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HYBRIO PLATFORM FOR CONTENT 
DELIVERY AND TRANSCODING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims the benefit of priority of 
U.S. Provisional Application No. 61/556.236, filed Nov. 6, 
2011, and of U.S. Provisional Application No. 61/556.237, 
filed Nov. 6, 2011, the teachings of both of which are hereby 
incorporated by reference in their entirety. 

BACKGROUND 

0002 1. Technical Field 
0003. This disclosure relates generally to computer sys 
tems for processing of media files, and other content, using 
distributed computing techniques. 
0004 2. Brief Description of the Related Art 
0005 Content providers (such as large-scale broadcasters, 
film distributors, and the like) desire to distribute their content 
online in a manner that complements traditional mediums 
such as broadcast TV (including high definition or “HD’ 
television) and DVD. It is important to them to have the 
ability to distribute content to a wide variety of third-party 
client application/device formats, and to offer a quality view 
ing experience regardless of network conditions, using mod 
ern technologies like adaptive bitrate streaming. Notably, 
since Internet-based content delivery is no longer limited to 
fixed line environments such as the desktop, and more and 
more end users now use mobile devices to receive and view 
content in wireless environments, the ability to Support new 
client device formats and new streaming technologies is par 
ticularly important. 
0006 Media files are one common kind of content that 
content providers distribute. A media file may be single 
media content (e.g., audio-only media) or the media file may 
comprise multiple media types, i.e., a multimedia file with 
audio/video data. Generally speaking, a given multimedia file 
is built on data in several different formats. For example, the 
audio and video data are each encoded using appropriate 
codecs, which are algorithms that encode and compress that 
data. Example codecs include H.264, VP6, AAC, MP3, etc. A 
container or package format that functions as a wrapper and 
describes the data elements and metadata of the multimedia 
file, so that a client application knows how to play it. Example 
container formats include Flash, Silverlight, MP4, PIFF, and 
MPEG-TS. 

0007. The bit rate at which to encode the audio and video 
data must be selected. An encoding with a lower bitrate and 
Smaller frame size (among other factors) generally will be 
easier to stream reliably, since the amount of data will be 
smaller, but the quality of the experience will suffer. Like 
wise, an encoding at a higher-bitrate and a larger frame will be 
a higher quality experience, but is more likely to lead to 
interrupted and/or poor quality streams due to network deliv 
ery issues. Current adaptive bitrate streaming technologies 
require multiple streams each encoded at a different bitrate, 
allowing the client and/or server to switch between streams in 
order to compensate for network congestion. 
0008 While other kinds of media files (like an audio-only 

file) may be somewhat less complex than the multimedia file 
described above, they nevertheless present similar issues in 
terms of encoding and formatting, stream quality tradeoffs, 
and player compatibility. 
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0009 Hence, to support the distribution of content to a 
wide variety of devices, content providers typically must 
create many different versions of their content. For example, 
they often will create multiple copies of a given movie title at 
different Screen sizes, bit rates, quality levels and client player 
formats. Furthermore, over time they may want to change 
formats, for example by updating the encoding (e.g., to take 
advantage of newer codecs that compress content more effi 
ciently). They may also need to change the container format 
to accommodate new client environments, a process often 
referred to as transmuXing. Failing to provide certain bit rates 
or poor encoding practices will likely reduce the quality of the 
stream. But generating so many different versions of content, 
as well as converting from one to another and storing them, is 
a time-consuming and costly process that is difficult to man 
age. 
0010 For online delivery (e.g., streaming, download) of 
these various versions of content, content providers often use 
distributed computing systems to deliver their content. One 
such distributed computer system is a “content delivery net 
work” or "CDN that is operated and managed by a service 
provider. The service provider typically provides the content 
delivery service on behalf of third parties. A “distributed 
system” of this type typically refers to a collection of autono 
mous computers linked by a network or networks, together 
with the Software, systems, protocols and techniques 
designed to facilitate various services, such as content deliv 
ery or the Support of outsourced site infrastructure. Typically, 
“content delivery means the storage, caching, or transmis 
sion of content, streaming media and applications on behalf 
of content providers, including ancillary technologies used 
therewith including, without limitation, DNS query handling, 
provisioning, data monitoring and reporting, content target 
ing, personalization, and business intelligence. 
0011. A content delivery network such as that just 
described typically supports different content formats, and 
offers many advantages for accelerating the delivery of con 
tent, once created. However, the content provider still faces 
the problem of creating and managing the creation of all of the 
various versions of content that it desires and/or that are 
necessary. 
0012. Thus, there is a need to provide methods and sys 
tems for generating, preparing and transforming streaming 
content in an efficient and scalable way. There is also a need 
to provide such functionality in a way that is compatible with 
delivery Solutions so as to provide an overall end-to-end 
Solution for content providers. The teachings herein address 
these needs and offer other features and advantages that will 
become apparent in view of this disclosure. 

SUMMARY 

0013 The subject matter herein generally relates to 
transcoding content, typically audio/video files though not 
limited to Such. Typically the transcoding is performed in 
preparation for online streaming or other delivery to end 
users. Such transcoding may involve converting from one 
format to another (e.g., converting codecs or container for 
mats), or creating multiple versions of an original source file 
in different bitrates, resolutions, or otherwise, to support dis 
tribution to a wide array of devices and to utilize perfor 
mance-enhancing technologies like adaptive bitrate stream 
ing. This disclosure describes a transcoding platform that, in 
certain embodiments, leverages distributed computing tech 
niques to transcode content in parallel across a platform of 
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machines that are preferably idle or low-utilization resources 
of a content delivery network. The transcoding system also 
utilizes, in certain embodiments, improved techniques for 
breaking up the original Source file that are performed so that 
different segments of the file can be sent to different machines 
for transcoding in parallel. 
0014. In one embodiment, a transcoding platform is made 
up of distributed transcoding resources, typically servers with 
available processing power and programmed to assist in the 
transcoding function. These transcoding resources may be 
dedicated machines as well as machines that are shared with 
other functions. In particular, the machines can be idle or 
low-utilization HTTP proxy servers (relative to other such 
proxy servers) in a content delivery network. While these 
machines may spend much of their time receiving and 
responding to client requests for content, and otherwise facili 
tating delivery of online content to requesting end-users, at 
certain times (in the middle of night in their local time Zone, 
for example) they may be relatively lightly-loaded, and hence 
available to perform certain transcoding tasks. The transcod 
ing platform may also include a set of machine(s) that manage 
and coordinate the transcoding process. These machines may 
receive requests to perform a particular transcoding job, e.g., 
to convert a particular file from a first version to a second 
version. The request may come from a user interface (through 
which a content provider user of the platform uploads their 
content to be transcoded, for instance), from a network Stor 
age system, or from components in the content delivery net 
work that are streaming content (e.g., that need to be able to 
deliver a particular format to a requesting end-user client), 
including one of the proxy servers. As appropriate, depending 
on the foregoing circumstances, the transcoding job may be 
designated with a priority level, which may correspond 
semantically to a “live”, “real-time' or “batch’ mode conver 
Sion. In some cases, the proxy servers are only used if the 
priority level is below a certain threshold because the proxy 
servers are considered to be unreliable for transcoding tasks. 
Indeed, proxy servers may operate such that content delivery 
processes (e.g., responding to client requests) take priority 
over transcoding tasks when allocating processing time 
within the proxy server. 
0015 Continuing with the current example, a machine(s) 
managing the transcoding process obtains a list of candidate 
servers for performing transcoding tasks. This list may 
include the results of a lookup into the content delivery net 
work's monitoring and mapping system to determine which 
proxy servers within the network are currently experiencing a 
relatively light load for content delivery services, as measured 
by Such metrics as processor (CPU), memory, or disk utiliza 
tion, and/or client requestrate, etc. The management machine 
retrieves the file to be transcoded and breaks it up into seg 
ments suitable to be independently converted. These seg 
ments are then sent to the various transcoding resources (e.g., 
the proxy servers or the dedicated machines) distributed 
across the platform, which given the nature of the content 
delivery network may be global in nature. Also sent along are 
instructions with parameters about the desired transcode 
operation and/or target format. Each transcoding resource 
performs its task independently, e.g., decoding the chunk that 
it is given and re-encoding with the appropriate parameters. It 
then returns the result to the management machine(s), which 
reassembles the new segments into the new file. Thus, for 
example, the proxy servers can continue to service client 
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requests for content (the proxy process) while performing the 
transcode process with residual resources. 
0016. Because proxy servers are responsible for servicing 
client requests, that process typically takes priority over the 
transcoding process. In some cases, the proxy server may 
determine that it cannot complete the transcode request and 
may send a message back to the management machine with an 
error or otherwise indicating it will not complete the 
transcode. Typically this would occur if the proxy server's 
load began to increase or to exceed a particular threshold. 
0017. The transcoding process may involve changing any 
of a variety of characteristics of the file, for example and 
without limitation, changing a codec used to encode data in 
the file, changing a container format of the file, and/or chang 
ing one or more encoding parameters or container format 
parameters. Thus the transcoding process may involve chang 
ing a bit-rate of encoded data in the file, an image resolution 
for data in the file, a frame size for data in the file, an aspect 
ratio for data in the file, a compression setting used to encode 
data in the file, other settings such as GoP settings, color 
spaces, stereo/audio settings, etc. The transcoding process 
may also involve changing other characteristics, such as an 
interlacing characteristic for data in the file. In addition, the 
system may be used to change or add security features to the 
file, e.g., by applying encryption, embedding a watermark or 
a fingerprint in the content, or inserting data to apply a digital 
rights management scheme to the file. 
0018. In some cases, when the source file is a video, the 
platform uses a pseudo-chunking approach for breaking up 
the video file to create the transcoding segments. For 
example, the management machine(s) can be configured to be 
frame-aware, such that it can include “additional frames in a 
given segment to enhance the ability for a given transcoding 
resource to transcode that segment independently of other 
frame information in the file. This is advantageous and some 
times necessary because the transcoding resource usually will 
not receive the entire original source file. Such pseudo 
chunking techniques are useful when the transcode involves 
modifying the size of GoPs, the rate of keyframes in the 
Source file is relatively high, or the source file contains so 
called open GoPs, among other scenarios. 
0019 More specifically, in some embodiments, a frame 
aware segmentation process (e.g. in the management server) 
can receive a video file that is to be converted from a first 
version to a second version. The video file is typically made 
up of a plurality of frames organized into a plurality of 
groups-of-pictures (GoPs). The segmenter examines frames 
in the file to identify a given GoP and to determine the type of 
frames in the given GoP and creates a segment that includes 
frames beyond those in the given GoP. This segment is then 
sent off to be independently transcoded as described above. 
0020. The inclusion of the additional frames may occur 
because the segmenter determines that the given GoP cannot 
be divided into a whole number of target GoPs (the target 
GoPs representing desired GoPs for the second version and 
having a smaller number of frames), in which case the seg 
menter can create the segment from the file to include at least 
Some frames in the given GoP and at least one frame from a 
GoP immediately following the given GoP. 
0021. Another possibility is that the target GoP is larger 
than the given GoP and that it is nota whole-number-multiple 
of the size of the given GoP in which case the segmenter can 
create the segment to include the given GoP and at least 
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enough frames from GoPs immediately following the given 
GoP such that the segment reaches the size of the target GoP. 
0022. Another possibility is that the segmenter identifies 
the given GoP as an open-GoP and therefore creates the 
segment to include all of the frames from the given GoP and 
frames (e.g., up to and including a keyframe) from a GoP 
immediately following the given GoP. 
0023 Yet another possibility is that the segmenter deter 
mines that the given GoP contains a number of frames that is 
less than a predetermined minimum number of frames, and so 
creates the segment to include the given GoP and at least 
enough additional frames so as to reach that predetermined 
minimum number of frames. 
0024. As those skilled in the art will recognize, the fore 
going merely refers to non-limiting embodiments of the Sub 
ject matter disclosed herein. The teachings hereof may be 
realized in a variety of systems, methods, apparatus, and 
non-transitory computer-readable media. It is also noted that 
the allocation of functions to different machines is not limit 
ing, as the functions recited herein may be combined or split 
amongst different machines in a variety of ways. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0025. The subject matter herein will be more fully under 
stood from the following detailed description taken in con 
junction with the accompanying drawings, in which: 
0026 FIG. 1 is a diagram illustrating one embodiment of 
a known distributed computer system configured as a content 
delivery network; 
0027 FIG. 2 is a diagram illustrating one embodiment of 
a machine on which a CDN server in the system of FIG.1 may 
be implemented; 
0028 FIG. 3 is a diagram illustrating one embodiment of 
an architecture for live streaming delivery as described in 
U.S. application Ser. No. 12/858,177; 
0029 FIG. 4 is a diagram illustrating one embodiment of 
an architecture and request flow of a video-on-demand 
approach as described in U.S. application Ser. No. 12/858, 
177: 
0030 FIG. 5 is a schematic view of one embodiment of an 
architecture for live streaming, as described in U.S. applica 
tion Ser. No. 13/329,057; 
0031 FIG. 6 is a schematic view of one embodiment of an 
architecture for on-demand streaming as described in U.S. 
application Ser. No. 13/329,057: 
0032 FIG. 7 is a schematic view illustrating the live 
streaming architecture of FIG. 5 in more detailas described in 
U.S. application Ser. No. 13/329,057: 
0033 FIG. 8 illustrates an example of a first live streaming 
workflow used when a stream is published from an encoder to 
an entrypoint (EP) as described in U.S. application Ser. No. 
13/329,057; 
0034 FIG. 9 illustrates an example of a second live 
streaming workflow used when an end-user makes a live 
request for content as described in U.S. application Ser. No. 
13/329,057; 
0035 FIG.10 illustrates an example of a process by which 
live streams can be announced in the exemplary architectures 
shown in FIGS. 5,7,8 and 9, as described in U.S. application 
Ser. No. 13/329,057; 
0036 FIG. 11 illustrates an example of a technique for 
replicating live streams as described in U.S. application Ser. 
No. 13/329,057; 
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0037 FIG. 12 illustrates an example of an on-demand 
streaming workflow used when an end-user makes a request 
for content as described in U.S. application Ser. No. 13/329, 
057; 
0038 FIG. 13 illustrates an example of the TransformLib 
component in more detail as described in U.S. application 
Ser. No. 13/329,057; 
0039 FIG. 14 illustrates an example of a workflow Sup 
porting ingestion and output of a content stream in a given 
format as described in U.S. application Ser. No. 13/329,057: 
0040 FIG. 15 illustrates an example of a workflow for 
Supporting ingestion and output of a content stream in another 
given format as described in U.S. application Ser. No. 13/329, 
057; and 
0041 FIG. 16 illustrates an example of a workflow using 
binary-side-includes (BSI) to facilitate streaming as 
described in U.S. application Ser. No. 13/329,081; 
0042 FIG. 17 is a block diagram of one embodiment of a 
transcoding platform that includes a transcoding region with 
certain machines, as well as an existing content delivery 
network with machines that are leveraged to provide 
transcoding resources; 
0043 FIG. 18 illustrates an example of a workflow for 
Video-on-demand batch transcoding in accordance with the 
teachings hereof; 
0044 FIG. 19 illustrates an example of a workflow for live 
transcoding in accordance with the teachings hereof; 
004.5 FIG. 20 illustrates an example of a workflow for live 
transcoding from the point of view of the Fluxer component, 
in accordance with the teachings hereof; 
0046 FIG. 21 illustrates an example of a workflow for 
batch video-on-demand transcoding from the point of view of 
the Fluxer component, in accordance with the teachings 
hereof; 
0047 FIG. 22 illustrates an example of a workflow for 
real-time video-on-demand transcoding from the point of 
view of the Fluxer component, in accordance with the teach 
ings hereof; 
0048 FIG. 23 is a diagram illustrating examples of certain 
transcoding processes executing in a server functioning as a 
transcoding resource, in accordance with the teachings 
hereof; 
0049 FIG. 24 is a diagram illustrating modification of 
group-of-picture (GoP) size as part of a transcoding job; 
0050 FIG. 25 is a diagram illustrating an example of a 
pseudo-chunking approach for transcoding, in according 
with the teachings hereof, and, 
0051 FIG. 26 is a diagram that illustrates hardware in a 
computer system that may be used to implement the teachings 
hereof. 

