wo 20187200475 A1 | 0000 O O 0RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
International Bureau —/
(43) International Publication Date ——/
01 November 2018 (01.11.2018) WIPO |

(10) International Publication Number

WO 2018/200475 A1l
PCT

(51) International Patent Classification:

GOGF 7/00 (2006.01) GOG6F 13/00 (2006.01)
GOG6F 17/30 (2006.01) GO6F 21/76 (2013.01)
GOG6F 12/00 (2006.01)

(21) International Application Number:
PCT/US2018/029074

(22) International Filing Date:
24 April 2018 (24.04.2018)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
201741014424 24 April 2017 (24.04.2017) IN
62/526,252 28 June 2017 (28.06.2017) US

(71) Applicant: RENIAC, INC. [US/US]; 1621 W. El Camino
Real, Suite 102, Mountain View, California 94040 (US).

(72) Inventors: KULKARNI, Chidamber; 46, Lilac Block,
L&T Serene County, Gachibowli, Hyderabad 50032 (IN).
SUNDARARAJAN, Prasanna; 888 Loma Verde Avenue,
Palo Alto, California 94303 (US).

(74) Agent: WELCH, Henry L. ¢t al.; Haynes & Boone, LLP,
IP Section, 2323 Victory Avenue, Suite 700, Dallas, Texas
75219 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,

(54) Title: SYSTEM AND METHOD TO ACCELERATE COMPACTION

500 Memory
N 415
T £ Memory Controller
ransfer 120
Engine
430
cpu Bus
405 k—) Interface
425
Scatter Scatter
Engine eece Engine
530a e T T
Sort Marker] Sort Marker] P"OCCESSOF
Engine L Engine ore
540a ~BA0k ” 520
N
Merge Merge
Engine (X X] Engine
550a 5§|‘OI)
Compactor 510
FIG. 5

(57) Abstract: A system and method for accelerating compaction includes a compaction accelerator. The accelerator includes a com-
pactor separate from a processor performing read and write operations for a database or a data store. The compactor is configured to
receive a table to be compacted and entries written in the table, each of the entries being associated with a timestamp indicating when

they were respectively written; identify, using a plurality of sort

engines operating in parallel, the entries that were written last based

on the timestamps; mark, using a plurality of marker engines operating in parallel, older copies of the entries for deletion; create, using
the plurality of marker engines, tombstones for the older copies; create a compacted table, including the entries that were last written;
delete the tombstones and the entries associated with the tombstones; and generate a freemap based on storage locations of the entries

associated with the tombstones.

[Continued on next page]

WO 2018/200475 A1 {000 A 0 00

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

WO 2018/200475 PCT/US2018/029074

SYSTEM AND METHOD TO ACCELERATE COMPACTION

Inventors: Chidamber Kulkarni and Prasanna Sundararajan

RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Application No. 62/526,252
filed June 28, 2017 and entitled and “System and Method to Accelerate Compaction” and Indian
Provisional Patent Application No. 201741014424 filed April 24, 2017 and entitled “System And

Method To Accelerate Compaction,” each of which is incorporated by reference in its entirety.

TECHNICAL FIELD
[0002] The present disclosure relates generally to computing systems and the use of

compaction with log-structured merge-tree data structures.

BACKGROUND
[0003] Log-structured merge-tree (LSM) data structures are used in many databases and data
stores (e.g., NoSQL Databases, Hadoop distributed file system (HDFS), etc.). LSM data
structures are popular because they allow databases and data stores to leverage hierarchical
memory and storage subsystems that are prevalent (e.g., DRAM memory, flash memories, etc.)
in CPU-based server architectures. Specifically, use of LSM data structure enables the handling
of insert/write operations significantly faster because writes and/or inserts append to a LSM data
structure residing in a faster memory (e.g., DRAM) and a process to compact and merge all the
writes corresponding to a specific location or key to persistent data store happens separately.
This enables faster response times for write operations at the cost of performing a compaction
process at a later time that determines the latest copy of a write, deletes all other older copies,
and merges the write into another data structure on the disk, where a persistent copy of the data
is stored. Accordingly, it would be advantageous to develop improved methods and systems for

performing compaction.
SUMMARY

[0004] According to some embodiments a compaction accelerator includes a compactor
separate from a processor performing read and write operations for a database or a data store.

The compactor is configured to receive a table to be compacted; receive entries written in the

WO 2018/200475 PCT/US2018/029074

table by the processor, each of the entries being associated with a timestamp indicating when
they were respectively written; identify, using a plurality of sort engines operating in parallel, the
entries that were written last based on the timestamps; mark, using a plurality of marker engines
operating in parallel, older copies of the entries for deletion; create, using the plurality of marker
engines, tombstones for the older copies; create a compacted table, including the entries that
were last written, to be written to persistent storage; delete the tombstones and the entries
associated with the tombstones; and generate a freemap based on storage locations of the entries

associated with the tombstones.

[0005] According to some embodiments a method of database compaction performed by a
compactor separate from a processor performing read and write operations for a database or a
data store. The method includes receiving a table to be compacted; receiving entries written in
the table by the processor, each of the entries being associated with a timestamp indicating when
they were respectively written; identifying, using a plurality of sort engines operating in parallel,
the entries that were written last based on the timestamps; marking, using a plurality of marker
engines operating in parallel, older copies of the entries for deletion; creating, using the plurality
of marker engines, tombstones for the older copies; creating a compacted table, including the
entries that were last written, to be written to persistent storage; deleting the tombstones and the
entries associated with the tombstones; and generating a freemap based on storage locations of

the entries associated with the tombstones.

