
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0041024 A1

Chang et al.

US 20170041024A1

(43) Pub. Date: Feb. 9, 2017

(54) METHOD AND APPARATUS FOR
REDUCING OLE CYCLES DURING LDPC
DECODING

(71) Applicant: Marvel International Ltd., Hamilton
(BM)

(72) Inventors: Yuan-Mao Chang, San Jose, CA (US);
Engling Yeo, San Jose, CA (US)

(21) Appl. No.: 15/284,060

(22) Filed: Oct. 3, 2016

Related U.S. Application Data
(63) Continuation of application No. 13/648,507, filed on

Oct. 10, 2012, now Pat. No. 9,461,671.

(60) Provisional application No. 61/545,541, filed on Oct.
10, 2011.

1 OO TYa

DATA SOURCE
102

S O CHANNE

Publication Classification

(51) Int. Cl.
H03M, 3/II (2006.01)
H03M 13/25 (2006.01)
H03M, 3/00 (2006.01)

(52) U.S. Cl.
CPC H03M 13/112 (2013.01); H03M 13/616

(2013.01); H03M 13/255 (2013.01)

(57) ABSTRACT

There is provided, in accordance with an embodiment, a
method of decoding codewords in conjunction with a low
density parity-check (LDPC) code that defines variable
nodes and check nodes, the method comprising receiving a
codeword over a data channel; evaluating quality of the data
channel; and iteratively updating values of the variable
nodes to decode the codeword; wherein the values of the
variable nodes are updated at different levels of numeric
precision depending on the evaluated quality of the data
channel.

DATA DESTNATON
04

120

were

Patent Application Publication Feb. 9, 2017. Sheet 1 of 20 US 2017/0041024 A1

DATA DESTNATION
104

DATA SOURCE
102

CHANNE S O

US 2017/0041024 A1 Feb. 9, 2017. Sheet 2 of 20

CHECK NODES 206

Patent Application Publication

2O2

VARABLE NODES 208

Patent Application Publication Feb. 9, 2017. Sheet 3 of 20 US 2017/0041024 A1

BELIEFS

306

CALCULATE CHECK NODE
UPDATE WARIABLE NODES BEEFS

FIG. 3

SNR

LDPC DECODER
18

BELIEF BELEF
MEMORY UPDATER
402 404

Patent Application Publication Feb. 9, 2017. Sheet 4 of 20 US 2017/0041024 A1

502

506

CACULATE AND SiORE
BEEFSAT OW PRECISION

OSABLE HGH-PRECISION
MEMORY

DSABLE HGH-PRECISION
REGSTERS

CALCULATE AND STORE
BELIEFS AT HGH PRECISION

ENABLE HGH-PRECISION
MEMORY

510

514

ENABLE HGH-PRECISION
REGSTERS

Patent Application Publication Feb. 9, 2017. Sheet 5 of 20 US 2017/0041024 A1

704
IN(H)

704
IN(H)

N(-) 704

704

CK

HGH-PRECISON
MODE

FG. 7

US 2017/0041024 A1 Feb. 9, 2017. Sheet 7 of 20 Patent Application Publication

Patent Application Publication Feb. 9, 2017. Sheet 8 of 20 US 2017/0041024 A1

WHILE DECODING THE FIRST CODEWORD, RECEIVING ASECOND CODE | -- 108
WORD

DECODENG, AT LEAST IN PART, THE FIRST AND SECOND CODE WORDS IN
PARAE

FIG. 11

1112

US 2017/0041024 A1 Feb. 9, 2017. Sheet 10 of 20 Patent Application Publication

US 2017/0041024 A1 Patent Application Publication

US 2017/0041024 A1 Feb. 9, 2017. Sheet 13 of 20 Patent Application Publication

EZ L 'Ol–
00Z?

US 2017/0041024 A1 Feb. 9, 2017. Sheet 14 of 20 Patent Application Publication

US 2017/0041024 A1 Feb. 9, 2017. Sheet 15 of 20 Patent Application Publication

9

89 L "SO|-||

US 2017/0041024 A1 Feb. 9, 2017. Sheet 16 of 20 Patent Application Publication

US 2017/0041024 A1 Feb. 9, 2017. Sheet 17 of 20 Patent Application Publication

US 2017/0041024 A1 Feb. 9, 2017. Sheet 18 of 20 Patent Application Publication

US 2017/0041024 A1 Feb. 9, 2017. Sheet 19 of 20 Patent Application Publication

Patent Application Publication Feb. 9, 2017. Sheet 20 of 20 US 2017/0041024 A1

DETERMINE A DESTRIBUTON OF MAGNITUDE OF LRVA UES

COMPARE THE DISTREBUTION OF MAGNTUDE OF RVA UES WITH AN -- 1608
iNTENDED DSTRIBUTION OF MAGNTUDE OF ER WALUES

612
DETERMNE SCALING FACTOR

1616
SCALE LLR VALUES

FIG. 16

US 2017/0041024 A1

METHOD AND APPARATUS FOR
REDUCING OLE CYCLES DURING LDPC

DECODING

CROSS-REFERENCE TO RELATED
APPLICATION

0001. The present disclosure is a continuation of and
claims priority to U.S. patent application Ser. No. 13/648,
507, filed Oct. 10, 2012, now U.S. Pat. No. 9,461,671, issued
Oct. 4, 2016, which claims priority to U.S. Provisional
Patent Application No. 61/545,541, filed Oct. 10, 2011,
which are incorporated herein by reference.

TECHNICAL FIELD

0002 This disclosure relates to decoding codewords
using iterative check node calculations, and more particu
larly, to decoding codewords using low-density parity-check
(LDPC) codes.

BACKGROUND

0003. The background description provided herein is for
the purpose of generally presenting the context of the
disclosure. Work of the presently named inventors, to the
extent it is described in this background section, as well as
aspects of the description that may not otherwise qualify as
prior art at the time of filing, are neither expressly nor
impliedly admitted as prior art against the present disclo
SC.

0004 Data transfer systems, such as data transmission
systems and data storage systems, are typically character
ized as data channels. In data transmission systems, for
example, data can be transmitted via channels such as wires,
fiber-optic cable, wireless protocols, etc. In data storage
systems, the storage medium itself is a data channel. In this
regard, storage system channels can include, for example,
hard disk platters, Solid state memory, digital tape, Volume
holographic memory, and others.
0005. The efficiency and reliability of data channels can
depend on many factors, such as the signal-to-noise ratio
(SNR) of the channel. For example, storage media having
high SNRS can allow for more accurate storage and recovery
of data. On the other hand, storage media having low SNRs
can result in high error rates, including misread and lost data.
Similarly, the accuracy of a digital data communication
channel depends on its SNR. High-SNR communication
channels can transmit data quickly and accurately, while
low-SNR communication channels can be plagued with
errors, such as dropped messages.
0006 Error correcting code (ECC) can provide a way to
reduce errors in data storage and transmission by introduc
ing data redundancy into the communication channel, typi
cally in the form of extra bits that are used to check the
validity of the original data. ECCs typically utilize code
words, which are specific patterns of bits or symbols in a
storage medium or transmission signal, to group data into
chunks to be checked for errors.
0007 Low-density parity-check (LDPC) is a particular
type of ECC. When using LDPC, original data is encoded
using an LDPC code. An LDPC code can be represented
mathematically as a two-dimensional matrix. An LDPC
code can also be represented graphically, as a bipartite graph
containing two sets of nodes (variable nodes and check
nodes) connected by edges. Encoding based on an LDPC

Feb. 9, 2017

code produces a codeword, which can be decoded to pro
duce the original data even in the presence of channel
degradation and/or data corruption. LDPC decoding is an
iterative process in which different nodes of the LDPC code
update each other based on calculated probabilities regard
ing individual bits of the codeword.

SUMMARY

0008. There is provided, in accordance with an embodi
ment, a method of decoding codewords in conjunction with
a low-density parity-check (LDPC) code that defines vari
able nodes and check nodes, the method comprising receiv
ing a codeword over a data channel; evaluating quality of the
data channel; and iteratively updating values of the variable
nodes to decode the codeword; wherein the values of the
variable nodes are updated at different levels of numeric
precision depending on the evaluated quality of the data
channel.

