
US009747228B2

(12) United States Patent
Purkayastha et al .

(10) Patent No . : US 9 , 747 , 228 B2
(45) Date of Patent : Aug . 29 , 2017

(56) References Cited (54) CACHING SYSTEMS AND METHODS FOR
EXECUTION WITHIN AN NVDRAM
ENVIRONMENT U . S . PATENT DOCUMENTS

@ (71) Applicant : Avago Technologies General IP
(Singapore) Pte . Ltd , Singapore (SG)

@ (72) Inventors : Saugata Das Purkayastha , Bangalore
(IN) ; Kishore Kaniyar
Sampathkumar , Bangalore (IN)

7 , 319 , 613 B2 1 / 2008 Forbes
8 , 402 , 226 B1 3 / 2013 Faibish et al .
8 , 555 , 000 B2 * 10 / 2013 Jo G06F 12 / 126

711 / 103
8 , 576 , 628 B2 11 / 2013 Ueda
9 , 355 , 023 B2 * 5 / 2016 Badam G06F 12 / 0246
9 , 355 , 036 B2 * 5 / 2016 Beard GO6F 17 / 30132

2006 / 0215452 A1 9 / 2006 Forbes
2010 / 0023682 A1 1 / 2010 Lee et al .
2012 / 0026794 A1 2 / 2012 Lueng
2013 / 0111160 A1 5 / 2013 Benhase et al .
2013 / 0166834 Al 6 / 2013 Mayhew et al .

(Continued)

@ (73) Assignee : AVAGO TECHNOLOGIES
GENERAL IP (SINGAPORE) PTE .
LTD . , Singapore (SG)

@ (*) Notice : OTHER PUBLICATIONS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 433 days . Official Action for U . S . Appl . No . 14 / 333 , 321 , dated Apr . 12 , 2017 ,

17 pages .
(21) Appl . No . : 14 / 323 , 079

Primary Examiner — Raymond Phan
(74) Attorney , Agent , or Firm — Sheridan Ross P . C .

ã ã

IS (22) Filed : Jul . 3 , 2014

(65) Prior Publication Data
US 2016 / 0004653 A1 Jan . 7 , 2016

(57)

(51) Int . Ci .
G06F 13 / 36 (2006 . 01)
G06F 13 / 28 (2006 . 01)
GOOF 13 / 42 (2006 . 01)
G06F 12 / 02 (2006 . 01)
GO6F 13 / 16 (2006 . 01)

(52) U . S . CI .
CPC G06F 13 / 28 (2013 . 01) ; G06F 12 / 0238

(2013 . 01) ; G06F 13 / 1694 (2013 . 01) ; G06F
13 / 4221 (2013 . 01) ; GO6F 2212 / 202 (2013 . 01)

(58) Field of Classification Search
USPC 710 / 306 – 315 , 104 – 110 ; 711 / 133 – 136
See application file for complete search history .

ABSTRACT
Systems and methods presented herein provide for simulated
NVDRAM operations . In a host system , a host memory is
sectioned into pages . An HBA in the host system comprises
a DRAM and an SSD for cache operations . The DRAM and
the SSD are sectioned into pages and mapped to pages of the
host memory . The SSD is further sectioned into regions
comprising one or more pages of the SSD . AnHBA driver is
operable to load a page of data from the SSD into a page of
the DRAM when directed by a host processor , to determine
that the page of the DRAM is occupied with other data , to
determine a priority of the region of the page of other data
occupying the page of the DRAM , and to flush the other data
from the DRAM to the SSD based on the determined
priority .

20 Claims , 7 Drawing Sheets

HOST SYSTEM
100 HBA

103

LOCAL
STORAGE CPU DRAM SSD

101 104 105 110

85 CONTROLLER
Host RAM

106
102

US 9 , 747 , 228 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

2013 / 0268727 A1 * 10 / 2013 Sohn GI?C 8 / 00
711 / 105

2014 / 0029340 A11 / 2014 Wang
2014 / 0258595 A1 * 9 / 2014 Venkatesha G06F 9 / 5016

711 / 103
2015 / 0193144 Al * 7 / 2015 Bilas G06F 3 / 064

711 / 103
2015 / 0220452 A1 * 8 / 2015 Purkayastha GO6F 12 / 1009

711 / 103
2016 / 0188410 A1 * 6 / 2016 Lee G06F 11 / 1028

714 / 6 . 24

* cited by examiner

U . S . Patent

HOST SYSTEM 100

HBA 103

LOCAL STORAGE

CPU

DRAM

SSD

Aug . 29 , 2017

101

104

105

110 111

CONTROLLER

Sheet 1 of 7

Host RAM

106

102

FIG . 1

US 9 , 747 , 228 B2

U . S . Patent Aug . 29 , 2017 Sheet 2 of 7 US 9 , 747 , 228 B2

FIG . 2
Section Host Memory , DRAM ,

AND SSD Into Pages - 201 200

Group SSD Pages Into Regions

Map The Host Memory Pages To
The DRAM Pages 2203

Map The Pages Of The DRAM TO
The Pages Of The SSD ~ 204 e SSD7 - 204

r206

Yes
is

Page Accessed By
Host Memory Present

In DRAM ?
Return The Mapped DRAM Page 207

No

Generate Page Fault 208

209
Is

Yes The Page Of The
DRAM Occupied ?