DETAILED DESCRIPTION 

0.052 The following description sets forth non-limiting 
embodiments to provide an overall understanding of the prin 
ciples of the structure, function, manufacture, and use of the 
methods, systems, and apparatus disclosed herein. The meth 
ods, systems, and apparatus described herein and illustrated 
in the accompanying drawings are non-limiting examples; the 
scope of the present invention is defined solely by the claims. 
The features described or illustrated in connection with one 
exemplary embodiment may be combined with the features of 
other embodiments. Such modifications and variations are 
intended to be included within the scope of the present inven 
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tion. All patents, publications and references cited herein are 
expressly incorporated herein by reference in their entirety. 
0053. The subject matter hereof provides improved ways 

to convert audio/video content (or other content) from one 
codec format to another, or from one container format to 
another, and/or that have different encoding/formatting set 
tings, to generate multiple versions of a file. For example, the 
conversions may involve changing the bitrate (e.g., 10 Mbps 
to 500 kps), frame size, aspect ratio, or in changing compres 
sion settings (other than bitrate), and/or other characteristics 
Such as GoP settings, color spaces, Stereo/audio choices, 
sample rates, etc. The process may also involve changing 
other characteristics, such as whether interlacing is used. In 
addition, in Some applications the teachings hereof may be 
used to change or add security features. Such as encryption or 
watermarking, as will be described in more detail below. The 
term transcoding is used herein to refer to performing any or 
all of such transformations on a given piece of content; how 
ever it is not limited to such transformations, which are 
merely examples provided for illustrative purposes. 
0054. In many embodiments, the transcoding techniques 
disclosed herein preferably are implemented in a distributed 
computing platform Such as a content delivery network 
(CDN), and preferably one that can not only perform 
transcoding services but also the deliver the transcoded con 
tent. An example of a content delivery network platform is 
now described. 

0055 Content Delivery Network 
0056 FIG. 1 illustrates a known distributed computer sys 
tem 100 is configured as a CDN and is assumed to have a set 
of machines 102 distributed around the Internet. Typically, 
most of the machines are servers located near the edge of the 
Internet, i.e., at or adjacent end user access networks. A net 
work operations command center (NOCC) 104 manages 
operations of the various machines in the system. Third party 
sites, such as web site 106, offload delivery of content (e.g., 
HTML, embedded web page objects, streaming media, soft 
ware downloads, and the like) to the distributed computer 
system 100 and, in particular, to the CDN's content servers 
102 (sometimes referred to as "edge' servers in light of their 
location near the "edges' of the Internet, or as proxy servers 
if running an HTTP proxy or other proxy process, as is typical 
and as is described further below in connection with FIG. 2). 
Typically, content providers offload their content delivery by 
aliasing (e.g., by a DNS CNAME) given content provider 
domains or sub-domains to domains that are managed by the 
service provider's authoritative domain name service. End 
users that desire the content are directed to the distributed 
computer system to obtain that content more reliably and 
efficiently. Although not shown in detail, the distributed com 
puter system may also include other infrastructure, Such as a 
distributed data collection system 108 that collects usage and 
other data from the edge servers, aggregates that data across 
a region or set of regions, and passes that data to other back 
end systems 110, 112, 114 and 116 to facilitate monitoring, 
logging, alerts, billing, management and other operational 
and administrative functions. Distributed network agents 118 
monitor the network as well as the server loads and provide 
network, traffic and load data (e.g., from the CDN's content 
servers 102) to a DNS query handling mechanism 115, which 
is authoritative for content domains being managed by the 
CDN and which responds to DNS queries from end users by 
handing out, e.g., addresses for one or more of the content 
servers in the CDN. A distributed data transport mechanism 
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120 may be used to distribute control information (e.g., meta 
data to manage content, to facilitate load balancing, and the 
like) to the servers. 
0057 More detail about CDN operation can be found in 
U.S. Pat. Nos. 7,293,093 and 7,693,959, the disclosures of 
which are incorporated by reference. 
0.058 As illustrated in FIG. 2, a given machine 200 com 
prises commodity hardware (e.g., an Intel Pentium processor) 
202 running an operating system kernel (such as Linux or 
variant) 204 that Supports one or more applications 206a-n. 
To facilitate content delivery services, for example, given 
machines typically run a set of applications, such as an HTTP 
web proxy 207 (sometimes referred to as a “global host' or 
“ghost’ process), a name server 208, a local monitoring pro 
cess 210, a distributed data collection process 212, and the 
like. The machine running the proxy 207 typically provides 
caching functionality for content passing therethrough, 
although it need not. For streaming media, the machine typi 
cally includes one or more media servers, such as a Windows 
Media Server (WMS) or Flash server, as required by the 
Supported media formats. 
0059 A given content server is configured to provide one 
or more extended content delivery features, preferably on a 
domain-specific, customer-specific basis, preferably using 
configuration files that are distributed to the edge servers 
using a configuration system. A given configuration file pref 
erably is XML-based and includes a set of content handling 
rules and directives that facilitate one or more advanced con 
tent handling features. The configuration file may be deliv 
ered to the content server via the data transport mechanism. 
U.S. Pat. Nos. 7,240,100 and 7,111,057 (the disclosures of 
which is hereby incorporated by reference) illustrates useful 
infrastructures for delivering and managing edge server con 
tent control information, and this and other edge server con 
trol information can be provisioned by the CDN service pro 
vider itself, or (via an extranet or the like) the content provider 
customer who operates the origin server. The CDN may pro 
vide secure content delivery among a client browser, edge 
server and customer origin server in the manner described in 
U.S. Publication No. 20040093419. Secure content delivery 
as described therein enforces SSL-based links between the 
client and the content server, on the one hand, and between the 
content server process and an origin server process, on the 
other hand. This enables an SSL-protected web page and/or 
components thereof to be delivered via the content server. 
0060. The CDN may include a network storage subsystem 
(sometimes referred to as “NetStorage'), such as described in 
U.S. Pat. No. 7,472,178, the disclosure of which is incorpo 
rated herein by reference. 
0061 Streaming Using a Content Delivery Network 
0062. The CDN described above may be designed to pro 
vide a variety of streaming services. For example, for fault 
tolerant streaming delivery, the CDN may include a delivery 
subsystem, such as described in U.S. Pat. No. 7,296,082, the 
disclosure of which is incorporated herein by reference. 
0063. In other streaming implementations, the CDN may 
be extended to provide an integrated HTTP-based delivery 
platform that provides for the delivery online of HD-Video 
quality content to the most popular runtime environments and 
to the latest devices in both fixed line and wireless environ 
ments. An example of such a platform is set forth in U.S. Ser. 
No. 12/858,177, filed Aug. 17, 2010 (now published as US 
Patent Publication 2011/0173345, incorporated herein by ref 
erence). The platform described there supports delivery of 
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both "live' and “on-demand” content. It should be noted that 
while some of the description below and otherwise in appli 
cation Ser. No. 12/858,177 uses the context of the Adobe 
Flash runtime environment for illustrative purposes, this is 
not a limitation, as a similar type of Solution may also be 
implemented for other runtime environments both fixed line 
and mobile (including, without limitation, Microsoft Silver 
light, Apple iPhone, and others). 
0064 FIG. 3 illustrates an overview of an exemplary 
architecture for live streaming delivery as described in U.S. 
application Ser. No. 12/858,177, filed Aug. 17, 2010. As seen 
in the embodiment shown in FIG. 3, the system generally is 
divided into two independent tiers: a stream recording tier 
300, and a stream player tier 302. The recording process 
(provided by the stream recording tier 300) is initiated from 
the Encoder 304 forward. Preferably, streams are recorded 
even if there are currently no viewers (because there may be 
DVR requests later). The playback process (provided by the 
stream player tier 302) plays a given stream starting at a given 
time. Thus, a “live stream.” in effect, is equivalent to a “DVR 
stream” with a start time of "now.” 
0065 Referring to FIG. 3, the live streaming process 
begins with a stream delivered from an Encoder 304 to an 
Entry Point 306. A Puller component 308 (e.g., running on a 
Linux-based machine) in an EP Region (not shown) is 
instructed to subscribe to the stream on the EP306 and to push 
the resulting data to one or more Archiver 310 processes, 
preferably running on other machines. In this embodiment, 
one of the Archivers 310 may operate as the “leader as a 
result of executing a leader election protocol across the 
archiving processes. Preferably, the Archivers 310 act as ori 
gin servers for a content server's HTTP proxy processes (an 
example of which is shown at 312) for live or near-live 
requests. The HTTP proxy 312 provides HTTP delivery to 
requesting end user clients, one of which is the Client 314. A 
representative Client 314 is a computer that includes a 
browser, typically with native or plug-in Support for media 
players, codecs, and the like. If DVR is enabled, content 
preferably is also uploaded to the Storage subsystem 316, so 
that the Storage subsystem serves as the origin for DVR 
requests. 
0.066. In operation, a request for content (e.g., from an end 
user Client 314) is directed to the HTTP proxy 312, prefer 
ably using techniques such as those described in U.S. Pat. 
Nos. 6,108,703, 7,240,100, 7,293,093 and others. When the 
HTTP proxy 312 receives an HTTP request for a given 
stream, it makes various requests, preferably driven by HTTP 
proxy metadata (as described in U.S. Pat. Nos. 7.240,100, 
7,111,057 and others), possibly via a cache hierarchy 318 
(see., e.g., U.S. Pat. No. 7,376,716 and others), to locate, learn 
about, and download a stream to serve to the Client 314. 
Preferably, the streaming-specific knowledge is handled by 
the HTTP proxy 312 that is directly connected to a Client 314. 
Any go-forward (cachemiss) requests (issued from the HTTP 
proxy) preferably are standard HTTP requests. For example, 
when a Client 314 requests a particular stream, the HTTP 
proxy 312 starts the streaming process by retrieving a 
“Stream Manifest” that contains preferably attributes of the 
stream and information needed by the HTTP proxy 312 to 
track down the actual stream content. 

0067. For “live' requests, the HTTP proxy 312 starts 
requesting content relative to "now,” which, in general, is 
approximately equal to the time at the content server's HTTP 
proxy process. Given a seek time, the HTTP proxy downloads 
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a "Fragment Index' whose name preferably is computed 
based on information in the indexInfo range and an epoch 
seek time. Preferably, a Fragment Index covers a given time 
period (e.g., every few minutes). By consulting the Fragment 
Index, an “Intermediate Format (IF) Fragment number and 
an offset into that IF fragment are obtained. The HTTP proxy 
312 can then begin downloading the fragment (e.g., via the 
cache hierarchy 318, or from elsewhere within the CDN 
infrastructure), skipping data before the specified offset, and 
then begin serving (to the requesting Client 314) from there. 
In general, and unless the Stream Manifest indicates other 
wise, for live streaming the HTTP proxy then continues serv 
ing data from consecutively-numbered IF Fragments. 
0068. In the context of live HTTP-based delivery, the 
Intermediate Format (IF) describes an internal representation 
of a stream used to get data from the Puller through to the 
HTTP proxy. A “source' format (SF) is a format in which the 
Entry Point 306 provides content and a “target” format (TF) is 
a format in which HTTP proxy 312 delivers data to the Client 
314. These formats need not be the same. Thus, SF may differ 
from TF, i.e., a stream may be acquired in FLV format and 
served in a dynamic or adaptive (variable bit rate) format. The 
format is the container used to convey the stream; typically, 
the actual raw audio and video chunks are considered opaque 
data, although transcoding between different codecs may be 
implemented as well. By passing the formats through the 
HTTP proxy 312 (and delivering to the Client 314 via con 
ventional HTTP), the container used to deliver the content can 
be changed as long as the underlying codecs can be managed 
appropriately. 
0069. The above-described architecture is useful for live 
streaming. The platform can also be used to support video on 
demand (VOD). In particular, the solution can provide VOD 
streaming from customer and Storage Subsystem-based ori 
g1nS. 
(0070 For VOD delivery, the stream recorder tier 300 (of 
FIG. 3) is replaced, preferably with a translation tier. As 
described in Ser. No. 12/858,177, filed Aug. 17, 2010, typi 
cally VOD content is off-loaded to the CDN for HTTP deliv 
ery. In one embodiment, a conversion tool (a script) is used to 
convert source content (such as FLV) to IF, with the resulting 
IF files then uploaded to the Storage subsystem. The HTTP 
proxy 312 then gets the content and the Stream Manifest from 
the Storage Subsystem. Exemplary translation tier 
approaches are described in more detail in Ser. No. 12/858, 
177, filed Aug. 17, 2010. 
0071 Anarchitecture and request flow of a VOD approach 