0009. There is also provided, in accordance with an
embodiment, a decoder that decodes codewords received
over a data channel in conjunction with a check code that
defines variable nodes and check nodes, the decoder com
prising value memory configured to store values of the
variable nodes; and an update engine configured to itera
tively update the stored values of the variable nodes:
wherein the update engine is responsive to a quality of the
data channel and configured to update the stored values of
the variable nodes at different levels of numeric precision.
0010. There is also provided, in accordance with an
embodiment, a decoder that decodes codewords received
over a data channel in conjunction with a check code that
defines variable nodes and check nodes, the decoder being
configured to perform actions comprising: evaluating a
quality of the data channel; and iteratively updating values
of the variable nodes to decode a received codeword;
wherein the values of the variable nodes are updated at
different levels of numeric precision depending on the
evaluated quality of the data channel.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 Embodiments of the present disclosure will be
readily understood by the following detailed description in
conjunction with the accompanying drawings. To facilitate
this description, like reference numerals designate like ele
mentS.

0012 FIG. 1 is a functional block diagram of system in
which data is transmitted over a data communications chan
nel using LDPC techniques in accordance with an embodi
ment of the present disclosure.
0013 FIG. 2A is a diagram illustrating an example LDPC
code.
0014 FIG. 2B is a diagram illustrating an example LDPC
code matrix.
0015 FIG. 3 is a flowchart illustrating high-level aspects
of decoding a codeword based on an LDPC code.
0016 FIG. 4 is a high-level block diagram illustrating
functional components of an LDPC decoder in accordance
with an embodiment of the present disclosure.
(0017 FIG. 5 is a flowchart illustrating further aspects of
decoding a codeword based on an LDPC code, including
power conservation techniques that may be employed in
certain situations.

US 2017/0041024 A1

0018 FIG. 6 is a block diagram illustrating an example
memory configuration that may be used for power conser
Vation in conjunction with the techniques described herein.
0019 FIG. 7 is a block diagram illustrating example
component configuration that may be used for power con
servation in conjunction with the techniques described
herein.
0020 FIG. 8 is a diagram illustrating an example LDPC
code matrix.
0021 FIG. 9 (labeled as “Prior Art') illustrates process
ing layers of an LDPC code matrix in a conventional LDPC
decoder.
0022 FIG. 10 illustrates parallel decoding of a plurality
of LDPC codewords.
0023 FIG. 11 is a flowchart illustrating decoding, at least
in part, at least two codewords in parallel.
0024 FIG. 12A illustrates a circuit that support shifting
circulant of varying sizes.
0025 FIGS. 12B-12E illustrates example operations of
the circuit of FIG. 12A.
0026 FIG. 13A illustrates an intended LLR magnitude
distribution for an LDPC decoder.
0027 FIGS. 13B and 13C illustrate example actual LLR
magnitude distributions.
0028 FIG. 14 illustrates an LLR pre-processing module
for pre-processing LLR values, prior to transmitting the
LLR values to an LDPC decoder.
0029 FIGS. 15A and 15B illustrate example scaling of
LLR values by the LLR pre-processing module of FIG. 14.
0030 FIG. 16 is a flowchart illustrating scaling of LLR
values prior to processing the LLR values by an LPDC
decoder.

DETAILED DESCRIPTION

0031. The following description merely provides
examples and is in no way intended to limit the disclosure,
its application, or uses.
0032 FIG. 1 shows an example system 100 in which the
techniques described herein may be used. The system 100
includes a data source 102 and a data destination 104, which
communicate an encoded signal over a data communications
medium or channel 106. The communications channel 106
may comprise a wired or wireless communications channel,
and may have varying degrees of quality or reliability. In
Some implementations, the encoded signal may comprise
data stored in a storage system Such as a magnetic disk or
optical disk, and the channel 106 may represent the storage
system.
0033. The data source 102 includes a low-density parity
check (LDPC) encoder 108, which may be configured to
encode original data in accordance with LDPC encoding
techniques, resulting in encoded LDPC data or codewords
110 that are transmitted over or stored by the communica
tions channel 106. The data source 102 also includes a signal
transmitter 112 that receives the encoded data or codewords
110 from the LDPC encoder 108 and that modulates the
encoded data 110 for transmission over the communications
channel 106.
0034. The data destination 104 includes a signal receiver
114 that receives a communications signal from the com
munications channel 106. The signal receiver 114 demodu
lates the received communications signal and provides
demodulated, encoded data or codewords 116 to an LDPC
decoder 118. The LDPC decoder 118 decodes the encoded

Feb. 9, 2017

data 116 to reproduce the original data. LDPC decoding
techniques allow faithful reproduction of the original data in
spite of bit errors that are potentially introduced by degra
dations of the communications channel 106.
0035. The communications channel 106 may exhibit
varying degrees of reliability over time. The signal receiver
114 may evaluate the reliability of the communications
channel 106 in terms of the quality of the received data
signal. In the described embodiment, signal-to-noise ratio
(SNR) of the received signal is used as an indicator of
channel quality or reliability. The receiver 114 repeatedly or
continuously evaluates the SNR of the channel 106 and
provides an SNR signal, measurement, or value 120 to the
LDPC decoder 118. The LDPC decoder 118 may vary
certain characteristics of the LDPC decoding based on the
current SNR. In particular, LPDC decoding may be per
formed at different levels of numeric precision, depending
on the current quality or SNR of the data channel 106.
0036 FIG. 2A illustrates an LDPC code, represented as
an LDPC code matrix 202 (also referred to as a binary parity
check matrix) and as a corresponding bipartite graph 204.
The LDPC code matrix 202 comprises a plurality of rows
and a plurality of columns. In this example, the code matrix
has four rows and eight columns. The elements of the matrix
202, each of which corresponds to a single row and a single
column, are binary. Each value is thus represented as either
a 0 or a 1.
0037. The LDPC code defines a plurality of nodes, which
are best illustrated by the LDPC graph 204. The LDPC graph
204 comprises a plurality check nodes 206 and variable
nodes 208. The check nodes 206, labeled from 0 through 3,
correspond respectively to rows 0 through 3 of the matrix
202. The variable nodes 208, labeled from 0 through 7,
correspond respectively to rows 0 through 7 of the matrix
202.

0038 Edges 210 connect each check node 206 to a
number of individual variable nodes 208. The edges 210 also
connect each variable node 208 to a number of individual
check nodes 206. The edges 210 correspond to 1s of the
matrix 202: for each 1 value at a particular row and column,
an edge 210 connects between the corresponding check node
206 and variable node 208.
0039 Decoding a codeword can be explained conceptu
ally with reference to the graph 204. In this example, a
received codeword comprises 8 bits, corresponding to the 8
variable nodes 0 through 7. In order to decode the codeword,
each variable node sends a value or message to its edge
connected check nodes, indicating the “belief of the vari
able node regarding its value. For example, variable node
“1” sends a message to check nodes “0” and “1”, which are
connected by respective edges 210.
0040. In response, each check node sends a message to its
connected variable nodes, indicating the “belief of the
check node regarding the value of the check node to which
the messages is sent.
0041. Initially, an individual variable node “believes'
that its value is as received by the receiver 114. Subse
quently, an individual variable node may reevaluate its belief
based on received values or messages from the check nodes.
0042. An individual check node bases its belief regarding
a particular variable node based on most recent values
received from other variable nodes and upon parity equa
tions that are known to have been used in the LDPC
encoding process.

US 2017/0041024 A1

0043. The “beliefs' shared between nodes may be rep
resented in various ways, such as by values, likelihoods,
probabilities, and so forth. For example, an individual belief
value may be represented as the likelihood that the corre
sponding node is either a “0” or a “1”. In some implemen
tations, belief values may be represented as value pairs,
including both the likelihood that a node value is a one and
the likelihood that a node value is a Zero.
0044) The process described above iterates, with the
check nodes and variable nodes exchanging messages and/or
belief values, until all parity or check equations are fulfilled
by the bits of the variable nodes, or until a predefined
number of iterations have been performed. The final bit
values of the variable nodes then indicate the decoded
codeword.

004.5 FIG. 2B illustrates an LDPC code matrix 220. The
LDPC matrix 220 has a dimension of M rows and N
columns, where M and N are appropriate integers. The
LDPC matrix 220 is, for example, a sparse binary parity
check matrix, in which each entry is 1 or 0. The LDPC
matrix 220 is, for example, used to encode and/or decode K
bits of data, where Me(N-K). If the LDPC matrix 220 is
represented as H, then a binary string c (which is of length
N) is a codeword for the LDPC code matrix 220 if and only
if H.c-O, where O is a null matrix of appropriate dimen
S1O.S.

