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(57) ABSTRACT 

There is provided, in accordance with an embodiment, a 
method of decoding codewords in conjunction with a low 
density parity-check (LDPC) code that defines variable 
nodes and check nodes, the method comprising receiving a 
codeword over a data channel; evaluating quality of the data 
channel; and iteratively updating values of the variable 
nodes to decode the codeword; wherein the values of the 
variable nodes are updated at different levels of numeric 
precision depending on the evaluated quality of the data 
channel. 
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METHOD AND APPARATUS FOR 
REDUCING OLE CYCLES DURING LDPC 

DECODING 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. The present disclosure is a continuation of and 
claims priority to U.S. patent application Ser. No. 13/648, 
507, filed Oct. 10, 2012, now U.S. Pat. No. 9,461,671, issued 
Oct. 4, 2016, which claims priority to U.S. Provisional 
Patent Application No. 61/545,541, filed Oct. 10, 2011, 
which are incorporated herein by reference. 

TECHNICAL FIELD 

0002 This disclosure relates to decoding codewords 
using iterative check node calculations, and more particu 
larly, to decoding codewords using low-density parity-check 
(LDPC) codes. 

BACKGROUND 

0003. The background description provided herein is for 
the purpose of generally presenting the context of the 
disclosure. Work of the presently named inventors, to the 
extent it is described in this background section, as well as 
aspects of the description that may not otherwise qualify as 
prior art at the time of filing, are neither expressly nor 
impliedly admitted as prior art against the present disclo 
SC. 

0004 Data transfer systems, such as data transmission 
systems and data storage systems, are typically character 
ized as data channels. In data transmission systems, for 
example, data can be transmitted via channels such as wires, 
fiber-optic cable, wireless protocols, etc. In data storage 
systems, the storage medium itself is a data channel. In this 
regard, storage system channels can include, for example, 
hard disk platters, Solid state memory, digital tape, Volume 
holographic memory, and others. 
0005. The efficiency and reliability of data channels can 
depend on many factors, such as the signal-to-noise ratio 
(SNR) of the channel. For example, storage media having 
high SNRS can allow for more accurate storage and recovery 
of data. On the other hand, storage media having low SNRs 
can result in high error rates, including misread and lost data. 
Similarly, the accuracy of a digital data communication 
channel depends on its SNR. High-SNR communication 
channels can transmit data quickly and accurately, while 
low-SNR communication channels can be plagued with 
errors, such as dropped messages. 
0006 Error correcting code (ECC) can provide a way to 
reduce errors in data storage and transmission by introduc 
ing data redundancy into the communication channel, typi 
cally in the form of extra bits that are used to check the 
validity of the original data. ECCs typically utilize code 
words, which are specific patterns of bits or symbols in a 
storage medium or transmission signal, to group data into 
chunks to be checked for errors. 
0007 Low-density parity-check (LDPC) is a particular 
type of ECC. When using LDPC, original data is encoded 
using an LDPC code. An LDPC code can be represented 
mathematically as a two-dimensional matrix. An LDPC 
code can also be represented graphically, as a bipartite graph 
containing two sets of nodes (variable nodes and check 
nodes) connected by edges. Encoding based on an LDPC 
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code produces a codeword, which can be decoded to pro 
duce the original data even in the presence of channel 
degradation and/or data corruption. LDPC decoding is an 
iterative process in which different nodes of the LDPC code 
update each other based on calculated probabilities regard 
ing individual bits of the codeword. 

SUMMARY 

0008. There is provided, in accordance with an embodi 
ment, a method of decoding codewords in conjunction with 
a low-density parity-check (LDPC) code that defines vari 
able nodes and check nodes, the method comprising receiv 
ing a codeword over a data channel; evaluating quality of the 
data channel; and iteratively updating values of the variable 
nodes to decode the codeword; wherein the values of the 
variable nodes are updated at different levels of numeric 
precision depending on the evaluated quality of the data 
channel. 

0009. There is also provided, in accordance with an 
embodiment, a decoder that decodes codewords received 
over a data channel in conjunction with a check code that 
defines variable nodes and check nodes, the decoder com 
prising value memory configured to store values of the 
variable nodes; and an update engine configured to itera 
tively update the stored values of the variable nodes: 
wherein the update engine is responsive to a quality of the 
data channel and configured to update the stored values of 
the variable nodes at different levels of numeric precision. 
0010. There is also provided, in accordance with an 
embodiment, a decoder that decodes codewords received 
over a data channel in conjunction with a check code that 
defines variable nodes and check nodes, the decoder being 
configured to perform actions comprising: evaluating a 
quality of the data channel; and iteratively updating values 
of the variable nodes to decode a received codeword; 
wherein the values of the variable nodes are updated at 
different levels of numeric precision depending on the 
evaluated quality of the data channel. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0011 Embodiments of the present disclosure will be 
readily understood by the following detailed description in 
conjunction with the accompanying drawings. To facilitate 
this description, like reference numerals designate like ele 
mentS. 

0012 FIG. 1 is a functional block diagram of system in 
which data is transmitted over a data communications chan 
nel using LDPC techniques in accordance with an embodi 
ment of the present disclosure. 
0013 FIG. 2A is a diagram illustrating an example LDPC 
code. 
0014 FIG. 2B is a diagram illustrating an example LDPC 
code matrix. 
0015 FIG. 3 is a flowchart illustrating high-level aspects 
of decoding a codeword based on an LDPC code. 
0016 FIG. 4 is a high-level block diagram illustrating 
functional components of an LDPC decoder in accordance 
with an embodiment of the present disclosure. 
(0017 FIG. 5 is a flowchart illustrating further aspects of 
decoding a codeword based on an LDPC code, including 
power conservation techniques that may be employed in 
certain situations. 
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0018 FIG. 6 is a block diagram illustrating an example 
memory configuration that may be used for power conser 
Vation in conjunction with the techniques described herein. 
0019 FIG. 7 is a block diagram illustrating example 
component configuration that may be used for power con 
servation in conjunction with the techniques described 
herein. 
0020 FIG. 8 is a diagram illustrating an example LDPC 
code matrix. 
0021 FIG. 9 (labeled as “Prior Art') illustrates process 
ing layers of an LDPC code matrix in a conventional LDPC 
decoder. 
0022 FIG. 10 illustrates parallel decoding of a plurality 
of LDPC codewords. 
0023 FIG. 11 is a flowchart illustrating decoding, at least 
in part, at least two codewords in parallel. 
0024 FIG. 12A illustrates a circuit that support shifting 
circulant of varying sizes. 
0025 FIGS. 12B-12E illustrates example operations of 
the circuit of FIG. 12A. 
0026 FIG. 13A illustrates an intended LLR magnitude 
distribution for an LDPC decoder. 
0027 FIGS. 13B and 13C illustrate example actual LLR 
magnitude distributions. 
0028 FIG. 14 illustrates an LLR pre-processing module 
for pre-processing LLR values, prior to transmitting the 
LLR values to an LDPC decoder. 
0029 FIGS. 15A and 15B illustrate example scaling of 
LLR values by the LLR pre-processing module of FIG. 14. 
0030 FIG. 16 is a flowchart illustrating scaling of LLR 
values prior to processing the LLR values by an LPDC 
decoder. 

