
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0117418 A1

US 2013 O117418A1

Mutton et al. (43) Pub. Date: May 9, 2013

(54) HYBRIDPLATFORM FOR CONTENT (52) U.S. Cl.
DELIVERY AND TRANSCODING USPC .. 709/219

(71) Applicant: Akamai Technologies Inc., Cambridge,
MA (US) (57) ABSTRACT

(72) Inventors: James A. Mutton, Maple Valley, WA
S. Ryan F. Lynch, San Marcos, CA The Subject matter herein generally relates to transcoding

content, typically audio/video files though not limited to
(73) Assignee: AKAMAITECHNOLOGIES INC., Such, from one version to another in preparation for online

Cambridge, MA (US) streaming or other delivery to end users. Such transcoding
may involve converting from one format to another (e.g.,

(21) Appl. No.: 13/667,267 changing codecs or container formats), or creating multiple
versions of an original source file in different bitrates, frame

(22) Filed: Nov. 2, 2012 sizes, or otherwise, to support distribution to a wide array of
devices and to utilize performance-enhancing technologies

Related U.S. Application Data like adaptive bitrate streaming. A transcoding platform is
(60) Provisional application No. 61/556.236, filed on Nov. described herein that, in certain embodiments, leverages dis

6, 2011, provisional application No. 61/556.237, filed tributed computing techniques to transcode content in paral
On Nov. 6, 2011. lel across a platform of machines that are preferably idle or

s low-utilization resources of a content delivery network. The
Publication Classification transcoding system also utilizes, in certain embodiments,

improved techniques for segmenting the original source file
(51) Int. Cl. so as to enable different segments to be sent to different

G06F 15/16 (2006.01) machines for parallel transcodes.

4.

40 TRANSLATONER

ORG

STREAM FLAYERER

Patent Application Publication May 9, 2013 Sheet 1 of 18 US 2013/011 7418A1

-- .

-f NTERNET --------,--- ORIGIN E-6
2 SERFER 8- E/ sh all.i. 18N sett C. SERER 106 y Monitoric -10

tossins -112
122 15 O7 CN: FOP y sung -14

Ea. 5

NIt
CC Lice)

AA
CLECTIN O8

SYSTEM EDGE)

2.

(
y

(EAAA

\ico f

SAGENG s 2 FIG. I.

22 ARWARE operating system -20
25

2CO APPLICATION WEB PREXY 2Of
1a

MMORG
NAE SERER PROCESS 2 2.

ATA COLLECTICE PROCESS R 22

Patent Application Publication May 9, 2013 Sheet 2 of 18 US 2013/011 7418A1

ESCCER 34

STREAM RECREE 3)
- - - --

y

&

:
:
:
:
8
:

RTMP ARCHIVER LEAD) ASCIER ARCHIVER RTMP
s

-- i ACSUPLOAD : --
STAGE OTOCOL. O --|--

3.15.

--- r------
FMS R H SREAM FLAYER 3O2 FRS FR

ANDEDGE AND EDGE

316 T
FSEE HP PROY RTMP(E) RTMPE)

FFE - SF 3f.
AUTH AUTHONLY

l

4. ORG

STREAM FLAYERER
iO’

FIG. 4

Patent Application Publication May 9, 2013 Sheet 3 of 18 US 2013/011 7418A1

5O2 506 508

Cotent EP
(with demuxer)

SMT
(with muxer) Sewer

wfghost

SM can optionally
return native object Storage

504

F.G. 5

600
606 608

Customer
Origin

SMT
(with muxer)

604
SM can optionay
return native object

F.G. 6

Patent Application Publication May 9, 2013 Sheet 4 of 18 US 2013/011 7418A1

76 Streaming
Mid-Tier (SMT)

Transform
ib

SM

native

EntryPoint 700
COrtet

708 SeWe

w/ghost
Announce
Streans

SM can optionally
return rative object rative

ESV
- live requests
- archive to Storage

ghost 714

EF

7O1
SMT-Streaming Mid-Tier

Storage ESM - Entrypoint Stream Manager
705

FIG. 7

Request Polling:
EP Manifest

Cotent

Sewer

w/ghost

(4) Segments Request
(3) Session FOX

vetadata
tivesession.xml

Storage

FG. 8

Patent Application Publication May 9, 2013 Sheet 5 of 18 US 2013/011 7418A1

(2) Request {11} Polling:
EP Vanifest

AEMstis SM

6) Chinks

Sessio
Metadata

FG 9

Aggregation of ai active ive
EP Region 1 streams in the EP region

SMT Region

Each EP makes Ya
HP GET to other N
in region EPs and s
aggregates as active
live streams from
the other EPs Pol request made via

ghost and has a given
T. Other

HTP Get Sws can re-use same

live Streams recuest through CP.

SME polis every EP
region periodically

FIG. O.

Patent Application Publication May 9, 2013 Sheet 6 of 18 US 2013/011 7418A1

Entry Point Entry Point (e.g., Backup)

Long running HTTP
POST

FIG.

(2) Request
COntent

SeWe

w/ghost
Storage/
Origin

(1)
Request

FG, 12

Patent Application Publication May 9, 2013 Sheet 7 of 18 US 2013/011 7418A1

Transform Lib

Native File
(input)

Native Parsers Native Object
(Output)

Output Muxers

FG. 3

1416 Streaming
Mid-Tier (SMT)

14OO
Transform Y 1408

m3u8/TS
iPhone EP

COrtet

SME can optionally
return native object

SMT
1412

ghost 1414 - live requests
- archive to Storage

SMT-Streaming Mid-Tier
ESM - Entrypoint Stream Manager Storage

1405

F.G. 14

Patent Application Publication May 9, 2013 Sheet 8 of 18 US 2013/011 7418A1

502

156 Streaming
MP3/AAC Mid-Tier (SMT)

ShOutCast EP ransform Naim
SMT

Y 1512

ghost 1514

15OO
Content

1508 SeWe

Announce

SMT can optionally
return native object MP3, AAC ESM

- live requests
- archive to Storage

15O1
SMT-Streaming Mid-Tier

Storage ESM-Entrypoint Stream Manager

1505

F.G. 5

Patent Application Publication May 9, 2013 Sheet 9 of 18 US 2013/011 7418A1

(2) GetBS
(3) Get?Cache Fragment
F Fragment Content Server

BSI

Generator

(4) BS Response

BS:

interpreter

(3.a) Get?Cache IF
Fragment

(1) HTP Get

(5) Get/Cache
IF Fragment Storage

1603
End-User Client

6O1

F.G. 16

ALI "?INH

US 2013/011 7418A1 May 9, 2013 Sheet 10 of 18 Patent Application Publication

US 2013/011 7418A1 May 9, 2013 Sheet 11 of 18 Patent Application Publication

----.……”…)

d3${n•}-r- - - - - ---------

**~*=~~~~~~~ ~~~~~--~~~~*

US 2013/011 7418A1

}~~~~~~

Patent Application Publication

Patent Application Publication May 9, 2013 Sheet 13 of 18 US 2013/011 7418A1

Fuxer Live Streaming
Overview

Puer
(2)

(1) SWM

(3)

Source Archiver Set Fuxer Set

(6)
Archiver

target Archiver Set

Archiver

ranscoding Resources
(MTRS, STRs)

F.G. 20

Patent Application Publication May 9, 2013 Sheet 14 of 18 US 2013/011 7418A1

Fuxer VOD-Batch
Overview

Job Oueue

(5)

--

(6)

(1)

ranscoding Resources
(MTRs, STRs)

FG, 2.

Patent Application Publication May 9, 2013 Sheet 15 of 18 US 2013/011 7418A1

Fixer WOD-Realtime
Overview

CDN Proxy
Server

Cacheh or
SM

(e

Transcoding Resources
(MTRS, STRs)

FG. 22

Patent Application Publication May 9, 2013 Sheet 16 of 18 US 2013/011 7418A1

Transcoder Processes

Fluxer Hosts

w/tokens

Web Frontend (standard HTTP)

Security Laver (a requests token validated

Process Process Process

The number of transcoding
slots available on a
server is determined by the
fumber of Cores -- a small
additional slots for queuing
This number is configurabi
on a per server basis.

Transcoding
Process

Transcoding Transcoding
Process Process

When a segment arrives to be transcoded
the transcoder assigns it to an open
process. If no processes are open then the
segment is assigned to the waiting queue
only if there are slots available in the
queue. it then blocks the socket until
a process opens. if another transcoding
segment arrives during this time the
priority is compared to the priority of
those in the queue and the new segment
is denied unless it has a higher priority.

F.G. 23

Patent Application Publication May 9, 2013 Sheet 17 of 18 US 2013/011 7418A1

Current GoP; frames 1-250 Next GOP; frames 260-500

NewGOP2 New GOP3 New GOP4

9-8O 18-270 27-36

New GoP

1-90

FG, 24

Pseudo Chunk Segmentation For Parallel Transcoding

Pseudo Chunk 2
- - - - - - - - - - - - - - - - - ------ - - - - - - - - - - - - - - - - -

Pseudo Chunk 1

NeW GOP New GOP 2 New GOP 3 New GOP A New GOP 5 New GOP 6 New GOP 7
Frames Frames Frames Frames Frames Frames Franes

FG. 25

Patent Application Publication May 9, 2013 Sheet 18 of 18 US 2013/011 7418A1

Processor(s) Storage
2604 Device

2606

Periphera Comm.
Interface interface

2612 26.6

FG. 26

US 2013/01 17418 A1

HYBRIO PLATFORM FOR CONTENT
DELIVERY AND TRANSCODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of priority of
U.S. Provisional Application No. 61/556.236, filed Nov. 6,
2011, and of U.S. Provisional Application No. 61/556.237,
filed Nov. 6, 2011, the teachings of both of which are hereby
incorporated by reference in their entirety.

BACKGROUND

0002 1. Technical Field
0003. This disclosure relates generally to computer sys
tems for processing of media files, and other content, using
distributed computing techniques.
0004 2. Brief Description of the Related Art
0005 Content providers (such as large-scale broadcasters,
film distributors, and the like) desire to distribute their content
online in a manner that complements traditional mediums
such as broadcast TV (including high definition or “HD’
television) and DVD. It is important to them to have the
ability to distribute content to a wide variety of third-party
client application/device formats, and to offer a quality view
ing experience regardless of network conditions, using mod
ern technologies like adaptive bitrate streaming. Notably,
since Internet-based content delivery is no longer limited to
fixed line environments such as the desktop, and more and
more end users now use mobile devices to receive and view
content in wireless environments, the ability to Support new
client device formats and new streaming technologies is par
ticularly important.
0006 Media files are one common kind of content that
content providers distribute. A media file may be single
media content (e.g., audio-only media) or the media file may
comprise multiple media types, i.e., a multimedia file with
audio/video data. Generally speaking, a given multimedia file
is built on data in several different formats. For example, the
audio and video data are each encoded using appropriate
codecs, which are algorithms that encode and compress that
data. Example codecs include H.264, VP6, AAC, MP3, etc. A
container or package format that functions as a wrapper and
describes the data elements and metadata of the multimedia
file, so that a client application knows how to play it. Example
container formats include Flash, Silverlight, MP4, PIFF, and
MPEG-TS.

0007. The bit rate at which to encode the audio and video
data must be selected. An encoding with a lower bitrate and
Smaller frame size (among other factors) generally will be
easier to stream reliably, since the amount of data will be
smaller, but the quality of the experience will suffer. Like
wise, an encoding at a higher-bitrate and a larger frame will be
a higher quality experience, but is more likely to lead to
interrupted and/or poor quality streams due to network deliv
ery issues. Current adaptive bitrate streaming technologies
require multiple streams each encoded at a different bitrate,
allowing the client and/or server to switch between streams in
order to compensate for network congestion.
0008 While other kinds of media files (like an audio-only

file) may be somewhat less complex than the multimedia file
described above, they nevertheless present similar issues in
terms of encoding and formatting, stream quality tradeoffs,
and player compatibility.

May 9, 2013

0009 Hence, to support the distribution of content to a
wide variety of devices, content providers typically must
create many different versions of their content. For example,
they often will create multiple copies of a given movie title at
different Screen sizes, bit rates, quality levels and client player
formats. Furthermore, over time they may want to change
formats, for example by updating the encoding (e.g., to take
advantage of newer codecs that compress content more effi
ciently). They may also need to change the container format
to accommodate new client environments, a process often
referred to as transmuXing. Failing to provide certain bit rates
or poor encoding practices will likely reduce the quality of the
stream. But generating so many different versions of content,
as well as converting from one to another and storing them, is
a time-consuming and costly process that is difficult to man
age.
0010 For online delivery (e.g., streaming, download) of
these various versions of content, content providers often use
distributed computing systems to deliver their content. One
such distributed computer system is a “content delivery net
work” or "CDN that is operated and managed by a service
provider. The service provider typically provides the content
delivery service on behalf of third parties. A “distributed
system” of this type typically refers to a collection of autono
mous computers linked by a network or networks, together
with the Software, systems, protocols and techniques
designed to facilitate various services, such as content deliv
ery or the Support of outsourced site infrastructure. Typically,
“content delivery means the storage, caching, or transmis
sion of content, streaming media and applications on behalf
of content providers, including ancillary technologies used
therewith including, without limitation, DNS query handling,
provisioning, data monitoring and reporting, content target
ing, personalization, and business intelligence.
0011. A content delivery network such as that just
described typically supports different content formats, and
offers many advantages for accelerating the delivery of con
tent, once created. However, the content provider still faces
the problem of creating and managing the creation of all of the
various versions of content that it desires and/or that are
necessary.
0012. Thus, there is a need to provide methods and sys
tems for generating, preparing and transforming streaming
content in an efficient and scalable way. There is also a need
to provide such functionality in a way that is compatible with
delivery Solutions so as to provide an overall end-to-end
Solution for content providers. The teachings herein address
these needs and offer other features and advantages that will
become apparent in view of this disclosure.