0046. The LDPC matrix 220 is divided in A by B sub
divisions (illustrated using dotted lines in FIG. 2B), where A
and B are appropriate integers. Each subdivision of the
LDPC matrix 220 is referred to as a circulant of the LDPC
matrix 220. A circulant is a square matrix of dimension Zby
Z (i.e., each circulant has Z rows and Z columns), i.e., each
circulant is of size Z. Each circulant comprises single shifted
diagonal elements of 1's, and other entries of the circulant
are 0. The circulant size Z can take an appropriate integer
value. For example, Z may be equal to one of 27, 54 or 81.
0047. The number of columns N of the LDPC matrix 220

is given by A.Z. and the number of rows M of the LDPC
matrix 220 is given by B.Z. As is well known to those skilled
in the art, for a given length of data (i.e., for a given value
of K) and for a given value of N, the LDPC matrix 220 is
associated with a given code rate. For example, for 1620 bits
of data (i.e., K=1620) and for N=1944, the code rate is 5/6
(i.e., for every 5 bits of data, the LDPC encoder 108
generates 6 bits of data, of which (6-5), i.e., 1 bit data is
redundant.
0048. In an example, the code rate associated with the
LDPC matrix 220 can take one of various possible values,
e.g., 5/6, 4, 2/3, /2, or the like. Also, in an example, the
circulant Z can take an appropriate integer value, e.g., 27, 54
or 81. Thus, in an example, if the code rate can take one of
four possible values and the circulant Z can take one of three
possible values, then the structure of the LDPC matrix 220
can take one of 12 possible values (i.e., one structure for
each possible value of the code rate and for each possible
value of the circulant Z).
0049 FIG. 3 illustrates an overview of a iterative decod
ing process in the form of a high-level flowchart. The
process begins at 302, which comprises updating values of
the variable nodes 208. Initially, each variable node 208 is
assigned the corresponding bit of the received codeword,
which may contain errors. At 304, the assigned values form
variable node beliefs. At 306, the assigned values form
variable node beliefs are used as input for calculating or

Feb. 9, 2017

recalculating beliefs 308 of the check nodes 206 regarding
the variable nodes 208, based on the variable node beliefs
304 and upon parity check equations. At 308, the calculated
check node beliefs are used as input in another iteration of
302, in which the values of the variable nodes 208 are
updated based on the check node beliefs calculated at 306.
This process iterates or repeats until it converges, or until a
set limit of iterations has been performed, upon which the
updated values of the variable nodes 208 are declared as the
correct and/or corrected value of the received codeword.
0050. The algorithm used to implement the general
LDPC decoding process described above may be referred to
as the “belief propagation algorithm, the “message passing
algorithm, and/or the "sum-product algorithm.” The beliefs
304 and 308 may be represented in different ways, such as
absolute values, probabilities, likelihoods, and so forth. In
some cases, the beliefs 304 and 308 may be calculated and
represented in logarithmic space in order to simplify calcu
lations.
0051. In certain LDPC implementations, the beliefs 304
and 308 may be calculated and represented as a-posteriori
probability (APP) values, which may in turn be calculated
and represented in the logarithmic domain as log likelihood
ratios (LLRs).
0.052 FIG. 4 illustrates example components of an LDPC
decoder 118 that may be used to implement the LDPC
decoding process of FIG. 3. In this example, the LDPC
decoder 118 comprises a belief memory or value memory
402 and a belief updater, value updater, or update engine
404. The belief memory 402 comprises memory registers or
locations corresponding to the check nodes 206 and the
variable nodes 208, which are used for storing calculated
beliefs or belief values 304 and 308.
0053. The belief updater 404 comprises a processor or
other logic for performing the updating and calculations of
FIG. 3. Accordingly, the belief updater 404 writes and reads
belief values 406 to and from the registers or locations of the
belief memory 402. The belief values 406, which may be
equivalent to the beliefs 304 and 308 of FIG. 3, may be
represented as numeric values within the belief memory
402, such as by APP values or LLR values.
0054. In various embodiments, the belief memory 402
may be referred to as APP memory. Similarly, the belief
updater 404 may be referred to as an APP engine or updater.

Reconfigurable Precision of LDPC Decoder
Processing

0055. In an embodiment, the LDPC decoder 118 is
responsive to the signal-to-noise ratio (SNR) of the com
munications channel 106 (FIG. 1), as represented by the
SNR signal 120, to dynamically vary the level of numeric
precision at which the belief values 406 are calculated and
stored during the LDPC decoding process. For example, a
relatively high precision may be used when the data channel
106 exhibits a low signal quality or SNR, and a relatively
low precision may be used when the data channel 106
exhibits a high signal quality or SNR.
0056 FIG. 5 illustrates the behavior of the LDPC
decoder 118 with respect to the use of varying levels of
numeric precision when calculating LDPC beliefs of belief
values. At 502, a quality of the data communications channel
is evaluated, in terms of an SNR value 120. If the current
SNR is relatively high, Such as being greater than a prede
termined threshold, the decoder 118 performs its calcula

US 2017/0041024 A1

tions in accordance with the actions on the left side of FIG.
5. If the current SNR is relatively low, such as being less
than a predetermined threshold, the decoder performs its
calculations in accordance with the actions on the right side
of FIG. S.

0057. In the case where the current SNR is above the
predetermined threshold, at 504, check node and variable
node beliefs are calculated, provided, sent, and/or stored at
a relatively low level of numeric precision. For example,
belief values may be represented in calculations and stored
in the memory 402 using 6 bits of precision. At 508, a
high-precision memory (e.g., a portion of a memory for
storing check node and variable node beliefs at a relatively
high level of numeric precision) is disabled. At 512, one or
more high-precision registers (e.g., for storing check node
and variable node beliefs at a relatively high level of
numeric precision) are disabled.
0058. In the case where the current SNR is below the
predetermined threshold, at 506, check node and variable
node belief values are calculated and stored at relatively
high levels of precision. For example, belief values may be
represented in calculations and in the belief memory 402 at
8 bits of precision.
0059. The decreased precision when the data channel is
exhibiting a high SNR allows for implementation of various
power-saving techniques. For example, at 508, when the
SNR is relatively high, the portion of the belief memory 402
that is otherwise used for storage of low-order, high-preci
sion bits of belief values is disabled. When the data channel
is exhibiting a low SNR, at 510, this portion of memory is
enabled. Also, at 514, the one or more high-precision
registers (e.g., for storing check node and variable node
beliefs at a relatively high level of numeric precision) are
enabled.
0060 FIG. 6 illustrates an example configuration of the
belief memory 402, in which a portion of the memory may
be disabled for power savings in situations where the data
channel 106 exhibits a high SNR. The belief memory 402
comprises two memory arrays or areas 602 and 604, which
may be implemented using different portions of a semicon
ductor die. The first memory or memory area 602 may be
used for storing low-precision portions of belief values 406,
such as higher-order bits or most significant bits of the belief
values 406. The second memory or memory area 604 may be
used for storing high-precision portions of the belief values
406, such as lower-order bits or least significant bits of the
belief values 406.
0061 An example of a belief value 406 is illustrated in
FIG. 6 as having high-order bits 406(H), corresponding to a
low-precision portion of the belief value 406. The belief
value also has lower-order bits 406(L), corresponding to a
high-precision portion of the belief value 406. For example,
the high-order, low-precision bits 406(H) may comprise the
upper or most significant 6 bits of the belief value 406, and
the low-order, high-precision bits 406(L) may comprise the
lower or least significant 2 bits of the belief value 406.
0062. The high-order bits 406(H) of a single belief value
406 may be stored in one of a plurality of registers 606 of
the first memory area 602, and the low-order bits 406(L) of
the belief value 406 may be stored in a corresponding one of
a plurality of registers 608 of the second memory area 604.
When reading a belief value 406 from the belief memory
402, corresponding registers 606 and 608 are concatenated
to form the full-precision belief value 406.