DETAILED DESCRIPTION 

0031. The following description merely provides 
examples and is in no way intended to limit the disclosure, 
its application, or uses. 
0032 FIG. 1 shows an example system 100 in which the 
techniques described herein may be used. The system 100 
includes a data source 102 and a data destination 104, which 
communicate an encoded signal over a data communications 
medium or channel 106. The communications channel 106 
may comprise a wired or wireless communications channel, 
and may have varying degrees of quality or reliability. In 
Some implementations, the encoded signal may comprise 
data stored in a storage system Such as a magnetic disk or 
optical disk, and the channel 106 may represent the storage 
system. 
0033. The data source 102 includes a low-density parity 
check (LDPC) encoder 108, which may be configured to 
encode original data in accordance with LDPC encoding 
techniques, resulting in encoded LDPC data or codewords 
110 that are transmitted over or stored by the communica 
tions channel 106. The data source 102 also includes a signal 
transmitter 112 that receives the encoded data or codewords 
110 from the LDPC encoder 108 and that modulates the 
encoded data 110 for transmission over the communications 
channel 106. 
0034. The data destination 104 includes a signal receiver 
114 that receives a communications signal from the com 
munications channel 106. The signal receiver 114 demodu 
lates the received communications signal and provides 
demodulated, encoded data or codewords 116 to an LDPC 
decoder 118. The LDPC decoder 118 decodes the encoded 
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data 116 to reproduce the original data. LDPC decoding 
techniques allow faithful reproduction of the original data in 
spite of bit errors that are potentially introduced by degra 
dations of the communications channel 106. 
0035. The communications channel 106 may exhibit 
varying degrees of reliability over time. The signal receiver 
114 may evaluate the reliability of the communications 
channel 106 in terms of the quality of the received data 
signal. In the described embodiment, signal-to-noise ratio 
(SNR) of the received signal is used as an indicator of 
channel quality or reliability. The receiver 114 repeatedly or 
continuously evaluates the SNR of the channel 106 and 
provides an SNR signal, measurement, or value 120 to the 
LDPC decoder 118. The LDPC decoder 118 may vary 
certain characteristics of the LDPC decoding based on the 
current SNR. In particular, LPDC decoding may be per 
formed at different levels of numeric precision, depending 
on the current quality or SNR of the data channel 106. 
0036 FIG. 2A illustrates an LDPC code, represented as 
an LDPC code matrix 202 (also referred to as a binary parity 
check matrix) and as a corresponding bipartite graph 204. 
The LDPC code matrix 202 comprises a plurality of rows 
and a plurality of columns. In this example, the code matrix 
has four rows and eight columns. The elements of the matrix 
202, each of which corresponds to a single row and a single 
column, are binary. Each value is thus represented as either 
a 0 or a 1. 
0037. The LDPC code defines a plurality of nodes, which 
are best illustrated by the LDPC graph 204. The LDPC graph 
204 comprises a plurality check nodes 206 and variable 
nodes 208. The check nodes 206, labeled from 0 through 3, 
correspond respectively to rows 0 through 3 of the matrix 
202. The variable nodes 208, labeled from 0 through 7, 
correspond respectively to rows 0 through 7 of the matrix 
202. 

0038 Edges 210 connect each check node 206 to a 
number of individual variable nodes 208. The edges 210 also 
connect each variable node 208 to a number of individual 
check nodes 206. The edges 210 correspond to 1s of the 
matrix 202: for each 1 value at a particular row and column, 
an edge 210 connects between the corresponding check node 
206 and variable node 208. 
0039 Decoding a codeword can be explained conceptu 
ally with reference to the graph 204. In this example, a 
received codeword comprises 8 bits, corresponding to the 8 
variable nodes 0 through 7. In order to decode the codeword, 
each variable node sends a value or message to its edge 
connected check nodes, indicating the “belief of the vari 
able node regarding its value. For example, variable node 
“1” sends a message to check nodes “0” and “1”, which are 
connected by respective edges 210. 
0040. In response, each check node sends a message to its 
connected variable nodes, indicating the “belief of the 
check node regarding the value of the check node to which 
the messages is sent. 
0041. Initially, an individual variable node “believes' 
that its value is as received by the receiver 114. Subse 
quently, an individual variable node may reevaluate its belief 
based on received values or messages from the check nodes. 
0042. An individual check node bases its belief regarding 
a particular variable node based on most recent values 
received from other variable nodes and upon parity equa 
tions that are known to have been used in the LDPC 
encoding process. 
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0043. The “beliefs' shared between nodes may be rep 
resented in various ways, such as by values, likelihoods, 
probabilities, and so forth. For example, an individual belief 
value may be represented as the likelihood that the corre 
sponding node is either a “0” or a “1”. In some implemen 
tations, belief values may be represented as value pairs, 
including both the likelihood that a node value is a one and 
the likelihood that a node value is a Zero. 
0044) The process described above iterates, with the 
check nodes and variable nodes exchanging messages and/or 
belief values, until all parity or check equations are fulfilled 
by the bits of the variable nodes, or until a predefined 
number of iterations have been performed. The final bit 
values of the variable nodes then indicate the decoded 
codeword. 

004.5 FIG. 2B illustrates an LDPC code matrix 220. The 
LDPC matrix 220 has a dimension of M rows and N 
columns, where M and N are appropriate integers. The 
LDPC matrix 220 is, for example, a sparse binary parity 
check matrix, in which each entry is 1 or 0. The LDPC 
matrix 220 is, for example, used to encode and/or decode K 
bits of data, where Me(N-K). If the LDPC matrix 220 is 
represented as H, then a binary string c (which is of length 
N) is a codeword for the LDPC code matrix 220 if and only 
if H.c-O, where O is a null matrix of appropriate dimen 
S1O.S. 

0046. The LDPC matrix 220 is divided in A by B sub 
divisions (illustrated using dotted lines in FIG. 2B), where A 
and B are appropriate integers. Each subdivision of the 
LDPC matrix 220 is referred to as a circulant of the LDPC 
matrix 220. A circulant is a square matrix of dimension Zby 
Z (i.e., each circulant has Z rows and Z columns), i.e., each 
circulant is of size Z. Each circulant comprises single shifted 
diagonal elements of 1's, and other entries of the circulant 
are 0. The circulant size Z can take an appropriate integer 
value. For example, Z may be equal to one of 27, 54 or 81. 
0047. The number of columns N of the LDPC matrix 220 

is given by A.Z. and the number of rows M of the LDPC 
matrix 220 is given by B.Z. As is well known to those skilled 
in the art, for a given length of data (i.e., for a given value 
of K) and for a given value of N, the LDPC matrix 220 is 
associated with a given code rate. For example, for 1620 bits 
of data (i.e., K=1620) and for N=1944, the code rate is 5/6 
(i.e., for every 5 bits of data, the LDPC encoder 108 
generates 6 bits of data, of which (6-5), i.e., 1 bit data is 
redundant. 
0048. In an example, the code rate associated with the 
LDPC matrix 220 can take one of various possible values, 
e.g., 5/6, 4, 2/3, /2, or the like. Also, in an example, the 
circulant Z can take an appropriate integer value, e.g., 27, 54 
or 81. Thus, in an example, if the code rate can take one of 
four possible values and the circulant Z can take one of three 
possible values, then the structure of the LDPC matrix 220 
can take one of 12 possible values (i.e., one structure for 
each possible value of the code rate and for each possible 
value of the circulant Z). 
0049 FIG. 3 illustrates an overview of a iterative decod 
ing process in the form of a high-level flowchart. The 
process begins at 302, which comprises updating values of 
the variable nodes 208. Initially, each variable node 208 is 
assigned the corresponding bit of the received codeword, 
which may contain errors. At 304, the assigned values form 
variable node beliefs. At 306, the assigned values form 
variable node beliefs are used as input for calculating or 
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recalculating beliefs 308 of the check nodes 206 regarding 
the variable nodes 208, based on the variable node beliefs 
304 and upon parity check equations. At 308, the calculated 
check node beliefs are used as input in another iteration of 
302, in which the values of the variable nodes 208 are 
updated based on the check node beliefs calculated at 306. 
This process iterates or repeats until it converges, or until a 
set limit of iterations has been performed, upon which the 
updated values of the variable nodes 208 are declared as the 
correct and/or corrected value of the received codeword. 
0050. The algorithm used to implement the general 
LDPC decoding process described above may be referred to 
as the “belief propagation algorithm, the “message passing 
algorithm, and/or the "sum-product algorithm.” The beliefs 
304 and 308 may be represented in different ways, such as 
absolute values, probabilities, likelihoods, and so forth. In 
some cases, the beliefs 304 and 308 may be calculated and 
represented in logarithmic space in order to simplify calcu 
lations. 
0051. In certain LDPC implementations, the beliefs 304 
and 308 may be calculated and represented as a-posteriori 
probability (APP) values, which may in turn be calculated 
and represented in the logarithmic domain as log likelihood 
ratios (LLRs). 
0.052 FIG. 4 illustrates example components of an LDPC 
decoder 118 that may be used to implement the LDPC 
decoding process of FIG. 3. In this example, the LDPC 
decoder 118 comprises a belief memory or value memory 
402 and a belief updater, value updater, or update engine 
404. The belief memory 402 comprises memory registers or 
locations corresponding to the check nodes 206 and the 
variable nodes 208, which are used for storing calculated 
beliefs or belief values 304 and 308. 
0053. The belief updater 404 comprises a processor or 
other logic for performing the updating and calculations of 
FIG. 3. Accordingly, the belief updater 404 writes and reads 
belief values 406 to and from the registers or locations of the 
belief memory 402. The belief values 406, which may be 
equivalent to the beliefs 304 and 308 of FIG. 3, may be 
represented as numeric values within the belief memory 
402, such as by APP values or LLR values. 
0054. In various embodiments, the belief memory 402 
may be referred to as APP memory. Similarly, the belief 
updater 404 may be referred to as an APP engine or updater. 

