
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0098472 A1

Appleton

US 201600.98472A1

(43) Pub. Date: Apr. 7, 2016

(54)

(71)

(72)

(21)

(22)

(51)

MAP-REDUCE OB VIRTUALIZATION

Applicant: Red Hat, Inc., Raleigh, NC (US)

Inventor:

Appl. No.: 14/504.237

Filed: Oct. 1, 2014

Publication Classification

Int. C.
G06F 7/30

Client Machine 102A

Client Machine 102B

Client Machine 102C.

Client Machine 102D

(2006.01)

Map-Reduce
Service

Machine 106

Map-Reduce
Management
Module 130

Shaun David Appleton, Hook (GB)

(52) U.S. Cl.
CPC. G06F 17/30598 (2013.01); G06F 17/30424

(2013.01)
(57) ABSTRACT
A method for map-reduce job virtualization is disclosed. The
method includes receiving a map-reduce job written in a first
map-reduce language. The map-reduce job is to be performed
in parallelona plurality of nodes of a plurality of clusters. The
method also includes selecting one or more clusters to run the
map-reduce job. The method further includes identifying a
second map-reduce language associated with the selected
clusters. The method also includes converting the first map
reduce language of the map-reduce job into the second map
reduce language. The method further causes the map-reduce
job in the second map-reduce language to be run on the
plurality of nodes of the selected clusters.

Map-Reduce 100
Computer Cluster 101 FrameWork 104 A^

:
Node 140A NOce 140B NOde 140C

Map-Reduce Map-Reduce Map-Reduce
Job 143A Jo 143B Joo 143C

i Memory Memory Memory
145A 145B 145C

Database 107

fy wry Disk - - ---. Disk
s ---- - - - - 3.

NNetwork, File 171 - - File 171B
- 108 - - - 17OA 17OB

o

Map-Reduce
Computer Cluster 103 Framework 105

|
Node 140D NOCe 14 OE Node 14OF

y Map-Reduce Map-Reduce Map-Reduce
Job 143D Job 14.3E Job 143F

Memory Memory Memory
145D 14.3E 145F

US 2016/0098472 A1 Apr. 7, 2016 Sheet 1 of 5 Patent Application Publication

US 2016/0098472 A1 Apr. 7, 2016 Sheet 2 of 5 Patent Application Publication

?ZZ ETOGOW HEIÐVNVW GOT

Patent Application Publication Apr. 7, 2016 Sheet 3 of 5 US 2016/0098472 A1

START / 300
A.

receiving a map-reduce job written in a first map
reduce language

302

Selecting one or more clusters to run the map
reduce job

304

identifying a Second map-reduce language
associated with the Selected clusters

O6

converting the first map-reduce language of the
map-reduce job into the ScCond-map reduce

language 308

causing the map-reduce job in the second map
reduce language to be run on the plurality of nodes

of the selected clusters 310

receiving a result of the map-reduce job
one or more nodes of the Selected clusters,

wherein the result is in the Second map-reduce
languag 312

converting the result from the Second map-reduce
language to the first map-reduce language

314

END

FIGURE 3

Patent Application Publication Apr. 7, 2016 Sheet 4 of 5 US 2016/0098472 A1

400 START

Selecting the one or more clusters to run the map
reduce job is performed responsive to determining
an availability of the selected clusters to perform

the map reduce job 402

Selecting the one or more clusters to run the map
reduce job is performed responsive to determining
that a load on the Selected clusterS does not exceed

a threshold load level 404

causing data to be processed by the map reduce
job to be available to the Selected clusters

406

querying each cluster of the plurality of clusters
for an indication of a characteristic of each cluster

408

Selecting the one or more clusters to run the map
reduce job based on the characteristic

410

FIGURE 4

Patent Application Publication

502

PROCESSING
DEVICE

PROCESSINGLOGIC 526

Map-Reduce
Management
Module 130

504

MAIN MEMORY
N

INSTRUCTIONS

Map-Reduce
Management
Module 130

526

- 506

STATIC MEMORY

508

NETWORK
INTERFACE
DEVICE

Apr. 7, 2016

N 1530

FIGURE 5

Sheet 5 of 5 US 2016/0098472 A1

500
A ^

-510

VIDEO DISPLAY

512

ALPHA-NUMERIC
INPUT DEVICE

514

CURSOR
CONTROL
DEVICE

516

SIGNAL
GENERATION

DEVICE

518

DATA STORAGEDEVICE

MACHINE-READABLE 24
MEDIUM

SOFTWARE
526

Map-Reduce
Management
Module 130

US 2016/0098472 A1

MAP-REDUCE OB VIRTUALIZATION

TECHNICAL FIELD

0001. This disclosure is related generally to processing
large data sets, and more particularly, to methods of perform
ing map-reduce jobs.

BACKGROUND

0002 Map-reduce is a programming model for processing
large data sets. The map-reduce programming model com
prises a map procedure that performs filtering and sorting and
a reduce procedure that perform a Summary operation. Typi
cally, a map-reduce job is performed on clusters of comput
ers, such as clusters of storage servers in a distributed file
system. For example, a file system may have clusters of
storage servers, such that each cluster includes a master node
and one or more worker nodes. During the 'map' phase, a
master node may receive a job request to perform an opera
tion using a file or data located in the memory. The master
node may divide the job into Smaller Sub-jobs, and may dis
tribute the sub-jobs to the worker nodes. The worker nodes
may process the Sub-jobs in parallel and may pass the results
back to the master node. During the “reduce' phase, the
master node may collect the results of the Sub-jobs and com
bine the results by performing a Summary operation to form
the output for the job request.