[0006] According to some embodiments, system includes a plurality of compaction
accelerators. Each of the compaction accelerators includes a respective compactor separate from
a processor performing read and write operations for a database or a data store. Each respective
comparator 1s configured to receive a table to be compacted; receive entries written in the table
by the processor, each of the entries being associated with a timestamp indicating when they
were respectively written; identify, using a plurality of sort engines operating in parallel, the
entries that were written last based on the timestamps; mark, using a plurality of marker engines
operating in parallel, older copies of the entries for deletion; create, using the plurality of marker
engines, tombstones for the older copies; create a compacted table, including the entries that

were last written, to be written to persistent storage; delete the tombstones and the entries

WO 2018/200475 PCT/US2018/029074

associated with the tombstones; and generate a freemap based on storage locations of the entries

associated with the tombstones.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figures 1 and 2 are simplified diagrams of possible compactor architectures according

to some embodiments.
[0008] Figure 3 is a simplified diagram of an example table according to some embodiments.

[0009] Figures 4 and 5 are simplified diagrams of compaction systems according to some

embodiments.

[0010] Figure 6 is a simplified diagram of a method of compaction according to some

embodiments.

[0011] In the figures, elements having the same designations have the same or similar

functions.

DETAILED DESCRIPTION

[0012] In the following description, specific details are set forth describing some
embodiments consistent with the present disclosure. It will be apparent, however, to one skilled
in the art that some embodiments may be practiced without some or all of these specific details.
The specific embodiments disclosed herein are meant to be illustrative but not limiting. One
skilled in the art may realize other elements that, although not specifically described here, are
within the scope and the spirit of this disclosure. In addition, to avoid unnecessary repetition, one
or more features shown and described in association with one embodiment may be incorporated
into other embodiments unless specifically described otherwise or if the one or more features

would make an embodiment non-functional.

[0013] Many database administrators, as well as applications that leverage data stores based
on LSM data structures, have to take into account the fact that whenever a compaction process is
running there will be impact of the read latencies to the databases or data stores because CPU

utilization is configured to either be shared between compaction and read operations or

WO 2018/200475 PCT/US2018/029074

configured towards finishing compaction quickly before processing read quests. In either

approach, read latencies are negatively impacted.

[0014] This may be illustrated in the context of a Cassandra database. Write operations using
a Cassandra database include both logging and compaction. More specifically, when a write
occurs, Cassandra stores the data in a structure in memory, the memtable, and also appends
writes to the commit log on disk. In some examples, the commit log receives every write made to
a Cassandra node, so that these writes are durable and survive permanently even after power
failure. In some examples the memtable is a write-back cache of data partitions that Cassandra
looks up by key. In some example, the memtable stores write data until a configurable limit is

reached, and then is flushed.

[0015] In some examples, flushing includes placing the write data from the memtable into a
queue to be flushed to disk. When the data to be flushed exceeds the queue size, Cassandra block
writes the data until the next flush succeeds. To flush the data, Cassandra sorts the data in the
memtable by token and then sequentially writes the data to disk. Data in the commit log is

purged after its corresponding data in the memtable is flushed to a stored string table (SSTable).

[0016] In some examples, memtables and SSTables are maintained for each database table.
SSTables are immutable and are not written to again after the memtable is flushed to a SSTable.
Thus, in some examples, a partition is typically stored across multiple SSTable files. For each
SSTable, Cassandra creates these structures: a partition index, a list of partition keys and the start
position of rows in the data file, and a partition summary. In some examples, the partition index

may be implemented using a Bloom filter.

[0017] In many implementations, periodic compaction is essential to a healthy Cassandra
database because Cassandra does not perform inserts and/or updates in place. Instead of
overwriting the rows, as inserts and/or updates occur, Cassandra writes a new time stamped
version of the inserted or updated data in another SSTable. Cassandra manages the accumulation
of SSTables on disk using compaction. Further, Cassandra does not delete in place because the

SSTable is immutable. Instead, Cassandra marks data to be deleted using a tombstone.

WO 2018/200475 PCT/US2018/029074

[0018] Compaction merges the data in each SSTable by partition key, selecting the latest data
for storage based on its timestamp. After evicting tombstones and removing deleted data,
columns, and rows, the compaction process consolidates SSTables into a single file. The old
SSTable files are deleted as soon as any pending reads finish using the files. Storage space

occupied by old SSTables becomes available for reuse.

[0019] Thus, the CPU on the system implementing Cassandra is burdened by the compaction

process and read latencies become negatively impacted.

[0020] There are two approaches to address this problem. A first approach is to have a
transparent cache that is synchronized with the backend database or data store while ensuring
that the application characteristics allow caching to be beneficial. This mitigates the effect of the
compaction process on read latencies. A second approach is to offload or accelerate the
compaction process on a compactor such as a field programmable gate array (FPGA), an
application specific integrated circuit (ASIC), a graphics processing unit (GPU), and/or the like.
The enables the primary central processing unit (CPU) to be utilized to provide better read

latencies.