is shown in FIG. 4. In this embodiment, a translation tier 400 
is located between an origin 402 (e.g., customer origin server, 
or the Storage Subsystem, or other source of content) and the 
stream player tier 404. 
0072 More detail about the above streaming architectures 
can be found in aforementioned U.S. application Ser. No. 
12/858,177. 
0073. It is known that the above-described streaming 
architecture can be enhanced in a variety of ways, for example 
as set forth in U.S. patent application Ser. No. 13/329,057. 
filed Dec. 16, 2011, (now published as US Publication No. US 
2012/0265853 and as WIPO Publication No. WO/2012/ 
083298) the contents of which are hereby incorporated by 
reference. 
0074 Live Streaming Components 
0075 FIG. 5 is a high-level component diagram illustrat 
ing one embodiment of an architecture for streaming live 
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content, as set forth in U.S. patent application Ser. No. 
13/329,057. In this embodiment, the Entry Point (EP) 502 
ingests the stream to be delivered from an encoder 500, 
demuxes the stream from its native format to an IF format, 
such as a fragmented format like f-MP4, and archives the 
stream to Storage 504 (typically a network storage sub 
system). The EP 502 serves “current live stream fragments 
to a Streaming Mid-Tier (SMT) process 506, which is typi 
cally running on a separate SMT machine. The SMT 506 
retrieves “current live stream fragments from EP 502, and it 
generates a muXed output in the desired native format. In an 
alternative embodiment, the SMT 506 generates muxing 
instructions for use by a content server running an HTTP 
proxy process 508 (again, sometimes referred to as “global 
host' or simply "ghost') in the CDN. The instructions are 
returned to the content server 508, along with the IF frag 
ments if needed, although the IF fragments may have been 
previously cached by the content server 508 or retrieved by 
the content server from Storage 504 instead. The muxing 
instructions may be realized as binary-side-includes, or BSI, 
which is described in detail in U.S. patent application Ser. No. 
13/329,057 and will be summarized below. The content 
server 508 forwards end-user requests to SMT 506, caches 
the response from SMT506, which response either is a native 
output object for the stream or a BSI fragment, and, when BSI 
is used, the content server 508 also creates an output object 
from the BSI and IF fragment. The content server 508 also 
delivers the native output object to the end-user client, typi 
cally a client player application. It does not need to under 
stand any container format(s). The Storage 504 stores an 
archive for DVR or VOD playback, and it also stores live 
stream session metadata. 
0076. On Demand Streaming Components 
0077 FIG. 6 is a high-level component diagram illustrat 
ing one embodiment of an architecture for streaming on 
demand content. In this embodiment, the SMT 604 requests 
and receives the native on-demand file from either a customer 
origin 600 or Storage 604 (again, typically a network Storage 
subsystem). The SMT 606 parses a native source file index 
and creates an intermediate Metalindex. It also generates a 
muxed output object or SMT 606 generates muxing instruc 
tions (BSI or equivalent functionality) for use by the content 
server 608 to create the native object. The content server 608 
forwards end-user requests to SMT 606, caches the response 
from SMT, which response either is a native output object or 
a BSI fragment, and, when BSI is used, the content server 608 
also creates an output object from the BSI and IF fragment. 
Storage 604 typically stores on-demand files in native format. 
0078 Live Streaming Operation 
0079 FIG. 7 illustrates further details regarding the EP 
and SMT components and their respective functions. 
0080. In this embodiment, the EP 700 comprises two ser 
vices: an ingest server 706 and an entry point stream manager 
(ESM) 701. The ingest server 706 is composed of a format 
specific ingest server 706 and a library of functions 708, 
called Transform Lib. The library 708 is a shared library that is 
linked into the ingest server 706. The library contains format 
specific logic for muXing and demuxing. In operation, the 
ingest server 706 receives a stream from an encoder 702, 
authenticates the encoder 702, passes the received data to the 
library 708 for demuxing, and sends the demuxed stream to 
the ESM 701. The library, as noted above, demuxes from a 
native format (e.g., MP3, MPEG2-TS, or otherwise) to the IF, 
such as fMP4. The ESM 710 is a format-independent com 
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ponent that preferably resides on the EP 700. The role of ESM 
701 preferably is the same across different streaming formats. 
It received the demuxed stream from the ingest server 706, 
manages ESM publishing points, archives the stream to Stor 
age 705, serves “current live request from SMT, and 
announces active streams to all SMTs. An EP machine may be 
a Windows-based server, or a Linux-based server, or other 
wise. Preferably, the ESM code is cross-platform compatible. 
I0081. The SMT machine comprises two primary services: 
SMT 712 and local ghost process 714. The local HTTP proxy 
(ghost) process 714 handles incoming HTTP requests from 
an content server ghost process 715. In response, the local 
ghost process 714 makes a forward request to the local SMT 
component 712. SMT component 712 passes the incoming 
request to TransformLib 716 for processing, and that process 
ing is based on the container format. Preferably, Transform 
Lib 716 first rewrites the container-specific incoming URL to 
an IF (e.g., f-MP4) forward URL. SMT 712 then retrieves the 
IF fragment on behalf of Transform Lib 716. Finally, Trans 
formib 716 uses the IF fragment to create instructions (BSI), 
and to serve back any IF requests to the content server ghost 
715. Transform Lib 716 creates the output object in native 
format if the instruction set (BSI) approach is disabled. As 
noted, the local ghost process 714 makes the forward requests 
(to SMT component 712), and it caches the forward response 
on local disk. An intermediary caching process may be used 
between the SMT 712 and local ghost process 714. By using 
local ghost process 714 in the SMT machine, ghost-to-ghost 
communications between the content server and the SMT 
may be used (and optimized). 
0082 FIG. 8 illustrates an embodiment of a first live 
streaming workflow embodiment that is used when a CDN 
customer publishes a stream from its encoder to a CDN entry 
point (EP). 
0083 FIG. 9 illustrates an embodiment of a second live 
streaming workflow that is used when an end-user makes a 
live request to a content server. 
I0084. Referring now to FIG. 8, the encoderpublishes a live 
stream to the EP. The ingest server authenticates the encoder 
connection, preferably using a streamlD to lookup the appro 
priate stream configuration (Step 1). Ingest server then 
demuxes the input and pushes the stream to ESM (Step 2). 
ESM auto-creates a publishing point, preferably uploading to 
Storage three (3) XML-based files: LiveSession, LSM, and 
ACF. These per-session metadata files are created at the start 
of each live stream session (Step 3). The LiveSession file 
includes live stream information, Such as entrypoint IP ses 
sionID, and streamState. The LSM includes session-specific 
metadata like bitrates, etc. ACF includes information for use 
in configuring an archive copy of the live stream. As ESM 
receives fragments from the ingest server, it aggregates the 
fragments into segments on the local disk. When the segment 
size reaches the accumulation threshold, it uploads the seg 
ment to Storage. With each segment uploaded to Storage, 
ESM also uploads an FDX file (Step 4). The FDX (Fragment 
Index) file is a binary encoded file that provides an index of 
the fragments that have been uploaded to Storage. This index 
tells SMT what fragments are in Storage and where to locate 
them. For fragments that are not in the FDX file, the fragment 
either is on the EP (because it has not been uploaded to 
Storage yet) or the fragment does not actually exist. Once the 
stream is stopped, the LSM and livesession.xml file are 
updated to change the “streamState' property from “started 
to “stopped.” 



US 2013/01 17418 A1 

I0085 FIG. 9 illustrates an exemplary embodiment of a 
workflow when an end-user client makes a live streaming 
request to a ghost process on a content server. The client (e.g., 
a client media player application) makes a stream request to 
the content server ghost process (Step 1). This process then 
makes a forward request to SMT (Step 2). If this is the first 
request for this live stream to the SMT machine, SMT con 
structs and caches information about the live stream. To get 
this information about the live stream, SMT pulls information 
from Storage for the past DVR fragments and pull informa 
tion from the EP for the current fragments. SMT makes a 
request to Storage to get the livesession.xml and LSM file. 
The LSM file will give information about the live stream and 
what FDX files to lookup for a particular fragment index 
range (Step 3). To know what fragments are on the EP, the 
SMT makes a Manifest request to the EP and the Manifest 
will list the current set of fragment indexes that reside on the 
EP (Step 4). Once SMT finds and obtains the requested frag 
ment, it muxes the fragment to the output format. When BSI 
instructions are used, SMT does not create the actual output 
object but, instead, SMT creates a BSI instruction response 
containing the appropriate container format headers and IF 
fragment request (Step 7). The content server makes a request 
for the IF fragment, and preferably this request is only for the 
“mdat' data, which is the video/audio data (Step 8). The 
content server ghost process then uses the instructions in the 
response and the IF fragment to construct the output object. It 
sends the resulting output object back to the end-user as a 
response to the original request (Step 9). For SMT to know 
what fragments are in Storage, preferably it continuously 
polls Storage for a latest version of the FDX file (Step 10). 
Polling interval for the FDX file typically is a given, poten 
tially configurable time period (Step 10). For SMT to know 
what fragments are available on the EP, preferably SMT polls 
the EP for a latest Manifest file (Step 11). 
I0086. The following section describes preferred URL for 
mats for live, archive and IF requests from a client 
player->content server->SMT. 
0087. In one embodiment, for live stream requests, the 
client player URLs have the following format: 
http://<domaind/<formatPrefix>/<streamID/<stream 
Name>|<additionalParams> 

I0088 Live and ArchiveURLs preferably have a prefix that 
denotes that streaming container format and the type of 
request (e.g., live, archive). 
0089. In one embodiment, for archive stream requests, the 
client-player URLs have the following format: 
http://<domaind/<formatPrefix>/<streamID/<stream 
Name>|<sessionID/21 streamName>|<additionalParams> 

0090. The sessionID part of the URL differentiates 
archives from different live stream sessions. An archive URL 
gives the location of the archive directory in Storage. The 
archive URL “format is simply the path to the default Stor 
age location to which the archive is uploaded. If desired, the 
archive can be moved to a different Storage directory, in 
which case the archive path URL is changed to the new 
Storage directory location. Preferably, the archive URL is 
immediately available for playback even if the live event is 
not over yet. The archive URL represents the content that has 
been archived to Storage so far. For example, if the live stream 
event has been running for 60 minutes and 58 minutes of the 
event has been archived to Storage, the archive URL repre 
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sents a VOD file that is 58 minutes long. As more content is 
archived to Storage, the archive URL represents a longer and 
longer VOD file. 
(0091 An IF URL is constructed by taking the “base URL 
of the client request and appending Fragment(<params>) to 
the end. The “base URL typically is the portion of the URL 
that is up to and including the file name. The IF URL param 
eters are name/value pairs separated by commas and specify 
bitrate and response types: 
http://<domaind/<formatPrefix>/<streamID/<stream 
Name>.<fileExtension>f 
Fragment(brt=<bitrated, idx=<fragmentIndex>. 
trk=<trackName>typ=<fragmentTyped) 
0092 Illustrative parameter tag names include: 

0.093 brt Bitrate 
0094 idx Fragment index 
0.095 trk Track name (usually audio or video) 
0.096 typ Type of response fragment, possible values 
are:bsi, frg, hdr, dat 

(0097. For the “typ” parameter, if “bsi’ is specified, SMT 
will return a BSI fragment response. (Note that for implemen 
tations that involve instruction sets other than BSI, the param 
eter might be “instr set name'.) If “frg is specified, SMT 
will return the f-MP4 fragment. If “hdr” is specified, SMT 
will only return f-MP4headers. If"dat' is specified, SMT will 
return the mdat box of the f-MP4 fragment. The mdat box is 
the MP4 box containing the audio/video samples. 
I0098. In operation, as ESM receives the live stream frag 
ments from the ingest server, ESM writes the data to local 
disk. For multi-bitrate streams, ESM has a configurable 
option to either coalesce all bitrates into a single file or have 
a different file per bitrate. The advantage of coalescing into a 
single file is that the number of file uploads to Storage is 
reduced. The disadvantage of a single file is that it is not 
possible to only retrieve fragments for a single bitrate without 
also retrieving fragments for other bitrates, thereby making 
caching less efficient on SMT when a single bitrate is being 
requested by the end-user. In either case, though, all of the 
fragments usually are in a single file (be it for one bitrate or 
many). An ESM trailing window parameter configures how 
much ESM will save on local disk. Once a segment is outside 
the trailing window, ESM will delete it from local disk. 
(0099. If an “Archive to Storage' parameter is enabled, 
ESM will archive the stream to Storage for DVR or later VOD 
playback. Typically, ESM stores the last “n” minutes of a live 
stream. If a customer wants a 4 hour DVR window for their 
live stream, the customer enables “Archive To Storage' so 
that fragments older than in minutes are saved in Storage and 
available for DVR. For certain streams, the customer can 
disable “Archive To Storage' and the live stream is not 
uploaded to Storage. In Such case, live stream fragment 
requests are served from the EP. Some customers have 24x7 
streams and want say, one (1) day DVR functionality. In that 
case, the customer enables Archive To Storage' and enables 
a 1 day Archive Trailing Window”. By archiving to Storage, 
DVR requests older than “n” minutes are available from 
Storage. The Archive Trailing Window” setting can limit the 
size of the archive that is stored in Storage. For example, if the 
Archive Trailing Window' is set to 1 day, ESM will auto 
matically delete from Storage fragments that are older than 1 
day. This is beneficial for the customer because they can have 
a long DVR window but do not need to worry about cleaning 
up Storage for their long running live streams. 
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0100 SMT can determine all the active live streams 
through stream “announcements' from ESM. A preferred 
technique is illustrated in FIG. 10. In this particular imple 
mentation, the SMT must know the state of all live streams 
because the content server ghost process can make a live 
stream request to any SMT, and SMT needs to know which 
EP to get the fragments from. If the live stream state is 
inactive, on the other hand, SMT would know to retrieve the 
fragments only from Storage (assuming “Archive To Storage' 
option was enabled). 
0101. In the embodiment illustrated in FIG.10, live stream 
announcements between SMT and ESM are done using 
HTTP GET requests from SMT to ESM. To reduce the 
amount of HTTP requests from SMT to EP, preferably each 
ESM in an EP region (e.g., EP region 1 or 2, as shown) makes 
an HTTP request to other EPs in the same region and asks for 
all live streams on the EP. ESM aggregates together all active 
live streams from the other EPs in the same region. In this 
way, SMT only needs to make a HTTP GET request to a 
single EP machine in an EP region (that is, a set of EP 
machines) to get information about all active live streams in a 
region. Second, when SMT makes a request to an EP 
machine, preferably the request is made via the SMT local 
ghost process with a given (e.g., 5 second) time-to-live (TTL). 
Then, when other SMT machines in the SMT region make the 
same request to the EP region, that request can be potentially 
served though Inter-Cache Protocol or ICP (that is, a protocol 
by which other SMTs in the SMT region can respond to the 
request, if possible, obviating the need to go forward to an EP) 
because another SMT in the SMT region already made the 
same request just seconds earlier. 
0102 Because the forward request to an EP explicitly 
would contain the EPIP address, all SMTs in a region should 
be making an HTTP request to the same EP machine in the EP 
region to utilize ICP. If the request was not made to same EP 
machine, the cache key will be different and ICP cannot be 
used. Therefore, the algorithm to choose the EP machine to 
query preferably is deterministic and repeatable across all 
SMTs so that all SMTs will make the forward request to the 
same EP in the EP region. Preferably, polling from SMT to EP 
is done every few seconds and is configured through a global 
server setting. Having a short polling interval minimizes the 
amount of time between a customer publishing a stream and 
the SMT knowing the stream exists on the EP. The request 
logic from SMT to EP handles situations where an EP is down 
for maintenance or temporarily inaccessible. 
0103 As noted above, the live stream archive is stored on 
Storage for later VOD playback. Any metadata for the live 
stream session is also stored on the Storage system, prefer 
ably in the same location as the live stream archive. If 
Archive To Storage' is not enabled, nothing is stored on 
Storage. 
0104. To simplify output muxing to any container format, 
as noted above, ingested fragments are demuxed into the IF 
format (Intermediate Format). Once an ingest stream is con 
verted to IF, the muxer can convert from the IF format to any 
Supported streaming container format. This simplifies con 
version from any input (Source) format to any output (target) 
format. The PIFF (Protected Interoperable File Format) con 
tainer format, available from Microsoft, may be used as the 
basis for the IF container format. PIFF enhances the MPEG-4 
Part 12 specification by providing guidelines and UUID 
extensions for fragmented multi-bitrate HTTP streaming. 
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Besides PIFF, other choices for container formats are Ado 
be's HTTP Streaming For Flash (Zeri), Apple's MPEG2-TS, 
or a proprietary format. 
0105 Fault Tolerance, Redundancy, and Replication 
0106 For stream redundancy and failover, customers may 
publish a stream to a primary and one or more backup Entry 
Points. EPs also may support DEEM (Dynamic Entry Point to 
Encoder Mapping) to provide optimal DNS mapping from 
encoder to entry point. If an EP were to go down, DEEM can 
minimize stream downtime by quickly remapping an entry 
point alias (e.g., via a DNS CNAME) to an EP that is up and 
running DEEM functionality includes the ability to resume a 
live stream session when the EP alias Switches from one EP 
another EP. When an encoder is pushing a stream to one EP 
and that EP goes down, DEEM remaps the alias, the encoder 
then starts pushing to the new EP, and the EP “appends' 
fragments to the previous live stream session. This means the 
live stream DVR from the previous session is retained and the 
archive in Storage is uninterrupted. 
0107 For EPs to support DEEM, whenever an encoder 
pushes a stream to the EP, the EP must determine if the stream 
is a brand new stream or a DEEM failover from a previous live 
stream session. The EP determines the state of the stream by 
getting the corresponding livesession.xml from Storage. The 
livesession.xml contains the “streamState'. If the stream is a 
DEEM failover, the “streamState' will have a “started value. 
The EP also does consistency checks, such as query the old 
EP to determine if the stream actually existed. Consistency 
checks ensure that the new EP does not unintentionally con 
sider the stream to be a DEEM failover stream when it is not. 
For the case when a stream is not archived to Storage, the EP 
simply ingests the live stream without retrieving the liveses 
sion.xml from Storage. The SMT does the work of stitching 
the live stream from different EPs into a single live stream. 
0108. The livesession.xml contains the following 
attributes for DEEM support: 

