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(57) ABSTRACT 
A method for map-reduce job virtualization is disclosed. The 
method includes receiving a map-reduce job written in a first 
map-reduce language. The map-reduce job is to be performed 
in parallelona plurality of nodes of a plurality of clusters. The 
method also includes selecting one or more clusters to run the 
map-reduce job. The method further includes identifying a 
second map-reduce language associated with the selected 
clusters. The method also includes converting the first map 
reduce language of the map-reduce job into the second map 
reduce language. The method further causes the map-reduce 
job in the second map-reduce language to be run on the 
plurality of nodes of the selected clusters. 
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MAP-REDUCE OB VIRTUALIZATION 

TECHNICAL FIELD 

0001. This disclosure is related generally to processing 
large data sets, and more particularly, to methods of perform 
ing map-reduce jobs. 

BACKGROUND 

0002 Map-reduce is a programming model for processing 
large data sets. The map-reduce programming model com 
prises a map procedure that performs filtering and sorting and 
a reduce procedure that perform a Summary operation. Typi 
cally, a map-reduce job is performed on clusters of comput 
ers, such as clusters of storage servers in a distributed file 
system. For example, a file system may have clusters of 
storage servers, such that each cluster includes a master node 
and one or more worker nodes. During the 'map' phase, a 
master node may receive a job request to perform an opera 
tion using a file or data located in the memory. The master 
node may divide the job into Smaller Sub-jobs, and may dis 
tribute the sub-jobs to the worker nodes. The worker nodes 
may process the Sub-jobs in parallel and may pass the results 
back to the master node. During the “reduce' phase, the 
master node may collect the results of the Sub-jobs and com 
bine the results by performing a Summary operation to form 
the output for the job request. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0003. The disclosure may be understood more fully from 
the detailed description given below and from the accompa 
nying drawings of various implementations of the disclosure. 
The drawings, however, should not be taken to limit the 
disclosure to the specific implementations, but are for expla 
nation and understanding only. 
0004 FIG. 1 is a block diagram of an example system 
architecture, in accordance with various implementations; 
0005 FIG. 2 is a block diagram illustrating an example of 
a map-reduce management module: 
0006 FIG. 3 is a flow diagram illustrating an example 
method for Scheduling and converting a map-reduce job, 
according to an implementation of the disclosure; 
0007 FIG. 4 is a flow diagram illustrating an example 
method for selecting a cluster to run a map-reduce job, 
according to an implementation of the disclosure; and 
0008 FIG. 5 illustrates a block diagram of an example 
computer system that may implement systems and methods 
described herein. 

DETAILED DESCRIPTION 

0009 Systems and methods for map-reduce virtualization 
are described. A map-reduce job may be performed by dif 
ferent map-reduce frameworks. For example, each cluster of 
computers may run different map-reduce frameworks Such 
as, Hadoop, Hazelcast, MongoDB, Infinispan, Spark, etc. 
Each framework may support a map-reduce job written spe 
cifically for the corresponding framework. For example, 
Infinispan may process map-reduce jobs written for an 
Infinispan framework, while Hadoop may process map-re 
duce jobs written for a Hadoop framework. However, a clus 
terrunning Infinispan cannot process a map-reduce job writ 
ten for a cluster running Hadoop and vice versa. Since 
different clusters of servers may execute different map-re 
duce frameworks, clusters running different frameworks may 
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be incompatible. It may be desirable to migrate a map-reduce 
job to a different map-reduce framework in order to obtain a 
benefit of the framework or to standardize a map-reduce 
framework across a network. Since map-reduce jobs written 
for different frameworks may be incompatible, migrating 
existing map-reduce jobs across clusters running different 
frameworks may be untenable. An administrator must write 
different map-reduce jobs, each for a different map-reduce 
framework, in order to execute a map-reduce job on computer 
clusters hosting different map-reduce frameworks. 
0010. In one example, a map-reduce service machine 
receives a map-reduce job written in a first map-reduce lan 
guage from a client machine. A map-reduce management 
module running on the map-reduce service machine identifies 
one or more clusters to run the map-reduce job, by evaluating 
the availability of resources of the clusters, the load of the 
clusters, the availability of the data on the clusters, and char 
acteristics of the clusters (e.g., disk-based storage, memory 
based storage). The map-reduce management module may 
also convert the map-reduce job into another map-reduce 
language that corresponds to the map-reduce framework run 
ning on the selected clusters, as the original language of the 
map-reduce job may be incompatible with the framework 
running on the selected clusters. Additionally, the result of the 
map-reduce job may be represented in the language Sup 
ported by the framework running on the selected clusters. The 
map-reduce management module may convert the result into 
the original map-reduce language. 
0011 FIG. 1 is a block diagram of an example system 
architecture implementing the systems and methods 
described herein. The system architecture 100 may include 
one or more client machines 102A-D coupled to a map 
reduce service machine 106 via a network 108. Map-reduce 
service machine 106 is coupled to computer cluster 101, 
computer cluster 103, and database 107 via network 108. A 
computer cluster, Such as computer cluster 101 and computer 
cluster 103, may comprise a set of interconnected computers 
or nodes that may be configured to perform a common task so 
that the computer cluster may be viewed as a single computer 
system. The nodes of a cluster may be connected to each other 
through a network, such as network 108, with each node (e.g., 
node 140A-F) running its own instance of an operating sys 
tem 

