindley, Graham; BT Group
Legal Services, Intellectnal Property Dept., Holborn Cen-
tre, 8th Floor, 120 Holborn, London EC1N 2TE (GB).

(81) Designated States (national): JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS FOR SIMULATING COMMUNICATION EQUIPMENT

Source Network Destination
Machine Emulator Machine
201 /
701 203

(57) Abstract: Apparatus for simulating transmission conditions over communications equipment, the apparatus including: (i)
means for sending data packets into the communications equipment; and (ii) means to effect a change to the transmission character-
istics of the communications equipment, which means (ii) is in operative association with the means (i) for sending data, such that
a change to the transmission characteristics of the communications equipment is effected by sending one or more data packets into
the communications equipment, which one or more data packets are constructed according to one or more requests.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

APPARATUS FOR SIMULATING COMMUNICATION EQUIPMENT

This invention relates to simulating communication equipment and is suitable

particularly, but not exclusively, for emulating network characteristics.

The continuing development of networking technology is fundamental to data
communication, as this is intrinsic to, among other things, the interconnection of
many disparate physical networks, and the transfer of information across multiple
information sources. Significant efforts have been, and are continually, directed
towards reducing limitations and increasing the flexibility of network equipment, both
in the hardware and software areas. However, only a relatively small number of tools
that are suitable for testing and evaluating various aspects of both new and existing

network equipment have been developed.

Applications that transfer information over networks rely on network equipment to
transport data between source and destination address(es), and are wholly dependent
on the robustness of the network equipment for successful data transfer. Often,
users of such applications experience “slow network traffic”, or network failure. An
inability to find faults, and to correct for those faults in a reasonable amount of time,
can result in significant inconvenience to users and loss of data, and is costly. Thus,
if the network equipment could be more effectively monitored, problem areas could

be identified, and current levels of inconvenience could be reduced.

New transmission protocols and router technologies affect the way in which data is
transferred between applications, and these applications may require to modify
aspects of data formatting in order to effect successful sending and receiving of
data. At present the tools that are flexible enough to analyse and test new protocols
and technologies are either exceedingly expensive or limited in scope. These include
tools such as:
e “SmartBits ™” by NetComm ™ , which allows a tester to edit all of the fields in
the data packets, and to generate and receive traffic from a variety of media

types;

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

2

e “NetXray ™" by Cinco ™, which is configurable to probe packets travelling on a
network using predeterrnined tests, and report any problems based on

predetermined criteria.

According to one aspect of the present invention, there is provided apparatus for

simulating transmission conditions over communications equipment, the apparatus

including:

(i) means for sending data packets into the communications equipment; and

(ii) means to effect a change to the transmission characteristics of the
communications equipment,

which means (i) is in operative association with the means (i) for sending data, such

that a change to the transmission characteristics of the communications equipment is

effected by sending one or more data packets into the communications equipment,

which one or more data packets are constructed according to one or more requests.

Further aspects, features and advantages of the apparatus for simulating transmission
conditions over communication equipment will now be described, by way of example
only as an embodiment of the present invention, and with reference to the
accompanying drawings, in which:

Figure 1 is a schematic diagram of an IP network in operative association with the
apparatus for assessing communication equipment;

Figure 2 is a schematic block diagram of the principal components comprising the
apparatus for assessing communication equipment, when observing traffic being
routed between two host machines;

Figure 3 is a block diagram showing the decoding steps performed by the assessing
apparatus;

Figure 4 is a block diagram showing the initialisation processes performed by the
assessing apparatus;

Figure 5 is a block diagram showing the receiving processes performed by the
read/write means of Figure 2;

Figure 6 is a block diagram showing the sending processes performed by the
read/write means of Figure 2;

Figure 7a is a schematic diagram of apparatus for simulating network characteristics;

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

3

Figure 7b is a schematic block diagram of the components comprising the apparatus
for simulating network characteristics;

Figure 8 is a block diagram showing the processes involved when the apparatus for
simulating network characteristics is in operative association with the apparatus for
assessing communication equipment; and

Figure 9 is a block diagram showing the steps of dropping, delaying and queuing

packets performed by the simulating apparatus.

In the following description, the terms “network”, “packet”, “traffic”, “request”,

“event”, and “command switch” are used. These are defined as follows:

“Network”. a series of points or nodes interconnected by communication paths.
Networks can interconnect with other networks and contain sub-networks. A given
network can be characterised by the type of data transmission technology in use on
it (for example, a TCP/IP, SNA, ATM network);

“Packet”: a packet is a unit of data that is routed between an origin and a destination
on one or more packet-switched networks (e.g. the internet, ATM network). When
any file (e-mail message, HTML file, GIF file, URL request, and so forth) is sent from
one place to another on the Internet, the Transmission Control Protocol (TCP) layer of
TCP/IP divides the file into "chunks" of an efficient size for routing. Each of these
packets is separately numbered and includes the Internet address of the destination.
The individual packets for a given file may travel different routes through the Internet.
When they have all arrived, they are reassembled into the original file (by the TCP
layer at the receiving end)._

When the network is an ATM network, the units of data are called cells, and when
an IP network is uses the UDP protocol (User Datagram Protocol) the units of data
are called datagrams.

"Traffic”: movement of packets (or cells or datagrams) over a network.

“Request “: input command specifying type of test or monitoring to be carried out.
“Command switch”: command line input which may be decoded into system actions

"

e.g. “xcopy -s -v": xcopy is system function, and -s -v are flags corresponding to

event parameters associated with the function; or “-p —O 2048": -p is the function to

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

4

be performed and -O 2048 is a corresponding event parameter. (A request comprises
both the function to be performed and the event parameters).

“event”: a process performed by the assessment apparatus.

Overview

With reference to Figure 1 of the accompanying drawings, assessment apparatus
100 for assessing a network according to the present invention may be used to test
and/or monitor operation of a network, and may generally be referred to as a ‘core’
100. The testing and/or monitoring may be effected by analysing network traffic
passing through a network arrangement, which traffic has either been injected into
the network arrangement by the apparatus, or has been initiated by processes
running on machines within the network arrangement. A network arrangement may
include a plurality of networks 101, 103, 105 as shown in Figure 1, or a single
network. A single network may include an arrangement of two computers 201, 203
connected to one another, with or without a router {(shown in Figure 2 with a router),
or an arrangement of many computers connected via a plurality of network routers
107, such as CISCO ™ routers.

