
(12) STANDARD PATENT (11) Application No. AU 2004233545 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
A printer for consumer electronics systems

(51) International Patent Classification(s)
B41J 2/00 (2006.01)

(21) Application No: 2004233545 (22) Date of Filing: 2004.12.01

(43) Publication Date: 2004.12.16
(43) Publication Journal Date: 2004.12.16
(44) Accepted Journal Date: 2006.08.17

(62) Divisional of:
2003248309

(71) Applicant(s)
Silverbrook Research Pty Ltd

(72) Inventor(s)
Silverbrook, Kia;Walmsley,Simon Robert;King, Tobin Allen;Lapstun, Paul

(74) Agent Attorney
Silverbrook Research Pty. Ltd., 393 Darling Street, Balmain, NSW, 2041

(56) Related Art
EP 664218
US 5797077
US 4641980
EP 921006
JP 10058791
US 5248207
EP 0575983
EP 0879706

-108-

SABSTRACT

A printer system includes a housing and a print engine. The print engine has a page

width printhead and a transfer roller arranged adjacent the printhead for transferring ink

deposited on its surface by the printhead to a surface of a sheet of print media on which an

image is to be printed, the roller having a passage defined therein. The print engine also

c includes a drive means for rotatably driving the transfer roller and feeding the print media past

the transfer roller, the drive means being arranged in the passage of the transfer roller.

CEP13-AU

-1-

A PRINTER FOR CONSUMER ELECTRONICS SYSTEMS

Field of the Invention

The present invention relates to a printer. More particularly, the invention relates to a

high speed printer.

Background of the Invention

SThe printer system is intended for use with various types of original equipment to be

incorporated therein, either as a rack-mountable module or as an integral part of such a system.

Summary of the Invention

According to a first aspect of the invention, there is provided a printer system which

includes:

a housing;

a front panel arranged at the end of the housing, the front panel having an opening

defined therein;

a carrier slideably arranged relative to the housing to be movable in the opening

between a retracted position and an ejected position, the carrier carrying:

a receptacle for a supply of print media;

a receptacle for a supply of ink; and

a print engine including a page width printhead.

In this specification, unless the context clearly indicates otherwise, the term "page

width printhead" is to be understood as a printhead having a printing zone that prints one line

at a time on a page, the line being parallel either to a longer edge or a Shorter edge of the page.

The line is printed as a whole as the page moves past the printhead and the printhead is

stationary, i.e. it does not raster.

When the carrier is in its retracted position, a print media slot may be defined between

the front panel and the carrier through which print media are ejected after printing of images on

the print media.

The carrier may include a chassis which is supported on a guide means in the housing.

CEP1 3-AU

-2-

U
SThe receptacle for the supply of print media may then be a platen carried on the chassis.

Likewise, the receptacle for the supply of ink may be a receiving formation in which an ink

cartridge is removably received. The receiving formation may include a locking arrangement

for releasably locking the ink cartridge in position relative to the carrier and the print engine.

A second print engine may be arranged in the housing, in opposed relationship to the

Cc print engine arranged on the carrier when the carrier is in its retracted position, for effecting

printing on both surfaces of the print media.

SAn indicating means may be contained in the front panel for indicating when printer

consumables, being the supply of print media and the supply of ink, require replenishment.

The indicating means may be in the form of a visual annunciator, such as one or more light

emitting diodes.

According to a second aspect of the invention there is provided a print engine for a

printer, the print engine including:

a page width printhead, the printhead including an ink-ejecting means and a sealing

means surrounding the ink-ejecting means;

a transfer means on to which ink ejected by the printhead is received to be transferred

to a sheet of print media, the transfer means being arranged adjacent to the printhead; and

a displacement means for displacing the printhead so that its sealing means is urged

into abutment with a surface of the transfer means when the printhead is inoperative to inhibit

evaporation of ink from the ink-ejecting means, the displacement means further being operable

to draw the printhead into spaced relationship relative to the transfer means when printing is to

be effected.

The ink-ejecting means of the printhead may be a microelectromechanical device

having a plurality of inkjet nozzles. The sealing means may be an elastomeric seal surrounding

the ink-ejecting means. The sealing means may comprise a plurality of nested ribs surrounding

a semi-conductor device defining the inkjet nozzles.

The transfer means may include a transfer roller rotatably mounted adjacent to the

printhead so that ink ejected by the printhead is deposited on a surface of the transfer roller. In

a preferred embodiment of the invention, at least a surface of the transfer roller is of a wear

resistant material which is resistant to pitting, scoring or scratching. Thus, at least the surface

of the transfer roller may be of titanium nitride.

CEP1 3-AU

U
SThe displacement means may include an electromagnetically operable device. The

electromagnetically operable device may be a solenoid which, to draw the printhead away from

the transfer means, requires a first, higher current and to hold the printhead in spaced

relationship relative to the transfer means requires a second, lower current.

The print engine may include an urging means for urging a sheet of print media into

Cc contact with the surface of the transfer means. The urging means may either be a pinch roller

or, where two print engines are provided for effecting double-sided printing, a transfer roller of

San opposed, aligned print engine.

~The print engine may also include a cleaning station for cleaning the surface of the

transfer means, the cleaning station being arranged intermediate the urging means and the

printhead. The cleaning station may include a cleaning element of an absorbent, resiliently

flexible material, such as a sponge, and a wiper of a resiliently flexible material, the wiper

being arranged intermediate the cleaning element and the printhead. The wiper may be in the

form of a strip of rubber.

According to a third aspect of the invention, there is provided a digital printing system

for printing on both surfaces of a sheet of print media, the printing system including:

a first print engine; and

a second print engine in an opposed, aligned relationship with the first print engine,

each print engine including an inkjet printhead and a transfer roller on to which ink ejected

from the printhead is deposited to be applied, in turn, on an associated surface of the print

media, the transfer roller of one print engine further serving as an urging means for the transfer

roller of the other print engine for urging the transfer rollers into contact with their associated

surfaces of the print media.

The second print engine may be pivotally mounted with respect to the first print engine,

the second print engine including a biasing means, in the form of a spring, for biasing its

transfer roller into abutment with the transfer roller of the first print engine. Thus, it will be

appreciated that the transfer roller of each print engine serves as a pinch roller for its opposed

print engine.

One of the transfer rollers of both transfer rollers may act as an urging means for urging

the sheet of print media past the transfer rollers.

CEP1 3-AU

-4-

SAt least a surface of the transfer roller of each print engine may be of a wear resistant

_material which is resistant to pitting, scratching or scoring. The material may be titanium

nitride.

Each print engine may include a page width printhead with the transfer roller being of a

similar length to the printhead.

Cc The printhead of each print engine may include an ink-ejecting means and a sealing

means surrounding the ink-ejecting means. The ink-ejecting means of the printhead may be a

Smicroelectromechanical device having a plurality of inkjet nozzles.

SThe sealing means may be an elastomeric seal surrounding the ink-ejecting means.

When the printhead of each print engine is inoperative, it may bear against its

associated transfer roller such that the sealing means seals the ink-ejecting means to inhibit

evaporation of ink from the ink-ejecting means, each print engine including a displacement

means for withdrawing the printhead from the transfer roller when printing is to be effected.

The displacement means may include an electromagnetically operable device. The

electromagnetically operable device may be a solenoid which, to draw the printhead away from

the transfer roller to enable printing to be effected, requires a first, higher current, and to hold

the printhead in spaced relationship relative to the transfer means requires a second, lower

current.

Each print engine may include a cleaning station, arranged upstream of the printhead,

for cleaning the surface of the transfer roller. The cleaning station may include a cleaning

element of an absorbent, resiliently flexible material such as a sponge, and a wiper of a

resiliently flexible material arranged downstream of the cleaning element. The wiper may be of

rubber.

Each print engine may provide for process color output.

The print engines may be operable substantially simultaneously to effect substantially

simultaneous printing on both surfaces of the print media passing between the print engines.

According to a fourth aspect of the invention, there is provided a controller for

controlling printing on both surfaces of a sheet of print media, the controller including:

a first print controller for controlling printing by a page width printhead of a first print

engine;

CEP13-AU

U
Sa second print controller for controlling printing by a page width printhead of a second

print engine substantially simultaneously with the printing by the printhead of the first print

engine;

a first communications link interconnecting the first print controller and the second

print controller for synchronizing the print controllers; and

Cc a second communications link interconnecting at least one of the print controllers with

N a host system for receipt from the host system of descriptions of pages to be printed on said

Ssurfaces of the sheet of print media by the print engines.

C The first print controller is, preferably, a master print controller with the second print

controller being a slave print controller operable under command of the master print controller

on receipt of signals via the first communications link.

The first communications link may be a bi-directional link enabling the transmission of

data from the slave print controller to the master print controller. Thus, after the printing of a

page, or more frequently, the master print controller may obtain ink consumption information

from the slave print controller via the first communications link. The master print controller

uses this to update the remaining ink volume in an ink cartridge. Further, the master print

controller and slave print controller may also exchange error events and host-initiated printer

reset commands via the first communications link.

The master print controller may have the second communications link connected to it to

present a unified view to the host system to mask the presence of the slave print controller. The

master print controller may print described pages on a rear surface of the print media with the

slave print controller printing on a front surface of the print media so that the master print

controller always has a page buffer available for a page description destined for the slave print

controller.

Print synchronization may be achieved by the master print controller controlling a

printing operation of the slave print controller. Printhead interfaces of both print controllers

may be synchronized to a shared line synchronization signal generated by one of the print

controllers.

According to a fifth aspect of the invention there is provided a method of controlling

printing on both surfaces of a sheet of print media, the method including the steps of:

CEP1 3-AU

-6-

U
Sreceiving data relating to a first page to be printed in a first print controller of a first

print engine;

transmitting the data relating to the first page from the first print controller to a second

print controller of a second print engine;

receiving data relating to a second page to be printed in the first print controller; and

Cc, controlling printing by the print engines under command of the first print controller to

achieve synchronization of printing of the pages by the first print controller and the second

Sprint controller on rear and front surfaces of the print media, respectively.

The method may include synchronizing printhead interfaces of both print controllers by

means of a shared line synchronization signal generated by the first print controller which is a

master print controller. Further, the method may include transmitting data relating to the pages

to be printed from a host system to the master print controller by means of a host

communications link, the master print controller determining whether or not said data are to be

routed to the second print controller which is a slave print controller.

The method may also include receiving said data in its entirety in a memory of the

master print controller before forwarding it to the slave print controller.

The method may include selecting the master print controller to print the rear surface of

the print media to ensure that the master print controller always has a page buffer available for

a page description destined for the slave print controller.

As described above, the method may include, periodically, transmitting predetermined

data from the slave print controller to the master print controller.

According to a sixth aspect of the invention, there is provided a print engine for a

printer, the print engine including:

a page width printhead;

a transfer roller arranged adjacent the printhead for transferring ink deposited on its

surface by the printhead to a surface of a sheet of print media on which an image is to be

printed, the roller having a passage defined therein; and

a drive means for rotatably driving the transfer roller and feeding the print media past

the transfer roller, the drive means being arranged in the passage of the transfer roller.

The printhead may be a microelectromechanical inkjet printhead.

CEP13-AU

-7-

SThe transfer roller may be a hollow right circular cylinder which defines the passage

through it.

At least a surface of the transfer roller may be of a wear resistant material which is

resistant to pitting, scratching or scoring. The material may be titanium nitride.t

The drive means may include a motor. The motor is, preferably, a stepper motor.

Cc A reduction gearbox may be mounted on an output shaft of the motor. To reduce

N, space, at least a part of a gear train of the gearbox may be a worm gear train.

N, Brief Description of the Drawings

The invention is now described by way of example with reference to the accompanying

drawings in which:-

Figure 1 shows a front view of a CePrint printer, in accordance with a first embodiment

if the invention;

Figure 2 shows a front view of the printer, in accordance with a second embodiment of

the invention;

Figure 3 shows a side view of the printer of Figure 1;

Figure 4 shows a plan view of the printer of Figure 1;

Figure 5 shows a side view of the printer of Figure 2;

Figure 6 shows a table illustrating a sustained printing rate of the printer achievable

with double-buffering in the printer;

Figure 7 shows a flowchart illustrating the conceptual data flow from application to

printed page;

Figure 8 shows a schematic, sectional plan view of the printer;

Figure 8A shows a detailed view of the area circled in Figure 8;

Figure 9 shows a side view, from one side, of the printer of Figure 8;

Figure 10 shows a side view, from the other side, of the printer of Figure 8;

Figure 11 shows a schematic side view of part of the printer showing the relationship

between a print engine and image transfer mechanism of the printer;

Figure 12A shows a schematic side view of part of the devices of Figure 11 showing

the printhead in a parked, non-printing condition relative to the transfer mechanism;

CEP13-AU

-8-

U
Figure 12B shows a schematic side view of the part of the devices of Figure 11

showing the printhead in a printing condition relative to the transfer mechanism;

O Figure 13 shows a schematic side view of the arrangement of the printheads and

transfer mechanisms of the double-sided printer of Figure 2;

IFigure 14 shows a three-dimensional, exploded view of a paper drive chain of the

printer;
(Ni

Figure 15 shows a three-dimensional view of the printing system of the printer;

SFigure 16 shows an enlarged, three-dimensional view of part of the printing system of

Figure

Figure 17 shows a simple encoding sample;

Figure 18 shows a block diagram of printer controller architecture;

Figure 19 shows a flowchart of page expansion and printing data flow;

Figure 20 shows a block diagram of an EDRL expander unit;

Figure 21 shows a block diagram of an EDRL stream decoder;

Figure 22 shows a block diagram of a runlength decoder;

Figure 23 shows a block diagram of a runlength encoder;

Figure 24 shows a block diagram of a JPEG decoder;

Figure 25 shows a block diagram of a halftoner/compositor unit;

Figure 26 shows a diagram of the relationship between page widths and margins;

Figure 27 shows a block diagram of a multi -threshold dither unit;

Figure 28 shows a block diagram of logic of the triple-threshold dither;

Figure 29 shows a block diagram of a speaker interface;

Figure 30 shows a block diagram of a dual printer controller configuration;

Figure 31 shows a schematic representation of a Memjet page width printhead;

Figure 32 shows a schematic representation of a pod of twelve printing nozzles

numbered in firing order;

Figure 33 shows a schematic representation of the same pod with the nozzles numbered

in load order;

Figure 34 shows a schematic representation of a chromapod comprising one pod of

each color;

CEP13-AU

SFigure 35 shows a schematic representation of a podgroup comprising five

chromapods;

Figure 36 shows a schematic representation of a phasegroup comprising two

podgroups;

Figure 37 shows a schematic representation of the relationship between segments,

c firegroups, phasegroups, podgroups and chromapods:

Figure 38 shows a phase diagram of AEnable and BEnable lines during a typical

Sprinting cycle;

Figure 39 shows a block diagram of a printhead interface;

Figure 40 shows a block diagram of a Memjet interface;

Figure 41 shows a flow diagram of the generation of AEnable and BEnable pulse

widths;

Figure 42 shows a block diagram of dot count logic;

Figure 43 shows a conceptual overview of double buffering during printing of lines N

and N+1;

Figure 44 shows a block diagram of the structure of a line loader/format unit;

Figure 45 shows a conceptual structure of a buffer;

Figure 46 shows a block diagram of the logical structure of a buffer;

Figure 47 shows a diagram of the structure and size of a two-layer page buffer;

and

Figure 48 shows a block diagram of a Windows 9x/NT/CE printing system with printer

driver components indicated.

Detailed Description of the Drawings

1 INTRODUCTION

The printer, in accordance with the invention, is a high-performance color printer which

combines photographic-quality image reproduction with magazine-quality text reproduction. It

utilizes an 8" page-width microelectromechanical inkjet printhead which produces 1600 dots

per inch (dpi) bi-level CMYK (Cyan, Magenta, Yellow, blacK). In this description the

printhead technology shall be referred to as "Memjet", and the printer shall be referred to as

"CePrint".

CEP13-AU

SCePrint is conceived as an original equipment manufacture (OEM) part designed for

_inclusion primarily in consumer electronics (CE) devices. Intended markets include televisions,

VCRs, PhotoCD players, DVD players, Hi-fi systems, Web/Internet terminals, computer

monitors, and vehicle consoles. As will be described in greater detail below, it features a low-

profile front panel and provides user access to paper and ink via an ejecting tray. It operates in

C a horizontal orientation under domestic environmental conditions.

N CePrint exists in single- and double-sided versions. The single-sided version prints

0 full-color A4 or Letter pages per minute. The double-sided version prints 60 full-color pages

C1 per minute 30 sheets per minute). Although CePrint supports both paper sizes, it is

configured at time of manufacture for a specific paper size.

1.1 Operational Overview

CePrint reproduces black text and graphics directly using bi-level black, and

continuous-tone (contone) images and graphics using dithered bi-level CMYK. For practical

purposes, CePrint supports a black resolution of 800 dpi, and a contone resolution of 267 pixels

per inch (ppi).

CePrint is embedded in a CE device, and communicates with the CE device (host)

processor via a relatively low-speed (1.5MBytes/s) connection. CePrint relies on.the host

processor to render each page to the level of contone pixels and black dots. The host processor

compresses each rendered page to less than 3MB for sub-two-second delivery to the printer.

CePrint decompresses and prints the page line by line at the speed of its micro-

electromechanical inkjet (Memjet) printhead. CePrint contains sufficient buffer memory for

two compressed pages (6MB), allowing it to print one page while receiving the next, but does

not contain sufficient buffer memory for even a single uncompressed page (119MB).

The double-sided version of CePrint contains two printheads which operate in parallel.

These printheads are fed by separate data paths, each of which replicates the logic found in the

single-sided version of CePrint. The double-sided version has a correspondingly faster

connection to the host processor (3MB/s).

2 PRODUCT SPECIFICATION

Table 1 gives a summary product specification of the single-sided and double-sided

versions of the CePrint unit.

CEP13-AU

-11

Table 1. CePrint Specification

single-sided version double-sided version

dot pitch 1600 dpi

paper standard A4 Letter

paper tray capacity 150 sheets

print speed 30 pages per minute 60 pages per minute,

sheets per minute

warm-up time nil

first print time 2-6 seconds

subsequent prints 2 seconds sheet

color model 32-bit CMYK process color

printable area full page (full edge bleed)

printhead page width Memjet with dual printheads

54,400 nozzles

print method self-cleaning transfer roller, dual transfer rollers

titanium nitride (TiN) coated

size (h x w x d) 40mm x 272mm x 416mm 60mm x 272mm x

416mm

weight 3kg (approx.) 4kg (approx.)

power supply 5V, 4A 5V, 8A

ink cartridge color capacity 650 pages at 15% coverage

ink cartridge black capacity 900 pages at 15% coverage

ink cartridge size (h x w x d) 21mm x 188mm x 38mm

3 MEMJET-BASED PRINTING

A Memjet printhead produces 1600 dpi bi-level CMYK. On low-diffusion paper, each

ejected drop forms an almost perfectly circular 22.5mm diameter dot. Dots are easily produced

in isolation, allowing dispersed-dot dithering to be exploited to its fullest. Since the Memjet

printhead is page-width and operates with a constant paper velocity, the four color planes are

CEP13-AU

-12-

U
Sprinted in perfect registration, allowing ideal dot-on-dot printing. Since there is consequently

no spatial interaction between color planes, the same dither matrix is used for each color plane.

A page layout may contain a mixture of images, graphics and text. Continuous-tone (contone)

images and graphics are reproduced using a stochastic dispersed-dot dither. Unlike a clustered-

dot (or amplitude-modulated) dither, a dispersed-dot (or frequency-modulated) dither

reproduces high spatial frequencies image detail) almost to the limits of the dot resolution,
(Ni
N, while simultaneously reproducing lower spatial frequencies to their full color depth, when

Sspatially integrated by the eye. A stochastic dither matrix is carefully designed to be free of

objectionable low-frequency patterns when tiled across the image. As such its size typically

exceeds the minimum size required to support a number of intensity levels 16x16x8 bits

for 257 intensity levels). CePrint uses a dither volume of size 64x64x3x8 bits. The volume

provides an extra degree of freedom during the design of the dither by allowing a dot to change

states multiple times through the intensity range, rather than just once as in a conventional

dither matrix.

Human contrast sensitivity peaks at a spatial frequency of about 3 cycles per degree of

visual field and then falls off logarithmically, decreasing by a factor of 100 beyond about

cycles per degree and becoming immeasurable beyond 60 cycles per degree. At a normal

viewing distance of 12 inches (about 300mm), this translates roughly to 200-300 cycles per

inch (cpi) on the printed page, or 400-600 samples per inch according to Nyquist's theorem.

Contone resolution beyond about 400 pixels per inch (ppi) is therefore of limited utility, and in

fact contributes slightly to color error through the dither.

Black text and graphics are reproduced directly using bi-level black dots, and are

therefore not antialiased low-pass filtered) before being printed. Text is therefore

supersampled beyond the perceptual limits discussed above, toproduce smoother edges when

spatially integrated by the eye. Text resolution up to about 1200 dpi continues to contribute to

perceived text sharpness (assuming low-diffusion paper, of course).

4 PAGE DELIVERY ARCHITECTURE

4.1 Page Image Sizes

CePrint prints A4 and Letter pages with full edge bleed. Corresponding page image

sizes are set out in Table 2 for various spatial resolutions and color depths used in the

following discussion. Note that the size of an A4 page exceeds the size of a Letter page,

CEP13-AU

I

-13-

although the Letter page is wider. Page buffer requirements are therefore based on A4, while

line buffer requirements are based on Letter.

Table 2. Page Image Sizes

spatial resolution color depth A4a Letter

(pixels/inch) (bits/pixel) page buffer size page buffer size

1600 32 948MB 913MB

800 32 237MB 228MB

400 32 59.3MB 57.1MB

267 32 26.4MB 25.4MB

1600 4 119MB 114MB

800 4 29.6MB 28.5MB

1600 1 29.6MB 28.5MB

800 1 7.4MB 7.1MB
a 210mm x 297 mm, or 8.3" x 11.7"
b 8.5" x 11"

4.2 Constraints

The act of interrupting a Memjet-based printer during the printing of a page produces a

visible discontinuity, so it is advantageous for the printer to receive the entire page before

commencing printing, to eliminate the possibility of buffer underrun. Furthermore, if the

transmission of the page from the host to the printer takes significant time in relation to the

time it takes to print the page, then it is advantageous to provide two page buffers in the printer

so that one page can be printed while the next is being received. If the transmission time of a

page is less than its 2-second printing time, then double-buffering allows the full

pages/minute page rate of CePrint to be achieved.

Figure 6 illustrates the sustained printing rate achievable with double-buffering in the

printer, assuming 2-second page rendering and 2-second page transmission.

Assuming it is economic for the printer to have a maximum of only 8MB of memory

a single 64Mbit DRAM), then less than 4MB is available for each page buffer in the

CEP13-AU

-14-

U
Sprinter, imposing a limit of less than 4MB on the size of the page image. To allow for program

and working memory in the printer, we limit this to 3MB per page image.