0012. A developer may write a separate map-reduce job 
for each cluster running a different map-reduce framework. In 
one example, one or more client devices (e.g., 102A-D) Sub 
mit a map-reduce (MR) job that is received by map-reduce 
service machine 106. Map-reduce service machine 106 may 
receive an MR job written in any language of a Supported set 
of languages, including a language that is specifically desig 
nated as a general map-reduce language. The general MR 
language may be a single universal language that describes 
the functions that may be implemented by each of the mul 
tiple map-reduce frameworks. Alternatively, the general MR 
language may be an MR language that corresponds to a spe 
cific MR framework. After receiving an MR job, map-reduce 
management module 130 selects one or more computer clus 
ters (e.g., computer cluster 101 or computer cluster 103) on 
which to run the MR job. The selection may be performed 
based on the load of each cluster, availability of each cluster, 
characteristics of each cluster, the framework of each cluster, 
and/or the location of the data to be processed. Once one or 
more clusters are selected, map-reduce management module 
130 converts the MR job written in an original language into 
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an MR job written in a map-reduce language that is compat 
ible with the map-reduce framework of the selected computer 
clusters. Map-reduce service machine 106 sends the MR job 
in the appropriate MR framework language to the selected 
computer clusters. For example, map-reduce service machine 
106 determines that MRjob A is to be performed on computer 
cluster 101. Computer cluster 101 may run the Infinispan MR 
framework. Map-reduce service machine 106 converts the 
MR job. A written in a general MR language into an MR job 
written for the Infinispan framework and sends the converted 
MR job to computer cluster 101 to be performed. Each com 
puter cluster includes multiple nodes, such as node 140A-C of 
computer cluster 101. Each node may execute all or part of the 
converted MRjob received from map-reduce service machine 
106. Each node may have memory hardware and may also 
communicate with a database (e.g., database 107) and/or 
local storage (not shown). Each cluster may operate a differ 
ent MR framework as illustrated by map-reduce framework 
104 and 105. Map-reduce service machine 106 receives a 
result of the MRjob, which may be in the MR language of the 
MR framework executed on the cluster, and converts the 
result written in the framework-specific language into results 
written in the general MR language. 
0013 The client machine 102A-D, map-reduce service 
machine 106, database 107, computer cluster 101, and com 
puter cluster 103 may be coupled via network 108 that com 
municates any of the standard protocols for the exchange of 
information. Some or all of client machines 102A-D, map 
reduce service machine 106, database 107, computer cluster 
101, and computer cluster 103 may run on a Local Area 
Network (LAN) and may be incorporated into the same 
physical or logical system, or different physical or logical 
systems. Alternatively, some or all of client machines 102A 
D, map-reduce service machine 106, database 107, computer 
cluster 101, and computer cluster 103 may reside on different 
LANs that may be coupled together via the Internet but sepa 
rated by firewalls, routers, and/or other network devices. In 
yet another configuration, some or all of client machine 
102A-D, map-reduce service machine 106, database 107. 
computer cluster 101, and computer cluster 103 may reside 
on a server, or different servers, coupled to other devices via 
a public network (e.g., the Internet) or a private network (e.g., 
LAN). The network 108 may be a public network, a private 
network, or a combination thereof. Network 108 may include 
a wireless infrastructure. The wireless infrastructure may be 
provided by one or multiple wireless communications sys 
tems, such as a wireless fidelity (Wi-Fi) hotspot connected 
with the network 108 and/or a wireless carrier system that 
may be implemented using various data processing equip 
ment, communication towers, etc. It should be noted that 
various other network configurations may be used including, 
for example, hosted configurations, distributed configura 
tions, centralized configurations, etc. It also should be noted 
that each node of a computer cluster may be connected to 
another node of the same cluster or to other nodes of different 
clusters via network 108 in the same manner as described 
above. 

0014. The computer cluster 101 and computer cluster 103 
may comprise a network attached storage file system that 
includes any number of mass storage devices, such as mag 
netic or optical storage based disks 170A-B, solid-state drives 
(SSDs) or hard drives, coupled to computer cluster 101 and 
computer cluster 103 via the network 108. Computer cluster 
101 and computer cluster 103, and each node of the afore 
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mentioned clusters, can further implement various network 
accessible server-based functionality (not shown) or include 
other data processing equipment. 
00.15 Each computer cluster, such as computer cluster 101 
and computer cluster 103, may contain one or more nodes. 
For example, computer cluster 101 includes nodes 140A, 
140B, and 140C. Computer cluster 103 includes nodes 140D, 
140E, and 140F. Each node of computer cluster 101 and 
computer cluster 103 may include, but is not limited to, any 
data processing device. Such as a desktop computer, a laptop 
computer, a mainframe computer, a personal digital assistant, 
a server computer, a hand-held device or any other device 
configured to process data. 
0016 Each node of computer cluster 101 and computer 
cluster 103 may have its own physical or virtual memory. For 
example, memory 145A, 145B, 145C, 145D, 145E, and 145F 
correspond to node 140A, 140B, 140C, 140D, 140E, and 
140F, respectively. Memory may include, but is not limited to, 
main memory such as, read-only memory (ROM), flash 
memory, dynamic random access memory (DRAM) (e.g., 
synchronous DRAM (SDRAM) or DRAM (RDRAM), etc.), 
and static memory (e.g., flash memory, static random access 
memory (SRAM), etc.). It should also be noted that each node 
of computer cluster 101 and computer cluster 103 may have 
data stored on local storage (not shown). Such as local storage 
disks. 
0017. Each node of computer cluster 101 and computer 
cluster 103 may execute all or part of a map-reduce job. The 
execution of all or part of one or more map-reduce jobs is 
illustrated by map-reduce job 143A, 143B, 143C, 143D, 
143E, and 143F running on their respective nodes. It may be 
appreciated by one skilled in the art that a single map-reduce 
job may run on one or more nodes of one or more clusters in 
parallel. 
0018. Each computer cluster, such as computer cluster 101 
and computer cluster 103, may run the same or different 
map-reduce frameworks. FIG. 1 illustrates computer cluster 
101 operating map-reduce framework 104 and computer 
cluster 103 operating map-reduce framework 105. For the 
sake of illustration, map-reduce framework 104 and map 
reduce framework 105 may be considered different map 
reduce frameworks, unless stated otherwise. As stated above, 
each map-reduce framework uses a different map-reduce lan 
guage. Each node of each cluster is configured to run a spe 
cific map-reduce framework. For example, node 140A, 140B 
and 140C are configured to run map-reduce framework 104, 
while node 140D, 140E, and 140F are configured to run 
map-reduce framework 105. Each MR framework is imple 
mented with a programming language specific to the MR 
framework. Each framework implements a variety of differ 
ent functions specific to each framework and each framework 
executes similar functions in a different manner. Different 
frameworks include frameworks such as, Hadoop, Hazelcast, 
MongoDB, Infinispan, and Spark. 
0019 Computer cluster 101 and computer cluster 103 may 
organize data in database 107. For example, database 107 
may store data on storage devices 107A and 107B (e.g., 
storage disks). Data in database 107 may be located in data 
files 171A-B and organized using volumes. A volume is a 
single accessible storage area of database 107, which may be 
resident on a single partition of a hard disk (e.g., disks 170A 
B) of the database 107. A volume may be a representation of 
a logical location, rather than a physical location, of a storage 
area in database 107. For example, physical hard disk-1 may 