Client machines 109, 111 may connect to any one of the networks via routers 107.

CORE
In use, the core 100 is loaded on a computer, which computer may either be
dedicated to the core 100, and connected directly to a router as shown in Figure 2,
or may be a server computer supporting the core 100 and other processes and data
connected remotely to the network (not shown). Referring to Figure 2, an
embodiment of the core 100 is shown divided into 4 functional parts:
¢ SUBMITTING MEANS 205
¢ REGISTERING MEANS 207
¢ COMMUNICATIONS MEANS 209
¢ SCHEDULING MEANS 211

< DECODING MEANS 212

“ WRITE/READ MEANS 213

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

The SUBMITTING MEANS 205 submits a request defining a type of test or
monitoring via a GUI (Graphical User Interface) or command line. When the core 100
is running on a dedicated computer, the GUl may be either loaded on to the
computer, or may be downloadable onto a computer located remote from the
dedicated computer, such that the GUI communicates with the core 100 from this
remote computer. When the core 100 is running on a server computer connected
remotely to the network, the GUI may be activated either local to, or remote from,
the server computer. When the submitting means receives instructions from the
command line, similar conditions apply, but there is no need to download a command
line to accept and process the inputs. When a request is received by the submitting
means 205, it is passed to the scheduling means 211 (described below) for

processing.

The REGISTERING MEANS 207 registers transmission protocol processes that are
required for transmitting packets of data. These processes include specifying
parameters for building a packet, sending a packet and receiving a packet, and are
protocol-specific. For example data transmitted over an IP network may invoive the
use of a transport layer protocol (e.g. TCP) and an internet layer protocol (IPv4), and
there is therefore a corresponding build, send and receive function for each of them.
The registering of protocols in this manner enables packets to be built and sent as
scheduled by the scheduling means 211, which is effected in response to requests

received at the submitting means 205.

The COMMUNICATIONS MEANS 209 provides a medium for communication
between equipment on a network or other processes on the same computer. The
communication means 209 acts as a port, or a channel, both for receiving requests
that are submitted by the submitting means 205 for processing by the core 100, and

to send and receive packets of data.

The SCHEDULING MEANS 211 receives requests from the submitting means 205,
schedules decoding of the request by the decoding means 212 into one or more
processable events, and schedules capturing and sending of data packets by the

read/write means 213. The scheduling means 211 continuously checks for incoming

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

6

requests, so co-ordinates this activity with the processes performed by the decoding

means 212 and the read/write mesans 213.

The DECODING MEANS 212 is used to decode incoming requests, to identify one or
more processable events based on the requests, and to initialise these processable
events. When requests are input via the command line, the request is formulated
using command switches, e.g. -p -0 2048, and the event that is identified from the
command switch (in this example —p) is decoded by the decoding means 212 into an
event identifier. The event identifier is then used to identify corresponding
processable events, which processable events are initialised for running by the

read/write means 213.

The READ/WRITE MEANS 213 effects packet sending and packet capturing
processes. These processes embed the processable events registered by the
decoding means 212, such that data is sent and received as a function of the

processable events.

These functional parts inter-operate in the following manner:

A user enters input at the command line in a predetermined format, which input
both vinvokes the submitting means 205, and specifies a request for a network
assessment process. The request is parsed through the communication means 209
to the scheduling means 211, which passes the request to the decoding means
212. The decoding means 212 decodes the incoming request into an event
identifier, identifies one or more processable events based on the event identifier,
and initialises these processable events via a start event. The decoding means 212
is also scheduled to execute a stop event to flush the system of any lingering
events. Scheduling means 211 then schedules execution of the read/write means
213, which, because the processable events are embedded in the sending and
capturing processes providing the read/write means 213, effects sending and

capturing of data according to the processable events.

Embodiment of the invention

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

7

An embodiment of the core 100 may be used in conjunction with customised tools
that interface with the core 100 in a modular, or plug-and-play sense. In other words,
the submitting means 205, registering means 207, the communication means 209
and the scheduling means 211 are independent of the request, which may be
‘plugged’ in via the processable events. The event identifier decoded by the decoding
means 212 distinguishes one request from another, and thus the core 100 relies on
the identified processable events to effect the specific features of the request.
The following gives a non-exhaustive list of network features that may be examined
by the core (when interfacing with an appropriate tool):
1. Quantitying how network equipment deal with packets of varying size;
2. Quantifying how network equipment deal with different packet generation
frequencies;
3. Quantifying how an application responds to certain characteristics of a network
(all configurable);
4. Quantifying the behaviour of new protocols;
Quantifying how the network equipment behave in response to new protocols;

6. Quantifying effectiveness of routing algorithms.

As the tools and the present invention inter-relate in a modular sense, the
functionality of the core 100 is independent of the tool. However, the core 100 is
described with reference to incoming testing requests, and the way in which the it
100 schedules reading and/or writing of data is described in relation to those

requests.

The core 100 provides a service of communicating with network equipment
according to requests received, and, as is well known in the art, all such network
services are described by transmission protocols. Protocols provide rules for
communication of data. They contain details of message formats, describe how a
computer responds when a message arrives, and specify how a computer handles
errors or other abnormal conditions. A suitable description of IP network protocols is
provided in "Computer Networks", Andrew S. Tanenbaum, Pub. "Prentice Hall".

There are application layer protocols, transport layer protocols and internet layer

protocols, and these control how information is passed between the layers and

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

8

ultimately over a network. Thus, in order for packets of data to be injected into a

network, the data requires passing through each of these layers in accordance with

the protocol definitions. The core treats protocol definitions as a centralised resource,

which can be accessed by any process decoded from a request. Thus, functional

definitions of all of the protocols are scheduled for registering before the scheduling

means 211 looks for any incoming requests.

The registering process is performed by registering means 207. For the specific case

of an IP network, such as an ethernet, typical prétocols include:

* Ethernet Protocol, Address Resolution Protocol (ARP) (network interface layer);

¢ Internet Group Management Protocol {(IGMP), Internet Protocol version 4 (lpv4),
Internet Protocol version 6 (Ipv6) (Internet layer);

e Transmission Control Protocol (TCP), and User Datagram Protocol (UDP)
(transport layer),

(TCP/IP protocols can be used with ATM networks as well).

The processes for sending and receiving data are actually invoked when the

read/write means 213 are run, so the function of the registering means 207 is to

assign processable events for each of the protocols in preparation for actual building

of packets, sending and receiving of data.