0.109 streamState holds state of the stream 
0110 lastRefreshTime time when the EP last updated 
the livesession.xml with the current state 

0.111 discontinuityThreshold time threshold at 
which the EP will not resume a previous live stream 

0112. By default, the “discontinuityThreshold is set to a 
given time period, e.g., 30 minutes. This means if an EP goes 
down and the encoder does not push the stream to the new EP 
within 30 minutes, the live stream session will not be 
resumed. The EP checks if the threshold has been exceeded 
by subtracting the current time against the “lastRefresh 
Time'. If this time difference is more than 30 minutes, the EP 
will not resume the previous live stream session. 
0113 For SMTs to support DEEM, SMT tracks stream 
states via stream announcements. When the encoder is 
stopped, a live stream is transitioned to the “stopped' state on 
the EP. If the EP goes down, the stream does not gracefully 
transition to the “stopped' state. The SMT tracks ungraceful 
stream state transitions, and it stitches together live stream 
sessions if needed. SMT combines DVR fragments from a 
previous live session and the currently resumed live stream 
session. From the end-user point of view, the merged live 
stream sessions is a single live stream session. 
0114. In certain circumstances, it may be desirable to rep 
licate a single ingest stream to another EP. One possible use 
case facilitates live stream archive redundancy, which can be 
used for providing a hot backup of the live stream archive on 
the backup EP. In this approach, if the primary EP were to go 
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down, the encoder can start pushing the stream to the backup 
and past DVR is still available because it was auto replicated. 
Another use case for Such replication is live stream redistri 
bution, in which the live stream may be replicated to an EP 
that is far away (e.g., ingest in United States and replicate to 
Europe). With the stream replicated to another EP farther 
away, the content server, SMT, EP, and Storage serving that 
far away region can be located closer together (all in Europe, 
for example), reducing the network distance between them. 
FIG. 11 illustrates one example of a technique. In this 
embodiment, preferably ESM on the ingest entry point has an 
option to replicate the stream. The replicated stream is sent 
either to the backup EP or another EP altogether. Where 
stream replication is used, the target stream preferably uses a 
different stream ID than the source stream. 
0115 On-Demand Streaming Operation 
0116 Similar to live streaming, and as shown in FIG. 12, 
in an on-demand embodiment, an SMT component handles 
on-demand requests from a content server. The same SMT 
machine can handle both live and on-demand requests. 
0117. As shown in FIG. 12, the SMT machine preferably 
has two primary services: SMT, and local ghost. The SMT 
service uses Transform Lib to process the request URL, and 
TransformLib constructs the appropriate forward requests to 
Storage or customer origin. These forward requests are made 
via the SMT local ghost process and use a cache process as an 
intermediary between SMT and local ghost. Preferably, the 
same TransformLib component is used for on-demand and 
live streaming. 
0118. The following details the workflow when an end 
user makes an on-demand stream request to the content 
server. The client player makes a stream request to the content 
server (Step 1). The content server ghost process makes a 
forward request to SMT machine (Step 2). If this is the first 
request to the SMT machine for this on-demand stream, SMT 
needs to construct and cache information about the on-de 
mand stream. To get this information, SMT first passes the 
request URL to Transform Lib, and Transform Lib constructs 
the appropriate forward requests for the native format file. 
SMT makes these forward requests to Storage/customer ori 
gin via SMT's local ghost process (Step 3). Transform Lib 
takes the forward responses and constructs the response (e.g., 
BSI) for the requested output format (Step 4). SMT returns 
the response back to the content server (Step 5). The BSI 
response contains the container-specific format headers and 
the request URLs for the IF fragments. Based on the BSI 
instructions, the content server ghost process makes IF 
requests to construct the output object (Step 6). The output 
object is returned to the end-user in the native format (Step 7). 
As noted above, BSI is optional but can be used to reduce the 
cache footprint on the content server ghost process. If BSI is 
not enabled, SMT can return the native output object (i.e., in 
the target format) to the content server ghost process. The 
native output object can be cached by the content server just 
like any HTTP object from an origin server. 
0119 For on-demand requests, the client-player URLs 
may have the following format: 
http://<domaind/<formatPrefix>/<forwardpaths/<stream 
Name> 

0120 Similar to live and archiveURLs, on-demand URLs 
have a prefix that denotes the streaming container format and 
type of request (i.e., on-demand). 
0121) If BSI functionality is enabled, SMT returns a BSI 
fragment that consists of the container headers and the IF 
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URLs for the mdat data. For iPhone, e.g., the IF URLs look 
like the following for audio and video: 
http://example.com/ioSvod/path/video.mp4/Fragment 
(brt=512000,idx=5000,trk videotyp=dat) 
http://example.com/ioSvod/path/video.mp4/Fragment 
(brt=64000,idx=5026,trk audio, typ-dat) 
0.122 The Fragment(<params>) portion is appended to 
the “base URL of the client request (e.g., video.mp4 in the 
example above). The “base URL is typically the portion of 
the URL up to and including the file name but can vary 
depending on the streaming format. 
I0123 For muxing into the desired output format, Trans 
formib on the SMT contains the logic to demux the native 
input file and mux into the requested output object. For the 
request processing workflow, Transform Lib first parses the 
native input file to generate a Metalindex. The Metalindex is a 
generic index that contains information Such as composition 
time, decoding time, IF fragment boundaries, and byte range 
offsets into the native source file for each IF fragment. The 
output muXers use the Metalindex to extract the appropriate 
bytes from the native source file and use the other information 
Such as composition time to construct the appropriate con 
tainer headers. The Metalindex provides a generic interface 
into the native source files. This interface is an abstraction 
layer on top of the native source file so that the output muxers 
do not need to be aware of the underlying container format. A 
benefit of this design is that if it is desired to support a new 
input container format, a new native source file parser/de 
muXer is implemented, but the output muXers remain the 
same. Similarly, if it is desired to Support a new output con 
tainer format, a new muXer is implemented but input demux 
ers remain the same. FIG. 13 illustrates this abstraction layer. 
If desired, the Metalindex may be cached within SMT's local 
ghost process cache for later reuse or for use by an ICP peer. 
Creating the Metalindex can take time, and caching on the 
local ghost process decreases the response time for the first 
VOD fragment request. To support local ghost process cach 
ing, SMT makes a local host request via ghost for "/metain 
dex”. The loopback request is handled by the local SMT, and 
its response is cached by the ghost process. Other SMTs in the 
region also get the benefit of using this Metalindex because it 
is available via ICP. 

0.124. The above-described architectures (for live or on 
demand) is extensible to support any streaming format. The 
following section describes how to Support a new streaming 
container format. 
0.125 FIG. 14 illustrates one exemplary embodiment of a 
technique for Supporting ingestion of iPhone content and 
output of iPhone content. In this embodiment, an iPhone EP 
1400 ingests an Apple-Segmented MPEG2-TS stream, and 
Transform Lib 1408 supports MPEG2TS for demuxing and 
muxing MPEG2-TS. Transform Lib 1408 parses iPhone 
URLs and rewrites them to the forward path. On the EP 1400, 
the iPhone ingest server 1406 handles HTTP POST/PUT 
requests from the encoder 1402. The iPhone ingest server 
passes the TS segments to Transform Lib 1408 for demuxing 
into IF (e.g., f-MP4) format. The iPhone ingest server then 
sends the IF fragments to the local ESM 1401. The ESM 
archives the stream to Storage and announces the live stream 
to the SMTs, as described above. On the SMT 1412, the 
Transform Lib 1416 processes iPhone request URLs form3u8 
and MPEG2-TS. TransformIlib 1416 constructs the BSI 
response and returns it to the content server 1415. For 
MPEG2-TS segments, data packets are interleaved with con 
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tainer headers every 188 bytes. This means that for every 188 
bytes of audio/video, there will be some container headers. 
Preferably, the BSI syntax supports loop constructs to reduce 
the complexity of the BSI response and still generate the 
appropriate MPEG2-TS segment. Using BSI to mux the 
object on the content server is optional. SMT 1412 can also 
return native MPEG2-TS segments back to the content server 
1415 if BSI is disabled. 
0126 FIG. 15 illustrates an embodiment for supporting 
the Shoutcast format. Shoutcast is a protocol that is primarily 
used for audio live streaming over HTTP-like connections. To 
play a Shoutcast stream, the client makes an HTTP request 
and the HTTP response body is a continuous audio stream 
(i.e., unbounded response body). The audio stream is a mix of 
MP3 data (or AAC/OGG) and Shoutcast metadata. Shoutcast 
metadata typically contains song titles or artist info. While the 
Shoutcast protocol is similar to HTTP, it is not true HTTP 
because the protocol includes some non-standard HTTP 
request and response headers. As illustrated in FIG. 15, this 
embodiment comprises a Shoutcast EP 1500 to ingest Shout 
cast-encoded streams. The Tranform Lib 1508 for Shoutcast 
library is provided to demux and mux MP3/AAC/OGG. 
Transform Lib 1508 also parses Shoutcast URLs, rewrites 
them to the forward path, and generates BSI instructions. 
Because the client-player downloads a continuous 
unbounded HTTP response, the content server ghost process 
1415 must turn fragmented forward origin requests into a 
single continuous client download. BSI instructs the ghost 
process on how to construct the client response from frag 
mented responses to forward requests. As shown in FIG. 15, 
the network architecture for Shoutcast support is similar to 
the iPhone support as provided in FIG. 14. The Shoutcast EP 
1500 ingests the stream. The ingest server demuxes the 
stream using TransformLib 1508. It then sends the stream to 
ESM 1501. The ESM and SMT components remain the same. 
Transform Lib 1515 on SMT 1512 parses Shoutcast URLs, 
creates BSI responses for Shoutcast, and muxes into Shout 
cast output format. 
0127. Further details on live and on-demand streaming 
architectures may be found in aforementioned U.S. patent 
application Ser. No. 13/329,057, the teachings of which are 
hereby incorporated by reference. 
0128 Binary Side Includes (BSI) 
0129. As described in U.S. patent application Ser. No. 
13/329,081, filed Dec. 16, 2011 (now published as U.S. 
Patent Publication No. 2012/0259942 and as WIPO Publica 
tion No. WO/2012/083296), the teachings of which are 
hereby incorporated by reference, BSI is a name for function 
ality executable in a content server to generate output objects 
given an input object and certain instructions, typically 
instructions from another component such as the SMT com 
ponent described above. The instructions typically define 
manipulations or actions to be performed on the input data. 
Such functionality is intended to enable modification of pay 
loads as they are served to a requesting client, allowing a 
content server to easily provide, among other things, custom 
or semi-custom content given a generic object. In a typical but 
non-limiting embodiment, this functionality can be built into 
the HTTP proxy (ghost) application on the content server, 
although in alternative embodiments it can be implemented 
external to ghost. 
0130 Typically, many modifications made by the content 
server result in a minimal overall change to content, meaning 
that the resulting data served to the requesting client differs 
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from the input by, for example, only a few percent. In one 
embodiment, a mechanism is defined for representing the 
difference (or “diff) between the source(s) and output con 
tent, allowing a generic feature in the content server to handle 
an increasing number of streaming formats in an efficient 
way. 
I0131. In general, with BSI, components other than the 
content server are made responsible for defining or generat 
ing transforming logic and for providing instructions—along 
with binary “diff information—that can be understood by 
the content server. By providing a mechanism for represent 
ing the difference (or “diff) between the source(s) and output 
content, and providing the content server with a way to use 
these to modify a generic Source object, the client-facing 
content server may handle an increasing number of requests 
efficiently. Furthermore, depending on the circumstances, the 
inputs (e.g., the generic source object, instructions, etc.) may 
be cached. The output of the process also may be cached in 
SOC CaSCS. 