US 2016/0098472 A1 

have two partitions, partition-1 and partition-2. A volume 
label “C:” may be assigned to partition-1 and a volume label 
“D:” may be assigned to partition-2. Hard disk-1 is a physical 
disk and “C:” and “D:” are volumes representing logical 
locations on physical hard disk-1. 
0020. The database 107 may store data as files 171A-B 
and may include directories, also referred to as folders, which 
are virtual containers within the database 107, in which 
groups of computer files 171A-B and possibly other directo 
ries may be kept and organized. Related files 171A-B may be 
stored in the same directory. A sub-directory, also referred to 
as a Sub-folder, is a directory contained inside another direc 
tory. The top-most directory is referred to as a root or top-level 
directory within the database 107. Together, the directories 
form a hierarchy, or tree structure of one or more levels in the 
database 107. 

0021. The client machines 102A-D may host various 
applications, including, for example, web applications, desk 
top applications, browser applications, etc. In one implemen 
tation, an application is a map-reduce interface application 
(not shown). The map-reduce interface application may allow 
a user of a client machine to send a map-reduce job to be 
processed and may receive a result of a map-reduce job. The 
map-reduce interface application may allow the client 
machine to interact with map-reduce service machine 106. 
The map-reduce interface application may allow a user to 
Submit a map-reduce job written in a general map-reduce 
language to map-reduce service machine 106. 
0022 Map-reduce service machine 106 receives map-re 
duce jobs submitted by client machines 102A-D. Map-reduce 
service machine 106 may also receive information from com 
puter cluster 101, computer cluster 103, and database 107. 
The information may include an interim and final result of the 
map-reduce job. The map-reduce service machine 106 may 
be a server or a controller device. Map-reduce service 
machine 106 may include, but is not limited to, any data 
processing device, such as a desktop computer, a laptop com 
puter, a mainframe computer, a personal digital assistant, a 
server computer, a hand-held device or any other device con 
figured to process data. 
0023 Map-reduce service machine 106 may contain map 
reduce management module 130. Map-reduce management 
module 130 may receive one or more MR jobs from the client 
machines 102A-D. MR management module 130 may select 
one or more computer clusters on which each MR job is to be 
executed, based on the load on a cluster or a node of a cluster, 
the availability of a cluster or a node of a cluster, the location 
of the data, and a characteristic of the cluster or a node of the 
cluster. Once the MR job is sent to one or more clusters, the 
MR manager module 130 may monitor the progress of the 
MR job being executed on the selected clusters and may 
determine, based on the above described cluster selection 
rules, that the MR job should be migrated to a different 
cluster. 
0024 Map-reduce management module 130 may convert 
a map-reduce job written in a general MR language into a 
specific MR language corresponding to the MR framework 
running on selected computer clusters. For example, the 
Hadoop MR framework may execute MR jobs written in the 
Hadoop language. The Infinispan MR framework may 
execute MR jobs written in an Infinispan language. It should 
be noted that in the preceding example, a map-reduce job may 
be written in the software language, Java, for both the Hadoop 
and Infinispan frameworks, but in each case is programmed to 
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use the Hadoop Java API or the Infinispan Java API, respec 
tively. An MR job written for a Hadoop framework is incom 
patible with an Infinispan framework and vice versa. A map 
reduce framework language. Such as the Hadoop language or 
the Infinispan language, may refer to a software language that 
is programmed to use the corresponding framework API. 
0025. In one example, a general map-reduce language 
may be used to implement a map-reduce job. The general 
map-reduce language may be implemented using any pro 
gramming language. An interpreter or the general MR lan 
guage is implemented in the selected language. Alternatively, 
the general MR language is a library implemented in the 
selected language. For example, the general MR language 
may be written in Java, C++, Python, etc. For purposes of 
illustration, the general MR language may be described as 
modeled in view of the Java syntax, unless otherwise noted. It 
should be appreciated that the general MR language is not 
limited to Java, but may be any programming language. Func 
tions written in the general MR language may be mapped to 
the functions written in the one or more framework lan 
guages. For example, a map function, map(), written in the 
general MR language may be mapped to the map function, 
map(), in Hadoop, Infinispan, and Spark, etc. The map func 
tion, map(), written in general MR language, may be mapped 
to the Spark map function written in Python. The general MR 
language may map functions written in the general MR lan 
guage to all the functions required to execute an MR job to 
each of the corresponding functions of the different MR 
frameworks. A function specific to a particular MR frame 
work may have a corresponding function in a general MR 
language. The mapping may be stored on map-reduce service 
machine 106 or on separate database, such as database 107. 
Alternatively, it should be noted that the general MR language 
may be written in a specific framework language in which 
case the same mapping principles as described above apply. If 
the general MR language is a specific framework language or 
a universal language, each function of the general MR lan 
guage may be mapped to one or more functions of another 
language, and the mapping may further comprise one or more 
rules of defining values of parameters of the target language 
functions based on parameters of the general language func 
tions. 

0026 Map-reduce management module 130 may translate 
the result of an MR job executed on selected clusters into the 
general MR language. During and after the execution of an 
MR job, the selected clusters may send to the MR service 
machine 106 the result. The result may be in the framework 
language running in the selected clusters. For example, the 
result of an MR job for a Hadoop cluster may be sent to MR 
reduce service machine 106 described in the Hadoop lan 
guage. The MR management module 130 may translate the 
result, for example described in the Hadoop language, into the 
general MR language. A mapping technique, as described 
above, may be implemented for the conversion of the MRjob 
result to the general MR language. Map-reduce management 
module may be discussed in more detail in regards to FIGS. 
2-5. 