Determine Priority Of The
Region Of The Page Of Data
Occupying The Page Of The

DRAM
210

Flush The Other Data From
The DRAM To The SSD

Based On The Determined
Priority

1211

Load Page From SSD
into DRAM 212

FIG . 3A

102

107

103 103

U . S . Patent

Host Ram

CPU

HBA

104

HBA

104

105

301

302

DRAM

SSD

X

- -

wwwwwwwwwwwwwwwwwwww
-

X

www
1

? .
1

Region

1

1

1

K - - -

1

1

1

1

1
?

-

?? ?? ?

-

- - -

Region

1

1

X + 1 X + 2 X + 3 X + 4 X + 5 X + 6 X + 7

1

Aug . 29 , 2017

?

- | - | - | - | - | - |

01 AWN

1

X + 1 X + 2 X + 3 X + 4 X + 5 X + 6 X + 7

1

VAN -

1
?

1

Region

1

1

1

1
?

1

- - >

.

L

1

1

I
?

1

1

LI

Region

1

1

1
?

1

1

K - - -

E - - - -

Unused Unused Unused

Sheet 3 of 7

301

.

.

. .

. . .

.

. .

- - - -

Region

. . . .

M

1
1

1

?
l

N

1
1

1
1

I
?

1
1

Region N + 1

1

X + M + 1 X + M + 2 X + M + 3 X + M + 4 X + M + 5 X + M + 6 X + M + 7 X + M + 8

?

X + M + 1 X + M + 2 X + M + 3 X + M + 4 X + M + 5 X + M + 6 X + M + 7 X + M + 8

lolololololololol

1

1

l
?

0

Region N + 2

.

. . . .

.

1
1

1
1

0 0

1
?

we can

wwwwwwwwwwwwwwww
1
?

Region N + 3

US 9 , 747 , 228 B2

1

- - -

1
?

FIG . 3B

103

Host Ram

CPU

HBA HBA

104

105

atent

301

302

DRAM

ass

X

? .

1

x

1

move

1

ww wow mong

1

V

Region

1
1

1

?

V

o

1
11

1

L + X Z + X

* * *

1
1

- - -

1

?

V

T

X + 1 X + 2 X + 3 X + 4 X + 5

Region

II

1

Aug . 29 , 2017

1

- - - -

?

1
. .

1

1
I LLLLL

1 1

07 AWN

T

LLLLLLLL

olm Wom

V V

1

- -

- -

X + 3 X + 4 X + 5

?

1

Region

T

1
1

1

-

- -

I

V

1

SK
K - - -

9

K K - - -

1

X + 6

V

9 + X L + X

24

Region

1

L + X L + X

1

- -

?

- - -

1

V

Sheet 4 of 7

301
i

302

- - - >

1

? .

0

Region

1

- - - -

?

0

X + M + 1 X + M + 2 X + M + 3 X + M + 4 X + M + 5

1

?

1

X + M + 1 X + M + 2 X + M + 3 X + M + 4 X + M + 5 X + M + 6

1 1 1

II II II II
LLLLLLL

1
LLLL

LL LLL

1 1

Region J N + 1

?

????????

1

?

??????

LI

Region

9 + W + X

1

?

0 0

Z + N

1

_ + W + X

X + M + 7 X + M + 8

X + M + 8

Region J N + 3

US 9 , 747 , 228 B2

1

?

atent Aug . 29 , 2017 Sheet 5 of 7 US 9 , 747 , 228 B2

FIG . 4
3200

322
| < Region Range O >

< Region Range 1 >
< Region Range 2 >
< Region Range 3 >

< Priority Level 1 >

< Priority Level 2 >
< Priority Level 3 >
< Priority Level 4 > |

< Region Range N > < Priority Level N + 1 >

FIG . 5

350

322 - 0

322 - 1

322 - 31

atent

Priority Level 0

Priority Level 1

Priority Level 31

Aug . 29 , 2017

Region XO

Region YO

Region Z

Sheet 6 of 7

Region X1 21 - 111
Region Y1

Region 21

Region XN

Region YN

Region ZN

US 9 , 747 , 228 B2

U . S . Patent Aug . 29 , 2017 Sheet 7 of 7 US 9 . 747 , 228 B2

FIG . 6

PROCESSOR
402

COMPUTER
READABLE
MEDIUM
406

I / O DEVICES PROGRAM
AND DATA
MEMORY
1408

404

410

HOST
SYSTEMS

INTERFACES
412

COMPUTING SYSTEM 400

US 9 , 747 , 228 B2

m

CACHING SYSTEMS AND METHODS FOR DETAILED DESCRIPTION OF THE FIGURES
EXECUTION WITHIN AN NVDRAM

ENVIRONMENT The figures and the following description illustrate spe
cific exemplary embodiments of the invention . It will thus be