Assuming the printer has only a typical low-speed connection to the host processor,

then the speed of this connection is 1-2MB/s 2MB/s for parallel port, 1.5MB/s for USB,

and 1MB/s for 10Base-T Ethernet). Assuming 2-second page transmission equal to the

Cc printing time), this imposes a limit of 2-4MB on the size of the page image, i.e. a limit similar

to that imposed by the size of the page buffer.

SIn practice, because the host processor and the printer can be closely coupled, a high-

speed connection between them may be feasible.

Whatever the speed of the host connection required by the single-sided version of

CePrint, the double-sided version requires a connection of twice that speed.

4.3 Page Rendering and Compression

Page rendering (or rasterization) can be split between the host processor and printer in

various ways. Some printers support a full page description language (PDL) such as Postscript,

and contain correspondingly sophisticated renderers. Other printers provide special support

only for rendering text, to achieve high text resolution. This usually includes support for built-

in or downloadable fonts. In each case the use of an embedded renderer reduces the rendering

burden on the host processor and reduces the amount of data transmitted from the host

processor to the printer. However, this comes at a price. These printers are more complex than

they might be, and are often unable to provide full support for the graphics system of the host,

through which application programs construct, render and print pages. They fail to exploit the

possibly high performance of the host processor.

CePrint relies on the host processor to render pages, i.e. contone images and graphics to

the pixel level, and black text and graphics to the dot level. CePrint contains only a simple

rendering engine which dithers the contone data and combines the results with any foreground

bi-level black text and graphics. This strategy keeps the printer simple, and independent of any

page description language or graphics system. It fully exploits the high performance expected

in the host processor of a multimedia CE device. The downside of this strategy is the

potentially large amount of data which must be transmitted from the host processor to the

printer. We therefore use compression to reduce the page image size to the 3MB required to

allow a sustained printing rate of 30 pages/minute.

CEP1 3-AU

An 8.3" x 11.7" A4 page has a bi-level CMYK page image size of 119MBytes at 1600 dpi, and

a contone CMYK pagesize of 59.3MB at 400 ppi.

We use JPEG compression to compress the contone data. Although JPEG is inherently

lossy, for compression ratios of 10:1 or less the loss is usually negligible. To achieve a high-

quality compression ratio of less than 10:1, and to obtain an integral contone to bi-level ratio,

Ccr we choose a contone resolution of 267 ppi. This yields a contone CMYK pagesize of 25.5MB,

a corresponding compression ratio of 8.5:1 to fit within the 3MB/page limit, and a contone to

Sbi-level ratio of 1:6 in each dimension.

A full page of black text (and/or graphics) rasterized at printer resolution (1600 dpi)

yields a bi-level image of 29.6MB. Since rasterizing text at 1600 dpi places a heavy burden on

the host processor for a small gain in quality, we choose to rasterize text at 800 dpi. This yields

a bi-level image of 7.4MB, requiring a lossless compression ratio of less than 2.5:1 to fit within

the 3MB/page limit. We achieve this using a two-dimensional bi-level compression scheme

similar to the compression scheme used in Group 4 Facsimile.

As long as the image and text regions of a page are non-overlapping, any combination

of the two fits within the 3MB limit. If text lies on top of a background image, then the worst

case is a compressed page image size approaching 6MB (depending on the actual text

compression ratio). This fits within the printer's page buffer memory, but prevents double-

buffering of pages in the printer, thereby reducing the printer's page rate by two-thirds, i.e. to

pages/minute.

4.4 Page Expansion and Printing

As described above, the host processor renders contone images and graphics to the

pixel level, and black text and graphics to the dot level. These are compressed by different

means and transmitted together to the printer.

The printer contains two 3MB page buffers one for the page being received from the

host, and one for the page being printed. The printer expands the compressed page as it is being

printed. This expansion consists of decompressing the 267 ppi contone CMYK image data,

halftoning the resulting contone pixels to 1600 dpi bi-level CMYK dots, decompressing the

800 dpi bi-level black text data, and compositing the resulting bi-level black text dots over the

corresponding bi-level CMYK image dots.

CEP13-AU

-16-

U
SThe conceptual data flow from the application to the printed page is illustrated in

Figure 7.

PRINTER HARDWARE

CePrint is conceived as an OEM part designed for inclusion primarily in consumer

electronics (CE) devices. Intended markets include televisions, VCRs, PhotoCD players, DVD

Cc players, Hi-fi systems, Web/Internet terminals, computer monitors, and vehicle consoles. It

features a low-profile front panel and provides user access to paper and ink via an ejecting tray.

SIt operates in a horizontal orientation under domestic environmental conditions.

Because of the simplicity of the page width Memjet printhead, CePrint contains an

ultra-compact print mechanism which yields an overall product height of 40mm for the single-

sided version and 60mm for the double-sided version.

The nature of an OEM product dictates that it should be simple in style and reflect

minimum dimensions for inclusion into host products. CePrint is styled to be accommodated

into all of the target market products and has minimum overall dimensions of 40mm high x

272mm wide x 416 mm deep. The only cosmetic part of the product is the front fascia and

front tray plastics. These can be re-styled by a manufacturer if they wish to blend CePrint with

a certain piece of equipment.

Front views of the two versions of CePrint or the printer are illustrated in Figures 1 and 2,

respectively, of the drawings and are designated generally by the reference numeral 10. It is to be

noted that, mechanically, both versions are the same, apart from the greater height of the double-

sided version to accommodate a second print engine instead of a pinch roller. This will be

described in greater detail below. Side and plan views of the single-sided version of CePrint are

illustrated in Figures 3 and 4 respectively. The side view of of the double-sided version of

CePrint is illustated in Figure

CePrint 10 is a motorized A4/Letter paper tray with a removable ink cartridge and a

Memjet printhead mechanism. It includes a front panel 12 housing a paper eject button 14, a

power LED 16, an out-of-ink LED 18 and an out-of-paper LED 20. A paper tray 22 is slidably

arranged relative to the front panel 12. When the paper tray 22 is in its "home" position, a

paper output slot 24 is defined between the front panel 12 and the paper tray 22.

The front panel 12 fronts a housing 26 containing the working parts of the printer 10. As

illustrated in 5 of the drawings, the housing 26, in the case of the double-sided version is

CEP1 3-AU

-17-

U
Sstepped, at 28, towards the front panel 12 (Figures 1 and 2) to accommodate the second print

engine. The housing 26 covers a metal chassis 30 (Figure fascias, the (molded) paper tray

22, an ink cartridge 32 (Figure 10), three motors, a flex PCB 34 (Figure 8A), a rigid PCB 36

(Figure 8) and various injection moldings and smaller parts to achieve a cost effective high

volume product.

Cc The printer 10 is simple to operate, only requiring user interaction when paper or ink

C1 need replenishing as indicated by the front-panel LEDs 20 or 18, respectively. The paper

Shandling mechanisms are similar to current printer applications and are therefore considered

N"1 reliable. In the rare event of a paperjam, the action of ejecting the paper tray allows the user to

deal with the problem. The tray 22 has a sensor which retracts the tray if the tray 22 is pushed.

If the tray 22 jams on the way in, this is also sensed and the tray 22 is re-ejected. This allows

the user to be lazy in operating the tray 22 by just pushing it to close and protects the unit from

damage should the tray 22 get knocked while in the out position. It also caters for children

sticking fingers in the tray 22 while closing. Ink is replaced by inserting a new cartridge 32 into

the paper tray 22 (Figure 8) and securing it by a cam lock lever mechanism.

5.1 Overview

The overall views of CePrint 10 are shown in Figures 8 to 10. As shown in Figure 9 the

chassis 30 includes base metalwork 38 on which front roller wheels 40 of the paper tray 22 are

slidable. A bracket 42 accommodates motors 44, 46 and 48 and gears 50 and 52 for ejecting the

paper tray 22 and driving a paper pick-up roller 54.

Attached to the bracket 42 and the base metalwork 38 are two guide rails 56 that allow

the molded paper tray 22 and its rear roller wheels 58 to slide forward. As described above, the

tray 22 also sits on front rollers 40 and this provides a strong, low friction and steady method

of ejection and retraction. The flex PCB 34 (Figure 8A) runs from the main PCB 36 via the

motors 44, 46 and 48 to a contact molding 60 and a lightpipe area 62. An optical sensor on the

flex PCB 34 allows the tray ejector motor 46 to retract the tray 22 independently of the eject

button 14 if the tray 22 is pushed when in the out position by sensing a hole in a gear wheel 64

(Figure Similarly, the tray 22 is ejected if there is any stoppage during retraction.

The contact molding 60 has a foam pad 66 that the flex PCB 34 is fixed onto and provides data

and power contacts to the printhead and bus bars during printing.

CEP1 3-AU

-18-

U
SA transfer roller 68 (Figure 11) has two end caps 69 (Figure 8A) that run in low

_friction bearing assemblies 70. One of the end caps 69 has an internal gear that acts on a small

gear 72 (Figure 14) which transfers power through a reduction gear 74 to a worm drive. This is

reduced further via another gear to a motor worm drive 76 mounted on an output shaft of a

stepper motor 124 arranged within the transfer roller 68. This solution for a motor drive

Cc assembly that is housed inside the transfer roller 68 saves space for future designs and mounts

onto a small chassis 78 (Figure 8A) that is attached to ink connector moldings 80, 82.

SAn ink connector 84 has four pins 86 with an ejector plate 88 and springs 90 that

interfaces with the ink cartridge 32 (Figure 10). The ink cartridge 32 is accessed via a cam lock

lever and spring 92 (Figure The ink is conducted through molded channels into a flexible

four-channel hose connector 94 that interfaces with a printhead cartridge end cap 96. The other

end of the printhead cartridge has a different flexible sealing connector 98 (Figure 8) on the

end cap to allow ink to be drawn through the cartridge during assembly and effectively charge

the unit and ink connector with ink in a sealed environment. The printhead and ink connector

assemblies are mounted directly into the paper tray 22.

The paper tray 22 has several standard paper handling components, namely a metal base

channel 100 (Figure 8) with low friction pads 102, sprung by two compression springs 104 and

two metal paper guides 106 with arms 108 secured by rivets. The paper is aligned to one side of

the tray 22 by a spring steel clip 110. The tray 22 is normally configured to take A4 paper, but

Letter size paper is accommodated by relocating one of the paper guide assemblies 106 and

clipping a plate into the paper tray 22 to provide a rear stop. The paper tray 22 can

accommodate up to 150 sheets.

As is standard practice for adding paper, the metal base channel 100 is pushed down

and is latched using a tray lock molding 112 and a return spring 114. When paper has been

added and the tray 22 retracted, the tray lock molding 112 is unlatched by hitting a metal return

116 in the base metalwork 38 (Figure 9).

The printer 10 is now ready to print. When activated, the paper pick-up roller 54 is

driven by a small drive gear 118 that meshes with another drive gear 50 and a normal motor

44. The roller 54 is located to the base metalwork 38 (Figure 9) by two heat staked retainer

moldings 120 (Figure A small molding on the end of the pick-up roller 54 acts with a sensor

on the flex PCB 34 to accurately position the pick-up roller 54 in a parked position so that

CEP1 3-AU

-19-

U
Spaper and tray 22 can be withdrawn without touching it when ejecting. This accurate

positioning also allows the roller 54 to feed the sheet to the transfer roller 68 (Figure 10) with a

fixed number of revolutions. As the transfer roller 68 is running at a similar speed there should

be no problem with take-up of the paper. An optical sensor 122 mounted into the housing 26

finds the start of each sheet and engages a transfer motor 124 (Figure 14), so there is no

problem if for example a sheet has moved forward of the roller during any strange operations.¢€3
C The main PCB 36 is mounted onto the base metalwork 38 via standard PCB standoffs 126 and

is fitted with a data connector 128 and a DC connector 130.

The front panel 12 is mounted onto the base metalwork 38 using snap details and a top

metal cover 132 completes the overall product with RFI/EMI integrity via four fixings 134.

5.2 Printhead Assembly and Image Transfer Mechanism

The print engine is shown in greater detail in Figure 11 and is designated generally by

the reference numeral 140. The Memjet printhead assembly is, in turn, designated by the

reference numeral 142. This represents one of the four possible ways to deploy the Memjet

printhead 143 in conjunction with the ink cartridge 32 in a product such as CePrint

permanent printhead, replaceable ink cartridge (as shown in Figure 11)

separate replaceable printhead cartridge and ink cartridge

refillable combined printhead and ink cartridge

disposable combined printhead and ink cartridge

The Memjet printhead 143 prints onto the titanium nitride (TiN) coated transfer roller

68 which rotates in an anticlockwise direction to transfer the image onto a sheet of paper 144.

The paper 144 is pressed against the transfer roller 68 by a spring-loaded rubber coated pinch

roller 145 in the case of the single-sided version. As illustrated in Figure 13, in the case of the

double-sided version, the paper 144 is pressed against one of the transfer rollers 68 under the

action of the opposite transfer roller 68. After transferring the image to the paper 144 the

transfer roller 68 continues past a cleaning sponge 146 and finally a rubber wiper 148. The

sponge 146 and the wiper 148 form a cleaning station for cleaning the surface of the transfer

roller 68.

While operational, the printhead assembly 142 is held off the transfer roller 68 by a

solenoid 150 as shown in Figure 12B. When not operational, the printhead assembly 142 is

parked against the transfer roller 68 as shown in Figure 12A. The printhead's integral

CEP13-AU

U
Selastomeric seal 152 seals the printhead assembly 142 and prevents the Memjet printhead 143

from drying out.

In the double-sided version of CePrint 10, there are dual print engines 140, each with its

associated printhead assembly 142 and transfer roller 68, mounted in opposition as illustrated

in Figure 13. The lower print engine 140 is fixed while the upper print engine 140 pivots and is

sprung to press against the paper 144. As previously described, the upper transfer roller 68

takes the place of the pinch roller 145 in the single-sided version.

SThe relationship between the ink cartridge 32, printhead assembly 142 and the transfer

roller 68 is shown in greater detail in Figures 15 and 16 of the drawings. The ink cartridge has

four reservoirs 154, 156, 158 and 160 for cyan, magenta, yellow and black ink respectively.

Each reservoir 154-160 is in flow communication with a corresponding reservoir 164-

170 in the printhead assembly 142. These reservoirs, in turn, supply ink to a Memjet printhead

chip 143 (Figure 16) via an ink filter 174. It is to be noted in Figure 16 that the elastomeric

capping seal 152 is arranged on both sides of the printhead chip 143 to assist in sealing when

the printhead assembly 142 is parked against the transfer roller 68.

Power is supplied to the solenoid via busbars 176.

6 PRINTER CONTROL PROTOCOL

This section describes the printer control protocol used between a host and CePrint

It includes control and status handling as well as the actual page description.

6.1 Control and Status

The printer control protocol defines the format and meaning of messages exchanged by

the host processor and the printer 10. The control protocol is defined independently of the

transport protocol between the host processor and the printer 10, since the transport protocol

depends on the exact nature of the connection.

Each message consists of a 16-bit message code, followed by message-specific data

which may be of fixed or variable size.

All integers contained in messages are encoded in big-endian byte order.

Table 3 defines command messages sent by the host processor to the printer

CEP1 3-AU

-21

Table 3. Printer command messages

command message

message code description

reset printer 1 Resets the printer to an idle state

ready and not printing).

get printer status 2 Gets the current printer status.

start document 3 Starts a new document.

start page 4 Starts the description of a new output page.

page band 5 Describes a band of the current output page.

end page 6 Ends the description of the current output page.

end document 7 Ends the current document.

The resetprinter command can be used to reset the printer to clear an error condition,

and to abort printing.

The start document command is used to indicate the start of a new document. This

resets the printer's page count, which is used in the double-sided version to identify odd and

even pages. The end document command is simply used to indicate the end of the document.

The description of an output page consists of a page header which describes the size

and resolution of the page, followed by one or more page bands which describe the actual page

content. The page header is transmitted to the printer in the startpage command. Each page

band is transmitted to the printer in apage band command. The last page band is followed by

an endpage command. The page description is described in detail in Table 4.2.

Table 4 defines response messages sent by the printer to the host processor.

Table 4. Printer response messages

response message message code description

printer status 8 Contains the current printer status(as

defined in Table 7).

page error 9 Contains the most recent page error

code(as defined in Table 8).

CEP13-AU

-22-

Aprinter status message is normally sent in response to a getprinter status command.

However, the nature of the connection between the host processor and the printer may allow

the printer to send unsolicited status messages to the host processor. Unsolicited status

messages allow timely reporting of printer exceptions to the host processor, and thereby to the

user, without requiring the host processor to poll the printer on a frequent basis.

A page error message is sent in response to each start page, page band and endpage

command.

Table 5 defines the format of the 16-bit printer status contained in the printer status message.

Table 5. Printer status format

field bit description

ready 0 The printer is ready to receive a page.

printing 1 The printer is printing.

error 2 The printer is in an error state.

paper tray missing 3 The paper tray is missing.

paper tray empty 4 The paper tray is empty.

ink cartridge missing 5 The ink cartridge is missing.

ink cartridge empty 6 The ink cartridge is empty.

ink cartridge error 7 The ink cartridge is in an error state.

(reserved) 8-15 Reserved for future use.

Table 6 defines page error codes which may be returned in apage error message.

Table 6. Page error codes

error code value description

no error 0 No error.

bad signature 1 The signature is not recognized.

bad version 2 The version is not supported.

bad parameter 3 A parameter is incorrect.

6.2 Page Description

CEP13-AU

-23-

U
SCePrint 10 reproduces black at full dot resolution (1600 dpi), but reproduces contone

_color at a somewhat lower resolution using halftoning. The page description is therefore

O divided into a black layer and a contone layer. The black layer is defined to composite over the

contone layer.

The black layer consists of a bitmap containing a 1-bit opacity for each pixel. This

black layer matte has a resolution which is an integer factor of the printer's dot resolution. The
(Ni
N, highest supported resolution is 1600 dpi, i.e. the printer's full dot resolution.

SThe contone layer consists of a bitmap containing a 32-bit CMYK color for each pixel.

C This contone image has a resolution which is an integer factor of the printer's dot resolution.

The highest supported resolution is 267 ppi, i.e. one-sixth the printer's dot resolution.

The contone resolution is also typically an integer factor of the black resolution, to simplify

calculations in the printer driver. This is not a requirement, however.

The black layer and the contone layer are both in compressed form for efficient

transmission over the low-speed connection to the printer.

6.2.1 Page Structure

CePrint prints with full edge bleed using an 8.5" printhead. It imposes no margins and

so has a printable page area which corresponds to the size of its paper (A4 or Letter).

The target page size is constrained by the printable page area, less the explicit (target) left and

top margins specified in the page description.

6.2.2 Page Description Format

Apart from being implicitly defined in relation to the printable page area, each page

description is complete and self-contained. There is no data transmitted to the printer

separately from the page description to which the page description refers.

The page description consists of a page header which describes the size and resolution

of the page, followed by one or more page bands which describe the actual page content.

Table 7 shows the format of the page header.

Table 7. Page header format

field format description

signature 16-bit integer Page header format signature.

version 16-bit integer Page header format version number.

CEP13-AU

-24-

structure size 16-bit integer Size of page header.

target resolution (dpi) 16-bit integer Resolution of target page. This is always 1600

for CePrint.

target page width 16-bit integer Width of target page, in dots.

target page height 16-bit integer Height of target page, in dots.

target left margin 16-bit integer Width of target left margin, in dots.

target top margin 16-bit integer Height of target top margin, in dots.

black scale factor 16-bit integer Scale factor from black resolution to target

resolution (must be 2 or greater).

black page width 16-bit integer Width of black page, in black pixels.

black page height 16-bit integer Height of black page, in black pixels.

contone scale factor 16-bit integer Scale factor from contone resolution to target

resolution (must be 6 or greater).

Contone page width 16-bit integer Width of contone page, in contone pixels.

Contone page height 16-bit integer Height of contone page, in contone pixels.

The page header contains a signature and version which allow the printer to identify the

page header format. If the signature and/or version are missing or incompatible with the

printer, then the printer can reject the page.

The page header defines the resolution and size of the target page. The black and

contone layers are clipped to the target page if necessary. This happens whenever the black or

contone scale factors are not factors of the target page width or height.

The target left and top margins define the positioning of the target page within the

printable page area.

The black layer parameters define the pixel size of the black layer, and its integer scale

factor to the target resolution.

The contone layer parameters define the pixel size of the contone layer, and its integer

scale factor to the target resolution.

Table 8 shows the format of the page band header.

CEPI13-AU

Table 8. Page band header format

field format description

signature 16-bit integer Page band header format signature.

version 16-bit integer Page band header format version number.

structure size 16-bit integer Size of page band header.

black band height 16-bit integer Height of black band, in black pixels.

black band data size 32-bit integer Size of black band data, in bytes.

contone band height 16-bit integer Height of contone band, in contone pixels.

contone band data size 32-bit integer Size of contone band data, in bytes.

The black layer parameters define the height of the black band, and the size of its

compressed band data. The variable-size black band data follows the fixed-size parts of the

page band header.

The contone layer parameters define the height of the contone band, and the size of its

compressed page data. The variable-size contone band data follows the variable-size black

band data.

Table 9 shows the format of the variable-size compressed band data which follows the

page band header.

Table 9. Page band data format

field format description

black band data EDRL bytestream Compressed bi-level black band data.

contone band data JPEG bytestream Compressed contone CMYK band data.

The variable-size black band data and the variable-size contone band data are aligned to

8-byte boundaries. The size of the required padding is included in the size of the fixed-size part

of the page band header structure and the variable-size black band data.

The entire page description has a target size of less than 3MB, and a maximum size of

6MB, in accordance with page buffer memory in the printer.

CEP13-AU

26

d The following sections describe the format of the compressed black layer and the

compressed contone layer.

6.2.3 Bi-level Black Layer Compression

6.2.3.1 Group 3 and 4 Facsimile Compression

The Group 3 Facsimile compression algorithm losslessly compresses bi-level data for

Ctransmission over slow and noisy telephone lines. The bi-level data represents scanned black

C1 text and graphics on a white background, and the algorithm is tuned for this class of images (it

0 is explicitly not tuned, for example, for halftoned bi-level images). The ID Group 3 algorithm

tC runlength-encodes each scanline and then Huffman-encodes the resulting runlengths.

Runlengths in the range 0 to 63 are coded with terminating codes. Runlengths in the range 64

to 2623 are coded with make-up codes, each representing a multiple of 64, followed by a

terminating code. Runlengths exceeding 2623 are coded with multiple make-up codes followed

by a terminating code. The Huffman tables are fixed, but are separately tuned for black and

white runs (except for make-up codes above 1728, which are common). When possible, the 2D

Group 3 algorithm encodes a scanline as a set of short edge deltas with

reference to the previous scanline. The delta symbols are entropy-encoded (so that the zero

delta symbol is only one bit long etc.) Edges within a 2D-encoded line which can't be delta-

encoded are runlength-encoded, and are identified by a prefix. lD- and 2D-encoded lines are

marked differently. 1D-encoded lines are generated at regular intervals, whether actually

required or not, to ensure that the decoder can recover from line noise with minimal image

degradation. 2D Group 3 achieves compression ratios of up to 6:1.