Reconfigurable Precision of LDPC Decoder 
Processing 

0055. In an embodiment, the LDPC decoder 118 is 
responsive to the signal-to-noise ratio (SNR) of the com 
munications channel 106 (FIG. 1), as represented by the 
SNR signal 120, to dynamically vary the level of numeric 
precision at which the belief values 406 are calculated and 
stored during the LDPC decoding process. For example, a 
relatively high precision may be used when the data channel 
106 exhibits a low signal quality or SNR, and a relatively 
low precision may be used when the data channel 106 
exhibits a high signal quality or SNR. 
0056 FIG. 5 illustrates the behavior of the LDPC 
decoder 118 with respect to the use of varying levels of 
numeric precision when calculating LDPC beliefs of belief 
values. At 502, a quality of the data communications channel 
is evaluated, in terms of an SNR value 120. If the current 
SNR is relatively high, Such as being greater than a prede 
termined threshold, the decoder 118 performs its calcula 
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tions in accordance with the actions on the left side of FIG. 
5. If the current SNR is relatively low, such as being less 
than a predetermined threshold, the decoder performs its 
calculations in accordance with the actions on the right side 
of FIG. S. 

0057. In the case where the current SNR is above the 
predetermined threshold, at 504, check node and variable 
node beliefs are calculated, provided, sent, and/or stored at 
a relatively low level of numeric precision. For example, 
belief values may be represented in calculations and stored 
in the memory 402 using 6 bits of precision. At 508, a 
high-precision memory (e.g., a portion of a memory for 
storing check node and variable node beliefs at a relatively 
high level of numeric precision) is disabled. At 512, one or 
more high-precision registers (e.g., for storing check node 
and variable node beliefs at a relatively high level of 
numeric precision) are disabled. 
0058. In the case where the current SNR is below the 
predetermined threshold, at 506, check node and variable 
node belief values are calculated and stored at relatively 
high levels of precision. For example, belief values may be 
represented in calculations and in the belief memory 402 at 
8 bits of precision. 
0059. The decreased precision when the data channel is 
exhibiting a high SNR allows for implementation of various 
power-saving techniques. For example, at 508, when the 
SNR is relatively high, the portion of the belief memory 402 
that is otherwise used for storage of low-order, high-preci 
sion bits of belief values is disabled. When the data channel 
is exhibiting a low SNR, at 510, this portion of memory is 
enabled. Also, at 514, the one or more high-precision 
registers (e.g., for storing check node and variable node 
beliefs at a relatively high level of numeric precision) are 
enabled. 
0060 FIG. 6 illustrates an example configuration of the 
belief memory 402, in which a portion of the memory may 
be disabled for power savings in situations where the data 
channel 106 exhibits a high SNR. The belief memory 402 
comprises two memory arrays or areas 602 and 604, which 
may be implemented using different portions of a semicon 
ductor die. The first memory or memory area 602 may be 
used for storing low-precision portions of belief values 406, 
such as higher-order bits or most significant bits of the belief 
values 406. The second memory or memory area 604 may be 
used for storing high-precision portions of the belief values 
406, such as lower-order bits or least significant bits of the 
belief values 406. 
0061 An example of a belief value 406 is illustrated in 
FIG. 6 as having high-order bits 406(H), corresponding to a 
low-precision portion of the belief value 406. The belief 
value also has lower-order bits 406(L), corresponding to a 
high-precision portion of the belief value 406. For example, 
the high-order, low-precision bits 406(H) may comprise the 
upper or most significant 6 bits of the belief value 406, and 
the low-order, high-precision bits 406(L) may comprise the 
lower or least significant 2 bits of the belief value 406. 
0062. The high-order bits 406(H) of a single belief value 
406 may be stored in one of a plurality of registers 606 of 
the first memory area 602, and the low-order bits 406(L) of 
the belief value 406 may be stored in a corresponding one of 
a plurality of registers 608 of the second memory area 604. 
When reading a belief value 406 from the belief memory 
402, corresponding registers 606 and 608 are concatenated 
to form the full-precision belief value 406. 
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0063. When the LDPC decoder 118 is acting in a low 
precision mode, corresponding to the left side of FIG. 5, the 
high-precision portion 604 of the belief memory 402 may be 
disabled to conserve power. In this case, the LDPC decoder 
118 references only the first memory area 602, and uses 
belief values that comprise only the high-order bits 406(H) 
of the belief values 406. 
0064. As another example of a power-saving technique 
under conditions of high SNR, an action 512 may be 
performed, comprising disabling various logic circuits of the 
belief updater 404 that are responsible calculating or other 
wise handling high-precision portions of the belief values. 
When the data channel 106 is exhibiting a low SNR, an 
action 514 may be performed of enabling these logic ele 
ments or components. 
0065 FIG. 7 illustrates an example configuration of 
components within the belief updater 404, in which the 
clock signal to certain portions of the logic corresponding to 
high-precision calculations may be gated or disabled. Logic 
702 is responsible for performing the calculations and data 
transfers described above. In addition, various registers 
and/or latches 704 may be used for transmitting and tem 
porarily storing certain data within the belief updater 404. 
0066. The logic 702 generally responds to input signals, 
including high-order input signals labeled IN(H) and low 
order input signals labeled IN(L). As described above, the 
low-order input signals IN(L) may be disregarded when the 
belief updater 404 is not operating in a high-precision mode. 
Similarly, registers and/or latches 704 corresponding to the 
low-order input signals IN(L) may be unused when the 
belief updater 404 is not operating in the high-precision 
mode. 
0067. The logic 702 and registers 704 are clocked by one 
or more clock signals, represented in FIG. 7 by a signal 
labeled CLK. In an embodiment, the clock signal CLK is 
gated by one or more AND gates 706 before being used to 
clock low-order elements of the updater 414. The AND gates 
706 have inputs connected to the CLK signal and to a 
high-precision mode signal, labeled in FIG. 7 as HIGH 
PRECISION MODE. Accordingly, the CLK signal is 
enabled at the low-order elements of the updater 414 only 
when the LDPC decoder 118 is operating in the low 
precision mode. 
0068. The techniques described above may be used for 
power conservation in various situations in which data is 
received over a channel of variable quality, such as wireless 
communications channels. 
0069. Note that although the description above assumes 
two levels of numeric precision, other embodiments may use 
three or more levels of precision, corresponding to different 
ranges of SNR. 