BRIEF DESCRIPTION OF THE DRAWINGS

0003. The disclosure may be understood more fully from
the detailed description given below and from the accompa
nying drawings of various implementations of the disclosure.
The drawings, however, should not be taken to limit the
disclosure to the specific implementations, but are for expla
nation and understanding only.
0004 FIG. 1 is a block diagram of an example system
architecture, in accordance with various implementations;
0005 FIG. 2 is a block diagram illustrating an example of
a map-reduce management module:
0006 FIG. 3 is a flow diagram illustrating an example
method for Scheduling and converting a map-reduce job,
according to an implementation of the disclosure;
0007 FIG. 4 is a flow diagram illustrating an example
method for selecting a cluster to run a map-reduce job,
according to an implementation of the disclosure; and
0008 FIG. 5 illustrates a block diagram of an example
computer system that may implement systems and methods
described herein.

DETAILED DESCRIPTION

0009 Systems and methods for map-reduce virtualization
are described. A map-reduce job may be performed by dif
ferent map-reduce frameworks. For example, each cluster of
computers may run different map-reduce frameworks Such
as, Hadoop, Hazelcast, MongoDB, Infinispan, Spark, etc.
Each framework may support a map-reduce job written spe
cifically for the corresponding framework. For example,
Infinispan may process map-reduce jobs written for an
Infinispan framework, while Hadoop may process map-re
duce jobs written for a Hadoop framework. However, a clus
terrunning Infinispan cannot process a map-reduce job writ
ten for a cluster running Hadoop and vice versa. Since
different clusters of servers may execute different map-re
duce frameworks, clusters running different frameworks may

Apr. 7, 2016

be incompatible. It may be desirable to migrate a map-reduce
job to a different map-reduce framework in order to obtain a
benefit of the framework or to standardize a map-reduce
framework across a network. Since map-reduce jobs written
for different frameworks may be incompatible, migrating
existing map-reduce jobs across clusters running different
frameworks may be untenable. An administrator must write
different map-reduce jobs, each for a different map-reduce
framework, in order to execute a map-reduce job on computer
clusters hosting different map-reduce frameworks.
0010. In one example, a map-reduce service machine
receives a map-reduce job written in a first map-reduce lan
guage from a client machine. A map-reduce management
module running on the map-reduce service machine identifies
one or more clusters to run the map-reduce job, by evaluating
the availability of resources of the clusters, the load of the
clusters, the availability of the data on the clusters, and char
acteristics of the clusters (e.g., disk-based storage, memory
based storage). The map-reduce management module may
also convert the map-reduce job into another map-reduce
language that corresponds to the map-reduce framework run
ning on the selected clusters, as the original language of the
map-reduce job may be incompatible with the framework
running on the selected clusters. Additionally, the result of the
map-reduce job may be represented in the language Sup
ported by the framework running on the selected clusters. The
map-reduce management module may convert the result into
the original map-reduce language.
0011 FIG. 1 is a block diagram of an example system
architecture implementing the systems and methods
described herein. The system architecture 100 may include
one or more client machines 102A-D coupled to a map
reduce service machine 106 via a network 108. Map-reduce
service machine 106 is coupled to computer cluster 101,
computer cluster 103, and database 107 via network 108. A
computer cluster, Such as computer cluster 101 and computer
cluster 103, may comprise a set of interconnected computers
or nodes that may be configured to perform a common task so
that the computer cluster may be viewed as a single computer
system. The nodes of a cluster may be connected to each other
through a network, such as network 108, with each node (e.g.,
node 140A-F) running its own instance of an operating sys
tem

0012. A developer may write a separate map-reduce job
for each cluster running a different map-reduce framework. In
one example, one or more client devices (e.g., 102A-D) Sub
mit a map-reduce (MR) job that is received by map-reduce
service machine 106. Map-reduce service machine 106 may
receive an MR job written in any language of a Supported set
of languages, including a language that is specifically desig
nated as a general map-reduce language. The general MR
language may be a single universal language that describes
the functions that may be implemented by each of the mul
tiple map-reduce frameworks. Alternatively, the general MR
language may be an MR language that corresponds to a spe
cific MR framework. After receiving an MR job, map-reduce
management module 130 selects one or more computer clus
ters (e.g., computer cluster 101 or computer cluster 103) on
which to run the MR job. The selection may be performed
based on the load of each cluster, availability of each cluster,
characteristics of each cluster, the framework of each cluster,
and/or the location of the data to be processed. Once one or
more clusters are selected, map-reduce management module
130 converts the MR job written in an original language into

US 2016/0098472 A1

an MR job written in a map-reduce language that is compat
ible with the map-reduce framework of the selected computer
clusters. Map-reduce service machine 106 sends the MR job
in the appropriate MR framework language to the selected
computer clusters. For example, map-reduce service machine
106 determines that MRjob A is to be performed on computer
cluster 101. Computer cluster 101 may run the Infinispan MR
framework. Map-reduce service machine 106 converts the
MR job. A written in a general MR language into an MR job
written for the Infinispan framework and sends the converted
MR job to computer cluster 101 to be performed. Each com
puter cluster includes multiple nodes, such as node 140A-C of
computer cluster 101. Each node may execute all or part of the
converted MRjob received from map-reduce service machine
106. Each node may have memory hardware and may also
communicate with a database (e.g., database 107) and/or
local storage (not shown). Each cluster may operate a differ
ent MR framework as illustrated by map-reduce framework
104 and 105. Map-reduce service machine 106 receives a
result of the MRjob, which may be in the MR language of the
MR framework executed on the cluster, and converts the
result written in the framework-specific language into results
written in the general MR language.
0013 The client machine 102A-D, map-reduce service
machine 106, database 107, computer cluster 101, and com
puter cluster 103 may be coupled via network 108 that com
municates any of the standard protocols for the exchange of
information. Some or all of client machines 102A-D, map
reduce service machine 106, database 107, computer cluster
101, and computer cluster 103 may run on a Local Area
Network (LAN) and may be incorporated into the same
physical or logical system, or different physical or logical
systems. Alternatively, some or all of client machines 102A
D, map-reduce service machine 106, database 107, computer
cluster 101, and computer cluster 103 may reside on different
LANs that may be coupled together via the Internet but sepa
rated by firewalls, routers, and/or other network devices. In
yet another configuration, some or all of client machine
102A-D, map-reduce service machine 106, database 107.
computer cluster 101, and computer cluster 103 may reside
on a server, or different servers, coupled to other devices via
a public network (e.g., the Internet) or a private network (e.g.,
LAN). The network 108 may be a public network, a private
network, or a combination thereof. Network 108 may include
a wireless infrastructure. The wireless infrastructure may be
provided by one or multiple wireless communications sys
tems, such as a wireless fidelity (Wi-Fi) hotspot connected
with the network 108 and/or a wireless carrier system that
may be implemented using various data processing equip
ment, communication towers, etc. It should be noted that
various other network configurations may be used including,
for example, hosted configurations, distributed configura
tions, centralized configurations, etc. It also should be noted
that each node of a computer cluster may be connected to
another node of the same cluster or to other nodes of different
clusters via network 108 in the same manner as described
above.