SUMMARY

0013 The subject matter herein generally relates to
transcoding content, typically audio/video files though not
limited to Such. Typically the transcoding is performed in
preparation for online streaming or other delivery to end
users. Such transcoding may involve converting from one
format to another (e.g., converting codecs or container for
mats), or creating multiple versions of an original source file
in different bitrates, resolutions, or otherwise, to support dis
tribution to a wide array of devices and to utilize perfor
mance-enhancing technologies like adaptive bitrate stream
ing. This disclosure describes a transcoding platform that, in
certain embodiments, leverages distributed computing tech
niques to transcode content in parallel across a platform of

US 2013/01 17418 A1

machines that are preferably idle or low-utilization resources
of a content delivery network. The transcoding system also
utilizes, in certain embodiments, improved techniques for
breaking up the original Source file that are performed so that
different segments of the file can be sent to different machines
for transcoding in parallel.
0014. In one embodiment, a transcoding platform is made
up of distributed transcoding resources, typically servers with
available processing power and programmed to assist in the
transcoding function. These transcoding resources may be
dedicated machines as well as machines that are shared with
other functions. In particular, the machines can be idle or
low-utilization HTTP proxy servers (relative to other such
proxy servers) in a content delivery network. While these
machines may spend much of their time receiving and
responding to client requests for content, and otherwise facili
tating delivery of online content to requesting end-users, at
certain times (in the middle of night in their local time Zone,
for example) they may be relatively lightly-loaded, and hence
available to perform certain transcoding tasks. The transcod
ing platform may also include a set of machine(s) that manage
and coordinate the transcoding process. These machines may
receive requests to perform a particular transcoding job, e.g.,
to convert a particular file from a first version to a second
version. The request may come from a user interface (through
which a content provider user of the platform uploads their
content to be transcoded, for instance), from a network Stor
age system, or from components in the content delivery net
work that are streaming content (e.g., that need to be able to
deliver a particular format to a requesting end-user client),
including one of the proxy servers. As appropriate, depending
on the foregoing circumstances, the transcoding job may be
designated with a priority level, which may correspond
semantically to a “live”, “real-time' or “batch’ mode conver
Sion. In some cases, the proxy servers are only used if the
priority level is below a certain threshold because the proxy
servers are considered to be unreliable for transcoding tasks.
Indeed, proxy servers may operate such that content delivery
processes (e.g., responding to client requests) take priority
over transcoding tasks when allocating processing time
within the proxy server.
0015 Continuing with the current example, a machine(s)
managing the transcoding process obtains a list of candidate
servers for performing transcoding tasks. This list may
include the results of a lookup into the content delivery net
work's monitoring and mapping system to determine which
proxy servers within the network are currently experiencing a
relatively light load for content delivery services, as measured
by Such metrics as processor (CPU), memory, or disk utiliza
tion, and/or client requestrate, etc. The management machine
retrieves the file to be transcoded and breaks it up into seg
ments suitable to be independently converted. These seg
ments are then sent to the various transcoding resources (e.g.,
the proxy servers or the dedicated machines) distributed
across the platform, which given the nature of the content
delivery network may be global in nature. Also sent along are
instructions with parameters about the desired transcode
operation and/or target format. Each transcoding resource
performs its task independently, e.g., decoding the chunk that
it is given and re-encoding with the appropriate parameters. It
then returns the result to the management machine(s), which
reassembles the new segments into the new file. Thus, for
example, the proxy servers can continue to service client

May 9, 2013

requests for content (the proxy process) while performing the
transcode process with residual resources.
0016. Because proxy servers are responsible for servicing
client requests, that process typically takes priority over the
transcoding process. In some cases, the proxy server may
determine that it cannot complete the transcode request and
may send a message back to the management machine with an
error or otherwise indicating it will not complete the
transcode. Typically this would occur if the proxy server's
load began to increase or to exceed a particular threshold.
0017. The transcoding process may involve changing any
of a variety of characteristics of the file, for example and
without limitation, changing a codec used to encode data in
the file, changing a container format of the file, and/or chang
ing one or more encoding parameters or container format
parameters. Thus the transcoding process may involve chang
ing a bit-rate of encoded data in the file, an image resolution
for data in the file, a frame size for data in the file, an aspect
ratio for data in the file, a compression setting used to encode
data in the file, other settings such as GoP settings, color
spaces, stereo/audio settings, etc. The transcoding process
may also involve changing other characteristics, such as an
interlacing characteristic for data in the file. In addition, the
system may be used to change or add security features to the
file, e.g., by applying encryption, embedding a watermark or
a fingerprint in the content, or inserting data to apply a digital
rights management scheme to the file.
0018. In some cases, when the source file is a video, the
platform uses a pseudo-chunking approach for breaking up
the video file to create the transcoding segments. For
example, the management machine(s) can be configured to be
frame-aware, such that it can include “additional frames in a
given segment to enhance the ability for a given transcoding
resource to transcode that segment independently of other
frame information in the file. This is advantageous and some
times necessary because the transcoding resource usually will
not receive the entire original source file. Such pseudo
chunking techniques are useful when the transcode involves
modifying the size of GoPs, the rate of keyframes in the
Source file is relatively high, or the source file contains so
called open GoPs, among other scenarios.
0019 More specifically, in some embodiments, a frame
aware segmentation process (e.g. in the management server)
can receive a video file that is to be converted from a first
version to a second version. The video file is typically made
up of a plurality of frames organized into a plurality of
groups-of-pictures (GoPs). The segmenter examines frames
in the file to identify a given GoP and to determine the type of
frames in the given GoP and creates a segment that includes
frames beyond those in the given GoP. This segment is then
sent off to be independently transcoded as described above.
0020. The inclusion of the additional frames may occur
because the segmenter determines that the given GoP cannot
be divided into a whole number of target GoPs (the target
GoPs representing desired GoPs for the second version and
having a smaller number of frames), in which case the seg
menter can create the segment from the file to include at least
Some frames in the given GoP and at least one frame from a
GoP immediately following the given GoP.
0021. Another possibility is that the target GoP is larger
than the given GoP and that it is nota whole-number-multiple
of the size of the given GoP in which case the segmenter can
create the segment to include the given GoP and at least

US 2013/01 17418 A1

enough frames from GoPs immediately following the given
GoP such that the segment reaches the size of the target GoP.
0022. Another possibility is that the segmenter identifies
the given GoP as an open-GoP and therefore creates the
segment to include all of the frames from the given GoP and
frames (e.g., up to and including a keyframe) from a GoP
immediately following the given GoP.
0023 Yet another possibility is that the segmenter deter
mines that the given GoP contains a number of frames that is
less than a predetermined minimum number of frames, and so
creates the segment to include the given GoP and at least
enough additional frames so as to reach that predetermined
minimum number of frames.
0024. As those skilled in the art will recognize, the fore
going merely refers to non-limiting embodiments of the Sub
ject matter disclosed herein. The teachings hereof may be
realized in a variety of systems, methods, apparatus, and
non-transitory computer-readable media. It is also noted that
the allocation of functions to different machines is not limit
ing, as the functions recited herein may be combined or split
amongst different machines in a variety of ways.

BRIEF DESCRIPTION OF THE DRAWINGS

0025. The subject matter herein will be more fully under
stood from the following detailed description taken in con
junction with the accompanying drawings, in which:
0026 FIG. 1 is a diagram illustrating one embodiment of
a known distributed computer system configured as a content
delivery network;
0027 FIG. 2 is a diagram illustrating one embodiment of
a machine on which a CDN server in the system of FIG.1 may
be implemented;
0028 FIG. 3 is a diagram illustrating one embodiment of
an architecture for live streaming delivery as described in
U.S. application Ser. No. 12/858,177;
0029 FIG. 4 is a diagram illustrating one embodiment of
an architecture and request flow of a video-on-demand
approach as described in U.S. application Ser. No. 12/858,
177:
0030 FIG. 5 is a schematic view of one embodiment of an
architecture for live streaming, as described in U.S. applica
tion Ser. No. 13/329,057;
0031 FIG. 6 is a schematic view of one embodiment of an
architecture for on-demand streaming as described in U.S.
application Ser. No. 13/329,057:
0032 FIG. 7 is a schematic view illustrating the live
streaming architecture of FIG. 5 in more detailas described in
U.S. application Ser. No. 13/329,057:
0033 FIG. 8 illustrates an example of a first live streaming
workflow used when a stream is published from an encoder to
an entrypoint (EP) as described in U.S. application Ser. No.
13/329,057;
0034 FIG. 9 illustrates an example of a second live
streaming workflow used when an end-user makes a live
request for content as described in U.S. application Ser. No.
13/329,057;
0035 FIG.10 illustrates an example of a process by which
live streams can be announced in the exemplary architectures
shown in FIGS. 5,7,8 and 9, as described in U.S. application
Ser. No. 13/329,057;
0036 FIG. 11 illustrates an example of a technique for
replicating live streams as described in U.S. application Ser.
No. 13/329,057;

May 9, 2013

0037 FIG. 12 illustrates an example of an on-demand
streaming workflow used when an end-user makes a request
for content as described in U.S. application Ser. No. 13/329,
057;
0038 FIG. 13 illustrates an example of the TransformLib
component in more detail as described in U.S. application
Ser. No. 13/329,057;
0039 FIG. 14 illustrates an example of a workflow Sup
porting ingestion and output of a content stream in a given
format as described in U.S. application Ser. No. 13/329,057:
0040 FIG. 15 illustrates an example of a workflow for
Supporting ingestion and output of a content stream in another
given format as described in U.S. application Ser. No. 13/329,
057; and
0041 FIG. 16 illustrates an example of a workflow using
binary-side-includes (BSI) to facilitate streaming as
described in U.S. application Ser. No. 13/329,081;
0042 FIG. 17 is a block diagram of one embodiment of a
transcoding platform that includes a transcoding region with
certain machines, as well as an existing content delivery
network with machines that are leveraged to provide
transcoding resources;
0043 FIG. 18 illustrates an example of a workflow for
Video-on-demand batch transcoding in accordance with the
teachings hereof;
0044 FIG. 19 illustrates an example of a workflow for live
transcoding in accordance with the teachings hereof;
004.5 FIG. 20 illustrates an example of a workflow for live
transcoding from the point of view of the Fluxer component,
in accordance with the teachings hereof;
0046 FIG. 21 illustrates an example of a workflow for
batch video-on-demand transcoding from the point of view of
the Fluxer component, in accordance with the teachings
hereof;
0047 FIG. 22 illustrates an example of a workflow for
real-time video-on-demand transcoding from the point of
view of the Fluxer component, in accordance with the teach
ings hereof;
0048 FIG. 23 is a diagram illustrating examples of certain
transcoding processes executing in a server functioning as a
transcoding resource, in accordance with the teachings
hereof;
0049 FIG. 24 is a diagram illustrating modification of
group-of-picture (GoP) size as part of a transcoding job;
0050 FIG. 25 is a diagram illustrating an example of a
pseudo-chunking approach for transcoding, in according
with the teachings hereof, and,
0051 FIG. 26 is a diagram that illustrates hardware in a
computer system that may be used to implement the teachings
hereof.

DETAILED DESCRIPTION

0.052 The following description sets forth non-limiting
embodiments to provide an overall understanding of the prin
ciples of the structure, function, manufacture, and use of the
methods, systems, and apparatus disclosed herein. The meth
ods, systems, and apparatus described herein and illustrated
in the accompanying drawings are non-limiting examples; the
scope of the present invention is defined solely by the claims.
The features described or illustrated in connection with one
exemplary embodiment may be combined with the features of
other embodiments. Such modifications and variations are
intended to be included within the scope of the present inven

US 2013/01 17418 A1

tion. All patents, publications and references cited herein are
expressly incorporated herein by reference in their entirety.
0053. The subject matter hereof provides improved ways

to convert audio/video content (or other content) from one
codec format to another, or from one container format to
another, and/or that have different encoding/formatting set
tings, to generate multiple versions of a file. For example, the
conversions may involve changing the bitrate (e.g., 10 Mbps
to 500 kps), frame size, aspect ratio, or in changing compres
sion settings (other than bitrate), and/or other characteristics
Such as GoP settings, color spaces, Stereo/audio choices,
sample rates, etc. The process may also involve changing
other characteristics, such as whether interlacing is used. In
addition, in Some applications the teachings hereof may be
used to change or add security features. Such as encryption or
watermarking, as will be described in more detail below. The
term transcoding is used herein to refer to performing any or
all of such transformations on a given piece of content; how
ever it is not limited to such transformations, which are
merely examples provided for illustrative purposes.
0054. In many embodiments, the transcoding techniques
disclosed herein preferably are implemented in a distributed
computing platform Such as a content delivery network
(CDN), and preferably one that can not only perform
transcoding services but also the deliver the transcoded con
tent. An example of a content delivery network platform is
now described.

0055 Content Delivery Network
0056 FIG. 1 illustrates a known distributed computer sys
tem 100 is configured as a CDN and is assumed to have a set
of machines 102 distributed around the Internet. Typically,
most of the machines are servers located near the edge of the
Internet, i.e., at or adjacent end user access networks. A net
work operations command center (NOCC) 104 manages
operations of the various machines in the system. Third party
sites, such as web site 106, offload delivery of content (e.g.,
HTML, embedded web page objects, streaming media, soft
ware downloads, and the like) to the distributed computer
system 100 and, in particular, to the CDN's content servers
102 (sometimes referred to as "edge' servers in light of their
location near the "edges' of the Internet, or as proxy servers
if running an HTTP proxy or other proxy process, as is typical
and as is described further below in connection with FIG. 2).
Typically, content providers offload their content delivery by
aliasing (e.g., by a DNS CNAME) given content provider
domains or sub-domains to domains that are managed by the
service provider's authoritative domain name service. End
users that desire the content are directed to the distributed
computer system to obtain that content more reliably and
efficiently. Although not shown in detail, the distributed com
puter system may also include other infrastructure, Such as a
distributed data collection system 108 that collects usage and
other data from the edge servers, aggregates that data across
a region or set of regions, and passes that data to other back
end systems 110, 112, 114 and 116 to facilitate monitoring,
logging, alerts, billing, management and other operational
and administrative functions. Distributed network agents 118
monitor the network as well as the server loads and provide
network, traffic and load data (e.g., from the CDN's content
servers 102) to a DNS query handling mechanism 115, which
is authoritative for content domains being managed by the
CDN and which responds to DNS queries from end users by
handing out, e.g., addresses for one or more of the content
servers in the CDN. A distributed data transport mechanism

May 9, 2013

120 may be used to distribute control information (e.g., meta
data to manage content, to facilitate load balancing, and the
like) to the servers.
0057 More detail about CDN operation can be found in
U.S. Pat. Nos. 7,293,093 and 7,693,959, the disclosures of
which are incorporated by reference.
0.058 As illustrated in FIG. 2, a given machine 200 com
prises commodity hardware (e.g., an Intel Pentium processor)
202 running an operating system kernel (such as Linux or
variant) 204 that Supports one or more applications 206a-n.
To facilitate content delivery services, for example, given
machines typically run a set of applications, such as an HTTP
web proxy 207 (sometimes referred to as a “global host' or
“ghost’ process), a name server 208, a local monitoring pro
cess 210, a distributed data collection process 212, and the
like. The machine running the proxy 207 typically provides
caching functionality for content passing therethrough,
although it need not. For streaming media, the machine typi
cally includes one or more media servers, such as a Windows
Media Server (WMS) or Flash server, as required by the
Supported media formats.
0059 A given content server is configured to provide one
or more extended content delivery features, preferably on a
domain-specific, customer-specific basis, preferably using
configuration files that are distributed to the edge servers
using a configuration system. A given configuration file pref
erably is XML-based and includes a set of content handling
rules and directives that facilitate one or more advanced con
tent handling features. The configuration file may be deliv
ered to the content server via the data transport mechanism.
U.S. Pat. Nos. 7,240,100 and 7,111,057 (the disclosures of
which is hereby incorporated by reference) illustrates useful
infrastructures for delivering and managing edge server con
tent control information, and this and other edge server con
trol information can be provisioned by the CDN service pro
vider itself, or (via an extranet or the like) the content provider
customer who operates the origin server. The CDN may pro
vide secure content delivery among a client browser, edge
server and customer origin server in the manner described in
U.S. Publication No. 20040093419. Secure content delivery
as described therein enforces SSL-based links between the
client and the content server, on the one hand, and between the
content server process and an origin server process, on the
other hand. This enables an SSL-protected web page and/or
components thereof to be delivered via the content server.
0060. The CDN may include a network storage subsystem
(sometimes referred to as “NetStorage'), such as described in
U.S. Pat. No. 7,472,178, the disclosure of which is incorpo
rated herein by reference.
0061 Streaming Using a Content Delivery Network
0062. The CDN described above may be designed to pro
vide a variety of streaming services. For example, for fault
tolerant streaming delivery, the CDN may include a delivery
subsystem, such as described in U.S. Pat. No. 7,296,082, the
disclosure of which is incorporated herein by reference.
0063. In other streaming implementations, the CDN may
be extended to provide an integrated HTTP-based delivery
platform that provides for the delivery online of HD-Video
quality content to the most popular runtime environments and
to the latest devices in both fixed line and wireless environ
ments. An example of such a platform is set forth in U.S. Ser.
No. 12/858,177, filed Aug. 17, 2010 (now published as US
Patent Publication 2011/0173345, incorporated herein by ref
erence). The platform described there supports delivery of

US 2013/01 17418 A1

both "live' and “on-demand” content. It should be noted that
while some of the description below and otherwise in appli
cation Ser. No. 12/858,177 uses the context of the Adobe
Flash runtime environment for illustrative purposes, this is
not a limitation, as a similar type of Solution may also be
implemented for other runtime environments both fixed line
and mobile (including, without limitation, Microsoft Silver
light, Apple iPhone, and others).
0064 FIG. 3 illustrates an overview of an exemplary
architecture for live streaming delivery as described in U.S.
application Ser. No. 12/858,177, filed Aug. 17, 2010. As seen
in the embodiment shown in FIG. 3, the system generally is
divided into two independent tiers: a stream recording tier
300, and a stream player tier 302. The recording process
(provided by the stream recording tier 300) is initiated from
the Encoder 304 forward. Preferably, streams are recorded
even if there are currently no viewers (because there may be
DVR requests later). The playback process (provided by the
stream player tier 302) plays a given stream starting at a given
time. Thus, a “live stream.” in effect, is equivalent to a “DVR
stream” with a start time of "now.”
0065 Referring to FIG. 3, the live streaming process
begins with a stream delivered from an Encoder 304 to an
Entry Point 306. A Puller component 308 (e.g., running on a
Linux-based machine) in an EP Region (not shown) is
instructed to subscribe to the stream on the EP306 and to push
the resulting data to one or more Archiver 310 processes,
preferably running on other machines. In this embodiment,
one of the Archivers 310 may operate as the “leader as a
result of executing a leader election protocol across the
archiving processes. Preferably, the Archivers 310 act as ori
gin servers for a content server's HTTP proxy processes (an
example of which is shown at 312) for live or near-live
requests. The HTTP proxy 312 provides HTTP delivery to
requesting end user clients, one of which is the Client 314. A
representative Client 314 is a computer that includes a
browser, typically with native or plug-in Support for media
players, codecs, and the like. If DVR is enabled, content
preferably is also uploaded to the Storage subsystem 316, so
that the Storage subsystem serves as the origin for DVR
requests.
0.066. In operation, a request for content (e.g., from an end
user Client 314) is directed to the HTTP proxy 312, prefer
ably using techniques such as those described in U.S. Pat.
Nos. 6,108,703, 7,240,100, 7,293,093 and others. When the
HTTP proxy 312 receives an HTTP request for a given
stream, it makes various requests, preferably driven by HTTP
proxy metadata (as described in U.S. Pat. Nos. 7.240,100,
7,111,057 and others), possibly via a cache hierarchy 318
(see., e.g., U.S. Pat. No. 7,376,716 and others), to locate, learn
about, and download a stream to serve to the Client 314.
Preferably, the streaming-specific knowledge is handled by
the HTTP proxy 312 that is directly connected to a Client 314.
Any go-forward (cachemiss) requests (issued from the HTTP
proxy) preferably are standard HTTP requests. For example,
when a Client 314 requests a particular stream, the HTTP
proxy 312 starts the streaming process by retrieving a
“Stream Manifest” that contains preferably attributes of the
stream and information needed by the HTTP proxy 312 to
track down the actual stream content.