Reconfigurable Processing by LDPC Decoder 
0070 FIG. 8 is a diagram illustrating an example LDPC 
code matrix 800 (henceforth referred to as “matrix 800'). 
The matrix 800 is, for example, a sparse binary parity check 
matrix, in which each entry is 1 or 0. The matrix 800 is 
divided in a plurality of subdivisions, each subdivision 
corresponding to a circulant. Some of the example circulants 
of the matrix 800 is illustrated in FIG. 8. For example, 
example circulants S00, S01,..., S05, S10, ..., S15, S20, 
... , S24 are illustrated in FIG. 8. Although a given number 
of circulants are illustrated in FIG. 8, the matrix 800 may 
include any different number of circulants. Some of the 
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circulants of the matrix 800 are illustrated as by a dash sign 
("-), for example, as these circulants have all Zero entries, 
are not relevant for processing the matrix 800, are merely for 
illustrative purposes, and/or the like. 
(0071. Each circulant of the matrix 800 comprises shifted 
diagonal elements of 1's, and other entries of the circulant 
are 0. Each of the circulants is a square matrix with Z. rows 
and Z columns (i.e., the circulant size is Z), where Z can take 
an appropriate integer value. For example, Z may be equal to 
one of 27, 54 or 81. 
0072. In an embodiment, a layer of the matrix 800 refers 

to a row of the circulants of the matrix 800. For example, a 
first layer (or layer 0) of the matrix 800 comprises circulants 
S00, S01, . . . . S05, and second layer (or layer 1) of the 
matrix 800 comprises circulants S10. . . . . S15, and so on. 
Although the example matrix 800 illustrates only three 
layers, in another embodiment, the matrix 800 can include 
any other appropriate number of layers. 
0073. In an embodiment, a circulant of the matrix 800 can 
be read from the belief memory 402 during a single clock 
cycle, and a circulant of the matrix 800 can be updated by 
the belief updater 404 during a single clock cycle. For 
example, all the circulants of layer 0 of the matrix 800 (i.e., 
circulants S00, . . . . S05) are read from the belief memory 
402 during consecutive clock cycles (e.g., during six con 
secutive clock cycles). It takes, for example, three clock 
cycles (or any other appropriate number of clock cycles) to 
decode or update the circulants of layer 0 of the matrix 800 
(e.g., by the belief updater 404). Subsequently, the updated 
circulants of layer 0 of the matrix 800 are written back to the 
belief memory 402. This iterative process continues for 
individual layers until the decoding process is successfully 
completed. 
0074 FIG. 9 (labeled as “Prior Art') illustrates process 
ing layers of an LDPC code matrix (e.g., matrix 800) in a 
conventional LDPC decoder. In FIG. 9, during six consecu 
tive clock cycles (labeled as clock cycles 0, . . . , 6). 
circulants S00, . . . , S05 of layer 0 are read from a belief 
memory. It takes, for example, three clock cycles to decode 
and update the circulants (e.g., by a belief updater). Subse 
quently, the circulants S00, . . . . S05 of layer 0 are written 
to the belief memory during clock cycles 9, . . . , 14. 
0075. The circulant S10 of layer 1 can be read from the 
belief memory only after, for example, the circulant S00 is 
written back to the belief memory. This is to avoid, for 
example, “read-before-write' conflict in the circulant col 
umn of the LDPC code matrix 800. Accordingly, as illus 
trated in FIG. 9, the circulant S10 is read at clock cycle 10. 
Thus, the start of reading of the circulants of layer 1 can 
begin only at clock cycle 10. Thus, for four clock cycles (i.e., 
clock cycles 6 to 10), no read operation is performed in the 
belief memory, resulting in idle time in the read operation. 
Such idle time results in a delay in decoding codewords in 
a conventional LDPC decoder. 
0076 FIG. 10 illustrates parallel decoding of a plurality 
of LDPC codewords. The decoding of the plurality of LDPC 
codewords, as illustrated in FIG. 10, can be performed by an 
LDPC decoder, e.g., the LDPC decoder 118 of FIG. 1 
(comprising the belief memory 402 and the belief updater 
404). Referring to FIGS. 4, 8 and 10, after a first codeword 
(CW), e.g., CW 0 is received, a layer 0 of the associated 
LDPC code matrix of the CW 0 is read from the belief 
memory 402. Subsequent to reading the layer 0 of CW 0, the 
belief updater 404 updates and writes back the updated 
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values of the layer 0 of CW 0 to the belief memory 402. 
Subsequently, the layer 1 of the CW 0 is read from the belief 
memory 402, and the iterative process of reading, updating 
and writing the layers of CW 0 continues. It is to be noted 
that although FIG. 10 illustrates each layer of a CW being 
read and updated only once, a layer of a CW can be read and 
updated multiple times iteratively, based on a requirement of 
the LDPC decoding process. 
(0077. When the LDPC decoder 118 decodes only a single 
codeword (e.g., CW 0), the LDPC decoder 118 operates in 
a single CW mode, as illustrated in FIG. 10. For reasons 
discussed with respect to FIG. 9, during the single CW 
mode, the belief memory 402 and/or the belief updater 404 
frequently remains idle, as illustrated in FIG. 10. 
0078. In an embodiment, subsequent to receiving and 
while processing the CW 0, the LDPC decoder 118 receives 
a second codeword, e.g., CW 1, as illustrated in FIG. 10. In 
an embodiment, the LDPC decoder 118 starts processing the 
CW1 immediately after receiving the CW1, even while 
processing the CW 0. For example, while the layer 2 of the 
CWO is being updated (e.g., by the belief updater 404), the 
layer 0 of the CW 1 is read from the belief memory 402. In 
another example, immediately after the layer 2 of the CW 0 
is updated, the layer 0 of the CW 1 is updated by the belief 
updater 404, thereby eliminating any idle time of the belief 
updater 404 between updating the two layers of the two 
codewords. 
0079. In an embodiment, subsequent to receiving and 
while processing the CW 1, the LDPC decoder 118 receives 
another codeword CW 2, as illustrated in FIG. 10. The 
LDPC decoder 118 decodes the CW1 and CW2 at least in 
part in parallel, e.g., while a layer of the CW1 is being read 
from the belief memory 402, a layer of the CW 2 is updated 
by the belief updater 404. In an embodiment, subsequent to 
receiving and while processing CW 1 and CW2, the LDPC 
decoder 118 receives yet another codeword CW 3, as 
illustrated in FIG. 10. The LDPC decoder 118 processed, at 
least in part, the CW1, CW2 and CW3 in parallel, as 
illustrated in FIG. 10, thereby further reducing the idle time 
of the belief memory 402 and/or the belief updater 404. 
0080. In an embodiment, while the LDPC decoder 118 
processes at least two codewords in parallel, the LDPC 
decoder 118 operates in a multi CW mode. As discussed, 
while operating in the multi CW mode, the idle time of the 
belief memory 402 and/or the belief updater 404 is reduced 
(e.g., compared to that in the single CW mode). 
I0081. In an embodiment, while the belief memory 402 
and/or the belief updater 404 are idle (e.g., either in the 
single CW mode or the multi CW mode), the belief memory 
402 and/or the belief updater 404 are at least partially shut 
down (e.g., operates in a low power or sleep mode). 
I0082 FIG. 11 is a flowchart 1100 illustrating decoding, at 
least in part, at least two codewords in parallel. At 1104, an 
LDPC decoder (e.g., the LDPC decoder 118) receives and 
starts processing a first codeword (e.g., the CW 0 of FIG. 
10). Processing the first codeword comprises iteratively 
reading a layer of the first codeword from a belief memory 
(e.g., belief memory 402), updating the layer of the first 
codeword by a belief updater (e.g., belief updater 404), 
and/or writing back the updated layer of the first codeword 
to the belief memory, and repeating the process for the layer 
or another layer of the first codeword. 
I0083. At 1104, while decoding the first codeword, a 
second codeword (e.g., CW 1) is received by the LDPC 
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decoder. At 1108, the LDPC decoder processes, at least in 
part, the first codeword and the second codeword in parallel, 
e.g., as discussed with respect to FIG. 10. 