0014. The computer cluster 101 and computer cluster 103
may comprise a network attached storage file system that
includes any number of mass storage devices, such as mag
netic or optical storage based disks 170A-B, solid-state drives
(SSDs) or hard drives, coupled to computer cluster 101 and
computer cluster 103 via the network 108. Computer cluster
101 and computer cluster 103, and each node of the afore

Apr. 7, 2016

mentioned clusters, can further implement various network
accessible server-based functionality (not shown) or include
other data processing equipment.
00.15 Each computer cluster, such as computer cluster 101
and computer cluster 103, may contain one or more nodes.
For example, computer cluster 101 includes nodes 140A,
140B, and 140C. Computer cluster 103 includes nodes 140D,
140E, and 140F. Each node of computer cluster 101 and
computer cluster 103 may include, but is not limited to, any
data processing device. Such as a desktop computer, a laptop
computer, a mainframe computer, a personal digital assistant,
a server computer, a hand-held device or any other device
configured to process data.
0016 Each node of computer cluster 101 and computer
cluster 103 may have its own physical or virtual memory. For
example, memory 145A, 145B, 145C, 145D, 145E, and 145F
correspond to node 140A, 140B, 140C, 140D, 140E, and
140F, respectively. Memory may include, but is not limited to,
main memory such as, read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) (e.g.,
synchronous DRAM (SDRAM) or DRAM (RDRAM), etc.),
and static memory (e.g., flash memory, static random access
memory (SRAM), etc.). It should also be noted that each node
of computer cluster 101 and computer cluster 103 may have
data stored on local storage (not shown). Such as local storage
disks.
0017. Each node of computer cluster 101 and computer
cluster 103 may execute all or part of a map-reduce job. The
execution of all or part of one or more map-reduce jobs is
illustrated by map-reduce job 143A, 143B, 143C, 143D,
143E, and 143F running on their respective nodes. It may be
appreciated by one skilled in the art that a single map-reduce
job may run on one or more nodes of one or more clusters in
parallel.
0018. Each computer cluster, such as computer cluster 101
and computer cluster 103, may run the same or different
map-reduce frameworks. FIG. 1 illustrates computer cluster
101 operating map-reduce framework 104 and computer
cluster 103 operating map-reduce framework 105. For the
sake of illustration, map-reduce framework 104 and map
reduce framework 105 may be considered different map
reduce frameworks, unless stated otherwise. As stated above,
each map-reduce framework uses a different map-reduce lan
guage. Each node of each cluster is configured to run a spe
cific map-reduce framework. For example, node 140A, 140B
and 140C are configured to run map-reduce framework 104,
while node 140D, 140E, and 140F are configured to run
map-reduce framework 105. Each MR framework is imple
mented with a programming language specific to the MR
framework. Each framework implements a variety of differ
ent functions specific to each framework and each framework
executes similar functions in a different manner. Different
frameworks include frameworks such as, Hadoop, Hazelcast,
MongoDB, Infinispan, and Spark.
0019 Computer cluster 101 and computer cluster 103 may
organize data in database 107. For example, database 107
may store data on storage devices 107A and 107B (e.g.,
storage disks). Data in database 107 may be located in data
files 171A-B and organized using volumes. A volume is a
single accessible storage area of database 107, which may be
resident on a single partition of a hard disk (e.g., disks 170A
B) of the database 107. A volume may be a representation of
a logical location, rather than a physical location, of a storage
area in database 107. For example, physical hard disk-1 may

US 2016/0098472 A1

have two partitions, partition-1 and partition-2. A volume
label “C:” may be assigned to partition-1 and a volume label
“D:” may be assigned to partition-2. Hard disk-1 is a physical
disk and “C:” and “D:” are volumes representing logical
locations on physical hard disk-1.
0020. The database 107 may store data as files 171A-B
and may include directories, also referred to as folders, which
are virtual containers within the database 107, in which
groups of computer files 171A-B and possibly other directo
ries may be kept and organized. Related files 171A-B may be
stored in the same directory. A sub-directory, also referred to
as a Sub-folder, is a directory contained inside another direc
tory. The top-most directory is referred to as a root or top-level
directory within the database 107. Together, the directories
form a hierarchy, or tree structure of one or more levels in the
database 107.