BACKGROUND 5 appreciated that those skilled in the art will be able to devise
various arrangements that , although not explicitly described

Non - Volatile Dynamic Random Access Memory or shown herein , embody the principles of the invention and
(NVDRAM) is a combination of volatile memory and are included within the scope of the invention . Furthermore ,
non - volatile memory , such as a Solid State Device (SSD) , any examples described herein are intended to aid in under
manufactured on a single device . The non - volatile memory 10 standing the principles of the invention and are to be acts as a shadow memory such that data stored in the volatile construed as being without limitation to such specifically memory is also stored in the non - volatile memory . And , recited examples and conditions . As a result , the invention is
when power is removed from the device , the data of non not limited to the specific embodiments or examples volatile portion of the NVDRAM remains even though the described below . data in the DRAM is gone . Other implementations of SSD 15
backed DRAM on separate devices are used when host FIG . 1 is a block diagram of a host system 100 employing
system application capacity requirements are relatively an HBA 103 for storage operations . The host system 100 , as
small . However , in a Host Bus Adapter (HBA) physical is typical with most processing systems , comprises a central
NVDRAM and SSD backed DRAM options are generally processing unit (CPU) 101 (also referred to as the host
not practical due to DRAM size limitations , power con - 20 processor) , host random access memory (RAM) 102 , and
sumptions , and the like . local storage 110 (e . g . , a local disk drive , SSD , or the like)

comprising an operating system 111 . The HBA 103 com
SUMMARY prises a DRAM 104 that is backed by an SSD 105 . The HBA

103 also comprises a controller 106 that is operable to ,
Systems and methods presented herein provide for simu - 25 among other things , direct storage operations on behalf of

lated NVDRAM operations . In a host system , a host the HBA 103 . Thus , the HBA 103 is any device , system ,
memory is sectioned into pages . An HBA in the host system software , or combination thereof operable to perform stor
comprises a DRAM and an SSD for cache operations . The age operations on behalf of the host system 100 .
DRAM and the SSD are sectioned into pages and mapped to The CPU 101 is communicatively coupled to the HBA
pages of the host memory . The SSD is further sectioned into 30 103 through the DRAM 104 to map the SSD 105 to the host
regions comprising one or more pages of the SSD . An HBA RAM 102 such that applications of the operating system 111 driver is operable to load a page of data from the SSD into can directly access cached data of the HBA 103 . For a page of the DRAM when directed by a host processor , to example , the operating system 111 comprises applications determine that the page of the DRAM is occupied with other that are used by the host system 100 to perform a variety of data , to determine a priority of the region of the page of other 35 operations . Some of those applications may be used to data occupying the page of the DRAM , and to flush the other
data from the DRAM to the SSD based on the determined access data cached within the DRAM 104 of the HBA 103 .

And , the DRAM 104 is backed by the SSD 105 so the priority .
The various embodiments disclosed herein may be imple - mapping allows the host RAM 102 to access data cached mapping allows the host RAM 102 to access data cached

mented in a variety of ways as a matter of design choice . For 40 therewith and / or to store data therewith .
example , some embodiments herein are implemented in In this embodiment , the applications of the operating
hardware whereas other embodiments may include pro - system 111 are operable to map large chunks of data cached
cesses that are operable to implement and / or operate the in the SSD 105 of the HBA 103 to a virtual address space in
hardware . Other exemplary embodiments , including soft - the DRAM 104 . Physically , the CPU 101 accesses the
ware and firmware , are described below . 45 DRAM 104 over a memory bus or other I / O bus as with

typical NVDRAM . But , in this " extended NVDRAM ”
BRIEF DESCRIPTION OF THE FIGURES embodiment , those operations are implemented with a driver

in the operating system 111 (referred to herein as an HBA
Some embodiments of the present invention are now extended NVDRAM driver) .

described , by way of example only , and with reference to the 50 The SSD 105 is divided into a plurality of regions , each
accompanying drawings . The same reference number rep - region being operable to fit within the size of the DRAM
resents the same element or the same type of element on all 104 . Based on the locality of the host application , one or
drawings . more regions can be loaded into the DRAM 104 and host

FIG . 1 is a block diagram of a host system employing an page tables are thus made to point to the regions which are
HBA for storage operations . 55 available in pages of the DRAM 104 . The regions are

FIG . 2 is a flowchart illustrating an exemplary process of prioritized by the operating system 111 applications such
the host system of FIG . 1 . that regions are removed , or “ flushed ” , from the DRAM 104

FIGS . 3A and 3B are block diagrams illustrating an to the SSD 105 such that other regions can be loaded from
exemplary mapping between host memory and memory of host RAM 102 to the DRAM 104 , and vice versa , bypassing
the HBA . 60 the operating system 111 and any protocol stacks (e . g . , Small

FIG . 4 is an exemplary table of region priorities of the Computer Interface System " SCSI ” , Serial Attached SCSI
memory maps . “ SAS ” , etc .) .