The Group 4 Facsimile algorithm losslessly compresses bi-level data for transmission

over error-free communications lines the lines are truly error-free, or error-correction is

done at a lower protocol level). The Group 4 algorithm is based on the 2D Group 3 algorithm,

with the essential modification that since transmission is assumed to be error-free, 1D-encoded

lines are no longer generated at regular intervals as an aid to error-recovery. Group 4 achieves

compression ratios ranging from 20:1 to 60:1 for the CCITT set of test images.

The design goals and performance of the Group 4 compression algorithm qualify it as a

compression algorithm for the bi-level black layer. However, its Huffman tables are tuned to a

lower scanning resolution (100-400 dpi), and it encodes runlengths exceeding 2623

awkwardly. At 800 dpi, our maximum runlength is currently 6400. Although a Group 4

CEP13-AU

-27-

U
Sdecoder core might be available for use in the printer controller chip (Section it might not

_handle runlengths exceeding those normally encountered in 400 dpi facsimile applications, and

so would require modification.

Since most of the benefit of Group 4 comes from the delta-encoding, a simpler

algorithm based on delta-encoding alone is likely to meet our requirements. This approach is

Cc described in detail below.

C 6.2.3.2 Bi-Level Edge Delta and Runlength (EDRL) Compression Format

SThe edge delta and runlength (EDRL) compression format is based loosely on the

N, Group 4 compression format and its precursors.

EDRL uses three kinds of symbols, appropriately entropy-coded. These are create

edge, kill edge, and edge delta. Each line is coded with reference to its predecessor. The

predecessor of the first line is defined to a line of white. Each line is defined to start off white.

If a line actually starts of black (the less likely situation), then it must define a black edge at

offset zero. Each line must define an edge at its left-hand end, i.e. at offset page width.

An edge can be coded with reference to an edge in the previous line if there is an edge within

the maximum delta range with the same sense (white-to-black or black-to-white). This uses

one of the edge delta codes. The shorter and likelier deltas have the shorter codes. The

maximum delta range is chosen to match the distribution of deltas for typical glyph edges.

This distribution is mostly independent of point size. A typical example is given in Table

Table 10. Edge delta distribution for 10 point Times at 800 dpi

Idelta probability

0

1 23%

2 7%

3

An edge can also be coded using the length of the run from the previous edge in the

same line. This uses one of the create edge codes for short (7-bit) and long (13-bit) runlengths.

For simplicity, and unlike Group 4, runlengths are not entropy-coded. In order to keep edge

CEP 3-AU

-28-

d deltas implicitly synchronized with edges in the previous line, each unused edge in the

previous line is 'killed' when passed in the current line. This uses the kill edge code. The end-

of-page code signals the end of the page to the decoder.

Note that 7-bit and 13-bit runlengths are specifically chosen to support 800 dpi

SA4/Letter pages. Longer runlengths could be supported without significant impact on

Cc compression performance. For example, if supporting 1600 dpi compression, the runlengths

"1 should be at least 8-bit and 14-bit respectively. A general-purpose choice might be 8-bit and

S16-bit, thus supporting up to 40" wide 1600 dpi pages.

"1 The full set of codes is defined in Table 11. Note that there is no end-of-line code. The

decoder uses the page width to detect the end of the line. The lengths of the codes are ordered

by the relative probabilities of the codes' occurrence.

Table 11. EDRL codewords

code encoding suffix description

AO 1 don't move corresponding edge

A+1 010 move corresponding edge +1

A-1 011 move corresponding edge -1

A+2 00010 move corresponding edge +2

A-2 00011 move corresponding edge -2

kill edge 0010 kill corresponding edge

create near edge 0011 7-bit RL create edge from short runlength (RL)

create far edge 00001 13-bit RL create edge from long runlength (RL)

end-of-page (EOP) 000001 -end-of-page marker

Figure 17 shows a simple encoding example. Note that the common situation of an all-

white line following another all-white line is encoded using a single bit and an all-black

line following another all-black line is encoded using two bits (AO, AO).

Note that the foregoing describes the compressionformat, not the compression

algorithm per se. A variety of equivalent encodings can be produced for the same image, some

more compact than others. For example, a pure runlength encoding conforms to the

CEP13-AU

-29-

Scompression format. The goal of the compression algorithm is to discover a good, if not the

best, encoding for a given image.

The following is a simple algorithm for producing the EDRL encoding of a line with

reference to its predecessor.

#define SHORT RUN PRECISION 7 precision of short run

m #define LONG RUN PRECISION13 precision of long run

CI EDRL_CompressLine

O(

C1 Byte prevLine[], previous (reference)

bi-level line

Byte currLine[], current (coding) bi-level line

int lineLen, //line length

BITSTREAM s output (compressed) bitstream

int prevEdge 0 current edge offset in

previous line

int currEdge 0 current edge offset in

current line

int codedEdge currEdge most recent coded (output) edge

int prevColor 0 current color in prev line

(0 white)

int currColor =0 current color in current line

int prevRun current run in previous line

int currRun current run in current line

bool bUpdatePrevEdge true// force first edge update

bool bUpdateCurrEdge true// force first edge update

while (codedEdge lineLen)

possibly update current edge in previous line

if (bUpdatePrevEdge)

CEP13-AU

30

if (prevEdge lineLen)

prevRun GetRun(prevLine,

prevEdge, lineLen, prevColor)

else

prevRun 0

prevEdge prevRun

C1 prevColor !prevColor

bUpdatePrevEdge false

Ipossibly update current edge in current line

if (bUpdateCurrEdge)

if (currEdge lineLen)

currRun GetRun(currLine,

currEdge, lineLen, currColor)

else

currRun 0

currEdge currRun

currColor !currColor

bUpdateCurrEdge false

/output delta whenever possible, i.e. when

Iedge senses match, and delta is small enough

if (prevColor currColor)

delta currEdge prevEdge

if (abs(delta) MAkX_-DELTA)

PutCode(s, EDGEDELTAO delta)

codedEdge currEdge

bUpdatePrevEdge true

bUpdateCurrEdge true

continue

CEP1 3-AU

-31-

kill unmatched edge in previous line

_if (prevEdge currEdge)

PutCode(s, KILL_EDGE)

bUpdatePrevEdge true

SI// create unmatched edge in current line

C if (currEdge prevEdge)

SPutCode(s, CREATEEDGE)

C if (currRun 128)

PutCode(s, CREATE_NEAR_EDGE)

PutBits(currRun, SHORT_RUNPRECISION)

else

PutCode(s, CREATE_FAR_EDGE)

PutBits(currRun, LONG_RUN_PRECISION)

codedEdge currEdge

bUpdateCurrEdge true

Note that the algorithm is blind to actual edge continuity between lines, and may in fact

match the "wrong" edges between two lines. Happily the compression format has nothing to

say about this, since it decodes correctly, and it is difficult for a "wrong" match to have a

detrimental effect on the compression ratio.

For completeness the corresponding decompression algorithm is given below. It forms

the core of the EDRL Expander unit in the printer controller chip (Section 7).

EDRLDecompressLine

BITSTREAM s, input (compressed) bitstream

Byte prevLine[], previous (reference) bi-level line

Byte currLine[], current (coding) bi-level line

int lineLen line length

CEP13-AU

32

int prevEdge =0 IIcurrent edge offset in

I/previous line

int currEdge =0 IIcurrent edge offset in current line

int prevColor =0 HI current color in previous line

H (0 white)

int currColor =0 HI current color in current line

while (currEdge lineLen)

code GetCode(s)

switch (code)

case EDGEDELTAMINUS2:

case EDGEDELTAMINUS 1:

case EDGEDELTA_0:

case EDGEDELTAPLUS 1:

case EDGEDELTAPLUS2:

HI create edge from delta

mnt delta code EDGEDELTA_0

mnt run prevEdge delta currEdge

FillBitRun(currLine, currEdge, currColor, run)

currEdge run

currColor !currColor

prevEdge GetRun(prevLine,

prevEdge, lineLen, prevColor)

prevColor !prevColor

case KILLEDGE:

HI discard unused reference edge

prevEdge GetRun(prevLine,

prevEdge, lineLen, prevColor)

prevColor !prevColor

CEP1 3-AU

-33-

Scase CREATENEAREDGE:

case CREATE FAR EDGE:

create edge explicitly

Sint run

e if (code CREATE_NEAR_EDGE)

Srun GetBits(s, SHORTRUNPRECISION)

else

run GetBits(s, LONG_RUNPRECISION)

FillBitRun(currLine, currEdge, currColor, run)

currColor !currColor

currEdge run

6.2.3.3 EDRL Compression Performance

Table 12 shows the compression performance of Group 4 and EDRL on the CCITT test

documents used to select the Group 4 algorithm. Each document represents a single page

scanned at 400 dpi. Group 4's superior performance is due to its entropy-coded runlengths,

tuned to 400 dpi features.

Table 12. Group 4 and EDRL compression performance on standard CCITTT documents

at 400 dpi

CCITT document number Group 4 compression ratio EDRL compression ratio

1 29.1 21.6

2 49.9 41.3

3 17.9 14.1

4 7.3

15.8 12.4

6 31.0 25.5

7 7.4 5.3

8 26.7 23.4

CEP13-AU

-34-

Magazine text is typically typeset in a typeface with serifs (such as Times) at a point

size of 10. At this size an A4/Letter page holds up to 14,000 characters, though a typical

magazine page holds only about 7,000 characters. Text is seldom typeset at a point size smaller

than 5. At 800 dpi, text cannot be meaningfully rendered at a point size lower than 2 using a

standard typeface. Table 13 illustrates the legibility of various point sizes.

Table 13. Text at different point sizes

point size sample text (in Times)

2 The quick brown fox jumps over the lazy dog.

3 The quick brown fox jumps over the lazy dog.

4 The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

6 The quick brown fox jumps over the lazy dog.

7 The quick brown fox jumps over the lazy dog

8 The quick brown fox jumps over the lazy dog.

9 The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

Table 14 shows Group 4 and EDRL compression performance on pages of text of

varying point sizes, rendered at 800 dpi. Note that EDRL achieves the required compression

ratio of 2.5 for an entirepage of text typeset at a point size of 3. The distribution of characters

on the test pages is based on English-language statistics.

Table 14. Group 4 and EDRL compression performance on text at 800 dpi

characters/ A4 page Group 4 EDRL compression

point size compression ratio ratio

2 340,000 2.3 1.7

3 170,000 3.2

4 86,000 4.7 3.8

CEP13-AU

59,000 5.5 4.9

6 41,000 6.5 6.1

7 28,000 7.7 7.4

8 21,000 9.1

9 17,000 10.2 10.4

14,000 10.9 11.3

11 12,000 11.5 12.4

12 8,900 13.5 14.8

13 8,200 13.5 15.0

14 7,000 14.6 16.6

5,800 16.1 18.5

3,400 19.8 23.9

For a point size of 9 or greater, EDRL slightly outperforms Group 4, simply because

Group 4's runlength codes are tuned to 400 dpi.

These compression results bear out the observation that entropy-encoded runlengths

contribute much less to compression than 2D encoding, unless the data is poorly correlated

vertically, such as in the case of very small characters.

6.2.4 Contone Layer Compression

6.2.4.1 JPEG Compression

The JPEG compression algorithm lossily compresses a contone image at a specified

quality level. It introduces imperceptible image degradation at compression ratios below 5:1,

and negligible image degradation at compression ratios below 10:1.

JPEG typically first transforms the image into a color space which separates luminance

and chrominance into separate color channels. This allows the chrominance channels to be

subsampled without appreciable loss because of the human visual system's relatively greater

sensitivity to luminance than chrominance. After this first step, each color channel is

compressed separately.

The image is divided into 8x8 pixel blocks. Each block is then transformed into the

frequency domain via a discrete cosine transform (DCT). This transformation has the effect of

CEP13-AU

-36-

Sconcentrating image energy in relatively lower-frequency coefficients, which allows higher-

frequency coefficients to be more crudely quantized. This quantization is the principal source

of compression in JPEG. Further compression is achieved by ordering coefficients by

frequency to maximize the likelihood of adjacent zero coefficients, and then runlength-

encoding runs of zeroes. Finally, the runlengths and non-zero frequency coefficients are

C entropy coded. Decompression is the inverse process of compression.

C 6.2.4.2 CMYK Contone JPEG Compression Format

SThe CMYK contone layer is compressed to an interleaved color JPEG bytestream. The
C interleaving is required for space-efficient decompression in the printer, but may restrict the

decoder to two sets of Huffman tables rather than four one per color channel). If

luminance and chrominance are separated, then the luminance channels can share one set of

tables, and the chrominance channels the other set.

If luminance/chrominance separation is deemed necessary, either for the purposes of

table sharing or for chrominance subsampling, then CMY is converted to YCrCb and Cr and

Cb are duly subsampled. K is treated as a luminance channel and is not subsampled.

The JPEG bytestream is complete and self-contained. It contains all data required for

decompression, including quantization and Huffman tables.

7 PRINTER CONTROLLER

7.1 Printer Controller Architecture

A printer controller 178 (Figure 18) consists of the CePrint central processor (CCP)

chip 180, a 64MBit RDRAM 182, and a master QA chip 184.

The CCP 180 contains a general-purpose processor 181 and a set of purpose-specific

functional units controlled by the processor via a processor bus 186. Only three functional units

are non-standard an EDRL expander 188, a halftoner/compositor 190, and a printhead

interface 192 which controls the Memjet printhead 143.

Software running on the processor 181 coordinates the various functional units to

receive, expand and print pages. This is described in the next section.

The various functional units of the CCP 180 are described in subsequent sections.

7.2 Page Expansion and Printing

Page expansion and printing proceeds as follows. A page description is received from

the host via a host interface 194 and is stored in main memory 182. 6MB of main memory 182

CEP13-AU

-37-

Sis dedicated to page storage. This can hold two pages each not exceeding 3MB, or one page up

_to 6MB. If the host generates pages not exceeding 3MB, then the printer operates in streaming

mode i.e. it prints one page while receiving the next. If the host generates pages exceeding

3MB, then the printer operates in single-page mode i.e. it receives each page and prints it

before receiving the next. If the host generates pages exceeding 6MB then they are rejected by

Cc the printer. In practice the printer driver prevents this from happening.
C A page consists of two parts the bi-level black layer, and the contone layer. These are

0 compressed in distinct formats the bi-level black layer in EDRL format, the contone layer in
C JPEG format. The first stage of page expansion consists of decompressing the two layers in

parallel. The bi-level layer is decompressed by the EDRL expander unit 188, the contone layer

by a JPEG decoder 196.

The second stage of page expansion consists of halftoning the contone CMYK data to

bi-level CMYK, and then compositing the bi-level black layer over the bi-level CMYK layer.

The halftoning and compositing is carried out by the halftoner/compositor unit 190.

Finally, the composited bi-level CMYK image is printed via the printhead interface unit 192,

which controls the Memjet printhead 143.

Because the Memjet printhead 143 prints at high speed, the paper 144 must move past

the printhead 143 at a constant velocity. If the paper 144 is stopped because data cannot be fed

to the printhead 143 fast enough, then visible printing irregularities will occur. It is therefore

important to transfer bi-level CMYK data to the printhead interface 192 at the required rate.

A fully-expanded 1600 dpi bi-level CMYK page has an image size of 119MB. Because it is

impractical to store an expanded page in printer memory, each page is expanded in real time

during printing. Thus the various stages of page expansion and printing are pipelined. The page

expansion and printing data flow is described in Table 15. The aggregate traffic to/from main

memory via an interface 198 of 182MB/s is well within the capabilities of current technologies

such as Rambus.

Table 15. Page expansion and printing data flow

input output input output rate

process input window output window rate

CEP13-AU

1

38-

Receive JPEG 1 1.5 MB/s

contone stream 3.5 Mp/s

receive EDRL 1 1.5 MB/s

bi-level stream 31 Mp/s

decompress JPEG 32-bit 8 1.5 MB/s 13 MB/s

contone stream CMYK 3.5 Mp/s 3.5 Mp/s

decompress EDRL 1-bit K 1 1.5 MB/s 15 MB/s

bi-level stream 31 Mp/s a 124 Mp/s

halftone 32-bit 1 13 MB/s

CMYK 3.5 Mp/sc

composite 1-bit 1 4-bit 1 15 MB/s 60 MB/s

K CMYK 124 Mp/s 124 Mp/s

print 4-bit 24,1 60 MB/s

CMYK 124 Mp/s

91 MB/s 91 MB/S

182 MB/S
a. 800 dpi 1600 dpi (2 x 2 expansion)

b halftone combines with composite, so there is no external data flow between them
c 267 dpi 1600 dpi (6 x 6 expansion)

d Needs a window of 24 lines, but only advances 1 line.

Each stage communicates with the next via a shared FIFO in main memory 182. Each

FIFO is organized into lines, and the minimum size (in lines) of each FIFO is designed to

accommodate the output window (in lines) of the producer and the input window (in lines) of

the consumer. Inter-stage main memory buffers are described in Table 16. The aggregate

buffer space usage of 6.3MB leaves 1.7MB free for program code and scratch memory (out of

the 8MB available).

Table 16. Page expansion and printing main memory buffers

organization number buffer

buffer and line size of lines size

CEP13-AU

-39-

compressed page buffer byte stream 6MB

(one or two pages)

contone CMYK buffer 32-bit interleaved CMYK 8 x 2 16 142KB

(267 ppi x 8.5" x 32 8.9KB)

bi-level K buffer 1-bit K 1 x 2 =2 3KB

(1600 dpi x 8.5" x 1 1.7B)

bi-level CMYK buffer 4-bit planar odd/even CMYK 24 1 =25 166KB

(1600 dpi x 8.5" x 4 6.6KB)

6.3MB

The overall data flow, including FIFOs, is illustrated in Figure 19.

Contone page decompression is carried out by the JPEG decoder 196. Bi-level page

decompression is carried out by the EDRL expander 188. Halftoning and compositing is

carried out by the halftoner/compositor unit 190. These functional units are described in the

following sections.

7.2.1 DMA Approach

Each functional unit contains one or more on-chip input and/or output FIFOs. Each

FIFO is allocated a separate channel in a multi-channel DMA controller 200. The DMA

controller 200 handles single-address rather than double-address transfers, and so provides a

separate request/acknowledge interface for each channel.

Each functional unit stalls gracefully whenever an input FIFO is exhausted or an output

FIFO is filled.

The processor 181 programs each DMA transfer. The DMA controller 200 generates

the address for each word of the transfer on request from the functional unit connected to the

channel. The functional unit latches the word onto or off the data bus 186 when its request is

acknowledged by the DMA controller 200. The DMA controller 200 interrupts the processor

181 when the transfer is complete, thus allowing the processor 181 to program another transfer

on the same channel in a timely fashion.

CEP13-AU

d In general the processor 181 will program another transfer on a channel as soon as the

corresponding main memory FIFO is available non-empty for a read, non-full for a write).

The granularity of channel servicing implemented in the DMA controller 200 depends

somewhat on the latency of main memory 182.

7.2.2 EDRL Expander

c The EDRL expander unit (EEU) 188 is shown in greater detail in Figure 20. The unit

N 188 decompresses an EDRL-compressed bi-level image.

SThe input to the EEU 188 is an EDRL bitstream. The output from the EEU is a set of

1 bi-level image lines, scaled horizontally from the resolution of the expanded bi-level image by

an integer scale factor to 1600 dpi.

Once started, the EEU 188 proceeds until it detects an end-of-page code in the EDRL

bitstream, or until it is explicitly stopped via its control register.

The EEU 188 relies on an explicit page width to decode the bitstream. This must be

written to apage width register 202 prior to starting the EEU 188.

The scaling of the expanded bi-level image relies on an explicit scale factor. This must

be written to a scale factor register 204 prior to starting the EEU 188.

Table 17. EDRL expander control and configuration registers

register width description

start 1 Start the EEU.

stop 1 Stop the EEU.

page width 13 Page width used during decoding to detect end-of-line.

scale factor 4 Scale factor used during scaling of expanded image.

The EDRL compression format is described in Section 6.2.3.2. It represents a bi-level

image in terms of its edges. Each edge in each line is coded relative to an edge in the previous

line, or relative to the previous edge in the same line. No matter how it is coded, each edge is

ultimately decoded to its distance from the previous edge in the same line. This distance, or

runlength, is then decoded to the string of one bits or zero bits which represent the

corresponding part of the image. The decompression algorithm is defined in Section 6.2.3.2.

CEP13-AU

-41-

O The EEU 188 consists of a bitstream decoder 206, a state machine 208, edge

_calculation logic 210, two runlength decoders 212, and a runlength (re)encoder 214.

The bitstream decoder 206 decodes an entropy-coded codeword from the bitstream and

passes it to the state machine 208. The state machine 208 returns the size of the codeword to

the bitstream decoder 206, which allows the decoder 206 to advance to the next codeword. In

c the case of a create edge code, the state machine 208 uses the bitstream decoder 206 to extract

Sthe corresponding runlength from the bitstream. The state machine 208 controls the edge

Scalculation logic 210 and runlength decoding/encoding as defined in Table 19.
c1 The edge calculation logic 210 is quite simple. The current edge offset in the previous

(reference) and current (coding) lines are maintained in a reference edge register 216 and edge

register 218 respectively. The runlength associated with a create edge code is output directly to

the runlength decoder 212.1, and is added to the current edge. A delta code is translated into a

runlength by adding the associated delta to the reference edge and subtracting the current edge.

The generated runlength is output to the runlength decoder 212.1, and is added to the current

edge. The next runlength is extracted from the runlength encoder 214 and added to the

reference edge. A kill edge code simply causes the current reference edge to be skipped. Again

the next runlength is extracted from the runlength encoder 214 and added to the reference edge.

Each time the edge calculation logic 210 generates a runlength representing an edge, it

is passed to the runlength decoder 212.1. While the runlength decoder 212.1 decodes the run it

generates a stall signal to the state machine 208. Since the runlength decoder 212 is slower than

the edge calculation logic 210, there is not much point in decoupling it. The expanded line

accumulates in a line buffer 220 large enough to hold an 8.5" 800 dpi line (850 bytes).

The previously expanded line is also buffered in a buffer 222. It acts as a reference for the

decoding of the current line. The previous line is re-encoded as runlengths on demand. This is

less expensive than buffering the decoded runlengths of the previous line, since the worst case is

one 13-bit runlength for each pixel (20KB at 1600 dpi). While the runlength encoder 214

encodes the run it generates a stall signal to the state machine 208. The runlength encoder 214

uses the page width to detect end-of-line. The (current) line buffer 220 and the previous line

buffer 222 are concatenated and managed as a single FIFO to simplify the runlength encoder

214.