0021. The client machines 102A-D may host various
applications, including, for example, web applications, desk
top applications, browser applications, etc. In one implemen
tation, an application is a map-reduce interface application
(not shown). The map-reduce interface application may allow
a user of a client machine to send a map-reduce job to be
processed and may receive a result of a map-reduce job. The
map-reduce interface application may allow the client
machine to interact with map-reduce service machine 106.
The map-reduce interface application may allow a user to
Submit a map-reduce job written in a general map-reduce
language to map-reduce service machine 106.
0022 Map-reduce service machine 106 receives map-re
duce jobs submitted by client machines 102A-D. Map-reduce
service machine 106 may also receive information from com
puter cluster 101, computer cluster 103, and database 107.
The information may include an interim and final result of the
map-reduce job. The map-reduce service machine 106 may
be a server or a controller device. Map-reduce service
machine 106 may include, but is not limited to, any data
processing device, such as a desktop computer, a laptop com
puter, a mainframe computer, a personal digital assistant, a
server computer, a hand-held device or any other device con
figured to process data.
0023 Map-reduce service machine 106 may contain map
reduce management module 130. Map-reduce management
module 130 may receive one or more MR jobs from the client
machines 102A-D. MR management module 130 may select
one or more computer clusters on which each MR job is to be
executed, based on the load on a cluster or a node of a cluster,
the availability of a cluster or a node of a cluster, the location
of the data, and a characteristic of the cluster or a node of the
cluster. Once the MR job is sent to one or more clusters, the
MR manager module 130 may monitor the progress of the
MR job being executed on the selected clusters and may
determine, based on the above described cluster selection
rules, that the MR job should be migrated to a different
cluster.
0024 Map-reduce management module 130 may convert
a map-reduce job written in a general MR language into a
specific MR language corresponding to the MR framework
running on selected computer clusters. For example, the
Hadoop MR framework may execute MR jobs written in the
Hadoop language. The Infinispan MR framework may
execute MR jobs written in an Infinispan language. It should
be noted that in the preceding example, a map-reduce job may
be written in the software language, Java, for both the Hadoop
and Infinispan frameworks, but in each case is programmed to

Apr. 7, 2016

use the Hadoop Java API or the Infinispan Java API, respec
tively. An MR job written for a Hadoop framework is incom
patible with an Infinispan framework and vice versa. A map
reduce framework language. Such as the Hadoop language or
the Infinispan language, may refer to a software language that
is programmed to use the corresponding framework API.
0025. In one example, a general map-reduce language
may be used to implement a map-reduce job. The general
map-reduce language may be implemented using any pro
gramming language. An interpreter or the general MR lan
guage is implemented in the selected language. Alternatively,
the general MR language is a library implemented in the
selected language. For example, the general MR language
may be written in Java, C++, Python, etc. For purposes of
illustration, the general MR language may be described as
modeled in view of the Java syntax, unless otherwise noted. It
should be appreciated that the general MR language is not
limited to Java, but may be any programming language. Func
tions written in the general MR language may be mapped to
the functions written in the one or more framework lan
guages. For example, a map function, map(), written in the
general MR language may be mapped to the map function,
map(), in Hadoop, Infinispan, and Spark, etc. The map func
tion, map(), written in general MR language, may be mapped
to the Spark map function written in Python. The general MR
language may map functions written in the general MR lan
guage to all the functions required to execute an MR job to
each of the corresponding functions of the different MR
frameworks. A function specific to a particular MR frame
work may have a corresponding function in a general MR
language. The mapping may be stored on map-reduce service
machine 106 or on separate database, such as database 107.
Alternatively, it should be noted that the general MR language
may be written in a specific framework language in which
case the same mapping principles as described above apply. If
the general MR language is a specific framework language or
a universal language, each function of the general MR lan
guage may be mapped to one or more functions of another
language, and the mapping may further comprise one or more
rules of defining values of parameters of the target language
functions based on parameters of the general language func
tions.

0026 Map-reduce management module 130 may translate
the result of an MR job executed on selected clusters into the
general MR language. During and after the execution of an
MR job, the selected clusters may send to the MR service
machine 106 the result. The result may be in the framework
language running in the selected clusters. For example, the
result of an MR job for a Hadoop cluster may be sent to MR
reduce service machine 106 described in the Hadoop lan
guage. The MR management module 130 may translate the
result, for example described in the Hadoop language, into the
general MR language. A mapping technique, as described
above, may be implemented for the conversion of the MRjob
result to the general MR language. Map-reduce management
module may be discussed in more detail in regards to FIGS.
2-5.

0027. It should be noted that an MRjob includes multiple
functions. It should be appreciated that an MR job may
describe a complete execution all the functions and includes
an initial input and final output. Alternatively, an MRjob may
indicate one or more functions or steps in executing an MR
job. For example, an MRjob may refer to the map function or
the reduce function.

US 2016/0098472 A1

0028 FIG. 2 is a block diagram illustrating an example of
a map-reduce management module. Map-reduce manage
ment module 130 includes conversion module 210 and job
manager module 220. Map-reduce management module 130
may be implemented on a map-reduce service machine 106.
as illustrated in FIG.1. Map-reduce management module 130
may also be implemented on a client machine, such as client
machine 102A-D. Parts of map-reduce management module
130 may be implemented on client machine 102A-D, while
other parts of map-reduce management module 130 may be
implemented on map-reduce service machine 106.
0029 Conversion module 210 includes map-reduce lan
guage module 212 that converts statements written in the
general MR language to statements written in specific MR
languages, as illustrated by framework language 211A and
framework language 211B. It should be noted that map-re
duce language module 212 may convert the general MR lan
guage into more than two MR framework languages. Map
reduce language module 212 also may convert each language
(e.g., framework language 211A and framework language
211B) into the general MR language. It should be noted that
a language corresponds to the specific MR language for a
particular MR framework.
0030. In one example, a map-reduce job written in a gen
eral MR language may be received by map-reduce manage
ment module 130. Job manager module 220 selects one or
more clusters (e.g., computer clusters 101 and 103) on which
to run the map-reduce job. In selecting the one or more clus
ters, job manager module 220 may determine if one or more
clusters are available to perform the map-reduce job. If the
one or more clusters are not available, job manager module
220 may select a different cluster on which to run the MR job.
In one example, availability refers to map-reduce manage
ment module’s ability to communicate with the cluster. In
another example, availability refers to the ability of the
selected cluster to perform the map-reduce job. In another
example, availability refers to the number of nodes of the
clusterable to performa map-reduce job compared to the total
number of nodes in a cluster. Availability may be measured as
a percentage with the number of nodes of a cluster able to
perform a map-reduce job divided by the total number of
nodes of the cluster. For example, if a cluster includes 10
nodes and 4 have hardware failures and 6 are able to perform
the map-reduce job, then the availability is 60%. A user or
administrator may specify an availability threshold which
when exceeded, the job manager module 220 may determine
that the cluster is available for purposes of processing a map
reduce job. An availability threshold may be set at a percent
age, measured as the number of nodes in a cluster able to
perform a map-reduce job over the total number of nodes in
the cluster. In the previous example, if the availability thresh
old were set at 50%, and availability is 60%, job-manager
module may determine the cluster is available. If the job
manager module 220 is not able to communicate with the
cluster, then the cluster is said to be unavailable. In one
example, a cluster may not be available if the cluster is off
line or not available perform the MR job. Additionally, job
manager module 220 may determine the availability of clus
ters even though the clusters operate different MR frame
works. For example, job manager module 220 may determine
that a cluster running Hadoop is available, while a cluster
running Infinispan is not available. It should be noted that
individual nodes of a cluster may be available in the same
manner as computer clusters. It should also be noted that the