FIG . 5 is a block diagram illustrating an exemplary The embodiments herein provide certain advantages for
pooling of prioritized regions of the memory of the HBA . journal and database log applications of the host system 100

FIG . 6 illustrates an exemplary computer system operable 65 that sequentially access pages of the DRAM 104 . These and
to execute programmed instructions to perform desired other advantages will become readily apparent in the fol
functions . lowing drawings and descriptions . Exemplary mapping and

US 9 , 747 , 228 B2

region flushing operations of the host system 100 are now the HBA 103 . The SSD 105 of the HBA 103 is split into
shown and described with respect to the flowchart 200 of pages X through (X + M + 8) and into the regions o through
FIG . 2 . (N + 3) , wherein the references of X , M , and N are merely

The process of the flowchart 200 initiates with the sec intended to represent integers with values greater than 1 and
tioning and mapping of pages and regions of the host RAM 5 not necessarily equal to any other X , M , and N references
102 , the DRAM 104 , and the SSD 105 . For example , in the herein . Page table entries are established for the pages of the
process element 201 , each of the host RAM 102 , the DRAM SSD 105 in the operating system 111 and allow the CPU 101
104 , and the SSD 105 are sectioned into pages for storing to determine whether a page is available in the DRAM 104 .
data . The pages of the SSD 105 are also grouped into For example , pages that are available in the DRAM 104
regions , in the process element 202 . Generally , any given 10 have a " present ” bit 302 established as a logical “ 1 ” in the
region in the SSD 105 comprises one or more pages of the operating system 111 so as to point to the correct valid page
SSD 105 . In the process element 203 , pages of the host in the DRAM 104 . If the page is not present in the DRAM
RAM 102 are mapped to the pages of the DRAM 104 . And , 104 , the present bit 302 established as a logical “ O ” in the
the pages of the DRAM 104 are mapped to the pages of the operating system 111 showing that the page is invalid , thus
SSD , in the process element 204 . The SSD 105 generally 15 directing the CPU 101 to retrieve the data from the SSD 105
comprises much more storage space than that of the DRAM when directed . If space exists in the DRAM 104 , the CPU
104 . Accordingly , the regions are given priorities such that 101 may pull required data into the unused portions of the
they can be loaded within and flushed from the DRAM 104 DRAM 104 . Otherwise , the CPU will determine priorities of
based on priority to accommodate the storage size differen - the regions of pages occupying the DRAM 104 to flush them
tial . 20 to the SSD 105 .
When an application of the host system 100 requires data As exemplarily illustrated in this embodiment , the page

cached in the HBA 103 , the CPU 101 attempts to locate the table entries point the CPU 101 to the pages 0 - 7 in the
page in the DRAM 104 , in the process element 206 . For DRAM 104 and thus the pages X through X + 7 of the SSD
example , the DRAM 104 , being mapped to the SSD 105 , 105 . The remaining page table entries are marked as invalid
operates as a window to the SSD 105 through which the 25 which would direct the CPU 101 to pull data from the SSD
CPU 101 retrieves cached data . In doing so , however , the 105 when needed , or vice versa . Initially , page table entries
page of data may not be present in the DRAM 104 (i . e . , the are marked as invalid such that the pages can be loaded on
process element 206) , causing the operating system 111 to demand .
generate a page fault , in the process element 208 . Otherwise , With this mapping established , access by the host appli
the page of data is already available in a mapped page of the 30 cations to the pages present in the DRAM 104 and thus the
DRAM 104 , and hence is just returned to the caller in the SSD 105 are direct (e . g . , direct memory access , or “ DMA ”) .
process element 207 without requiring any further access to Thus , operations such as load / store operations of the oper
SSD 105 . ating system can bypass any operating system routine or

Returning to the page fault scenario of the process ele protocol stack . And , when an application of the host system
ment 208 , the CPU 101 (e . g . , via the HBA / extended 35 100 accesses a page which is not present in the DRAM 104 ,
NVDRAM driver in the operating system 111) determines the CPU 101 generates a page fault to the operating system
whether the page being accessed in the DRAM 104 is 111 . The operating system 111 handles the page fault by
occupied , in the process element 209 . If the page is not detecting that there exists unused portions of the DRAM 104
occupied , the CPU 101 loads the requested page from the as illustrated in FIG . 3A , and hence proceeds to directly load
SSD 105 into the DRAM 104 , in the process element 212 . 40 the requested region from the SSD 105 into the unused
Otherwise , the CPU 101 determines priorities of the regions region in DRAM 104 . However , if there are no unused
occupying the pages of the DRAM 104 , in the process portions , as illustrated in FIG . 3B , the CPU 101 also
element 210 . As mentioned , the SSD 105 is sectioned into generates a page fault to the operating system 111 but the
one or more regions with each region comprising one or operating system 111 handles the page fault by replacing a
more pages . Each region may be designated with a particular 45 region from the DRAM 104 and loading the requested
priority level . Since the DRAM 104 operates as a window to region from the SSD 105 into the DRAM 104 . This replace
the SSD 105 , the CPU 101 can identify the region of a page ment is performed based on prioritization of the regions of
where a load is being attempted and thus determine its the SSD 105 .
priority . From there , the CPU 101 may direct the DRAM 104 One exemplary UNIX operation that may be used to
to flush the data of that occupied page to the SSD 105 based 50 implement the mapping is illustrated below :
on the determined priority , in the process element 211 . The
CPU 101 then executes the process element 212 to load the
requested page from the SSD 105 into the DRAM 104 . After int fd = open (“ / dev / < device name > " , O _ WR , 0) ;