[0021] Figure 1 is a simplified diagram of compactor architecture 100 according to some
embodiments. As shown in Figure 1, architecture 100 includes a CPU 110 coupled via a bus 120
to a compactor 130. In some examples, CPU 110 is representative only, and may alternatively be
replaced with one or more central processing units, multi-core processors, microprocessors,
microcontrollers, digital signal processors, FPGAs, ASICs, GPUs, and/or the like. In some
examples, bus 120 may be compatible with a bus standard used to couple processors and
peripherals devices, such as the Peripheral Component Interconnect Express (PCle) standard
and/or the like. In some examples, compactor 130 may be arranged as a plug-in card, such as a
PClIe form factor card and/or the like. In some examples, compactor 130 may include one or
more FPGAs, GPUs, ASICs, and/or other hardware-based cores as is described in further detail
below. In architecture 100, the data required by compactor 130 is moved from memory of CPU
110 to memory of compactor 130 over bus 120. In some examples, cache coherency may
additionally be supported over bus 120, but latency across bus 120 may be high. In some
examples, the cache coherency may use the IBM Coherent Accelerator Processor Interface

(CAPI). As further shown in Figure 1, compactor 130 is coupled to one or more network

WO 2018/200475 PCT/US2018/029074

connections 140. In some examples, the one or more network connections 140 may be one or
more Ethernet connections (e.g., a 10 Gigabit Ethernet connection), Fibre Channel over Ethernet
(FCoE) connections, one or more asynchronous transfer mode (ATM) connections, one or more

Internet connections, and/or the like.

[0022] As discussed above and further emphasized here, Figure 1 is merely an example which
should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. According to some embodiments, CPU 110 and
compactor 130 may be coupled together using mechanisms other than bus 120. In some
examples, CPU 110 and compactor 130 may be coupled over a network, such as by using a

network connection similar to network connection 140.

[0023] Figure 2 is a simplified diagram of a compaction architecture based around a system
on a chip (SoC) 200 according to some embodiments. Similar to architecture 100, SoC 200
includes a CPU 210 coupled via a bus 220 to a compactor 240, which are consistent with CPU
110, bus 120, and compactor 130, respectively. Additionally, compactor 240 is coupled to one or
more network connections 250, which are consistent with the one or more network connections
140 of architecture 100. In contrast to architecture 100, CPU 210 and compactor 240 are further
coupled using a cache coherent interface 230. An advantage of the architecture of SoC 200 over
architecture 100 is that compactor 240 has access to the cache memory of CPU 210 via the high-

speed interconnect of cache coherent interface 230.

[0024] According to some embodiments, the type and amount of data that is moved from the
memory of CPUs 110 and/or 210 to the memory of compactors 130 and/or 240 is relevant to the
choice of whether to use architecture 100 and/or SoC 200 for a particular compactor. In the
examples of Figure 1, the data movement is important for architecture 100 to be effective. In the
examples of Figure 2, there is no movement of data between the memory of CPU 210 and the
memory of compactor 240 because the memory of CPU 210 is accessible to compactor 240 via

cache coherent interface 230, thus resulting in much lower data communication overhead.

[0025] According to some embodiments, the kind of data per column family that is moved
from CPU memory to the FPGA memory (or accessed in the CPU memory via cache coherence)

may include the SSTables of Cassandra. In general, a Cassandra SSTable is similar to a key-

WO 2018/200475 PCT/US2018/029074

value pair representation. However, because Cassandra is a NoSQL Database that uses the
columnar data format, the values are stored as a column family where there may be many
columns for each key. In addition, each column may have its own time-to-live (TTL) and
timestamp. In some examples and depending on the size of memtable, these column families
may vary greatly in size. In some examples, there are various strategies to keep memtable sizes

restricted to a preset size (e.g., 20MBytes per memtable).

[0026] Figure 3 is a simplified diagram of an example table 300 according to some
embodiments. As shown in Figure 3, table 300 includes several versions SSTable 310 through
SSTable 350 accumulated over time as data is written to the database storing table 300. SSTable
310 includes data for dishwasher (with timestamp 10), tomato, purple (with timestamp 10), and
cromulent. SSTable 2 320 includes data frink (with timestamp 20), flayven, monkey (with
timestamp 10), and embiggins. SSTable 340 includes data dishwasher (with timestamp 15) and
tomacco. Table 300 demonstrates some of the improvements obtained by using compaction. For
example, the data dishwasher with timestamp 15 in SSTable 340 is a more recent version of data
dishwasher than is included in SSTable 310, which has an earlier timestamp of 10. Thus, the
earlier version of data dishwasher in SSTable 310 may be discarded (e.g., compacted out of table

300.

[0027] In some embodiments, when data is compacted out of a database table (e.g., data
dishwasher in table 300), it may be helpful to remove that compacted data using a two-step
process to ensure that data synchronization is maintained between different replications of the
database tables across different storage nodes, which may have duplicate copies of some of the
database table versions, processing being handled by different compaction engines, and/or the
like. In some examples, tombstones are used to address this. In some examples, before data is
removed and/or discarded, its removal is recorded using a tombstone that indicates that the data
is to be removed from all replications and/or compaction engines even though a local compactor
and/or compaction engine may not know that it has been superseded and/or deleted. Once the
tombstone has served its purpose, it may be removed and the corresponding storage freed up for

additional data.