0067. For “live' requests, the HTTP proxy 312 starts
requesting content relative to "now,” which, in general, is
approximately equal to the time at the content server's HTTP
proxy process. Given a seek time, the HTTP proxy downloads

May 9, 2013

a "Fragment Index' whose name preferably is computed
based on information in the indexInfo range and an epoch
seek time. Preferably, a Fragment Index covers a given time
period (e.g., every few minutes). By consulting the Fragment
Index, an “Intermediate Format (IF) Fragment number and
an offset into that IF fragment are obtained. The HTTP proxy
312 can then begin downloading the fragment (e.g., via the
cache hierarchy 318, or from elsewhere within the CDN
infrastructure), skipping data before the specified offset, and
then begin serving (to the requesting Client 314) from there.
In general, and unless the Stream Manifest indicates other
wise, for live streaming the HTTP proxy then continues serv
ing data from consecutively-numbered IF Fragments.
0068. In the context of live HTTP-based delivery, the
Intermediate Format (IF) describes an internal representation
of a stream used to get data from the Puller through to the
HTTP proxy. A “source' format (SF) is a format in which the
Entry Point 306 provides content and a “target” format (TF) is
a format in which HTTP proxy 312 delivers data to the Client
314. These formats need not be the same. Thus, SF may differ
from TF, i.e., a stream may be acquired in FLV format and
served in a dynamic or adaptive (variable bit rate) format. The
format is the container used to convey the stream; typically,
the actual raw audio and video chunks are considered opaque
data, although transcoding between different codecs may be
implemented as well. By passing the formats through the
HTTP proxy 312 (and delivering to the Client 314 via con
ventional HTTP), the container used to deliver the content can
be changed as long as the underlying codecs can be managed
appropriately.
0069. The above-described architecture is useful for live
streaming. The platform can also be used to support video on
demand (VOD). In particular, the solution can provide VOD
streaming from customer and Storage Subsystem-based ori
g1nS.
(0070 For VOD delivery, the stream recorder tier 300 (of
FIG. 3) is replaced, preferably with a translation tier. As
described in Ser. No. 12/858,177, filed Aug. 17, 2010, typi
cally VOD content is off-loaded to the CDN for HTTP deliv
ery. In one embodiment, a conversion tool (a script) is used to
convert source content (such as FLV) to IF, with the resulting
IF files then uploaded to the Storage subsystem. The HTTP
proxy 312 then gets the content and the Stream Manifest from
the Storage Subsystem. Exemplary translation tier
approaches are described in more detail in Ser. No. 12/858,
177, filed Aug. 17, 2010.
0071 Anarchitecture and request flow of a VOD approach

is shown in FIG. 4. In this embodiment, a translation tier 400
is located between an origin 402 (e.g., customer origin server,
or the Storage Subsystem, or other source of content) and the
stream player tier 404.
0072 More detail about the above streaming architectures
can be found in aforementioned U.S. application Ser. No.
12/858,177.
0073. It is known that the above-described streaming
architecture can be enhanced in a variety of ways, for example
as set forth in U.S. patent application Ser. No. 13/329,057.
filed Dec. 16, 2011, (now published as US Publication No. US
2012/0265853 and as WIPO Publication No. WO/2012/
083298) the contents of which are hereby incorporated by
reference.
0074 Live Streaming Components
0075 FIG. 5 is a high-level component diagram illustrat
ing one embodiment of an architecture for streaming live

US 2013/01 17418 A1

content, as set forth in U.S. patent application Ser. No.
13/329,057. In this embodiment, the Entry Point (EP) 502
ingests the stream to be delivered from an encoder 500,
demuxes the stream from its native format to an IF format,
such as a fragmented format like f-MP4, and archives the
stream to Storage 504 (typically a network storage sub
system). The EP 502 serves “current live stream fragments
to a Streaming Mid-Tier (SMT) process 506, which is typi
cally running on a separate SMT machine. The SMT 506
retrieves “current live stream fragments from EP 502, and it
generates a muXed output in the desired native format. In an
alternative embodiment, the SMT 506 generates muxing
instructions for use by a content server running an HTTP
proxy process 508 (again, sometimes referred to as “global
host' or simply "ghost') in the CDN. The instructions are
returned to the content server 508, along with the IF frag
ments if needed, although the IF fragments may have been
previously cached by the content server 508 or retrieved by
the content server from Storage 504 instead. The muxing
instructions may be realized as binary-side-includes, or BSI,
which is described in detail in U.S. patent application Ser. No.
13/329,057 and will be summarized below. The content
server 508 forwards end-user requests to SMT 506, caches
the response from SMT506, which response either is a native
output object for the stream or a BSI fragment, and, when BSI
is used, the content server 508 also creates an output object
from the BSI and IF fragment. The content server 508 also
delivers the native output object to the end-user client, typi
cally a client player application. It does not need to under
stand any container format(s). The Storage 504 stores an
archive for DVR or VOD playback, and it also stores live
stream session metadata.
0076. On Demand Streaming Components
0077 FIG. 6 is a high-level component diagram illustrat
ing one embodiment of an architecture for streaming on
demand content. In this embodiment, the SMT 604 requests
and receives the native on-demand file from either a customer
origin 600 or Storage 604 (again, typically a network Storage
subsystem). The SMT 606 parses a native source file index
and creates an intermediate Metalindex. It also generates a
muxed output object or SMT 606 generates muxing instruc
tions (BSI or equivalent functionality) for use by the content
server 608 to create the native object. The content server 608
forwards end-user requests to SMT 606, caches the response
from SMT, which response either is a native output object or
a BSI fragment, and, when BSI is used, the content server 608
also creates an output object from the BSI and IF fragment.
Storage 604 typically stores on-demand files in native format.
0078 Live Streaming Operation
0079 FIG. 7 illustrates further details regarding the EP
and SMT components and their respective functions.
0080. In this embodiment, the EP 700 comprises two ser
vices: an ingest server 706 and an entry point stream manager
(ESM) 701. The ingest server 706 is composed of a format
specific ingest server 706 and a library of functions 708,
called Transform Lib. The library 708 is a shared library that is
linked into the ingest server 706. The library contains format
specific logic for muXing and demuxing. In operation, the
ingest server 706 receives a stream from an encoder 702,
authenticates the encoder 702, passes the received data to the
library 708 for demuxing, and sends the demuxed stream to
the ESM 701. The library, as noted above, demuxes from a
native format (e.g., MP3, MPEG2-TS, or otherwise) to the IF,
such as fMP4. The ESM 710 is a format-independent com

May 9, 2013

ponent that preferably resides on the EP 700. The role of ESM
701 preferably is the same across different streaming formats.
It received the demuxed stream from the ingest server 706,
manages ESM publishing points, archives the stream to Stor
age 705, serves “current live request from SMT, and
announces active streams to all SMTs. An EP machine may be
a Windows-based server, or a Linux-based server, or other
wise. Preferably, the ESM code is cross-platform compatible.
I0081. The SMT machine comprises two primary services:
SMT 712 and local ghost process 714. The local HTTP proxy
(ghost) process 714 handles incoming HTTP requests from
an content server ghost process 715. In response, the local
ghost process 714 makes a forward request to the local SMT
component 712. SMT component 712 passes the incoming
request to TransformLib 716 for processing, and that process
ing is based on the container format. Preferably, Transform
Lib 716 first rewrites the container-specific incoming URL to
an IF (e.g., f-MP4) forward URL. SMT 712 then retrieves the
IF fragment on behalf of Transform Lib 716. Finally, Trans
formib 716 uses the IF fragment to create instructions (BSI),
and to serve back any IF requests to the content server ghost
715. Transform Lib 716 creates the output object in native
format if the instruction set (BSI) approach is disabled. As
noted, the local ghost process 714 makes the forward requests
(to SMT component 712), and it caches the forward response
on local disk. An intermediary caching process may be used
between the SMT 712 and local ghost process 714. By using
local ghost process 714 in the SMT machine, ghost-to-ghost
communications between the content server and the SMT
may be used (and optimized).
0082 FIG. 8 illustrates an embodiment of a first live
streaming workflow embodiment that is used when a CDN
customer publishes a stream from its encoder to a CDN entry
point (EP).
0083 FIG. 9 illustrates an embodiment of a second live
streaming workflow that is used when an end-user makes a
live request to a content server.
I0084. Referring now to FIG. 8, the encoderpublishes a live
stream to the EP. The ingest server authenticates the encoder
connection, preferably using a streamlD to lookup the appro
priate stream configuration (Step 1). Ingest server then
demuxes the input and pushes the stream to ESM (Step 2).
ESM auto-creates a publishing point, preferably uploading to
Storage three (3) XML-based files: LiveSession, LSM, and
ACF. These per-session metadata files are created at the start
of each live stream session (Step 3). The LiveSession file
includes live stream information, Such as entrypoint IP ses
sionID, and streamState. The LSM includes session-specific
metadata like bitrates, etc. ACF includes information for use
in configuring an archive copy of the live stream. As ESM
receives fragments from the ingest server, it aggregates the
fragments into segments on the local disk. When the segment
size reaches the accumulation threshold, it uploads the seg
ment to Storage. With each segment uploaded to Storage,
ESM also uploads an FDX file (Step 4). The FDX (Fragment
Index) file is a binary encoded file that provides an index of
the fragments that have been uploaded to Storage. This index
tells SMT what fragments are in Storage and where to locate
them. For fragments that are not in the FDX file, the fragment
either is on the EP (because it has not been uploaded to
Storage yet) or the fragment does not actually exist. Once the
stream is stopped, the LSM and livesession.xml file are
updated to change the “streamState' property from “started
to “stopped.”

US 2013/01 17418 A1

I0085 FIG. 9 illustrates an exemplary embodiment of a
workflow when an end-user client makes a live streaming
request to a ghost process on a content server. The client (e.g.,
a client media player application) makes a stream request to
the content server ghost process (Step 1). This process then
makes a forward request to SMT (Step 2). If this is the first
request for this live stream to the SMT machine, SMT con
structs and caches information about the live stream. To get
this information about the live stream, SMT pulls information
from Storage for the past DVR fragments and pull informa
tion from the EP for the current fragments. SMT makes a
request to Storage to get the livesession.xml and LSM file.
The LSM file will give information about the live stream and
what FDX files to lookup for a particular fragment index
range (Step 3). To know what fragments are on the EP, the
SMT makes a Manifest request to the EP and the Manifest
will list the current set of fragment indexes that reside on the
EP (Step 4). Once SMT finds and obtains the requested frag
ment, it muxes the fragment to the output format. When BSI
instructions are used, SMT does not create the actual output
object but, instead, SMT creates a BSI instruction response
containing the appropriate container format headers and IF
fragment request (Step 7). The content server makes a request
for the IF fragment, and preferably this request is only for the
“mdat' data, which is the video/audio data (Step 8). The
content server ghost process then uses the instructions in the
response and the IF fragment to construct the output object. It
sends the resulting output object back to the end-user as a
response to the original request (Step 9). For SMT to know
what fragments are in Storage, preferably it continuously
polls Storage for a latest version of the FDX file (Step 10).
Polling interval for the FDX file typically is a given, poten
tially configurable time period (Step 10). For SMT to know
what fragments are available on the EP, preferably SMT polls
the EP for a latest Manifest file (Step 11).
I0086. The following section describes preferred URL for
mats for live, archive and IF requests from a client
player->content server->SMT.
0087. In one embodiment, for live stream requests, the
client player URLs have the following format:
http://<domaind/<formatPrefix>/<streamID/<stream
Name>|<additionalParams>

I0088 Live and ArchiveURLs preferably have a prefix that
denotes that streaming container format and the type of
request (e.g., live, archive).
0089. In one embodiment, for archive stream requests, the
client-player URLs have the following format:
http://<domaind/<formatPrefix>/<streamID/<stream
Name>|<sessionID/21 streamName>|<additionalParams>

0090. The sessionID part of the URL differentiates
archives from different live stream sessions. An archive URL
gives the location of the archive directory in Storage. The
archive URL “format is simply the path to the default Stor
age location to which the archive is uploaded. If desired, the
archive can be moved to a different Storage directory, in
which case the archive path URL is changed to the new
Storage directory location. Preferably, the archive URL is
immediately available for playback even if the live event is
not over yet. The archive URL represents the content that has
been archived to Storage so far. For example, if the live stream
event has been running for 60 minutes and 58 minutes of the
event has been archived to Storage, the archive URL repre

May 9, 2013

sents a VOD file that is 58 minutes long. As more content is
archived to Storage, the archive URL represents a longer and
longer VOD file.
(0091 An IF URL is constructed by taking the “base URL
of the client request and appending Fragment(<params>) to
the end. The “base URL typically is the portion of the URL
that is up to and including the file name. The IF URL param
eters are name/value pairs separated by commas and specify
bitrate and response types:
http://<domaind/<formatPrefix>/<streamID/<stream
Name>.<fileExtension>f
Fragment(brt=<bitrated, idx=<fragmentIndex>.
trk=<trackName>typ=<fragmentTyped)
0092 Illustrative parameter tag names include:

0.093 brt Bitrate
0094 idx Fragment index
0.095 trk Track name (usually audio or video)
0.096 typ Type of response fragment, possible values
are:bsi, frg, hdr, dat

(0097. For the “typ” parameter, if “bsi’ is specified, SMT
will return a BSI fragment response. (Note that for implemen
tations that involve instruction sets other than BSI, the param
eter might be “instr set name'.) If “frg is specified, SMT
will return the f-MP4 fragment. If “hdr” is specified, SMT
will only return f-MP4headers. If"dat' is specified, SMT will
return the mdat box of the f-MP4 fragment. The mdat box is
the MP4 box containing the audio/video samples.
I0098. In operation, as ESM receives the live stream frag
ments from the ingest server, ESM writes the data to local
disk. For multi-bitrate streams, ESM has a configurable
option to either coalesce all bitrates into a single file or have
a different file per bitrate. The advantage of coalescing into a
single file is that the number of file uploads to Storage is
reduced. The disadvantage of a single file is that it is not
possible to only retrieve fragments for a single bitrate without
also retrieving fragments for other bitrates, thereby making
caching less efficient on SMT when a single bitrate is being
requested by the end-user. In either case, though, all of the
fragments usually are in a single file (be it for one bitrate or
many). An ESM trailing window parameter configures how
much ESM will save on local disk. Once a segment is outside
the trailing window, ESM will delete it from local disk.
(0099. If an “Archive to Storage' parameter is enabled,
ESM will archive the stream to Storage for DVR or later VOD
playback. Typically, ESM stores the last “n” minutes of a live
stream. If a customer wants a 4 hour DVR window for their
live stream, the customer enables “Archive To Storage' so
that fragments older than in minutes are saved in Storage and
available for DVR. For certain streams, the customer can
disable “Archive To Storage' and the live stream is not
uploaded to Storage. In Such case, live stream fragment
requests are served from the EP. Some customers have 24x7
streams and want say, one (1) day DVR functionality. In that
case, the customer enables Archive To Storage' and enables
a 1 day Archive Trailing Window”. By archiving to Storage,
DVR requests older than “n” minutes are available from
Storage. The Archive Trailing Window” setting can limit the
size of the archive that is stored in Storage. For example, if the
Archive Trailing Window' is set to 1 day, ESM will auto
matically delete from Storage fragments that are older than 1
day. This is beneficial for the customer because they can have
a long DVR window but do not need to worry about cleaning
up Storage for their long running live streams.