Reconfigurable Circulant Shifter 
0084. In an embodiment and as previously discussed, 
each circulant of an LDPC code matrix (e.g., the LDPC code 
matrix 800 of FIG. 8) is a square matrix of Z rows and Z 
columns, where Z is an appropriate integer. For example, Z 
can take a value of one of 27, 54 and 81, e.g., based on an 
application area of the LDPC decoder 118, an intended 
redundancy of the LDPC encoding, an intended code rate, a 
size of the data to be encoded and decoded, and/or the like. 
In order to decode a codeword, the elements of the circulants 
may need to be shifted diagonally. A number of times a 
circulant need to be shifted and an amount by which the 
circulant needs to be shifted are based on, for example, the 
decoding of the codeword. 
0085. In a conventional LDPC decoder that support cir 
culant sizes of, for example, 27, 54 and 81, separate sets of 
multiplexers are used for each circulant size to shift the 
elements of the circulants. For example, in the conventional 
LDPC decoder, if a circulant size is Z, then at least Z.log(Z) 
number of multiplexers is needed to shift the circulants. For 
example, for shifting a circulant of size 81, at least 81 x7, i.e., 
567 multiplexers are needed. Accordingly, for a conven 
tional LDPC decoder that supports circulant sizes of 27, 54 
and 81, a total of (27x5)+(54x6)+(81 x7), i.e., 1026 multi 
plexers are necessary to support shifting circulants of sizes 
27, 54 and 81. Such a large number of multiplexers consume 
considerable circuit area, and signal routing for Such a large 
number of multiplexers can be relatively complex. 
I0086 FIG. 12A illustrates a circuit 1200 that supports 
shifting circulant of varying sizes. In an embodiment, the 
circuit 1200 is configured to shift the elements of the 
circulants of, for example, the LDPC code matrix 800 of 
FIG. 1. In an embodiment, the circuit 1200 supports circu 
lants of sizes 27, 54 and 81 (e.g., as circulants of these sizes 
are commonly used for LDPC encoding and decoding). 
However, the circuit 1200 can be modified to support 
circulants of any other appropriate sizes, as will be readily 
understood by those skilled in the art based on the teachings 
of this disclosure. 
I0087. The circuit 1200 comprises 55 multiplexers, 
labeled as M0, . . . , M54, each controlled by respective 
control signals C0, ..., C54. In an embodiment, each of the 
multiplexers M0, . . . , M26 and M54 are configured to 
receive two inputs, and selectively output one of the two 
inputs, e.g., based on the corresponding control signal. In an 
embodiment, each of the multiplexers M27. . . . , M53 is 
configured to receive three inputs, and selectively output one 
of the three inputs, e.g., based on the corresponding control 
signal. 
0088. The circuit 1200 also comprises a shifting module 
1220. In an embodiment, the shifting module 1220 is a barrel 
shifter configured to shift the input values by an appropriate 
number. Although not illustrated in FIG. 12A, the shifting 
module 1220 comprises 81 multiplexers, and is configured 
to shift 81 inputs by a maximum of 81 numbers. 
0089. As discussed, the circuit 1200 supports circulant 
sizes of 27, 54 and 81. For example, when shifting elements 
of a circulant of size 27, the circuit 1200 receives 27 inputs, 
labeled as IN(0), . . . , IN(26) in FIG. 12A. When shifting 
elements of a circulant of size 54, the circuit 1200 receives 
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54 inputs, labeled as IN(0), . . . IN(53) in FIG. 12A. 
Similarly, when shifting elements of a circulant of size 81, 
the circuit 1200 receives 81 inputs, labeled as IN(0), . . . . 
IN(80) in FIG. 12A. Thus, when shifting elements of the 
circulant of size 27, the inputs IN(27),..., IN(80) are null 
or invalid inputs. Similarly, when shifting elements of the 
circulant of size 54, the inputs IN(54), ..., IN(80) are null 
or invalid inputs. 
(0090. The inputs IN(0), ..., IN(80) are logically grouped 
in three groups—a first input group comprising inputs IN(0), 
..., IN(26); a second input group comprising inputs IN(27), 
. . . , IN(53); and a third input group comprising inputs 
IN(54), ..., IN(80). 
0091. In an embodiment, the shifting module 1220 
receives inputs IN(0), ..., IN(26). In an embodiment, each 
of the multiplexers M0, . . . , M26 is configured to receive 
(i) a corresponding input from the first input group and (ii) 
a corresponding input from the second input group. For 
example, the multiplexer MO is configured to receive (i) 
input IN(0) from the first input group and (ii) IN(27) from 
the second input group; the multiplexer M1 is configured to 
receive (i) input IN(1) from the first input group and (ii) 
IN(28) from the second input group; the multiplexer M26 is 
configured to receive (i) input IN(26) from the first input 
group and (ii) INC53) from the second input group, and so 
O. 

0092. In an embodiment, each of the multiplexers M27, 
. . . , M54 is configured to receive (i) a corresponding input 
from the first input group, (ii) a corresponding input from the 
second input group, and (iii) a corresponding input from the 
third input group. For example, the multiplexer M27 is 
configured to receive (i) input IN(0) from the first input 
group, (ii) INC27) from the second input group, and (iii) 
IN(54) from the third input group; the multiplexer M28 is 
configured to receive (i) input IN(1) from the first input 
group, (ii) INC28) from the second input group, and (iii) 
IN(55) from the third input group; the multiplexer M53 is 
configured to receive (i) input IN(26) from the first input 
group, (ii) IN(53) from the second input group, and (iii) 
IN(80) from the third input group, so on. 
0093. In an embodiment, the inputs of the shifting mod 
ule 1220 is divided in three groups: a top one third input of 
the shifting module 1220 (e.g., comprising outputs of the 
multiplexers M27. . . . , M53); a middle one third input of 
the shifting module 1220 (e.g., comprising outputs of the 
multiplexers M0, . . . , M26); and a bottom one third input 
of the shifting module 1220 (e.g., comprising inputs IN(0), 
. . . , IN(26) of the first input group), as illustrated in FIG. 
12A. The phrases “top,” “middle' and “bottom' are merely 
for purposes of identifying the three groups of input of the 
shifting module 1220, and does not indicate the actual 
physical locations of various inputs of the shifting module 
1220. 

(0094. In an embodiment, the multiplexer M55 receives 
an input of P and another input of (P+27), where P represents 
a number by which a circulant is to be shifted by the circuit 
1200. P can be for example, between 0 and 26, e.g., when the 
circulant size is 27; between 0 and 53, e.g., when the 
circulant size is 54; and between 0 and 80, e.g., when the 
circulant size is 81. 
(0095 FIG. 12B illustrates an example operation of the 
circuit 1200 of FIG. 12A. In the example of FIG. 12B, the 
circulant size is assumed to be 27. FIG. 12B illustrates the 
circuit 1200 of FIG. 12A; however, some of the signal lines 
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in FIG. 12B are illustrated using relatively thicker lines. The 
ticker signal lines in FIG. 12B represent those signal lines 
which are relevant for the operation of the circuit 1220 for 
the example of FIG. 12B, as is discussed herein below. 
0096. In FIG. 12B, the circulant size is 27. Thus, the first 
input group (i.e., inputs IN(0), IN(26)) represents valid 
inputs of a circulant, while inputs of the second and third 
input groups (i.e., inputs IN(27), . . . , IN(80)) are null or 
irrelevant inputs in FIG. 12B. Accordingly, inputs of the first 
input group are illustrated using thicker lines in FIG. 12B, 
while inputs of the second and third input group are illus 
trated using thinner lines. 
0097. In the example of FIG. 12B, as the circulant size is 
27, only the first 27 inputs IN(0), . . . , IN(26) are to be 
shifted by the shifting module 1220 (e.g., are of relevance to 
the shifting module 1220). Thus, the shifting module 1220 
receives inputs of the first input group (i.e., inputs IN(0), . 
... IN(26)). Furthermore, the multiplexers M0, . . . , M53 
needs to output data to the shifting module 1220, for the 
shifting module 1220 to work properly. Accordingly, in the 
example of FIG. 12, the multiplexers M0, ... , M53 outputs 
respective input from the first input group. For example, the 
multiplexers M0, . . . , M26 outputs IN(0), . . . , IN(26), 
respectively; and the multiplexers M27. . . . , M53 also 
outputs IN(0), . . . , IN(26), respectively, as illustrated in 
FIG. 12B. That is, inputs of the first input group is replicated 
and transmitted to the shifting module 1220 in three parallel 
SetS. 