CEP13-AU

1

-42-

d The second runlength decoder 212.2 decodes the output runlength to a line buffer 224

large enough to hold an 8.5" 1600 dpi line (1700 bytes). The runlength passed to this output

O runlength decoder 212.2 is multiplied by the scale factor from the register 204, so this decoder

212.2 produces 1600 dpi lines. The line is output scale factor times through the output pixel

FIFO. This achieves the required vertical scaling by simple line replication. The EEU 188

could be designed with edge smoothing integrated into its image scaling. A simple smoothing

C scheme based on template-matching can be very effective. This would require a multi-line

Sbuffer between the low-resolution runlength decoder and the smooth scaling unit, but would

C eliminate the high-resolution runlength decoder.

7.2.2.1 EDRL Stream Decoder

The EDRL stream decoder 206 (Figure 21) decodes entropy-coded EDRL codewords in

the input bitstream. It uses a two-byte input buffer 226 viewed through a 16-bit barrel shifter

228 whose left (most significant) edge is always aligned to a codeword boundary in the

bitstream. A decoder 230 connected to the barrel shifter 228 decodes a codeword according to

Table 18, and supplies the state machine 208 with the corresponding code.

Table 18. EDRL stream codeword decoding table

input codeword bit output code

patterna output code bit pattern

Ixxx xxxx AO 10000 0000

010x xxxx A+1 0 1000 0000

01lx xxxx A-1 0 0100 0000

0010 xxxx kill edge 0 0010 0000

0011 xxxx create near edge 0 0001 0000

0001 Oxxx A+2 0 0000 1000

0001 lxxx A-2 000000100

0000 lxxx create far edge 0 0000 0010

0000 Olxx end-of-page (EOP) 0 0000 0001

a x don't care

CEP13-AU

I

-43-

The state machine 208 in turn outputs the length of the code. This is added, modulo-8,

by an accumulator 232 to the current codeword bit offset to yield the next codeword bit offset.

The bit offset in turn controls the barrel shifter 228. If the codeword bit offset wraps, then the

carry bit controls the latching of the next byte from the input FIFO. At this time byte 2 is

latched to byte 1, and the FIFO output is latched to byte 2. It takes two cycles of length 8 to fill

the input buffer. This is handled by starting states in the state machine 208.

7.2.2.2 EDRL Expander State Machine

The EDRL expander state machine 208 controls the edge calculation and runlength

expansion logic in response to codes supplied by the EDRL stream decoder 206. It supplies the

EDRL stream decoder 206 with the length of the current codeword and supplies the edge

calculation logic 210 with the delta value associated with the current delta code. The state

machine 206 also responds to start and stop control signals from a control register 234 (Figure

and the end-of-line (EOL) signal from the edge calculation logic 210.

The state machine 208 also controls the multi-cycle fetch of the runlength associated

with a create edge code.

Table 19. EDRL expander state machine

input input current next state code delta actions

signal code state len

start stopped starting 8

-starting idle 8

stop stopped 0 reset RL decoders

and FIFOs

EOL EOL 1 0 reset RL encoder;

reset RL decoders;

reset ref. edge

and edge

EOL 1 idle RL encoder

ref. RL;

ref. edge ref. RL

ref. edge

CEP13-AU

-44-

Aon Iidle Iidle l0o I edge ref. edge

delta RL;

edge RL edge;

RL RL decoder;

RL encoder

ref. RL;

ref. edge ref. RL

ref. edge

A+1 idle idle 2 +1

A-1 idle idle 3 -1

SA+2 idle idle 4 +2

SA-2 idle idle 5 -2

kill idle idle 6 RL encoder

edge ref. RL;

ref. edge ref. RL

ref. edge

create idle create RL lo 7 reset create RL

near 7

edge

create idle create RL hi 8

far 6

edge

-EOP idle stopped 8

-create RL create RL lo 6 latch

hi 6 7 create RL hi 6

-create RL create edge 7 latch

lo 7 create RL lo 7

CEP13-AU

create idle 0 create RL RL;

edge edge RL edge;

RL RL encoder

7.2.2.3 Runlength Decoder

The runlength decoder 212 expands a runlength into a sequence of zero bits or one bits

of the corresponding length in the output stream. The first run in a line is assumed to be white

(color Each run is assumed to be of the opposite color to its predecessor. If the first run is

actually black (color then it must be preceded by a zero-length white run. The runlength

decoder 212 keeps track of the current color internally.

The runlength decoder 212 appends a maximum of 8 bits to the output stream every

clock. Runlengths are typically not an integer multiple of 8, and so runs other than the first in

an image are typically not byte-aligned. The runlength decoder 212 maintains, in a byte space

register 236 (Figure 22), the number of bits available in the byte currently being built. This is

initialized to 8 at the beginning of decoding, and on the output of every byte.

The decoder 212 starts outputting a run of bits as soon as the next run line 248 latches a

non-zero value into a runlength register 238. The decoder 212 effectively stalls when the

runlength register 238 goes to zero.

A number of bits of the current color are shifted into an output byte register 240 each

clock. The current color is maintained in a 1-bit color register 242. The number of bits actually

output is limited by the number of bits left in the runlength, and by the number of spare bits left

in the output byte. The number of bits output is subtracted from the runlength and the byte

space. When the runlength goes to zero it has been completely decoded, although the trailing

bits of the run may still be in the output byte register 240, pending output. When the byte space

goes to zero the output byte is full and is appended to the output stream.

A 16-bit barrel shifter 244, the output byte register 240 and the color register 242

together implement an 8-bit shift register which can be shifted multiple bit positions every

clock, with the color as the serial input.

An external reset line 246 is used to reset the runlength decoder 212 at the start of a

line. An external next run line 248 is used to request the decoding of a new runlength. It is

CEP13-AU

-46-

O
Saccompanied by a runlength on an external runlength line 250. The next run line 248 should

not be set on the same clock as the reset line 246. Because next run inverts the current color,

the reset of the color sets it to one, not zero. An externalflush line 252 is used to flush the last

byte of the run, if incomplete. It can be used on a line-by-line basis to yield byte-aligned lines,

or on an image basis to yield a byte-aligned image.

c An external ready line 254 indicates whether the runlength decoder 212 is ready to

C decode a runlength. It can be used to stall the external logic.

S7.2.2.4 Runlength Encoder
c1 The runlength encoder 214 detects a run of zero or one bits in the input stream. The

first run in a line is assumed to be white (color Each run is assumed to be of the opposite

color to its predecessor. If the first run is actually black (color then the runlength encoder

214 generates a zero-length white run at the start of the line. The runlength decoder keeps track

of the current color internally.

The runlength encoder 214 reads a maximum of 8 bits from the input stream every

clock. It uses a two-byte input buffer 256 (Figure 23) viewed through a 16-bit barrel shifter 258

whose left (most significant) edge is always aligned to the current position in the bitstream. An

encoder 260 connected to the barrel shifter 258 encodes an 8-bit (partial) runlength according

to Table 20. The 8-bit runlength encoder 260 uses the current color to recognize runs of the

appropriate color.

The 8-bit runlength generated by the 8-bit runlength encoder 260 is added to the value

in a runlength register 262. When the 8-bit runlength encoder 260 recognizes the end of the

current run it generates an end-of-run signal which is latched by a ready register 264. The

output of the ready register 264 indicates that the encoder 214 has completed encoding the

current runlength, accumulated in the runlength register 262. The output of the ready register

264 is also used to stall the 8-bit runlength encoder 260. When stalled the 8-bit runlength

encoder 260 outputs a zero-length run and a zero end-of-run signal, effectively stalling the

entire runlength encoder 214.

CEP13-AU

-47-

0 0000 0000 8 0

0 0000 0001 7 1

0 0000 001x 6 1

0 0000 01 xx 5 1

0 0000 1xxx 4 1

0 0001 xxxx 3 1

0 001x xxxx 2 1

0 Olxxxxxx 1 1

0 lxxx xxxx 0 1

1 1111 1111 8 0

1 1111 1110 7 1

1 1111 llOx 6 1

1 1111 lOxx 5 1

1 1111 Oxxx 4 1

1 1110 xxxx 3 1

1 110x xxxx 2 1

1 10xx xxxx 1 1

1 Oxxx xxxx 0 1

The output of the 8-bit runlength encoder 260 is limited by the remaining page width.

The actual 8-bit runlength is subtracted from the remaining page width, and is added to a

modulo-8 bit position accumulator 266 used to control the barrel shifter 258 and clock the byte

stream input.

An external reset line 268 is used to reset the runlength encoder 214 at the start of a line.

It resets the current color and latches apage width signal on line 270 into a page width register

272. An external next run line 274 is used to request another runlength from the runlength

encoder 214. It inverts the current color, and resets the runlength register 262 and ready register

264. An externalflush line 276 is used to flush the last byte of the run, if incomplete. It can be

used on a line-by-line basis to process byte-aligned lines, or on an image basis to process a

byte-aligned image.

CEP13-AU

-48-

SAn external ready line 278 indicates that the runlength encoder 214 is ready to encode a

runlength, and that the current runlength is available on a runlength line 280. It can be used to

stall the external logic.

7.2.2.5 Timing

The EEU 188 has an output rate of 124M 1-bit black pixels/s. The core logic generates

Cc one runlength every clock. The runlength decoders 212 and the runlength encoder 214

C generate/consume up to 8 pixels (bits) per clock. One runlength decoder 212.1 and the

Srunlength encoder 214 operate at quarter resolution (800 dpi). The other runlength decoder

c 212.2 operates at full resolution (1600 dpi).

A worst-case bi-level image consisting of a full page of 3 point text converts to

approximately 6M runlengths at 800 dpi (the rendering resolution). At 1600 dpi (the horizontal

output resolution) this gives an average runlength of about 20. Consequently about 40% of 8-

pixel output bytes span two runs and so require two clocks instead of one. Output lines are

replicated vertically to achieve a vertical resolution of 1600 dpi. When a line is being

replicated rather than generated it has a perfect efficiency of 8 pixels per clock, thus the

overhead is halved to

The full-resolution runlength decoder in the output stage of the EEU 188 is the slowest

component in the EEU 188. The minimum clock speed of the EEU 188 is therefore dictated by

the output pixel rate of the EEU (124Mpixels/s), divided by the width of the runlength decoder

adjusted for its worst-case overhead This gives a minimum speed of about 22MHz.

7.2.3 JPEG Decoder

The JPEG decoder 196 (Figure 24) decompresses a JPEG-compressed CMYK contone

image.

The input to the JPEG decoder 196 is a JPEG bitstream. The output from the JPEG

decoder 196 is a set of contone CMYK image lines.

When decompressing, the JPEG decoder 196 writes its output in the form of 8x8 pixel

blocks. These are sometimes converted to full-width lines via an page width x 8 strip buffer

closely coupled with the codec. This would require a 67KB buffer. We instead use 8 parallel

pixel FIFOs 282 with shared bus access and 8 corresponding DMA channels, as shown in

Figure 24.

7.2.3.1 Timing

CEP13-AU

-49-

SThe JPEG decoder 196 has an output rate of 3.5M 32-bit CMYK pixels/s. The required

_clock speed of the decoder depends on the design of the decoder.

7.2.4 Halftoner/Compositor

The halftoner/compositor unit (HCU) 190 (Figure 25) combines the functions of

halftoning the contone CMYK layer to bi-level CMYK, and compositing the black layer over

c the halftoned contone layer.

C The input to the HCU 190 is an expanded 267 ppi CMYK contone layer, and an

Sexpanded 1600 dpi black layer. The output from the HCU 190 is a set of 1600 dpi bi-level

c 1 CMYK image lines.

Once started, the HCU 190 proceeds until it detects an end-of-page condition, or until it

is explicitly stopped via its control register 284.

The HCU 190 generates a page of dots of a specified width and length. The width and

length must be written to page width and page length registers of the control registers 284 prior

to starting the HCU 190. The page width corresponds to the width of the printhead. The page

length corresponds to the length of the target page.

The HCU 190 generates target page data between specified left and right margins

relative to the page width. The positions of the left and right margins must be written to left

margin and right margin registers of the control registers 284 prior to starting the HCU 190.

The distance from the left margin to the right margin corresponds to the target page width.

The HCU 190 consumes black and contone data according to specified black and

contone page widths. These page widths must be written to blackpage width and contone page

width registers of the control registers 284 prior to starting the HCU190 The HCU 190 clips

black and contone data to the target page width. This allows the black and contone page widths

to exceed the target page width without requiring any special end-of-line logic at the input

FIFO level.

The relationships between the page width, the black and contone page widths, and the

margins are illustrated in Figure 26.

The HCU 190 scales contone data to printer resolution both horizontally and vertically

based on a specified scale factor. This scale factor must be written to a contone scale factor

register of the control registers 284 prior to starting the HCU 190.

CEP13-AU

Table 21. Halftoner/compositor control and configuration registers

register width description

start 1 Start the HCU.

stop 1 Stop the HCU.

page width 14 Page width of printed page, in dots. This is the number of

dots which have to be generated for each line.

left margin 14 Position of left margin, in dots.

right margin 14 Position of right margin, in dots.

page length 15 Page length of printed page, in dots. This is the number of

lines which have to be generated for each page.

black page width 14 Page width of black layer, in dots. Used to detect the end of

a black line.

contone page 14 Page width of contone layer, in dots. Used to detect the end

width of a contone line.

contone 4 Scale factor used to scale contone data to bi-level

scale factor resolution.

The consumer of the data produced by the HCU 190 is the printhead interface 192. The

printhead interface 192 requires bi-level CMYK image data in planar format, i.e. with the

color planes separated. Further, it also requires that even and odd pixels are separated. The

output stage of the HCU 190 therefore uses 8 parallel pixel FIFOs 286, one each for even cyan,

odd cyan, even magenta, odd magenta, even yellow, odd yellow, even black, and odd black.

An input contone CMYK FIFO 288 is a full 9KB line buffer. The line is used contone scale

factor times to effect vertical up-scaling via line replication. FIFO write address wrapping is

disabled until the start of the last use of the line. An alternative is to read the line from main

memory contone scale factor times, increasing memory traffic by 44MB/s, but avoiding the

need for the on-chip 9KB line buffer.

7.2.4.1 Multi-Threshold Dither

A multi-threshold dither unit 290 is shown in Figure 27 of the drawings. A general 256-

layer dither volume provides great flexibility in dither cell design, by decoupling different

CEP13-AU

-51-

U
Sintensity levels. General dither volumes can be large a 64x64x256 dither volume, for

example, has a size of 128KB. They are also inefficient to access since each color component

requires the retrieval of a different bit from the volume. In practice, there is no need to fully

n decouple each layer of the dither volume. Each dot column of the volume can be implemented

as a fixed set of thresholds rather than 256 separate bits. Using three 8-bit thresholds, for

C€ example, only consumes 24 bits. Now, n thresholds define n +1 intensity intervals, within

which the corresponding dither cell location is alternately not set or set. The contone pixel

Svalue being dithered uniquely selects one of the n+l 1 intervals, and this determines the value of

Cl the corresponding output dot.

We dither the contone data using a triple-threshold 64x64x3x8-bit (12KB) dither

volume. The three thresholds form a convenient 24-bit value which can be retrieved from the

dither cell ROM in one cycle. If dither cell registration is desired between color planes, then

the same triple-threshold value can be retrieved once and used to dither each color component.

If dither cell registration is not desired, then the dither cell can be split into four subcells and

stored in four separately addressable ROMs from which four different triple-threshold values

can be retrieved in parallel in one cycle. Using the addressing scheme shown below, the four

color planes share the same dither cell at vertical and/or horizontal offsets of 32 dots from each

other.

Each triple-threshold unit 292 conyerts a triple-threshold value and an intensity value

into an interval and thence a one or zero bit. The triple-thresholding rules are shown in Table

22. The corresponding logic is shown in Figure 28.

Table 22. Triple-thresholding rules

interval output

V_<T 1 0

T 1 <V<T 2 1

T 2 V T3 0

T3 <V 1

7.2.4.2 Composite

CEP13-AU

52-

SA composite unit 294 of the HCU 190 composites a black layer dot over a halftoned

CMYK layer dot. If the black layer opacity is one, then the halftoned CMY is set to zero.

Given a 4-bit halftoned color CcMcYcKc and a 1-bit black layer opacity Kb, the composite logic

is as defined in Table 23.

c Table 23. Composite logic

C color channel condition

C Cc A-Kb

M Me A-Kb

Y Yc AKb

K Kc vKb

7.2.4.3 Clock Enable Generator

A clock enable generator 296 of the HCU 190 generates enable signals for clocking the

contone CMYK pixel input, the black dot input, and the CMYK dot output.

As described earlier, the contone pixel input buffer is used as both a line buffer and a FIFO.

Each line is read once and then used contone scale factor times. FIFO write address wrapping

is disabled until the start of the final replicated use of the line, at which time the clock enable

generator 296 generates a contone line advance enable signal which enables wrapping.

The clock enable generator 296 also generates an even signal which is used to select the

even or odd set of output dot FIFOs, and a margin signal which is used to generate white dots

when the current dot position is in the left or right margin of the page.

The clock enable generator 296 uses a set of counters. The internal logic of the counters

is defined in Table 24. The logic of the clock enable signals is defined in Table

Table 24. Clock enable generator counter logic

load decrement

counter abbr. w. data condition condition

dot D 14 page width RPa v EOLb A clk

line L 15 page length RP A EOL

CEP13-AU

I

-53-

left margin LM 14 left margin RP v EOL (LM>O) A clk

right margin RM 14 right RP v EOL (RM>O) A clk

margin

even/odd dot E 1 0 RP v EOL clk

black dot BD 14 black width RP v EOL (LM=0) A (BD>O) A

clk

contone dot CD 14 contone RP v EOL (LM=0) A (CD>0) A

width clk

contone CSP 4 contone RP v EOL v (LM=0) A clk

sub-pixel scale factor (CSP=O)

contone CSL 4 contone RP v (CSL=O) EOL A clk

sub-line scale factor

a RP (reset page) condition: external signal

b EOL (end-of-line) condition: A (BD=0) A (CD=0)

Table 25. Clock enable generator output signal logic

output signal condition

output dot clock enable A -EOP

black dot clock enable (LM=0) A (BD>0) A -EOP

contone pixel clock enable (LM=O) A (CD>O) A (CSP=O) A -EOP

contone line advance enable (CSL=0) A -,EOP

even E=O

margin (LM=O) v (RM=O)

a EOP (end-of-page) condition: L=0

7.2.4.4 Timing

The HCU 190 has an output rate of 124M 4-bit CMYK pixels/s. Since it generates one

pixel per clock, it must be clocked at at least 124MHz.

7.3 Printhead Interface

CEP1 3-AU

-54-

CePrint 10 uses an 8.5" CMYK Memjet printhead 143, as described in Section 9. The

printhead consists of 17 segments arranged in 2 segment groups. The first segment group

contains 9 segments, and the second group contains 8 segments. There are 13,600 nozzles of

each color in the printhead 143, making a total of 54,400 nozzles.

The printhead interface 192 is a standard Memjet printhead interface, as described in

0C Section 10, configured with the following operating parameters:

CI MaxColors 4

0 SegmentsPerXfer 9

SegmentGroups 2

Although the printhead interface 192 has a number of external connections, not all are

used for an 8.5" printhead, so not all are connected to external pins on the CCP 180.

Specifically, the value for SegmentGroups implies that there are only 2 SRClock pins and 2

SenseSegSelect pins. All 36 ColorData pins, however, are required.

7.3.1 Timing

CePrint 10 prints an 8.3" x 11.7" page in 2 seconds. The printhead 143 must therefore

print 18,720 lines (11.7" x 1600 dpi) in 2 seconds, which yields a line time of about 107ts.

Within the printhead interface 192, a single Print Cycle and a single Load Cycle must both

complete within this time. In addition, the paper 144 must advance by about 16pm in the same

time.

In high-speed print mode the Memjet printhead 143 can print an entire line in 100 s.

Since all segments fire at the same time 544 nozzles are fired simultaneously with each firing

pulse. This leaves 7ps for other tasks between each line.

The 1600 SRClock pulses (800 each of SRClockl and SRClock2) to the printhead 143

(SRClockl has 36 bits of valid data, and SRClock2 has 32 bits of valid data) must also take

place within the 107ps line time. Restricting the timing to 100gs, the length of an SRClock

pulse cannot exceed 100 ps/1600 62.5ns. The printhead 143 must therefore be clocked at

16MHz.

The printhead interface 192 has a nominal pixel rate of 124M 4-bit CMYK pixels/s.

However, because it is only active for 1001ps out of every 107ps, it must be clocked at at least

CEP13-AU

d 140MHz. This can be increased to 144MHz to make it an integer multiple of the printhead

speed.

7.4 Processor and Memory

7.4.1 Processor

The processor 181 runs the control program which synchronizes the other functional
c units during page reception, expansion and printing. It also runs the device drivers for the

C various external interfaces, and responds to user actions through the user interface.

SIt must have low interrupt latency, to provide efficient DMA management, but

CI otherwise does not need to be particularly high-performance.

7.4.2 DMA Controller

The DMA controller 200 supports single-address transfers on 29 channels (see Table

26). It generates vectored interrupts to the processor 181 on transfer completion.

Table 26. DMA channel usage

functional unit input channels output

channels

host interface 1

inter-CCP interface 1 1

EDRL expander 1 1

JPEG decoder 1 8

halftoner/compositor 2 8

speaker interface 1

printhead interface 4

19

29

7.4.3 Program ROM

A program ROM 298 holds the CCP 180 control program which is loaded into main

memory 182 during system boot.

7.4.4 Rambus Interface

CEP13-AU

-56-

d The Rambus interface 198 provides the high-speed interface to the external 8MB

(64Mbit) Rambus DRAM (RDRAM) 182.

External Interfaces

7.5.1 Host Interface

The host interface 194 provides a connection to the host processor with a speed of at

least 1.5MB/s (or 3MB/s for the double-sided version of CePrint).

C 7.5.2 Speaker Interface

SA speaker interface 300 (Figure 29) contains a small FIFO 302 used for DMA-mediated
C transfers of sound clips from main memory 182, an 8-bit digital-to-analog converter (DAC)

304 which converts each 8-bit sample value to a voltage, and an amplifier 306 which feeds an

external speaker 308 (Figure 18). When the FIFO 302 is empty it outputs a zero value.

The speaker interface 300 is clocked at the frequency of the sound clips.

The processor 181 outputs a sound clip to the speaker 308 simply by programming the

DMA channel of the speaker interface 300.

7.5.3 Parallel Interface

A parallel interface 309 provides I/O on a number of parallel external signal lines.

It allows the processor 181 to sense or control the devices listed in Table 27.

Table 27. Parallel Interface devices

parallel interface devices

power button

power LED

out-of-paper LED

out-of-ink LED

media sensor

paper pick-up roller position sensor

paper tray drive position sensor

paper pick-up motor

paper tray ejector motor

transfer roller stepper motor

CEP13-AU

II

-57-

7.5.4 Serial Interface

A serial interface 310 provides two standard low-speed serial ports.