Feb. 9, 2017

0063. When the LDPC decoder 118 is acting in a low
precision mode, corresponding to the left side of FIG. 5, the
high-precision portion 604 of the belief memory 402 may be
disabled to conserve power. In this case, the LDPC decoder
118 references only the first memory area 602, and uses
belief values that comprise only the high-order bits 406(H)
of the belief values 406.
0064. As another example of a power-saving technique
under conditions of high SNR, an action 512 may be
performed, comprising disabling various logic circuits of the
belief updater 404 that are responsible calculating or other
wise handling high-precision portions of the belief values.
When the data channel 106 is exhibiting a low SNR, an
action 514 may be performed of enabling these logic ele
ments or components.
0065 FIG. 7 illustrates an example configuration of
components within the belief updater 404, in which the
clock signal to certain portions of the logic corresponding to
high-precision calculations may be gated or disabled. Logic
702 is responsible for performing the calculations and data
transfers described above. In addition, various registers
and/or latches 704 may be used for transmitting and tem
porarily storing certain data within the belief updater 404.
0066. The logic 702 generally responds to input signals,
including high-order input signals labeled IN(H) and low
order input signals labeled IN(L). As described above, the
low-order input signals IN(L) may be disregarded when the
belief updater 404 is not operating in a high-precision mode.
Similarly, registers and/or latches 704 corresponding to the
low-order input signals IN(L) may be unused when the
belief updater 404 is not operating in the high-precision
mode.
0067. The logic 702 and registers 704 are clocked by one
or more clock signals, represented in FIG. 7 by a signal
labeled CLK. In an embodiment, the clock signal CLK is
gated by one or more AND gates 706 before being used to
clock low-order elements of the updater 414. The AND gates
706 have inputs connected to the CLK signal and to a
high-precision mode signal, labeled in FIG. 7 as HIGH
PRECISION MODE. Accordingly, the CLK signal is
enabled at the low-order elements of the updater 414 only
when the LDPC decoder 118 is operating in the low
precision mode.
0068. The techniques described above may be used for
power conservation in various situations in which data is
received over a channel of variable quality, such as wireless
communications channels.
0069. Note that although the description above assumes
two levels of numeric precision, other embodiments may use
three or more levels of precision, corresponding to different
ranges of SNR.

Reconfigurable Processing by LDPC Decoder
0070 FIG. 8 is a diagram illustrating an example LDPC
code matrix 800 (henceforth referred to as “matrix 800').
The matrix 800 is, for example, a sparse binary parity check
matrix, in which each entry is 1 or 0. The matrix 800 is
divided in a plurality of subdivisions, each subdivision
corresponding to a circulant. Some of the example circulants
of the matrix 800 is illustrated in FIG. 8. For example,
example circulants S00, S01,..., S05, S10, ..., S15, S20,
... , S24 are illustrated in FIG. 8. Although a given number
of circulants are illustrated in FIG. 8, the matrix 800 may
include any different number of circulants. Some of the

US 2017/0041024 A1

circulants of the matrix 800 are illustrated as by a dash sign
("-), for example, as these circulants have all Zero entries,
are not relevant for processing the matrix 800, are merely for
illustrative purposes, and/or the like.
(0071. Each circulant of the matrix 800 comprises shifted
diagonal elements of 1's, and other entries of the circulant
are 0. Each of the circulants is a square matrix with Z. rows
and Z columns (i.e., the circulant size is Z), where Z can take
an appropriate integer value. For example, Z may be equal to
one of 27, 54 or 81.
0072. In an embodiment, a layer of the matrix 800 refers

to a row of the circulants of the matrix 800. For example, a
first layer (or layer 0) of the matrix 800 comprises circulants
S00, S01, S05, and second layer (or layer 1) of the
matrix 800 comprises circulants S10. S15, and so on.
Although the example matrix 800 illustrates only three
layers, in another embodiment, the matrix 800 can include
any other appropriate number of layers.
0073. In an embodiment, a circulant of the matrix 800 can
be read from the belief memory 402 during a single clock
cycle, and a circulant of the matrix 800 can be updated by
the belief updater 404 during a single clock cycle. For
example, all the circulants of layer 0 of the matrix 800 (i.e.,
circulants S00, S05) are read from the belief memory
402 during consecutive clock cycles (e.g., during six con
secutive clock cycles). It takes, for example, three clock
cycles (or any other appropriate number of clock cycles) to
decode or update the circulants of layer 0 of the matrix 800
(e.g., by the belief updater 404). Subsequently, the updated
circulants of layer 0 of the matrix 800 are written back to the
belief memory 402. This iterative process continues for
individual layers until the decoding process is successfully
completed.
0074 FIG. 9 (labeled as “Prior Art') illustrates process
ing layers of an LDPC code matrix (e.g., matrix 800) in a
conventional LDPC decoder. In FIG. 9, during six consecu
tive clock cycles (labeled as clock cycles 0, . . . , 6).
circulants S00, . . . , S05 of layer 0 are read from a belief
memory. It takes, for example, three clock cycles to decode
and update the circulants (e.g., by a belief updater). Subse
quently, the circulants S00, S05 of layer 0 are written
to the belief memory during clock cycles 9, . . . , 14.
0075. The circulant S10 of layer 1 can be read from the
belief memory only after, for example, the circulant S00 is
written back to the belief memory. This is to avoid, for
example, “read-before-write' conflict in the circulant col
umn of the LDPC code matrix 800. Accordingly, as illus
trated in FIG. 9, the circulant S10 is read at clock cycle 10.
Thus, the start of reading of the circulants of layer 1 can
begin only at clock cycle 10. Thus, for four clock cycles (i.e.,
clock cycles 6 to 10), no read operation is performed in the
belief memory, resulting in idle time in the read operation.
Such idle time results in a delay in decoding codewords in
a conventional LDPC decoder.
0076 FIG. 10 illustrates parallel decoding of a plurality
of LDPC codewords. The decoding of the plurality of LDPC
codewords, as illustrated in FIG. 10, can be performed by an
LDPC decoder, e.g., the LDPC decoder 118 of FIG. 1
(comprising the belief memory 402 and the belief updater
404). Referring to FIGS. 4, 8 and 10, after a first codeword
(CW), e.g., CW 0 is received, a layer 0 of the associated
LDPC code matrix of the CW 0 is read from the belief
memory 402. Subsequent to reading the layer 0 of CW 0, the
belief updater 404 updates and writes back the updated

Feb. 9, 2017

values of the layer 0 of CW 0 to the belief memory 402.
Subsequently, the layer 1 of the CW 0 is read from the belief
memory 402, and the iterative process of reading, updating
and writing the layers of CW 0 continues. It is to be noted
that although FIG. 10 illustrates each layer of a CW being
read and updated only once, a layer of a CW can be read and
updated multiple times iteratively, based on a requirement of
the LDPC decoding process.
(0077. When the LDPC decoder 118 decodes only a single
codeword (e.g., CW 0), the LDPC decoder 118 operates in
a single CW mode, as illustrated in FIG. 10. For reasons
discussed with respect to FIG. 9, during the single CW
mode, the belief memory 402 and/or the belief updater 404
frequently remains idle, as illustrated in FIG. 10.
0078. In an embodiment, subsequent to receiving and
while processing the CW 0, the LDPC decoder 118 receives
a second codeword, e.g., CW 1, as illustrated in FIG. 10. In
an embodiment, the LDPC decoder 118 starts processing the
CW1 immediately after receiving the CW1, even while
processing the CW 0. For example, while the layer 2 of the
CWO is being updated (e.g., by the belief updater 404), the
layer 0 of the CW 1 is read from the belief memory 402. In
another example, immediately after the layer 2 of the CW 0
is updated, the layer 0 of the CW 1 is updated by the belief
updater 404, thereby eliminating any idle time of the belief
updater 404 between updating the two layers of the two
codewords.
0079. In an embodiment, subsequent to receiving and
while processing the CW 1, the LDPC decoder 118 receives
another codeword CW 2, as illustrated in FIG. 10. The
LDPC decoder 118 decodes the CW1 and CW2 at least in
part in parallel, e.g., while a layer of the CW1 is being read
from the belief memory 402, a layer of the CW 2 is updated
by the belief updater 404. In an embodiment, subsequent to
receiving and while processing CW 1 and CW2, the LDPC
decoder 118 receives yet another codeword CW 3, as
illustrated in FIG. 10. The LDPC decoder 118 processed, at
least in part, the CW1, CW2 and CW3 in parallel, as
illustrated in FIG. 10, thereby further reducing the idle time
of the belief memory 402 and/or the belief updater 404.
0080. In an embodiment, while the LDPC decoder 118
processes at least two codewords in parallel, the LDPC
decoder 118 operates in a multi CW mode. As discussed,
while operating in the multi CW mode, the idle time of the
belief memory 402 and/or the belief updater 404 is reduced
(e.g., compared to that in the single CW mode).
I0081. In an embodiment, while the belief memory 402
and/or the belief updater 404 are idle (e.g., either in the
single CW mode or the multi CW mode), the belief memory
402 and/or the belief updater 404 are at least partially shut
down (e.g., operates in a low power or sleep mode).
I0082 FIG. 11 is a flowchart 1100 illustrating decoding, at
least in part, at least two codewords in parallel. At 1104, an
LDPC decoder (e.g., the LDPC decoder 118) receives and
starts processing a first codeword (e.g., the CW 0 of FIG.
10). Processing the first codeword comprises iteratively
reading a layer of the first codeword from a belief memory
(e.g., belief memory 402), updating the layer of the first
codeword by a belief updater (e.g., belief updater 404),
and/or writing back the updated layer of the first codeword
to the belief memory, and repeating the process for the layer
or another layer of the first codeword.
I0083. At 1104, while decoding the first codeword, a
second codeword (e.g., CW 1) is received by the LDPC

US 2017/0041024 A1

decoder. At 1108, the LDPC decoder processes, at least in
part, the first codeword and the second codeword in parallel,
e.g., as discussed with respect to FIG. 10.