US 2013/01 17418 A1

0100 SMT can determine all the active live streams
through stream “announcements' from ESM. A preferred
technique is illustrated in FIG. 10. In this particular imple
mentation, the SMT must know the state of all live streams
because the content server ghost process can make a live
stream request to any SMT, and SMT needs to know which
EP to get the fragments from. If the live stream state is
inactive, on the other hand, SMT would know to retrieve the
fragments only from Storage (assuming “Archive To Storage'
option was enabled).
0101. In the embodiment illustrated in FIG.10, live stream
announcements between SMT and ESM are done using
HTTP GET requests from SMT to ESM. To reduce the
amount of HTTP requests from SMT to EP, preferably each
ESM in an EP region (e.g., EP region 1 or 2, as shown) makes
an HTTP request to other EPs in the same region and asks for
all live streams on the EP. ESM aggregates together all active
live streams from the other EPs in the same region. In this
way, SMT only needs to make a HTTP GET request to a
single EP machine in an EP region (that is, a set of EP
machines) to get information about all active live streams in a
region. Second, when SMT makes a request to an EP
machine, preferably the request is made via the SMT local
ghost process with a given (e.g., 5 second) time-to-live (TTL).
Then, when other SMT machines in the SMT region make the
same request to the EP region, that request can be potentially
served though Inter-Cache Protocol or ICP (that is, a protocol
by which other SMTs in the SMT region can respond to the
request, if possible, obviating the need to go forward to an EP)
because another SMT in the SMT region already made the
same request just seconds earlier.
0102 Because the forward request to an EP explicitly
would contain the EPIP address, all SMTs in a region should
be making an HTTP request to the same EP machine in the EP
region to utilize ICP. If the request was not made to same EP
machine, the cache key will be different and ICP cannot be
used. Therefore, the algorithm to choose the EP machine to
query preferably is deterministic and repeatable across all
SMTs so that all SMTs will make the forward request to the
same EP in the EP region. Preferably, polling from SMT to EP
is done every few seconds and is configured through a global
server setting. Having a short polling interval minimizes the
amount of time between a customer publishing a stream and
the SMT knowing the stream exists on the EP. The request
logic from SMT to EP handles situations where an EP is down
for maintenance or temporarily inaccessible.
0103 As noted above, the live stream archive is stored on
Storage for later VOD playback. Any metadata for the live
stream session is also stored on the Storage system, prefer
ably in the same location as the live stream archive. If
Archive To Storage' is not enabled, nothing is stored on
Storage.
0104. To simplify output muxing to any container format,
as noted above, ingested fragments are demuxed into the IF
format (Intermediate Format). Once an ingest stream is con
verted to IF, the muxer can convert from the IF format to any
Supported streaming container format. This simplifies con
version from any input (Source) format to any output (target)
format. The PIFF (Protected Interoperable File Format) con
tainer format, available from Microsoft, may be used as the
basis for the IF container format. PIFF enhances the MPEG-4
Part 12 specification by providing guidelines and UUID
extensions for fragmented multi-bitrate HTTP streaming.

May 9, 2013

Besides PIFF, other choices for container formats are Ado
be's HTTP Streaming For Flash (Zeri), Apple's MPEG2-TS,
or a proprietary format.
0105 Fault Tolerance, Redundancy, and Replication
0106 For stream redundancy and failover, customers may
publish a stream to a primary and one or more backup Entry
Points. EPs also may support DEEM (Dynamic Entry Point to
Encoder Mapping) to provide optimal DNS mapping from
encoder to entry point. If an EP were to go down, DEEM can
minimize stream downtime by quickly remapping an entry
point alias (e.g., via a DNS CNAME) to an EP that is up and
running DEEM functionality includes the ability to resume a
live stream session when the EP alias Switches from one EP
another EP. When an encoder is pushing a stream to one EP
and that EP goes down, DEEM remaps the alias, the encoder
then starts pushing to the new EP, and the EP “appends'
fragments to the previous live stream session. This means the
live stream DVR from the previous session is retained and the
archive in Storage is uninterrupted.
0107 For EPs to support DEEM, whenever an encoder
pushes a stream to the EP, the EP must determine if the stream
is a brand new stream or a DEEM failover from a previous live
stream session. The EP determines the state of the stream by
getting the corresponding livesession.xml from Storage. The
livesession.xml contains the “streamState'. If the stream is a
DEEM failover, the “streamState' will have a “started value.
The EP also does consistency checks, such as query the old
EP to determine if the stream actually existed. Consistency
checks ensure that the new EP does not unintentionally con
sider the stream to be a DEEM failover stream when it is not.
For the case when a stream is not archived to Storage, the EP
simply ingests the live stream without retrieving the liveses
sion.xml from Storage. The SMT does the work of stitching
the live stream from different EPs into a single live stream.
0108. The livesession.xml contains the following
attributes for DEEM support:

0.109 streamState holds state of the stream
0110 lastRefreshTime time when the EP last updated
the livesession.xml with the current state

0.111 discontinuityThreshold time threshold at
which the EP will not resume a previous live stream

0112. By default, the “discontinuityThreshold is set to a
given time period, e.g., 30 minutes. This means if an EP goes
down and the encoder does not push the stream to the new EP
within 30 minutes, the live stream session will not be
resumed. The EP checks if the threshold has been exceeded
by subtracting the current time against the “lastRefresh
Time'. If this time difference is more than 30 minutes, the EP
will not resume the previous live stream session.
0113 For SMTs to support DEEM, SMT tracks stream
states via stream announcements. When the encoder is
stopped, a live stream is transitioned to the “stopped' state on
the EP. If the EP goes down, the stream does not gracefully
transition to the “stopped' state. The SMT tracks ungraceful
stream state transitions, and it stitches together live stream
sessions if needed. SMT combines DVR fragments from a
previous live session and the currently resumed live stream
session. From the end-user point of view, the merged live
stream sessions is a single live stream session.
0114. In certain circumstances, it may be desirable to rep
licate a single ingest stream to another EP. One possible use
case facilitates live stream archive redundancy, which can be
used for providing a hot backup of the live stream archive on
the backup EP. In this approach, if the primary EP were to go

US 2013/01 17418 A1

down, the encoder can start pushing the stream to the backup
and past DVR is still available because it was auto replicated.
Another use case for Such replication is live stream redistri
bution, in which the live stream may be replicated to an EP
that is far away (e.g., ingest in United States and replicate to
Europe). With the stream replicated to another EP farther
away, the content server, SMT, EP, and Storage serving that
far away region can be located closer together (all in Europe,
for example), reducing the network distance between them.
FIG. 11 illustrates one example of a technique. In this
embodiment, preferably ESM on the ingest entry point has an
option to replicate the stream. The replicated stream is sent
either to the backup EP or another EP altogether. Where
stream replication is used, the target stream preferably uses a
different stream ID than the source stream.
0115 On-Demand Streaming Operation
0116 Similar to live streaming, and as shown in FIG. 12,
in an on-demand embodiment, an SMT component handles
on-demand requests from a content server. The same SMT
machine can handle both live and on-demand requests.
0117. As shown in FIG. 12, the SMT machine preferably
has two primary services: SMT, and local ghost. The SMT
service uses Transform Lib to process the request URL, and
TransformLib constructs the appropriate forward requests to
Storage or customer origin. These forward requests are made
via the SMT local ghost process and use a cache process as an
intermediary between SMT and local ghost. Preferably, the
same TransformLib component is used for on-demand and
live streaming.
0118. The following details the workflow when an end
user makes an on-demand stream request to the content
server. The client player makes a stream request to the content
server (Step 1). The content server ghost process makes a
forward request to SMT machine (Step 2). If this is the first
request to the SMT machine for this on-demand stream, SMT
needs to construct and cache information about the on-de
mand stream. To get this information, SMT first passes the
request URL to Transform Lib, and Transform Lib constructs
the appropriate forward requests for the native format file.
SMT makes these forward requests to Storage/customer ori
gin via SMT's local ghost process (Step 3). Transform Lib
takes the forward responses and constructs the response (e.g.,
BSI) for the requested output format (Step 4). SMT returns
the response back to the content server (Step 5). The BSI
response contains the container-specific format headers and
the request URLs for the IF fragments. Based on the BSI
instructions, the content server ghost process makes IF
requests to construct the output object (Step 6). The output
object is returned to the end-user in the native format (Step 7).
As noted above, BSI is optional but can be used to reduce the
cache footprint on the content server ghost process. If BSI is
not enabled, SMT can return the native output object (i.e., in
the target format) to the content server ghost process. The
native output object can be cached by the content server just
like any HTTP object from an origin server.
0119 For on-demand requests, the client-player URLs
may have the following format:
http://<domaind/<formatPrefix>/<forwardpaths/<stream
Name>

0120 Similar to live and archiveURLs, on-demand URLs
have a prefix that denotes the streaming container format and
type of request (i.e., on-demand).
0121) If BSI functionality is enabled, SMT returns a BSI
fragment that consists of the container headers and the IF

May 9, 2013

URLs for the mdat data. For iPhone, e.g., the IF URLs look
like the following for audio and video:
http://example.com/ioSvod/path/video.mp4/Fragment
(brt=512000,idx=5000,trk videotyp=dat)
http://example.com/ioSvod/path/video.mp4/Fragment
(brt=64000,idx=5026,trk audio, typ-dat)
0.122 The Fragment(<params>) portion is appended to
the “base URL of the client request (e.g., video.mp4 in the
example above). The “base URL is typically the portion of
the URL up to and including the file name but can vary
depending on the streaming format.
I0123 For muxing into the desired output format, Trans
formib on the SMT contains the logic to demux the native
input file and mux into the requested output object. For the
request processing workflow, Transform Lib first parses the
native input file to generate a Metalindex. The Metalindex is a
generic index that contains information Such as composition
time, decoding time, IF fragment boundaries, and byte range
offsets into the native source file for each IF fragment. The
output muXers use the Metalindex to extract the appropriate
bytes from the native source file and use the other information
Such as composition time to construct the appropriate con
tainer headers. The Metalindex provides a generic interface
into the native source files. This interface is an abstraction
layer on top of the native source file so that the output muxers
do not need to be aware of the underlying container format. A
benefit of this design is that if it is desired to support a new
input container format, a new native source file parser/de
muXer is implemented, but the output muXers remain the
same. Similarly, if it is desired to Support a new output con
tainer format, a new muXer is implemented but input demux
ers remain the same. FIG. 13 illustrates this abstraction layer.
If desired, the Metalindex may be cached within SMT's local
ghost process cache for later reuse or for use by an ICP peer.
Creating the Metalindex can take time, and caching on the
local ghost process decreases the response time for the first
VOD fragment request. To support local ghost process cach
ing, SMT makes a local host request via ghost for "/metain
dex”. The loopback request is handled by the local SMT, and
its response is cached by the ghost process. Other SMTs in the
region also get the benefit of using this Metalindex because it
is available via ICP.

0.124. The above-described architectures (for live or on
demand) is extensible to support any streaming format. The
following section describes how to Support a new streaming
container format.
0.125 FIG. 14 illustrates one exemplary embodiment of a
technique for Supporting ingestion of iPhone content and
output of iPhone content. In this embodiment, an iPhone EP
1400 ingests an Apple-Segmented MPEG2-TS stream, and
Transform Lib 1408 supports MPEG2TS for demuxing and
muxing MPEG2-TS. Transform Lib 1408 parses iPhone
URLs and rewrites them to the forward path. On the EP 1400,
the iPhone ingest server 1406 handles HTTP POST/PUT
requests from the encoder 1402. The iPhone ingest server
passes the TS segments to Transform Lib 1408 for demuxing
into IF (e.g., f-MP4) format. The iPhone ingest server then
sends the IF fragments to the local ESM 1401. The ESM
archives the stream to Storage and announces the live stream
to the SMTs, as described above. On the SMT 1412, the
Transform Lib 1416 processes iPhone request URLs form3u8
and MPEG2-TS. TransformIlib 1416 constructs the BSI
response and returns it to the content server 1415. For
MPEG2-TS segments, data packets are interleaved with con

US 2013/01 17418 A1

tainer headers every 188 bytes. This means that for every 188
bytes of audio/video, there will be some container headers.
Preferably, the BSI syntax supports loop constructs to reduce
the complexity of the BSI response and still generate the
appropriate MPEG2-TS segment. Using BSI to mux the
object on the content server is optional. SMT 1412 can also
return native MPEG2-TS segments back to the content server
1415 if BSI is disabled.
0126 FIG. 15 illustrates an embodiment for supporting
the Shoutcast format. Shoutcast is a protocol that is primarily
used for audio live streaming over HTTP-like connections. To
play a Shoutcast stream, the client makes an HTTP request
and the HTTP response body is a continuous audio stream
(i.e., unbounded response body). The audio stream is a mix of
MP3 data (or AAC/OGG) and Shoutcast metadata. Shoutcast
metadata typically contains song titles or artist info. While the
Shoutcast protocol is similar to HTTP, it is not true HTTP
because the protocol includes some non-standard HTTP
request and response headers. As illustrated in FIG. 15, this
embodiment comprises a Shoutcast EP 1500 to ingest Shout
cast-encoded streams. The Tranform Lib 1508 for Shoutcast
library is provided to demux and mux MP3/AAC/OGG.
Transform Lib 1508 also parses Shoutcast URLs, rewrites
them to the forward path, and generates BSI instructions.
Because the client-player downloads a continuous
unbounded HTTP response, the content server ghost process
1415 must turn fragmented forward origin requests into a
single continuous client download. BSI instructs the ghost
process on how to construct the client response from frag
mented responses to forward requests. As shown in FIG. 15,
the network architecture for Shoutcast support is similar to
the iPhone support as provided in FIG. 14. The Shoutcast EP
1500 ingests the stream. The ingest server demuxes the
stream using TransformLib 1508. It then sends the stream to
ESM 1501. The ESM and SMT components remain the same.
Transform Lib 1515 on SMT 1512 parses Shoutcast URLs,
creates BSI responses for Shoutcast, and muxes into Shout
cast output format.
0127. Further details on live and on-demand streaming
architectures may be found in aforementioned U.S. patent
application Ser. No. 13/329,057, the teachings of which are
hereby incorporated by reference.
0128 Binary Side Includes (BSI)
0129. As described in U.S. patent application Ser. No.
13/329,081, filed Dec. 16, 2011 (now published as U.S.
Patent Publication No. 2012/0259942 and as WIPO Publica
tion No. WO/2012/083296), the teachings of which are
hereby incorporated by reference, BSI is a name for function
ality executable in a content server to generate output objects
given an input object and certain instructions, typically
instructions from another component such as the SMT com
ponent described above. The instructions typically define
manipulations or actions to be performed on the input data.
Such functionality is intended to enable modification of pay
loads as they are served to a requesting client, allowing a
content server to easily provide, among other things, custom
or semi-custom content given a generic object. In a typical but
non-limiting embodiment, this functionality can be built into
the HTTP proxy (ghost) application on the content server,
although in alternative embodiments it can be implemented
external to ghost.
0130 Typically, many modifications made by the content
server result in a minimal overall change to content, meaning
that the resulting data served to the requesting client differs

May 9, 2013

from the input by, for example, only a few percent. In one
embodiment, a mechanism is defined for representing the
difference (or “diff) between the source(s) and output con
tent, allowing a generic feature in the content server to handle
an increasing number of streaming formats in an efficient
way.
I0131. In general, with BSI, components other than the
content server are made responsible for defining or generat
ing transforming logic and for providing instructions—along
with binary “diff information—that can be understood by
the content server. By providing a mechanism for represent
ing the difference (or “diff) between the source(s) and output
content, and providing the content server with a way to use
these to modify a generic Source object, the client-facing
content server may handle an increasing number of requests
efficiently. Furthermore, depending on the circumstances, the
inputs (e.g., the generic source object, instructions, etc.) may
be cached. The output of the process also may be cached in
SOC CaSCS.