In an embodiment of the present invention the core 100 waits for a request to be
passed on from the submitting means 205. In a preferred arrangement, the waiting
for, and passage of, requests occurs via a socket that provides the communication
means 209. As is well known in the art, a socket is a communications port. An
application can use a socket to talk to other equipment on a network or other
processes on the same computer. It does this by passing information containing
identifying information to the operating system. For example, communication with
another computer on a network requires identification of the network address of the
computer, and communication with another process on the same computer requires
identification of a specific file that the process monitors for receiving incoming 'calls’.
The embodiment of the present invention utilises a socket in accordance with the
latter scenario, and the scheduling means 211 is in effect listening for data from the

submitting means 205.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

9

The submitting means 205 may be a process running in operative association with
input from either a GUI or the command prompt, such that as soon as a request is
received from, for example, the command line, the submitting means 205 attempts
to parse this request through the socket. When requests are received via the
command line, the process invoking the submitting means 205, "nbexe”, is typed in
at the command line, together with one or more predetermined command switches.
These command switches define a request, and parameters specifying features of the

request, for a network assessment process.

The following example shows a request that may be input at the command line:

nbexe -c -f test.cap -P 2048

Thus nbexe calls the submitting means 205, and the command switch -c specifies a
particular procedure to be processed. The remainder of the command switches, -f
test.cap -P 2048, are parameters that need to be passed to a procedure

corresponding to -¢, and which further define the test and/or monitoring process

requested.

As described above, the submitting means 205 parses this request to the scheduling
means 211, which passes it to the decoding means 212. With reference to Figure 3,
the decoding means 212 first performs the following steps:

* S3.1 Decodes the request into an event identifier (corresponding to -c¢) and event
parameters (corresponding to -f test.cap -P 2048), in accordance with a set of
predetermined conditions, in order to determine which test or monitoring process
has been requested,;

* S53.2 Analyses the event identifier in order to identify a corresponding set of one
or more corresponding processable events; and

o S53.3 Assigns processes and a process identifier to these events.

Considering the example given above, for an input of

nbexe -c -f test.cap -P 2048

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

10

* -c is decoded into event identifier CAPTURE_FTN, which is used to identify a
process for capturing data packets;

e -Pis decoded into a command that represents “capture data packets that are
destined for port 2048 only”; and

» -f fest.cap is decoded into a command that represents putting captured data into

file called test.cap.

The event identifier, CAPTURE_FTN, thus identifies one or more corresponding
processable events, which include assigning initialisation processes. For example:

case CAPTURE_FTN: {

ret = addTask(controller, p, initCapturePackets, output[i]):

processId[i] = ret; /* Remember the process ID */

}; break;

Where initCapturePackets is the initialisation function relating to capturing packets,
and the function addTask registers a start status, finish status and an output status
of requests that are received and are to be scheduled for processing by the
scheduling means 211. Function addTask also returns a process identifier, ret, which

is @ numeric identifier that is unique to the request. The statuses are updated during
the course of the processing of the request. The identifier is maintained internally by
the core and provides a means of distinguishing between requests for protocol,

interface assignment etc.

The decoding means 212 is then scheduled to process a start and a stop event
(described below): the start event invokes whichever initialisation process was
assigned at step S3.3 by the event identifier, which for the example above is
initCapturePackets, and marks the task as initialised:
/* Call the intialisation function */

ret = (*(n->init))(&n->t);
With reference to Figure 4 of the accompanying drawings, a number of initialisation

processes are effected at this stage:

WO 01/41365 PCT/GB00/04540

11

e S4.1 Populate operating parameters, which will be passed by the scheduling
means 211 to the read/write means 213, with values and conditions specific to
the event identifier. Most of these operating parameters embed the event

parameters that were received at the command line (for the example above: -f
test.cap -P 2048 and the relevant protocol and interface information that
corresponds to a request for capturing data).

e S4.2 Add Interfaces and Protocols, which are specific to the event identifier, to
an interface and a protocol list maintained by the core 100 so that data can be
read from and/or written to one or more interfaces (when scheduled to do so).
There is one interface and one protocol list for each of the event identifiers. The
following code fragments show three sets of function calls for protocols

corresponding to three different event identifiers:

Switch Event ldentifier Protocol function call

-c CAPTURE_FTN RegisterProtocol(0, ETHERNET, t-
>p.interface, cpp->buffer, &eh)

-p PING_FTN RegisterProtocol(O, ETHERNET,
p.interface, pp->buffer, (void
*)&eh)
RegisterProtocol(0, IPv4,

p.interface, pp->buffer, (void *)&ip)

-a PROBE_FTN RegisterProtocol(0, ETHERNET,
pp-> interface, buffer, (void*)&eh)
RegisterProtocol(0, IPv6, pp-
sinterface, buffer, (void *)&ip)

TABLE 1

The function registerProtocol firstly adds an instance of the protocol to a list
maintained by the core 100, and secondly calls a protocol function that builds a
packet for sending (build packet function set up by the registering means 207 as

described above). The specific build function that is called, and thus the form of

10

15

20

WO 01/41365 PCT/GB00/04540

12

the packet, is determined by the second argument passed via the registerProtocol
function: IPv4, IPv6, ETHERNET etc. Building a packet, for the above example
of IPv6, creates an IPv6 Header by storing elements selected from the structure

ip at a location given by buffer:

char *iph = buffer;

struct ipv6_header *h = (struct ipv6_header *)ip;
IPH_SET_VERSION(iph, 6);
IP6H_SET_CLASS(iph, h->class);
IP6H_SET_FLOWLBL(iph, h->flowLabel);
IP6H_LENGTH(iph) = htons(h->payloadLength);
IP6H_NEXTH(iph) = h->nextHeader;

etc.

Note that this process merely creates the structure for sending a packet.
S4.3 Assign processes for sending and receiving packets of data, and also for

ending the transfer of data; these are event identifier specific. For example:

Event identifier: PING_FTN

Event identifier: CAPTURE_FTN

t->end = endPing;
t->receive = receivePing;

e.g: endPing (struct task_scheduler *t)

t->end = endCapturePackets;

t->receive = receiveCapturePackets;

TABLE 2

This assignment of functions allows the functions to be called later, in processing

an event to fulfil a request. For example, when t->end is called by the read/write
means 213, in processing a PING_FTN request, this will cause endPing to run.