0.132. As noted previously, for convenience of illustration, 
in this disclosure this function is called BSI, for Binary-edge 
Side Includes, or Binary Server Integration. The BSI lan 
guage, with proposed syntax described below, defines differ 
ent sources—incoming pieces of data that help construct the 
final output. Instructions (like combine and others) define 
the byte ranges and order of how to mergethese inputs, as well 
as controlling output headers. When generated in real-time, 
the BSI fragment and source object both can be cached (e.g., 
at the content server), placing far less load on the BSI gen 
eration tier than the content server would have handling them 
directly. For fixed/on-demand applications, the BSI may be 
generated once, and a BSI fragment cached (e.g., either on the 
content server, or on network Storage or other dedicated Stor 
age subsystem such as is shown in FIGS. 5-6). 
I0133. The BSI approach is ideally very fast. Preferably, 
the syntax is XML-based, and the number of instructions 
typically is kept very low, allowing fast parsing. The execu 
tion of BSI instructs the content server what order, and from 
which source, to fill an output buffer that is served to the 
client. 
I0134. In the context of the previously-described streaming 
platforms, BSI functionality can be used between the SMT 
and content server to streamline the creation of an output 
object (e.g., an output object representing the stream in a 
native format for iPhone or other client device) from an input 
source (in the above cases, the IF fragments). The SMT 
receives IF fragments and performs muXing steps. Instead of 
muxed content as output, the SMT creates a dynamic BSI 
fragment that can be served to the content server, along with 
a binary object that contains the additional bits that the con 
tent server needs to combine with the IF fragment it normally 
receives. The content server uses this information to create 
the muXed output object in the native format, representing all 
or some portion of the stream. 
0.135 Examples of using BSI for streaming are illustrated 
in previous FIGS., but FIG. 16 shows an embodiment of a 
workflow with additional detail. In this illustrative embodi 
ment, the content server ghost process 1600 receives a request 
from a client player 1601 for particular content (step 1) in 
certain target format. The content server makes a request to a 
muxing tier (the SMT 1602) for the BSI instructions required 
(step 2). Typically, the request includes parameters via query 
string, to specify the type of request (manifest, content, key 
file, etc), the bitrate requested, a time determination (frag 
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ment no, time offset, etc.), and other parameters related to 
muxing (segment duration, A/V types, etc.). The SMT 1602 
obtains the relevant IF fragments from the EP 1604 (step 3) or 
Storage 1603 (step 3a), builds an appropriate output object 
from the IF fragments as if it were to serve the content, creates 
a buffer of the bytes needed beyond what was contained in the 
IF fragments, along with instructions about how to inter 
leave or combine the binary diff with the IF. In some imple 
mentations, it should be understood, any necessary diff data 
may be embedded directly in the instructions themselves. In 
step 4, the SMT 1602 then sends the BSI response to the 
content server. The response may also include a reference to 
the IF fragments that are needed. The content server gets the 
IF fragments in any of variety of ways, including from the 
SMT (that is, in addition to the BSI), from its own cache, or 
from Storage 1603, which is typically a network storage 
Subsystem that was previously described in connection with 
the streaming platform. Purely by way of example, step 5 in 
FIG. 16 shows the IF fragments arriving from Storage and 
being cached. 
0136. As the vast bulk of the data, which is represented by 
the IF fragment, is cached at the content server, the BSI 
response with its binary diff typically might be around a few 
percent of the overall size of the object to be served. The 
content server ghost 1600 applies the BSI, generating and 
serving a muxed output object to the client (step 6). The BSI 
response, including both the instructions and the diff data, can 
be cached by the content server ghost 1600 for some period of 
time. Preferably, the parameters supplied in the request to the 
SMT (step 2) are used in the cache key so that only subsequent 
requests for content with the same parameters utilize the 
cached BSI response. The output of the BSI operation need 
not be cached. 
0.137 The foregoing approach can provide a variety of 
advantages. Because the BSI instructions can be used tell the 
content server ghost process how to muX or otherwise create 
the output object, BSI provides a way for the process to 
Support any streaming container format without needing 
associated code changes at the content server ghost process. 
To handle new container formats or bug fixes to Support 
existing container formats, BSI instructions can change, but 
the content server ghost process logic remains the same. This 
eliminates any cross-component dependency with the content 
server or its ghost process when developing or implementing 
new streaming features. 
0138 Further, for streaming to client devices using differ 
ent container formats, BSI can reduce the ghost cache foot 
print size because the ghost process caches the IF fragments 
but muxes the IF into different native formats. Preferably, the 
muXed output is not cached; rather, only the IF fragment is 
cached. For example, the system can be used to stream Adobe 
Zeri (HTTP Streaming for Flash) to Android devices running 
Flash 10.1 and stream to MPEG2-TS to iPhone devices. For 
the live stream, only the IF fragment is cached and the content 
server muxes into Zeri for Android devices and muxes into 
MPEG2-TS for IPhone devices. These are just representative 
examples. 
0139 For streaming of progressive-download-style for 
mats (like Shoutcast), data is streamed to client as a long 
running unbound HTTP download. From the end user client 
perspective, it is downloading a file that never ends. BSI 
functionality can be used for progressive-download-style for 
mats and, in particular, to muX fragment responses from the 
origin (e.g., a content provider origin or CDN storage Sub 
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system) into a continuous HTTP download stream for the 
client. Using metadata applied by the content server ghost 
process (configurable by content provider) and progressive 
download-style BSI from the SMT, BSI can also be used to 
implement progressive-download-specific features, like 
jump-to-live-on-drift and delayed metadata injection based 
on user-agent. Specific progressive-download-style require 
ments thus can be inherently supported through BSI without 
requiring any changes in the content server. 
0140 Fragmented streaming formats (like Zeri, iPhone, 
and Silverlight) may also use BSI functionality. For example, 
the SMT can send the content server contentina native format 
or a BSI fragment that the content server ghost process muXes 
into the native format. If a CDN content provider customer is 
only doing streaming for a single container format, there is no 
need to cache IF fragments and muX on the content server 
ghost process via BSI. In such case, it is more efficient for 
SMT to return the native object, which the content server 
ghost process caches. Enabling or disabling using BSI is 
configurable, preferably on a content provider by content 
provider basis, and, for a given content provider, on a site by 
site basis, or even a file by file basis. 
0141 More details and examples of BSI can be found in 
aforementioned U.S. patent application Ser. No. 13/329,057. 
0.142 Transcoding System 
0143. The content delivery network (CDN) described 
above provides an advantageous and feature-rich platform for 
streaming and object delivery. However, the CDN platform 
may be enhanced yet further by integrating into it a distrib 
uted, Scalable transcoding system that provides the ability to 
transform content Such as audio, video and other files, which 
may then be delivered to end-users over the platform. Typical 
transcoding tasks include the conversion of media from one 
bitrate/resolution to another for the purposes of adding 
bitrates to a multi-bitrate stream, converting from one con 
tainer format to another or one encoding format to another in 
order to allow clients utilizing Such formats to play the con 
tent. These tasks may be part of prepping media for ingestion 
into the streaming platform described above. 
0144. In one embodiment, the distributed transcoding sys 
tem described herein leverages the resources of the aforemen 
tioned content delivery architecture to perform certain pro 
cessing tasks within the CDN, as real-time or background 
(batch mode) processes. Thus, for example, the CDN may 
prepare and transcode certain contentin preparation for deliv 
ery, even while other content (from the same or other content 
provider users of the system) is being delivered. In other 
words, the machines described above that provide content 
delivery services (streaming, object delivery, or otherwise) 
may be leveraged, in accordance with the teachings hereof, to 
perform transcoding tasks. More particularly, the transcoding 
system may be implemented not only with a set of purpose 
built hardware, specific to the transcoding task, but also 
Supplemented with the available idle or low-usage resources 
of the content delivery network that was previously 
described, to achieve a highly scalable and flexible solution. 
For example, the resources of the various distributed CDN 
content servers (including in particular the HTTP proxy serv 
ers, aka ghost servers, described above), among others, may 
be leveraged in this way. Exemplary implementation details 
will set forth in more detail below. 

0145. It should be noted that the subject matter herein is 
not limited to a transcoding system implemented in conjunc 
tion within a CDN, although that is one useful implementa 



US 2013/01 17418 A1 

tion. For example, the distributed transcoding techniques 
described herein may be implemented in a standalone system 
with dedicated machines, entirely separate from other content 
delivery services or machines. 
0146. As mentioned previously, in one embodiment, the 
transcoding system can process files either in batch or real 
time modes. Both kinds of jobs may be running within the 
platform at any given point of time. Preferably every 
transcode that runs in the system is happening as fast as 
possible given its priority and the available resources. The 
transcoding system itself is generally incognizant to the type 
of job it is processing it simply processes requests with a 
given priority. In this way the system can be used for both 
batch and real-time transcoding of on-demand or live content. 
0147 For convenience of illustration, the exemplary 
transcoding system described herein makes use of the follow 
ing concepts: 

0.148. Fluxer. Generally speaking, in this embodiment, 
the Fluxer is the primary interface of the transcoding 
system. It is responsible for breaking up files, managing 
the transcoding process across many individual Sub 
transcoders, putting the file back together and sending it 
to the destination. 

0149 Transcoding job. A job refers to a request to 
transcode an entire file (e.g., a particular audio, video, 
multimedia file, or otherwise) as opposed to an indi 
vidual “task” which refers to the transcode of a single 
segment of the file. A job' is also called a “Fluxer Job’ 
and is made up of many transcoding “tasks”. 

0150 I-frame/keyframe. I-frame refers to a video frame 
that contains enough data to reconstruct the frame on its 
own (also known as a keyframe.) 

0151 P-frame. P-frame refers is a video frame that con 
tains information relative to a frame in the past of the 
data stream. 

0152 B-frame. A B-frame refers to a video frame that 
may contain information relative to a frame that exists 
either in the past or in the future of the data stream. 

(O153 GoP GoP stands for Group of Pictures and refers 
to a keyframe (I-frame) and all subsequent P and B 
frames which reference that keyframe until the next 
keyframe. 

0154 Closed GoP. When no Por B frames within a GoP 
reference frames from any other GoP, the GoP is said to 
be a Closed GoP 

(O155 Open GoP. Since B frames may reference frames 
both before and after itself, it is possible for a B frame to 
reference the keyframe of the next GoP. When frames 
from another GoP are referenced, the GoP is said to bean 
Open GoP. Therefore Open GoPs generally require at 
least a portion of the next GoP is needed in order to fully 
decode the Open GoP. 

0156 Referring to FIG. 17, in one embodiment, a 
transcoding system includes several components some of 
which are in a dedicated transcoding region and others of 
which are from the network of CDN servers. A region in this 
sense typically refers to a machine or set of machines in a 
particular network location, which may or may not be co 
located with a region in the content delivery network. The 
transcoder region typically includes fluxer machines running 
a Fluxer (a fluxerprocess), transcoding resource access server 
application (TRAS), and a coordination server (C-server), as 
well as a set of managed transcoding resources (MTRS), e.g., 
a managed transcoder machine running a transcoding pro 
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cess. FIG. 17 shows the fluxer machines and MTRs in a single 
region, but the actual network location/topology of the 
transcoding region components is flexible and this example 
should not viewed as limiting. For example, one implemen 
tation many include many transcoding regions with one or 
more fluxer machines and one or more MTRs may be distrib 
uted throughout various networks, and even co-located in the 
content delivery regions with content servers shown in FIG. 
17. 

0157. The CDN content servers represent shared transcod 
ing resources (STRs) to the transcoding system, as they are 
shared with the delivery and other CDN functions (e.g., secu 
rity, content adaptation, authentication/authorization pro 
cesses, reporting functions and so on). More broadly, the 
STRs are idle or low-utilization resources across the CDN 
that have transcoding capabilities and can be called upon to 
serve the transcoding system with their raw processing capa 
bilities. Since these are typically idle or low-utilization serv 
ers, their main value is their processor (CPU). They are not 
expected to contain specialized hardware, nor can they be 
expected to be as reliable or available as MTRs, although they 
may exist in greater numbers. Prime examples of potential 
STRs are the HTTP proxy servers (e.g., also known as ghost 
servers or edge servers) described previously in conjunction 
with FIGS. 1-16. However, any of the machines shown in 
FIGS. 1-16 are candidates for use as STRs provided they can 
be modified in accordance with the teachings below to 
become part of the transcoding system. 
0158 Turning to the operation of the transcoding system, 
in general, the Fluxer is responsible for breaking apart media 
files into transcodable segments and sending those segments 
off to transcoding resources to be transcoded in parallel. 
Preferably the segments are coded so that the amount of data 
sent around the network is reduced. The transcoding 
resources can then decode and re-encode to accomplish the 
requested transcode. The Fluxer uses the TRAS to get lists of 
available transcoding resources and reports its status to the 
C-server. The transcoding resources (TRs, which may be 
either MTRs or STRs) are responsible for transcoding indi 
vidual media segments and sending the derivatives back to the 
Fluxer to be remuxed back into a transcoded media file. 
MTRs, which are dedicated resources, report their status to 
C-Server. The TRAS can be implemented as a library that is 
responsible for encapsulating TR selection to an interface for 
consumption by the Fluxer. The TRAS uses a combination of 
awareness of local transcoders from C-server as well as 
requests to a Mapper (e.g. the map-maker and DNS system 
shown in FIG. 1) to identify idle HTTP proxy servers or other 
CDN servers. The C-server tracks liveness from local TRS 
and Fluxers and acts as a local messaging platform for all 
transcoding servers in a region. 
0159 FIGS. 18 and 19 illustrate the general function of 
and communication amongst components for particular 
embodiments of video-on-demand (VOD) transcoding and 
live transcoding, respectively. The Fluxer receives files to 
transcode or responds to transcode-initiation requests for 
VOD and live streams. A variety of components are potential 
Sources for requesting batch or live transcoding jobs. 
Examples of such components include, for example, a storage 
system (as shown, for example, in FIGS. 3, 5-7, and including 
network-based storage), a content provider user interface 
(e.g., a web-based portal providing a customer with a user 
interface to the CDN for configuring, uploading content to 
transcode, setting transcoding parameters, and monitoring 
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the operation), or an Entry Point or Puller or other component 
in the streaming architecture (as shown, for example, in FIGS. 
3, 5-7), or a CDN server 102 that has received a request from 
an end-user client. 
0160. In one implementation, the Map-Maker and DNS 
system shown in connection with FIG. 1 (the “Mapper') can 
be leveraged to find the closest and best available Fluxer, as 
the map-maker monitoring agents and the data collection 
system 108 are already monitoring network conditions and 
machine usage for the content delivery network. The request 
ing component makes a DNS request to a Fluxer domain and 
receives back the IP address of a particular Fluxer machine 
available for connection. The requestor can use a shared 
secret to authenticate to the Fluxer. Once a job begins, the 
Fluxercontacts the TRAS to request a list of servers to use for 
transcoding, and preferably provides the TRAS with as many 
specifics about the job as possible, including the approximate 
size of the input source, and whether the job is classified as 
real-time or batch or otherwise, which effectively classifies 
the priority of the job, and potentially specifics about the 
input/output formats, desired bitrates, etc. The TRAS uses 
this information to approximate how many transcoding 
resources it will need, and what mix of MTRs and STRs will 
be the most appropriate. As noted above, MTRs are dedicated 
transcoding resources that are managed by the transcoding 
system, while STRs are transcoding resources which are 
shared with content delivery resources (or shared with some 
other business function in the platform). To select MTRs, the 
TRAS can uses a resource management service referred to 
hereas the coordination server (C-server). The TRAS uses the 
C-server to reserve local MTRs, while it asks the map-maker 
system (FIG. 1) for any needed STR. The Mapper will iden 
tify an approximate number of CDN servers from a pool that 
are running with a low utilization (e.g., with CPU or memory 
or request rate or other hardware metrics below some prede 
termined threshold, which ideally ensures that content deliv 
ery is not compromised) and returnalist to TRAS. The TRAS 
merges the lists, preferring MTRs for real-time jobs and STRs 
for batch jobs, and returns the final list to the Fluxer. 
0161. Once the Fluxer has obtained a list of available 
transcoding resources it begins splitting the input source file 
into a plurality of segments. Although not limiting, in many 
cases the input file is not raw, uncompressed data but a some 
what compressed file arriving from a customer that is too big 
to serve to requesting clients, but is suitable for transcoding 
(for example, a 50 MB/s video may be suitable, depending on 
the nature of the content and the encoding used). The input file 
may also be a previously encoded/compressed file that is now 
being transcoded to another format orbitrate. 
0162 The Fluxer splits the file into segments for transcod 
ing purposes. The transcoding segments may correspond to 
group-of-picture (GoP) boundaries, in which case they are 
referred to herein as chunks. Alternatively, the transcoding 
segments are split along other boundaries into pseudo 
chunks, as will be described in more detail below. A transcod 
ing segment refers to the actual bits being transcoded, i.e., the 
bits involved in the input and output, and does not necessarily 
correspond to a single chunk or pseudo-chunk, as it may 
contain multiple chunks or pseudo-chunks. Pseudo-chunks 
may overlap in time, i.e., they do not necessarily represent 
contiguous portions of the overall input file. The process of 
determining how to split the file into transcoding segments 
can involve many determinations and is explained later in 
more detail in the section titled “Creating Transcoding Seg 
ments From an Input'. 
0163 The Fluxer sends the transcoding segments to 
selected transcoding resources along with a list of ways in 
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which that segment should be transcoded. Note that this 
means that the list may specify more than one output—for 
example, “transcode the segment into a derivative segment in 
format/bitrate 1, and another derivative segment in format/ 
bitrate 2. As each transcoding resource transcodes its given 
segment, it replies over the open HTTP connection with the 
derivative segments produced from the input source. If a 
transcoding resource cannot complete the transcode due to 
Some unforeseen circumstance, it simply tears down the con 
nection and goes away, leaving the Fluxer to source another 
transcoding resource for that segment. Once all of the seg 
ments have been transcoded, the Fluxer re-assembles them 
into a single file and sends the file to the destination specified 
by the initial request. 
0164. The destination of the file may be, for example, a 
network storage system, a streaming mid-tier machine (e.g., 
as shown in the architectures of FIGS. 5-7 for example), 
proxy server, or other component in the CDN. Unless the 
target format produced by the transcoding system was inter 
mediate format (IF), the destination component may then 
convert the file to IF for use with the streaming platform 
described previously, for shipping the data within the stream 
ing architecture. 
(0165. With reference to FIG. 19, when transcoding a live 
stream, there are some variations over the VOD batch work 
flow described above. First, in this embodiment, when 
transcoding is initiated, it is initiated by the Puller component 
in response to the presence of a set of transcoding profiles in 
the Stream Manifest Manager (SMM) for that live stream. 
SMM already carries the concept of an Archiverset, and here 
includes the concept of a Fluxer Set. The Puller contacts one 
of the Fluxer Machines in the Fluxer Set with the parameters 
of the live event and the Fluxer set begins an election process 
to decide who is the most appropriate Fluxer Machine to act 
as the Mother (the remaining Fluxers will be designated as 
Children). The Mother begins transcoding by pulling the 
stream from the Source Archiver, transcoding using transcod 
ing resources as described above, and pushing it to the target 
Archiver. Children are responsible for monitoring the Mother 
and electing a new Mother in the event of a failure. (For 
simplicity of illustration, in FIG. 19 only the Fluxer that is 
acting as the Mother is shown.) 
0166 It is important to note that FIG. 19 illustrates and the 
foregoing describes operation of the transcoding system with 
the streaming architecture shown in FIG. 3. However, in an 
alternate embodiment, the transcoding system works in con 
junction with the streaming architecture illustrated in FIGS. 
5-15. This means that the Fluxer can receive a request to 
transcode and source content from an entry-point (EP) stream 
manager process and sends transcoded output to an SMT 
machine, rather than a Target Archiver. Indeed, as mentioned 
above, the transcoding system is not limited to use with any 
particular streaming architecture, or with a streaming archi 
tecture at all (i.e., it can be a standalone transcoding service). 
0167. The following sections provide more detail about 
the each of the individual components that make up the 
transcoding system. 
(0168 Coordination Server (C-Server) 
(0169. In the above-described embodiment, the C-server is 
a coordination engine for a given transcoding region that 
provides a service for maintaining configuration information, 
naming, providing synchronization and group services to dis 
tributed applications. C-server functionality may be built on 
top of existing, known platforms such as Zookeeper (Apache 
Hadoop) for example, although this should not be viewed as 
limiting or required. Preferably, the C-server provides a job 
queue and tracks which resources are working on those jobs, 
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and also maintains resiliency when those servers fail. In the 
above-described embodiment, the C-server is region specific 
and runs on all Fluxers in a region using an internal election 
algorithm to determine the leader for write coordination to the 
C-server system. The C-server can report its region and status 
to a Supervisory query function so that alerts can be triggered 
for a low number of C-servers running in a region, mitigating 
availability issues. 
0170 Transcoding Resource Access Server (TRAS) 
0171 The TRAS provides an application programming 
interface (API) for obtaining a set of possible transcoders that 
can be called directly by the Fluxer to perform transcoding of 
segments. Since there are multiple types of transcoding 
resources available (MTR/STR) and since the method of 
accessing them may differ, TRAS provides an abstraction for 
access to both of these resources through a common interface. 
TRAS can be implemented as a built-in library to be con 
sumed by the Fluxer. This means that it is run as part of the 
Fluxer process. TRAS allows for distinct types of transcoder 
requests, for example: high-priority (typically real-time 
needs for live transcodes, which may necessitate using only 
MTRs) and low-priority (typically batch needs, which may 
involve a mix of MTRs and STRs). TRAS returns a list of 
possible resources for use as transcoders to Fluxer. Both 
high-priority and low-priority requests typically specify a 
bucket-size, which TRAS will attempt to fill. The response to 
Fluxer is a data structure that includes the transcoding 
resource’s IP address and type. The transcoding resources 
themselves are considered volatile and TRAS provides no 
guarantees that the resources will accept a transcoding 
request. 
0172 Determination of STR availability is delegated to 
Mapper in this embodiment. During normal CDN operation, 
CDN server utilizations are reported back to Mapper as part 
of monitoring agents and the data collection system 108 in 
FIG. 1. When STR resources are requested, a DNS request 
will be sent to Mapper to retrieve a set of STRs. Mapper 
identifies a pool of available CDN servers which are mostly 
idle (e.g., as defined by some metric such as CPU utilization 
in the recent past, cache utilization, geographic location rela 
tive to expected load in other words, servers that are located 
in regions where demand for delivery services is low due to 
time of day or some other reasons, etc.), pseudo-randomize 
the selection and will return the maximum number of avail 
able IP addresses that can fit in a response packet. TRAS may 
perform this request more than once to fill the internal bucket 
requested by the Fluxer. 
0173. In this implementation, it is up to the TRAS to 
de-duplicate the IP addresses retrieved from Mapper if it 
performs the DNS request more than once. Mapper is not 
required to maintain state of IP addresses returned. If the 
Fluxer requests additional resources from TRAS, then the 
Fluxer is required to de-duplicate the IP addresses retrieved 
from TRAS, as TRAS is not required to maintain state of IP 
addresses returned to Fluxer. 