char * ext _ nv _ ptr = (volatile char *) mmap (NULL , process element 212 , once the requested page of data is < Ext . NVDRAM size > , PROT _ WRITE , MAP _ SHARED , fd , < offset >) ; determined to be available in a mapped page of the DRAM 55 ext _ nv _ ptr [offset] = < value > ; / * sets < value >
104 by the process element 206 , the mapped page is returned at Ext . NVDRAM location < offset > * /
to the caller in the process element 207 . unmap (ext _ nv _ ptr , < EXT _ NVDRAM _ SIZE >) ;

To illustrate , data occupying a page in the DRAM 104 close (fd) ;
may be in a region of lower priority than a page of data being
requested . The CPU 101 may thus determine that the page 60 This operation exposes the extended NVDRAM as a char
of data in the DRAM 104 is a lower priority and then direct acter device by the operating system 111 . The application
the DRAM 104 to flush the data to the SSD 105 based on the then maps a device into its address space such that the CPU
lower priority of the occupying page . Additional details 101 can directly read / write to any location in the extended
regarding the mapping and flushing of data pages are now NVDRAM space by load / store or memcpy / memset opera
shown and described in FIGS . 3 - 5 . 65 tions of the operating system 111 .

FIG . 3 is a block diagram illustrating an exemplary Now , when an application of the operating system 111
mapping between the host RAM 102 and the DRAM 104 of attempts to access a page of the extended NVDRAM (i . e . ,

US 9 , 747 , 228 B2

the DRAM 104 and the SSD 105) which is currently not priority levels 322 of the contiguous regions can be readily
available , the requested region holding the page needs be identified based on their respective priority pools . For
loaded from the SSD 105 to the DRAM 104 . If the DRAM example , some contiguous regions may have the same
104 is currently filled with regions , then an existing region priority levels and as such they are pooled together , such as
needs to be selected from the DRAM 104 (i . e . , a region of 5 priority level 0 (e . g . , a default priority level) comprising
the SSD 105) and moved to the SSD 105 . The requested contiguous regions X0 - XN , priority level 1 comprising
page (and other pages belonging to the region of the contiguous regions YO - YN , . . . through priority level 31
requested page) is then transferred in its place from the SSD comprising contiguous regions Z0 - ZN (e . g . , wherein the
105 to the DRAM 104 . references of X , Y , and Z are merely intended to represent

Different applications of the operating system 111 may 10 integers with values greater than 1 and not necessarily equal
have different uses for data and therefore may prioritize to any other X , Y , and Z references herein) .
regions in different ways . In one embodiment , the applica - The pools 350 provide the CPU 101 with a way to traverse
tions themselves indicate to the operating system 111 rela - through and identify the priority level of any given region .
tive priorities and replacement algorithms of the regions to For example , during a page fault , the CPU 101 determines
replace pages in the DRAM 104 . Some examples of UNIX 15 whether the requested region can be loaded without any
applications to replace pages are now illustrated . region replacement . If there is space in the DRAM 104 , the

ext _ nvdram _ memory _ priority (fd , < memory range , CPU 101 loads a region from the SSD 105 into the DRAM
< priority level >) 104 . Otherwise , in response to a page fault , the CPU 101

In this embodiment , the application establishes the prior traverses each priority level pool (e . g . , starting from the
ity based on 32 possible values of 0 to 31 . The priority 20 lowest to the highest priority) and selects a region from the
indicates the relative importance of the regions represented selected pool based on the replacement policy within the
by the range of the DRAM 104 over other regions . given priority level . The CPU 101 then transfers the region

ext _ nvdram _ priority _ pool size (fd , < priority level , to the SSD 105 and subsequently transfers the requested
< number of regions >) region causing the page fault from the SSD 105 into the

In this embodiment , the application establishes a maxi - 25 DRAM 104 .
mum number of regions in each priority level . By default , To further illustrate , if a requested region is in a priority
the number of regions in the DRAM 104 is divided equally 2 pool and there is no free space in this pool , the space may
among all priority levels . be acquired from an unallocated / free region in the priority 1

pool , a lower priority pool . The CPU 101 then determines
whether the free region from the priority 1 pool should be

ext _ nvdram _ region _ pool _ policy (fd , < priority level > , acquired based on the priority levels as well as the policy
LRU | < MRU | Read - Ahead | FIFO | Background - Clean) decisions of the priority pools , such as a threshold of the

minimum number of regions to maintain within a given
In this embodiment , the application establishes the policy priority pool , etc .