Apr. 7, 2016

term “resource' may be used to refer to a computer cluster, a
computer node, and any computer hardware or Software asso
ciated with a computer cluster or node.
0031. In one example, in selecting the one or more clus

ters, job manager module 220 may determine the load of the
selected clusters. The load of a cluster may be an indication of
the degree or percentage to which the resources of a cluster
are being used or scheduled to be used. In one example, load
may be central processing unit (CPU) usage which is the Sum
of the number of current processes and processes waiting to
be run (i.e., queued processes) for a time period over the total
number of processes a CPU is capable of running for the time
period. In another example, load may be one or more of CPU,
network, or memory usage which is the amount of data traffic
on the one or more of the CPU, network, or memory of a node
or cluster for a given time period divided by the amount of
data traffic the one or more of the CPU, network, or memory
may handle for the given time period. Load may be measured
as a percentage as defined above. Load may be calculated for
a node, a cluster, or a group of nodes of a cluster. Job manager
module 220 may send a query using a system call to the
operating system of a node or cluster in order to obtain the
load of the node, cluster, or group of nodes in the cluster. The
results of the query may be sent to a client machine. Such as
client machine 102A-D. If the load on a particular cluster
exceeds a threshold load level, job manager module 220 may
select a different cluster. A developer or administrator may
determine the threshold load level. Alternatively, the thresh
old load level may be set at the lowest load detected by job
manager module 220. In determining the load, job manager
module 220 may look at the use of resources associated with
the cluster and determine the speed an MR job may be com
pleted on a particular cluster. Job manager module 220 may
determine the difference between the loads of computer clus
ters operating different frameworks. For example, a computer
cluster running Infinispan may have a 20% load, while a
computer cluster running Hadoop may have a 70% load. In
one example, the threshold load level may be any arbitrary
value determined by a developer or administrator. For
example, an administrator may determine that if the load of
the selected clusters exceeds 60%, job-manager module 220
should select another cluster to run the MR job. The load of
each computer cluster running different frameworks may be
measured prior to selecting a cluster on which to run the job.
In another example, the threshold load level may be set at the
load of the least loaded cluster for which load has been deter
mined. For example, in the above example job manager mod
ule may select the Infinispan cluster because its load of 20%
is less than the load of Hadoop cluster of 70%. The threshold
load level may be set at 20%, and may be reset if a load for
another cluster is determined to be lower than 20%.

0032. In one example, in selecting the one or more clus
ters, job manager module 220 may determine if the data to be
processed by the map-reduce job is available to the selected
clusters. If the data to be processed by the map-reduce job is
not available to the selected clusters, job manager module 220
may cause the data to be moved in order to make the data
available to the selected clusters. The data may be moved
from storage device 170A and 170B to memory 145A, 145B,
or 145C, and vice versa. The data may be moved between any
of database 107, disk 170A-B, Memory 145A-F, or local disk
memory of node 140A-F.
0033. In another example, in selecting the one or more
clusters, job manager module 220 may query each cluster of

US 2016/0098472 A1

the plurality of clusters for an indication of a characteristic of
each cluster. Each cluster may run a different software frame
work. The characteristics include the storage type (e.g., disk
based storage or memory-based storage). Data in memory
based storage typically has a faster access time than data on
disk-based storage. An MR job that uses data located on
memory-based storage is typically faster than an MRjob run
on data located on disk-based storage. Memory-based storage
may be provided by memory 145A-F and described in con
junction with FIG.1. Disk-based storage may be provided by
storage devices 170A-B and described in conjunction with
FIG. 1. Disk-based storage may also be hard-disk storage
associated locally with each node 140A-F. Different MR
frameworks may access data in different ways. One differ
ence may be the location of the data on which the MR job is
to process. An MRjob may process data located on memory
based storage or disk-based storage. Job manager module 220
may query each cluster using a system call requesting the
characteristic of a targeted cluster. Job manager module 220
may select one or more clusters to run the map-reduce job
based on the characteristic. As described above, the job man
ager module 220 may cause the data to be moved from one
location to another location in order to execute an MR job on
a particular framework executing on a computer cluster.
0034. In another example, the characteristics include the
capacity of at least one of the CPU, network, or memory of a
node or cluster. Capacity of the CPU and the network is the
amount of data the CPU or network can handle over a time
period. Memory capacity is the amount of memory storage of
a node or cluster which may be measured in bits. Additionally,
a characteristic may be disk access speed for a cluster which
is the amount of data that may be accessed on disk storage by
a cluster or node, which may be measured in bits per second.
Job manager module 220 may query each cluster using a
system call requesting the characteristic of a targeted cluster.
Job manager module 220 may select one or more clusters to
run the map-reduce job based on the characteristic. For
example, two clusters may be both running the Hadoop
framework. However, one cluster may be using old hardware
while the other may be using state-of-the-art hardware. An
MRjob run on state-of-the-art hardware may be faster than on
old hardware. Job manager module 220, may query each
cluster for one or more indications of CPU capacity, network
capacity, or memory capacity, compare the indications, and
select a cluster based on the comparison.
0035. In another example, job manager module 220 may
identify the specific map-reduce language that is associated
with the selected clusters by identifying the type of a software
framework being run on the selected clusters. The identified
map-reduce language corresponds to the Software framework
being run on the selected clusters. In one example, job-man
ager module 220 sends a system call to the selected clusters to
query the selected clusters on the MR framework operating
on the cluster. In another example, map-reduce management
module 130 keeps a record of the MR frameworks operating
on each cluster, and periodically updates the record when the
MR framework of a clusterchanges. Job manager module 220
may identify a type of Software framework being run on the
selected clusters and communicate the identified type to con
version module 210 so that the conversion module 210 may
convert the MR job into the framework-specific MR lan
gllage.