[0028] According to some embodiments, the use of hardware-based cores for compactors 130

and/or 240 may provide numerous advantages over software-based compaction solutions. In

WO 2018/200475 PCT/US2018/029074

some examples, the database to be compacted may store various types of date and/or time
information (e.g., timestamps, TTL values, and/or the like). In some examples, date and/or time
information is stored in a format where year, month, day, hour, minute, and/or second
information is separately represented so as to avoid the need for complex and/or time consuming
date and time conversion functions, millennial roll-over concerns, and/or the like. As an

example, a date-time value may be stored in the format “%Y-%m-%d %H:%M”, which also

supports ease of presenting the dates and/or times to human users. In some examples, date-time
information in this format may be stored using 13 bits for the year, 4 bits for the month, 5 bits for
the days, 5 bits for the hours, and 8 bits for the minute. However, software-based date and time
comparators would include 5 separate cascaded comparisons to determine whether one date-time
value is larger or smaller than another. In contrast, a hardware-based solution may utilize a single

35 bit comparator that can make the same larger or smaller determination using a single

comparator cycle.

[0029] In some examples, hardware-based solutions may also provide faster access than
software-based approaches to the TTL, timestamp, and/or column data information from a
database row. As an example, a row from a database table, such as an SSTable, may be stored in
hardware registers of custom width rather than the standard register widths as would be used in
CPU executing software. In some examples, this allows barrel shifters to be used to easily extract
the TTL, timestamp, and/or column data information from the database row without having to
use much more complex and time-consuming software to identify and index into the desired
column of information. Thus, by using the custom-width register, any column of data may be

accessed in a single cycle.

[0030] Figure 4 is a simplified diagram of a compaction system 400 according to some
embodiments. As shown in Figure 4, compaction system 400 includes a CPU 405 coupled to a
compactor 410 via, for example, a bus and/or a cache coherent interface. In some embodiments,
CPU 405 is consistent with CPU 110 and/or CPU 210. In some embodiments, compactor 410 is
consistent with compactor 130 and/or compactor 240 and may be implemented using one or
more FPGAs, ASICs, GPUs, and/or the like. Compactor 410 is further coupled to its own local
compactor memory 415. In some examples, memory 415 may include static RAM (SRAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM), and/or the like, which may be used

WO 2018/200475 PCT/US2018/029074

for the storage of data (e.g., data from database tables) being managed by CPU 405, interim
computing results, and/or the like. Compactor 410 includes a memory controller 420, such as a
DRAM controller, for reading and/or writing data to and/or from memory 415, queuing memory

access commands, buffering data, caching data, and/or the like.

[0031] Compactor 410 further includes a bus interface 425 and a transfer engine 430. Bus
interface 425 is used by compactor 410 to communicate with CPU 405, such as for accessing
data stored in a database maintained by CPU 405 and/or providing compacted data to be stored
in the database. In some examples, the database is stored by CPU 405 in one or more hard disks,
RAID arrays, solid-state drives, cloud storage systems (e.g., network-attached storage (NAS),
storage area networks (SANSs), and/or the like), and/or the like. In some examples, bus interface

425 may be a PCle bus interface and/or the like.

[0032] Transfer engine 430 manages the transferring of the data between CPU 405 and
compactor 410. Transfer engine 430 is further coupled to memory 415 through memory
controller 420 and sends memory access commands to memory controller 420 as appropriate. In

some examples, transfer engine 430 may be a direct memory access (DMA) controller.

[0033] Once data (e.g., a plurality of SSTables) is retrieved from the database and placed in
compactor memory 415, compaction can begin. Compaction begins with a scatter engine 435. In
some examples, scatter engine 435 may determine that compaction may begin by polling one or
more status (e.g., data transfer complete) flags provided by transfer engine 430. Scatter engine
435 reads the data (e.g., one or more SSTables consistent with table 300) from memory 415
using memory controller 420. Scatter engine 435 then determines how many concurrent sort
engines (e.g., sort engines 440a-440n) are to be used. In some examples, scatter engine 435 may
determine the number of sort engines 440a-440n to be used based on the size of the table to be
compacted, a number of versions of the table to be compacted, and/or the like. Scatter engine
435 then divides up the tables and versions and sends them to a corresponding number of sort

engines 440a-440n so that the sorting of the entries by timestamp may be handled in parallel.

[0034] Each sort engine 440a-440n takes one or portions and/or one or more versions of a
given table and sorts each of the entries based on the timestamp of entry as recorded in the

corresponding row. Each sort engine 440a-440n then determines the most recent value for each

WO 2018/200475 PCT/US2018/029074

entry based on the sorting. Once the sorting is complete, each sort engine 440a-440n sends its

sorted portion of the table to a table merge engine 445.

[0035] Table merge engine 445 then performs additional sorting, if required, and then merges
the partially sorted portions provided by sort engines 440a-440n to obtain a complete sorting,

based on the timestamps, for each of the entries in the table being compacted.

[0036] The sorted table is then sent to a tombstone scatter engine 450. Similar to scatter
engine 435, tombstone scatter engine 450 determines how many concurrent tombstone marker
engines (e.g., tombstone marker engines 455a-455m) are to be used. In some examples,
tombstone scatter engine 450 may determine the number of tombstone marker engines 455a-
455m to be used based on the size of the table to be compacted, a number of versions of the table
to be compacted, and/or the like. Tombstone scatter engine 450 then divides up the tables and
versions and sends them to a corresponding number of tombstone marker engines 455a-455m so

that tombstone marking may be handled in parallel.

[0037] Each tombstone marker engine 455a-455m identifies row-key entries with a latest
timestamp (e.g., most recent) and starts marking all other entries (e.g., entries with older
timestamps) for the same data with tombstones. The entries with the latest timestamp are passed
to a compacting merge engine 460 and the entries with the older timestamps (e.g., the entries

with tombstones) are passed to a tombstone delete and freemap engine 465.