One port is used to connect to the master QA chip 184. The other is used to connect to a

QA chip 312 in the ink cartridge. The processor-mediated protocol between the two is used to

authenticate the ink cartridge. The processor 181 can then retrieve ink characteristics from the

QA chip 312, as well as the remaining volume of each ink. The processor 181 uses the ink

characteristics to properly configure the Memjet printhead 143. It uses the remaining ink

volumes, updated on a page-by-page basis with ink consumption information accumulated by

the printhead interface 192, to ensure that it never allows the printhead 143 to be damaged by

running dry.

7.5.4.1 Ink Cartridge QA Chip

The QA chip 312 in the ink cartridge 32 contains information required for maintaining

the best possible print quality, and is implemented using an authentication chip. The 256 bits of

data in the authentication chip are allocated as follows:

Table 28. Ink cartridge's 256 bits (16 entries of 16-bits)

M[n] access width description

0 ROa 16 Basic header, flags etc.

1 RO 16 Serial number.

2 RO 16 Batch number.

3 RO 16 Reserved for future expansion. Must be 0.

4 RO 16 Cyan ink properties.

RO 16 Magenta ink properties.

6 RO 16 Yellow ink properties.

7 RO 16 Black ink properties.

8-9 DOb 32 Cyan ink remaining, in nanolitres.

10-11 DO 32 Magenta ink remaining, in nanolitres.

12-13 DO 32 Yellow ink remaining, in nanolitres.

14-15 DO 32 Black ink remaining, in nanolitres.

CEP13-AU

-58-

a read only (RO)

b decrement only

Before each page is printed, the processor 181 must check the amount of ink remaining

to ensure there is enough for an entire worst-case page. Once the page has been printed, the

processor 181 multiplies the total number of drops of each color (obtained from the printhead

interface 192) by the drop volume. The amount of printed ink is subtracted from the amount of

ink remaining. The unit of measurement for ink remaining is nanolitres, so 32 bits can

represent over 4 liters of ink. The amount of ink used for a page must be rounded up to the

nearest nanolitre approximately 1000 printed dots).

7.5.5 Inter-CCP Interface

An inter-CCP interface 314 provides a bi-directional high-speed serial communications

link to a second CCP, and is used in multi-CCP configurations such as the double-sided

version of the printer which contains two CCPs.

The link has a minimum speed of 30MB/s, to support timely distribution of page data, and may

be implemented using a technology such as IEEE 1394 or Rambus.

7.5.6 JTAG Interface

A standard JTAG (Joint Test Action Group) interface (not shown) is included for

testing purposes. Due to the complexity of the chip, a variety of testing techniques are required,

including BIST (Built In Self Test) and functional block isolation. An overhead of 10% in chip

area is assumed for overall chip testing circuitry.

8 DOUBLE-SIDED PRINTING

The double-sided version of CePrint contains two complete print engines or printing

units 140 one for the front of the paper, one for the back. Each printing unit 140 consists of a

printer controller 178, a printhead assembly 142 containing a Memjet printhead 143, and a

transfer roller 68. Both printing units 140 share the same ink supply.

The back side, or lower, printing unit 140 acts as the master unit. It is responsible for global

printer functions, such as communicating with the host, handling the ink cartridge 32, handling

the user interface, and controlling the paper transport. The front side, or upper, printing unit

140 acts as a slave unit. It obtains pages from the host processor via the master unit, and is

synchronized by the master unit during printing.

CEP13-AU

-59-

U
SBoth printer controllers 178 consist of a CePrint central processor (CCP) 180 and a

_local 8MB RDRAM 182. The external interfaces of the master unit are used in the same way as

in the single-sided version of CePrint, but only the memory interface 198 and the printhead

interface 192 of the slave unit are used. An external master/slave pin on the CCP 180 selects

the mode of operation.

This dual printer controller configuration is illustrated in Figure ¢€3

8.1 Page Delivery and Distribution

The master CCP 180M (Figure 30) presents a unified view of the printer 10 to the host

processor. It hides the presence of the slave CCP 180S.

Pages are transmitted from the host processor to the printer 10 in page order. The first

page of a document is always a front side page, and front side and back side pages are always

interleaved. Thus odd-numbered pages are front side pages, and even-numbered pages are back

side pages. To print in single-sided mode on either the front side or back side of the paper, the

host must send appropriate blank pages to the printer 10. The printer 10 expects a page

description for every page.

When the master CCP 180M receives a page command from the host processor relating

to an odd-numbered page it routes the command to the slave CCP 180S via the inter-CCP

serial link 314. To avoid imposing undue restrictions on the host link and its protocol, each

command is received in its entirety and stored in the master's local memory 182M before being

forwarded to the memory 182S of the slave. This introduces only a small delay because the

inter-CCP link 314 is fast. To ensure that the master CCP 180M always has a page buffer

available for a page destined for the slave, the master is deliberately made the back side CCP,

so that it receives the front side odd-numbered page before it receives the matching back side

even-numbered page.

8.2 Synchronized Printing

Once the master CCP 180M and the slave CCP 180S have received their pages, the

master CCP 180M initiates actual printing. This consists of starting the page expansion and

printing processes in the master CCP 180M, and initiating the same processes in the slave CCP

180S via a command sent over the inter-CCP serial link 314.

CEP1 3-AU

STo achieve perfect registration between the front side and back side printed pages, the

printhead interfaces 192 of both CCPs are synchronized to a common line synchronization

signal. The synchronization signal is generated by the master CCP 180M.

Once the printing pipelines in both CCPs are sufficiently primed, as indicated by the

stall status of the line loader/format unit (LLFU) of the printhead interface (Section 10.4), the

Cc master CCP 180M starts the line synchronization generator unit (LSGU) of the printhead

1 interface 192 (Section 10.2). The master CCP 180M obtains the status of the slave CCP 180S

SLLFU via a poll sent over the inter-CCP serial link 314.
c After the printing of a page, or more frequently, the master 180M obtains ink

consumption information from the slave 180S over the inter-CCP link 314. It uses this to

update the remaining ink volume in the ink cartridge 32, as described in Section 7.5.4.1.

The master and slave CCPs 180M, 180S also exchange error events and host-initiated

printer reset commands over the inter-CCP link 314.

9 MEMJET PRINTHEAD

The Memjet printhead 143 is a drop-on-demand 1600 dpi inkjet printer that produces

bi-level dots in up to 4 colors to produce a printed page of a particular width. Since the

printhead prints dots at 1600 dpi, each dot is approximately 22.5mm in diameter, and spaced

15.875mm apart. Because the printing is bi-level, the input image should be dithered or error-

diffused for best results.

Typically a Memjet printhead for a particular application is page-width. This enables

the printhead 143 to be stationary and allows the paper 144 to move past the printhead 143.

Figure 31 illustrates a typical configuration.

The Memjet printhead 143 is composed of a number of identical 1/2 inch Memjet

segments. The segment is therefore the basic building block for constructing the printhead 143.

9.1 The Structure of a Memjet Segment

This section examines the structure of a single segment, the basic building block for

constructing the Memjet printhead 143.

9.1.1 Grouping of Nozzles Within a Segment

The nozzles within a single segment are grouped for reasons of physical stability as

well as minimization of power consumption during printing. In terms of physical stability, a

CEP13-AU

-61-

U
Stotal of 10 nozzles share the same ink reservoir. In terms of power consumption, groupings are

_made to enable a low-speed and a high-speed printing mode.

Memjet segments support two printing speeds to allow speed/power consumption trade-

offs to be made in different product configurations.

In the low-speed printing mode, 4 nozzles of each color are fired from the segment at a

c time. The exact number of nozzles fired depends on how many colors are present in the
(Ni

printhead. In a four color CMYK) printing environment this equates to 16 nozzles firing

Ssimultaneously. In a three color CMY) printing environment this equates to 12 nozzles

firing simultaneously. To fire all the nozzles in a segment, 200 different sets of nozzles must be

fired.

In the high-speed printing mode, 8 nozzles of each color are fired from the segment at a

time. The exact number of nozzles fired depends on how many colors are present in the

printhead. In a four color CMYK) printing environment this equates to 32 nozzles firing

simultaneously. In a three color CMY) printing environment this equates to 24 nozzles

firing simultaneously. To fire all the nozzles in a segment, 100 different sets of nozzles must be

fired.

The power consumption in the low-speed mode is half that of the high-speed mode.

Note, however, that the energy consumed to print a page is the same in both cases.

9.1.1.1 Ten Nozzles Make a Pod

A single pod consists of 10 nozzles sharing a common ink reservoir. 5 nozzles are in

one row, and 5 are in another. Each nozzle produces dots 22.5mm in diameter spaced on a

15.875mm grid to print at 1600 dpi. Figure 32 shows the arrangement of a single pod, with the

nozzles numbered according to the order in which they must be fired.

Although the nozzles are fired in this order, the relationship of nozzles and physical

placement of dots on the printed page is different. The nozzles from one row represent the even

dots from one line on the page, and the nozzles on the other row represent the odd dots from

the adjacent line on the page. Figure 33 shows the same pod with the nozzles numbered

according to the order in which they must be loaded.

The nozzles within a pod are therefore logically separated by the width of 1 dot. The

exact distance between the nozzles will depend on the properties of the Memjet firing

CEP13-AU

-62-

Smechanism. The printhead 143 is designed with staggered nozzles designed to match the flow

_of paper.

9.1.1.2 One Pod of Each Color Makes a Chromapod

One pod of each color are grouped together into a chromapod. The number of pods in a

chromapod will depend on the particular application. In a monochrome printing system (such
c as one that prints only black), there is only a single color and hence a single pod. Photo

C printing application printheads require 3 colors (cyan, magenta, yellow), so Memjet segments

Sused for these applications will have 3 pods per chromapod (one pod of each color). The
C expected maximum number of pods in a chromapod is 4, as used in a CMYK (cyan, magenta,

yellow, black) printing system (such as a desktop printer). This maximum of 4 colors is not

imposed by any physical constraints it is merely an expected maximum from the expected

applications (of course, as the number of colors increases the cost of the segment increases and

the number of these larger segments that can be produced from a single silicon wafer

decreases).

A chromapod represents different color components of the same horizontal set of

dots on different lines. The exact distance between different color pods depends on the Memjet

operating parameters, and may vary from one Memjet design to another. The distance is

considered to be a constant number of dot-widths, and must therefore be taken into account

when printing: the dots printed by the cyan nozzles will be for different lines than those printed

by the magenta, yellow or black nozzles. The printing algorithm must allow for a variable

distance up to about 8 dot-widths between colors. Figure 34 illustrates a single chromapod for

a CMYK printing application.

9.1.1.3 Five Chromapods Make a Podgroup

Five chromapods are organized into a single podgroup. A podgroup therefore contains

nozzles for each color. The arrangement is shown in Figure 35, with chromapods numbered

0-4 and using a CMYK chromapod as the example. Note that the distance between adjacent

chromapods is exaggerated for clarity.

9.1.1.4 Two Podgroups Make a Phasegroup

Two podgroups are organized into a single phasegroup. The phasegroup is so named

because groups of nozzles within a phasegroup are fired simultaneously during a given firing

phase (this is explained in more detail below). The formation of a phasegroup from 2

CEP13-AU

-63-

Spodgroups is entirely for the purposes of low-speed and high-speed printing via 2

PodgroupEnable lines.

During low-speed printing, only one of the two PodgroupEnable lines is set in a given

firing pulse, so only one podgroup of the two fires nozzles. During high-speed printing, both

PodgroupEnable lines are set, so both podgroups fire nozzles. Consequently a low-speed print
c takes twice as long as a high-speed print, since the high-speed print fires twice as many nozzles

CN at once.

SFigure 36 illustrates the composition of a phasegroup. The distance between adjacent
C podgroups is exaggerated for clarity.

9.1.1.5 Two Phasegroups Make a Firegroup

Two phasegroups (PhasegroupA and PhasegroupB) are organized into a single

firegroup, with 4 firegroups in each segment. Firegroups are so named because they all fire the

same nozzles simultaneously. Two enable lines, AEnable and BEnable, allow the firing of

PhasegroupA nozzles and PhasegroupB nozzles independently as different firing phases. The

arrangement is shown in Figure 37. The distance between adjacent groupings is exaggerated

for clarity.

9.1.1.6 Nozzle Grouping Summary

Table 29 is a summary of the nozzle groupings in a segment assuming a CMYK

chromapod.

Table 29. Nozzle Groupings for a single segment

Name of Grouping Composition Replication Ratio Nozzle Count

Nozzle Base unit 1:1 1

Pod Nozzles per pod 10:1

Chromapod Pods per chromapod C:1

Podgroup Chromapods per podgroup 5:1

Phasegroup Podgroups per phasegroup 2:1 100C

Firegroup Phasegroups per firegroup 2:1 200C

Segment Firegroups per segment 4:1 800C

CEP13-AU

-64-

U
SThe value of C, the number of colors contained in the segment, determines the total

_number of nozzles.

With a 4 color segment, such as CMYK, the number of nozzles per segment is 3,200.

With a 3 color segment, such as CMY, the number of nozzles per segment is 2,400.

n In a monochrome environment, the number of nozzles per segment is 800.

9.1.2 Load and Print Cycles

A single segment contains a total of 800C nozzles, where C is the number of colors in

Sthe segment. A Print Cycle involves the firing of up to all of these nozzles, dependent on the

information to be printed. A Load Cycle involves the loading up of the segment with the

information to be printed during the subsequent Print Cycle.

Each nozzle has an associated NozzleEnable bit that determines whether or not the

nozzle will fire during the Print Cycle. The NozzleEnable bits (one per nozzle) are loaded via a

set of shift registers.

Logically there are C shift registers per segment (one per color), each 800 deep. As bits

are shifted into the shift register for a given color they are directed to the lower and upper

nozzles on alternate pulses. Internally, each 800-deep shift register is comprised of two 400-

deep shift registers: one for the upper nozzles, and one for the lower nozzles. Alternate bits are

shifted into the alternate internal registers. As far as the external interface is concerned

however, there is a single 800 deep shift register.

Once all the shift registers have been fully loaded (800 load pulses), all of the bits are

transferred in parallel to the appropriate NozzleEnable bits. This equates to a single parallel

transfer of 800C bits. Once the transfer has taken place, the Print Cycle can begin. The Print

Cycle and the Load Cycle can occur simultaneously as long as the parallel load of all

NozzleEnable bits occurs at the end of the Print Cycle.

9.1.2.1 Load Cycle

The Load Cycle is concerned with loading the segment's shift registers with the next

Print Cycle's NozzleEnable bits.

Each segment has C inputs directly related to the C shift registers (where C is the

number of colors in the segment). These inputs are named ColorNData, where N is 1 to C (for

example, a 4 color segment would have 4 inputs labeled ColorlData, Color2Data, Color3Data

and Color4Data). A single pulse on the SRClock line transfers C bits into the appropriate shift

CEP1 3-AU

Sregisters. Alternate pulses transfer bits to the lower and upper nozzles respectively. A total of

800 pulses are required for the complete transfer of data. Once all 800C bits have been

transferred, a single pulse on the PTransfer line causes the parallel transfer of data from the

shift registers to the appropriate NozzleEnable bits.

The parallel transfer via a pulse on PTransfer must take place after the Print Cycle has

Cc finished. Otherwise the NozzleEnable bits for the line being printed will be incorrect.

It is important to note that the odd and even dot outputs, although printed during the

Ssame Print Cycle, do not appear on the same physical output line. The physical separation of

C1 odd and even nozzles within the printhead, as well as separation between nozzles of different

colors ensures that they will produce dots on different lines of the page. This relative difference

must be accounted for when loading the data into the printhead 143. The actual difference in

lines depends on the characteristics of the inkjet mechanism used in the printhead 143. The

differences can be defined by variables DI and D2 where D1 is the distance between nozzles of

different colors, and D2 is the distance between nozzles of the same color. Table 30 shows the

dots transferred to a C color segment on the first 4 pulses.

Table 30. Order of Dots Transferred to a Segment

Pulse Dot Colorl Line Color2 Line Color3 Line ColorC Line

1 0 N N+Di" N+2D1 N+(C-1)DI

2 1 N+D2b N+Di+D2 N+2D1+D2 N+(C-1)Di+D 2

3 2 N N+Di N+2DI N+(C-1)D 1

4 3 N+D2 N+Di+D2 N+2D 1+D2 N+(C-1)Di+D 2

a D1 number of lines between the nozzles of one color and the next

(likely 4 8)
b D2 number of lines between two rows of nozzles of the same color

(likely 1)

And so on for all 800 pulses.

Data can be clocked into a segment at a maximum rate of 20 MHz, which will load the

entire 800C bits of data in

CEP13-AU

-66-

9.1.2.2 Print Cycle

A single Memjet printhead segment contains 800 nozzles. To fire them all at once

would consume too much power and be problematic in terms of ink refill and nozzle

interference. This problem is made more apparent when we consider that a Memjet printhead is

composed of multiple 1/2 inch segments, each with 800 nozzles. Consequently two firing

c modes are defined: a low-speed printing mode and a high-speed printing mode:

C In the low-speed print mode, there are 200 phases, with each phase firing 4C nozzles (C

Sper firegroup, where C is the number of colors).
C 1 In the high-speed print mode, there are 100 phases, with each phase firing 8C nozzles,

(2C per firegroup, where C is the number of colors).

The nozzles to be fired in a given firing pulse are determined by

3 bits ChromapodSelect (select 1 of 5 chromapods from a firegroup)

4 bits NozzleSelect (select 1 of 10 nozzles from a pod)

2 bits ofPodgroupEnable lines (select 0, 1, or 2 podgroups to fire)

When one of the PodgroupEnable lines is set, only the specified Podgroup's 4 nozzles

will fire as determined by ChromapodSelect and NozzleSelect. When both of the

PodgroupEnable lines are set, both of the podgroups will fire their nozzles. For the low-speed

mode, two fire pulses are required, with PodgroupEnable 10 and 01 respectively. For the

high-speed mode, only one fire pulse is required, with PodgroupEnable 11.

The duration of the firing pulse is given by the AEnable and BEnable lines, which fire

the PhasegroupA and PhasegroupB nozzles from all firegroups respectively. The typical

duration of a firing pulse is 1.3 1.8 ms. The duration of a pulse depends on the viscosity of the

ink (dependent on temperature and ink characteristics) and the amount of power available to

the printhead 143. See Section 9.1.3 for details on feedback from the printhead 143 in order to

compensate for temperature change.

The AEnable and BEnable are separate lines in order that the firing pulses can overlap.

Thus the 200 phases of a low-speed Print Cycle consist of 100 A phases and 100 B phases,

effectively giving 100 sets of Phase A and Phase B. Likewise, the 100 phases of a high-speed

print cycle consist of 50 A phases and 50 B phases, effectively giving 50 phases of phase A

and phase B.

CEP13-AU

-67-

SFigure 38 shows the AEnable and BEnable lines during a typical Print Cycle. In a high-

speed print there are 50 2ms cycles, while in a low-speed print there are 100 2ps cycles.

For the high-speed printing mode, the firing order is:

t¢ ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

c ChromapodSelect 2, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

ChromapodSelect 3, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

SChromapodSelect 4, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)

C ChromapodSelect 0, NozzleSelect 1, PodgroupEnable 11 (Phases A and B)

ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)

ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)

For the low-speed printing mode, the firing order is similar. For each phase of the high

speed mode where PodgroupEnable was 11, two phases of PodgroupEnable 01 and 10 are

substituted as follows:

ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 01 (Phases A and B)

ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 10 (Phases A and B)

ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 01 (Phases A and B)

ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 10 (Phases A and B)

ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

When a nozzle fires, it takes approximately 100ps to refill. The nozzle cannot be fired

before this refill time has elapsed. This limits the fastest printing speed to 100its per line. In the

high-speed print mode, the time to print a line is 100 ps, so the time between firing a nozzle

from one line to the next matches the refill time. The low-speed print mode is slower than this,

so is also acceptable.

CEP13-AU

S-68-

O
a The firing of a nozzle also causes acoustic perturbations for a limited time within the

common ink reservoir of that nozzle's pod. The perturbations can interfere with the firing of

another nozzle within the same pod. Consequently, the firing of nozzles within a pod should be

n offset from each other as long as possible. We therefore fire four nozzles from a chromapod

(one nozzle per color) and then move onto the next chromapod within the podgroup.

In the low-speed printing mode the podgroups are fired separately. Thus the 5 chromapods

within both podgroups must all fire before the first chromapod fires again, totalling 10 x 2ps

cycles. Consequently each pod is fired once per

In the high-speed printing mode, the podgroups are fired together. Thus the

chromapods within a single podgroups must all fire before the first chromapod fires again,

totalling 5 x 2its cycles. Consequently each pod is fired once per 10 ts.

As the ink channel is 300mm long and the velocity of sound in the ink is around

1500m/s, the resonant frequency of the ink channel is 2.5MHz. Thus the low-speed mode

allows 50 resonant cycles for the acoustic pulse to dampen, and the high-speed mode allows

resonant cycles. Consequently any acoustic interference is minimal in both cases.

9.1.3 Feedback from a Segment

A segment produces several lines of feedback. The feedback lines are used to adjust the

timing of the firing pulses. Since multiple segments are collected together into a printhead, it is

effective to share the feedback lines as a tri-state bus, with only one of the segments placing

the feedback information on the feedback lines.

A pulse on the segment's SenseSegSelect line ANDed with data on ColorlData selects

if the particular segment will provide the feedback. The feedback sense lines will come from

that segment until the next SenseSegSelect pulse. The feedback sense lines are as follows:

Tsense informs the controller how hot the printhead is. This allows the controller to adjust

timing of firing pulses, since temperature affects the viscosity of the ink.

Vsense informs the controller how much voltage is available to the actuator. This allows the

controller to compensate for a flat battery or high voltage source by adjusting the pulse width.

Rsense informs the controller of the resistivity (Ohms per square) of the actuator heater. This

allows the controller to adjust the pulse widths to maintain a constant energy irrespective of the

heater resistivity.

CEP13-AU

-69-

U
SWsense informs the controller of the width of the critical part of the heater, which may vary up

to 5% due to lithographic and etching variations. This allows the controller to adjust the

pulse width appropriately.

9.1.4 Preheat Cycle

The printing process has a strong tendency to stay at the equilibrium temperature. To

C€ ensure that the first section of a printed image, such as a photograph, has a consistent dot size,

the equilibrium temperature must be met before printing any dots. This is accomplished via a

preheat cycle.

The Preheat cycle involves a single Load Cycle to all nozzles of a segment with ls (i.e.

setting all nozzles to fire), and a number of short firing pulses to each nozzle. The duration of

the pulse must be insufficient to fire the drops, but enough to heat up the ink. Altogether about

200 pulses for each nozzle are required, cycling through in the same sequence as a standard

Print Cycle.

Feedback during the Preheat mode is provided by Tsense, and continues until

equilibrium temperature is reached (about 30'C above ambient). The duration of the Preheat

mode is around 50 milliseconds, and depends on the ink composition.

Preheat is performed before each print job. This does not affect performance as it is done while

the data is being transferred to the printer.

9.1.5 Cleaning Cycle

In order to reduce the chances of nozzles becoming clogged, a cleaning cycle can be

undertaken before each print job. Each nozzle is fired a number of times into an absorbent

sponge.