0036 Map-reduce management module 130 also includes
conversion module 210 that converts the map-reduce job

Apr. 7, 2016

written in the original map-reduce language into the map
reduce job written in a language Supported by the selected
clusters. As stated above, the original map-reduce language is
the language in which the MR job is received, and may be
provided by a general map-reduce language. The general MR
language may be a language that describes the functions
Supported by multiple frameworks but is not specific to any
MR framework. Map-reduce language module 212 of con
version module 210 may convert the received MR job written
in a general MR language to a framework-specific language
that corresponds to the MR framework installed on the
selected clusters. Conversely, the map-reduce language mod
ule may receive the result of a map-reduce job, which is
typically in the MR language of the executing clusters, and
convert the result into a general MR language. Once the result
is in the general MR language, the result may be converted to
any framework specific language. Map-reduce language
module 212 may converta general MR language into various
MR languages (i.e., framework-specific languages) and con
Vert any number of MR languages into a general MR lan
guage, as illustrated by framework language 211A and 211B.
0037 FIG. 3 is a flow diagram illustrating an example
method for scheduling and converting a map-reduce job,
according to an implementation of the disclosure. Method
300 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one implementation, method 300 is performed by system 100
of FIG. 1. In another implementation, method 300 is per
formed by map-reduce management module 130 of FIGS. 1
and 2.
0038 Method 300 begins at block 302 where the process
ing logic receives a map-reduce job written in a first map
reduce language. The first map-reduce language may be a
general MR language. The MRjob may be received from any
of the client machines 102A-D at map-reduce service
machine 106. The map-reduce job is to be performed in
parallel on a plurality of nodes of a plurality of clusters.
Additional details of block 302 are further described in
regards to FIGS. 1 and 2.
0039 Method 300 continues at block 304 where the pro
cessing logic selects one or more clusters to run the map
reduce job. The processing logic may determine an availabil
ity of the selected clusters to perform the map-reduce job. In
one example, a cluster or node is available when it is able to
process the MRjob. When a resource is off-line it may be said
to be unavailable. The processing logic may also determine
the load of different clusters, each running a different MR
framework. The processing logic may also determine if the
data on which the MRjob is to be run is available to the cluster
or node. Additionally, the processing logic may determine a
characteristic of the cluster, such as whether the selected
cluster uses memory-based storage or disk-based storage.
Processing logic may base the selection of the one or more
clusters to run the map-reduce job and any one or more of the
above mentioned features. Additional details of block 304 are
further described in regards to FIGS. 1, 2, and 4.
0040 Method 300 continues to block 306 where the pro
cessing logic identifies a second map-reduce language asso
ciated with the selected clusters. The second map-reduce
language may be a framework-specific language that corre
sponds to a software framework running on the selected clus
ters. The software framework of the selected clusters may be

US 2016/0098472 A1

different from the software framework running on the other
clusters of the plurality of clusters. For example, a network of
clusters may have certain clusters running the Hadoop frame
work while other clusters run the Infinispan framework. The
processing logic may identify the map-reduce language of the
selected clusters by sending a system call to the cluster or by
referring to a table of frameworks run by clusters in a net
work. Additional details of block 306 are further described in
regards to FIGS. 1 and 2.
0041) Method 300 continues to block 308 where the pro
cessing logic converts the first-map-reduce language of the
map-reduce job into the second map-reduce language. The
processing logic may map the MR functions described in a
general MR language (e.g., first MR language) and convert
those functions to equivalent functions in the second MR
language. The second MR language may be compatible with
the MR framework operating on the selected clusters. Addi
tional details of block 308 are described in regards to FIGS. 1
and 2.

0042 Method 300 continues to block 310 where the pro
cessing logic causes the map-reduce job in the second map
reduce language to be run on the plurality of nodes of the
selected clusters. In one example, the processing logic may
send the MR job to the selected clusters and the MR frame
work executes the MR job. In another example, map-reduce
service machine 106 may assign the work of the MR job to
nodes in a computer cluster.
0043 Method 300 continues to block 312 where the pro
cessing logic receives a result of the map-reduce job run on
the one or more nodes of the selected clusters. The result may
be in the in the MR language of the cluster executing the MR
job. The result may be an output of the MR job. Method 300
continues to block 314 where the processing logic converts
the result written in a second map-reduce language to results
written in the first map-reduce language. In one example, the
processing logic converts the result written in the specific MR
language of the framework running on the selected clusters
into results written in the general MR language. Processing
logic may convert the general MR language to another frame
work-specific language. Such a conversion may help migrate
a job from one MR framework to another MR framework.
Additional details of block 312 are further described in
regards to FIGS. 1 and 2.
0044 FIG. 4 is a flow diagram illustrating an example
method for selecting a cluster to run a map-reduce job,
according to an implementation of the disclosure. Method
400 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one implementation, method 300 is performed by system 100
of FIG. 1. In another implementation, method 400 is per
formed by map-reduce management module 130 of FIGS. 1
and 2.