0027. It should be noted that an MRjob includes multiple 
functions. It should be appreciated that an MR job may 
describe a complete execution all the functions and includes 
an initial input and final output. Alternatively, an MRjob may 
indicate one or more functions or steps in executing an MR 
job. For example, an MRjob may refer to the map function or 
the reduce function. 
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0028 FIG. 2 is a block diagram illustrating an example of 
a map-reduce management module. Map-reduce manage 
ment module 130 includes conversion module 210 and job 
manager module 220. Map-reduce management module 130 
may be implemented on a map-reduce service machine 106. 
as illustrated in FIG.1. Map-reduce management module 130 
may also be implemented on a client machine, such as client 
machine 102A-D. Parts of map-reduce management module 
130 may be implemented on client machine 102A-D, while 
other parts of map-reduce management module 130 may be 
implemented on map-reduce service machine 106. 
0029 Conversion module 210 includes map-reduce lan 
guage module 212 that converts statements written in the 
general MR language to statements written in specific MR 
languages, as illustrated by framework language 211A and 
framework language 211B. It should be noted that map-re 
duce language module 212 may convert the general MR lan 
guage into more than two MR framework languages. Map 
reduce language module 212 also may convert each language 
(e.g., framework language 211A and framework language 
211B) into the general MR language. It should be noted that 
a language corresponds to the specific MR language for a 
particular MR framework. 
0030. In one example, a map-reduce job written in a gen 
eral MR language may be received by map-reduce manage 
ment module 130. Job manager module 220 selects one or 
more clusters (e.g., computer clusters 101 and 103) on which 
to run the map-reduce job. In selecting the one or more clus 
ters, job manager module 220 may determine if one or more 
clusters are available to perform the map-reduce job. If the 
one or more clusters are not available, job manager module 
220 may select a different cluster on which to run the MR job. 
In one example, availability refers to map-reduce manage 
ment module’s ability to communicate with the cluster. In 
another example, availability refers to the ability of the 
selected cluster to perform the map-reduce job. In another 
example, availability refers to the number of nodes of the 
clusterable to performa map-reduce job compared to the total 
number of nodes in a cluster. Availability may be measured as 
a percentage with the number of nodes of a cluster able to 
perform a map-reduce job divided by the total number of 
nodes of the cluster. For example, if a cluster includes 10 
nodes and 4 have hardware failures and 6 are able to perform 
the map-reduce job, then the availability is 60%. A user or 
administrator may specify an availability threshold which 
when exceeded, the job manager module 220 may determine 
that the cluster is available for purposes of processing a map 
reduce job. An availability threshold may be set at a percent 
age, measured as the number of nodes in a cluster able to 
perform a map-reduce job over the total number of nodes in 
the cluster. In the previous example, if the availability thresh 
old were set at 50%, and availability is 60%, job-manager 
module may determine the cluster is available. If the job 
manager module 220 is not able to communicate with the 
cluster, then the cluster is said to be unavailable. In one 
example, a cluster may not be available if the cluster is off 
line or not available perform the MR job. Additionally, job 
manager module 220 may determine the availability of clus 
ters even though the clusters operate different MR frame 
works. For example, job manager module 220 may determine 
that a cluster running Hadoop is available, while a cluster 
running Infinispan is not available. It should be noted that 
individual nodes of a cluster may be available in the same 
manner as computer clusters. It should also be noted that the 
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term “resource' may be used to refer to a computer cluster, a 
computer node, and any computer hardware or Software asso 
ciated with a computer cluster or node. 
0031. In one example, in selecting the one or more clus 

ters, job manager module 220 may determine the load of the 
selected clusters. The load of a cluster may be an indication of 
the degree or percentage to which the resources of a cluster 
are being used or scheduled to be used. In one example, load 
may be central processing unit (CPU) usage which is the Sum 
of the number of current processes and processes waiting to 
be run (i.e., queued processes) for a time period over the total 
number of processes a CPU is capable of running for the time 
period. In another example, load may be one or more of CPU, 
network, or memory usage which is the amount of data traffic 
on the one or more of the CPU, network, or memory of a node 
or cluster for a given time period divided by the amount of 
data traffic the one or more of the CPU, network, or memory 
may handle for the given time period. Load may be measured 
as a percentage as defined above. Load may be calculated for 
a node, a cluster, or a group of nodes of a cluster. Job manager 
module 220 may send a query using a system call to the 
operating system of a node or cluster in order to obtain the 
load of the node, cluster, or group of nodes in the cluster. The 
results of the query may be sent to a client machine. Such as 
client machine 102A-D. If the load on a particular cluster 
exceeds a threshold load level, job manager module 220 may 
select a different cluster. A developer or administrator may 
determine the threshold load level. Alternatively, the thresh 
old load level may be set at the lowest load detected by job 
manager module 220. In determining the load, job manager 
module 220 may look at the use of resources associated with 
the cluster and determine the speed an MR job may be com 
pleted on a particular cluster. Job manager module 220 may 
determine the difference between the loads of computer clus 
ters operating different frameworks. For example, a computer 
cluster running Infinispan may have a 20% load, while a 
computer cluster running Hadoop may have a 70% load. In 
one example, the threshold load level may be any arbitrary 
value determined by a developer or administrator. For 
example, an administrator may determine that if the load of 
the selected clusters exceeds 60%, job-manager module 220 
should select another cluster to run the MR job. The load of 
each computer cluster running different frameworks may be 
measured prior to selecting a cluster on which to run the job. 
In another example, the threshold load level may be set at the 
load of the least loaded cluster for which load has been deter 
mined. For example, in the above example job manager mod 
ule may select the Infinispan cluster because its load of 20% 
is less than the load of Hadoop cluster of 70%. The threshold 
load level may be set at 20%, and may be reset if a load for 
another cluster is determined to be lower than 20%. 