Reconfigurable Circulant Shifter
0084. In an embodiment and as previously discussed,
each circulant of an LDPC code matrix (e.g., the LDPC code
matrix 800 of FIG. 8) is a square matrix of Z rows and Z
columns, where Z is an appropriate integer. For example, Z
can take a value of one of 27, 54 and 81, e.g., based on an
application area of the LDPC decoder 118, an intended
redundancy of the LDPC encoding, an intended code rate, a
size of the data to be encoded and decoded, and/or the like.
In order to decode a codeword, the elements of the circulants
may need to be shifted diagonally. A number of times a
circulant need to be shifted and an amount by which the
circulant needs to be shifted are based on, for example, the
decoding of the codeword.
0085. In a conventional LDPC decoder that support cir
culant sizes of, for example, 27, 54 and 81, separate sets of
multiplexers are used for each circulant size to shift the
elements of the circulants. For example, in the conventional
LDPC decoder, if a circulant size is Z, then at least Z.log(Z)
number of multiplexers is needed to shift the circulants. For
example, for shifting a circulant of size 81, at least 81 x7, i.e.,
567 multiplexers are needed. Accordingly, for a conven
tional LDPC decoder that supports circulant sizes of 27, 54
and 81, a total of (27x5)+(54x6)+(81 x7), i.e., 1026 multi
plexers are necessary to support shifting circulants of sizes
27, 54 and 81. Such a large number of multiplexers consume
considerable circuit area, and signal routing for Such a large
number of multiplexers can be relatively complex.
I0086 FIG. 12A illustrates a circuit 1200 that supports
shifting circulant of varying sizes. In an embodiment, the
circuit 1200 is configured to shift the elements of the
circulants of, for example, the LDPC code matrix 800 of
FIG. 1. In an embodiment, the circuit 1200 supports circu
lants of sizes 27, 54 and 81 (e.g., as circulants of these sizes
are commonly used for LDPC encoding and decoding).
However, the circuit 1200 can be modified to support
circulants of any other appropriate sizes, as will be readily
understood by those skilled in the art based on the teachings
of this disclosure.
I0087. The circuit 1200 comprises 55 multiplexers,
labeled as M0, . . . , M54, each controlled by respective
control signals C0, ..., C54. In an embodiment, each of the
multiplexers M0, . . . , M26 and M54 are configured to
receive two inputs, and selectively output one of the two
inputs, e.g., based on the corresponding control signal. In an
embodiment, each of the multiplexers M27. . . . , M53 is
configured to receive three inputs, and selectively output one
of the three inputs, e.g., based on the corresponding control
signal.
0088. The circuit 1200 also comprises a shifting module
1220. In an embodiment, the shifting module 1220 is a barrel
shifter configured to shift the input values by an appropriate
number. Although not illustrated in FIG. 12A, the shifting
module 1220 comprises 81 multiplexers, and is configured
to shift 81 inputs by a maximum of 81 numbers.
0089. As discussed, the circuit 1200 supports circulant
sizes of 27, 54 and 81. For example, when shifting elements
of a circulant of size 27, the circuit 1200 receives 27 inputs,
labeled as IN(0), . . . , IN(26) in FIG. 12A. When shifting
elements of a circulant of size 54, the circuit 1200 receives

Feb. 9, 2017

54 inputs, labeled as IN(0), . . . IN(53) in FIG. 12A.
Similarly, when shifting elements of a circulant of size 81,
the circuit 1200 receives 81 inputs, labeled as IN(0),
IN(80) in FIG. 12A. Thus, when shifting elements of the
circulant of size 27, the inputs IN(27),..., IN(80) are null
or invalid inputs. Similarly, when shifting elements of the
circulant of size 54, the inputs IN(54), ..., IN(80) are null
or invalid inputs.
(0090. The inputs IN(0), ..., IN(80) are logically grouped
in three groups—a first input group comprising inputs IN(0),
..., IN(26); a second input group comprising inputs IN(27),
. . . , IN(53); and a third input group comprising inputs
IN(54), ..., IN(80).
0091. In an embodiment, the shifting module 1220
receives inputs IN(0), ..., IN(26). In an embodiment, each
of the multiplexers M0, . . . , M26 is configured to receive
(i) a corresponding input from the first input group and (ii)
a corresponding input from the second input group. For
example, the multiplexer MO is configured to receive (i)
input IN(0) from the first input group and (ii) IN(27) from
the second input group; the multiplexer M1 is configured to
receive (i) input IN(1) from the first input group and (ii)
IN(28) from the second input group; the multiplexer M26 is
configured to receive (i) input IN(26) from the first input
group and (ii) INC53) from the second input group, and so
O.

0092. In an embodiment, each of the multiplexers M27,
. . . , M54 is configured to receive (i) a corresponding input
from the first input group, (ii) a corresponding input from the
second input group, and (iii) a corresponding input from the
third input group. For example, the multiplexer M27 is
configured to receive (i) input IN(0) from the first input
group, (ii) INC27) from the second input group, and (iii)
IN(54) from the third input group; the multiplexer M28 is
configured to receive (i) input IN(1) from the first input
group, (ii) INC28) from the second input group, and (iii)
IN(55) from the third input group; the multiplexer M53 is
configured to receive (i) input IN(26) from the first input
group, (ii) IN(53) from the second input group, and (iii)
IN(80) from the third input group, so on.
0093. In an embodiment, the inputs of the shifting mod
ule 1220 is divided in three groups: a top one third input of
the shifting module 1220 (e.g., comprising outputs of the
multiplexers M27. . . . , M53); a middle one third input of
the shifting module 1220 (e.g., comprising outputs of the
multiplexers M0, . . . , M26); and a bottom one third input
of the shifting module 1220 (e.g., comprising inputs IN(0),
. . . , IN(26) of the first input group), as illustrated in FIG.
12A. The phrases “top,” “middle' and “bottom' are merely
for purposes of identifying the three groups of input of the
shifting module 1220, and does not indicate the actual
physical locations of various inputs of the shifting module
1220.

(0094. In an embodiment, the multiplexer M55 receives
an input of P and another input of (P+27), where P represents
a number by which a circulant is to be shifted by the circuit
1200. P can be for example, between 0 and 26, e.g., when the
circulant size is 27; between 0 and 53, e.g., when the
circulant size is 54; and between 0 and 80, e.g., when the
circulant size is 81.
(0095 FIG. 12B illustrates an example operation of the
circuit 1200 of FIG. 12A. In the example of FIG. 12B, the
circulant size is assumed to be 27. FIG. 12B illustrates the
circuit 1200 of FIG. 12A; however, some of the signal lines

US 2017/0041024 A1

in FIG. 12B are illustrated using relatively thicker lines. The
ticker signal lines in FIG. 12B represent those signal lines
which are relevant for the operation of the circuit 1220 for
the example of FIG. 12B, as is discussed herein below.
0096. In FIG. 12B, the circulant size is 27. Thus, the first
input group (i.e., inputs IN(0), IN(26)) represents valid
inputs of a circulant, while inputs of the second and third
input groups (i.e., inputs IN(27), . . . , IN(80)) are null or
irrelevant inputs in FIG. 12B. Accordingly, inputs of the first
input group are illustrated using thicker lines in FIG. 12B,
while inputs of the second and third input group are illus
trated using thinner lines.
0097. In the example of FIG. 12B, as the circulant size is
27, only the first 27 inputs IN(0), . . . , IN(26) are to be
shifted by the shifting module 1220 (e.g., are of relevance to
the shifting module 1220). Thus, the shifting module 1220
receives inputs of the first input group (i.e., inputs IN(0), .
... IN(26)). Furthermore, the multiplexers M0, . . . , M53
needs to output data to the shifting module 1220, for the
shifting module 1220 to work properly. Accordingly, in the
example of FIG. 12, the multiplexers M0, ... , M53 outputs
respective input from the first input group. For example, the
multiplexers M0, . . . , M26 outputs IN(0), . . . , IN(26),
respectively; and the multiplexers M27. . . . , M53 also
outputs IN(0), . . . , IN(26), respectively, as illustrated in
FIG. 12B. That is, inputs of the first input group is replicated
and transmitted to the shifting module 1220 in three parallel
SetS.