0.174. When TRAS receives a request that uses at least 
some MTRs (for example, a live-event transcode), it will use 
C-server's coordination capabilities to “reserve' a number of 
MTRs as requested by the Fluxer. TRAS provides its service 
through a combined, parallel query to both Mapper and 
C-server. As noted, it gathers enough resources to fill a 
bucket, the size of which depends on the priority of the 
request, then returns that bucket of resources to the Fluxer. In 
this approach, TRAS is gathering a group of resources that are 
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likely available but may not be. In the end, it is a combination 
of pseudo-randomization of the large pool of STRS and usage 
of local MTRs that achieves distribution of load among all 
transcoding resources. 
0.175. In this embodiment, TRAS monitors the regional 
load of the MTRs it is managing. An MTR regularly updates 
the C-server with its queue load. TRAS periodically calcu 
lates the percentage of MTRs available, weighting them by 
their remaining capacity. An average is then calculated and 
used as a Regional Load Factor. For example if there are 10 
MTRs each with a load of 10%, 20%, 30%, ... 100%, then the 
algorithm would be as follows: 
S1=1-0.1, S2=1-0.2, S3=1-0.2, ... S10-1-1 (S1+S2+S3+ 
... +S10)/10=0.45 (or 45% available: 55% current load) 
0176 This Regional Load Factor may be reported to any 
system attempting to determine the availability of work units 
for a given regional transcoding installation. The foregoing 
load-factor algorithm should not be viewed as limiting, as 
other algorithms may be used in other embodiments. 
(0177 Fluxer 
0178. In the present embodiment, the Fluxers are the pri 
mary interface of the transcoding system to the outside world 
and the most common component for external clients to inter 
act with. At a high-level, the purpose of the Fluxer is to 
break-up a video into segments, send those segments to one or 
more transcoders and reassemble those segments into the 
target container file. There are a number of low-level details 
involved in this function. 
(0179 Fluxers provide several interfaces to support Live 
(real-time), VOD (batch) and VOD (real-time) use cases. 
0180. For Live, Fluxer live interfaces allow the Fluxer to 
transcode a live event by pulling a bitrate/format from an 
Archiver or Entry-Point, producing one or more transcoded 
bitrates/formats, and publishing all configured bitrates/for 
mats to an Archiver or Streaming Mid-Tier. This activity is 
initiated by an HTTP Request to the Fluxer's live interface, 
containing the Source Archiver set or Entry-Point, the target 
stream-id and the configuration for all derivative bitrates/ 
formats. The initiating HTTP request causes the Fluxer to 
begin transcoding until the stream is torn-down. 
0181 Fluxer VOD interfaces, whether real-time or batch, 
are primarily implemented in the current embodiments as 
pull-based HTTP interface with the primary difference being 
how much of the file is transcoded at a given time. Regardless 
of the request being over the live or VOD interface, Fluxers 
generally wait to acknowledge jobs until they have obtained 
an initial set of resources from TRAS. If initial resource 
allocation fails, then the Fluxer can communicate that failure 
immediately regardless of a synchronous or asynchronous 
job. 
0182 Fluxer Live Interface 
0183. In this embodiment, Fluxer's live interface is a URL 
that triggers Fluxer activity but does not require that the 
initiator remain connected to the HTTP Socket, as the activity 
is ongoing and no feedback is required for the initiator. This 
allows a resource to ask a Fluxer to initiate transcoding of a 
live stream and to contact some number of additional Fluxers, 
asking them to monitor the primary. The initiation of this 
request typically contains the following information: 

0.184 The source stream 
0185. The bitrate, height/width and transcoding con 
figuration for each transcode of the live stream. 

0186 The list of additional Fluxers that together with 
the target make up the Fluxer Group 
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0187 FIG. 20 illustrates one embodiment of the operation 
of the Fluxer (and other system components) when transcod 
ing a live stream. In step 1, the Puller contacts the streaming 
manifest manager and gets an Archiver set or Fluxer set. In 
step 2, the Puller contacts source Archiver, initiates a stream. 
In step 3, the Puller contacts first Fluxer from Fluxer Set and 
passes transcoding information. The contacted Fluxer then 
contacts remaining Fluxers in the set and they decide who will 
be the Mother and who will be Children. Transcoding param 
eters are communicated here. Fluxer Children begin monitor 
ing the Mother. In step 4, the Mother Fluxer contacts SMM to 
get the Archiver set. In step 5. Fluxer contacts TRAS to get 
transcoding resources. In step 6, Fluxer initiates pull from 
Source Archiver. In step 7, the Mother Fluxer begins the 
parallel transcode of the stream being pulled from Source 
Archiver, utilizing the transcoding resources (TRS). In step 8, 
the Mother Fluxerre-assembles the transcoded segments and 
sends the transcoded stream to target Archiverset assigned by 
SMM for each bitrate. 
0188 Alternatively, the above operation can be performed 
with the live streaming components depicted in FIG. 5. In 
Such a case, an Entry-Point locates a Fluxer and requests a 
transcode. The Entry-Point itself sources the stream to be 
transcoded, or points to the Fluxer to a Storage source stream 
using the metadata files described in connection with FIG.8. 
The transcoded stream is sent to a streaming mid-tier SMT 
machine or to the Storage system, rather than an Archiver. 
(0189 Should a Mother Fluxer fail, the Fluxer Children 
will begin an election to decide which Fluxer will assume the 
role of Mother. Election should prefer the Fluxer that is closer 
to the source of the stream. The new Mother will query at the 
target Archiver to confirm that the old Mother is no longer 
sending data and to retrieve the position of the last data 
received. The new Mother then assumes the Mother role and 
begins transcoding where the last Mother left off. 
(0190 FIG. 21 illustrates the operation of the Fluxer (and 
other system components) when transcoding a VOD stream in 
batch mode. In step 1, the Job Queue contacts Fluxer. (The 
Job Queue can exist as part storage system process, portal, or 
other component accessing the transcoding system.) In step 2. 
Fluxer contacts TRAS to get transcoding resources. In step 3. 
Fluxer pulls media from the source. In step 4, the Fluxer 
orchestrates the transcoding of the content using transcoders 
resources from TRAS. In step 5, the Fluxer posts transcoded 
content to a destination. In step 6, Job Queue removes the job. 
0191 In this implementation, the Job Source can pick a 
Fluxer at its own discretion however, preferably it chooses a 
Fluxer that is both idle and near the job source. In other 
implementations, the Mapping system can be used to deter 
mine the best Fluxer by sending a DNS request to a fluxer 
domain and receiving back from the Mapping system the IP 
address of a suitable Fluxer. Batch VOD Fluxer requests, 
although not prohibited from using MTRs, can be weighted to 
prefer using idle or low-usage STR transcoders. 
(0192 FIG. 22 illustrates the operation of the Fluxer (and 
other system components) when transcoding a VOD stream in 
real-time mode. In step 1, a request comes in to Fluxer from 
a CDN's content server (e.g., an HTTP proxy server as shown 
and described in connection with FIG. 1) that has received a 
user request for a file, or from a cache hierarchy region that 
has been asked for the content by the server (e.g., using a 
cache hierarchy technique as described in U.S. Pat. No. 7,376, 
716, the disclosure of which is incorporated herein by refer 
ence), or from a SMT machine (see, e.g., FIG. 12, where 
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content server ghost has asked SMT machine in step (2) 
thereof for VOD content to satisfy request step (1) thereof). In 
step 2, assume Fluxer checks its transcoding region cache for 
requested segments of the content (which may correspond to, 
e.g., one or more IF fragments). Assume it receives a cache 
miss. In step 3, the Fluxer contacts TRAS to identify 
transcoding resources. In step 4, the Fluxer requests and 
receives the segments from the source (e.g., from Storage or 
origin). In step 5, the Fluxer transcodes them using transcod 
ing resources. In step 6, the Fluxer returns transcoded seg 
ments to the requesting component following re-assembly 
into a file or portion thereof. In step 7, the Fluxer begins 
workahead transcoding. 
0193 If the Fluxer determines that there is a region cache 
hit in step 2, then the Fluxer retrieves the trancoded segment 
from region cache, looking for a segment that is at least N 
seconds ahead of the requested segment (where N is deter 
mined by a configuration parameter). Fluxer either begins 
workahead or not depending on whether it can find Sufficient 
number of segments in cache to meet the workahead criteria. 
0194 Thus, in the VOD real-time case, Fluxer works 
ahead of the anticipated requests in order to maintain a 
smooth experience for end users. Preferably, a content pro 
vider's configuration for real-time VOD transcoding contains 
a parameter which defines the number of segments to 
transcode ahead of the most current request, e.g., by indicat 
ing a number of seconds to work ahead. When a real-time 
VOD request comes to a Fluxer it can check to see if the 
required segments have already been transcoded and if so will 
begin delivering immediately while it performs the worka 
head of N segments based on the position of the request being 
served. 
0.195 The following provides more detail about caching at 
a transcoding region. Caching proxy server functionality is 
employed locally on a Fluxerto maintain a cache-layer for the 
work performed in real-time. Once a request has been 
transcoded the derivative is cached locally within the 
transcoding region. The Fluxer leverages this feature by per 
forming a lookahead request of N segments ahead of the 
current segment request. If a non-200 response code is 
returned by the local cache server for any of the N segments, 
Fluxer will respond by posting the required segment to a TR 
through its local cache server, resulting in caching of the 
transcoded response within the cache server layer. 
0196. The following describes optional pre-processing of 
media for VOD real-time case. Before allowing real-time 
transcoding of a VOD asset, some amount of work can be 
done to ensure that the media is prepped such that there is a 
standard starting point from which to begin transcoding. Pre 
processing the media by transcoding the first few segments of 
a video means that the system can begin streaming immedi 
ately while the transcoder builds up a workahead buffer. Pre 
processing typically includes the following actions: 

0.197 Create an optimized version of the inbound file 
(optimized keyframe rate and bitrate) 

0198 Create an index of segment locations to byte 
ranges 

0199. 
bitrate 

0200. The following describes an example of a process for 
identifying a Fluxer for VOD real-time workflows. A Mapper 
load-feedback property can be used to find appropriate Flux 
ers for real-time VOD transcoding. Preferably, real-time 
Fluxer requests use local MTR (dedicated) transcoder 