0.132. As noted previously, for convenience of illustration,
in this disclosure this function is called BSI, for Binary-edge
Side Includes, or Binary Server Integration. The BSI lan
guage, with proposed syntax described below, defines differ
ent sources—incoming pieces of data that help construct the
final output. Instructions (like combine and others) define
the byte ranges and order of how to mergethese inputs, as well
as controlling output headers. When generated in real-time,
the BSI fragment and source object both can be cached (e.g.,
at the content server), placing far less load on the BSI gen
eration tier than the content server would have handling them
directly. For fixed/on-demand applications, the BSI may be
generated once, and a BSI fragment cached (e.g., either on the
content server, or on network Storage or other dedicated Stor
age subsystem such as is shown in FIGS. 5-6).
I0133. The BSI approach is ideally very fast. Preferably,
the syntax is XML-based, and the number of instructions
typically is kept very low, allowing fast parsing. The execu
tion of BSI instructs the content server what order, and from
which source, to fill an output buffer that is served to the
client.
I0134. In the context of the previously-described streaming
platforms, BSI functionality can be used between the SMT
and content server to streamline the creation of an output
object (e.g., an output object representing the stream in a
native format for iPhone or other client device) from an input
source (in the above cases, the IF fragments). The SMT
receives IF fragments and performs muXing steps. Instead of
muxed content as output, the SMT creates a dynamic BSI
fragment that can be served to the content server, along with
a binary object that contains the additional bits that the con
tent server needs to combine with the IF fragment it normally
receives. The content server uses this information to create
the muXed output object in the native format, representing all
or some portion of the stream.
0.135 Examples of using BSI for streaming are illustrated
in previous FIGS., but FIG. 16 shows an embodiment of a
workflow with additional detail. In this illustrative embodi
ment, the content server ghost process 1600 receives a request
from a client player 1601 for particular content (step 1) in
certain target format. The content server makes a request to a
muxing tier (the SMT 1602) for the BSI instructions required
(step 2). Typically, the request includes parameters via query
string, to specify the type of request (manifest, content, key
file, etc), the bitrate requested, a time determination (frag

US 2013/01 17418 A1

ment no, time offset, etc.), and other parameters related to
muxing (segment duration, A/V types, etc.). The SMT 1602
obtains the relevant IF fragments from the EP 1604 (step 3) or
Storage 1603 (step 3a), builds an appropriate output object
from the IF fragments as if it were to serve the content, creates
a buffer of the bytes needed beyond what was contained in the
IF fragments, along with instructions about how to inter
leave or combine the binary diff with the IF. In some imple
mentations, it should be understood, any necessary diff data
may be embedded directly in the instructions themselves. In
step 4, the SMT 1602 then sends the BSI response to the
content server. The response may also include a reference to
the IF fragments that are needed. The content server gets the
IF fragments in any of variety of ways, including from the
SMT (that is, in addition to the BSI), from its own cache, or
from Storage 1603, which is typically a network storage
Subsystem that was previously described in connection with
the streaming platform. Purely by way of example, step 5 in
FIG. 16 shows the IF fragments arriving from Storage and
being cached.
0136. As the vast bulk of the data, which is represented by
the IF fragment, is cached at the content server, the BSI
response with its binary diff typically might be around a few
percent of the overall size of the object to be served. The
content server ghost 1600 applies the BSI, generating and
serving a muxed output object to the client (step 6). The BSI
response, including both the instructions and the diff data, can
be cached by the content server ghost 1600 for some period of
time. Preferably, the parameters supplied in the request to the
SMT (step 2) are used in the cache key so that only subsequent
requests for content with the same parameters utilize the
cached BSI response. The output of the BSI operation need
not be cached.
0.137 The foregoing approach can provide a variety of
advantages. Because the BSI instructions can be used tell the
content server ghost process how to muX or otherwise create
the output object, BSI provides a way for the process to
Support any streaming container format without needing
associated code changes at the content server ghost process.
To handle new container formats or bug fixes to Support
existing container formats, BSI instructions can change, but
the content server ghost process logic remains the same. This
eliminates any cross-component dependency with the content
server or its ghost process when developing or implementing
new streaming features.
0138 Further, for streaming to client devices using differ
ent container formats, BSI can reduce the ghost cache foot
print size because the ghost process caches the IF fragments
but muxes the IF into different native formats. Preferably, the
muXed output is not cached; rather, only the IF fragment is
cached. For example, the system can be used to stream Adobe
Zeri (HTTP Streaming for Flash) to Android devices running
Flash 10.1 and stream to MPEG2-TS to iPhone devices. For
the live stream, only the IF fragment is cached and the content
server muxes into Zeri for Android devices and muxes into
MPEG2-TS for IPhone devices. These are just representative
examples.
0139 For streaming of progressive-download-style for
mats (like Shoutcast), data is streamed to client as a long
running unbound HTTP download. From the end user client
perspective, it is downloading a file that never ends. BSI
functionality can be used for progressive-download-style for
mats and, in particular, to muX fragment responses from the
origin (e.g., a content provider origin or CDN storage Sub

May 9, 2013

system) into a continuous HTTP download stream for the
client. Using metadata applied by the content server ghost
process (configurable by content provider) and progressive
download-style BSI from the SMT, BSI can also be used to
implement progressive-download-specific features, like
jump-to-live-on-drift and delayed metadata injection based
on user-agent. Specific progressive-download-style require
ments thus can be inherently supported through BSI without
requiring any changes in the content server.
0140 Fragmented streaming formats (like Zeri, iPhone,
and Silverlight) may also use BSI functionality. For example,
the SMT can send the content server contentina native format
or a BSI fragment that the content server ghost process muXes
into the native format. If a CDN content provider customer is
only doing streaming for a single container format, there is no
need to cache IF fragments and muX on the content server
ghost process via BSI. In such case, it is more efficient for
SMT to return the native object, which the content server
ghost process caches. Enabling or disabling using BSI is
configurable, preferably on a content provider by content
provider basis, and, for a given content provider, on a site by
site basis, or even a file by file basis.
0141 More details and examples of BSI can be found in
aforementioned U.S. patent application Ser. No. 13/329,057.
0.142 Transcoding System
0143. The content delivery network (CDN) described
above provides an advantageous and feature-rich platform for
streaming and object delivery. However, the CDN platform
may be enhanced yet further by integrating into it a distrib
uted, Scalable transcoding system that provides the ability to
transform content Such as audio, video and other files, which
may then be delivered to end-users over the platform. Typical
transcoding tasks include the conversion of media from one
bitrate/resolution to another for the purposes of adding
bitrates to a multi-bitrate stream, converting from one con
tainer format to another or one encoding format to another in
order to allow clients utilizing Such formats to play the con
tent. These tasks may be part of prepping media for ingestion
into the streaming platform described above.
0144. In one embodiment, the distributed transcoding sys
tem described herein leverages the resources of the aforemen
tioned content delivery architecture to perform certain pro
cessing tasks within the CDN, as real-time or background
(batch mode) processes. Thus, for example, the CDN may
prepare and transcode certain contentin preparation for deliv
ery, even while other content (from the same or other content
provider users of the system) is being delivered. In other
words, the machines described above that provide content
delivery services (streaming, object delivery, or otherwise)
may be leveraged, in accordance with the teachings hereof, to
perform transcoding tasks. More particularly, the transcoding
system may be implemented not only with a set of purpose
built hardware, specific to the transcoding task, but also
Supplemented with the available idle or low-usage resources
of the content delivery network that was previously
described, to achieve a highly scalable and flexible solution.
For example, the resources of the various distributed CDN
content servers (including in particular the HTTP proxy serv
ers, aka ghost servers, described above), among others, may
be leveraged in this way. Exemplary implementation details
will set forth in more detail below.

0145. It should be noted that the subject matter herein is
not limited to a transcoding system implemented in conjunc
tion within a CDN, although that is one useful implementa

US 2013/01 17418 A1

tion. For example, the distributed transcoding techniques
described herein may be implemented in a standalone system
with dedicated machines, entirely separate from other content
delivery services or machines.
0146. As mentioned previously, in one embodiment, the
transcoding system can process files either in batch or real
time modes. Both kinds of jobs may be running within the
platform at any given point of time. Preferably every
transcode that runs in the system is happening as fast as
possible given its priority and the available resources. The
transcoding system itself is generally incognizant to the type
of job it is processing it simply processes requests with a
given priority. In this way the system can be used for both
batch and real-time transcoding of on-demand or live content.
0147 For convenience of illustration, the exemplary
transcoding system described herein makes use of the follow
ing concepts:

0.148. Fluxer. Generally speaking, in this embodiment,
the Fluxer is the primary interface of the transcoding
system. It is responsible for breaking up files, managing
the transcoding process across many individual Sub
transcoders, putting the file back together and sending it
to the destination.

0149 Transcoding job. A job refers to a request to
transcode an entire file (e.g., a particular audio, video,
multimedia file, or otherwise) as opposed to an indi
vidual “task” which refers to the transcode of a single
segment of the file. A job' is also called a “Fluxer Job’
and is made up of many transcoding “tasks”.

0150 I-frame/keyframe. I-frame refers to a video frame
that contains enough data to reconstruct the frame on its
own (also known as a keyframe.)

0151 P-frame. P-frame refers is a video frame that con
tains information relative to a frame in the past of the
data stream.

0152 B-frame. A B-frame refers to a video frame that
may contain information relative to a frame that exists
either in the past or in the future of the data stream.

(O153 GoP GoP stands for Group of Pictures and refers
to a keyframe (I-frame) and all subsequent P and B
frames which reference that keyframe until the next
keyframe.

0154 Closed GoP. When no Por B frames within a GoP
reference frames from any other GoP, the GoP is said to
be a Closed GoP

(O155 Open GoP. Since B frames may reference frames
both before and after itself, it is possible for a B frame to
reference the keyframe of the next GoP. When frames
from another GoP are referenced, the GoP is said to bean
Open GoP. Therefore Open GoPs generally require at
least a portion of the next GoP is needed in order to fully
decode the Open GoP.

0156 Referring to FIG. 17, in one embodiment, a
transcoding system includes several components some of
which are in a dedicated transcoding region and others of
which are from the network of CDN servers. A region in this
sense typically refers to a machine or set of machines in a
particular network location, which may or may not be co
located with a region in the content delivery network. The
transcoder region typically includes fluxer machines running
a Fluxer (a fluxerprocess), transcoding resource access server
application (TRAS), and a coordination server (C-server), as
well as a set of managed transcoding resources (MTRS), e.g.,
a managed transcoder machine running a transcoding pro

May 9, 2013

cess. FIG. 17 shows the fluxer machines and MTRs in a single
region, but the actual network location/topology of the
transcoding region components is flexible and this example
should not viewed as limiting. For example, one implemen
tation many include many transcoding regions with one or
more fluxer machines and one or more MTRs may be distrib
uted throughout various networks, and even co-located in the
content delivery regions with content servers shown in FIG.
17.

0157. The CDN content servers represent shared transcod
ing resources (STRs) to the transcoding system, as they are
shared with the delivery and other CDN functions (e.g., secu
rity, content adaptation, authentication/authorization pro
cesses, reporting functions and so on). More broadly, the
STRs are idle or low-utilization resources across the CDN
that have transcoding capabilities and can be called upon to
serve the transcoding system with their raw processing capa
bilities. Since these are typically idle or low-utilization serv
ers, their main value is their processor (CPU). They are not
expected to contain specialized hardware, nor can they be
expected to be as reliable or available as MTRs, although they
may exist in greater numbers. Prime examples of potential
STRs are the HTTP proxy servers (e.g., also known as ghost
servers or edge servers) described previously in conjunction
with FIGS. 1-16. However, any of the machines shown in
FIGS. 1-16 are candidates for use as STRs provided they can
be modified in accordance with the teachings below to
become part of the transcoding system.
0158 Turning to the operation of the transcoding system,
in general, the Fluxer is responsible for breaking apart media
files into transcodable segments and sending those segments
off to transcoding resources to be transcoded in parallel.
Preferably the segments are coded so that the amount of data
sent around the network is reduced. The transcoding
resources can then decode and re-encode to accomplish the
requested transcode. The Fluxer uses the TRAS to get lists of
available transcoding resources and reports its status to the
C-server. The transcoding resources (TRs, which may be
either MTRs or STRs) are responsible for transcoding indi
vidual media segments and sending the derivatives back to the
Fluxer to be remuxed back into a transcoded media file.
MTRs, which are dedicated resources, report their status to
C-Server. The TRAS can be implemented as a library that is
responsible for encapsulating TR selection to an interface for
consumption by the Fluxer. The TRAS uses a combination of
awareness of local transcoders from C-server as well as
requests to a Mapper (e.g. the map-maker and DNS system
shown in FIG. 1) to identify idle HTTP proxy servers or other
CDN servers. The C-server tracks liveness from local TRS
and Fluxers and acts as a local messaging platform for all
transcoding servers in a region.
0159 FIGS. 18 and 19 illustrate the general function of
and communication amongst components for particular
embodiments of video-on-demand (VOD) transcoding and
live transcoding, respectively. The Fluxer receives files to
transcode or responds to transcode-initiation requests for
VOD and live streams. A variety of components are potential
Sources for requesting batch or live transcoding jobs.
Examples of such components include, for example, a storage
system (as shown, for example, in FIGS. 3, 5-7, and including
network-based storage), a content provider user interface
(e.g., a web-based portal providing a customer with a user
interface to the CDN for configuring, uploading content to
transcode, setting transcoding parameters, and monitoring