of region replacement in each priority level . LRU replaces 35 Now , assuming that the request is for a region in a priority
regions based on a least recently used region policy and 1 pool and that only the priority pool 31 (i . e . , a higher
MRU replaces regions based on a most recently used region priority pool) has an unallocated / free region and all other
policy . If the architecture of the CPU 101 does not support priority pools have regions that are already allocated . The
LRU and MRU replacement policies , then a FIFO replace - CPU 101 determines whether the unallocated / free region of
ment policy may be defaulted to , with regions being 40 the priority pool 31 should be allocated to the request for the
replaced in the order they are loaded . Read Ahead replace - region made for the priority 1 pool based on the priority
ment can be established if the extended NVDRAM should levels as well as the policy decisions of the pools (e . g . , the
load a next region after loading a current region requested by above mentioned threshold , determinations on whether to
a page fault . A Background Clean policy enables a back - honor requests from lower priority pools , and if so , how
ground task to flush dirty regions to the SSD 105 (dirty 45 many , etc .) . As the priority pool 31 is higher , the request may
regions being those not yet written to long - term storage) . be made to acquire that space if there are currently no

The extended NVDRAM driver in the operating system transactions pending or occurring for that space . Alterna
111 maintains a table to keep track of different priority levels tively , the applications of the operating system 111 can
for each region . Thus , when an application establishes a change a priority level of a region at any time as previously
priority of a memory range using ext _ nvdram _ memory _ pri - 50 mentioned . This directs the operating system to move a
ority , the extended NVDRAM driver finds regions corre - changed region to its newly designated priority pool .
sponding to this memory range . For example , the start If no free regions exist in the DRAM or if the policy of
region may be found as follows : the priority pools with free regions does not allow the free

start region = start memory range / region size . region in the corresponding pool to be allocated (e . g . , based
And , the end region may be found as follows : 55 on the priority of the pool from which the request origi

end region = end memory range / region size . nated) , the operating system 111 handles a page fault by
Then , the priority of the region (starting from the start region directing the CPU 101 to identify the priority of the par
until the end region) is set to the values provided by the ticular requested region , and find a lower priority region that
application . When a page fault happens , the region is cal - may be replaced . To further illustrate , if a requested region
culated from the memory range of the DRAM 104 in a 60 is in priority 5 pool and no free space exists that can be
similar way that it is looked up in the table to find a priority allocated from any pool , the CPU 101 then determines
pool to which the region belongs , as illustrated in the table whether the allocated region from the priority 1 pool should
320 of FIG . 4 . For example , each region has a range of pages be replaced based on the priority levels as well as the policy
321 spanning the region . And , each region may be associ - decisions of the pools (e . g . , the above mentioned threshold ,
ated with a priority level 322 established by the application . 65 etc .) . If this is not possible , the CPU 101 attempts to identify
As shown in FIG . 5 , the operating system 111 may also free space in the next priority pool until it reaches the

maintains pools 350 for the region priority levels 322 . Thus , original priority pool of the requested region (in this case ,

US 9 , 747 , 228 B2

the priority 5 pool) . Using this procedure , a suitable region Additionally , the invention can take the form of an
in a lower priority pool or the same priority pool may be entirely hardware embodiment , an entirely software embodi
chosen for replacement . ment or an embodiment containing both hardware and

In another embodiment , the extended NVDRAM driver in software elements . In one embodiment , the invention is
the operating system 111 may perform dirty region flush 5 implemented in software , which includes but is not limited
operations or read ahead operations depending on a particu to firmware , resident software , microcode , etc . FIG . 6 illus lar policy chosen by the application . This is handled by trates a computing system 400 in which a computer readable
launching a background task that performs the operation . In medium 406 may provide instructions for performing any of
the case of a dirty region flush , a page table entry for a page the methods disclosed herein . about to be written is marked as dirty . If the Background - 10
Clean option is selected by the application in the region Furthermore , the invention can take the form of a com
policy for the pool to which the page belongs , the page is puter program product accessible from the computer read
then written to the SSD 105 . In the case of a read ahead , the able medium 406 providing program code for use by or in
background task starts the read operation on the next region connection with a computer or any instruction execution that is physically contiguous on the SSD 105 . Examples of 15
the applications are as follows (“ . . . ” indicating other system . For the purposes of this description , the computer
operations that may be performed in between) : readable medium 406 can be any apparatus that can tangibly

ext _ nvdram _ region _ pool _ policy (fd , < priority level 1 > , LRU) ;
ext _ nvdram _ region _ pool _ policy (fd , < priority level 2 > , MRU | Read _ Ahead) ;
ext _ nvdram _ region _ pool _ policy (fd , < priority level 3 > , LRU) ;

ext _ nvdram _ region _ pool _ size (fd , < priority level 1 > , number of regions) ;
ext _ nvdram _ region _ pool _ size (fd , < priority level 2 > , number of regions) ;
ext _ nvdram _ region _ pool _ size (fd , < priority level 3 > , number of regions) ;
ext _ nvdram _ memory _ priority (fd , < memory range 1 > , , < priority level 1 >) ;
ext _ nvdram _ memory _ priority (fd , < memory range 2 > , , < priority level 2 >) ;
ext _ nvdram _ memory _ priority (fd , < memory range 3 > , , < priority level 3 >) ;
. . .