The parameter passed to argument t in function endPing includes the operating

parameters translated from the request.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

13

The stop event (described below) is scheduled after the start event in order to
terminate any residual events corresponding to previous requests (for example from

previous instances of running the core 100).

Once the start and stop events have been processed by the decoding means 212, the
scheduling means 211 schedules execution of the read/write means 213. For each
request, the read/write means 213 effects either of, or a combination of, a read

event and a write event.

With reference to Figure 5, executing a read event includes the following steps:
* S55.1 Call a receive function that corresponds to each of the protocols added to
the protocol list. All of the protocol receive functions on the list are processed

because the read event does not know which packets a process wants:
for(k = O; k < n->protocolStack[i] [j].numberOfProtocols; k++) {
/* If there is a receive function then call it */
if(schedNBC[n- >protocolStack[i][j]. protocols[k]]. tsps.receivePacket |= NULL) {
/* The line below calls a receivePacket function, which was assigned to receiving
functions corresponding to each of the protocols by the registering means 207. The
actual receivePacket that is called is determined by protocols(k] */
ret=(*(schedNBC[n- >protocolStack[i][j]. protocols[k]].tsps.receivePacket))(n-
>protocolStack[i] [j].protocolDatalk], &rp);
/*This loop floop on k) calls receive functions for all of the protocols that were
registered on the list by registerprotocol for the current request™/
/*the i counter relates to the interface, j relates to the packet to be read and k relates
to the protocols registered on the list for the current request™/

}

The function of receivePacket is to validate a packet when it is received. Thus if
any of the protocols reject the packet then it is not passed for further processing;
if all of the protocols on the list accept the packet then it is passed for an actual

read. The order in which the protocols are activated for reading is determined by

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

14

the protocol layer: thus network layer protocol reading is performed before
internet layer reading, which is performed before transport layer reading.
e S55.2 Process a read event that was pre-assigned by the relevant event identifier
at step S4.3:
(*(n->t.receive))(&(n->t), &rp, j, rp.offset);
Re-calling the capture example above, where the event identifier was

CAPTURE_FTN, t->receive was set equal to receiveCapturePackets. Thus calling

t.receive invokes a process corresponding to the function receiveCapturePackets.

With reference to Figure 6, executing a write event includes the following steps:
e S56.1 Check whether there are packets to be sent; if so, prepare data to be
encapsulated within a packet for sending at a specific time, which in the

following code fragment is controlled by variable microtime:
While (n = NULL)
If(n->t.nextSendMicrotime <= microtime)
(*(n->t.send))(&n->t, microtime);
n = n->next;
}
/* The condition of n!= NULL, where n identifies a request to be processed, forces

the send routine to execute for all of the requests that have been registered at the
time of calling the write process (processing of multiple requests is discussed below).
*/

Re-calling the capture example above, where the event identifier was CAPTURE_FTN,

t->send was set equal to sendCapturePackets. Thus calling n->t.send invokes a

process corresponding to the function sendCapturePackets for request n.

e S6.2 Process the corresponding send functions for each of the protocols on the
protocol list. This step is performed in accordance with the following time

constraints:
if(schedInterfaceInfo[i].taskSI.nextSendTime <= microtime + (i * 2)) , where
nextSendTime is set up in the t.send call described above and microtime is an

initialised time.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

15

If the time constraint is satisfied, the following send routine is invoked:

for (k = n->protocolStack[i] [pg->stackId].numberOfProtocols; k > O; k--)

ret=(*schedNBC[pps- >protocols[k-1]] -tsps.sendPacket)(pps->protocolData[k-1],pg-

>buffer, pps->offset[k - 1]);

/*the i counter relates to the interface, Pq->stackld identifies the packet to be sent

out and k relates to the protocols that are registered on the list for the current

request*/

This loop decrements through the protocols, to ensure that if more than one protocol

is on the list for the current request, then the protocol sendPacket functions are

activated in an order consistent with protocol requirements: for example, with

reference to Figure 6

e S$6.2.1 The data from step S6.1 is divided into packets and combined with any
transport layer packet (application ID, checksum, application source ID) that was
built at step S4.2;

* S56.2.2 The packet that was created at S6.2.1 (transport layer packet) is
combined with any internet layer packet that was built at step S4.2 (header
information and routing addresses); and

* S56.2.3 The packet is sent via the network interface layer.

As is to be expected, this process is performed in reverse order to the process of

reading in packets (S5.2).

For passive protocols such as UDP, the function activated by a call to schedNBC[pps-

>protocols[k-1]]tsps.sendPacket at step S6.2.1 comprises binding the data from step
S6.1 with the packet structure built at step S4.2, whereas for active protocols such
as ARP, the corresponding send function invokes additional processes, such as
broadcasting a request for a hardware address, when it is run. Further information
can be found in “Internetworking with TCP/IP” Volume 1, Prentice Hall Ed., pp.73 -
81.

The above description relates to capturing and processing of a single request.
However, the scheduling means 211 is operable to receive multiple requests, under

the control of a timing loop:

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

16

if(microtime - schedLastRunTime > 500000) { /*every 0.5 seconds*/

schedLastRunTime = microtime; /*re-set time used for comparison*/

acceptCLICommands()./*effects receipt of new requests and assigns new event

identifiers according to steps S3.1 — S3.3*/

if(schedNumberStart > 0) schedStart(); /*effects start process described in steps

S4.1 - S4.3*/

/* If there are some tasks running then see if they need to be stopped */
if(schedNumberStop > 0) schedStop();/*effects stop process*/
}