The cleaning cycle involves a single Load Cycle to all nozzles of a segment with 1 s

setting all nozzles to fire), and a number of firing pulses to each nozzle. The nozzles are

cleaned via the same nozzle firing sequence as a standard Print Cycle. The number of times

that each nozzle is fired depends upon the ink composition and the time that the printer has

been idle. As with preheat, the cleaning cycle has no effect on printer performance.

9.1.6 Printhead Interface Summary

Each segment has the following connections to the bond pads:

Table 31. Segment Interface Connections

CEP1 3-AU

Name Lines Description

Chromapod Select 3 Select which chromapod will fire (0-4)

NozzleSelect 4 Select which nozzle from the pod will fire (0-9)

PodgroupEnable 2 Enable the podgroups to fire (choice of: 01, 10, 11)

AEnable 1 Firing pulse for podgroup A

BEnable 1 Firing pulse for podgroup B

ColorNData C Input to shift registers (1 bit for each of C colors in the

segment)

SRClock 1 A pulse on SRClock (ShiftRegisterClock) loads C bits

from ColorData into the C shift registers.

PTransfer 1 Parallel transfer of data from the shift registers to the

internal NozzleEnable bits (one per nozzle).

SenseSegSelect 1 A pulse on SenseSegSelect ANDed with data on

ColorlData selects the sense lines for this segment.

Tsense 1 Temperature sense

Vsense 1 Voltage sense

Rsense 1 Resistivity sense

Wsense 1 Width sense

Logic GND 1 Logic ground

Logic PWR 1 Logic power

V- 21 Actuator Ground

V+ 21 Actuator Power

TOTAL 62+C (if C is 4, Total 66)

9.2 Making Memjet Printheads out of Segments

A Memjet printhead is composed of a number of identical 1/2 inch printhead segments.

These 1/2 inch segments are manufactured together or placed together after manufacture to

produce a printhead of the desired length. Each 1/2 inch segments prints 800 1600 dpi bi-level

dots in up to 4 colors over a different part of the page to produce the final image. Although

CEP13-AU

-71-

Seach segment produces 800 dots of the final image, each dot is represented by a combination of

_colored inks.

A 4-inch printhead, for example, consists of 8 segments, typically manufactured as a

monolithic printhead. In a typical 4-color printing application (cyan, magenta, yellow, black),

each of the segments prints bi-level cyan, magenta, yellow and black dots over a different part

Cc of the page to produce the final image.

C An 8-inch printhead can be constructed from two 4-inch printheads or from a single 8-

Sinch printhead consisting of 16 segments. Regardless of the construction mechanism, the

c1 effective printhead is still 8 inches in length.

A 2-inch printhead has a similar arrangement, but only uses 4 segments. Likewise, a

full-bleed A4/Letter printer uses 17 segments for an effective 8.5 inch printing area.

Since the total number of nozzles in a segment is 800C (see Table 29), the total number

of nozzles in a given printhead with S segments is 800CS. Thus segment N is responsible for

printing dots 800N to 800N+799.

A number of considerations must be made when wiring up a printhead. As the width of

the printhead increases, the number of segments increases, and the number of connections also

increases. Each segment has its own ColorData connections (C of them), as well as SRClock

and other connections for loading and printing.

9.2.1 Loading Considerations

When the number of segments S is small it is reasonable to load all the segments

simultaneously'by using a common SRClock line and placing C bits of data on each of the

ColorData inputs for the segments. In a 4-inch printer, S=8, and therefore the total number of

bits to transfer to the printhead in a single SRClock pulse is 32. However for an 8-inch printer,

S=16, and it is unlikely to be reasonable to have 64 data lines running from the print data

generator to the printhead.

Instead, it is convenient to group a number of segments together for loading purposes.

Each group of segments is small enough to be loaded simultaneously, and share an SRClock.

For example, an 8-inch printhead can have 2 segment groups, each segment group containing 8

segments. 32 ColorData lines can be shared for both groups, with 2 SRClock lines, one per

segment group.

CEP13-AU

-72-

SWhen the number of segment groups is not easily divisible, it is still convenient to group

the segments. One example is a 8.5 inch printer for producing A4/Letter pages. There are 17

segments, and these can be grouped as two groups of 9 (9C bits of data going to each segment,

with all 9C bits used in the first group, and only 8C bits used for the second group), or as 3

groups of 6 (again, C bits are unused in the last group).

C As the number of segment groups increases, the time taken to load the printhead

c increases. When there is only one group, 800 load pulses are required (each pulse transfers C

Sdata bits). When there are G groups, 800G load pulses are required. The bandwidth of the

C connection between the data generator and the printhead must be able to cope and be within the

allowable timing parameters for the particular application.

If G is the number of segment groups, and L is the largest number of segments in a

group, the printhead requires LC ColorData lines and G SRClock lines. Regardless of G, only a

single PTransfer line is required it can be shared across all segments.

Since L segments in each segment group are loaded with a single SRClock pulse, any

printing process must produce the data in the correct sequence for the printhead. As an

example, when G=2 and L=4, the first SRClockl pulse will transfer the ColorData bits for the

next Print Cycle's dot 0, 800, 1600, and 2400. The first SRClock2 pulse will transfer the

ColorData bits for the next Print Cycle's dot 3200, 4000, 4800, and 5600. The second

SRClockl pulse will transfer the ColorData bits for the next Print Cycle's dot 1, 801, 1601, and

2401. The second SRClock2 pulse will transfer the ColorData bits for the next Print Cycle's dot

3201, 4001, 4801 and 5601.

After 800G SRClock pulses (800 to each of SRClockl and SRClock2), the entire line

has been loaded into the printhead, and the common PTransfer pulse can be given.

It is important to note that the odd and even color outputs, although printed during the

same Print Cycle, do not appear on the same physical output line. The physical separation of

odd and even nozzles within the printhead, as well as separation between nozzles of different

colors ensures that they will produce dots on different lines of the page. This relative difference

must be accounted for when loading the data into the printhead. The actual difference in lines

depends on the characteristics of the inkjet mechanism used in the printhead. The differences

can be defined by variables D1 and D2 where D1 is the distance between nozzles of different

colors, and D2 is the distance between nozzles of the same color. Considering only a single

CEP13-AU

-73-

Ssegment group, Table 32 shows the dots transferred to segment n of a printhead during the first

4 pulses of the shared SRClock.

Table 32. Order of Dots Transferred to a Segment in a Printhead

Pulse Dot Colorl Line Color2 Line ColorC Line

S1 800S a N N+D 1b N+(C-1)Di

2 800S+1 N+D2c N+Di+D 2 N+(C-1)Di+D 2

3 800S+2 N N+Di N+(C-1)D 1

4 800S+3 N+D 2 N+Di+D 2 N+(C-1)Di+D 2

a S segment number

b D1 number of lines between the nozzles of one color and the next (likely =4 8)
c D2 number of lines between two rows of nozzles of the same color (likely 1)

And so on for all 800 SRClock pulses to the particular segment group.

9.2.2 Printing Considerations

With regards to printing, we print 4C nozzles from each segment in the low-speed

printing mode, and 8C nozzles from each segment in the high speed printing mode.

While it is certainly possible to wire up segments in any way, we only consider the situation

where all segments fire simultaneously. This is because the low-speed printing mode allows

low-power printing for small printheads 2-inch and 4-inch), and the controller chip design

assumes there is sufficient power available for the large print sizes (such as 8-18 inches). It is a

simple matter to alter the connections in the printhead 143 to allow grouping of firing should a

particular application require it.

When all segments are fired at the same time 4CS nozzles are fired in the low-speed

printing mode and 8CS nozzles are fired in the high-speed printing mode. Since all segments

print simultaneously, the printing logic is the same as defined in Section 9.1.2.2.

The timing for the two printing modes is therefore:

200 ps to print a line at low speed (comprised of 100 2ps cycles)

100 its to print a line at high speed (comprised of 50 2jis cycles)

CEP13-AU

-74-

S9.2.3 Feedback Considerations

A segment produces several lines of feedback, as defined in Section 9.1.3. The

feedback lines are used to adjust the timing of the firing pulses. Since multiple segments are

collected together into a printhead, it is effective to share the feedback lines as a tri-state bus,

with only one of the segments placing the feedback information on the feedback lines at a time.

c Since the selection of which segment will place the feedback information on the shared

C Tsense, Vsense, Rsense, and Wsense lines uses the ColorlData line, the groupings of segments

Sfor loading data can be used for selecting the segment for feedback.

Cl Just as there are G SRClock lines (a single line is shared between segments of the same

segment group), there are G SenseSegSelect lines shared in the same way. When the correct

SenseSegSelect line is pulsed, the segment of that group whose ColorlData bit is set will start

to place data on the shared feedback lines. The segment previously active in terms of feedback

must also be disabled by having a 0 on its ColorlData bit, and this segment may be in a

different segment group. Therefore when there is more than one segment group. changing the

feedback segment requires two steps: disabling the old segment, and enabling the new

segment.

9.2.4 Printhead Connection Summary

This section assumes that the printhead 143 has been constructed from a number of

segments as described in the previous sections. It assumes that for data loading purposes, the

segments have been grouped into G segment groups, with L segments in the largest segment

group. It assumes there are C colors in the printhead. It assumes that the firing mechanism for

the printhead 143 is that all segments fire simultaneously, and only one segment at a time

places feedback information on a common tri-state bus. Assuming all these things, Table 33

lists the external connections that are available from a printhead:

Table 33. Printhead Connections

Name #Pins Description

ChromapodSelect 3 Select which chromapod will fire (0-4)

NozzleSelect 4 Select which nozzle from the pod will fire (0-9)

PodgroupEnable 2 Enable the podgroups to fire (choice of: 01, 10, 11)

AEnable 1 Firing pulse for phasegroup A

CEP13-AU

BEnable 1 Firing pulse for phasegroup B

ColorData CL Inputs to C shift registers of segments 0 to L-1

SRClock G A pulse on SRClock[N] (ShiftRegisterClock N)

loads the current values from ColorData lines into

the L segments in segment group N.

PTransfer 1 Parallel transfer of data from the shift registers to the

internal NozzleEnable bits (one per nozzle).

SenseSegSelect G A pulse on SenseSegSelect N ANDed with data on

ColorlData[n] selects the sense lines for segment n

in segment group N.

Tsense 1 Temperature sense

Vsense 1 Voltage sense

Rsense 1 Resistivity sense

Wsense 1 Width sense

Logic GND 1 Logic ground

Logic PWR 1 Logic power

V- Bus Actuator Ground

bars

V+ Actuator Power

TOTAL 18+2G+CL

MEMJET PRINTHEAD INTERFACE

The printhead interface (PHI) 192 is the means by which the processor 181 loads the

Memjet printhead 143 with the dots to be printed, and controls the actual dot printing process.

The PHI 192 contains:

a LineSyncGen unit (LSGU) which provides synchronization signals for multiple

chips (allows side-by-side printing and front/back printing) as well as stepper motors.

a Memjet interface (MJI), which transfers data to the Memjet printhead, and controls

the nozzle firing sequences during a print.

CEP13-AU

-76-

a line loader/format unit (LLFU) which loads the dots for a given print line into local

buffer storage and formats them into the order required for the Memjet printhead.

The units within the PHI 192 are controlled by a number of registers that are

programmed by the processor 181. In addition, the processor 181 is responsible for setting up

the appropriate parameters in the DMA controller 200 for the transfers from memory to the

LLFU. This includes loading white (all 0's) into appropriate colors during the start and end of a

page so that the page has clean edges.

The PHI 192 is capable of dealing with a variety of printhead lengths and formats. In

terms of broad operating customizations, the PHI 192 is parameterized as follows:

Table 34. Basic Printing Parameters

Name Description Range

MaxColors No of Colors in printhead 1-4

SegmentsPerXfer No of segments written to per transfer. Is equal to the 1-9

number of segments in the largest segment group

SegmentGroups No of segment groups in printhead 1-4

The internal structure of the PHI allows for a maximum of 4 colors, 9 segments per

transfer, and 4 transfers. Transferring 4 colors to 9 segments is 36 bits per transfer, and 4

transfers to 9 segments equates to a maximum printed line length of 18 inches. The total

number of dots per line printed by an 18-inch 4 color printhead is 115,200 (18 x 1600 x 4).

Other example settings are shown in Table

Table 35. Example Settings for Basic Printing Parameters

Ma Se Se Bit

xC gm gm s

olo ent ent Per

rs sP Gr Xf

Printer Length Printer Type er ou er Comments

Xf ps

er

CEP13-AU

-77-

4-inch CMY Photo 3 8 1 24

8-inch CMYK A4/Letter 4 8 2 32

inch CMYK A4/Letter full bleed 4 9 2 36 Last xfer not

fully used

12 inch CMYK A4 long A3 short 4 8 3 32

16 inch CMYK 4 8 4 32

17 inch CMYK A3 long full bleed 4 9 4 36 Last xfer not

fully used

18 inch CMYK 4 9 4 36

10.1 Block Diagram of Printhead Interface

The internal structure of the Printhead Interface 192 is shown in Figure 39. In the PHI

192 there are two LSGUs 316, 318. The first LSGU 316 produces LineSyncO, which is used to

control the Memjet Interface 320 in all synchronized chips. The second LSGU 318 produces

LineSyncl which is used to pulse the paper drive stepper motor.

The Master/Slave pin on the chip allows multiple chips to be connected together for side-by-

side printing, front/back printing etc. via a Master/Slave relationship. When the Master/Slave

pin is attached to VDD, the chip is considered to be the Master, and LineSync pulses generated

by the two LineSyncGen units 316, 318 are enabled onto the two tri-state LineSync common

lines (LineSyncO and LineSync 1, shared by all the chips). When the Master/Slave pin is

attached to GND, the chip is considered to be the Slave, and LineSync pulses generated by the

two LineSyncGen units 316, 318 are not enabled onto the common LineSync lines. In this way,

the Master chip's LineSync pulses are used by all PHIs 192 on all the connected chips.

The following sections detail the LineSyncGen Unit 316, 318, the Line Loader/Format Unit

322 and Memjet Interface 320 respectively.

10.2 LineSyncGen Unit

The LineSyncGen units (LSGU) 316, 318 are responsible for generating the

synchronization pulses required for printing a page. Each LSGU 316, 318 produces an external

LineSync signal to enable line synchronization. The generator inside the LGSU 316, 318

CEP13-AU

-78-

generates a LineSync pulse when told to and then every so many cycles until told to stop.

The LineSync pulse defines the start of the next line.

The exact number of cycles between LineSync pulses is determined by the

CyclesBetweenPulses register, one per generator. It must be at least long enough to allow one

line to print (100 ps or 200 ms depending on whether the speed is low or high) and another line

to load, but can be longer as desired (for example, to accommodate special requirements of

paper transport circuitry). If the CyclesBetweenPulses register is set to a number less than a

line print time, the page will not print properly since each LineSync pulse will arrive before the

particular line has finished printing.

The following interface registers are contained in each LSGU 316, 318:

Table 36. LineSyncGen Unit Registers

Register Name Description

CyclesBetweenPulses The number of cycles to wait between generating one

LineSync pulse and the next.

Go Controls whether the LSGU is currently generating

LineSync pulses or not.

A write of 1 to this register generates a LineSync pulse,

transfers CyclesBetweenPulses to CyclesRemaining, and

starts the countdown. When CyclesRemaining hits 0,

another LineSync pulse is generated,

CyclesBetweenPulses is transferred to CyclesRemaining

and the countdown is started again.

A write of 0 to this register stops the countdown and no

more LineSync pulses are generated.

CyclesRemaining A status register containing the number of cycles

remaining until the next LineSync pulse is generated.

The LineSync pulse is not used directly from the LGSU 316, 318. The LineSync pulse

is enabled onto a tri-state LineSync line only if the Master/Slave pin is set to Master.

CEP13-AU

-79-

SConsequently the LineSync pulse is only used in the form as generated by the Master chip

(pulses generated by Slave chips are ignored).

10.3 Memjet Interface

The Memjet interface (MJI) 320 transfers data to the Memjet printhead 143, and

controls the nozzle firing sequences during a print.

c The MJI 320 is simply a State Machine (see Figure 40) which follows the printhead

loading and firing order described in Section 9.2.1, Section 9.2.2, and includes the functionality

Sof the Preheat Cycle and Cleaning Cycle as described in Section 9.1.4 and Section 9.1.5. Both

C"1 high-speed and low-speed printing modes are available, although the MJI 320 always fires a

given nozzle from all segments in a printhead simultaneously (there is no separate firing of

nozzles from one segment and then others). Dot counts for each color are also kept by the MJI

320.

The MJI loads data into the printhead from a choice of 2 data sources:

All Is. This means that all nozzles will fire during a subsequent Print cycle, and is the

standard mechanism for loading the printhead for a preheat or cleaning cycle.

From the 36-bit input held in the Transfer register of the LLFU 322. This is the

standard means of printing an image. The 36-bit value from the LLFU 322 is directly sent to

the printhead and a 1-bit 'Advance' control pulse is sent to the LLFU 322.

The MJI 320 knows how many lines it has to print for the page. When the MJI 320 is

told to it waits for a LineSync pulse before it starts the first line. Once it has finished

loading/printing a line, it waits until the next LineSync pulse before starting the next line. The

MJI 320 stops once the specified number of lines has been loaded/printed, and ignores any

further LineSync pulses.

The MJI 320 is therefore directly connected to the LLFU 322, LineSyncO (shared

between all synchronized chips), and the external Memjet printhead 143.

The MJI 320 accepts 36 bits of data from the LLFU 322. Of these 36 bits, only the bits

corresponding to the number of segments and number of colors will be valid. For example, if

there are only 2 colors and 9 segments, bits 0-1 will be valid for segment 0, bits 2-3 will be

invalid, bits 4-5 will be valid for segment 1, bits 6-7 will be invalid etc. The state machine does

not care which bits are valid and which bits are not valid it merely passes the bits out to the

printhead 143. The data lines and control signals coming out of the MJI 320 can be wired

CEP13-AU

appropriately to the pinouts of the chip, using as few pins as required by the application range

of the chip (see Section 10.3.1 for more information).

10.3.1 Connections to Printhead

The MJI 320 has a number of connections to the printhead 143, including a maximum

of 4 colors, clocked in to a maximum of 9 segments per transfer to a maximum of 4 segment

groups. The lines coming from the MJI 320 can be directly connected to pins on the chip,

although not all lines will always be pins. For example, if the chip is specifically designed for

only connecting to 8 inch CMYK printers, only 32 bits of data need to be transferred each

transfer pulse. Consequently 32 pins of data out (8 pins per color), and not 36 pins are required.

In the same way, only 2 SRClock pulses are required, so only 2 pins instead of 4 pins are

required to cater for the different SRClocks. And so on.

If the chip must be completely generic, then all connections from the MJI 320 must be

connected to pins on the chip (and thence to the Memjet printhead 143).

Table 37 lists the maximum connections from the MJI 320, many of which are always

connected to pins on the chip. Where the number of pins is variable, a footnote explains what

the number of pins depends upon. The sense of input and output is with respect to the MJI 320.

The names correspond to the pin connections on the printhead 143.

Table 37. Memjet Interface Connections

Name #Pins I/O Description

Chromapod Select 3 O Select which chromapod will fire (0-4)

NozzleSelect 4 O Select which nozzle from the pod will fire (0-9)

PodgroupEnable 2 O Enable the podgroups to fire (choice of: 01,

11)

AEnable 1 O Firing pulse for podgroup A. In the current design

all segments fire simultaneously, although

multiple AEnable lines could be added for

dividing the firing sequence over multiple

segment groups for reasons of power and speed.

CEP13-AU

-81-

BEnable 1 O Firing pulse for podgroup B. In the current design

all segments fire simultaneously, although

multiple BEnable lines could be added for

dividing the firing sequence over multiple

segment groups for reasons of power and speed.

ColorlData[0-8] 9a O Output to ColorlData shift register of segments 0-

8

Color2Data[0-8] 9 O0 Output to Color2Data shift register of segments 0-

8

Color3Data[0-8] 9C O Output to Color3Data shift register of segments 0-

8

Color4Data[0-8] 9 O Output to Color4Data shift register of segments 0-

8

SRClock[1-4] 4e O A pulse on SRClock[N] (ShiftRegisterClock)

loads the current values from ColorlData[0-8],

Color2Data[0-8], Color3Data[0-8] and

Color4Data[0-8] into the segment group N on the

printhead.

PTransfer 1 O Parallel transfer of data from the shift registers to

the printhead's internal NozzleEnable bits (one

per nozzle).

SenseSegSelect[1-4] 4 O0 A pulse on SenseSegSelect[N] ANDed with data

on ColorlData[n] enables the sense lines for

segment n in segment group N of the printhead.

Tsense 1 I Temperature sense

Vsense 1 I Voltage sense

Rsense 1 I Resistivity sense

Wsense 1 I Width sense

TOTAL 52

CEP13-AU

0 -82-

O
0 a Although 9 lines are available from the MJI, the number of pins coming from the

chip will only reflect the actual number of segments in a segment group. The pins for

ColorlData are mandatory, since each printhead must print in at least 1 color.

b These lines are only translated into pins if the chip is to control a printhead with at

C least 2 colors. Although 9 lines are available from the MJI, the number of pins coming

N from the chip for Color2Data will only reflect the actual number of segments in a

segment group.

C These lines are only translated into pins if the chip is to control a printhead with at

least 3 colors. Although 9 lines are available from the MJI, the number of pins coming

from the chip for Color3Data will only reflect the actual number of segments in a

segment group.

d These lines are only translated into pins if the chip is to control a printhead with 4

colors. Although 9 lines are available from the MJI, the number of pins coming from the

chip for Color4Data will only reflect the actual number of segments in a segment group.

e Although 4 lines are available from the MJI, the number of pins coming from the

chip will only reflect the actual number of segment groups. A minimum of 1 pin is

required since there is at least 1 segment group (the entire printhead).

f Although 4 lines are available from the MJI, the number of pins coming from the

chip will only reflect the actual number of segment groups. A minimum of 1 pin is

required since there is at least 1 segment group (the entire printhead).

10.3.2 Firing Pulse Duration

The duration of firing pulses on the AEnable and BEnable lines depend on the viscosity

of the ink (which is dependant on temperature and ink characteristics) and the amount of power

available to the printhead 143. The typical pulse duration range is 1.3 to 1.8 pts. The MJI 320

therefore contains a programmable pulse duration table 324 (Figure 41), indexed by feedback

CEP13-AU

0 -83-

Sfrom the printhead 143. The table 324 of pulse durations allows the use of a lower cost power

supply, and aids in maintaining more accurate drop ejection.

The Pulse Duration table 324 has 256 entries, and is indexed by the current Vsense and

Tsense settings on lines 326 and 328, respectively. The upper 4-bits of address come from

Vsense, and the lower 4-bits of address come from Tsense. Each entry is 8 bits, and represents

Cc a fixed point value in the range of 0-4ms. The process of generating the AEnable and BEnable

c lines is shown in Figure 41.