0032. In one example, in selecting the one or more clus 
ters, job manager module 220 may determine if the data to be 
processed by the map-reduce job is available to the selected 
clusters. If the data to be processed by the map-reduce job is 
not available to the selected clusters, job manager module 220 
may cause the data to be moved in order to make the data 
available to the selected clusters. The data may be moved 
from storage device 170A and 170B to memory 145A, 145B, 
or 145C, and vice versa. The data may be moved between any 
of database 107, disk 170A-B, Memory 145A-F, or local disk 
memory of node 140A-F. 
0033. In another example, in selecting the one or more 
clusters, job manager module 220 may query each cluster of 
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the plurality of clusters for an indication of a characteristic of 
each cluster. Each cluster may run a different software frame 
work. The characteristics include the storage type (e.g., disk 
based storage or memory-based storage). Data in memory 
based storage typically has a faster access time than data on 
disk-based storage. An MR job that uses data located on 
memory-based storage is typically faster than an MRjob run 
on data located on disk-based storage. Memory-based storage 
may be provided by memory 145A-F and described in con 
junction with FIG.1. Disk-based storage may be provided by 
storage devices 170A-B and described in conjunction with 
FIG. 1. Disk-based storage may also be hard-disk storage 
associated locally with each node 140A-F. Different MR 
frameworks may access data in different ways. One differ 
ence may be the location of the data on which the MR job is 
to process. An MRjob may process data located on memory 
based storage or disk-based storage. Job manager module 220 
may query each cluster using a system call requesting the 
characteristic of a targeted cluster. Job manager module 220 
may select one or more clusters to run the map-reduce job 
based on the characteristic. As described above, the job man 
ager module 220 may cause the data to be moved from one 
location to another location in order to execute an MR job on 
a particular framework executing on a computer cluster. 
0034. In another example, the characteristics include the 
capacity of at least one of the CPU, network, or memory of a 
node or cluster. Capacity of the CPU and the network is the 
amount of data the CPU or network can handle over a time 
period. Memory capacity is the amount of memory storage of 
a node or cluster which may be measured in bits. Additionally, 
a characteristic may be disk access speed for a cluster which 
is the amount of data that may be accessed on disk storage by 
a cluster or node, which may be measured in bits per second. 
Job manager module 220 may query each cluster using a 
system call requesting the characteristic of a targeted cluster. 
Job manager module 220 may select one or more clusters to 
run the map-reduce job based on the characteristic. For 
example, two clusters may be both running the Hadoop 
framework. However, one cluster may be using old hardware 
while the other may be using state-of-the-art hardware. An 
MRjob run on state-of-the-art hardware may be faster than on 
old hardware. Job manager module 220, may query each 
cluster for one or more indications of CPU capacity, network 
capacity, or memory capacity, compare the indications, and 
select a cluster based on the comparison. 
0035. In another example, job manager module 220 may 
identify the specific map-reduce language that is associated 
with the selected clusters by identifying the type of a software 
framework being run on the selected clusters. The identified 
map-reduce language corresponds to the Software framework 
being run on the selected clusters. In one example, job-man 
ager module 220 sends a system call to the selected clusters to 
query the selected clusters on the MR framework operating 
on the cluster. In another example, map-reduce management 
module 130 keeps a record of the MR frameworks operating 
on each cluster, and periodically updates the record when the 
MR framework of a clusterchanges. Job manager module 220 
may identify a type of Software framework being run on the 
selected clusters and communicate the identified type to con 
version module 210 so that the conversion module 210 may 
convert the MR job into the framework-specific MR lan 
gllage. 

0036 Map-reduce management module 130 also includes 
conversion module 210 that converts the map-reduce job 
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written in the original map-reduce language into the map 
reduce job written in a language Supported by the selected 
clusters. As stated above, the original map-reduce language is 
the language in which the MR job is received, and may be 
provided by a general map-reduce language. The general MR 
language may be a language that describes the functions 
Supported by multiple frameworks but is not specific to any 
MR framework. Map-reduce language module 212 of con 
version module 210 may convert the received MR job written 
in a general MR language to a framework-specific language 
that corresponds to the MR framework installed on the 
selected clusters. Conversely, the map-reduce language mod 
ule may receive the result of a map-reduce job, which is 
typically in the MR language of the executing clusters, and 
convert the result into a general MR language. Once the result 
is in the general MR language, the result may be converted to 
any framework specific language. Map-reduce language 
module 212 may converta general MR language into various 
MR languages (i.e., framework-specific languages) and con 
Vert any number of MR languages into a general MR lan 
guage, as illustrated by framework language 211A and 211B. 
0037 FIG. 3 is a flow diagram illustrating an example 
method for scheduling and converting a map-reduce job, 
according to an implementation of the disclosure. Method 
300 may be performed by processing logic that may comprise 
hardware (e.g., circuitry, dedicated logic, programmable 
logic, microcode, etc.), software (such as instructions run on 
a processing device), firmware, or a combination thereof. In 
one implementation, method 300 is performed by system 100 
of FIG. 1. In another implementation, method 300 is per 
formed by map-reduce management module 130 of FIGS. 1 
and 2. 
0038 Method 300 begins at block 302 where the process 
ing logic receives a map-reduce job written in a first map 
reduce language. The first map-reduce language may be a 
general MR language. The MRjob may be received from any 
of the client machines 102A-D at map-reduce service 
machine 106. The map-reduce job is to be performed in 
parallel on a plurality of nodes of a plurality of clusters. 
Additional details of block 302 are further described in 
regards to FIGS. 1 and 2. 
0039 Method 300 continues at block 304 where the pro 
cessing logic selects one or more clusters to run the map 
reduce job. The processing logic may determine an availabil 
ity of the selected clusters to perform the map-reduce job. In 
one example, a cluster or node is available when it is able to 
process the MRjob. When a resource is off-line it may be said 
to be unavailable. The processing logic may also determine 
the load of different clusters, each running a different MR 
framework. The processing logic may also determine if the 
data on which the MRjob is to be run is available to the cluster 
or node. Additionally, the processing logic may determine a 
characteristic of the cluster, such as whether the selected 
cluster uses memory-based storage or disk-based storage. 
Processing logic may base the selection of the one or more 
clusters to run the map-reduce job and any one or more of the 
above mentioned features. Additional details of block 304 are 
further described in regards to FIGS. 1, 2, and 4. 
0040 Method 300 continues to block 306 where the pro 
cessing logic identifies a second map-reduce language asso 
ciated with the selected clusters. The second map-reduce 
language may be a framework-specific language that corre 
sponds to a software framework running on the selected clus 
ters. The software framework of the selected clusters may be 
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different from the software framework running on the other 
clusters of the plurality of clusters. For example, a network of 
clusters may have certain clusters running the Hadoop frame 
work while other clusters run the Infinispan framework. The 
processing logic may identify the map-reduce language of the 
selected clusters by sending a system call to the cluster or by 
referring to a table of frameworks run by clusters in a net 
work. Additional details of block 306 are further described in 
regards to FIGS. 1 and 2. 
0041) Method 300 continues to block 308 where the pro 
cessing logic converts the first-map-reduce language of the 
map-reduce job into the second map-reduce language. The 
processing logic may map the MR functions described in a 
general MR language (e.g., first MR language) and convert 
those functions to equivalent functions in the second MR 
language. The second MR language may be compatible with 
the MR framework operating on the selected clusters. Addi 
tional details of block 308 are described in regards to FIGS. 1 
and 2. 