The reading and writing of data, described above, is scheduled in response to any

new requests received:

if(schedNumberOfWriteTasks > 0)

schedWrite(microtime),/*effects writing of data: steps S6.1 and S6.2*/

if(schedNumberOfReadTasks > 0) {
gettimeofday(&tv, NULL);
microtime = MICROOTIME(tv);

schedRead(microtime);/*effects reading of data: steps S5.1 and S5.2%/

}
where schedNumberOfWriteTasks and schedNumberOfRead Tasks are set up in the
initialisation process effected by start event. These processes run in parallel with the
timing loop such that if a new request is received, then as soon as either of the
variables schedNumberOfWriteTasks or schedNumberOfReadTasks are set, the
corresponding read and/or write means will be effected. The embodiment of the core
can also effect reading and writing of packets from multiple requests during one read

and/or write event.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

17

In addition to removing a request, the stop event also enables the core 100 to divert
its resources to post-processing events, if required. The requirement for post-
processing of data is dependent on the request that is received by the scheduling
means 211, as this determines which function t.end is assigned to (S4.3). As can be
seen from the code fragment above, the stop event is scheduled to run every 0.5
seconds, after checking for new requests and effecting the initialisation events via
the start process. The stop event allows the core 100 to co-operatively multi-task
between (a) post-processing of data and (b) receiving, reading and writing of data
described above; thus the scheduling means 211 time-slices between the events to
ensure that both (a) and (b) processes have a chance to run. If post-processing of the
data is required, this is effected after the type (b) events have finished running; the
stop event will firstly remove the relevant process from the scheduling means 211,

and then divert the resources for the relevant post-processing actions:

if(n->remove && ((! schedYieldInUse || n->t.reentrant) && ! n->inStop)) {
/* schedYieldInUse: This is to prevent multiple processes from yielding at the same
time. A stop event will not occur if the yield function has been called, unless the
process has indicated that it does not use it (t->reentrant is set). */

/* Remove the task from the schedule */
ret = (*(n->t.end))(&n->1);
/*this points to the t.end that was assigned in the initialisation routines — S4.3 and

as shown above in Table 2 */

Thus the function that has been assigned to n->t.end will determine whether there is

any post-processing to be performed. If there is post-processing to be carried out, the
scheduling means 211 splits the post-processing into a number of sub-processes, and
schedules execution of type (b) events (receive and decode requests, execute start
events, read events, write events) in between the sub-processes (co-operative multi-

tasking).

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

18

When a request has been processed, the stop event frees up the interfaces, protocols
and memory that were addec to the list during the initialisation (S4.1, S4.2) for that

request.

Implementation

The submitting means 205, registering means 207, communications means 209,
scheduling means 211, decoding means 212 and read/write means 213 are written in
the ‘C’ programming language.

The embodiment of the present invention could be located on:

e a server that receives input from other computers;

e a computer (client) that is connected to a router;

e a computer (client) that is connected to a server;

and could be run on any operating system. For illustrative purposes, the following
assumes that it is running on the LINUX ™ operating system:

To start the system at boot-up, the following script needs to be placed into

directories /etc/rc.d/rc3.d and /etc/rc.d/rc5.d:

. /etc/re.d/init.d/functions
ifconfig ethO up
bring any other interfaces up here as well

daemon /home/napoleon/nbd

The submitting means 205 discussed earlier in the description may be run from either
a command shell located on the same computer as the scheduling means 211, or a
GUI loaded on an SNMP (Simple Network Management Protocol) host or an HTTP
(Hypertext Transfer Protocol) host. The GUI may be stored in a data store remote
from the host machines or on the host machine itself. In these latter two cases, the
requests may be communicated to the scheduling means 211 either by email or via
the internet.

The following is a non-exhaustive list of protocols that may be registered by the
registering means 207 for an internet protocol network:

o FEthernet;

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

19
e [Pv4;
e |PvE;
e ARP;
s [IGMP;
e UDP;
e TCP;
e RIP (Routing Information Protocol);
e OSPF {Open Shortest Path First).
where the latter two protocols are routing protocols, and the others have been
defined earlier in the description. In addition, if the scheduling means 211 is receiving
requests and outputting data via SNMP, the protocol is registered by registering
means 207.
In the description relating to the core, the term request, data, and input are used
interchangeably to describe requests that are input to the apparatus for assessing a
network.
EMULATOR
Apparatus for simulating transmission conditions over communications equipment
may generally be referred to as an ‘emulator’ 701. As shown in Figure 7a, the
emulator 701 is configurable either to generate new packets of data, or to intercept
packets of data that are passed between a source machine 201 and a destination
machine 203. In either case, the emulator 701 applies a plurality of predetermined
rules to the packet, which effectively changes the transmission characteristics of the
network.
The aim of the emulator 701 is to simulate a variety of network conditions, for a
variety of packets that embed a range of protocols, and over a range of types of
networks. Thus the variation in packet type is partially a function of the application,
for example ftp, telnet, and email, that sends the data across the network. Using

means 703 to effect a change to the transmission characteristics of the network
shown in Figure 7b, the emulator 701 subjects these packets to drop, delay, jitter,

etc., which allows the associated applications to review their methods for handling

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

20

such network interruptions. This is extremely valuable, as network software is often
tested using highly reliable, low-delay local area networks (LANs), which may not
expose potential failures. Furthermore, with applications that use the UDP transport
protocol, where the application takes full responsibility for handling problems of
reliability, such as message loss, duplication, delay etc, it is often the case that the
application does not include adequate mechanisms for dealing with all possible modes

of packet-interference.

As the emulator 701 works on packets of data travelling across a network, it
includes capturing means 705, shown in Figure 7b, for capturing packets, and
sending means 707 for injecting packets into the network. The capturing means and
sending means 705, 707 may be provided by the read/write means 213 of the core
100, or any equivalent means.

Thus the means 703 to effect a change to the transmission characteristics of the
network operates on the packets once they have been captured by the capturing
means 705. The modified packet is then passed to the sending means 707 for
injection back into the network (or not, depending upon predetermined rules). When
the emulator 701 works in operative association with the core 100, following steps

are effected:

e S58.1 submitting means 205 sends a request to the scheduling means 211 - e.g

nbexe -n -b 90 -x 10, where -n signifies a request for an emulating event.

e S58.2 scheduling means 211 passes the request to decoding means 212, which
decodes the request into an event identifier EMULATOR FTN and event
parameters corresponding to -b 90 -x 10;

e §8.3 decoding means 212 calls the relevant function to register a process

identifier for this request, and assigns the emulator initialisation function via

function call
addTask(controller, p, initNetworkEmulator, outputl[il);
processId[i] = ret;
e 58.4 decoding means 212 initiates a start event, which calls the function

initNetworkEmulator. This function registers the protocols and interfaces needed

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

21

for the emulating event, and these are added to the list for this request {identified

as specific to the emulator by the process identifier):

registerProtocol(0, ETHERNET, i, buffer, &eh)

registerInterface(0, 1, 1);

registerInterface(l, 1, 1);
The start event also assigns processes for receiving and sending of data and
stopping processing the request:
t->send = sendNetworkEmulator;
t->receive = receiveNetworkEmulator;
t->end = endNetworkEmulator;
$8.5 scheduling means 211 executes a read and write event. If the network
emulating request is the sole request that the core has received at this point,
there will not be any data for sending out, and the read/write means 213 will only
effect a read event. As described in S5.1, the read event firstly processes a
receivePacket function, which, as the protocol that was registered on the list for
this request was ethernet only, will call function receiveENETPacket only. The
read event then processes a f->receive function, which calls function
receiveNetworkEmulator (described below, with reference to Figure 9). As the
scheduling means 211 operates in a continuous loop (see above), the read/write
means 213 is scheduled to execute another send event. If the read event has
finished processing data according to the processes in function
receiveNetworkEmulator, any data that has been prepared for sending into the
network will be sent out by the send event, which is controlled by function
sendNetworkEmulator.
S8.6 Once all of the read and write events have been processed, scheduling
means 211 executes a stop event via the decoding means 212, and, for a

network emulating request, this calls function endNetworkEmulator.