[0038] Compacting merge engine 460 takes each of the entries with the latest timestamps and
creates a compacted table that is then written back to memory 415 using memory controller 420.
Once the compacted table is in memory 415, transfer engine 430 is notified to begin transferring

the compacted table back to the database via bus interface 425 and CPU 405.

[0039] Tombstone delete and freemap engine 465 takes each of the tombstones corresponding
to the entries with the older timestamps, collects them together, and deletes the tombstones and
thus, in effect, deleting the entries with the older timestamps. Once deleted, the storage
corresponding to each of the entries with the older timestamps is added to the freemap for the
persistent storage, which is stored in memory 415 using memory controller 420. Once the

freemap is in memory 415, transfer engine 430 is notified to begin transferring the freemap to the

10

WO 2018/200475 PCT/US2018/029074

database via bus interface 425 and CPU 405 so that the entries freed by the compaction may be

used to store new entries within the database.

[0040] As discussed above and further emphasized here, Figure 4 is merely an example which
should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. According to some embodiments, compactor
410 may further include a control unit and/or a processor core for coordinating, synchronizing,
and/or facilitating the activities of transfer engine 430, memory controller 420, scatter engine
435, sort engines 440a-440n, table merge engine 445, tombstone scatter engine 450, tombstone
marker engines 455a-455m, compacting merge engine 460, and/or tombstone delete and freemap
engine 465. In some examples, the control unit and/or processor core may be partially
programmable using a language like C, a scripting language, and/or the like to provide more
flexibility in, for example, how scatter engine 435 and/or tombstone scatter engine 450 decide
how to determine the number of and/or assign portions of tables to sort engines 440a-440n

and/or tombstone marker engines 455a-455m, respectively.

[0041] Figure 5 is a simplified diagram of a compaction system 500 according to some
embodiments. As shown in Figure 5, compaction system 500 includes CPU 405 (e.g,
substantially the same CPU 405 as included in compaction system 400) coupled to a compactor
510 via, for example, a bus and/or a cache coherent interface. In some embodiments, compactor
510 is consistent with compactor 130 and/or compactor 240 and may be implemented using one
or more FPGAs, ASICs, GPUs, and/or the like. Compactor 510 is further coupled to its own
compactor memory 415 preforming substantially the same role as memory 415 from compaction
system 400. Compactor 510 includes a memory controller 420, a bus interface 425, and a transfer
engine 430 performing substantially the same roles as the similarly numbered counterparts in

compaction system 400.

[0042] According to some embodiments, compactor 510 is a more generalized
implementation of a compactor using a more programmable and/or flexible architecture than
compactor 410. Compactor 510 uses a processor core 520 that implements compaction around
three types of processing blocks: scatter engines 530a-530j, sort marker engines (SMEs) 540a-
540k, and merge engines 550a-5501. In some examples, processor core 520 is a small footprint

control unit that coordinates, synchronizes, and/or facilitates the activities of scatter engines

11

WO 2018/200475 PCT/US2018/029074

530a-530j, sort marker engines 540a-540k, and merge engines 550a-5501. In some examples,
processor core 520 may be partially programmable using a language like C, a scripting language,
and/or the like to provide more flexibility in, for example, how the number of and/or the
assignment of portions of the table to scatter engines 530a-530j, sort marker engines 540a-540k,
and/or merge engines 550a-5501 occurs. In some examples, processor core 520 is responsive to

one or more attributes that may be selected by a user, a database, and/or another system.

[0043] Each scatter engine 530a-530j includes one or more registers that are used to identify
corresponding identifiers for each table, version of a table, and/or a portion of a table that is to be
processed by the respective scatter engine 530a-530j. In some examples, each scatter engine
530a-530; further includes other table and/or entry specific information such as a size, a time-
stamp, a TTL, and/or the like. In some embodiments, each scatter engine 530a-530j is
responsible for dividing the table and entries using an approach similar to that used by scatter

engine 435 of Figure 4.

[0044] Each sort marker engine (SME) implements a sorting mechanism that may be used
either to sort entries to find those entries with data having a latest timestamp (e.g., similar to each
of sort engines 540a-540n) and/or to mark entries with older timestamps with tombstones (e.g.,

similar to each of tombstone marker engines 555a-555m).

[0045] Each merge engine 550a-5501 merges the sorted and tombstone marked entries to
generate the compacted table (e.g., similar to compacting merge engine 460) for writing to
memory 415 using memory controller 420. Each merge engine 550a-5501 further collects and
deletes all the tombstones and adds the corresponding persistent storage to the freemap (e.g.,
similar to tombstone delete and freemap engine 465) for writing to memory 415 using memory

controller 420.

[0046] Once the compacted table and/or the freemap is in memory 415, transfer engine 430
is notified to begin transferring the compacted table and/or freemap back to the database via bus

interface 425 and CPU 405.

[0047] As discussed above and further emphasized here, Figures 4 and 5 are merely

examples which should not unduly limit the scope of the claims. One of ordinary skill in the art

12

WO 2018/200475 PCT/US2018/029074

would recognize many variations, alternatives, and modifications. According to some
embodiments, compactors 410 and/or 510 may have more direct access to the persistent storage
used to store the database on which compaction is being performed. In some examples, transfer
engine 430 may access the persistent storage without going through CPU 405 to transfer tables
for compaction from the persistent storage to memory 415 and/or compacted tables and/or the

freemap from memory 415 to the persistent storage.