0042 Method 300 continues to block 310 where the pro 
cessing logic causes the map-reduce job in the second map 
reduce language to be run on the plurality of nodes of the 
selected clusters. In one example, the processing logic may 
send the MR job to the selected clusters and the MR frame 
work executes the MR job. In another example, map-reduce 
service machine 106 may assign the work of the MR job to 
nodes in a computer cluster. 
0043 Method 300 continues to block 312 where the pro 
cessing logic receives a result of the map-reduce job run on 
the one or more nodes of the selected clusters. The result may 
be in the in the MR language of the cluster executing the MR 
job. The result may be an output of the MR job. Method 300 
continues to block 314 where the processing logic converts 
the result written in a second map-reduce language to results 
written in the first map-reduce language. In one example, the 
processing logic converts the result written in the specific MR 
language of the framework running on the selected clusters 
into results written in the general MR language. Processing 
logic may convert the general MR language to another frame 
work-specific language. Such a conversion may help migrate 
a job from one MR framework to another MR framework. 
Additional details of block 312 are further described in 
regards to FIGS. 1 and 2. 
0044 FIG. 4 is a flow diagram illustrating an example 
method for selecting a cluster to run a map-reduce job, 
according to an implementation of the disclosure. Method 
400 may be performed by processing logic that may comprise 
hardware (e.g., circuitry, dedicated logic, programmable 
logic, microcode, etc.), software (such as instructions run on 
a processing device), firmware, or a combination thereof. In 
one implementation, method 300 is performed by system 100 
of FIG. 1. In another implementation, method 400 is per 
formed by map-reduce management module 130 of FIGS. 1 
and 2. 

0045 Method 400 begins at block 402 where the selecting, 
by the processing logic, the one or more clusters to run the 
map-reduce job is performed responsive to determining an 
availability of the selected clusters to perform the map reduce 
job. A cluster may be available if an MR job is able to be run 
or completed on the cluster. If the one or more clusters are not 
available, the processing logic may select a different cluster. 
The processing logic may check if a different cluster is also 
available. The processing logic may scan Some or all the 
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clusters to determine which clusters are available. Additional 
details of block 402 are further described in respect to FIG. 2. 
0046 Method 400 continues in block 404, where the 
selecting, by the processing logic, of the one or more clusters 
to run the map-reduce job is performed responsive to deter 
mining that a load on the selected cluster does not exceed a 
threshold load level. Processing logic may select a different 
cluster of the plurality of clusters on which to perform the 
map-reduce job if the load exceeds a threshold load level. The 
different cluster may run a different software framework than 
the selected clusters. In one example, the load of a clusterisan 
indication of the degree to which the resources of a cluster are 
in use. The processing logic may determine the load of dif 
ferent clusters running different MR frameworks. In one 
example, the processing logic selects the cluster with the 
lightest load, regardless of MR framework. In such as case, 
the threshold load level may be determined using the lowest 
load of plurality of clusters, as determined by the processing 
logic. If a cluster is detected with a lower load, then that load 
becomes the new threshold load level. In another example, a 
threshold load level may be defined by a developer or admin 
istrator, and the determined load compared to the threshold 
load level. Additional details of block 404 are further dis 
cussed in regards to FIG. 2. 
0047 Method 400 continues in block 406 where the pro 
cessing logic causes data to be processed by the map-reduce 
job to be available to the selected clusters. The processing 
logic may request the data to be moved to make the data 
available to the selected clusters if the data to be processed by 
the map-reduce job is not available to the selected clusters. 
The processing logic may determine if the data is available to 
the selected cluster by making a system call to the cluster or 
to individual nodes of the selected cluster. Additional details 
of block 406 are further described in regards to FIG. 2. 
0048 Method 400 continues in block 408 where the pro 
cessing logic queries each cluster of the plurality of clusters 
for an indication of a characteristic of each cluster. In block 
410, the processing logic selects the one or more clusters to 
run the MR job based on the characteristic. Characteristics 
include memory-based storage and disk-based storage. As 
noted above, different frameworks process data for an MRjob 
from different locations. The processing logic may query a 
cluster using a system call to determine where the data in 
question is located, disk-based or memory-based. The pro 
cessing logic may select a cluster based any of the above 
characteristics. Additional details of block 408 and block 410 
are discussed in regards to FIG. 2. 
0049 FIG. 5 illustrates a block diagram of an example 
computer system that may implement systems and methods 
described herein. In alternative implementations, the 
machine may be connected (e.g., networked) to other 
machines in a LAN, an intranet, an extranet, or the Internet. 
The machine may operate in the capacity of a server or a client 
device in a client-server network environment, or as a peer 
machine in a peer-to-peer (or distributed) network environ 
ment. The machine may be a personal computer (PC), a tablet 
PC, a set-top box (STB), a Personal Digital Assistant (PDA), 
a cellular telephone, a web appliance, a server, a network 
router, Switch or bridge, or any machine capable of executing 
a set of instructions (sequential or otherwise) that specify 
actions to be taken by that machine. Further, while only a 
single machine is illustrated, the term “machine' shall also be 
taken to include any collection of machines that individually 
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or jointly execute a set (or multiple sets) of instructions to 
perform any one or more of the methodologies discussed 
herein. 
0050. The computer system 500 includes a processing 
device 502, a main memory 504 (e.g., read-only memory 
(ROM), flash memory, dynamic random access memory 
(DRAM) (such as synchronous DRAM (SDRAM) or DRAM 
(RDRAM), etc.), a static memory 506 (e.g., flash memory, 
static random access memory (SRAM), etc.), and a data stor 
age device 518, which communicate with each other via abus 
S30. 
0051 Processing device 502 represents one or more gen 
eral-purpose processing devices Such as a microprocessor, 
central processing unit, or the like. More particularly, the 
processing device may be complex instruction set computing 
(CISC) microprocessor, reduced instruction set computer 
(RISC) microprocessor, very long instruction word (VLIW) 
microprocessor, or processor implementing other instruction 
sets, or processors implementing a combination of instruction 
sets. Processing device 502 may also be one or more special 
purpose processing devices such as an application specific 
integrated circuit (ASIC), a field programmable gate array 
(FPGA), a digital signal processor (DSP), network processor, 
or the like. The processing device 502 is configured to execute 
the processing logic 526 for performing the operations and 
steps discussed herein. 
0052. The computer system 500 may further include a 
network interface device 508 communicably coupled to a 
network 120. The computer system 500 also may include a 
video display unit 510 (e.g., a liquid crystal display (LCD) or 
a cathode ray tube (CRT)), an alphanumeric input device 512 
(e.g., a keyboard), a cursor control device 514 (e.g., amouse), 
and a signal generation device 516 (e.g., a speaker). 
0053. The data storage device 518 may include a machine 
accessible storage medium 524 on which is stored software 
526 embodying any one or more of the methodologies of 
functions described herein. The software 526 may also reside, 
completely or at least partially, within the main memory 504 
as instructions 526 and/or within the processing device 502 as 
processing logic 526 during execution thereof by the com 
puter system 500; the main memory 504 and the processing 
device 502 also constituting machine-accessible storage 
media. 
0054 The machine-readable storage medium 524 may 
also be used to store instructions 526 to implement the map 
reduce management module 130 to implement any one or 
more of the methodologies of functions described herein in a 
computer system, such as the system described with respect 
to FIG. 1, and/or a software library containing methods that 
call the above applications. 
0055 While the machine-accessible storage medium 524 