SThe 256-byte table 324 is written by the processor 181 before printing the first page.

c1 The table 324 may be updated in between pages if desired. Each 8-bit pulse duration entry in

the table 324 combines:

User brightness settings (from the page description)

Viscosity curve of ink (from the QA Chip)

Rsense

Wsense

Vsense

Tsense

10.3.3 Dot Counts

The MJI 320 maintains a count of the number of dots of each color fired from the

printhead 143. The dot count for each color is a 32-bit value, individually cleared under

processor control. At 32-bits length, each dot count can hold a maximum coverage dot count of

17 8-inch x 12-inch pages, although in typical usage, the dot count will be read and cleared

.after each page or half-page.

The dot counts are used by the processor 181 to update the QA chip 312 (see Section

7.5.4) in order to predict when the ink cartridge 32 runs out of ink. The processor 181 knows

the volume of ink in the cartridge 32 for each of the colors from the QA chip 312. Counting the

number of drops eliminates the need for ink sensors, and prevents the ink channels from

running dry. An updated drop count is written to the QA chip 312 after each page. A new page

will not be printed unless there is enough ink left, and allows the user to change the ink without

getting a dud half-printed page which must be reprinted.

The layout of the dot counter for Colorl is shown in Figure 42. The remaining 3 dot

counters (ColorlDotCount, Color2DotCount, and Color3DotCount) are identical in structure.

CEP13-AU

-84-

10.3.4 Registers

The processor 181 communicates with the MJI 320 via a register set. The registers

allow the processor 181 to parameterize a print as well as receive feedback about print

progress.

The following registers are contained in the MJI 320:

Table 38. Memjet Interface Registers

Register Name Description

Print Parameters

SegmentsPerXfer The number of segments to write to each transfer. This also

equals the number of cycles to wait between each transfer

(before generating the next Advance pulse). Each transfer has

MaxColors x SegmentsPerXfer valid bits.

SegmentGroups The number of segment groups in the printhead. This equals

the number of times that SegmentsPerXfer cycles must elapse

before a single dot has been written to each segment of the

printhead. The MJI does this 800 times to completely transfer

all the data for the line to the printhead.

PrintSpeed Whether to print at low or high speed (determines the value

on the PodgroupEnable lines during the print).

NumLines The number of Load/Print cycles to perform.

Monitoring the Print (read only from point of view of processor)

Status The Memjet Interface's Status Register

LinesRemaining The number of lines remaining to be printed. Only valid

while Go=l.

Starting value is NumLines and counts down to 0.

TransfersRemaining The number of sets of SegmentGroups transfers remaining

before the Printhead is considered loaded for the current line.

Starts at 800 and counts down to 0. Only valid while Go=l.

CEP13-AU

SegGroupsRemaining The number of segment groups remaining in the current set

of transfers of 1 dot to each segment. Starts at

SegmentGroups and counts down to 0. Only valid while

Go=l.

SenseSegment The 9-bit value to place on the ColorlData lines during a

subsequent feedback SenseSegSelect pulse. Only 1 of the 9

bits should be set, corresponding to one of the (maximum) 9

segments. See SenseSelect for how to determine which of the

segment groups to sense.

SetAllNozzles If non-zero, the 36-bit value written to the printhead during

the LoadDots process is all Is, so that all nozzles will be fired

during the subsequent PrintDots process. This is used during

the preheat and cleaning cycles.

If 0, the 36-bit value written to the printhead comes from the

LLFU. This is the case during the actual printing of regular

images.

Actions

Reset A write to this register resets the MJI, stops any loading or

printing processes, and loads all registers with 0.

CEP13-AU

-86-

SenseSelect A write to this register with any value clears the

FeedbackValid bit of the Status register, and the remaining

action depends on the values in the LoadingDots and

PrintingDots status bits.

If either of the status bits are set, the Feedback bit is cleared

and nothing more is done.

If both status bits are clear, a pulse is given simultaneously

on all 4 SenseSegSelect lines with all ColorData bits 0. This

stops any existing feedback. Depending on the two low-order

bits written to SenseSelect register, a pulse is given on

SenseSegSelectl, SenseSegSelect2, SenseSegSelect3, or

SenseSegSelect4 line, with the ColorlData bits set according

to the SenseSegment register. Once the various sense lines

have been tested, the values are placed in the Tsense, Vsense,

Rsense, and Wsense registers, and the Feedback bit of the

Status register is set.

Go A write of 1 to this bit starts the LoadDots PrintDots cycles,

which commences with a wait for the first LineSync pulse. A

total of NumLines lines are printed, each line being

loaded/printed after the receipt of a LineSync pulse. The

loading of each line consists of SegmentGroups 36-bit

transfers. As each line is printed, LinesRemaining

decrements, and TransfersRemaining is reloaded with

SegmentGroups again. The status register contains print

status information. Upon completion of NumLines, the

loading/printing process stops, the Go bit is cleared, and any

further LineSync pulses are ignored. During the final print

cycle, nothing is loaded into the printhead.

A write of 0 to this bit stops the print process, but does not

clear any other registers.

CEP13-AU

-87-

ClearCounts A write to this register clears the ColorlDotCount,

Color2DotCount, Color3DotCount, and Color4DotCount

registers if bits 0, 1, 2, or 3 respectively are set. Consequently

a write of 0 has no effect.

Feedback

Tsense Read only feedback of Tsense from the last SenseSegSelect

pulse sent to segment SenseSegment. Is only valid if the

FeedbackValid bit of the Status register is set.

Vsense Read only feedback of Vsense from the last SenseSegSelect

pulse sent to segment SenseSegment. Is only valid if the

FeedbackValid bit of the Status register is set.

Rsense Read only feedback of Rsense from the last SenseSegSelect

pulse sent to segment SenseSegment. Is only valid if the

FeedbackValid bit of the Status register is set.

Wsense Read only feedback of Wsense from the last SenseSegSelect

pulse sent to segment SenseSegment. Is only valid if the

FeedbackValid bit of the Status register is set.

ColorlDotCount Read only 32-bit count of colorl dots sent to the printhead.

Color2DotCount Read only 32-bit count of color2 dots sent to the printhead.

Color3DotCount Read only 32-bit count of color3 dots sent to the printhead

Color4DotCount Read only 32-bit count of color4 dots sent to the printhead

The MJI's Status Register is a 16-bit register with bit interpretations as follows:

Table 39. MJI Status Register

Name Bits Description

LoadingDots 1 If set, the MJI is currently loading dots, with the

number of dots remaining to be transferred in

TransfersRemaining.

If clear, the MJI is not currently loading dots

CEP13-AU

-88-

PrintingDots 1 If set, the MJI is currently printing dots.

If clear, the MJI is not currently printing dots.

PrintingA 1 This bit is set while there is a pulse on the

AEnable line

PrintingB 1 This bit is set while there is a pulse on the

BEnable line

FeedbackValid 1 This bit is set while the feedback values Tsense,

Vsense, Rsense, and Wsense are valid.

Reserved 3

PrintingChromapod 4 This holds the current chromapod being fired

while the

PrintingDots status bit is set.

PrintingNozzles 4 This holds the current nozzle being fired while

the PrintingDots status bit is set.

The following pseudocode illustrates the logic required to load a printhead for a single

line. Note that loading commences only after the LineSync pulse arrives. This is to ensure the

data for the line has been prepared by the LLFU 322 and is valid for the first transfer to the

printhead 143.

Wait for LineSync

For TransfersRemaining 800 to 0

For I 0 to SegmentGroups

If (SetAllNozzles)

Set all ColorData lines to be 1

Else

Place 36 bit input on 36 ColorData lines

Endlf

Pulse SRClock[I]

Wait SegmentsPerXfer cycles

CEP13-AU

-89-

a Send ADVANCE signal

SEndFor

EndFor

10.3.5 Preheat and Cleaning Cycles

Cc The Cleaning and Preheat cycles are simply accomplished by setting appropriate

r registers in the MJI 320:

SetAllNozzles 1

c Set the PulseDuration register to either a low duration (in the case of the preheat mode)

or to an appropriate drop ejection duration for cleaning mode.

Set NumLines to be the number of times the nozzles should be fired

Set the Go bit and then wait for the Go bit to be cleared when the print cycles have

completed.

The LSGU 316, 318 must also be programmed to send LineSync pulses at the correct

frequency.

10.4 Line Loader/Format Unit

The line loader/format unit (LLFU) 322 loads the dots for a given print line into local

buffer storage and formats them into the order required for the Memjet printhead 143. It is

responsible for supplying the pre-calculated nozzleEnable bits to the Memjet interface 320 for

the eventual printing of the page.

The printing uses a double buffering scheme for preparing and accessing the dot-bit

information. While one line is being loaded into the first buffer, the pre-loaded line in the

second buffer is being read in Memjet dot order. Once the entire line has been transferred from

the second buffer to the printhead 143 via the Memjet interface 320, the reading and writing

processes swap buffers. The first buffer is now read and the second buffer is loaded up with the

new line of data. This is repeated throughout the printing process, as can be seen in the

conceptual overview of Figure 43.

The size of each buffer is 14KBytes to cater for the maximum line length of 18 inches

in 4 colors (18 x 1600 x 4 bits 115,200 bits 14,400 bytes). The size for both Buffer 0 (330

Figure 44) and Buffer 1 (332) is 28.128 KBytes. While this design allows for a maximum print

length of 18 inches, it is trivial to reduce the buffer size to target a specific application.

CEP13-AU

SSince one buffer 330, 332 is being read from while the other is being written to, two

_sets of address lines must be used. The 32-bits Dataln 334 from the common data bus 186 are

loaded depending on the WriteEnables, which are generated by State Machine 336 in response

to the DMA Acknowledges.

SA multiplexor 338 chooses between the two 4-bit outputs of Buffer 0 and Buffer 1, and

Cc sends the result to a 9-entry by 4-bit shift register 340. After a maximum of 9 read cycles (the

C number depends on the number of segments written to per transfer), and whenever an Advance

Spulse comes from the MJI 320, the current 36-bit value from the shift register 340 is gated into
C a 36-bit Transfer register 342, where it can be used by the MJI 320.

Note that not all the 36 bits are necessarily valid. The number of valid bits of 36

depends on the number of colors in the printhead 143, the number of segments, and the

breakup of segment groups (if more than one segment group). For more information, see

Section 9.2.

A single line in an L-inch C-color printhead consists of 1600L C-color dots. At 1 bit per

colored dot, a single print-line consists of 1600LC bits. The LLFU 322 is capable of addressing a

maximum line size of 18 inches in 4 colors, which equates to 108,800 bits (14 KBytes) per line.

These bits must be supplied to the MJI 320 in the correct order for being sent on to the

printhead 143. See Section 9.2.1 for more information concerning the Load Cycle dot loading

order, but in summary, 2LC bits are transferred to the printhead 143 in SegmentGroups

transfers, with a maximum of 36 bits per transfer. Each transfer to a particular segment of the

printhead 143 must load all colors simultaneously.

10.4.1 Buffers

Each of the two buffers 330, 332 is broken into 4 sub-buffers, 1 per color. The size of

each sub-buffer is 3600 bytes, enough to hold 18-inches of single color dots at 1600 dpi. The

memory is accessed 32-bits at a time, so there are 900 addresses for each buffer (requiring

bits of address).

All the even dots are placed before the odd dots in each color's buffer, as shown in

Figure 45. If there is any unused space it is placed at the end of each color's buffer.

The amount of memory actually used is directly related to the printhead length. If the

printhead is 18 inches, there are 1800 bytes of even dots followed by 1800 bytes of odd dots,

CEP13-AU

-91

Swith no unused space. If the printhead is 12 inches, there are 1200 bytes of even dots followed

by 1200 odd dots, and 1200 bytes unused.

The number ofsub-buffers gainfully used is directly related to the number of colors in

the printhead. This number is typically 3 or 4, although it is quite feasible for this system to be

used in a 1 or 2 color system (with some small memory wastage). In a desktop printing

Senvironment, the number of colors would be 4: Colorl=Cyan, Color2=Magenta,

C, Color3=Yellow, Color4=Black.

SThe address decoding circuitry is such that in a given cycle, a single 32-bit access can
C be made to all 4 sub-buffers either a read from all 4 or a write to one of the 4. Only one bit of

the 32-bits read from each color buffer is selected, for a total of 4 output bits. The process is

shown in Figure 46. 15 bits of address allow the reading of a particular bit by means of

of address being used to select 32 bits, and 5-bits of address choose 1-bit from those 32. Since

all color buffers share this logic, a single 15-bit address gives a total of 4 bits out, one per

color. Each buffer has its own WriteEnable line, to allow a single 32-bit value to be written to a

particular color buffer in a given cycle. The 32-bits of Dataln are shared, since only one buffer

will actually clock the data in.

Note that regardless of the number of colors in the printhead, 4 bits are produced in a

given read cycle (one bit from each color's buffer).

10.4.2 Address Generation

10.4.2.1 Reading

Address Generation for reading is straightforward. Each cycle we generate a bit address

which is used to fetch 4 bits representing 1-bit per color for a particular segment. By adding

400 to the current bit address, we advance to the next segment's equivalent dot. We add 400

(not 800) since the odd and even dots are separated in the buffer. We do this firstly

SegmentGroups sets of SegmentsPerXfer times to retrieve the data representing the even dots

(the dot data is transferred to the MJI 36 bits at a time) and another SegmentGroups sets of

SegmentsPerXfer times to load the odd dots. This entire process is repeated 400 times,

incrementing the start address each time. Thus all dot values are transferred in the order

required by the printhead in 400 x 2 x SegmentGroups x SegmentsPerXfer cycles.

In addition, we generate the TransferWriteEnable control signal. Since the LLFU 322

starts before the MJI 320, we must transfer the first value before the Advance pulse from the

CEP13-AU

-92-

SMJI 320. We must also generate the next value in readiness for the first Advance pulse. The

_solution is to transfer the first value to the Transfer register after SegmentsPerXfer cycles, and

then to stall SegmentsPerXfer-cycles later, waiting for the Advance pulse to start the next

SegmentsPerXfer cycle group. Once the first Advance pulse arrives, the LLFU 322 is

synchronized to the MJI 320. However, the LineSync pulse to start the next line must arrive at

Cc the MJI 320 at least 2SegmentsPerXfer cycles after the LLFU 322 so that the initial Transfer

value is valid and the next 32-bit value is ready to be loaded into the Transfer register 342.

SThe read process is shown in the following pseudocode:
cN DoneFirst FALSE

For DotInSegmentO 0 to 400

CurrAdr DotInSegmentO

XfersRemaining 2 x SegmentGroups

DotCount SegmentsPerXfer

Do

VI DotCount 0

TransferWriteEnable (VI AND NOT DoneFirst) OR ADVANCE

Stall V1 AND (NOT TransferWriteEnable)

If (NOT Stall)

Shift Register Fetch 4-bits from

CurrReadBuffer:CurrAdr

CurrAdr CurrAdr 400

If(V1)

DotCount SegmentsPerXfer 1

XfersRemaining XfersRemaining 1

Else

DotCount DotCount 1

Endlf

Endlf

Until (XfersRemaining=0) AND (NOT Stall)

EndFor

CEP13-AU

-93-

d The final transfer may not be fully utilized. This occurs when the number of segments per

_transfer does not divide evenly into the actual number of segments in the printhead. An example

of this is the 8.5 inch printhead, which has 17 segments. Transferring 9 segments each time

means that only 8 of the last 9 segments will be valid. Nonetheless, the timing requires the entire

9th segment value to be generated (even though it is not used). The actual address is therefore a

Cc don't care state since the data is not used.
C Once the line has finished, the CurrReadBuffer value must be toggled by the processor.

10.4.2.2 Writing

The write process is also straightforward. 4 DMA request lines are output to the DMA

controller 200. As requests are satisfied by the return DMA Acknowledge lines, the appropriate

8-bit destination address is selected (the lower 5 bits of the 15-bit output address are don't care

values) and the acknowledge signal is passed to the correct buffer's WriteEnable control line

(the Current Write Buffer is -CurrentReadBuffer). The 10-bit destination address is selected

from the 4 current addresses, one address per color. As DMA requests are satisfied the

appropriate destination address is incremented, and the corresponding TransfersRemaining

counter is decremented. The DMA request line is only set when the number of transfers

remaining for that color is non-zero.

The following pseudocode illustrates the Write process:

CurrentAdr[1-4] 0

While (ColorXfersRemaining[1-4] are non-zero)

DMARequest[l-4] ColorXfersRemaining[1-4] NOT 0

If DMAAknowledge[N]

CurrWriteBuffer:CurrentAdr[N]

Fetch 32-bits from data bus

CurrentAdr[N] CurrentAdr[N] 1

ColorXfersRemaining[N]

ColorXfersRemaining[N] 1 (floor 0)

Endlf

EndWhile

CEP13-AU

-94-

10.4.3 Registers

The following interface registers are contained in the LLFU 322:

Table 40. Line Load/Format Unit Registers

Register Name Description

SegmentsPerXfer The number of segments whose dots must be loaded

before each transfer. This has a maximum value of 9.

SegmentGroups The number of segment groups in the printhead. This has a

maximum number of 4.

CurrentReadBuffer The current buffer being read from. When BufferO is being

read, Bufferl is written to and vice versa.

Should be toggled with each AdvanceLine pulse from the

MJI.

Go Bits 0 and 1 control the starting of the read and write

processes respectively.

A non-zero write to the appropriate bit starts the process.

Stop Bits 0 and 1 control the stopping of the read and write

processes respectively.

A non-zero write to the appropriate bit stops the process.

Stall This read-only status bit comes from the LLFU's Stall

flag. The Stall bit is valid when the write Go bit is set.

A Stall value of 1 means that the LLFU is waiting for the

ADVANCE pulse from the MJI to continue. The processor

can safely start the LSGU for the first line once the Stall

bit is set.

ColorXfersRemaining[1-4] The number of 32-bit transfers remaining to be read into

the specific Color[N] buffer.

10.5 Controlling a Print

When controlling a print the processor 181 programs and starts the LLFU 322 in read

mode to ensure that the first line of the page is transferred to the buffer. When the interrupts

CEP13-AU

arrive from the DMA controller 200, the processor 181 can switch LLFU buffers 330, 332, and

program the MJI 320. The processor 181 then starts the LLFU 322 in read/write mode and

starts the MJI 320. The processor 181 should then wait a sufficient period of time to ensure that

other connected printer controllers have also started their LLFUs and MJIs (if there are no

other connected printer controllers, the processor 181 must wait until the Stall bit of the LLFU

322 is set, a duration of 2 SegmentsPerXfer cycles). The processor 181 can then program the

LGSU 316, 318 to start the synchronized print. As interrupts arrive from the DMA controllers

200, the processor 181 can reprogram the DMA channels, swap LLFU buffers 330, 332, and

restart the LLFU 322 in read/write mode. Once the LLFU 332 has effectively filled its pipeline,

it will stall until the next Advance pulse from the MJI 320. The MJI 320 does not have to be

touched during the print.

If for some reason the processor 181 wants to make any changes to the MJI 320 or

LLFU 322 registers during an inter-line period it should ensure that the current line has

finished printing/loading by polling the status bits of the MJI 320 and the Go bits of the LLFU

322.

11 GENERIC PRINTER DRIVER

This section describes generic aspects of any host-based printer driver for CePrint

11.1 Graphics and Imaging Model

We assume that the printer driver is closely coupled with the host graphics system, so

that the printer driver can provide device-specific handling for different graphics and imaging

operations, in particular compositing operations and text operations.

We assume that the host provides support for color management, so that device-

independent color can be converted to CePrint-specific CMYK color in a standard way, based

on a user-selected CePrint-specific ICC (International Color Consortium) color profile. The

color profile is normally selected implicitly by the user when the user specifies the output

medium in the printer plain paper, coated paper, transparency, etc.). The page description

sent to the printer 10 always contains device-specific CMYK color.

We assume that the host graphics system renders images and graphics to a nominal

resolution specified by the printer driver, but that it allows the printer driver to take control of

rendering text. In particular, the graphics system provides sufficient information to the printer

CEP13-AU

-96-

U
Sdriver to allow it to render andposition text at a higher resolution than the nominal device

_resolution.

We assume that the host graphics system requires random access to a contone page

buffer at the nominal device resolution, into which it composites graphics and imaging objects,

but that it allows the printer driver to take control of the actual compositing i.e. it expects the

Cc printer driver to manage the page buffer.¢€3
11.2 Two-Layer Page Buffer

SThe printer's page description contains a 267 ppi contone layer and an 800 dpi black

layer. The black layer is conceptually above the contone layer, i.e. the black layer is

composited over the contone layer by the printer. The printer driver therefore maintains a page

buffer which correspondingly contains a medium-resolution contone layer and a high-

resolution black layer.

The graphics systems renders and composites objects into the page buffer bottom-up

i.e. later objects obscure earlier objects. This works naturally when there is only a single layer,

but not when there are two layers which will be composited later. It is therefore necessary to

detect when an object being placed on the contone layer obscures something on the black layer.

When obscuration is detected, the obscured black pixels are composited with the contone layer

and removed from the black layer. The obscuring object is then laid down on the contone layer,

possibly interacting with the black pixels in some way. If the compositing mode of the

obscuring object is such that no interaction with the background is possible, then the black

pixels can simply be discarded without being composited with the contone layer. In practice, of

course, there is little interaction between the contone layer and the black layer.

The printer driver specifies a nominal page resolution of 267 ppi to the graphics system.

Where possible the printer driver relies on the graphics system to render image and graphics

objects to the pixel level at 267 ppi, with the exception of black text. The printer driver fields

all text rendering requests, detects and renders black text at 800 dpi, but returns non-black text

rendering requests to the graphics system for rendering at 267 ppi.

Ideally the graphics system and the printer driver manipulate color in device-

independent RGB, deferring conversion to device-specific CMYK until the page is complete

and ready to be sent to the printer. This reduces page buffer requirements and makes

compositing more rational. Compositing in CMYK color space is not ideal.

CEP 3-AU

-97-

Ultimately the graphics system asks the printer driver to composite each rendered

object into the printer driver's page buffer. Each such object uses 24-bit contone RGB, and has

an explicit (or implicitly opaque) opacity channel.

The printer driver maintains the two-layer page buffer in three parts. The first part is the

medium-resolution (267 ppi) contone layer. This consists of a 24-bit RGB bitmap. The second

cr part is a medium-resolution black layer. This consists of an 8-bit opacity bitmap. The third part

Sis a high-resolution (800 dpi) black layer. This consists of a 1-bit opacity bitmap. The medium-

Sresolution black layer is a subsampled version of the high-resolution opacity layer. In practice,
C assuming the low resolution is an integer factor n of the high resolution n 800 267

each low-resolution opacity value is obtained by averaging the corresponding n x n high-

resolution opacity values. This corresponds to box-filtered subsampling. The subsampling of

the black pixels effectively antialiases edges in the high-resolution black layer, thereby

reducing ringing artifacts when the contone layer is subsequently JPEG-compressed and

decompressed.

The structure and size of the page buffer is illustrated in Figure 47.

11.3 Compositing Model

For the purposes of discussing the page buffer compositing model, we define the

following variables.