0098. The shifting module 1220 shifts the received inputs 
by, for example, P, where P is an appropriate integer and 
P-27. The shifting module 1220 outputs output O(0), . . . . 
O(80), based on shifting the received inputs. As the circulant 
size in FIG. 12B is 27, only outputs O(0), . . . , O(26) are 
considered, and the remaining outputs O(27),..., O(80) are 
discarded or not considered for further processing. 
0099 FIG. 12C illustrates another example operation of 
the circuit 1200 of FIG. 12A. In the example of FIG. 12C, 
the circulant size is assumed to be 81. FIG. 12C illustrates 
the circuit 1200 of FIG. 12A; however, some of the signal 
lines in FIG. 12C are illustrated using relatively thicker 
lines. The ticker signal lines in FIG. 12C represent those 
signal lines which are relevant for the operation of the circuit 
1220 for the example of FIG. 12C, as is discussed herein 
below. 

0100. In FIG. 12C, the circulant size is 81. Thus, inputs 
of the first, second and third input groups (i.e., inputs IN(0), 
..., IN(80)) represent valid inputs of the circuit 1200. Thus, 
the shifting module 1220 has to receive inputs of all the three 
input groups (i.e., inputs IN(0), . . . , IN(80), and shift the 
inputs based on the number of shifts P (in FIG. 12C, P-81). 
0101 The shifting module 1220 receives the inputs of the 

first input group directly, i.e., by bypassing the multiplexers, 
as illustrated using the thicker lines in FIG. 12C. The 
multiplexers M0, . . . , M26 selectively outputs respective 
inputs of the second input group (i.e., inputs IN(27). . . . . 
IN(53)); and the multiplexers M27, . . . , M53 selectively 
outputs respective inputs of the third input group (i.e., inputs 
IN(54), . . . , IN(80)). For example, the multiplexer MO 
outputs input IN(27); the multiplexer M1 outputs input 
IN(28); the multiplexer M26 outputs input IN(53); the 
multiplexer M27 outputs input IN(54); the multiplexer M53 
outputs input IN(80); and so on, as illustrated in FIG. 12C. 
0102 Thus, the shifting module 1220 receives inputs 
IN(0), IN(80), i.e., inputs from all the three input groups. 
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The shifting module 1220 shifts the received inputs by P. and 
outputs output O(0), . . . , O(80), based on shifting the 
received inputs. As the circulant size in FIG. 12C is 81, all 
of the outputs O(0), . . . . O(26) are considered for further 
processing. 
0103 FIG. 12D illustrates another example operation of 
the circuit 1200 of FIG. 12A. In the example of FIG. 12D, 
the circulant size is assumed to be 54, and the number P by 
which the elements of the circulants are to be shifted is 
assumed to be less than or equal to 27 (i.e., P-27). FIG. 12D 
illustrates the circuit 1200 of FIG. 12A; however, some of 
the signal lines in FIG. 12D are illustrated using relatively 
thicker lines. The ticker signal lines in FIG. 12D represent 
those signal lines which are relevant for the operation of the 
circuit 1220 for the example of FIG. 12D, as is discussed 
herein below. 

0104. In FIG. 12D, the circulant size is 54. Thus, inputs 
of the first and second input groups (i.e., inputs IN(0), . . . 
, IN(53)) represent valid inputs of the circuit 1200, while 
inputs of the third input group (i.e., inputs IN(54), . . . . 
IN(80)) are null or irrelevant inputs. Also, as the circulant 
size is 54, the shifting module 1220 has to receive inputs of 
the first and second input groups (i.e., inputs IN(0), . . . . 
IN(53)), and shift the inputs based on the number of shifts 
P (in FIG. 12D, P-27). Accordingly, the shifting module 
1220 receives the inputs of the first input group directly, i.e., 
by bypassing the multiplexers, as illustrated using the 
thicker lines in FIG. 12D. The multiplexers M0, . . . , M26 
selectively outputs respective inputs of the second input 
group (i.e., inputs IN(27), . . . , IN(53)). For example, the 
multiplexer M0 outputs input IN(27); the multiplexer M1 
outputs input IN(28); the multiplexer M26 outputs input 
IN(53); and so on, as illustrated in FIG. 12D. Thus, the 
shifting module 1220 receives the inputs of the second input 
group via the multiplexers M0, . . . , M26. 
0105. Furthermore, as P-27, the top one third input of the 
shifting module 1220 has to be inputs of the first input group 
(i.e., inputs IN(0), ..., IN(26)), to satisfy the circular nature 
of the shifting of the circulant by the shifting module 1220. 
Thus, the shifting module 1220 has to receive inputs IN(0), 
..., IN(26), i.e., inputs of the first input group as the top one 
third input of the shifting module 1220. Accordingly, the 
multiplexers M27. . . . , M53 selectively output respective 
inputs of the first input group (i.e., inputs IN(0), . . . . 
IN(26)). For example, the multiplexer M27 outputs input 
IN(0); the multiplexer M28 outputs input IN(1); the multi 
plexer M53 outputs input IN(26); and so on, as illustrated in 
FIG. 12D. Thus, the shifting module 1220 receives, as the 
top third input, the inputs of the first input group via the 
multiplexers M27. . . . , M53. Furthermore, the shifting 
module 1220 receives the number P from the multiplexer 
M54. The shifting module 1220 shifts the received inputs by 
P. and outputs output O(0), ..., O(80), based on shifting the 
received inputs. As the circulant size in FIG. 12D is 54, the 
outputs O(0), . . . . O(53) are considered for further pro 
cessing, and the remaining outputs O(54). . . . , O(80) are 
discarded or not considered for further processing. 
0106 FIG. 12E illustrates another example operation of 
the circuit 1200 of FIG. 12A. In the example of FIG. 12E, 
the circulant size is assumed to be 54, and the number P by 
which the elements of the circulants are to be shifted is 
assumed to be greater than 27 (i.e., 81 >P>27). 
0107 FIG. 12E is, at least in part, similar to FIG. 12D. 
For example, in FIG. 12E, as the circulant size is 54, inputs 
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of the first and second input groups (i.e., inputs IN(0), . . . 
, IN(53)) represent valid inputs of the circuit 1200. Further 
more, similar to FIG. 12D, in FIG. 12E, the shifting module 
1220 receives the inputs of the first input group directly, i.e., 
by bypassing the multiplexers. The multiplexers M0, . . . . 
M26 selectively outputs respective inputs of the second 
input group (i.e., inputs IN(27),..., IN(53)). For example, 
the multiplexer M0 outputs input IN(27); the multiplexer 
M1 outputs input IN(28); the multiplexer M26 outputs input 
IN(53); and so on, as illustrated in FIG. 12E. Thus, the 
shifting module 1220 receives the inputs of the second input 
group via the multiplexers M0, . . . , M26. 
0108. Unlike FIG. 12D, in FIG. 12E, as Pid-27, the top one 
third input of the shifting module 1220 has to be inputs of 
the second input group (i.e., inputs IN(27), IN(53)), to 
satisfy the circular nature of the shifting of the circulant by 
the shifting module 1220. Thus, the shifting module 1220 
has to receive inputs IN(27), ..., IN(80), i.e., inputs of the 
second input group as the top one third input of the shifting 
module 1220. Accordingly, the multiplexers M27, ... , M53 
selectively outputs respective inputs of the second input 
group (i.e., inputs IN(27). . . . , IN(53)). For example, the 
multiplexer M27 outputs input IN(27); the multiplexer M28 
outputs input IN(28); the multiplexer M53 outputs input 
IN(53); and so on, as illustrated in FIG. 12E. Thus, the 
shifting module 1220 receives, as the top third input, the 
inputs of the second input group via the multiplexers M27, 
. . . , M53. Furthermore, the shifting module 1220 receives 
the number (P+27) from the multiplexer M54. The shifting 
module 1220 appropriately shifts the received inputs, and 
outputs output O(0), . . . . O(80), based on shifting the 
received inputs. As the circulant size in FIG. 12E is 54, the 
outputs O(0), . . . , O(53) are considered for further pro 
cessing, and the remaining outputs O(54). . . . , O(80) are 
discarded or not considered for further processing. 
0109 Referring to FIGS. 12A-12E, the circuit 1200 is 
configured to process circulants of sizes 27, 54 and 81, by 
appropriately configuring the various multiplexers M0, . . . 
, M55 of the circuit 1200. The circuit 1200 comprises 
multiplexers M0, ... , M54. Also, the shifting module 1220 
includes (81 x7), i.e., 567 multiplexers (e.g., to shift 81 
possible inputs to the shifting module 1200). Thus, the 
circuit 1200 includes a total of (55+567), i.e., 622 multi 
plexers. In contrast, as previously discussed, a convention 
LDPC decoder, which supports circulant sizes of 27, 54 and 
81, includes at least 1026 multiplexers. Thus, the circuit 
1200 is configured to process circulants of sizes 27, 54 and 
81, using a lower number of multiplexers (e.g., compared to 
a conventional LDPC decoder). 