[0048] In some embodiments, one or more of scatter engine 435, sort engines 440a-44n, table
merge engine 445, tombstone scatter engine 450, tombstone marker engines 455a-455m,
compacting merge engine 460, tombstone delete and freemap engine 465, scatter engines 530a-
530j, sort marker engines 540a-540k, and/or merge engines 550a-5501 may use one or more
hardware acceleration techniques as described previously to further accelerate the compaction by
compactors 410 and/or 510 relative to software-based compactors. In some examples, the one or
more hardware acceleration techniques may include custom register widths, custom width

comparators, barrel shifters, and/or the like.

[0049] Figure 6 is a simplified diagram of a method 600 of compaction according to some
embodiments. In some embodiments, one or more of the processes 610-660 of method 600 may
be implemented, at least in part, in the form of executable code stored on non-transitory,
tangible, machine-readable media that when run by one or more processors (e.g., CPU 110, 210,
and/or 405, a processor core or control unit in compactor 130, 240, 410, and/or 520, and/or the
like) may cause the one or more processors to perform one or more of the processes 610-660. In
some embodiments, one or more of the processes 610-660 of method 600 may be implemented,
at least in part, in the form of custom hardware and/or custom hardware and software modules in
one or more FPGAs, ASICs, GPUs, and/or the like in compactor 130, 240, 410, and/or 510. In
some embodiments, method 600 implements a compaction algorithm that receives un-compacted
tables and entries from a database and generates compacted tables to be written back to the

database.

[0050] At a process 610, a table to be compacted and entries with data that are written in that
table are retrieved. In some examples, the table and entries are retrieved from a database
management system running on a CPU, such as CPU 110, 210, and/or 405. In some examples,

the table and entries are retrieved using a transfer engine, such as transfer engine 430, and are

13

WO 2018/200475 PCT/US2018/029074

stored in a local memory, such as memory 415. In some examples, the table and entries are
further retrieved from the local memory using a scatter engine, such as scatter engine 435 and/or
scatter engines 530a-530;. In some examples, each of the values may be stored in rows with
different data values being stored in different columns along with timestamps, such as is shown

in the examples of Figure 3.

[0051] At a process 620, the entries are sorted based on their timestamps. In some examples,
the entries are sorted by the timestamps in order to determine which version of the data value
corresponds to the most recently written value (e.g., the most up-to-date value). In some
examples, the entries may be divided up into separate groups for sorting in parallel using
different sort engines, such as sort engines 440a-440n and/or sort marker engines 540a-540k. In
some examples, the number of sort engines to use may be determined based on the size of the
table to be compacted, a number of versions of the table to be compacted, and/or the like. In
some examples, one or more portions of process 620 may be performed by scatter engine 435,
scatter engines 530a-530j, sort engines 440a-440n, sort marker engines 540a-540k, table merge

engine 445, and/or processor core 520.

[0052] At a process 630, older entries are marked for deletion and tombstones are created for
the older entries. In some examples, older entries (e.g., those whose timestamps are older than
the most recent timestamps determined during process 620) are identified and tombstones are
created for each of these older entries. Each of the tombstones indicates an entry that may be
deleted from the compacted version of the table. In some examples, the older entries may be
divided up into separate groups for marking and tombstone creation in parallel using different
marker engines, such as tombstone marker engines 455a-455m and/or sort marker engines 540a-
540k. In some examples, the number of marker engines to use may be determined based on the
size of the table to be compacted, a number of older versions of the table to be compacted, and/or
the like. In some examples, one or more portions of process 630 may be performed by tombstone
scatter engine 450, tombstone marker engines 455a-455m, sort marker engines 540a-540k,

and/or processor core 520.

[0053] At a process 640, a compacted table is created. The compacted table is created based
on the entries with the most recent timestamps identified during process 620 and represents the

most recently written values for the table. In some examples, the compacted table is written to

14

WO 2018/200475 PCT/US2018/029074

the local memory. In some examples, generation of the compacted table may be divided up into
separate groups for compaction in parallel using different merge engines, such as merge engines
550a-5501. In some examples, the number of merge engines to use may be determined based on
the size of the table to be compacted, a number of entries in the compacted table, and/or the like.
In some examples, one or more portions of process 640 may be performed by compacting merge

engine 460, merge engines 550a-5501, and/or processor core 520.

[0054] At a process 650, the tombstones and entries associated with the tombstones are
deleted and a freemap is created. The tombstones associated with the older entries and the older
entries identified during process 630 are deleted. As each of the older entries is deleted,
information about where it is stored in the underlying database is added to the freemap so that
those storage locations may be used to write new data to the database. In some examples, one or
more portions of process 650 may be performed by tombstone delete and freemap engine 465,

merge engines 550a-5501, and/or processor core 520.

[0055] At a process 660, the database is updated. In some examples, the database may be
updated using a two phase process. In a first phase, the compacted table created during process
640 and the freemap created during process 650 are written back to the local memory. In a
second phase, a transfer engine (such as transfer engine 430) is used to move the compacted

table to the database and the freemap is used to update the freemap of the database.