TABLE 41 Compositing variables

variable description resolution format

n medium to high resolution scale factor

CBgM background contone layer color medium 8-bit color component

CobM contone object color medium 8-bit color component

aObM contone object opacity medium 8-bit opacity

aFgM medium-resolution foreground black medium 8-bit opacity

ayer opacity

fFgH oreground black layer opacity hgh 1-bit opacity

TH black object opacity high 1-bit opacity

CEP13-AU

-98-

When a black object of opacity aTxH is composited with the black layer, the black layer

is updated as follows:

aXFgH[X, y] XFgH[X, y] V aTx[Xx, y] (Rule 1)

1n-1 n-1

X CaFgM[X, y] 2 255 aFgH[nx i, ny (Rule 2)
c n i=0 j=0

The object opacity is simply ored with the black layer opacity (Rule and the

corresponding part of the medium-resolution black layer is re-computed from the high-

resolution black layer (Rule 2).

When a contone object of color CObM and opacity aObM is composited with the contone

layer, the contone layer and the black layer are updated as follows:

CBgM[X, y] CBgM[X, y](l FgM[X, if aObM[X, y] 0 (Rule 3)

aFgM[X, y] 0 if aObM[X, y] 0 (Rule 4)

FgH[x, y] 0 if aobM[x n, y n] 0 (Rule

CBgM[X, y] CBg[X, y](1 CObM[X, CobM[X, y] aObM[x, y] (Rule 6)

Wherever the contone object obscures the black layer, even if not fully opaquely, the

affected black layer pixels are pushed from the black layer to the contone layer, i.e. composited

with the contone layer (Rule 3) and removed from the black layer (Rule 4 and Rule The

contone object is then composited with the contone layer (Rule 6).

If a contone object pixel is fully opaque aobM[x, y] 255), then there is no need to

push the corresponding black pixels into the background contone layer (Rule since the

background contone pixel will subsequently be completely obliterated by the foreground

contone pixel (Rule 6).

11.4 Page Compression and Delivery

Once page rendering is complete, the printer driver converts the contone layer to

CePrint-specific CMYK with the help of color management functions provided by the graphics

system.

CEP13-AU

I

99-

U
SThe printer driver then compresses and packages the black layer and the contone layer

_into a CePrint page description as described in Section 6.2. This page description is delivered

to the printer 10 via the standard spooler.

Note that the black layer is manipulated as a set of 1-bit opacity values, but is delivered

to the printer 10 as a set of 1-bit black values. Although these two interpretations are different,

Cc they share the same representation, and so no data conversion is required.

The forward discrete cosine transform (DCT) is the costliest part of JPEG compression.

SIn current high-quality software implementations, the forward DCT of each 8x8 block requires

12 integer multiplications and 32 integer additions. On typical modem general-purpose

processors, an integer multiplication requires 10 cycles, and an integer addition requires 2

cycles. This equates to a total cost per block of 184 cycles.

The 26.4MB contone layer consists of 432,538 JPEG blocks, giving an overall forward

DCT cost of about 80Mcycles. At 150MHz this equates to about 0.5 seconds, which is 25% of

the 2 second rendering time allowed per page.

A CE-oriented processor may have DSP support, in which case the presence of single-

cycle multiplication makes the JPEG compression time negligible.

11.5 Banded Output

The printer control protocol supports the transmission of the page to the printer 10 as a

series of bands. If the graphics system also supports banded output, then this allows the printer

driver to reduce its memory requirements by rendering the image one band at a time. Note,

however, that rendering one band at a time can be more expensive than rendering the whole

page at once, since objects which span multiple bands have to be handled multiple times.

Although banded rendering can be used to reduce memory requirements in the printer

driver, buffers for two bands are still required. One buffer is required for the band being

transmitted to the printer 10; another buffer is required for the band being rendered. A single

buffer may suffice if the connection between the host processor and printer is sufficiently fast.

The band being transmitted to the printer may also be stored on disk, if a disk drive is present

in the system, and only loaded into memory block-by-block during transmission.

12 WINDOWS 9X/NT/CE PRINTERDRIVER

12.1 Windows 9x/NT/CE Printing System

CEP13-AU

100-

U
SIn the Windows 9x/NT/CE printing system, a printer is a graphics device, and an

application communicates with it via the graphics device interface (GDI). The printer driver

graphics DLL (dynamic link library) implements the device-dependent aspects of the various

graphics functions provided by GDI.

The spooler handles the delivery of pages to the printer, and may reside on a different

C€ machine to the application requesting printing. It delivers pages to the printer via aport

monitor which handles the physical connection to the printer. The optional language monitor is

Sthe part of the printer driver which imposes additional protocol on communication with the

c, printer, and in particular decodes status responses from the printer on behalf of the spooler.

The printer driver user interface DLL implements the user interface for editing printer-specific

properties and reporting printer-specific events.

The structure of the Windows 9x/NT/CE printing system is illustrated in Figure 48.

The printer driver language monitor and user interface DLL must implement the

implement the relevant aspects of the printer control protocol described in Section 6.

The remainder of this section describes the design of the printer driver graphics DLL. It should

be read in conjunction with the appropriate Windows 9x/NT/CE DDK documentation.

12.2 Windows 9x/NT/CE Graphics Device Interface (GDI)

GDI provides functions which allow an application to draw on a device surface, i.e.

typically an abstraction of a display screen or a printed page. For a raster device, the device

surface is conceptually a color bitmap. The application can draw on the surface in a device-

independent way, i.e. independently of the resolution and color characteristics of the device.

The application has random access to the entire device surface. This means that if a

memory-limited printer device requires banded output, then GDI must buffer the entire page's

GDI commands and replay them windowed into each band in turn. Although this provides the

application with great flexibility, it can adversely affect performance.

GDI supports color management, whereby device-independent colors provided by the

application are transparently translated into device-dependent colors according to a standard

ICC (International Color Consortium) color profile of the device. A printer driver can activate

a different color profile depending, for example, on the user's selection of paper type on the

driver-managed printer property sheet.

CEP13-AU

-101

GDI supports line and spline outline graphics (paths), images, and text. Outline

graphics, including outline font glyphs, can be stroked and filled with bit-mapped brush

patterns. Graphics and images can be geometrically transformed and composited with the

contents of the device surface. While Windows 95/NT4 provides only boolean compositing

operators, Windows 98/NT5 provides proper alpha-blending.

12.3 Printer Driver Graphics DLL

A raster printer can, in theory, utilize standard printer driver components under

Windows 9x/NT/CE, and this can make the job of developing a printer driver trivial. This

relies on being able to model the device surface as a single bitmap. The problem with this is

that text and images must be rendered at the same resolution. This either compromises text

resolution, or generates too much output data, compromising performance.

As described earlier, CePrint's approach is to render black text and images at different

resolutions, to optimize the reproduction of each. The printer driver is therefore implemented

according to the generic design described in Section 11.

The driver therefore maintains a two-layer three-part page buffer as described in

Section 11.2, and this means that the printer driver must take over managing the device

surface, which in turn means that it must mediate all GDI access to the device surface.

12.3.1 Managing the Device Surface

A graphics driver must support a number of standard functions, including the following:

Table 42. Standard graphics driver interface functions

function description

DrvEnableDriver Initial entry point into the driver graphics DLL. Returns

addresses of functions supported by the driver.

DrvEnablePDEV Creates a logical representation of a physical device with which

the driver can associate a drawing surface.

DrvEnableSurface Creates a surface to be drawn on, associated with a given

PDEV.

CEP1 3-AU

-102-

d DrvEnablePDEV indicates to GDI, via the flGraphicsCaps member of the returned

_DEVINFO structure, the graphics rendering capabilities of the driver. This is discussed further

below.

DrvEnableSurface creates a device surface consisting of two conceptual layers and

three parts: the 267 ppi contone layer 24-bit RGB color, the 267 ppi black layer 8-bit opacity,

Cc and the 800 dpi black layer 1-bit opacity. The virtual device surface which encapsulates these

two layers has a nominal resolution of 267 ppi, so this is the resolution at which GDI

Soperations take place.

Although the aggregate page buffer requires about 34MB of memory, the size of the

page buffer can be reduced arbitrarily by rendering the page one band at a time, as described in

Section 12.3.4.

A printer-specific graphics driver must also support the following functions:

Table 43. Required printer driver functions

function description

DrvStartDoc Performs any start-of-document handling

DrvStartPage Handles the start of a new page.

DrvSendPage Sends the current page to the printer via the spooler.

DrvEndDoc Performs any end-of-document handling.

DrvStartDoc sends the start document command to the printer, and DrvEndDoc sends

the end document command.

DrvStartPage sends the start page command with the page header to the printer.

DrvSendPage converts the contone layer from RGB to CMYK using GDI-provided

color management functions, compresses both the contone and black layers, and sends the

compressed page as a single band to the printer (in apage band command).

Both DrvStartPage and DrvSendPage use EngWritePrinter to send data to the printer

via the spooler.

Managing the device surface and mediating GDI access to it means that the printer

driver must support the following additional functions:

Table 44. Required graphics driver functions for a device-managed surface

CEP13-AU

-103-

function description

DrvCopyBits Translates between device-managed raster surfaces and GDI-

managed standard-format bitmaps.

DrvStrokePath Strokes a path.

DrvPaint Paints a specified region.

DrvTextOut Renders a set of glyphs at specified positions.

Copying images, stroking paths and filling regions all occur on the contone layer, while

rendering solid black text occurs on the bi-level black layer. Furthermore, rendering non-black

text also occurs on the contone layer, since it isn't supported on the black layer. Conversely,

stroking or filling with solid black can occur on the black layer (if we so choose).

Although the printer driver is obliged to hook the aforementioned functions, it can punt

function calls which apply to the contone layer back to the corresponding GDI

implementations of the functions, since the contone layer is a standard-format bitmap. For

every DrvXxx function there is a corresponding EngXxx function provided by GDI.

As described in Section 11.2, when an object destined for the contone layer obscures

pixels on the black layer, the obscured black pixels must be transferred from the black layer to

the contone layer before the contone object is composited with the contone layer. The key to this

process working is that obscuration is detected and handled in the hooked call, before it is punted

back to GDI. This involves determining the pixel-by-pixel opacity of the contone object from its

geometry, and using this opacity to selectively transfer black pixels from the black layer to the

contone layer as described in Section 11.2.

12.3.2 Determining Contone Object Geometry

It is possible to determine the geometry of each contone object before it is rendered and

thus determine efficiently which black pixels it obscures. In the case of DrvCopyBits and

DrvPaint, the geometry is determined by a clip object (CLIPOBJ), which can be enumerated as

a set of rectangles.

I n the case of DrvStrokePath, things are more complicated. DrvStrokePath supports both

straight-line and B6zier-spline curve segments, and single-pixel-wide lines and geometric-wide

lines. The first step is to avoid the complexity of Bezier-spline curve segments and geometric-

CEP13-AU

-104-

d wide lines altogether by clearing the corresponding capability flags (GCAPS_BEZIERS and

SGCAPS_GEOMETRICWIDE) in the flGraphicsCaps member of the driver's DEVINFO

structure. This causes GDI to reformulate such calls as sets of simpler calls to DrvPaint. In

general, GDI gives a driver the opportunity to accelerate high-level capabilities, but simulates

any capabilities not provided by the driver.

What remains is simply to determine the geometry of a single-pixel-wide straight line.

"1 Such a line can be solid or cosmetic. In the latter case, the line style is determined by a styling

Sarray in the specified line attributes (LINEATTRS). The styling array specifies how the line

alternates between being opaque and transparent along its length, and so supports various

dashed line effects etc.

When the brush is solid black, straight lines can also usefully be rendered to the black

layer, though with the increased width implied by the 800 dpi resolution.

12.3.3 Rendering Text

In the case of a DrvTextOut, things are also more complicated. Firstly, the opaque

background, if any, is handled like any other fill on the contone layer (see DrvPaint). If the

foreground brush is not black, or the mix mode is not effectively opaque, or the font is not

scalable, or the font indicates outline stroking, then the call is punted to EngTextOut, to be

applied to the contone layer. Before the call is punted, however, the driver determines the

geometry of each glyph by obtaining its bitmap (via FONTOBJ_cGetGlyphs), and makes the

usual obscuration check against the black layer.

If punting a DrvTextOut call is not allowed (the documentation is ambiguous), then the

driver should disallow complex text operations. This includes disallowing outline stroking (by

clearing the GCAPS_VECTOR_FONT capability flag), and disallowing complex mix modes

(by clearing the GCAPS_ARBMIXTXT capability flag).

If the foreground brush is black and opaque, and the font is scalable and not stroked,

then the glyphs are rendered on the black layer. In this case the driver determines the geometry

of each glyph by obtaining its outline (again via FONTOBJ_cGetGlyphs, but as a PATHOBJ).

The driver then renders each glyph from its outline at 800 dpi and writes it to the black layer.

Although the outline geometry uses device coordinates at 267 ppi), the coordinates are in

fixed point format with plenty of fractional precision for higher-resolution rendering.

CEP13-AU

105-

SNote that strikethrough and underline rectangles are added to the glyph geometry, if

specified.
The driver must set the GCAPS_HIGHRESTEXT flag in the DEVINFO to request that

glyph positions (again in 267 ppi device coordinates) be supplied by GDI in high-precision

fixed-point format, to allow accurate positioning at 800 dpi. The driver must also provide an
c implementation of the DrvGetGlyphMode function, so that it can indicate to GDI that glyphs

should be cached as outlines rather than bitmaps. Ideally the driver should cache rendered

Sglyph bitmaps for efficiency, memory allowing. Only glyphs below a certain point size should
C be cached.

12.3.4 Banded Output

As described in Section 6, the printer control protocol supports banded output by

breaking the page description into a page header and a number of page bands. GDI supports

banded output to a printer to cater for printer drivers and printers which have limited internal

buffer memory.

GDI can handle banded output without application involvement. GDI simply records all

the graphics operations performed by the application in a metafile, and then replays the entire

metafile to the printer driver for each band in the page. The printer driver must clip the

graphics operations to the current band, as usual. Banded output can be more efficient if the

application takes note of the RC_BANDING bit in the driver's raster capabilities (returned by

GetDeviceCaps when called with the RASTERCAPS index) and only performs graphics

operations relevant to each band.

If banded output is desired because memory is limited, then the printer driver must

enable banding by calling EngMarkBandingSurface in DrvEnableSurface. It must also support

the following additional functions:

Table 45. Required printer driver functions

function description

DrvStartBanding Prepares the driver for banding and returns the origin of the first

band.

DrvNextBand Sends the current band to the printer and returns the origin of the

next band, if any.

CEP13-AU

-106-

SLike DrvSendPage, DrvNextBand converts the contone layer from RGB to CMYK

using GDI-provided color management functions, compresses both the contone and black

Slayers, and sends the compressed page band to the printer (in a page band command).

It uses EngWritePrinter to send the band data to the printer via the spooler.

CEP13-AU

-107-

U
SCLAIMS

1. A printer including a print engine, the print engine including:

a page width printhead;

a transfer roller arranged adjacent the printhead for transferring ink deposited on its

surface by the printhead to a surface of a sheet of print media on which an image is to be

Cc printed, the roller having a passage defined therein; and

Sa drive means for rotatably driving the transfer roller and feeding the print media past

Sthe transfer roller, the drive means being arranged in the passage of the transfer roller.

2. The printer as claimed in claim 1 in which the printhead is a microelectromechanical

inkjet printhead.

3. The-printer as claimed in claim 1 or claim 2 in which the transfer roller is a hollow right

circular cylinder which defines the passage through it.

4. The printer as claimed in any one of claims 1 to 3 in which at least a surface of the

transfer roller is of a wear resistant material which is resistant to pitting, scratching or scoring.

The printer as claimed in claim 4 in which the material is titanium nitride.

6. The printer as claimed in any one of claims 1 to 5 in which the drive means

includes a motor.

7. The printer as claimed in claim 6 in which the motor is a stepper motor.

8. The printer as claimed in claim 6 or claim 7 in which a reduction gearbox is mounted

on an output shaft of the motor.

9. The printer as claimed in claim 8 in which, to reduce space, at least a part of a gear train

of the gearbox is a worm gear train.

CEP13-AU

2004233545 200423545 01 Dec 2004

14- FIG. 1

18

FIG. 2

2004233545 200423545 01 Dec 2004

1.-I

FIG.
I.-

FIG. -4

2004233545 01 Dec 2004

23

\11- r

FI.

2004233545 01 Dec 2004

Srender page n Irender page n+1 render page n+2
1 I I

Itransfer page n transfer page n+1 transfer page n+2
I.

print page n print page n+1 print page n+2
I

first page: 6 seconds

sustained: 2 seconds

FIG. 6

5/37

host processor

r is

render contone
image graphics

II identify.li obscu

contone page buffer

compress contone data

compre,,
printer driver

embedded printerq
-Corr

decompress
contone data

halftone
contone data

essed

esed page

1e pag

d ecompress
DI-level page

b4 -level data

FLO. 7

6/37

1,30 123

FIG. 3

2004233545 200423545 01 Dec 2004

00

6

194-

73

FIG.

2004233545 200423545 01 Dec 2004

FIO. 9

12
144

54
26

24--'

0 0

I

22
142

140

FIG.

2004233545 01 Dec 2004

140145 23

12

143

FIG. 11

2004233545

145

01 Dec 2004

140

170

140 142 170 142 170

F/C. 12A FIG. 125

2004233545 200423545 01 Dec 2004

140

-150

140

150

FIG.

2004233545 01 Dec 2004

NA)

-4

FIG. 14

2004233545 01 Dec 2004

12

154

FIG.

2004233545 01 Dec 2004

-A.

124

170

142 170 140

FIG. 16

15/37

UA

AO

0 AO

create 5, create 3, AO
A-1, A+1, AO
A-i, create 2, kill, AO

A-i, A-i, AO
A±1, AO

kill, create 5, AO

A+i, A-i, AO

kill, kill, AO

7/ createO0, kill, create 13

kill, kill, create 13, EOP

FIG. 17

200423354:

CePrint central processor (CCP)
181

processor
188 196 190 200 298

EDRL JPEG halftoner/ D MA program
expander decoder compositor controller ROM

processor address, data and control bus

194 300 S 309 310 S 192 193

5 01

1:

180

314

Dec 2004

78

nsors Iink cartridge Memjet
r QAchip printhead

otors replaceable optionally
Sink cartridge I replaceable I

4I printhead I

52-1

FIG. 18

17/37

receive
page

Cc compressed
CM page buffer max. 6MB

decompress decompress
contone data bi-level data

13MB/s I

142KB contone CMYK buffer bi-level K buffer 3KB

13MB/s

halftone composite
contone data bi-level data

bi-level CMYK buffer 166KB

;a

print

FIG. 19

2004233545 200423545 01 Dec 2004

lcS&

FIG.

2004233545 01 Dec 2004

next byte ER
~stream

1DMA FIFO
-226

byte reg. 1 byte re.ZZ

200

232

machine

FIG. 21

20/37

ready runlength next run reset flush

252

212

/11

FIG. 22

2004233545 01 Dec 2004

113
page widthflush next run reset runlength ready

FIG.

22/37

J196

28

FIG. 24

target left margin target page width target right margin

black page width

contone page width

page width (of printhead)

FIG. 26

23/37

190

FIC.

2004233545 200423545 01 Dec 2004

292

dither
cell

addr. gen.

290

FIG. 27

25/37

FIG.

,302
1304 ,300

to external
speaker

FIG. 29

2004233545 01 Dec 2004

buttons

LEDs

sensor 152M 104 :replaceable
senor ink cartridge 312

speaker motors 8MB master ink cartridge
RDRAM QA chip QA chip

194
I: OPtiofallY:

printhead :4

back side (master) COP 10OM Mem jetlprintheadl

link tmaster 5,4 A l~ inter-COP lIine
Osave serial link sync

fron sie (lav) CP 'Memjet-fron sid (slve) CP 1505printhead

1823 printhead
132--

FIG.

2004233545 200423545 01 Dec 2004

144

143

FIG. L31

28/37

FIG. 52

FIG.

29/37

Cyan Pod

7 7

Magenta Pod

A. 7

Yellow Pod

L7 7
T/

Black Pod
FI.0

I. 34

1 2

L 7~7

/ZiI7ZZ7Z:K7Z:i7ZZI710
C Cyan
M magenta
Y Yellow
K Black

5 chromapods

FIO.

£C7LC 7LI7 Cl
R 72fT7Z 7fEm

=Y2 -YJ iW7
=mK7K7Li7zi7

i= 7Z7Z UZ7zZ-7
Z E~f- m7LM7

=7LY7LZ7 Ly7LZ7
£E7L7Z K77Z 7 C Cyan

M Magenta
Y Yellow
K Black

FIG. 3

2004233545 01 Dec 2004

Segment
A single segment contains

4 firegroups

Firegroup 0 Feo 1 Firegroup 2 Firegroup 3

lo A single Firegroup
contains 2 phasegroups

A single Phasegroup
contains 2 podgroups

EJL:7KJLKJZ Z7
LIZ~Z~tCfYZLIZ
f7I7Z~IL1IZzZE ZLZZ7LZy 1Z 7 LIZI

L37/117f17/ 17fl
C Cyan
M Magenta
Y Yellow
K Black

r

FIG. 57

31/37

BEnableM

2 gs 2 gs

FIG.

320

1413

FIG.

2004233545 01 Dec 2004

192

To/From
other PHIs
stepper motor

re

To/From
other PHIs

143

FIG. 39

2004233545 01 Dec 2004

Load Table
4-bit ADO

S+H (non-linear)

Vsense

Tsense

AEnable
B Enable

523 4-bit ADO
(non-linear)

324

FIG. zf1

SRClock[1 ClearCount

Load Clear

Colonl Data]

FIG. -42

34/37

z 32

z

:3 32

B uffero 0

Buffer 1
4 Format 32 TO]l Dots Memjet

f~otsInterface

4 Fomt 32 TO
ort Memjet

Interface
Buffer 0

Buffer 1

FIG. 4

Buffer 0/1

Colonl Dots Buffer

Color2 Dots Buffer

Color3 Dots Buffer

Color4 Dots Buffer

~,3,0,3,2

/I
Even
Dots

Odd
Dots

FIG.

2004233545 01 Dec 2004

To DMA Controller

322

J

FIG. 44

2004233545 200423545 01 Dec 2004

Address

FIG.

6 37/37

O
0 page buffer

0 foreground background

1
high-res medium-res

black layer black layer
(1-bit opacity) (8-bit opacity)

medium-res
contone layer
(24-bit RGB)

800 dpi 267 ppi 267 ppi
x 8.3" x 11.7" x 8.3" x 11.7" x 8.3" x 11.7"

x 1-bit opacity x 8-bit opacity x 24-bit RGB
7.4 MB 6.6MB 19.8MB

FIG. 47

application interface DLL

GDI I printer driver
language
monitor

printer driver
graphics DLL

port
monitor

I-

IIIIIIIIIIIIIIIII
IIIIIIIIII

FIG. 48

	Abstract
	Description
	Claims
	Drawings