Reconfigurable LLR Pre-Processing 

0110 Referring again to FIG. 1, LDPC decoder 118 
determines and processes LLR values associated with data 
received over the channel 106. LLR values of data received 
over the channel 106 are based on a variety of factors, e.g., 
a quality of the channel 106, a number of transmit antennas 
coupled to the transmitter 112, a number of receive antennas 
coupled to the receiver 114, and/or the like. Accordingly, a 
distribution of LLR values of data received over the channel 
106 can have a large variance. 
0111. In an embodiment, for optimal or near optimal (or 
relatively accurate or faster) operation of the LDPC decoder 
118, it may be intended that a distribution of magnitude of 
the LLR values of the received codewords be within a 
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certain range. For example, FIG. 13A illustrates an intended 
LLR magnitude distribution 1304 for the LDPC decoder 
118, with an example Intended range of a mean value of 
LLR magnitude between 32 and 64. The intended LLR 
magnitude distribution 1304, for example, ensures optimal 
or near optimal (or relatively accurate) operation of the 
LDPC decoder 118. It is to be noted that the intended LLR 
magnitude distribution 1304 is merely an example, and does 
not limit the scope of this disclosure. 
0112 However, as illustrated in FIGS. 13B and 13C, an 
actual LLR magnitude distribution may be different from the 
intended LLR magnitude distribution 1304. For example, 
FIG. 13B illustrates an actual LLR magnitude distribution 
1308 (illustrated using dotted lines), which has a range of 
mean values that is lower than that of the intended LLR 
magnitude distribution 1304. In another example, FIG. 13C 
illustrates an actual LLR magnitude distribution 1312 (illus 
trated using dotted lines), which has a range of mean values 
that is higher than that of the intended LLR magnitude 
distribution 1304. 
0113. In an embodiment, the actual LLR magnitude dis 
tributions 1308 and/or 1312 are generated dynamically. For 
example, as and when more data is received by the receiver 
114, the actual LLR magnitude distributions 1308 and/or 
1312 are updated. In an embodiment, the actual LLR mag 
nitude distributions 1308 and/or 1312 are generated using 
moving average, and/or a moving time window. For 
example, older LLR values are discarded or given less 
weightage or less emphasis, and newer LLR values are given 
more weightage or more emphasis while generating and/or 
updating the actual LLR magnitude distributions 1308 and/ 
or 1312. 