US 2013/01 17418 A1

the operation), or an Entry Point or Puller or other component
in the streaming architecture (as shown, for example, in FIGS.
3, 5-7), or a CDN server 102 that has received a request from
an end-user client.
0160. In one implementation, the Map-Maker and DNS
system shown in connection with FIG. 1 (the “Mapper') can
be leveraged to find the closest and best available Fluxer, as
the map-maker monitoring agents and the data collection
system 108 are already monitoring network conditions and
machine usage for the content delivery network. The request
ing component makes a DNS request to a Fluxer domain and
receives back the IP address of a particular Fluxer machine
available for connection. The requestor can use a shared
secret to authenticate to the Fluxer. Once a job begins, the
Fluxercontacts the TRAS to request a list of servers to use for
transcoding, and preferably provides the TRAS with as many
specifics about the job as possible, including the approximate
size of the input source, and whether the job is classified as
real-time or batch or otherwise, which effectively classifies
the priority of the job, and potentially specifics about the
input/output formats, desired bitrates, etc. The TRAS uses
this information to approximate how many transcoding
resources it will need, and what mix of MTRs and STRs will
be the most appropriate. As noted above, MTRs are dedicated
transcoding resources that are managed by the transcoding
system, while STRs are transcoding resources which are
shared with content delivery resources (or shared with some
other business function in the platform). To select MTRs, the
TRAS can uses a resource management service referred to
hereas the coordination server (C-server). The TRAS uses the
C-server to reserve local MTRs, while it asks the map-maker
system (FIG. 1) for any needed STR. The Mapper will iden
tify an approximate number of CDN servers from a pool that
are running with a low utilization (e.g., with CPU or memory
or request rate or other hardware metrics below some prede
termined threshold, which ideally ensures that content deliv
ery is not compromised) and returnalist to TRAS. The TRAS
merges the lists, preferring MTRs for real-time jobs and STRs
for batch jobs, and returns the final list to the Fluxer.
0161. Once the Fluxer has obtained a list of available
transcoding resources it begins splitting the input source file
into a plurality of segments. Although not limiting, in many
cases the input file is not raw, uncompressed data but a some
what compressed file arriving from a customer that is too big
to serve to requesting clients, but is suitable for transcoding
(for example, a 50 MB/s video may be suitable, depending on
the nature of the content and the encoding used). The input file
may also be a previously encoded/compressed file that is now
being transcoded to another format orbitrate.
0162 The Fluxer splits the file into segments for transcod
ing purposes. The transcoding segments may correspond to
group-of-picture (GoP) boundaries, in which case they are
referred to herein as chunks. Alternatively, the transcoding
segments are split along other boundaries into pseudo
chunks, as will be described in more detail below. A transcod
ing segment refers to the actual bits being transcoded, i.e., the
bits involved in the input and output, and does not necessarily
correspond to a single chunk or pseudo-chunk, as it may
contain multiple chunks or pseudo-chunks. Pseudo-chunks
may overlap in time, i.e., they do not necessarily represent
contiguous portions of the overall input file. The process of
determining how to split the file into transcoding segments
can involve many determinations and is explained later in
more detail in the section titled “Creating Transcoding Seg
ments From an Input'.
0163 The Fluxer sends the transcoding segments to
selected transcoding resources along with a list of ways in

May 9, 2013

which that segment should be transcoded. Note that this
means that the list may specify more than one output—for
example, “transcode the segment into a derivative segment in
format/bitrate 1, and another derivative segment in format/
bitrate 2. As each transcoding resource transcodes its given
segment, it replies over the open HTTP connection with the
derivative segments produced from the input source. If a
transcoding resource cannot complete the transcode due to
Some unforeseen circumstance, it simply tears down the con
nection and goes away, leaving the Fluxer to source another
transcoding resource for that segment. Once all of the seg
ments have been transcoded, the Fluxer re-assembles them
into a single file and sends the file to the destination specified
by the initial request.
0164. The destination of the file may be, for example, a
network storage system, a streaming mid-tier machine (e.g.,
as shown in the architectures of FIGS. 5-7 for example),
proxy server, or other component in the CDN. Unless the
target format produced by the transcoding system was inter
mediate format (IF), the destination component may then
convert the file to IF for use with the streaming platform
described previously, for shipping the data within the stream
ing architecture.
(0165. With reference to FIG. 19, when transcoding a live
stream, there are some variations over the VOD batch work
flow described above. First, in this embodiment, when
transcoding is initiated, it is initiated by the Puller component
in response to the presence of a set of transcoding profiles in
the Stream Manifest Manager (SMM) for that live stream.
SMM already carries the concept of an Archiverset, and here
includes the concept of a Fluxer Set. The Puller contacts one
of the Fluxer Machines in the Fluxer Set with the parameters
of the live event and the Fluxer set begins an election process
to decide who is the most appropriate Fluxer Machine to act
as the Mother (the remaining Fluxers will be designated as
Children). The Mother begins transcoding by pulling the
stream from the Source Archiver, transcoding using transcod
ing resources as described above, and pushing it to the target
Archiver. Children are responsible for monitoring the Mother
and electing a new Mother in the event of a failure. (For
simplicity of illustration, in FIG. 19 only the Fluxer that is
acting as the Mother is shown.)
0166 It is important to note that FIG. 19 illustrates and the
foregoing describes operation of the transcoding system with
the streaming architecture shown in FIG. 3. However, in an
alternate embodiment, the transcoding system works in con
junction with the streaming architecture illustrated in FIGS.
5-15. This means that the Fluxer can receive a request to
transcode and source content from an entry-point (EP) stream
manager process and sends transcoded output to an SMT
machine, rather than a Target Archiver. Indeed, as mentioned
above, the transcoding system is not limited to use with any
particular streaming architecture, or with a streaming archi
tecture at all (i.e., it can be a standalone transcoding service).
0167. The following sections provide more detail about
the each of the individual components that make up the
transcoding system.
(0168 Coordination Server (C-Server)
(0169. In the above-described embodiment, the C-server is
a coordination engine for a given transcoding region that
provides a service for maintaining configuration information,
naming, providing synchronization and group services to dis
tributed applications. C-server functionality may be built on
top of existing, known platforms such as Zookeeper (Apache
Hadoop) for example, although this should not be viewed as
limiting or required. Preferably, the C-server provides a job
queue and tracks which resources are working on those jobs,

US 2013/01 17418 A1

and also maintains resiliency when those servers fail. In the
above-described embodiment, the C-server is region specific
and runs on all Fluxers in a region using an internal election
algorithm to determine the leader for write coordination to the
C-server system. The C-server can report its region and status
to a Supervisory query function so that alerts can be triggered
for a low number of C-servers running in a region, mitigating
availability issues.
0170 Transcoding Resource Access Server (TRAS)
0171 The TRAS provides an application programming
interface (API) for obtaining a set of possible transcoders that
can be called directly by the Fluxer to perform transcoding of
segments. Since there are multiple types of transcoding
resources available (MTR/STR) and since the method of
accessing them may differ, TRAS provides an abstraction for
access to both of these resources through a common interface.
TRAS can be implemented as a built-in library to be con
sumed by the Fluxer. This means that it is run as part of the
Fluxer process. TRAS allows for distinct types of transcoder
requests, for example: high-priority (typically real-time
needs for live transcodes, which may necessitate using only
MTRs) and low-priority (typically batch needs, which may
involve a mix of MTRs and STRs). TRAS returns a list of
possible resources for use as transcoders to Fluxer. Both
high-priority and low-priority requests typically specify a
bucket-size, which TRAS will attempt to fill. The response to
Fluxer is a data structure that includes the transcoding
resource’s IP address and type. The transcoding resources
themselves are considered volatile and TRAS provides no
guarantees that the resources will accept a transcoding
request.
0172 Determination of STR availability is delegated to
Mapper in this embodiment. During normal CDN operation,
CDN server utilizations are reported back to Mapper as part
of monitoring agents and the data collection system 108 in
FIG. 1. When STR resources are requested, a DNS request
will be sent to Mapper to retrieve a set of STRs. Mapper
identifies a pool of available CDN servers which are mostly
idle (e.g., as defined by some metric such as CPU utilization
in the recent past, cache utilization, geographic location rela
tive to expected load in other words, servers that are located
in regions where demand for delivery services is low due to
time of day or some other reasons, etc.), pseudo-randomize
the selection and will return the maximum number of avail
able IP addresses that can fit in a response packet. TRAS may
perform this request more than once to fill the internal bucket
requested by the Fluxer.
0173. In this implementation, it is up to the TRAS to
de-duplicate the IP addresses retrieved from Mapper if it
performs the DNS request more than once. Mapper is not
required to maintain state of IP addresses returned. If the
Fluxer requests additional resources from TRAS, then the
Fluxer is required to de-duplicate the IP addresses retrieved
from TRAS, as TRAS is not required to maintain state of IP
addresses returned to Fluxer.

0.174. When TRAS receives a request that uses at least
some MTRs (for example, a live-event transcode), it will use
C-server's coordination capabilities to “reserve' a number of
MTRs as requested by the Fluxer. TRAS provides its service
through a combined, parallel query to both Mapper and
C-server. As noted, it gathers enough resources to fill a
bucket, the size of which depends on the priority of the
request, then returns that bucket of resources to the Fluxer. In
this approach, TRAS is gathering a group of resources that are

May 9, 2013

likely available but may not be. In the end, it is a combination
of pseudo-randomization of the large pool of STRS and usage
of local MTRs that achieves distribution of load among all
transcoding resources.
0.175. In this embodiment, TRAS monitors the regional
load of the MTRs it is managing. An MTR regularly updates
the C-server with its queue load. TRAS periodically calcu
lates the percentage of MTRs available, weighting them by
their remaining capacity. An average is then calculated and
used as a Regional Load Factor. For example if there are 10
MTRs each with a load of 10%, 20%, 30%, ... 100%, then the
algorithm would be as follows:
S1=1-0.1, S2=1-0.2, S3=1-0.2, ... S10-1-1 (S1+S2+S3+
... +S10)/10=0.45 (or 45% available: 55% current load)
0176 This Regional Load Factor may be reported to any
system attempting to determine the availability of work units
for a given regional transcoding installation. The foregoing
load-factor algorithm should not be viewed as limiting, as
other algorithms may be used in other embodiments.
(0177 Fluxer
0178. In the present embodiment, the Fluxers are the pri
mary interface of the transcoding system to the outside world
and the most common component for external clients to inter
act with. At a high-level, the purpose of the Fluxer is to
break-up a video into segments, send those segments to one or
more transcoders and reassemble those segments into the
target container file. There are a number of low-level details
involved in this function.
(0179 Fluxers provide several interfaces to support Live
(real-time), VOD (batch) and VOD (real-time) use cases.
0180. For Live, Fluxer live interfaces allow the Fluxer to
transcode a live event by pulling a bitrate/format from an
Archiver or Entry-Point, producing one or more transcoded
bitrates/formats, and publishing all configured bitrates/for
mats to an Archiver or Streaming Mid-Tier. This activity is
initiated by an HTTP Request to the Fluxer's live interface,
containing the Source Archiver set or Entry-Point, the target
stream-id and the configuration for all derivative bitrates/
formats. The initiating HTTP request causes the Fluxer to
begin transcoding until the stream is torn-down.
0181 Fluxer VOD interfaces, whether real-time or batch,
are primarily implemented in the current embodiments as
pull-based HTTP interface with the primary difference being
how much of the file is transcoded at a given time. Regardless
of the request being over the live or VOD interface, Fluxers
generally wait to acknowledge jobs until they have obtained
an initial set of resources from TRAS. If initial resource
allocation fails, then the Fluxer can communicate that failure
immediately regardless of a synchronous or asynchronous
job.
0182 Fluxer Live Interface
0183. In this embodiment, Fluxer's live interface is a URL
that triggers Fluxer activity but does not require that the
initiator remain connected to the HTTP Socket, as the activity
is ongoing and no feedback is required for the initiator. This
allows a resource to ask a Fluxer to initiate transcoding of a
live stream and to contact some number of additional Fluxers,
asking them to monitor the primary. The initiation of this
request typically contains the following information:

0.184 The source stream
0185. The bitrate, height/width and transcoding con
figuration for each transcode of the live stream.

0186 The list of additional Fluxers that together with
the target make up the Fluxer Group

US 2013/01 17418 A1

0187 FIG. 20 illustrates one embodiment of the operation
of the Fluxer (and other system components) when transcod
ing a live stream. In step 1, the Puller contacts the streaming
manifest manager and gets an Archiver set or Fluxer set. In
step 2, the Puller contacts source Archiver, initiates a stream.
In step 3, the Puller contacts first Fluxer from Fluxer Set and
passes transcoding information. The contacted Fluxer then
contacts remaining Fluxers in the set and they decide who will
be the Mother and who will be Children. Transcoding param
eters are communicated here. Fluxer Children begin monitor
ing the Mother. In step 4, the Mother Fluxer contacts SMM to
get the Archiver set. In step 5. Fluxer contacts TRAS to get
transcoding resources. In step 6, Fluxer initiates pull from
Source Archiver. In step 7, the Mother Fluxer begins the
parallel transcode of the stream being pulled from Source
Archiver, utilizing the transcoding resources (TRS). In step 8,
the Mother Fluxerre-assembles the transcoded segments and
sends the transcoded stream to target Archiverset assigned by
SMM for each bitrate.
0188 Alternatively, the above operation can be performed
with the live streaming components depicted in FIG. 5. In
Such a case, an Entry-Point locates a Fluxer and requests a
transcode. The Entry-Point itself sources the stream to be
transcoded, or points to the Fluxer to a Storage source stream
using the metadata files described in connection with FIG.8.
The transcoded stream is sent to a streaming mid-tier SMT
machine or to the Storage system, rather than an Archiver.
(0189 Should a Mother Fluxer fail, the Fluxer Children
will begin an election to decide which Fluxer will assume the
role of Mother. Election should prefer the Fluxer that is closer
to the source of the stream. The new Mother will query at the
target Archiver to confirm that the old Mother is no longer
sending data and to retrieve the position of the last data
received. The new Mother then assumes the Mother role and
begins transcoding where the last Mother left off.
(0190 FIG. 21 illustrates the operation of the Fluxer (and
other system components) when transcoding a VOD stream in
batch mode. In step 1, the Job Queue contacts Fluxer. (The
Job Queue can exist as part storage system process, portal, or
other component accessing the transcoding system.) In step 2.
Fluxer contacts TRAS to get transcoding resources. In step 3.
Fluxer pulls media from the source. In step 4, the Fluxer
orchestrates the transcoding of the content using transcoders
resources from TRAS. In step 5, the Fluxer posts transcoded
content to a destination. In step 6, Job Queue removes the job.
0191 In this implementation, the Job Source can pick a
Fluxer at its own discretion however, preferably it chooses a
Fluxer that is both idle and near the job source. In other
implementations, the Mapping system can be used to deter
mine the best Fluxer by sending a DNS request to a fluxer
domain and receiving back from the Mapping system the IP
address of a suitable Fluxer. Batch VOD Fluxer requests,
although not prohibited from using MTRs, can be weighted to
prefer using idle or low-usage STR transcoders.
(0192 FIG. 22 illustrates the operation of the Fluxer (and
other system components) when transcoding a VOD stream in
real-time mode. In step 1, a request comes in to Fluxer from
a CDN's content server (e.g., an HTTP proxy server as shown
and described in connection with FIG. 1) that has received a
user request for a file, or from a cache hierarchy region that
has been asked for the content by the server (e.g., using a
cache hierarchy technique as described in U.S. Pat. No. 7,376,
716, the disclosure of which is incorporated herein by refer
ence), or from a SMT machine (see, e.g., FIG. 12, where

May 9, 2013

content server ghost has asked SMT machine in step (2)
thereof for VOD content to satisfy request step (1) thereof). In
step 2, assume Fluxer checks its transcoding region cache for
requested segments of the content (which may correspond to,
e.g., one or more IF fragments). Assume it receives a cache
miss. In step 3, the Fluxer contacts TRAS to identify
transcoding resources. In step 4, the Fluxer requests and
receives the segments from the source (e.g., from Storage or
origin). In step 5, the Fluxer transcodes them using transcod
ing resources. In step 6, the Fluxer returns transcoded seg
ments to the requesting component following re-assembly
into a file or portion thereof. In step 7, the Fluxer begins
workahead transcoding.
0193 If the Fluxer determines that there is a region cache
hit in step 2, then the Fluxer retrieves the trancoded segment
from region cache, looking for a segment that is at least N
seconds ahead of the requested segment (where N is deter
mined by a configuration parameter). Fluxer either begins
workahead or not depending on whether it can find Sufficient
number of segments in cache to meet the workahead criteria.
0194 Thus, in the VOD real-time case, Fluxer works
ahead of the anticipated requests in order to maintain a
smooth experience for end users. Preferably, a content pro
vider's configuration for real-time VOD transcoding contains
a parameter which defines the number of segments to
transcode ahead of the most current request, e.g., by indicat
ing a number of seconds to work ahead. When a real-time
VOD request comes to a Fluxer it can check to see if the
required segments have already been transcoded and if so will
begin delivering immediately while it performs the worka
head of N segments based on the position of the request being
served.
0.195 The following provides more detail about caching at
a transcoding region. Caching proxy server functionality is
employed locally on a Fluxerto maintain a cache-layer for the
work performed in real-time. Once a request has been
transcoded the derivative is cached locally within the
transcoding region. The Fluxer leverages this feature by per
forming a lookahead request of N segments ahead of the
current segment request. If a non-200 response code is
returned by the local cache server for any of the N segments,
Fluxer will respond by posting the required segment to a TR
through its local cache server, resulting in caching of the
transcoded response within the cache server layer.
0196. The following describes optional pre-processing of
media for VOD real-time case. Before allowing real-time
transcoding of a VOD asset, some amount of work can be
done to ensure that the media is prepped such that there is a
standard starting point from which to begin transcoding. Pre
processing the media by transcoding the first few segments of
a video means that the system can begin streaming immedi
ately while the transcoder builds up a workahead buffer. Pre
processing typically includes the following actions:

0.197 Create an optimized version of the inbound file
(optimized keyframe rate and bitrate)

0198 Create an index of segment locations to byte
ranges

0199.
bitrate

0200. The following describes an example of a process for
identifying a Fluxer for VOD real-time workflows. A Mapper
load-feedback property can be used to find appropriate Flux
ers for real-time VOD transcoding. Preferably, real-time
Fluxer requests use local MTR (dedicated) transcoder

Produce the first N segments for each target

US 2013/01 17418 A1

resources. Load-feedback from the Fluxer to the Mapper can
include both the local Fluxer load and the regional transcod
ing resource load as well. Regional transcoder load estima
tion can be obtained from the Fluxer by making a call to
TRAS to perform the “Regional Load Estimation', as
described above in connection with the TRAS component,
and thereby return a “Regional Load Factor' to the Fluxer.
0201 Transcoding Resources (MTRs, STRs)
0202 In the current example, the role of the transcoding
resource (sometimes referred to herein as a “transcoder”) is
primarily to transcode segments of audio/video, or other con
tent that needs to be transcoded. In one embodiment, a
transcoding resource uses an HTTP-based API for receiving
and transmitting segments. Typically, all transcoding
resources are considered unreliable—and particularly STRs.
A shared transcoding resource may terminate the transcode
for any reason although if it terminates the transcode due to an
error in the source media it preferably indicates that fact to the
Fluxer, e.g., using an HTTP 415 Unsupported Media Type
error, for example. If a Fluxer receives an unexpected discon
nect from a transcoding resource (particularly an STR) it
preferably ceases using that transcoding resource for at least
a given time period, to prevent impacting STRS that are deliv
ering content in the CDN.
0203 Put another way, load is a concern for STRs, as they
are typically the HTTP proxy servers running in the CDN and
delivering content to end users in FIGS. 1-16, since the integ
rity of the delivery network is preferably protected. The pro
cess managing the transcoding on the STR is configured to
avoid impact to the STR. STRs monitor their local environ
ment and terminate jobs if the environment becomes con
strained. In the STR environment, the HTTP proxy server
(ghost) process is considered more important than the
transcoding process. STRS run a process “manager” which in
turn runs and monitors the actual transcoding server as a child
process. This “manager” may take any of several steps to
“lock-down the transcoding process such as using LD PRE
LOAD to block dangerous system calls, chrooting the process
and monitoring the process for excessive runtime and/or CPU
consumption.
0204 FIG. 23 provides an overview of processes execut
ing on a transcoding resource (excluding HTTP proxy pro
cesses for content delivery).
0205. In one embodiment, a client (e.g., a Fluxer) can
communicate with transcoding resources using an HTTP 100
Expect/Continue workflow. This is preferable because a
transcoding resource may not be able to handle any work and
it is useless and wasteful to send an entire segment only to be
denied. A transcoding resource may block for a period of time
before sending a 100 Continue response to a requesting client
but also preferably responds immediately ifunable to handle
the request.
0206. In the current implementation, transcoding
resources accept transcoding segments that are chunks or
pseudo-chunks for transcoding.
0207 Regardless of a transcoding resource's role as either
a MTR or a STR, in the current embodiment, transcoders are
generally considered unreliable by the Fluxers. As noted pre
viously, a Fluxer receives a list of transcoding resources so
that it may begin to send segments to them. Without a large,
global, fine-grained, resource allocation system, it would be
impossible to have a high degree of certainty that a given
transcoding resource will accept a segment to transcode.
Moreover, transcoding resources run on commodity hard
ware, so failure of a transcoding resource during the transcod
ing process is not only a possibility but may even be likely at
Some point across the transcoding system. For this reason, it

May 9, 2013

is simpler to adopt an unreliable view of transcoding
resources. This view also simplifies the transcoding resource
implementation. If the transcoding resource is overloaded, it
is Sufficient and acceptable for that transcoding resource to
simply deny any inbound transcoding requests until the load
drops below a threshold. Should a transcoding resource pro
cess be leveraging idle CPU on a machine with a more impor
tant role, such as an STR, it is sufficient to simply "go away”
if the resources being consumed by the transcoding resource
become needed. In response to a deny or an unexpected
Socket close, the Fluxer preferably sends the segment to an
alternate transcoding resource. However, if the transcoding
resource returns an actual error about the source bits (e.g.
some fatal error with the original encode) then the Fluxer may
send the segment to another transcoding resource or it may
give up on the segment altogether, failing the transcode.
0208 Identification of possible transcoding resources to
use for a particular job is now described. Possible transcoders
are identified from a pool of available transcoding resources
in one of a few ways. For STRs that represent HTTP proxy
servers somewhere in the delivery network, Mapper is used to
provide a map that can return a list of possible resources
which appear to be under a given load threshold, as mentioned
above. This is provided over a DNS interface with the param
eters encoded into the requesting hostname. This DNS
request may return a large number of possible hosts—more
than that associated with a typical DNS lookup in the delivery
network. As noted, STRs returned are considered volatile and
may acceptor reject the request based on their own local load.
0209. A non-limiting, exemplary approach for an internal
queue of a transcoding resource is described as follows.
Transcoding resources can have a fixed number of “slots'
which is made up of two counters and indicates the number of
individual transcode-segment requests that may be accepted
by that transcoding resource at any given period of time. One
counter is the “available-process' counter and is some sub
percentage of the number of available cores on the system.
The other counter is the "queue counter and is some config
urable number of additional tasks that are allowed to be
waiting but not actively being worked on. Both of these fac
tors are reactive to the hardware the transcoding resource is
installed on and both are configurable. For example, an avail
able-process factor of 0.5 (or 50% of system cores) and a
queue counter of 0.10 (or 10% of cores). Taken together, these
two counters make up the total number of available “slots’ for
a given transcoding resource.
0210. As a transcoding resource is accepting work it con
tinues to accept requests to transcode segments so long as it
has available processes and/or slots. Should the transcoding
resource be completely full, it denies the request with a HTTP
503 Service Unavailable error. A 100 Expect/Continue
method is otherwise used to ensure that the request is valid
and that the transcoding resource has an available process to
perform the requested action. If the processes are all allocated
and an inbound Fluxer request lands on a queue slot then the
transcoding resource should block its “CONTINUE
response until the queue slot becomes assigned to a process.
0211 Batch VOD Queuing
0212. The queuing of VOD batch requests is now
described. A queuing system exists to request files be
transcoded at the earliest possible convenience. This queue
contains a list of jobs that define a source, a transcode profile
and a destination and will be executed on as soon as possible
given the resources available. The queue itself is quite simple,
can be distributed into many sub-queues and will mostly be
used by some user interface to provide batch-transcoding
services forbitrates that a content provider wishes to crate and

US 2013/01 17418 A1

have stored for later delivery. Upon waking up, the local
queue manager will simply take the top Njobs off the stack
and make required batch requests to the Fluxers, allowing the
transcoding system to work to complete the transcoding job.
Multiple queues may be running within a given transcoding
region, typically running on the same hardware that is run
ning the Fluxer or TRAS code.
0213 Examples of jobs which the transcoding system is
configured to Support may include the following (which are
non-limiting examples):

0214 Conversion to the following video codecs: h.264,
theora, Vp8

0215 Conversion to the following audio codecs: mp3.
aac, Vorbis

0216 Conversion to the following containers: mp4
standard, mp4-fragmented, fly, IF (intermediate format
as described previously)

0217 Conversion from the following video codecs:
h.264, mpeg1, mpeg2, VC1, theora, VP3/6/8, DV

0218 Conversion from the following audio codecs: aac,
mp3, mpa, pcm, Vorbis

0219 Conversion from the following containers:
mpeg2ts, mpeg2ps, mpegl, avi, mp4, WmV/as? mp3.
WEBMA Matroska

0220. The transcoding system also preferably supports the
application offilters and scalers (i.e. deinterlacing and frame
Scaling).

Further Embodiments and Applications
0221) While some of the foregoing examples have focused
on converting media formats, codecs, and the like, the system
described herein is not limited to such. The teachings above
may be extended so as to provide a distributed platform for
applying security or rights management schemes to content.
For example, the system above may be modified by having the
Fluxer receive requests (by way of illustration) to apply a
given encryption algorithm to a file. The Fluxer can break up
the file into segments that are each to be encrypted, and
delegate the tasks of doing so to distributed MTRs and STRs,
as described above. In Sum, the nature of the assigned task
may change but the system still operates similarly. Other
tasks might include embedding a watermark in the content, or
inserting data to apply a digital rights management scheme to
the file. In other embodiments, system can receive an end
user client request for content, discern information about the
end-user client (client IP address, user-agent, user-id, other
identifier, etc.) and incorporate that data into a fingerprint that
is inserted into the content in real-time, leveraging the real
time transcoding flow described above (e.g., FIG.22) to con
vert the file on the fly. Hence, the content can be marked with
information related to the end-user (or client machine) to
whom it was delivered. In some use cases, it may be prefer
able not to break the original file apart but rather assign the
entire file transcoding job to a particular MTR or STR, per
haps with low priority, so that the assigned machine has all the
data in the file to work with in performing its task.
0222 Creating Transcoding Segments from an Input
(Pseudo-Chunking)
0223) The following presents examples of how the Fluxer
can break apart incoming files into transcoding segments, and
more particularly how it can break apart incoming video files.
0224. The embodiments described above provide a
transcoding system that implements segmented parallel
encoding for video and other content. For video, segmented
parallel encoding typically makes the tradeoff of inflexible
keyframe intervals for the speed of encoding videos using a
large number of encoders operating in parallel. If keyframe

May 9, 2013

intervals are not altered then the boundary of a keyframe may
be considered a chunk or segment and treated independently
of other chunks. By breaking up a video into segments and
Submitting those segments in parallel to multiple transcoding
resources, the transcode can be parallelized, increasing its
speed relative to the number of encoders and reduce the
encoding time to the minimum of (demuxing time+slowest
segment encode time-re-muxing time).
0225 Codecs enable the compression of video by taking
advantage of the similarity between frames. Generally speak
ing, there are 3 types of frames that are used to varying
degrees in different codecs: I-frames (aka, keyframes),
P-frames and B-frames. In general, and as mentioned previ
ously, I-frames can be thought of as a stand-alone frame that
contains the complete information to construct a complete
frame on its own. P-frames reference essentially what has
changed between itself and the previous frame while
B-frames can refer to frames ahead of them or behind them.
The group of frames that starts with an I-frame and ends with
the last frame before the next I-frame is often referred to as a
Group Of Pictures or “GoP). Hence, a video that is encoded
as a Closed-GoP video means that each GoP can be treated
independently from the others.
0226. A container generally refers to a file that wraps the
raw encoded bits of media (e.g., audio, video) and may pro
vide indexing, seekability and metadata. Typically, a con
tainer divides the raw bits into “packets” which may contain
one or more frames. A frame typically has a frame-type of
audio, video or a number of less-frequent possibilities such as
subtitles and sprites. For video, these frames each correspond
to the type of frames mentioned above, I-Frame, B-Frame,
P-Frame, etc. There are a large number of different containers
and each may have a little different way of getting at the raw
media data.
0227. In sequential encoding (as opposed to parallelized
encoding), all frames can be considered in a sequence (or with
Some parallelism resulting from a multi-threaded computer
architecture) and an approach derived across a large number
of frames. When encoding in this manner, it is relatively
trivial to do things such as modify the GoP size because there
is always enough information available to create an I-frame
(since the entire stream is available). When parallelizing
encodes in a cloud (where multiple servers are involved, as
can occur with the transcoding system presented herein),
making modifications to the GoP size can become more prob
lematic. If, for example, the request is to reduce the GoP size
to a non-factor of the original GoP size then the I-frames will
no longer be aligned.
0228. The following describes some examples of kinds of
complications when parallelizing encodes and a pseudo
chunking approach to solve them.
0229 GoP Size Modification. GoP size modification
becomes complicated with parallelizing transcodes to mul
tiple processors. For example, if a typical encode has a GoP
size of 250 frames (8.34 seconds of NTSC Video), this can be
an issue for high-keyframe-rates, which may be present, e.g.,
in HD video formats. If a HD or other video format is desired
to run 2-3 seconds between keyframes (approximately 60-90
frames in the GoP), neither 60 or 90 frames can be evenly
divided into the 250 frame/second source keyframe rate.
Solving this problem involves maintaining some kind of
alignment over how many frames will be required to decode
the frames necessary to produce a keyframe at an unusual
time.

US 2013/01 17418 A1

0230. For example, and with reference to FIG. 24, assume
a current GoP size of 250 frames and a target-GoP size of 90
frames. As a result, NEWGoP1 will be frames 1-90, and
needs frames 1-90 to be able to be re-encoded, NEWGoP2
will be from frame 91-180 and needs frames 1-180 to be able
to be re-encoded. NEWGoP3 will be from frames 180 to 270
and will therefore need frames 1-270 to be able to be re
encoded. Notice, we’ve crossed into a new GoP now. NEW
GoP3 will have to start with the first GoP and need several
frames from the second GoP in order to be encoded. NEW
GoP4 doesn't have this problem, it will be made up of frames
271-360 and therefore only needs frames 251-360 in order to
start from a keyframe and encode its bits. FIG. 24 illustrates
this scenario.
0231. A pseudo-chunking approach can address this issue
by, in one embodiment, allowing for segments that are not
aligned to keyframes or GoPs. A pseudo-chunk may be larger
or smaller than a GoP. In the above example, the segmenter
(e.g., the Fluxer) can create a pseudo-chunk that extends past
the Current GoP to reach the end of NewGoP3.
0232. Note that when dealing with GoP modification, it’s
often preferable to allow the encoder to produce multiple
GoPs from a single source GoP. One usually wouldn't want to
transfer one GoP three times just to get three new GoPs, when
you could transfer one GoP+a few frames of the second (the
entire pseudo-chunk) and receive back three GoPs.
0233 Pseudo-chunking also applies to scene change
detection, and more particularly, to situations where there are
frequent scene changes in a Video file. A scene change refers
to an interruption in the regular sequence of keyframes. It
typically exists because enough has changed from one frame
to the next that a Por B frame becomes impractical, i.e., there
is enough difference between frames for the encoder to place
an additional keyframe in-line for quality sake. Most modern
encoders contain some threshold for inserting extra key
frames on scene changes in order to optimize the encoding
experience. Scene-changes can present a problem if too sim
plistic of an algorithm is used when segmenting, such as
simply splitting on keyframes. When many scene-change
keyframes are present it could cause too-small a fragment to
be used for the encoders and could actually slow down par
allel transcodes. A pseudo-chunking approach, in which
pseudo-chunks may span more than one keyframe in appro
priate circumstances, can address this issue (e.g., by includ
ing some predetermined minimum number of frames/time in
the pseudo-chunk segment, regardless of keyframe intervals).
0234 Pseudo-chunking addresses open GoP encoding as
well. Typically, a GoP ends with a P-frame (which references
a previous frame). This is a closed GoP. However, it’s possible
to end a GoP with a B-frame, which could refer to the next
frame in the next GoP (the starting I-Frame). When this
occurs it is referred to as an open-GoP. An open-GoP presents
a problem over a closed-GoP when parallelizing encodes
because some amount of the next GoP is required to complete
the encode.
0235 Details on Pseudo-Chunking Approach
0236. In one embodiment, a device managing the
transcode (Such as the Fluxer in the transcoding system pre
viously described) is configured to be aware of what frames it
needs to use, as a Subset of those received, to produce a new
transcode. For example, the Fluxer will look at a frame to
determine what kind of frame it is (B-frame, P-frame, key
frame, etc., Closed-GoP situation, etc.), understand what GoP
size it needs to target. It is frame-aware. Hence, the Fluxer has