Produce the first N segments for each target 
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resources. Load-feedback from the Fluxer to the Mapper can 
include both the local Fluxer load and the regional transcod 
ing resource load as well. Regional transcoder load estima 
tion can be obtained from the Fluxer by making a call to 
TRAS to perform the “Regional Load Estimation', as 
described above in connection with the TRAS component, 
and thereby return a “Regional Load Factor' to the Fluxer. 
0201 Transcoding Resources (MTRs, STRs) 
0202 In the current example, the role of the transcoding 
resource (sometimes referred to herein as a “transcoder”) is 
primarily to transcode segments of audio/video, or other con 
tent that needs to be transcoded. In one embodiment, a 
transcoding resource uses an HTTP-based API for receiving 
and transmitting segments. Typically, all transcoding 
resources are considered unreliable—and particularly STRs. 
A shared transcoding resource may terminate the transcode 
for any reason although if it terminates the transcode due to an 
error in the source media it preferably indicates that fact to the 
Fluxer, e.g., using an HTTP 415 Unsupported Media Type 
error, for example. If a Fluxer receives an unexpected discon 
nect from a transcoding resource (particularly an STR) it 
preferably ceases using that transcoding resource for at least 
a given time period, to prevent impacting STRS that are deliv 
ering content in the CDN. 
0203 Put another way, load is a concern for STRs, as they 
are typically the HTTP proxy servers running in the CDN and 
delivering content to end users in FIGS. 1-16, since the integ 
rity of the delivery network is preferably protected. The pro 
cess managing the transcoding on the STR is configured to 
avoid impact to the STR. STRs monitor their local environ 
ment and terminate jobs if the environment becomes con 
strained. In the STR environment, the HTTP proxy server 
(ghost) process is considered more important than the 
transcoding process. STRS run a process “manager” which in 
turn runs and monitors the actual transcoding server as a child 
process. This “manager” may take any of several steps to 
“lock-down the transcoding process such as using LD PRE 
LOAD to block dangerous system calls, chrooting the process 
and monitoring the process for excessive runtime and/or CPU 
consumption. 
0204 FIG. 23 provides an overview of processes execut 
ing on a transcoding resource (excluding HTTP proxy pro 
cesses for content delivery). 
0205. In one embodiment, a client (e.g., a Fluxer) can 
communicate with transcoding resources using an HTTP 100 
Expect/Continue workflow. This is preferable because a 
transcoding resource may not be able to handle any work and 
it is useless and wasteful to send an entire segment only to be 
denied. A transcoding resource may block for a period of time 
before sending a 100 Continue response to a requesting client 
but also preferably responds immediately ifunable to handle 
the request. 
0206. In the current implementation, transcoding 
resources accept transcoding segments that are chunks or 
pseudo-chunks for transcoding. 
0207 Regardless of a transcoding resource's role as either 
a MTR or a STR, in the current embodiment, transcoders are 
generally considered unreliable by the Fluxers. As noted pre 
viously, a Fluxer receives a list of transcoding resources so 
that it may begin to send segments to them. Without a large, 
global, fine-grained, resource allocation system, it would be 
impossible to have a high degree of certainty that a given 
transcoding resource will accept a segment to transcode. 
Moreover, transcoding resources run on commodity hard 
ware, so failure of a transcoding resource during the transcod 
ing process is not only a possibility but may even be likely at 
Some point across the transcoding system. For this reason, it 
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is simpler to adopt an unreliable view of transcoding 
resources. This view also simplifies the transcoding resource 
implementation. If the transcoding resource is overloaded, it 
is Sufficient and acceptable for that transcoding resource to 
simply deny any inbound transcoding requests until the load 
drops below a threshold. Should a transcoding resource pro 
cess be leveraging idle CPU on a machine with a more impor 
tant role, such as an STR, it is sufficient to simply "go away” 
if the resources being consumed by the transcoding resource 
become needed. In response to a deny or an unexpected 
Socket close, the Fluxer preferably sends the segment to an 
alternate transcoding resource. However, if the transcoding 
resource returns an actual error about the source bits (e.g. 
some fatal error with the original encode) then the Fluxer may 
send the segment to another transcoding resource or it may 
give up on the segment altogether, failing the transcode. 
0208 Identification of possible transcoding resources to 
use for a particular job is now described. Possible transcoders 
are identified from a pool of available transcoding resources 
in one of a few ways. For STRs that represent HTTP proxy 
servers somewhere in the delivery network, Mapper is used to 
provide a map that can return a list of possible resources 
which appear to be under a given load threshold, as mentioned 
above. This is provided over a DNS interface with the param 
eters encoded into the requesting hostname. This DNS 
request may return a large number of possible hosts—more 
than that associated with a typical DNS lookup in the delivery 
network. As noted, STRs returned are considered volatile and 
may acceptor reject the request based on their own local load. 
0209. A non-limiting, exemplary approach for an internal 
queue of a transcoding resource is described as follows. 
Transcoding resources can have a fixed number of “slots' 
which is made up of two counters and indicates the number of 
individual transcode-segment requests that may be accepted 
by that transcoding resource at any given period of time. One 
counter is the “available-process' counter and is some sub 
percentage of the number of available cores on the system. 
The other counter is the "queue counter and is some config 
urable number of additional tasks that are allowed to be 
waiting but not actively being worked on. Both of these fac 
tors are reactive to the hardware the transcoding resource is 
installed on and both are configurable. For example, an avail 
able-process factor of 0.5 (or 50% of system cores) and a 
queue counter of 0.10 (or 10% of cores). Taken together, these 
two counters make up the total number of available “slots’ for 
a given transcoding resource. 
0210. As a transcoding resource is accepting work it con 
tinues to accept requests to transcode segments so long as it 
has available processes and/or slots. Should the transcoding 
resource be completely full, it denies the request with a HTTP 
503 Service Unavailable error. A 100 Expect/Continue 
method is otherwise used to ensure that the request is valid 
and that the transcoding resource has an available process to 
perform the requested action. If the processes are all allocated 
and an inbound Fluxer request lands on a queue slot then the 
transcoding resource should block its “CONTINUE 
response until the queue slot becomes assigned to a process. 
0211 Batch VOD Queuing 
0212. The queuing of VOD batch requests is now 
described. A queuing system exists to request files be 
transcoded at the earliest possible convenience. This queue 
contains a list of jobs that define a source, a transcode profile 
and a destination and will be executed on as soon as possible 
given the resources available. The queue itself is quite simple, 
can be distributed into many sub-queues and will mostly be 
used by some user interface to provide batch-transcoding 
services forbitrates that a content provider wishes to crate and 
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have stored for later delivery. Upon waking up, the local 
queue manager will simply take the top Njobs off the stack 
and make required batch requests to the Fluxers, allowing the 
transcoding system to work to complete the transcoding job. 
Multiple queues may be running within a given transcoding 
region, typically running on the same hardware that is run 
ning the Fluxer or TRAS code. 
0213 Examples of jobs which the transcoding system is 
configured to Support may include the following (which are 
non-limiting examples): 

0214 Conversion to the following video codecs: h.264, 
theora, Vp8 

0215 Conversion to the following audio codecs: mp3. 
aac, Vorbis 

0216 Conversion to the following containers: mp4 
standard, mp4-fragmented, fly, IF (intermediate format 
as described previously) 

0217 Conversion from the following video codecs: 
h.264, mpeg1, mpeg2, VC1, theora, VP3/6/8, DV 

0218 Conversion from the following audio codecs: aac, 
mp3, mpa, pcm, Vorbis 

0219 Conversion from the following containers: 
mpeg2ts, mpeg2ps, mpegl, avi, mp4, WmV/as? mp3. 
WEBMA Matroska 

0220. The transcoding system also preferably supports the 
application offilters and scalers (i.e. deinterlacing and frame 
Scaling). 

Further Embodiments and Applications 
0221) While some of the foregoing examples have focused 
on converting media formats, codecs, and the like, the system 
described herein is not limited to such. The teachings above 
may be extended so as to provide a distributed platform for 
applying security or rights management schemes to content. 
For example, the system above may be modified by having the 
Fluxer receive requests (by way of illustration) to apply a 
given encryption algorithm to a file. The Fluxer can break up 
the file into segments that are each to be encrypted, and 
delegate the tasks of doing so to distributed MTRs and STRs, 
as described above. In Sum, the nature of the assigned task 
may change but the system still operates similarly. Other 
tasks might include embedding a watermark in the content, or 
inserting data to apply a digital rights management scheme to 
the file. In other embodiments, system can receive an end 
user client request for content, discern information about the 
end-user client (client IP address, user-agent, user-id, other 
identifier, etc.) and incorporate that data into a fingerprint that 
is inserted into the content in real-time, leveraging the real 
time transcoding flow described above (e.g., FIG.22) to con 
vert the file on the fly. Hence, the content can be marked with 
information related to the end-user (or client machine) to 
whom it was delivered. In some use cases, it may be prefer 
able not to break the original file apart but rather assign the 
entire file transcoding job to a particular MTR or STR, per 
haps with low priority, so that the assigned machine has all the 
data in the file to work with in performing its task. 
0222 Creating Transcoding Segments from an Input 
(Pseudo-Chunking) 
0223) The following presents examples of how the Fluxer 
can break apart incoming files into transcoding segments, and 
more particularly how it can break apart incoming video files. 
0224. The embodiments described above provide a 
transcoding system that implements segmented parallel 
encoding for video and other content. For video, segmented 
parallel encoding typically makes the tradeoff of inflexible 
keyframe intervals for the speed of encoding videos using a 
large number of encoders operating in parallel. If keyframe 
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intervals are not altered then the boundary of a keyframe may 
be considered a chunk or segment and treated independently 
of other chunks. By breaking up a video into segments and 
Submitting those segments in parallel to multiple transcoding 
resources, the transcode can be parallelized, increasing its 
speed relative to the number of encoders and reduce the 
encoding time to the minimum of (demuxing time+slowest 
segment encode time-re-muxing time). 
0225 Codecs enable the compression of video by taking 
advantage of the similarity between frames. Generally speak 
ing, there are 3 types of frames that are used to varying 
degrees in different codecs: I-frames (aka, keyframes), 
P-frames and B-frames. In general, and as mentioned previ 
ously, I-frames can be thought of as a stand-alone frame that 
contains the complete information to construct a complete 
frame on its own. P-frames reference essentially what has 
changed between itself and the previous frame while 
B-frames can refer to frames ahead of them or behind them. 
The group of frames that starts with an I-frame and ends with 
the last frame before the next I-frame is often referred to as a 
Group Of Pictures or “GoP). Hence, a video that is encoded 
as a Closed-GoP video means that each GoP can be treated 
independently from the others. 
0226. A container generally refers to a file that wraps the 
raw encoded bits of media (e.g., audio, video) and may pro 
vide indexing, seekability and metadata. Typically, a con 
tainer divides the raw bits into “packets” which may contain 
one or more frames. A frame typically has a frame-type of 
audio, video or a number of less-frequent possibilities such as 
subtitles and sprites. For video, these frames each correspond 
to the type of frames mentioned above, I-Frame, B-Frame, 
P-Frame, etc. There are a large number of different containers 
and each may have a little different way of getting at the raw 
media data. 
0227. In sequential encoding (as opposed to parallelized 
encoding), all frames can be considered in a sequence (or with 
Some parallelism resulting from a multi-threaded computer 
architecture) and an approach derived across a large number 
of frames. When encoding in this manner, it is relatively 
trivial to do things such as modify the GoP size because there 
is always enough information available to create an I-frame 
(since the entire stream is available). When parallelizing 
encodes in a cloud (where multiple servers are involved, as 
can occur with the transcoding system presented herein), 
making modifications to the GoP size can become more prob 
lematic. If, for example, the request is to reduce the GoP size 
to a non-factor of the original GoP size then the I-frames will 
no longer be aligned. 
0228. The following describes some examples of kinds of 
complications when parallelizing encodes and a pseudo 
chunking approach to solve them. 
0229 GoP Size Modification. GoP size modification 
becomes complicated with parallelizing transcodes to mul 
tiple processors. For example, if a typical encode has a GoP 
size of 250 frames (8.34 seconds of NTSC Video), this can be 
an issue for high-keyframe-rates, which may be present, e.g., 
in HD video formats. If a HD or other video format is desired 
to run 2-3 seconds between keyframes (approximately 60-90 
frames in the GoP), neither 60 or 90 frames can be evenly 
divided into the 250 frame/second source keyframe rate. 
Solving this problem involves maintaining some kind of 
alignment over how many frames will be required to decode 
the frames necessary to produce a keyframe at an unusual 
time. 
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0230. For example, and with reference to FIG. 24, assume 
a current GoP size of 250 frames and a target-GoP size of 90 
frames. As a result, NEWGoP1 will be frames 1-90, and 
needs frames 1-90 to be able to be re-encoded, NEWGoP2 
will be from frame 91-180 and needs frames 1-180 to be able 
to be re-encoded. NEWGoP3 will be from frames 180 to 270 
and will therefore need frames 1-270 to be able to be re 
encoded. Notice, we’ve crossed into a new GoP now. NEW 
GoP3 will have to start with the first GoP and need several 
frames from the second GoP in order to be encoded. NEW 
GoP4 doesn't have this problem, it will be made up of frames 
271-360 and therefore only needs frames 251-360 in order to 
start from a keyframe and encode its bits. FIG. 24 illustrates 
this scenario. 
0231. A pseudo-chunking approach can address this issue 
by, in one embodiment, allowing for segments that are not 
aligned to keyframes or GoPs. A pseudo-chunk may be larger 
or smaller than a GoP. In the above example, the segmenter 
(e.g., the Fluxer) can create a pseudo-chunk that extends past 
the Current GoP to reach the end of NewGoP3. 
0232. Note that when dealing with GoP modification, it’s 
often preferable to allow the encoder to produce multiple 
GoPs from a single source GoP. One usually wouldn't want to 
transfer one GoP three times just to get three new GoPs, when 
you could transfer one GoP+a few frames of the second (the 
entire pseudo-chunk) and receive back three GoPs. 
0233 Pseudo-chunking also applies to scene change 
detection, and more particularly, to situations where there are 
frequent scene changes in a Video file. A scene change refers 
to an interruption in the regular sequence of keyframes. It 
typically exists because enough has changed from one frame 
to the next that a Por B frame becomes impractical, i.e., there 
is enough difference between frames for the encoder to place 
an additional keyframe in-line for quality sake. Most modern 
encoders contain some threshold for inserting extra key 
frames on scene changes in order to optimize the encoding 
experience. Scene-changes can present a problem if too sim 
plistic of an algorithm is used when segmenting, such as 
simply splitting on keyframes. When many scene-change 
keyframes are present it could cause too-small a fragment to 
be used for the encoders and could actually slow down par 
allel transcodes. A pseudo-chunking approach, in which 
pseudo-chunks may span more than one keyframe in appro 
priate circumstances, can address this issue (e.g., by includ 
ing some predetermined minimum number of frames/time in 
the pseudo-chunk segment, regardless of keyframe intervals). 
0234 Pseudo-chunking addresses open GoP encoding as 
well. Typically, a GoP ends with a P-frame (which references 
a previous frame). This is a closed GoP. However, it’s possible 
to end a GoP with a B-frame, which could refer to the next 
frame in the next GoP (the starting I-Frame). When this 
occurs it is referred to as an open-GoP. An open-GoP presents 
a problem over a closed-GoP when parallelizing encodes 
because some amount of the next GoP is required to complete 
the encode. 
0235 Details on Pseudo-Chunking Approach 
0236. In one embodiment, a device managing the 
transcode (Such as the Fluxer in the transcoding system pre 
viously described) is configured to be aware of what frames it 
needs to use, as a Subset of those received, to produce a new 
transcode. For example, the Fluxer will look at a frame to 
determine what kind of frame it is (B-frame, P-frame, key 
frame, etc., Closed-GoP situation, etc.), understand what GoP 
size it needs to target. It is frame-aware. Hence, the Fluxer has 
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intelligence to create pseudo-chunks, rather than blindly seg 
menting on keyframes. It can then include the appropriate 
coded frames in a pseudo chunk, so that the transcoding 
resource has all the data it needs to decode, convert the data, 
and re-encode as required. 
0237 As explained above, a pseudo chunk may be either a 
partial or Super-GoP. A pseudo chunk is used as a unit of data 
that is transferred from a Fluxer to a transcoder and may not 
include the entire GoP if the entire GoP is not required for 
transcoding the target number of frames. A pseudo chunk 
may also contain more frames thena given GoP in the case of 
an Open GoP condition or if the target keyframe interval is 
sufficiently different from the source keyframe interval. So a 
pseudo-chunk is not necessarily aligned with a GoP and may 
extend past the original GoP boundary or not reach that far. 
0238 FIG. 25 illustrates an example of pseudo-chunking 
to change the GoP size in a given video file. In this example, 
the pseudo-chunk starts at a keyframe boundary and contin 
ues past the Current GoP (the original GoP) until enough 
frames are included to construct the New GoP that bridges the 
boundary between Current GoP 1 and Current GoP2. Given 
a video that is 1 frame per second and has a 10 second GoP we 
have a GoP every 10 frames (1-10, 11-20, 21-30, etc. ...). For 
illustrative purposes, assume Current GoPs 1 and 2 are such 
GoPs with 10 frames each. If we needed to reduce the Curren 
GoP size to 3 seconds then our New GoPs would beat frames 
1-3 (New GoP1), 4-6 (New GoP2), 7-9 (New GoP3), 10-12 
(New GoP4). That last new GoP (i.e., New GoP4 in FIG. 24) 
is a problem because frame 10 belongs to Current GoP 1 
while frame 11 belongs to Current GoP 2. We need to send a 
chunk of data to the transcoding resource that includes the 
entire Current GoP 1 and two frames of Current GoP 2 in 
order to have enough frame data at the transcoding resource to 
encode the New GoP4 at frames 10-12. This chunk of data is 
represented by Pseudo Chunk 1 in FIG. 24. Also note that the 
Fluxer preferably ensures that the last frame of the pseudo 
chunk is not a B-frame referring to a frame ahead of it. If it is, 
then another frame(s) may need to be included in Pseudo 
Chunk 1. 