The changes that may be effected to the packets at S8.5 include:

dropping packets;

delaying packets;

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

22

e misordering packets;

* applying jitter to packets;

* limiting the bandwidth of the network;

* queuing the packets; and

* duplicating packets.

The processes that affect network traffic are largely random in nature; thus, in order
to realistically simulate network conditions, the packets that are interfered with by
the above means are selected randomly by the emulator 701. This can be effected
using a fixed pseudo-random number generator, which uses deterministic sources of
"pseudo-random” numbers. These typically start with a "seed" quantity and use
numeric or logical operations to produce a sequence of values. A typical pseudo-
random number generation technique, known as a linear congruence pseudo-random
number generator, is described in "The Art of Computer Programming”, Volume 2:
Semi-Numerical Algorithms, Chapter 3: Random Numbers: Addison Wesley Publishing
Company, Second Edition 1982, Donald E. Knuth. Other means of selecting packets
at random include associating each packet with a number that has been randomly
selected from a database populated with numbers, or retrieving numbers that have

been generated by a random process, such as a Markov process.

In all of these cases, the numbers that are generated at random are compared
against one or more predetermined thresholds according to predetermined rules, and
the treatment of the packet is dependent on the outcome of this comparison. The
predetermined thresholds are user-configurable, and may be defined using the

submitting means 205 of the core 100, or any suitable alternative.

Drop, delay, jitter and queuing of packets:

When the thresholds are entered via submitting means 205, as described above with
reference to Figure 8, typical thresholds may be: nbexe -n -b 90 -x 10 -w 5 -e 10 -0 1
-k 4

which specifies “allow 10% of packets through without interference; drop 10% of

all packets; delay the remainder by between 5 and 10 ms; drop/delay between 1 and

4 packets at one time”

WO 01/41365 PCT/GB00/04540

23

Processing of this request by the emulator 701 is illustrated with reference to Figure

9:

10

15

S9.1 Capture one or more packets (via receiveNetworkEmulator (S8.5) when the
emulator 701 is in operative association with the core 100);

S9.2 Generate a first random number and compare it with interference threshold
(b). If the first random number is outside of the threshold, let it go without
interference, else pass onto $9.3

S9.3 Generate a second random number and compare it with the drop threshold
(x); if second random number is outside of the threshold it must be for delaying -
pass to S9.4, else is for dropping - just drop

S9.4 Generate a third random number, which is used in conjunction with a
predetermined delay profile to determine the delay to be applied. The delay
profile can either be read from a file, if the file name is specified at the command
line. Alternatively, if a delay profile is not specified (i.e. no file name is given),
then it is assumed that each millisecond in the delay range has equal weighting.
If a profile is specified, then the third random number is used to extrapolate a

delay time within the delay period:

/* Generate a delay value based on where the delay occurs within the minimum and

maximum delays that were specified. If we have a profile then use it; otherwise Jjust

20 calculate where the point is as a fractional quantity */

if(DELAYPROF_SET(t->p)) {

/*where np->r is the third random number; this line identifies the nearest point to

the delay required™/

num = np->delay Time[(int)(np->r * 100.0)];

25 /*this identifies the exact delay time*/

while(np->r > np->delayProfile[num])

num++,;

/*add the fraction to the minimum™/

30

np->delay = num + t->p.min_delay;

}else {

5

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

24

np->delay = (int)((((double)(t->p.max_delay - t->p.min_delay) / (double)100) *

np->r) + (double)t->p.min_delay);

}

S9.5 Assign a queuing location for the packet(s) in a running cycle, according to
the delay time calculated at S9.4.
The queuing location is calculated from the current time in the cycle (tposincycle): 1T @
delay time of 14 milliseconds is generated at S9.4, then this means a delay of 14
ms from now, wherever now may be in the current position of the running cycle.
If, for example, the running cycle is currently in 5 ms, and the maximum delay for
the present cycle is 12 ms (lycemay), the delay of 14 ms (fzq)from 5 ms is

assigned a queuing position by calculating:

tdelay

-t

: number of revolutions of cycle +7,,,, = (e mx ~!posincyee) FOr POSition in

t

cycle, max

cycle.

Thus for the example given:

14/13 = one revolution of the cycle + 14 - (13 - 5) such that the packet would
be queued to be sent at 6 ms in the following revolution of the cycle.

S59.6 Send the packet when the queued time is the current time (controlled via

sendNetworkEmulator when the emulator 701 is in operative association with the

core 100).

Jitter, defined as a variation in delay between delayed packets, is introduced by

applying different delays to packets. As the assignment of a delay is a function of a

random number for each packet, one packet is likely to have a different delay

compared to others that are being delayed. Therefore jitter is introduced implicitly to

the system by the method described above.

Duplicating packets

A packet can be duplicated by:

e capturing a packet;
e analysing its content; and

e generating an identical packet to the captured packet.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

25

A request for duplicating a packet can be made via the submitting means 205, by
specifying alternative event parameters to those included in the request described
above.

e.g. nbexe -n -f test.cap -t 60 -Z,

which specifies “capture packets for 1 minute, write the characteristics to a file, and
reproduce the characteristics by generating packets identical to those captured”.
Generating a second (identical) packet involves writing a packet, which may be
performed using the read/write means 213 of the core 100 described above (or other
suitable means). The second packet may additionally be delayed relative to the first,

by specifying a delay profile that controls the timing of writing of packets.

Limiting the Bandwidth

Bandwidth may be defined as the network’s volume capacity:

Number of packets x size of packets x 8.