0098. The shifting module 1220 shifts the received inputs
by, for example, P, where P is an appropriate integer and
P-27. The shifting module 1220 outputs output O(0),
O(80), based on shifting the received inputs. As the circulant
size in FIG. 12B is 27, only outputs O(0), . . . , O(26) are
considered, and the remaining outputs O(27),..., O(80) are
discarded or not considered for further processing.
0099 FIG. 12C illustrates another example operation of
the circuit 1200 of FIG. 12A. In the example of FIG. 12C,
the circulant size is assumed to be 81. FIG. 12C illustrates
the circuit 1200 of FIG. 12A; however, some of the signal
lines in FIG. 12C are illustrated using relatively thicker
lines. The ticker signal lines in FIG. 12C represent those
signal lines which are relevant for the operation of the circuit
1220 for the example of FIG. 12C, as is discussed herein
below.

0100. In FIG. 12C, the circulant size is 81. Thus, inputs
of the first, second and third input groups (i.e., inputs IN(0),
..., IN(80)) represent valid inputs of the circuit 1200. Thus,
the shifting module 1220 has to receive inputs of all the three
input groups (i.e., inputs IN(0), . . . , IN(80), and shift the
inputs based on the number of shifts P (in FIG. 12C, P-81).
0101 The shifting module 1220 receives the inputs of the

first input group directly, i.e., by bypassing the multiplexers,
as illustrated using the thicker lines in FIG. 12C. The
multiplexers M0, . . . , M26 selectively outputs respective
inputs of the second input group (i.e., inputs IN(27).
IN(53)); and the multiplexers M27, . . . , M53 selectively
outputs respective inputs of the third input group (i.e., inputs
IN(54), . . . , IN(80)). For example, the multiplexer MO
outputs input IN(27); the multiplexer M1 outputs input
IN(28); the multiplexer M26 outputs input IN(53); the
multiplexer M27 outputs input IN(54); the multiplexer M53
outputs input IN(80); and so on, as illustrated in FIG. 12C.
0102 Thus, the shifting module 1220 receives inputs
IN(0), IN(80), i.e., inputs from all the three input groups.

Feb. 9, 2017

The shifting module 1220 shifts the received inputs by P. and
outputs output O(0), . . . , O(80), based on shifting the
received inputs. As the circulant size in FIG. 12C is 81, all
of the outputs O(0), O(26) are considered for further
processing.
0103 FIG. 12D illustrates another example operation of
the circuit 1200 of FIG. 12A. In the example of FIG. 12D,
the circulant size is assumed to be 54, and the number P by
which the elements of the circulants are to be shifted is
assumed to be less than or equal to 27 (i.e., P-27). FIG. 12D
illustrates the circuit 1200 of FIG. 12A; however, some of
the signal lines in FIG. 12D are illustrated using relatively
thicker lines. The ticker signal lines in FIG. 12D represent
those signal lines which are relevant for the operation of the
circuit 1220 for the example of FIG. 12D, as is discussed
herein below.

0104. In FIG. 12D, the circulant size is 54. Thus, inputs
of the first and second input groups (i.e., inputs IN(0), . . .
, IN(53)) represent valid inputs of the circuit 1200, while
inputs of the third input group (i.e., inputs IN(54),
IN(80)) are null or irrelevant inputs. Also, as the circulant
size is 54, the shifting module 1220 has to receive inputs of
the first and second input groups (i.e., inputs IN(0),
IN(53)), and shift the inputs based on the number of shifts
P (in FIG. 12D, P-27). Accordingly, the shifting module
1220 receives the inputs of the first input group directly, i.e.,
by bypassing the multiplexers, as illustrated using the
thicker lines in FIG. 12D. The multiplexers M0, . . . , M26
selectively outputs respective inputs of the second input
group (i.e., inputs IN(27), . . . , IN(53)). For example, the
multiplexer M0 outputs input IN(27); the multiplexer M1
outputs input IN(28); the multiplexer M26 outputs input
IN(53); and so on, as illustrated in FIG. 12D. Thus, the
shifting module 1220 receives the inputs of the second input
group via the multiplexers M0, . . . , M26.
0105. Furthermore, as P-27, the top one third input of the
shifting module 1220 has to be inputs of the first input group
(i.e., inputs IN(0), ..., IN(26)), to satisfy the circular nature
of the shifting of the circulant by the shifting module 1220.
Thus, the shifting module 1220 has to receive inputs IN(0),
..., IN(26), i.e., inputs of the first input group as the top one
third input of the shifting module 1220. Accordingly, the
multiplexers M27. . . . , M53 selectively output respective
inputs of the first input group (i.e., inputs IN(0),
IN(26)). For example, the multiplexer M27 outputs input
IN(0); the multiplexer M28 outputs input IN(1); the multi
plexer M53 outputs input IN(26); and so on, as illustrated in
FIG. 12D. Thus, the shifting module 1220 receives, as the
top third input, the inputs of the first input group via the
multiplexers M27. . . . , M53. Furthermore, the shifting
module 1220 receives the number P from the multiplexer
M54. The shifting module 1220 shifts the received inputs by
P. and outputs output O(0), ..., O(80), based on shifting the
received inputs. As the circulant size in FIG. 12D is 54, the
outputs O(0), O(53) are considered for further pro
cessing, and the remaining outputs O(54). . . . , O(80) are
discarded or not considered for further processing.
0106 FIG. 12E illustrates another example operation of
the circuit 1200 of FIG. 12A. In the example of FIG. 12E,
the circulant size is assumed to be 54, and the number P by
which the elements of the circulants are to be shifted is
assumed to be greater than 27 (i.e., 81 >P>27).
0107 FIG. 12E is, at least in part, similar to FIG. 12D.
For example, in FIG. 12E, as the circulant size is 54, inputs

US 2017/0041024 A1

of the first and second input groups (i.e., inputs IN(0), . . .
, IN(53)) represent valid inputs of the circuit 1200. Further
more, similar to FIG. 12D, in FIG. 12E, the shifting module
1220 receives the inputs of the first input group directly, i.e.,
by bypassing the multiplexers. The multiplexers M0,
M26 selectively outputs respective inputs of the second
input group (i.e., inputs IN(27),..., IN(53)). For example,
the multiplexer M0 outputs input IN(27); the multiplexer
M1 outputs input IN(28); the multiplexer M26 outputs input
IN(53); and so on, as illustrated in FIG. 12E. Thus, the
shifting module 1220 receives the inputs of the second input
group via the multiplexers M0, . . . , M26.
0108. Unlike FIG. 12D, in FIG. 12E, as Pid-27, the top one
third input of the shifting module 1220 has to be inputs of
the second input group (i.e., inputs IN(27), IN(53)), to
satisfy the circular nature of the shifting of the circulant by
the shifting module 1220. Thus, the shifting module 1220
has to receive inputs IN(27), ..., IN(80), i.e., inputs of the
second input group as the top one third input of the shifting
module 1220. Accordingly, the multiplexers M27, ... , M53
selectively outputs respective inputs of the second input
group (i.e., inputs IN(27). . . . , IN(53)). For example, the
multiplexer M27 outputs input IN(27); the multiplexer M28
outputs input IN(28); the multiplexer M53 outputs input
IN(53); and so on, as illustrated in FIG. 12E. Thus, the
shifting module 1220 receives, as the top third input, the
inputs of the second input group via the multiplexers M27,
. . . , M53. Furthermore, the shifting module 1220 receives
the number (P+27) from the multiplexer M54. The shifting
module 1220 appropriately shifts the received inputs, and
outputs output O(0), O(80), based on shifting the
received inputs. As the circulant size in FIG. 12E is 54, the
outputs O(0), . . . , O(53) are considered for further pro
cessing, and the remaining outputs O(54). . . . , O(80) are
discarded or not considered for further processing.
0109 Referring to FIGS. 12A-12E, the circuit 1200 is
configured to process circulants of sizes 27, 54 and 81, by
appropriately configuring the various multiplexers M0, . . .
, M55 of the circuit 1200. The circuit 1200 comprises
multiplexers M0, ... , M54. Also, the shifting module 1220
includes (81 x7), i.e., 567 multiplexers (e.g., to shift 81
possible inputs to the shifting module 1200). Thus, the
circuit 1200 includes a total of (55+567), i.e., 622 multi
plexers. In contrast, as previously discussed, a convention
LDPC decoder, which supports circulant sizes of 27, 54 and
81, includes at least 1026 multiplexers. Thus, the circuit
1200 is configured to process circulants of sizes 27, 54 and
81, using a lower number of multiplexers (e.g., compared to
a conventional LDPC decoder).