char * ext _ nv _ ptr = (volatile char *) mmap (NULL , < Ext . NVDRAM size > ,
PROT _ WRITE , MAP _ SHARED , fd < offset >) ;

ext _ nv _ ptr [offset] = < value > ; / * sets < value > at Ext . DRAM location < offset > * /

unmap (ext _ nv _ ptr , < EXT _ NVDRAM _ SIZE >) ;
close (fd) ;

The above embodiments provide certain advantages over store the program for use by or in connection with the
the prior art , such as allowing the system to run large instruction execution system , apparatus , or device , including
database transfers and their associated logs in a type of the computer system 400 .
NVDRAM environment . For example , the applications 40 The medium 406 can be any tangible electronic , mag
described herein provide an interface for placing large netic , optical , electromagnetic , infrared , or semiconductor
database files and their associated log files into the extended system (or apparatus or device) . Examples of a computer
NVDRAM embodiments above . The larger data accesses readable medium 406 include a semiconductor or solid state
may be random but log accesses are mostly sequential . Thus , memory , magnetic tape , a removable computer diskette , a

45 random access memory (RAM) , a read - only memory the extended NVDRAM may be divided into two priority (ROM) , a rigid magnetic disk and an optical disk . Some levels , one for data and the other for logs . The priority level examples of optical disks include compact disk - read only of the regions holding the logs would be lower compared to memory (CD - ROM) , compact disk - read / write (CD - R / W) that of the data as the data is typically more important . The and DVD .
replacement policy for the regions holding logs could then 50 The computing system 400 , suitable for storing and / or
be set to MRU and the replacement policy for the regions executing program code , can include one or more processors
holding the larger associated data files could then be set to 402 coupled directly or indirectly to memory 408 through a
LRU . But , the region replacement policies could also be system bus 410 . The memory 408 can include local memory
based on access patterns . And , of course , any number of employed during actual execution of the program code , bulk
priority levels may be used as a matter of design choice . 55 storage , and cache memories which provide temporary stor

It should be noted that the invention is not intended be age of at least some program code in order to reduce the
limited to any particular number of pages or regions . Addi - number of times code is retrieved from bulk storage during
tionally , replacement algorithms for replacing pages in the execution . Input / output or I / O devices 404 (including but
DRAM 104 based on priorities may be performed in a not limited to keyboards , displays , pointing devices , etc .)
variety of ways as a matter of design choice . And , although 60 can be coupled to the system either directly or through
shown and described with respect to one exemplary UNIX intervening I / O controllers . Network adapters may also be
operating system , the embodiments shown and described coupled to the system to enable the computing system 400
herein may be implemented in a variety of operating systems to become coupled to other data processing systems , such as
111 as a matter of design choice . A few examples of other through host systems interfaces 412 , or remote printers or
operating systems in which the embodiments herein may be 65 storage devices through intervening private or public net
employed include Microsoft Windows , Apple operating works . Modems , cable modem and Ethernet cards are just a
systems , and Linux . few of the currently available types of network adapters .

and

US 9 , 747 , 228 B2
10

What is claimed is : sectioning the SSD into pages and regions , with each
1 . A system , comprising : region of the SSD comprising one or more pages of the
a host processor ; SSD ;
a host memory communicatively coupled to the host mapping the host memory pages to the DRAM pages ;

processor and sectioned into pages ; mapping the pages of the DRAM to the pages of the SSD
a host bus adapter (HBA) communicatively coupled to the to provide the host processor with direct access to the

host processor and comprising a Dynamic Random pages of the SSD through the DRAM ;
Access Memory (DRAM) and a Solid State Memory loading a page of data from the SSD into a page of the
(SSD) for cache operations and DRAM when directed by the host processor ;

an HBA driver operable on the host processor , 10 determining that the page of the DRAM is occupied with
wherein the DRAM is sectioned into pages mapped to other data ; determining a priority of the region of the

pages of the host memory and the SSD is sectioned into page of other data occupying the page of the DRAM ;
pages mapped to pages of the DRAM ,

wherein the SSD is further sectioned into regions com flushing the other data from the DRAM to the SSD based
prising one or more pages of the SSD , and on the determined priority .

wherein the HBA driver is operable to load a page of data 9 . The method of claim 8 , further comprising :
from the SSD into a page of the DRAM when directed changing priorities of the regions of the SSD via an
by the host processor , to determine that the page of the application of an operating system directing the host
DRAM is occupied with other data , to determine a processor .
priority of a region of the page of the other data 20 10 . The method of claim 8 , further comprising :
occupying the page of the DRAM , and to flush the maintaining data of the DRAM in the SSD during a power
other data from the DRAM to the SSD based on the outage .
determined priority . 11 . The method of claim 9 , further comprising :