0239. Another aspect of pseudo-chunking involves 
including both the starting and ending keyframes to deal with 
open GOP situations. Typically, with sequential encoding, 
one would only need the frames that are desired to be 
encoded—and the keyframe of the next GOP is unneces 
sary—but in parallel transcoding case, and with a "frame 
aware' Fluxer, one can and should send the extra frame. To do 
this, the Fluxer ensures that our pseudo-chunks always start 
on a keyframe and continue past the frame-number of the last 
needed frame to the point that there are either no further 
forward-looking B-frames or it encounters the next keyframe. 
0240 Finally, a pseudo-chunking Fluxer can mitigate the 
effects of frequent scene changes, which can produce 
transcoding segments that are too small, by applying certain 
thresholds (minimum number of frames for a segment) in the 
pseudo-chunking process. 
0241. In one implementation, for every batch transcode, 
Fluxer can produce an index file describing the breakup of all 
pseudo chunks produced, for the input audio and video tracks, 
called a "Chunk Index Header'. This file can be used for 
accelerating real-time transcodes by identifying the indi 
vidual pseudo chunks for the particular input and what byte 
offsets they occupy in the file, making retrieval of discrete 
units easier. 
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0242. It should be understood that pseudo-chunking is not 
limited to the applications described above, nor is it limited to 
use by a Fluxer described herein. Any module charged with 
segmenting a file for encoding may employ pseudo-chunk 
ing. Further, other forms of media, particularly those that 
utilize atomic data that references other data in a stream (as do 
B-frames, P-frames, etc.) 
0243 Computer-Based Implementation 
0244. The clients, servers, and other devices described 
herein may be implemented with conventional computer sys 
tems, as modified by the teachings hereof, with the functional 
characteristics described above realized in special-purpose 
hardware, general-purpose hardware configured by Software 
stored therein for special purposes, or a combination thereof. 
0245 Software may include one or several discrete pro 
grams. Any given function may comprise part of any given 
module, process, execution thread, or other Such program 
ming construct. Generalizing, each function described above 
may be implemented as computer code, namely, as a set of 
computer instructions, executable in one or more processors 
to provide a special purpose machine. The code may be 
executed using conventional apparatus—such as a processor 
in a computer, digital data processing device, or other com 
puting apparatus—as modified by the teachings hereof. In 
one embodiment, such software may be implemented in a 
programming language that runs in conjunction with a proxy 
on a standard Intel hardware platform running an operating 
system such as Linux. The functionality may be built into the 
proxy code, or it may be executed as an adjunct to that code. 
0246 While in some cases above a particular order of 
operations performed by certain embodiments is set forth, it 
should be understood that such order is exemplary and that 
they may be performed in a different order, combined, or the 
like. Moreover, some of the functions may be combined or 
shared in given instructions, program sequences, code por 
tions, and the like. References in the specification to a given 
embodiment indicate that the embodiment described may 
include a particular feature, structure, or characteristic, but 
every embodiment may not necessarily include the particular 
feature, structure, or characteristic. 
0247 FIG. 26 is a block diagram that illustrates hardware 
in a computer system 2600 upon which such software may 
run in order to implement embodiments of the invention. The 
computer system 2600 may be embodied in a client device, 
server, personal computer, workstation, tablet computer, 
wireless device, mobile device, network device, router, hub, 
gateway, or other device. Representative machines on which 
the subject matter herein is provided may be Intel Pentium 
based computers running a Linux or Linux-variant operating 
system and one or more applications to carry out the 
described functionality. 
0248 Computer system 2600 includes a processor 2604 
coupled to bus 2601. In some systems, multiple processor 
and/or processor cores may be employed. Computer system 
2600 further includes a main memory 2610, such as a random 
access memory (RAM) or other storage device, coupled to the 
bus 2601 for storing information and instructions to be 
executed by processor 2604. A read only memory (ROM) 
2608 is coupled to the bus 2601 for storing information and 
instructions for processor 2604. A non-volatile storage device 
2606. Such as a magnetic disk, Solid state memory (e.g., flash 
memory), or optical disk, is provided and coupled to bus 2601 
for storing information and instructions. Other application 
specific integrated circuits (ASICs), field programmable gate 
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arrays (FPGAs) or circuitry may be included in the computer 
system 2600 to perform functions described herein. 
0249. Although the computer system 2600 is often man 
aged remotely via a communication interface 2616, for local 
administration purposes the system 2600 may have a periph 
eral interface 2612 communicatively couples computer sys 
tem 2600 to a user display 2614 that displays the output of 
Software executing on the computer system, and an input 
device 2615 (e.g., a keyboard, mouse, trackpad, touchscreen) 
that communicates user input and instructions to the com 
puter system 2600. The peripheral interface 2612 may 
include interface circuitry, control and/or level-shifting logic 
for local buses such as RS-485, Universal Serial Bus (USB), 
IEEE 1394, or other communication links 
0250 Computer system 2600 is coupled to a communica 
tion interface 2616 that provides a link (e.g., at a physical 
layer, data link layer, or otherwise) between the system bus 
2601 and an external communication link. The communica 
tion interface 2616 provides a network link 2618. The com 
munication interface 2616 may representa Ethernet or other 
network interface card (NIC), a wireless interface, modem, an 
optical interface, or other kind of input/output interface. 
0251 Network link 2618 provides data communication 
through one or more networks to other devices. Such devices 
include other computer systems that are part of a local area 
network (LAN) 2626. Furthermore, the network link 2618 
provides a link, via an internet service provider (ISP) 2620, to 
the Internet 2622. In turn, the Internet 2622 may provide a 
link to other computing systems such as a remote server 2630 
and/or a remote client 2631. Network link 2618 and such 
networks may transmit data using packet-switched, circuit 
Switched, or other data-transmission approaches. 
0252. In operation, the computer system 2600 may imple 
ment the functionality described herein as a result of the 
processor executing code. Such code may be read from or 
stored on a non-transitory computer-readable medium, Such 
as memory 2610, ROM 2608, or storage device 2606. Other 
forms of non-transitory computer-readable media include 
disks, tapes, magnetic media, CD-ROMs, optical media, 
RAM, PROM, EPROM, and EEPROM. Any other non-tran 
sitory computer-readable medium may be employed. Execut 
ing code may also be read from network link 2618 (e.g., 
following storage in an interface buffer, local memory, or 
other circuitry). 

1. A system, comprising: 
a plurality of proxy servers connected to a global computer 

network that operate to receive requests for content from 
clients and respond to the requests for content by send 
ing the clients the content they requested; 

a management server operable to receive a request to con 
vert a file from a first version to a second version; 

the management server operable to create at least first and 
second segments, each of the segments corresponding to 
a portion of the file, and send the first segment to a first 
one of the plurality of proxy servers and the second 
segment to a second one of the plurality of proxy servers, 
each of the first and second segments being sent with 
information about the requested conversion, so that the 
first and second segments are converted independently 
by the first and second proxy servers while the first and 
second proxy servers continue to respond to client 
requests for content; 

wherein the plurality of proxy servers and the management 
server each comprise circuitry forming at least one pro 
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cessor and memory storing computer-readable instruc 
tions that when executed on the at least one processor 
will cause operation as specified above. 

2. The system of claim 1, wherein the conversion involving 
changing at least one of: 

(a) a codec used to encode data in the file, 
(b) a container format of the file, 
(c) one or more codec settings used to encode data in the 

file 
(d) one or more container format settings for the file, 
(e) a frame size for data in the file, 
(f) an aspect ratio for data in the file, 
(g) a bit-rate of encoded data in the file, 
(h) an interlacing characteristic for data in the file, 
(i) a frame rate for data in the file, and 
(j) a picture resolution for data in the file. 
3. The system of claim 1, wherein the conversion involves 

at least one of: 
(a) changing one or more security characteristics of the file, 
(b) applying a DRM scheme, 
(c) applying encryption, 
(d) applying a watermark, and 
(e) applying a fingerprint. 
4. The system of claim 1, wherein the first and second 

proxy servers were selected to participate in performing the 
requested conversion at least in part because their resource 
utilization related to servicing client requests for content was 
lower than that of other proxy servers. 

5. The system of claim 1, wherein each of the plurality of 
proxy servers is operable to execute a first process providing 
a proxy function that services client requests for content, and 
a second process that performs conversions on files sent from 
the management server, the first process having priority over 
the second process. 

6. The system of claim 1, wherein at least one of the 
plurality of proxy servers is operable to send the management 
server a message indicating that it will not perform the 
requested conversion, after that proxy server determines that 
its resource utilization related to servicing client requests 
exceeds a threshold. 

7. The system of claim 1, wherein the management server 
is operable to identify proxy servers to use to perform the 
requested conversion by obtaining a list of one or more can 
didate proxy servers from a monitoring system associated 
with the plurality of proxy servers. 

8. The system of claim 1, wherein the request to convert the 
file is associated with a priority, and the management server 
decides whether to use the plurality of proxy servers for 
performing the requested conversion based on the priority of 
the request. 

9. The system of claim 1, wherein each of the first and 
second proxy servers operate to perform the requested con 
version and return the results to the management server, 
which re-assembles the results into at least part of the second 
version of the file. 

10. The system of claim 1, wherein the plurality of proxy 
servers are HTTP proxy servers and the content for which 
they receive client requests comprises any of HTML files, 
web page objects, and streaming media. 

11. The system of claim 1, wherein file includes one or 
more of (i) audio data and (ii) Video data. 

12. The system of claim 1, further comprising a machine 
that makes the request to the management server to convert 
the file, the machine comprising any of: (a) a network storage 
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system, (b) a server providing a user interface to content 
provider users of the system, and (c) one of the plurality of 
proxy servers. 

13. A method performed by one or more programmed 
computer machines that comprise circuitry forming one or 
more processors that execute computer program instructions, 
and that manage the conversion of content, the method com 
prising: 

receiving a request to convert a file from a first version to a 
second version; 

selecting first and second proxy servers from a plurality of 
proxy servers that are interconnected via a global com 
puter network, and that are receiving requests for con 
tent from clients and responding to the requests for con 
tent by sending the clients the content they requested; 

creating at least first and second segments, each of the 
segments corresponding to a portion of the file, and 
sending the first segment to the first proxy server and the 
second segment to the second proxy server, each of the 
first and second segments being sent with information 
about the requested conversion, 

receiving a converted first segment from the first proxy 
server; and 

receiving a converted second segment from the second 
proxy server 

combining the converted first and second segments to form 
at least part of the second version of the file. 

14. The method of claim 13, wherein the conversion 
involving changing at least one of: 

(a) a codec used to encode data in the file, 
(b) a container format of the file, 
(c) one or more codec settings used to encode data in the 

file 
(d) one or more container format settings for the file, 
(e) a frame size for data in the file, 
(f) an aspect ratio for data in the file, 
(g) a bit-rate of encoded data in the file, 
(h) an interlacing characteristic for data in the file, 
(i) a frame rate for data in the file, and 
(j) a picture resolution for data in the file. 
15. The method of claim 13, wherein the conversion 

involves at least one of: 
(a) changing one or more security characteristics of the file, 
(b) applying a DRM scheme, 
(c) applying encryption, 
(d) applying a watermark, and 
(e) applying a fingerprint. 
16. The method of claim 13, wherein the first and second 

proxy servers are selected at least in part because their 
resource utilization related to servicing client requests for 
content is lower than that of other proxy servers. 

17. The method of claim 13, further comprising: receiving 
from one of the plurality of proxy servers a message indicat 
ing that it will not convert a particular segment because its 
resource utilization related to servicing client requests 
exceeds a threshold. 

18. The method of claim 13, further comprising: identify 
ing proxy servers to use to perform the requested conversion 
by obtaining a list of one or more candidate proxy servers 
from a monitoring system associated with the plurality of 
proxy servers. 

19. The method of claim 13, wherein the request to convert 
the file is associated with a priority, and further comprising 
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deciding whether to use the plurality of proxy servers for response to client requests for content, as long as the 
performing the requested conversion based on the priority of load on the first proxy server due to the client requests 
the request. for content does not exceed a threshold; 

20. The method of claim 13, wherein the plurality of proxy the first proxy server sending the second version of the first 
servers are HTTP proxy servers and the content for which segment to at least one server managing the conversion; 
they receive client requests comprises any of HTML files, the second proxy server converting the second segment 
web page objects, and streaming media. from the first version to the second version while con 

21. The method of claim 13, wherein the file includes one tinuing to response to client requests for content, as long 
or more of (i) audio data and (ii) Video data. as the load on the second proxy server due to the client 

22. The method of claim 13, further comprising receiving requests for content does not exceed a threshold; 
the request to convert the file from any of: (a) a network the second proxy server sending the second version of the 
storage system, (b) a server providing a user interface to first segment to the at least one server managing the 
content provider users of the system and (c) one of the plu- COWS1O. 
rality of proxy servers. 24. The method of claim 23, wherein the conversion 

23. A method performed by programmed computer involving changing at least one of: 
machines that comprise circuitry forming one or more pro- (k) a codec used to encode data, 
cessors that execute computer program instructions, compris- (1) a container format, 
ing: (m) one or more codec settings, 

with a plurality of proxy servers that are connected to a (n) one or more container format settings, 
global computer network, receiving for content from (o) a frame size, 
clients and responding to the requests for content by (p) an aspect ratio, 
sending the clients the content they requested; (q) a bit-rate of encoded data, 

(r) an interlacing characteristic, 
(s) a frame rate, and 
(t) a picture resolution. 
25. The method of claim 23, wherein the conversion 

involves at least one of: 
(f) changing one or more security characteristics, 
(g) applying a DRM Scheme, 

at a first proxy server selected from the plurality of proxy 
servers, receiving a request to convert a first segment of 
a file from a first version to a second version, and instruc 
tions about the conversion to be performed; 

at a second proxy server selected from the plurality of 
proxy servers, receiving a request to convert a second 
segment of the file from a first version to a second o o 
version and instructions about the conversion to be per- (h) applying encryption, 
formed; (i) applying a watermark, and 

the first proxy server converting the first segment from the (j) applying a fingerprint. 
first version to the second version while continuing to k . . . . 