is shown in an example implementation to be a single 
medium, the term “machine-accessible storage medium’ 
should be taken to include a single medium or multiple media 
(e.g., a centralized or distributed database, and/or associated 
caches and servers) that store the one or more sets of instruc 
tions. The term “machine-accessible storage medium’ shall 
also be taken to include any medium that is capable of storing, 
encoding or carrying a set of instruction for execution by the 
machine and that cause the machine to perform any one or 
more of the methodologies of the disclosure. The term 
“machine-accessible storage medium’ shall accordingly be 
taken to include, but not be limited to, Solid-state memories, 
and optical and magnetic media. 
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0056. In the foregoing description, numerous details are 
set forth. It will be apparent, however, that the disclosure may 
be practiced without these specific details. In some instances, 
well-known structures and devices are shown in block dia 
gram form, rather than in detail, in order to avoid obscuring 
the disclosure. 
0057. Some portions of the detailed descriptions which 
follow are presented in terms of algorithms and symbolic 
representations of operations on data bits within a computer 
memory. These algorithmic descriptions and representations 
are the means used by those skilled in the data processing arts 
to most effectively convey the substance of their work to 
others skilled in the art. An algorithm is here, and generally, 
conceived to be a self-consistent sequence of steps leading to 
a desired result. The steps are those requiring physical 
manipulations of physical quantities. Usually, though not 
necessarily, these quantities take the form of electrical or 
magnetic signals capable of being stored, transferred, com 
bined, compared, and otherwise manipulated. It has proven 
convenient at times, principally for reasons of common 
usage, to refer to these signals as bits, values, elements, sym 
bols, characters, terms, numbers, or the like. 
0058. It should be borne in mind, however, that all of these 
and similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise, as 
apparent from the following discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as “receiving”, “identifying”, “converting”, “causing”. 
“determining”, “selecting”, “requesting, “querying, or the 
like, refer to the action and processes of a computer system, or 
similar electronic computing device, that manipulates and 
transforms data represented as physical (electronic) quanti 
ties within the computer system's registers and memories into 
other data similarly represented as physical quantities within 
the computer system memories or registers or other Such 
information storage, transmission or display devices. 
0059. The disclosure also relates to an apparatus for per 
forming the operations herein. This apparatus may be spe 
cially constructed for the required purposes, or it may com 
prise a general purpose computer selectively activated or 
reconfigured by a computer program stored in the computer. 
Such a computer program may be stored in a machine read 
able storage medium, Such as, but not limited to, any type of 
disk including floppy disks, optical disks, CD-ROMs, and 
magnetic-optical disks, read-only memories (ROMs), ran 
dom access memories (RAMs), EPROMs, EEPROMs, mag 
netic or optical cards, or any type of media Suitable for storing 
electronic instructions, each coupled to a computer system 
bus. 
0060. The algorithms and displays presented herein are 
not inherently related to any particular computer or other 
apparatus. Various general purpose systems may be used with 
programs in accordance with the teachings herein, or it may 
prove convenient to construct more specialized apparatus to 
perform the required method steps. The required structure for 
a variety of these systems will appear as set forth in the 
description below. In addition, the disclosure is not described 
with reference to any particular programming language. It 
will be appreciated that a variety of programming languages 
may be used to implement the teachings of the disclosure as 
described herein. 
0061 The disclosure may be provided as a computer pro 
gram product, or software, that may include a machine-read 
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able medium having stored thereon instructions, which may 
be used to program a computer system (or other electronic 
devices) to perform a process according to the disclosure. A 
machine-readable medium includes any mechanism for Stor 
ing or transmitting information in a form readable by a 
machine (e.g., a computer). For example, a machine-readable 
(e.g., computer-readable) medium includes a machine (e.g., a 
computer) readable storage medium (e.g., read only memory 
(“ROM), random access memory (“RAM), magnetic disk 
storage media, optical storage media, flash memory devices, 
etc.), etc. 
0062. Whereas many alterations and modifications of the 
disclosure will no doubt become apparent to a person of 
ordinary skill in the art after having read the foregoing 
description, it is to be understood that any particular example 
shown and described by way of illustration is in no way 
intended to be considered limiting. Therefore, references to 
details of various examples are not intended to limit the scope 
of the claims, which in themselves recite only those features 
regarded as the disclosure. 
What is claimed is: 
1. A method comprising: 
receiving a map-reduce job written in a first map-reduce 

language, wherein the map-reduce job is to be per 
formed in parallel on a plurality of nodes of a plurality of 
clusters; 