May 9, 2013

intelligence to create pseudo-chunks, rather than blindly seg
menting on keyframes. It can then include the appropriate
coded frames in a pseudo chunk, so that the transcoding
resource has all the data it needs to decode, convert the data,
and re-encode as required.
0237 As explained above, a pseudo chunk may be either a
partial or Super-GoP. A pseudo chunk is used as a unit of data
that is transferred from a Fluxer to a transcoder and may not
include the entire GoP if the entire GoP is not required for
transcoding the target number of frames. A pseudo chunk
may also contain more frames thena given GoP in the case of
an Open GoP condition or if the target keyframe interval is
sufficiently different from the source keyframe interval. So a
pseudo-chunk is not necessarily aligned with a GoP and may
extend past the original GoP boundary or not reach that far.
0238 FIG. 25 illustrates an example of pseudo-chunking
to change the GoP size in a given video file. In this example,
the pseudo-chunk starts at a keyframe boundary and contin
ues past the Current GoP (the original GoP) until enough
frames are included to construct the New GoP that bridges the
boundary between Current GoP 1 and Current GoP2. Given
a video that is 1 frame per second and has a 10 second GoP we
have a GoP every 10 frames (1-10, 11-20, 21-30, etc. ...). For
illustrative purposes, assume Current GoPs 1 and 2 are such
GoPs with 10 frames each. If we needed to reduce the Curren
GoP size to 3 seconds then our New GoPs would beat frames
1-3 (New GoP1), 4-6 (New GoP2), 7-9 (New GoP3), 10-12
(New GoP4). That last new GoP (i.e., New GoP4 in FIG. 24)
is a problem because frame 10 belongs to Current GoP 1
while frame 11 belongs to Current GoP 2. We need to send a
chunk of data to the transcoding resource that includes the
entire Current GoP 1 and two frames of Current GoP 2 in
order to have enough frame data at the transcoding resource to
encode the New GoP4 at frames 10-12. This chunk of data is
represented by Pseudo Chunk 1 in FIG. 24. Also note that the
Fluxer preferably ensures that the last frame of the pseudo
chunk is not a B-frame referring to a frame ahead of it. If it is,
then another frame(s) may need to be included in Pseudo
Chunk 1.

0239. Another aspect of pseudo-chunking involves
including both the starting and ending keyframes to deal with
open GOP situations. Typically, with sequential encoding,
one would only need the frames that are desired to be
encoded—and the keyframe of the next GOP is unneces
sary—but in parallel transcoding case, and with a "frame
aware' Fluxer, one can and should send the extra frame. To do
this, the Fluxer ensures that our pseudo-chunks always start
on a keyframe and continue past the frame-number of the last
needed frame to the point that there are either no further
forward-looking B-frames or it encounters the next keyframe.
0240 Finally, a pseudo-chunking Fluxer can mitigate the
effects of frequent scene changes, which can produce
transcoding segments that are too small, by applying certain
thresholds (minimum number of frames for a segment) in the
pseudo-chunking process.
0241. In one implementation, for every batch transcode,
Fluxer can produce an index file describing the breakup of all
pseudo chunks produced, for the input audio and video tracks,
called a "Chunk Index Header'. This file can be used for
accelerating real-time transcodes by identifying the indi
vidual pseudo chunks for the particular input and what byte
offsets they occupy in the file, making retrieval of discrete
units easier.

US 2013/01 17418 A1

0242. It should be understood that pseudo-chunking is not
limited to the applications described above, nor is it limited to
use by a Fluxer described herein. Any module charged with
segmenting a file for encoding may employ pseudo-chunk
ing. Further, other forms of media, particularly those that
utilize atomic data that references other data in a stream (as do
B-frames, P-frames, etc.)
0243 Computer-Based Implementation
0244. The clients, servers, and other devices described
herein may be implemented with conventional computer sys
tems, as modified by the teachings hereof, with the functional
characteristics described above realized in special-purpose
hardware, general-purpose hardware configured by Software
stored therein for special purposes, or a combination thereof.
0245 Software may include one or several discrete pro
grams. Any given function may comprise part of any given
module, process, execution thread, or other Such program
ming construct. Generalizing, each function described above
may be implemented as computer code, namely, as a set of
computer instructions, executable in one or more processors
to provide a special purpose machine. The code may be
executed using conventional apparatus—such as a processor
in a computer, digital data processing device, or other com
puting apparatus—as modified by the teachings hereof. In
one embodiment, such software may be implemented in a
programming language that runs in conjunction with a proxy
on a standard Intel hardware platform running an operating
system such as Linux. The functionality may be built into the
proxy code, or it may be executed as an adjunct to that code.
0246 While in some cases above a particular order of
operations performed by certain embodiments is set forth, it
should be understood that such order is exemplary and that
they may be performed in a different order, combined, or the
like. Moreover, some of the functions may be combined or
shared in given instructions, program sequences, code por
tions, and the like. References in the specification to a given
embodiment indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particular
feature, structure, or characteristic.
0247 FIG. 26 is a block diagram that illustrates hardware
in a computer system 2600 upon which such software may
run in order to implement embodiments of the invention. The
computer system 2600 may be embodied in a client device,
server, personal computer, workstation, tablet computer,
wireless device, mobile device, network device, router, hub,
gateway, or other device. Representative machines on which
the subject matter herein is provided may be Intel Pentium
based computers running a Linux or Linux-variant operating
system and one or more applications to carry out the
described functionality.
0248 Computer system 2600 includes a processor 2604
coupled to bus 2601. In some systems, multiple processor
and/or processor cores may be employed. Computer system
2600 further includes a main memory 2610, such as a random
access memory (RAM) or other storage device, coupled to the
bus 2601 for storing information and instructions to be
executed by processor 2604. A read only memory (ROM)
2608 is coupled to the bus 2601 for storing information and
instructions for processor 2604. A non-volatile storage device
2606. Such as a magnetic disk, Solid state memory (e.g., flash
memory), or optical disk, is provided and coupled to bus 2601
for storing information and instructions. Other application
specific integrated circuits (ASICs), field programmable gate

May 9, 2013

arrays (FPGAs) or circuitry may be included in the computer
system 2600 to perform functions described herein.
0249. Although the computer system 2600 is often man
aged remotely via a communication interface 2616, for local
administration purposes the system 2600 may have a periph
eral interface 2612 communicatively couples computer sys
tem 2600 to a user display 2614 that displays the output of
Software executing on the computer system, and an input
device 2615 (e.g., a keyboard, mouse, trackpad, touchscreen)
that communicates user input and instructions to the com
puter system 2600. The peripheral interface 2612 may
include interface circuitry, control and/or level-shifting logic
for local buses such as RS-485, Universal Serial Bus (USB),
IEEE 1394, or other communication links
0250 Computer system 2600 is coupled to a communica
tion interface 2616 that provides a link (e.g., at a physical
layer, data link layer, or otherwise) between the system bus
2601 and an external communication link. The communica
tion interface 2616 provides a network link 2618. The com
munication interface 2616 may representa Ethernet or other
network interface card (NIC), a wireless interface, modem, an
optical interface, or other kind of input/output interface.
0251 Network link 2618 provides data communication
through one or more networks to other devices. Such devices
include other computer systems that are part of a local area
network (LAN) 2626. Furthermore, the network link 2618
provides a link, via an internet service provider (ISP) 2620, to
the Internet 2622. In turn, the Internet 2622 may provide a
link to other computing systems such as a remote server 2630
and/or a remote client 2631. Network link 2618 and such
networks may transmit data using packet-switched, circuit
Switched, or other data-transmission approaches.
0252. In operation, the computer system 2600 may imple
ment the functionality described herein as a result of the
processor executing code. Such code may be read from or
stored on a non-transitory computer-readable medium, Such
as memory 2610, ROM 2608, or storage device 2606. Other
forms of non-transitory computer-readable media include
disks, tapes, magnetic media, CD-ROMs, optical media,
RAM, PROM, EPROM, and EEPROM. Any other non-tran
sitory computer-readable medium may be employed. Execut
ing code may also be read from network link 2618 (e.g.,
following storage in an interface buffer, local memory, or
other circuitry).

1. A system, comprising:
a plurality of proxy servers connected to a global computer

network that operate to receive requests for content from
clients and respond to the requests for content by send
ing the clients the content they requested;

a management server operable to receive a request to con
vert a file from a first version to a second version;

the management server operable to create at least first and
second segments, each of the segments corresponding to
a portion of the file, and send the first segment to a first
one of the plurality of proxy servers and the second
segment to a second one of the plurality of proxy servers,
each of the first and second segments being sent with
information about the requested conversion, so that the
first and second segments are converted independently
by the first and second proxy servers while the first and
second proxy servers continue to respond to client
requests for content;

wherein the plurality of proxy servers and the management
server each comprise circuitry forming at least one pro

US 2013/01 17418 A1

cessor and memory storing computer-readable instruc
tions that when executed on the at least one processor
will cause operation as specified above.

2. The system of claim 1, wherein the conversion involving
changing at least one of:

(a) a codec used to encode data in the file,
(b) a container format of the file,
(c) one or more codec settings used to encode data in the

file
(d) one or more container format settings for the file,
(e) a frame size for data in the file,
(f) an aspect ratio for data in the file,
(g) a bit-rate of encoded data in the file,
(h) an interlacing characteristic for data in the file,
(i) a frame rate for data in the file, and
(j) a picture resolution for data in the file.
3. The system of claim 1, wherein the conversion involves

at least one of:
(a) changing one or more security characteristics of the file,
(b) applying a DRM scheme,
(c) applying encryption,
(d) applying a watermark, and
(e) applying a fingerprint.
4. The system of claim 1, wherein the first and second

proxy servers were selected to participate in performing the
requested conversion at least in part because their resource
utilization related to servicing client requests for content was
lower than that of other proxy servers.

5. The system of claim 1, wherein each of the plurality of
proxy servers is operable to execute a first process providing
a proxy function that services client requests for content, and
a second process that performs conversions on files sent from
the management server, the first process having priority over
the second process.

6. The system of claim 1, wherein at least one of the
plurality of proxy servers is operable to send the management
server a message indicating that it will not perform the
requested conversion, after that proxy server determines that
its resource utilization related to servicing client requests
exceeds a threshold.

7. The system of claim 1, wherein the management server
is operable to identify proxy servers to use to perform the
requested conversion by obtaining a list of one or more can
didate proxy servers from a monitoring system associated
with the plurality of proxy servers.

8. The system of claim 1, wherein the request to convert the
file is associated with a priority, and the management server
decides whether to use the plurality of proxy servers for
performing the requested conversion based on the priority of
the request.

9. The system of claim 1, wherein each of the first and
second proxy servers operate to perform the requested con
version and return the results to the management server,
which re-assembles the results into at least part of the second
version of the file.

10. The system of claim 1, wherein the plurality of proxy
servers are HTTP proxy servers and the content for which
they receive client requests comprises any of HTML files,
web page objects, and streaming media.

11. The system of claim 1, wherein file includes one or
more of (i) audio data and (ii) Video data.

12. The system of claim 1, further comprising a machine
that makes the request to the management server to convert
the file, the machine comprising any of: (a) a network storage

20
May 9, 2013

system, (b) a server providing a user interface to content
provider users of the system, and (c) one of the plurality of
proxy servers.

13. A method performed by one or more programmed
computer machines that comprise circuitry forming one or
more processors that execute computer program instructions,
and that manage the conversion of content, the method com
prising:

receiving a request to convert a file from a first version to a
second version;

selecting first and second proxy servers from a plurality of
proxy servers that are interconnected via a global com
puter network, and that are receiving requests for con
tent from clients and responding to the requests for con
tent by sending the clients the content they requested;

creating at least first and second segments, each of the
segments corresponding to a portion of the file, and
sending the first segment to the first proxy server and the
second segment to the second proxy server, each of the
first and second segments being sent with information
about the requested conversion,

receiving a converted first segment from the first proxy
server; and

receiving a converted second segment from the second
proxy server

combining the converted first and second segments to form
at least part of the second version of the file.

14. The method of claim 13, wherein the conversion
involving changing at least one of:

(a) a codec used to encode data in the file,
(b) a container format of the file,
(c) one or more codec settings used to encode data in the

file
(d) one or more container format settings for the file,
(e) a frame size for data in the file,
(f) an aspect ratio for data in the file,
(g) a bit-rate of encoded data in the file,
(h) an interlacing characteristic for data in the file,
(i) a frame rate for data in the file, and
(j) a picture resolution for data in the file.
15. The method of claim 13, wherein the conversion

involves at least one of:
(a) changing one or more security characteristics of the file,
(b) applying a DRM scheme,
(c) applying encryption,
(d) applying a watermark, and
(e) applying a fingerprint.
16. The method of claim 13, wherein the first and second

proxy servers are selected at least in part because their
resource utilization related to servicing client requests for
content is lower than that of other proxy servers.

17. The method of claim 13, further comprising: receiving
from one of the plurality of proxy servers a message indicat
ing that it will not convert a particular segment because its
resource utilization related to servicing client requests
exceeds a threshold.

18. The method of claim 13, further comprising: identify
ing proxy servers to use to perform the requested conversion
by obtaining a list of one or more candidate proxy servers
from a monitoring system associated with the plurality of
proxy servers.

19. The method of claim 13, wherein the request to convert
the file is associated with a priority, and further comprising

US 2013/01 17418 A1 May 9, 2013
21

deciding whether to use the plurality of proxy servers for response to client requests for content, as long as the
performing the requested conversion based on the priority of load on the first proxy server due to the client requests
the request. for content does not exceed a threshold;

20. The method of claim 13, wherein the plurality of proxy the first proxy server sending the second version of the first
servers are HTTP proxy servers and the content for which segment to at least one server managing the conversion;
they receive client requests comprises any of HTML files, the second proxy server converting the second segment
web page objects, and streaming media. from the first version to the second version while con

21. The method of claim 13, wherein the file includes one tinuing to response to client requests for content, as long
or more of (i) audio data and (ii) Video data. as the load on the second proxy server due to the client

22. The method of claim 13, further comprising receiving requests for content does not exceed a threshold;
the request to convert the file from any of: (a) a network the second proxy server sending the second version of the
storage system, (b) a server providing a user interface to first segment to the at least one server managing the
content provider users of the system and (c) one of the plu- COWS1O.
rality of proxy servers. 24. The method of claim 23, wherein the conversion

23. A method performed by programmed computer involving changing at least one of:
machines that comprise circuitry forming one or more pro- (k) a codec used to encode data,
cessors that execute computer program instructions, compris- (1) a container format,
ing: (m) one or more codec settings,

with a plurality of proxy servers that are connected to a (n) one or more container format settings,
global computer network, receiving for content from (o) a frame size,
clients and responding to the requests for content by (p) an aspect ratio,
sending the clients the content they requested; (q) a bit-rate of encoded data,

(r) an interlacing characteristic,
(s) a frame rate, and
(t) a picture resolution.
25. The method of claim 23, wherein the conversion

involves at least one of:
(f) changing one or more security characteristics,
(g) applying a DRM Scheme,

at a first proxy server selected from the plurality of proxy
servers, receiving a request to convert a first segment of
a file from a first version to a second version, and instruc
tions about the conversion to be performed;

at a second proxy server selected from the plurality of
proxy servers, receiving a request to convert a second
segment of the file from a first version to a second o o
version and instructions about the conversion to be per- (h) applying encryption,
formed; (i) applying a watermark, and

the first proxy server converting the first segment from the (j) applying a fingerprint.
first version to the second version while continuing to k