[0056] As discussed above and further emphasized here, Figure 6 is merely an example which
should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. According to some embodiments, method 600
may be adapted to provide other improvements associated with the compaction of database
tables. In some examples, a commit log for the database may also compacted using method 600.
In some examples, the commit log resides on persistent storage and includes a copy of the write
operations processed by the database and is stored to persistent storage to act as a backup in case
of power and/or other failures associated with the database. In some examples, the commit log
helps prevent data loss during failures. Thus, in some examples, write operations are recorded in
both the database tables and within the commit log. In some examples, the tombstones deleted
during process 650 and/or the freemap generated during process 650 may be used to remove

entries from the commit log that correspond to the older entries.

15

WO 2018/200475 PCT/US2018/029074

[0057] According to some embodiments, the processes of Figure 6 are computationally
intensive; especially as the size of the tables to be compacted increases and as the traffic that is
handled by the database and/or data increases, such as due to a large number of write operations.
In some examples, CPU utilization during a compaction process may be as high as 60% or more
and thus may have a significant detrimental effect on the performance of read operations by the
CPU. Thus offloading the compaction process to a compactor (e.g., the compactors of Figures 1,

2, 4, and/or 5) helps in keeping read latencies low.

[0058] According to some embodiments and depending upon the size of the programmable
logic and interconnect matrix of the FPGA, the size of the ASIC, and/or the GPU used to
implement the compactor, the FPGA, ASIC, and/or GPU may be used to implement multiple
compactors that may operate in parallel, thus increasing the performance gains possible with the
compactors of Figures 1, 2, 4, and/or 5. In some examples, the number of parallel compactors to
use may be parameterized so that an end user, database, and/or data store may be able to

configure how many parallel compactors are to be in operation.

[0059] According to some embodiments, the architectures of Figures 1, 2, 4, and/or 5 may be
adapted to provide a high performance compaction-as-a-service within a computing cloud and/or
via an on-premise as-a-service architecture wherein various instances of databases and/or data

stores may request compaction by one or more compaction compactors.

[0060] Some examples of the processors, compactors, and/or compactors described herein
may include non-transient, tangible, machine readable media that include executable code that
when run by one or more processors may cause the one or more processors to perform the
processes and methods (e.g., the processes and methods of Figure 6) described herein. Some
common forms of machine readable media that may include the processes and methods are, for
example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-
ROM, any other optical medium, punch cards, paper tape, any other physical medium with
patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or

cartridge, and/or any other medium from which a processor or computer is adapted to read.

[0061] Although illustrative embodiments have been shown and described, a wide range of

modification, change and substitution is contemplated in the foregoing disclosure and in some

16

WO 2018/200475 PCT/US2018/029074

instances, some features of the embodiments may be employed without a corresponding use of
other features. One of ordinary skill in the art would recognize many variations, alternatives, and
modifications. Thus, the scope of the invention should be limited only by the following claims,
and it is appropriate that the claims be construed broadly and in a manner consistent with the

scope of the embodiments disclosed herein.

17

WO 2018/200475 PCT/US2018/029074

CLAIMS

What is claimed is:

A compaction accelerator comprising:

a compactor separate from a processor performing read and write operations for a

database or a data store;

2.

wherein the compactor is configured to:

receive a table to be compacted,;

receive entries written in the table by the processor, each of the entries being
associated with a timestamp indicating when they were respectively written;

identify, using a plurality of sort engines operating in parallel, the entries that
were written last based on the timestamps;

mark, using a plurality of marker engines operating in parallel, older copies of the
entries for deletion;

create, using the plurality of marker engines, tombstones for the older copies;

create a compacted table, including the entries that were last written, to be written
to persistent storage;

delete the tombstones and the entries associated with the tombstones; and

generate a freemap based on storage locations of the entries associated with the

tombstones.

The compaction accelerator of claim 1, wherein the compactor comprises one or more

field-programmable gate arrays (FPGA), graphics processing engines, or application specific

interface chips (ASICs).

3.

The compaction accelerator of claim 1, wherein each of the sort engines uses custom-

width sorters to sort based on respective timestamps.

4.

The compaction accelerator of claim 1, wherein the compactor stores rows of the table in

custom width registers.

5.

The compaction accelerator of claim 1, wherein the table is storage as a plurality of

stored string tables.

18

WO 2018/200475 PCT/US2018/029074

6. The compaction accelerator of claim 1, wherein the deleted tombstones are further used

to free up a commit log space on the persistent storage.

7. The compaction accelerator of claim 1, wherein the compaction accelerator is configured

to receive the table and entries by accessing the persistent storage.

8. The compaction accelerator of claim 1, wherein the compaction accelerator is configured

to receive the table and entries from a memory local to the compaction accelerator.

9. A method of database compaction performed by a compactor separate from a processor
performing read and write operations for a database or a data store, the method comprising:

receiving a table to be compacted,;

receiving entries written in the table by the processor, each of the entries being associated
with a timestamp indicating when they were respectively written;

identifying, using a plurality of sort engines operating in parallel, the entries that were
written last based on the timestamps;

marking, using a plurality of marker engines operating in parallel, older copies of the
entries for deletion;

creating, using the plurality of marker engines, tombstones for the older copies;

creating a compacted table, including the entries that were last written, to be written to
persistent storage;

deleting the tombstones and the entries associated with the tombstones; and

generating a freemap based on storage locations of the entries associated with the

tombstones.

10. The method of claim 9, further comprising sorting the entries based on respective

timestamps using custom-width sorters in each of the sort engines.

11. The method of claim 9, further comprising storing rows of the table in custom width
registers.
12. The method of claim 9, wherein the table is storage as a plurality of stored string tables.