2 . The system of claim 1 , further comprising : maintaining a table of the priorities of the regions ; and
a storage device comprising an operating system execut - 25 periodically accessing the list to automatically determine

able by the host processor , wherein the operating the priorities of the regions .
system comprises an application that is operable to 12 . The method of claim 9 , further comprising :
change priorities of the regions of the SSD . generating a page fault when an application running on

3 . The system of claim 1 , wherein : the host processor attempts to load the page of data into
the SSD maintains data of the DRAM during a power 30 the DRAM and determines that the data is not in the

outage . DRAM .
4 . The system of claim 2 , wherein : 13 . The method of claim 12 , further comprising :
the storage device comprises a table of the priorities of the in response to generating the page fault , determining that

regions ; and the priority of the page being attempted for loading into
the HBA driver is further operable to direct the host 35 the DRAM comprises data in a region that is higher

processor to periodically access the list to automatically than the page of data currently occupying the DRAM ;
determine the priorities of the regions . and

5 . The system of claim 2 , wherein : in response to determining that the priority is higher ,
the operating system is operable to direct the processor to writing the page of data currently occupying the

generate a page fault an application running on the host 40 DRAM to the SSD .
processor attempts to load the page of data into the 14 . The method of claim 12 , further comprising :
DRAM and determines that the data is not in the in response to generating the page fault , determining that
DRAM . the priority of the page being attempted for loading into

6 . The system of claim 5 , wherein : the DRAM comprises data in a region that is lower than
the page fault directs the HBA driver to determine that the 45 the page of data currently occupying the DRAM ;

priority of the page being attempted for loading into the in response to determining that the priority is lower ,
DRAM comprises data in a region that is higher than determining a priority of a next physical region ; and
the page of data currently occupying the DRAM ; and loading the page being attempted for loading into the

in response to determining that the priority is higher , the DRAM into a page of the next physical region .
HBA driver writes the page of data currently occupying 50 15 . A non - transitory computer readable medium compris
the DRAM to the SSD . ing instructions that , when directed by a processor in a host

7 . The system of claim 5 , wherein : system comprising a host memory , a host bus adapter
the page fault directs the HBA driver to determine that the (HBA) , and an HBA driver , the HBA comprising a Dynamic

priority of the page being attempted for loading into the Random Access Memory (DRAM) and a Solid State
DRAM comprises data in a region that is lower than the 55 Memory (SSD) for cache operations , direct the processor to :
page of data currently occupying the DRAM ; and section the host memory into pages ;

in response to determining that the priority is lower , the section the DRAM into pages ;
HBA driver determines a priority of a next physical section the SSD into pages and regions , with each region
region and loads the page being attempted for loading of the SSD comprising one or more pages of the SSD ;
into the DRAM into a page of the next physical region . 60 map the host memory pages to the DRAM pages ;

8 . A method operable in a host system comprising a host map the pages of the DRAM to the pages of the SSD to
processor , a host memory , a host bus adapter (HBA) , and an provide the host processor with direct access to the
HBA driver , the HBA comprising a Dynamic Random pages of the SSD through the DRAM ;
Access Memory (DRAM) and a Solid State Memory (SSD) load a page of data from the SSD into a page of the
for cache operations , the method comprising : DRAM when directed by the host processor ;

sectioning the host memory into pages ; determine that the page of the DRAM is occupied with
sectioning the DRAM into pages ; other data ;

65

US 9 , 747 , 228 B2
11

determine a priority of the region of the page of other data
occupying the page of the DRAM ; and

flush the other data from the DRAM to the SSD based on
the determined priority .

16 . The computer readable medium of claim 15 , further 5
comprising instructions that direct the processor to :

change priorities of the regions of the SSD via an appli
cation of an operating system .

17 . The computer readable medium of claim 16 , further 10 comprising instructions that direct the processor to :
maintain a table of the priorities of the regions ; and
periodically access the list to automatically determine the

priorities of the regions .
18 . The computer readable medium of claim 16 , further 15

comprising instructions that direct the processor to :
generate a page fault when an application running on the
host processor attempts to load the page of data into the
DRAM and determines that the data is not in the
DRAM .

19 . The computer readable medium of claim 18 , further
comprising instructions that direct the processor to :

in response to generating the page fault , determine that the
priority of the page being attempted for loading into the
DRAM comprises data in a region that is higher than
the page of data currently occupying the DRAM ; and

in response to determining that the priority is higher , right
the page of data currently occupying the DRAM to the
SSD .

20 . The computer readable medium of claim 18 , further
comprising instructions that direct the processor to :

in response to generating the page fault , determine that the
priority of the page being attempted for loading into the
DRAM comprises data in a region that is lower than the
page of data currently occupying the DRAM ;

in response to determining that the priority is lower ,
determine a priority of a next physical region ; and

load the page being attempted for loading into the DRAM
into a page of the next physical region .

* * * *