0045 Method 400 begins at block 402 where the selecting,
by the processing logic, the one or more clusters to run the
map-reduce job is performed responsive to determining an
availability of the selected clusters to perform the map reduce
job. A cluster may be available if an MR job is able to be run
or completed on the cluster. If the one or more clusters are not
available, the processing logic may select a different cluster.
The processing logic may check if a different cluster is also
available. The processing logic may scan Some or all the

Apr. 7, 2016

clusters to determine which clusters are available. Additional
details of block 402 are further described in respect to FIG. 2.
0046 Method 400 continues in block 404, where the
selecting, by the processing logic, of the one or more clusters
to run the map-reduce job is performed responsive to deter
mining that a load on the selected cluster does not exceed a
threshold load level. Processing logic may select a different
cluster of the plurality of clusters on which to perform the
map-reduce job if the load exceeds a threshold load level. The
different cluster may run a different software framework than
the selected clusters. In one example, the load of a clusterisan
indication of the degree to which the resources of a cluster are
in use. The processing logic may determine the load of dif
ferent clusters running different MR frameworks. In one
example, the processing logic selects the cluster with the
lightest load, regardless of MR framework. In such as case,
the threshold load level may be determined using the lowest
load of plurality of clusters, as determined by the processing
logic. If a cluster is detected with a lower load, then that load
becomes the new threshold load level. In another example, a
threshold load level may be defined by a developer or admin
istrator, and the determined load compared to the threshold
load level. Additional details of block 404 are further dis
cussed in regards to FIG. 2.
0047 Method 400 continues in block 406 where the pro
cessing logic causes data to be processed by the map-reduce
job to be available to the selected clusters. The processing
logic may request the data to be moved to make the data
available to the selected clusters if the data to be processed by
the map-reduce job is not available to the selected clusters.
The processing logic may determine if the data is available to
the selected cluster by making a system call to the cluster or
to individual nodes of the selected cluster. Additional details
of block 406 are further described in regards to FIG. 2.
0048 Method 400 continues in block 408 where the pro
cessing logic queries each cluster of the plurality of clusters
for an indication of a characteristic of each cluster. In block
410, the processing logic selects the one or more clusters to
run the MR job based on the characteristic. Characteristics
include memory-based storage and disk-based storage. As
noted above, different frameworks process data for an MRjob
from different locations. The processing logic may query a
cluster using a system call to determine where the data in
question is located, disk-based or memory-based. The pro
cessing logic may select a cluster based any of the above
characteristics. Additional details of block 408 and block 410
are discussed in regards to FIG. 2.
0049 FIG. 5 illustrates a block diagram of an example
computer system that may implement systems and methods
described herein. In alternative implementations, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a client
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, Switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine' shall also be
taken to include any collection of machines that individually

US 2016/0098472 A1

or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.
0050. The computer system 500 includes a processing
device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor
age device 518, which communicate with each other via abus
S30.
0051 Processing device 502 represents one or more gen
eral-purpose processing devices Such as a microprocessor,
central processing unit, or the like. More particularly, the
processing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computer
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 502 may also be one or more special
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device 502 is configured to execute
the processing logic 526 for performing the operations and
steps discussed herein.
0052. The computer system 500 may further include a
network interface device 508 communicably coupled to a
network 120. The computer system 500 also may include a
video display unit 510 (e.g., a liquid crystal display (LCD) or
a cathode ray tube (CRT)), an alphanumeric input device 512
(e.g., a keyboard), a cursor control device 514 (e.g., amouse),
and a signal generation device 516 (e.g., a speaker).
0053. The data storage device 518 may include a machine
accessible storage medium 524 on which is stored software
526 embodying any one or more of the methodologies of
functions described herein. The software 526 may also reside,
completely or at least partially, within the main memory 504
as instructions 526 and/or within the processing device 502 as
processing logic 526 during execution thereof by the com
puter system 500; the main memory 504 and the processing
device 502 also constituting machine-accessible storage
media.
0054 The machine-readable storage medium 524 may
also be used to store instructions 526 to implement the map
reduce management module 130 to implement any one or
more of the methodologies of functions described herein in a
computer system, such as the system described with respect
to FIG. 1, and/or a software library containing methods that
call the above applications.
0055 While the machine-accessible storage medium 524

is shown in an example implementation to be a single
medium, the term “machine-accessible storage medium’
should be taken to include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) that store the one or more sets of instruc
tions. The term “machine-accessible storage medium’ shall
also be taken to include any medium that is capable of storing,
encoding or carrying a set of instruction for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the disclosure. The term
“machine-accessible storage medium’ shall accordingly be
taken to include, but not be limited to, Solid-state memories,
and optical and magnetic media.

Apr. 7, 2016

0056. In the foregoing description, numerous details are
set forth. It will be apparent, however, that the disclosure may
be practiced without these specific details. In some instances,
well-known structures and devices are shown in block dia
gram form, rather than in detail, in order to avoid obscuring
the disclosure.
0057. Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym
bols, characters, terms, numbers, or the like.
0058. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving”, “identifying”, “converting”, “causing”.
“determining”, “selecting”, “requesting, “querying, or the
like, refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti
ties within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other Such
information storage, transmission or display devices.
0059. The disclosure also relates to an apparatus for per
forming the operations herein. This apparatus may be spe
cially constructed for the required purposes, or it may com
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a machine read
able storage medium, Such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, each coupled to a computer system
bus.
0060. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear as set forth in the
description below. In addition, the disclosure is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the disclosure as
described herein.
0061 The disclosure may be provided as a computer pro
gram product, or software, that may include a machine-read