19

WO 2018/200475 PCT/US2018/029074

13. The method of claim 9, further comprising freeing up a commit log space on the

persistent storage based on the deleted tombstones.

14. The method of claim 9, wherein receiving the table and entries comprises accessing the

persistent storage.

15. The method of claim 9, wherein receiving the table and entries comprises reading them

from a memory local to the compactor.

16. A system comprising;

a plurality of compaction accelerators, each of the compaction accelerators comprising a
respective compactor separate from a processor performing read and write operations for a
database or a data store;

wherein each respective comparator is configured to:

receive a table to be compacted,;

receive entries written in the table by the processor, each of the entries being
associated with a timestamp indicating when they were respectively written;

identify, using a plurality of sort engines operating in parallel, the entries that
were written last based on the timestamps;

mark, using a plurality of marker engines operating in parallel, older copies of the
entries for deletion;

create, using the plurality of marker engines, tombstones for the older copies;

create a compacted table, including the entries that were last written, to be written
to persistent storage;

delete the tombstones and the entries associated with the tombstones; and

generate a freemap based on storage locations of the entries associated with the

tombstones.
17. The system of claim 16, wherein a number of the plurality of compaction accelerators is
configurable.
18. The system of claim 16, wherein a number of the plurality of compaction accelerators is

configurable by a user.

20

WO 2018/200475 PCT/US2018/029074

19. The system of claim 16, wherein the system is available as a cloud-based service.

20. The system of claim 16, wherein the compaction accelerators operate in parallel.

21

WO 2018/200475 PCT/US2018/029074
1/5

100

CPU <:> Compactor
110 130

Bus Network
120 Connection
140
FIG. 1
SoC
200
N\
N————/
Bus
CPU 220 Compactor C::>
210 240
Network
<) Connection
Cache 250
Coherent
Interface
230

FIG. 2

PCT/US2018/029074

WO 2018/200475

2/5

~—

€ Ol

~—

~—

su11833iquia JU3NWOoJD
(0T s1) Asyjuow (0T s1) 9|dund
022eWo} uanAe)} 01ewo}
:(ST s1) J9ysemysip :(0T s1) yuny (0T s1) J9ysemysip
:004 :004 :00}
0S€ 219E1SS OP€ 2I9eLSS 0€€ 9I19e1SS 0¢e 2I9e1SS O0T€ °I9e1SS
N
00¢€

WO 2018/200475

3/5

400

PCT/US2018/029074

CPU
405

Transfer

k—) Interface
425

Memory Controller
420

k—3 Engine
Bus 430 J

Scatter Engine

435
Sort Sort
Engine | eee | Engine
440a 440n
N N

A 4

Table Merge Engine
445

]

TS Scatter Engine
450

N

A\ 4
TS Marker TS Marker

Engine | eee | Engine
4553 455m

TS Delete a‘rqd Freemap
Engine
465

Compacting Merge

Engine k—

460

Compactor 410

FIG. 4

WO 2018/200475 PCT/US2018/029074
4/5
500 Memory
\y 415
Memory Controller
Transfer 420
k—3 Engine
430
CPU Bus
405 K—3 Interface
425
A" 2
Scatter Scatter
Engine eoeo Engine
530a 530j
/N
Sort Marker Sort Marker Processor
Engine eoo Engine Core
540a - “571%2 - >20
Merge Merge
Engine eee | Engine _
550a 550I
Compactor 510

FIG. 5

WO 2018/200475 PCT/US2018/029074
5/5

600

610

Retrieve a table to be compacted and entries with data
that are written in that table

620 ‘

Sort the entries based on their timestamps

630 l

Mark older entries for deletion and create tombstones
for the older entries

640 ‘

Create a compacted table

650 l

Delete the tombstones and values associated with the
tombstones and generate a freemap

660 l

Update the database

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/US18/29074

A. CLASSIFICATION OF SUBJECT MATTER

(IDPP% - GO6F 7/00, 17/30, 12/00, 13/00, 21/76 (2018.01)
GO6F 21/76, 17/30, 17/30339, 17/30315, 17/30353, 17/30303, 17/30595, 17/30339, 9/30101,

9/30036

According to International Patent Classification (IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
See Search History document -

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2013/0218840 A1 (SMITH C et al.) August 22, 2013; title, paragraphs [0047), [0058]), 1-20
[0066]), claims 2, 4 -
Y US 9,448,927 B1 (SPRINGPATH, INC) September 20, 2016; column 8, lines 5-15, column 10, (1-20
lines 35-45
Y US 2015/0039852 A1 (ORACLE INTERNATIONAL CORPORATION) February 5, 2015; 2,4, 11 .
paragraphs [0031], [0059], [0065], [0098]), [0233]
Y US 2007/0277036 A1 (CHAMBERLAIN R et al.) November 29, 2007; paragraphs [0023], [0082],| 17, 18
[0084]
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “T” later document published afier the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international «X> document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone

:":g;lor::;ﬁgl'(i ;hzcylgtt_:te)(l;)cauon date of another citation or other “Y” document of particular relevance; the claimed invention cannot be

P p . e considered to involve an inventive step when the document is

“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than «g» gocument member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
18 June 2018 (18.06.2018) 0 5 J U L 20‘8

Name and mailing address of the ISA/ Authorized officer

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Shane Thomas

P.O. 'Bo.x 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: §71-272-4300

Facsimile No. §71-273-8300 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report