Thus changing either the number of packets or the size of packets will change the
bandwidth. The number of packets can be controlled by generating additional
packets, or by permanently capturing packets, and the size of packets can be
controlled by specifying the packet size when generating a packet. These parameters
could either be entered at the command line for receipt by the submitting means 205,
when the emulator 701 operates in conjunction with the core 100, or could be read
in from a file.

The bandwidth could also be controlled between certain source and destination
addresses, by specifying desired MAC (physical address) and IP source and
destination addresses at the command line, or in a file. Thus as an extension to
Figure 7a, the emulator 701 could be positioned between two or more machines, and

control the flow of traffic therebetween.

Once the emulator 701 has finished processing packets, it outputs statistics
summarising how many packets were delayed, and the delay times, the number of
packets received on each interface, and the number of packets that were dropped on

each interface.

5

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

26

CLAIMS

1. Apparatus for simulating transmission conditions over communications

equipment, the apparatus including:

(i)
(i)

means for sending data packets into the communications equipment; and
means to effect a change to the transmission characteristics of the

communications equipment,

which means (ii) is in operative association with the means (i) for sending data, such

that a change to the transmission characteristics of the communications equipment is

effected by sending one or more data packets into the communications equipment,

which one or more data packets are constructed according to one or more requests.

2. Apparatus according to claim 1, further including means for capturing data, such

that a further change to the transmission characteristics of the communications

equipment is effected by:

a)

b)

c)

capturing one or more data packets from the communications equipment;
changing the characteristics thereof in accordance with the request so as to
produce a modified data packet;

sending the one or more modified data packets into the communications

equipment, where the sending is also controlled by the request.

3. Apparatus according to claim 2, wherein the change includes any one, or a

combination of changes to:

a)
b)

c)

d)

e)

f)

Packet destination;

Delay applied to packet;

Range of delays applied to packets, when a plurality of packets has been
captured;

Order in which packets are sent, when a plurality of packets has been
captured;

Size of packet;

Number of packets sent;

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

(i)
(i)

8.

(i)

(i)

(iii)

9.

27

Apparatus according to any one of the preceding claims, wherein the one or more
sent data packets are received by an application that is in operative association

with the communications equipment.

Apparatus according to any one of the preceding claims, further including
registering means for registering one or more transmission protocols, thereby to

enable the apparatus to communicate according to any registered protocol.

. Apparatus according to any one of the preceding claims, further including

submitting means for submitting the request to the means for effecting a change

to the transmission characteristics of the communications equipment.

. A method of simulating transmission conditions over communications equipment,

the method comprising the steps of:
Generating one or more packets of data; and
Sending one or more generated packets of data into the communications

equipment.

A method according to claim 7, further comprising the steps of:
Capturing at least one or more packets of data from the communications
equipment;
Effecting a desired change to the one or more packets of data, thereby
producing a modified packet of data; and
Sending one or more modified packets of data into the communications

equipment, in accordance with the changes effected at step (ii).

A method according to claim 8, in which the step (ii) of effecting a change to the
packet of data includes the steps of:
a) selecting a packet at random for delaying; and

b) applying a random delay thereto,

which steps are applied to one or more packets in accordance with the desired

change.

10

15

20

25

30

WO 01/41365 PCT/GB00/04540

28

10.A method according to claim 8, in which the step (ii) of effecting a change to the

packet of data includes the steps of:

a)
b)

c)

selecting a packet at random for delaying;
applying a random delay thereto; and
inserting the packet into a cyclical queue in accordance with the delay

generated at step (b),

which steps are applied to one or more packets in accordance with the desired

change.

11.A method according to claim 8, in which the step (ii) of effecting a change to the

packet of data includes any one of

a)

b)

c)

changing the size of the packet, which change is applied to one or more
packets in accordance with the desired change; or

changing the destination of the packet, which change is applied to one or
more packets in accordance with the desired change; or

changing the destination of the packet such that the packet is dropped.

12.Apparatus according to any one of claims 1 to 6, further including apparatus for

testing and/or monitoring the operation of communications equipment, which

further apparatus comprises:

(i)

(ii)

(iii)

{iv)

(v)

registering means for registering one or more transmission protocols to enable
the apparatus to communicate according to any registered protocol;
submitting means for submitting a request, the request specifying at least one
testing and/or monitoring operation;

decoding means for decoding a received request into one or more processable
events in accordance with one or more predetermined rules;

read/write means for controlling the writing of data packets to, and the
reading of data packets from, the communications equipment; and
scheduling means for scheduling decoding of received requests and execution
of the one or more processable events in accordance with the read/write

means,

such that, when a request is received from the submitting means, the scheduling

means schedules:

10

WO 01/41365 PCT/GB00/04540

a)

b)

c)

29

decoding of the request into one or more processable events by the decoding

means;
initialisation of the processable events by the decoding means: and
reading and writing of data packets from and to the communications

equipment by the read/write means in accordance with the processable

events.

PCT/GB00/04540

WO 01/41365

1/7

€0l

LO1

1oulaluj

3}I0MION 3}10M18N

LO1L
601 S|

310MIBN

1SOH

LLL 8100
1SOH

GOl
00l

PCT/GB00/04540

WO 01/41365

2/7

LO¢C

00l
\ Lic
LOL \
sueawl
31NN PeSBY
sueaw sueaw
Buiinpayog Buipooag
191noy .
sueawl
GLc UOI1BDIUNWWOD)
AN
0z sueaw suesw
- Bulieisibay| [Bunnwagng
4 S
7 A
/02 G0¢C

€lLec

clLc

60¢

PCT/GB00/04540

WO 01/41365

3/7

v bi4

elep
Jo si}ajoed (bulaladal pue Buipuas)
Bulpuey 10} sassaso0ad ubissy

pue saoejlolul PPy

la1j1puapl yuana o1 d1j10ads
sanjeA ylm sialsweled
Bunesado alejndoyd

9100 AQ pauleluiew \/
1s1] 01 sjoo0310.d ¢'vS

L PS

¢ biy

.