Reconfigurable LLR Pre-Processing

0110 Referring again to FIG. 1, LDPC decoder 118
determines and processes LLR values associated with data
received over the channel 106. LLR values of data received
over the channel 106 are based on a variety of factors, e.g.,
a quality of the channel 106, a number of transmit antennas
coupled to the transmitter 112, a number of receive antennas
coupled to the receiver 114, and/or the like. Accordingly, a
distribution of LLR values of data received over the channel
106 can have a large variance.
0111. In an embodiment, for optimal or near optimal (or
relatively accurate or faster) operation of the LDPC decoder
118, it may be intended that a distribution of magnitude of
the LLR values of the received codewords be within a

Feb. 9, 2017

certain range. For example, FIG. 13A illustrates an intended
LLR magnitude distribution 1304 for the LDPC decoder
118, with an example Intended range of a mean value of
LLR magnitude between 32 and 64. The intended LLR
magnitude distribution 1304, for example, ensures optimal
or near optimal (or relatively accurate) operation of the
LDPC decoder 118. It is to be noted that the intended LLR
magnitude distribution 1304 is merely an example, and does
not limit the scope of this disclosure.
0112 However, as illustrated in FIGS. 13B and 13C, an
actual LLR magnitude distribution may be different from the
intended LLR magnitude distribution 1304. For example,
FIG. 13B illustrates an actual LLR magnitude distribution
1308 (illustrated using dotted lines), which has a range of
mean values that is lower than that of the intended LLR
magnitude distribution 1304. In another example, FIG. 13C
illustrates an actual LLR magnitude distribution 1312 (illus
trated using dotted lines), which has a range of mean values
that is higher than that of the intended LLR magnitude
distribution 1304.
0113. In an embodiment, the actual LLR magnitude dis
tributions 1308 and/or 1312 are generated dynamically. For
example, as and when more data is received by the receiver
114, the actual LLR magnitude distributions 1308 and/or
1312 are updated. In an embodiment, the actual LLR mag
nitude distributions 1308 and/or 1312 are generated using
moving average, and/or a moving time window. For
example, older LLR values are discarded or given less
weightage or less emphasis, and newer LLR values are given
more weightage or more emphasis while generating and/or
updating the actual LLR magnitude distributions 1308 and/
or 1312.

0114. In an embodiment, the actual LLR values are
scaled to generate scaled LLR values (and generate corre
sponding scaled LLR magnitude distribution). The scaling is
performed in a manner Such that the scaled LLR magnitude
distribution is closer to the intended LLR magnitude distri
bution 1304, compared to the actual LLR magnitude distri
bution.
0115 For example, to make the actual LLR magnitude
distribution 1308 of FIG. 13B closer to the intended LLR
magnitude distribution 1304, one or more LLR values of the
actual LLR magnitude distribution 1308 is scaled (e.g.,
multiplied) by a factor that is greater than one (e.g., by a
factor of 1.2), so that the mean range of the LLR magnitude
of the scaled LLR magnitude distribution increases and gets
closer to the intended LLR magnitude distribution 1304. For
similar reasons, one or more LLR values of the actual LLR
magnitude distribution 1312 of FIG. 13C are scaled (e.g.,
multiplied) by a factor that is less than one (e.g., by a factor
of 0.8).
0116 FIG. 14 illustrates an LLR pre-processing module
1400 (illustrated using dotted lines in FIG. 14) for pre
processing LLR values, prior to transmitting the LLR values
to the LDPC decoder 118. The LLR pre-processing module
1400 receives baseband data (e.g., comprising encoded
codewords) from, for example, the receiver 114 of FIG. 1.
The LLR pre-processing module 1400 comprises a LLR
determination module 1404 for determining LLR values of
the incoming codewords.
0117. In an embodiment, the LLR pre-processing module
1400 further comprises a LLR scale determination module
1408 configured to receive magnitude of the LLR values
from the LLR determination module 1404, as illustrated in

US 2017/0041024 A1

FIG. 14. In another embodiment, the LLR scale determina
tion module 1408 receives the LLR values from the LLR
determination module 1404, and determines the magnitude
of the LLR values from the received LLR values.
0118. In an embodiment, the LLR scale determination
module 1408 determines an LLR scaling factor, based on the
magnitude of the LLR values. For example, the LLR scale
determination module 1408 determines, from the magnitude
of the LLR values, an actual distribution of LLR magni
tudes. The LLR scale also accesses an optimal, near optimal
or an intended distribution of LLR magnitudes. In an
embodiment, based on a difference between the actual
distribution of LLR magnitudes and the intended distribu
tion of LLR magnitudes, the LLR scale determination mod
ule 1408 determines the LLR scaling factor.
0119. In an embodiment, the LLR pre-processing module
1400 further comprises a LLR scaling module 1412. The
LLR scaling module 1412 receives (i) the LLR values from
the LLR determination module 1404 and (ii) the LLR
Scaling factor from the LLR scale determination module
1408. The LLR scaling module 1412 scales the received
LLR values by the scaling factor, to generate scaled LLR
values. In an embodiment, the LLR scaling module 1412
comprises adders and/or multipliers for Scaling the LLR
values. The LDPC decoder 118 receives the scaled LLR
values, and decodes the codeword based on the received
scaled LLR values.
0120 FIGS. 15A and 15B illustrate example scaling of
LLR values by the LLR pre-processing module 1400. In
FIGS. 15A and 15B, the x axis represent actual LLR values,
and the y axis represent scaled LLR values (e.g., as scaled
by the LLR scaling module 1412).
0121 Referring to FIGS. 14 and 15A, the scaling illus
trated in FIG. 15A is applied while the LLR pre-processing
module 1400 operates in a first mode (e.g., a mode 1). The
LLR pre-processing module 1400 operates in mode 1 when,
for example, a mean range of actual LLR magnitude exceeds
64, e.g., as illustrated in FIG. 13C. The scaling of FIG. 15A
is non-linear. For example, the scaling is performed based on
the following: if xe5, then y=x; and if x>5, then Y=4.25+
(0.25-0.03125). x.
0122 Referring to FIGS. 14 and 15B, the scaling illus
trated in FIG. 15A is applied while the LLR pre-processing
module 1400 operates in a second mode (e.g., a mode 2).
The LLR pre-processing module 1400 operates in mode 2
when, for example, a mean range of LLR magnitude is less
than 64, e.g., as illustrated in FIG. 13B. The scaling of FIG.
15B is non-linear. For example, the scaling of FIG. 15B is
performed based on the following: if Xs8, then y=x; and if
x>8, then Y=4.25+(0.5-0.03125). X.
(0123. In FIGS. 15A and 15B, the LLR values having a
relatively low magnitude are not scaled (e.g., in FIG. 15A,
LLR values having a magnitude of less than 5 are not
scaled). This ensures, for example, that low magnitude LLRS
retain the associated LLR information and is not scaled near
to Zero. Also, the slope of the Scaling curve (e.g., for higher
LLR values) in FIG. 15A is relatively less compared to that
of FIG. 15B. That is, the LLR values in mode 1 are scaled
using a lower Scaling factor compared to that in mode 2. This
ensures, for example, that the LLR values in mode 1, which
are higher than the mean range of 64, are scaled such that the
scaled LLR values are within the intended mean range.
0.124 FIG. 16 is a flowchart 1600 illustrating scaling of
LLR values prior to processing the LLR values by the LPDC

Feb. 9, 2017

decoder 118. At 1604, a distribution of magnitude of LLR
values is determined (e.g., by the LLR scale determination
module 1408). At 1608, the distribution of magnitude of
LLR values is compared (e.g., by the LLR scale determi
nation module 1408) with an intended distribution of mag
nitude of LLR values. At 1612, a scaling factor is determined
(e.g., by the LLR scale determination module 1408), based
on the comparison. At 1616, LLR values are scaled (e.g., by
the LLR scaling module 1412), based on the determined
Scaling factor.
0.125. The description above incorporates use of the
phrases “in an embodiment,” or “in various embodiments.”
or the like, which may each refer to one or more of the same
or different embodiments. Furthermore, the terms “compris
ing,” “including,” “having, and the like, as used with
respect to embodiments of the present disclosure, are syn
onymous.
I0126. As used herein, the terms “logic.” “component.”
and “module' may refer to, be part of, or include an
Application Specific Integrated Circuit (ASIC), an elec
tronic circuit, a processor (shared, dedicated, or group)
and/or memory (shared, dedicated, or group) that execute
one or more software or firmware programs, a combinational
logic circuit, and/or other Suitable components that provide
the described functionality. The logic and functionality
described herein may be implemented by any Such compo
nentS.