US 2016/0098472 A1

able medium having stored thereon instructions, which may
be used to program a computer system (or other electronic
devices) to perform a process according to the disclosure. A
machine-readable medium includes any mechanism for Stor
ing or transmitting information in a form readable by a
machine (e.g., a computer). For example, a machine-readable
(e.g., computer-readable) medium includes a machine (e.g., a
computer) readable storage medium (e.g., read only memory
(“ROM), random access memory (“RAM), magnetic disk
storage media, optical storage media, flash memory devices,
etc.), etc.
0062. Whereas many alterations and modifications of the
disclosure will no doubt become apparent to a person of
ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular example
shown and described by way of illustration is in no way
intended to be considered limiting. Therefore, references to
details of various examples are not intended to limit the scope
of the claims, which in themselves recite only those features
regarded as the disclosure.
What is claimed is:
1. A method comprising:
receiving a map-reduce job written in a first map-reduce

language, wherein the map-reduce job is to be per
formed in parallel on a plurality of nodes of a plurality of
clusters;

Selecting one or more clusters to run the map-reduce job;
identifying a second map-reduce language associated with

the selected clusters:
converting the first map-reduce language of the map-re

duce job into the second map-reduce language; and
causing the map-reduce job in the second map-reduce lan

guage to be run on the plurality of nodes of the selected
clusters.

2. The method of claim 1, further comprising:
receiving a result of the map-reduce job run on the one or

more nodes of the selected clusters, wherein the result is
in the second map-reduce language; and

converting the result from the second map-reduce language
to the first map-reduce language.

3. The method of claim 1, wherein the second map-reduce
language is a framework-specific language that corresponds
to a Software framework running on the selected clusters.

4. The method of claim3, wherein the software framework
running on the selected clusters is different from software
frameworks running on other clusters of the plurality of clus
terS.

5. The method of claim 1, wherein identifying the second
map-reduce language associated with the selected clusters
further comprises:

identifying a software framework being run on the selected
clusters, wherein the second map-reduce language cor
responds to the identified software framework.

6. The method of claim 1, wherein selecting the one or
more clusters to run the map-reduce job is performed respon
sive to determining an availability of the selected clusters to
perform the map-reduce job.

7. The method of claim 1, wherein selecting the one or
more clusters to run the map-reduce job is performed respon
sive to determining that a load on the selected clusters does
not exceed a threshold load level.

8. The method of claim 1, wherein selecting the one or
more clusters to run the map-reduce job further comprises:

Apr. 7, 2016

causing data to be processed by the map-reduce job to be
available to the selected clusters.

9. The method of claim 1, wherein selecting the one or
more clusters to run the map-reduce job further comprises:

querying each cluster of the plurality of clusters for an
indication of a characteristic of each cluster, and

selecting the one or more clusters to run the map-reduce job
based on the characteristic.

10. The method of claim 7, wherein the characteristic com
prises at least one of disk-based storage or memory-based
Storage.

11. A system comprising:
a memory to store instructions for a map-reduce manage

ment module;
a processing device, coupled with the memory, to execute

the instructions; and
the map-reduce management module, executed by the pro

cessing device, to:
receive a map-reduce job written in a first map-reduce

language, wherein the map-reduce job is to be per
formed in parallel on a plurality of nodes of a plurality
of clusters;

Select one or more clusters to run the map-reduce job;
identify a second map-reduce language associated with

the selected clusters;
convert the first map-reduce language of the map-reduce

job into the second map-reduce language; and
cause the map-reduce job in the second map-reduce

language to be run on the plurality of nodes of the
selected clusters.

12. The system of claim 11, wherein the map-reduce man
agement module, executed by the processing device, further
tO:

receive a result of the map-reduce job run on the one or
more nodes of the selected clusters, wherein the result is
in the second map-reduce language; and

convert the result from the second map-reduce language to
the first map-reduce language.

13. The system of claim 11, wherein identifying the second
map-reduce language associated with the selected clusters,
the map-reduce management module executed by the pro
cessing device, further to:

identify a software framework being run on the selected
clusters, wherein the second map-reduce language cor
responds to the identified software framework.

14. The system of claim 11, wherein selecting the one or
more clusters to run the map-reduce job is performed respon
sive to determining that a load on the selected clusters does
not exceed a threshold load level.

15. The system of claim 11, wherein selecting the one or
more clusters to run the map-reduce job, the map-reduce
management module, executed by the processing device, fur
ther to:

causing data to be processed by the map-reduce job to be
available to the selected clusters.

16. A non-transitory computer readable storage medium
including instructions that, when executed by a processing
device, cause the processing device to perform a method
comprising:

receiving a map-reduce job written in a first map-reduce
language, wherein the map-reduce job is to be per
formed in parallel on a plurality of nodes of a plurality of
clusters;

selecting one or more clusters to run the map-reduce job;

US 2016/0098472 A1

identifying a second map-reduce language associated with
the selected clusters;

converting the first map-reduce language of the map-re
duce job into the second map-reduce language; and

causing the map-reduce job in the second map-reduce lan
guage to be run on the plurality of nodes of the selected
clusters.

17. The non-transitory computer readable storage medium
of claim 16, the method further comprising:

receiving a result of the map-reduce job run on the one or
more nodes of the selected clusters, wherein the result is
in the second map-reduce language; and

converting the result from the second map-reduce language
to the first map-reduce language.

18. The non-transitory computer readable storage medium
of claim 16, wherein identifying the second map-reduce lan
guage associated with the selected clusters, the method fur
ther comprising:

identifying a software framework being run on the selected
clusters, wherein the second map-reduce language cor
responds to the identified.

19. The non-transitory computer readable storage medium
of claim 16, wherein selecting the one or more clusters to run
the map-reduce job is performed responsive to determining
that a load on the selected clusters does not exceed a threshold
load level.

20. The non-transitory computer readable storage medium
of claim 16, wherein selecting the one or more clusters to run
the map-reduce job, the method further comprising:

causing data to be processed by the map-reduce job to be
available to the selected clusters.

k k k k k

Apr. 7, 2016