Selecting one or more clusters to run the map-reduce job; 
identifying a second map-reduce language associated with 

the selected clusters: 
converting the first map-reduce language of the map-re 

duce job into the second map-reduce language; and 
causing the map-reduce job in the second map-reduce lan 

guage to be run on the plurality of nodes of the selected 
clusters. 

2. The method of claim 1, further comprising: 
receiving a result of the map-reduce job run on the one or 

more nodes of the selected clusters, wherein the result is 
in the second map-reduce language; and 

converting the result from the second map-reduce language 
to the first map-reduce language. 

3. The method of claim 1, wherein the second map-reduce 
language is a framework-specific language that corresponds 
to a Software framework running on the selected clusters. 

4. The method of claim3, wherein the software framework 
running on the selected clusters is different from software 
frameworks running on other clusters of the plurality of clus 
terS. 

5. The method of claim 1, wherein identifying the second 
map-reduce language associated with the selected clusters 
further comprises: 

identifying a software framework being run on the selected 
clusters, wherein the second map-reduce language cor 
responds to the identified software framework. 

6. The method of claim 1, wherein selecting the one or 
more clusters to run the map-reduce job is performed respon 
sive to determining an availability of the selected clusters to 
perform the map-reduce job. 

7. The method of claim 1, wherein selecting the one or 
more clusters to run the map-reduce job is performed respon 
sive to determining that a load on the selected clusters does 
not exceed a threshold load level. 

8. The method of claim 1, wherein selecting the one or 
more clusters to run the map-reduce job further comprises: 
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causing data to be processed by the map-reduce job to be 
available to the selected clusters. 

9. The method of claim 1, wherein selecting the one or 
more clusters to run the map-reduce job further comprises: 

querying each cluster of the plurality of clusters for an 
indication of a characteristic of each cluster, and 

selecting the one or more clusters to run the map-reduce job 
based on the characteristic. 

10. The method of claim 7, wherein the characteristic com 
prises at least one of disk-based storage or memory-based 
Storage. 

11. A system comprising: 
a memory to store instructions for a map-reduce manage 

ment module; 
a processing device, coupled with the memory, to execute 

the instructions; and 
the map-reduce management module, executed by the pro 

cessing device, to: 
receive a map-reduce job written in a first map-reduce 

language, wherein the map-reduce job is to be per 
formed in parallel on a plurality of nodes of a plurality 
of clusters; 

Select one or more clusters to run the map-reduce job; 
identify a second map-reduce language associated with 

the selected clusters; 
convert the first map-reduce language of the map-reduce 

job into the second map-reduce language; and 
cause the map-reduce job in the second map-reduce 

language to be run on the plurality of nodes of the 
selected clusters. 

12. The system of claim 11, wherein the map-reduce man 
agement module, executed by the processing device, further 
tO: 

receive a result of the map-reduce job run on the one or 
more nodes of the selected clusters, wherein the result is 
in the second map-reduce language; and 

convert the result from the second map-reduce language to 
the first map-reduce language. 

13. The system of claim 11, wherein identifying the second 
map-reduce language associated with the selected clusters, 
the map-reduce management module executed by the pro 
cessing device, further to: 

identify a software framework being run on the selected 
clusters, wherein the second map-reduce language cor 
responds to the identified software framework. 

14. The system of claim 11, wherein selecting the one or 
more clusters to run the map-reduce job is performed respon 
sive to determining that a load on the selected clusters does 
not exceed a threshold load level. 

15. The system of claim 11, wherein selecting the one or 
more clusters to run the map-reduce job, the map-reduce 
management module, executed by the processing device, fur 
ther to: 

causing data to be processed by the map-reduce job to be 
available to the selected clusters. 

16. A non-transitory computer readable storage medium 
including instructions that, when executed by a processing 
device, cause the processing device to perform a method 
comprising: 

receiving a map-reduce job written in a first map-reduce 
language, wherein the map-reduce job is to be per 
formed in parallel on a plurality of nodes of a plurality of 
clusters; 

selecting one or more clusters to run the map-reduce job; 
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identifying a second map-reduce language associated with 
the selected clusters; 

converting the first map-reduce language of the map-re 
duce job into the second map-reduce language; and 

causing the map-reduce job in the second map-reduce lan 
guage to be run on the plurality of nodes of the selected 
clusters. 

17. The non-transitory computer readable storage medium 
of claim 16, the method further comprising: 

receiving a result of the map-reduce job run on the one or 
more nodes of the selected clusters, wherein the result is 
in the second map-reduce language; and 

converting the result from the second map-reduce language 
to the first map-reduce language. 

18. The non-transitory computer readable storage medium 
of claim 16, wherein identifying the second map-reduce lan 
guage associated with the selected clusters, the method fur 
ther comprising: 

identifying a software framework being run on the selected 
clusters, wherein the second map-reduce language cor 
responds to the identified. 

19. The non-transitory computer readable storage medium 
of claim 16, wherein selecting the one or more clusters to run 
the map-reduce job is performed responsive to determining 
that a load on the selected clusters does not exceed a threshold 
load level. 

20. The non-transitory computer readable storage medium 
of claim 16, wherein selecting the one or more clusters to run 
the map-reduce job, the method further comprising: 

causing data to be processed by the map-reduce job to be 
available to the selected clusters. 

k k k k k 
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