0127. In accordance with various embodiments, an article
of manufacture may be provided that includes a storage
medium having instructions stored thereon that, if executed,
result in the operations described above. In an embodiment,
the storage medium comprises some type of non-transitory
memory (not shown). In accordance with various embodi
ments, the article of manufacture may be a computer
readable medium Such as, for example, software or firm
Wae.

I0128 Various operations may have been described as
multiple discrete actions or operations in turn, in a manner
that is most helpful in understanding the claimed subject
matter. However, the order of description should not be
construed as to imply that these operations are necessarily
order dependent. In particular, these operations may not be
performed in the order of presentation. Operations described
may be performed in a different order than the described
embodiment. Various additional operations may be per
formed and/or described operations may be omitted in
additional embodiments.
I0129. Although certain embodiments have been illus
trated and described herein, a wide variety of alternate
and/or equivalent embodiments or implementations calcu
lated to achieve the same purposes may be substituted for the
embodiments illustrated and described without departing
from the scope of the present disclosure. This application is
intended to cover any adaptations or variations of the
embodiments discussed herein. Therefore, it is manifestly
intended that embodiments in accordance with the present
disclosure be limited only by the claims and the equivalents
thereof.
What is claimed is:
1. A method of decoding codewords in conjunction with

a low-density parity-check (LDPC) code, the method com
prising:

receiving a first codeword and a second codeword over a
data channel, wherein a first code matrix is configured

US 2017/0041024 A1

to be used to decode the first codeword, and wherein a
second code matrix is configured to be used to decode
the second codeword; and

decoding the first codeword and the second codeword,
wherein decoding the first codeword and the second
codeword comprises
during a first time period, reading a first layer of the first

code matrix, and
during a second time period, (i) updating the first layer

of the first code matrix and (ii) reading a first layer
of the second code matrix,

wherein the first layer of the first code matrix is updated
at least in part simultaneously with reading the first
layer of the second code matrix such that the first
codeword and the second codeword are decoded at
least in part in parallel.

2. The method of claim 1, further comprising:
receiving a third codeword, wherein a third code matrix is

configured to be used to decode the third codeword;
and

decoding the second codeword and the third codeword,
wherein decoding the second codeword and the third
codeword comprises
during a third time period, (i) updating the first layer of

the second code matrix and (ii) reading a first layer
of the third code matrix.

3. The method of claim 2, further comprising:
receiving a fourth codeword, wherein a fourth code matrix

is configured to be used to decode the fourth codeword;
and

decoding the third codeword and the fourth codeword at
least in part in parallel, wherein decoding the third
codeword and the fourth codeword comprises
iteratively reading and updating a plurality of layers of

the third code matrix, and
iteratively reading and updating a plurality of layers of

the fourth code matrix, wherein while a layer of the
plurality of layers of the third code matrix is being
read, a layer of the plurality of layers of the fourth
code matrix is being updated.

4. The method of claim 3, wherein while another layer of
the plurality of layers of the third code matrix is being
updated, another layer of the plurality of layers of the fourth
code matrix is being read.

5. The method of claim 1, wherein:
reading the first layer of the first code matrix comprises

reading the first layer of the first code matrix from a
belief memory; and

updating the first layer of the first code matrix comprises
subsequent to reading the first layer of the first code

matrix from the belief memory, modifying the first
layer of the first code matrix, and

subsequent to modifying the first layer of the first code
matrix, writing the first layer of the first code matrix
to the belief memory.

6. The method of claim 1, wherein:
the first code matrix comprises a plurality of circulants

arranged in rows and columns; and
the first layer of the first code matrix comprises circulants

included in a first row of the first code matrix.
7. The method of claim 6, wherein:
each circulant of the plurality of circulants of the first code

matrix is a square matrix with individual entries being
either Zero or one.

Feb. 9, 2017

8. The method of claim 1, wherein receiving the second
codeword comprises:

receiving the second codeword Subsequent to (i) receiving
the first codeword and (ii) the first time period.

9. The method of claim 1, further comprising:
during a third time period, refraining from reading any

layer of any code matrix, wherein a memory stores a
plurality of code matrices including the first code
matrix and the second code matrix; and

during the third time period, operating the memory in a
low power mode.

10. The method of claim 1, further comprising:
during a third time period, refraining from updating any

layer of any code matrix, wherein an updater updates a
plurality of code matrices including the first code
matrix and the second code matrix; and

during the third time period, operating the updater in a
low power mode.

11. A decoder that decodes codewords received over a
data channel in conjunction with a check code that defines
variable nodes and check nodes, the decoder comprising:

a memory;
an updater, and
a receive module configured to receive a first codeword

and a second codeword, wherein a first code matrix is
configured to be used to decode the first codeword, and
wherein a second code matrix is configured to be used
to decode the second codeword,

wherein the decoder is configured to decode the first
codeword and the second codeword by
during a first time period, reading a first layer of the first

code matrix from the memory, and
during a second time period, (i) updating, using the

updater, the first layer of the first code matrix and (ii)
reading a first layer of the second code matrix from
the memory.

12. The decoder of claim 11, wherein the first layer of the
first code matrix is updated at least in part simultaneously
with reading the first layer of the second code matrix such
that the first codeword and the second codeword are decoded
at least in part in parallel.

13. The decoder of claim 11, wherein the decoder is
further configured to:

receive a third codeword, wherein a third code matrix is
configured to be used to decode the third codeword;
and

decode the second codeword and the third codeword by
during a third time period, (i) updating the first layer of

the second code matrix and (ii) reading a first layer
of the third code matrix.

14. The decoder of claim 13, wherein the decoder is
further configured to:

receive a fourth codeword, wherein a fourth code matrix
is configured to be used to decode the fourth codeword;
and

decode the third codeword and the fourth codeword at
least in part in parallel by
iteratively reading and updating a plurality of layers of

the third code matrix, and
iteratively reading and updating a plurality of layers of

the fourth code matrix, wherein while a layer of the
plurality of layers of the third code matrix is being
read, a layer of the plurality of layers of the fourth
code matrix is being updated.

US 2017/0041024 A1

15. The decoder of claim 14, wherein while another layer
of the plurality of layers of the third code matrix is being
updated, another layer of the plurality of layers of the fourth
code matrix is being read.

16. The decoder of claim 11, wherein the decoder is
configured to update the first layer of the first code matrix
by:

subsequent to reading the first layer of the first code
matrix from the memory, modifying the first layer of
the first code matrix; and

subsequent to modifying the first layer of the first code
matrix, writing the first layer of the first code matrix to
the memory.

17. The decoder of claim 11, wherein:
the first code matrix comprises a plurality of circulants

arranged in rows and columns; and
the first layer of the first code matrix comprises circulants

included in a first row of the first code matrix.

Feb. 9, 2017

18. The decoder of claim 17, wherein:
each circulant of the plurality of circulants of the first code

matrix is a square matrix with individual entries being
either Zero or one.

19. The decoder of claim 11, wherein the decoder is
further configured to:

during a third time period, refrain from reading any layer
of any code matrix from the memory; and

during the third time period, operate the memory in a low
power mode.

20. The decoder of claim 11, wherein the decoder is
further configured to:

during a third time period, refrain from updating, using
the updater, any layer of any code matrix; and

during the third time period, operate the updater in a low
power mode.