| LZ sueaw

Buinpayos ayl Ag bBuiinpayos

pue uolnesijeliut 10} uoleiedaid ui
‘sjuane asayl 01 sassavoid ubissy

S1uana a|qessasoud \/
alow 1o auo Ajinuapl 7'eg

:191}11UBPI JUBAS 9SAjRUYy

slajaweled JUBAS \/
pUE IB1}11Udpl 1UBAS Ue L'ES

ojul Buins 1ndul apooa

PCT/GB00/04540

WO 01/41365

477

£'7°9S +—— 1uds 19308

¢'C'9S —~

L°C'9S A

1apeay d|
UM paulqwo)

f

lapeay
\ dJ1 01 pappe pue
dn papialp eleq

:s19Ae| 1000104
ybnouyl eiep puag

9 614

1uss aq 01 eiep aledald

G B4

7
s19)0ed

Jo ul Buipeay $$920.d

suoouny
91908y |000101d SS820.d

PCT/GB00/04540

WO 01/41365

5/7

q/ b4

€0¢

auiyoen

e/ Bi4

LOL ——

B sueaw Buipuag 1908y

S0L —F——__ suesw Buinide) 18308y

310M18U 9y} JO SOI1SII910BIRYD
- uoissiwsuell ayl

uoljeunsag

0L — 01 abueyd e 1994}8 O] SURBIA
"™~ 10s
LOL
10C
101R|NWJ SUIIOBIN
OMION 90IN0g

PCT/GB00/04540

WO 01/41365

6/7

8 b4

‘paddols
s|1 1sanbai Bunegnwy |

A

9'8S

p21084J9 SI 1UBA8 puas ‘paysiul} sey |/ 01BN

90UO0 ‘BlRp S9IJIpOW pue |/ J01BR|NWS S109}}8 —

YOIYM ‘1UBAS peal $81N08X8 £ |7 SUeaW 8lliM/peay

T

G'8S

H

suonouny} Bulpuas pue Buipeas subisse saodejialul
pue sjoo010.d sia31sibal yoiym uollouny uoilesijenniur —
S||eD :1UBAS 14B1S SOAUI 7 | Z sueaw Buipooa(

Dmm

1

ayl subisse 7 |z sueaw Buipoosaq |

9y} Sepooap 7 |z sueaw Buipooa

i

suwqns GOz suesw Bunywgng |

UOI10UN} UOIIESI[BILIUI J01R|NWID \./
} I | £'8S
s1o1oweled Juans pue N4 HOLVINWNI \j
J191J11U9P! JUBAS Ue 01Ul 1s8nbal Z'8S

1uane Bunejnws 104 1senbai \I/
1'8S

PCT/GB00/04540

WO 01/41365

717

6 b4

aWwill JuslINd = 8w}
ananb uaym pusg

*

19y0ed 10} y

uolleoo0| buinanb e ubissy

1

ajijoid Aejop peutwialepaid
B Ulm gN auiquoy

“(EN) 18equinN
wiopuey pliy| 91eiauan)

S
o)
n

19y0ed doip
(X =< ZN) H

i
(X > ZN) H

(CN) 1equinN
Wwopuey puooag alrIauaN)

™
o
wn

ﬁ

1930ed 031 90UaJ8}I81Ul OU

(@ =< LN)H

(A >LN) 4

(LN) Jequnu
wiopuey 1S4 81e19UsN)

%

X 'q
ul peal :si1ayoed ainide)

L°6S

INTERNATIONAL SEARCH REPORT |

nt tional Application No

PCT/GB 00/04540

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 HO4L12/24 H04Q3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 HO4L HO4Q

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 0 889 656 A (NORTHERN TELECOM LTD) 1-4,6-8
7 January 1999 (1999-01-07)
Y abstract 5,12
A page 2, line 35-44 9-11
page 3, line 10-16
figures 8-10,12
claims 1-3
Y WO 98 28879 A (ERICSSON GE MOBILE INC) 5,12
2 July 1998 (1998-07-02)
A abstract 1-4,6-11
page 4, line 7 -page 5, line 3
figures 1,2,5
page 11, line 1 -page 12, line 12
claims 1,2,25,35
-
m Further documents are listed in the continuation of box C. E Patent family members are listed in annex.

° Special categories of cited documents :

'T* later document published after the international filing date
or priority date and not in conflict with the application but

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31~70) 340-2040, Tx. 31 651 epo nl, s
Fax: (+31-70) 340-3016 Cichra,

M

*A" document defining the general state of the art which is not i g ;
considered to be of particular relevance :;:Leg] ;% rl.:ndersland the principle or theory underlying the
'E" earlier document but published on or after the international “X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
L document whié:h may lglro;v goubti |on prior;ijty claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *¥* document of .) . . N
i " fi particular relevance; the claimed invention
citation or other special reason (as specified) o cannot be considered to involve an inventive step when the
‘0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-~
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the international search Date: of mailing of the international search report
6 February 2001 22/(2/2001
Name and mailing address of the ISA Authorized cfficer

Fomm PCT/ISA/210 (second sheet) (July 1992)

page ‘1 of 2.

INTERNATIONAL SEARCH REPORT

}

Int, :ional Application No

PCT/GB 00/04540

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

WO 98 52322 A (CABLETRON SYSTEMS INC
;DATTA UTPAL (US); LEWIS LUNDY (US))

19 November 1998 (1998-11-19)

abstract

figures 2,6,7

claims 1,10-12
page 3, line 15 -page 4, line 20

DERMLA A ET AL: "EIN GLOBALES PROJEKTIER-
UND MANAGEMENTWERKZEUG FUR LOKALE NETZE"
AUTOMATISIERUNGSTECHNISCHE PRAXIS -
ATP,DE,OLDENBOURG VERLAG. MUNCHEN,
vol. 32, no. 5, 1 May 1990 (1990-05-01),
pages 258-261, XP000125657

ISSN: 0178-2320
the whole document
EP 0 798 941 A (AT & T CORP)

1 October 1997 (1997-10-01)
abstract

figures 1,3

claims 1,2,5,19

1-12

1,4,6,7,
12

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of -2

INTERNATIONAL SEARCH REPORT nt

Information on patent family members

tional Application No

PCT/GB 00/04540

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0889656 A 07-01-1999 us 5970064 A 19-10-1999
CA 2230424 A 12-12-1998
JP 11017704 A 22-01-1999

W0 9828879 A 02-07-1998 us 5889954 A 30-03-1999
AU 727579 B 14-12-2000
AU 5802098 A 17-07-1998
CN 1247656 A 15-03-2000
EP 0947074 A 06-10-1999

W0 9852322 A 19-11-1998 AU 720871 B 15-06-2000
AU 7374398 A 08-12-1998
EP 0981877 A 01-03-2000

EP 0798941 A 01-10-1997 CA 2195592 A 30-09-1997
JP 10098525 A 14-04-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