0114. In an embodiment, the actual LLR values are 
scaled to generate scaled LLR values (and generate corre 
sponding scaled LLR magnitude distribution). The scaling is 
performed in a manner Such that the scaled LLR magnitude 
distribution is closer to the intended LLR magnitude distri 
bution 1304, compared to the actual LLR magnitude distri 
bution. 
0115 For example, to make the actual LLR magnitude 
distribution 1308 of FIG. 13B closer to the intended LLR 
magnitude distribution 1304, one or more LLR values of the 
actual LLR magnitude distribution 1308 is scaled (e.g., 
multiplied) by a factor that is greater than one (e.g., by a 
factor of 1.2), so that the mean range of the LLR magnitude 
of the scaled LLR magnitude distribution increases and gets 
closer to the intended LLR magnitude distribution 1304. For 
similar reasons, one or more LLR values of the actual LLR 
magnitude distribution 1312 of FIG. 13C are scaled (e.g., 
multiplied) by a factor that is less than one (e.g., by a factor 
of 0.8). 
0116 FIG. 14 illustrates an LLR pre-processing module 
1400 (illustrated using dotted lines in FIG. 14) for pre 
processing LLR values, prior to transmitting the LLR values 
to the LDPC decoder 118. The LLR pre-processing module 
1400 receives baseband data (e.g., comprising encoded 
codewords) from, for example, the receiver 114 of FIG. 1. 
The LLR pre-processing module 1400 comprises a LLR 
determination module 1404 for determining LLR values of 
the incoming codewords. 
0117. In an embodiment, the LLR pre-processing module 
1400 further comprises a LLR scale determination module 
1408 configured to receive magnitude of the LLR values 
from the LLR determination module 1404, as illustrated in 
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FIG. 14. In another embodiment, the LLR scale determina 
tion module 1408 receives the LLR values from the LLR 
determination module 1404, and determines the magnitude 
of the LLR values from the received LLR values. 
0118. In an embodiment, the LLR scale determination 
module 1408 determines an LLR scaling factor, based on the 
magnitude of the LLR values. For example, the LLR scale 
determination module 1408 determines, from the magnitude 
of the LLR values, an actual distribution of LLR magni 
tudes. The LLR scale also accesses an optimal, near optimal 
or an intended distribution of LLR magnitudes. In an 
embodiment, based on a difference between the actual 
distribution of LLR magnitudes and the intended distribu 
tion of LLR magnitudes, the LLR scale determination mod 
ule 1408 determines the LLR scaling factor. 
0119. In an embodiment, the LLR pre-processing module 
1400 further comprises a LLR scaling module 1412. The 
LLR scaling module 1412 receives (i) the LLR values from 
the LLR determination module 1404 and (ii) the LLR 
Scaling factor from the LLR scale determination module 
1408. The LLR scaling module 1412 scales the received 
LLR values by the scaling factor, to generate scaled LLR 
values. In an embodiment, the LLR scaling module 1412 
comprises adders and/or multipliers for Scaling the LLR 
values. The LDPC decoder 118 receives the scaled LLR 
values, and decodes the codeword based on the received 
scaled LLR values. 
0120 FIGS. 15A and 15B illustrate example scaling of 
LLR values by the LLR pre-processing module 1400. In 
FIGS. 15A and 15B, the x axis represent actual LLR values, 
and the y axis represent scaled LLR values (e.g., as scaled 
by the LLR scaling module 1412). 
0121 Referring to FIGS. 14 and 15A, the scaling illus 
trated in FIG. 15A is applied while the LLR pre-processing 
module 1400 operates in a first mode (e.g., a mode 1). The 
LLR pre-processing module 1400 operates in mode 1 when, 
for example, a mean range of actual LLR magnitude exceeds 
64, e.g., as illustrated in FIG. 13C. The scaling of FIG. 15A 
is non-linear. For example, the scaling is performed based on 
the following: if xe5, then y=x; and if x>5, then Y=4.25+ 
(0.25-0.03125). x. 
0122 Referring to FIGS. 14 and 15B, the scaling illus 
trated in FIG. 15A is applied while the LLR pre-processing 
module 1400 operates in a second mode (e.g., a mode 2). 
The LLR pre-processing module 1400 operates in mode 2 
when, for example, a mean range of LLR magnitude is less 
than 64, e.g., as illustrated in FIG. 13B. The scaling of FIG. 
15B is non-linear. For example, the scaling of FIG. 15B is 
performed based on the following: if Xs8, then y=x; and if 
x>8, then Y=4.25+(0.5-0.03125). X. 
(0123. In FIGS. 15A and 15B, the LLR values having a 
relatively low magnitude are not scaled (e.g., in FIG. 15A, 
LLR values having a magnitude of less than 5 are not 
scaled). This ensures, for example, that low magnitude LLRS 
retain the associated LLR information and is not scaled near 
to Zero. Also, the slope of the Scaling curve (e.g., for higher 
LLR values) in FIG. 15A is relatively less compared to that 
of FIG. 15B. That is, the LLR values in mode 1 are scaled 
using a lower Scaling factor compared to that in mode 2. This 
ensures, for example, that the LLR values in mode 1, which 
are higher than the mean range of 64, are scaled such that the 
scaled LLR values are within the intended mean range. 
0.124 FIG. 16 is a flowchart 1600 illustrating scaling of 
LLR values prior to processing the LLR values by the LPDC 
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decoder 118. At 1604, a distribution of magnitude of LLR 
values is determined (e.g., by the LLR scale determination 
module 1408). At 1608, the distribution of magnitude of 
LLR values is compared (e.g., by the LLR scale determi 
nation module 1408) with an intended distribution of mag 
nitude of LLR values. At 1612, a scaling factor is determined 
(e.g., by the LLR scale determination module 1408), based 
on the comparison. At 1616, LLR values are scaled (e.g., by 
the LLR scaling module 1412), based on the determined 
Scaling factor. 
0.125. The description above incorporates use of the 
phrases “in an embodiment,” or “in various embodiments.” 
or the like, which may each refer to one or more of the same 
or different embodiments. Furthermore, the terms “compris 
ing,” “including,” “having, and the like, as used with 
respect to embodiments of the present disclosure, are syn 
onymous. 
I0126. As used herein, the terms “logic.” “component.” 
and “module' may refer to, be part of, or include an 
Application Specific Integrated Circuit (ASIC), an elec 
tronic circuit, a processor (shared, dedicated, or group) 
and/or memory (shared, dedicated, or group) that execute 
one or more software or firmware programs, a combinational 
logic circuit, and/or other Suitable components that provide 
the described functionality. The logic and functionality 
described herein may be implemented by any Such compo 
nentS. 

0127. In accordance with various embodiments, an article 
of manufacture may be provided that includes a storage 
medium having instructions stored thereon that, if executed, 
result in the operations described above. In an embodiment, 
the storage medium comprises some type of non-transitory 
memory (not shown). In accordance with various embodi 
ments, the article of manufacture may be a computer 
readable medium Such as, for example, software or firm 
Wae. 

I0128 Various operations may have been described as 
multiple discrete actions or operations in turn, in a manner 
that is most helpful in understanding the claimed subject 
matter. However, the order of description should not be 
construed as to imply that these operations are necessarily 
order dependent. In particular, these operations may not be 
performed in the order of presentation. Operations described 
may be performed in a different order than the described 
embodiment. Various additional operations may be per 
formed and/or described operations may be omitted in 
additional embodiments. 
I0129. Although certain embodiments have been illus 
trated and described herein, a wide variety of alternate 
and/or equivalent embodiments or implementations calcu 
lated to achieve the same purposes may be substituted for the 
embodiments illustrated and described without departing 
from the scope of the present disclosure. This application is 
intended to cover any adaptations or variations of the 
embodiments discussed herein. Therefore, it is manifestly 
intended that embodiments in accordance with the present 
disclosure be limited only by the claims and the equivalents 
thereof. 
What is claimed is: 
1. A method of decoding codewords in conjunction with 

a low-density parity-check (LDPC) code, the method com 
prising: 

receiving a first codeword and a second codeword over a 
data channel, wherein a first code matrix is configured 
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to be used to decode the first codeword, and wherein a 
second code matrix is configured to be used to decode 
the second codeword; and 

decoding the first codeword and the second codeword, 
wherein decoding the first codeword and the second 
codeword comprises 
during a first time period, reading a first layer of the first 

code matrix, and 
during a second time period, (i) updating the first layer 

of the first code matrix and (ii) reading a first layer 
of the second code matrix, 

wherein the first layer of the first code matrix is updated 
at least in part simultaneously with reading the first 
layer of the second code matrix such that the first 
codeword and the second codeword are decoded at 
least in part in parallel. 

2. The method of claim 1, further comprising: 
receiving a third codeword, wherein a third code matrix is 

configured to be used to decode the third codeword; 
and 

decoding the second codeword and the third codeword, 
wherein decoding the second codeword and the third 
codeword comprises 
during a third time period, (i) updating the first layer of 

the second code matrix and (ii) reading a first layer 
of the third code matrix. 

3. The method of claim 2, further comprising: 
receiving a fourth codeword, wherein a fourth code matrix 

is configured to be used to decode the fourth codeword; 
and 

decoding the third codeword and the fourth codeword at 
least in part in parallel, wherein decoding the third 
codeword and the fourth codeword comprises 
iteratively reading and updating a plurality of layers of 

the third code matrix, and 
iteratively reading and updating a plurality of layers of 

the fourth code matrix, wherein while a layer of the 
plurality of layers of the third code matrix is being 
read, a layer of the plurality of layers of the fourth 
code matrix is being updated. 

4. The method of claim 3, wherein while another layer of 
the plurality of layers of the third code matrix is being 
updated, another layer of the plurality of layers of the fourth 
code matrix is being read. 

5. The method of claim 1, wherein: 
reading the first layer of the first code matrix comprises 

reading the first layer of the first code matrix from a 
belief memory; and 

updating the first layer of the first code matrix comprises 
subsequent to reading the first layer of the first code 

matrix from the belief memory, modifying the first 
layer of the first code matrix, and 

subsequent to modifying the first layer of the first code 
matrix, writing the first layer of the first code matrix 
to the belief memory. 

6. The method of claim 1, wherein: 
the first code matrix comprises a plurality of circulants 

arranged in rows and columns; and 
the first layer of the first code matrix comprises circulants 

included in a first row of the first code matrix. 
7. The method of claim 6, wherein: 
each circulant of the plurality of circulants of the first code 

matrix is a square matrix with individual entries being 
either Zero or one. 
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8. The method of claim 1, wherein receiving the second 
codeword comprises: 

receiving the second codeword Subsequent to (i) receiving 
the first codeword and (ii) the first time period. 

9. The method of claim 1, further comprising: 
during a third time period, refraining from reading any 

layer of any code matrix, wherein a memory stores a 
plurality of code matrices including the first code 
matrix and the second code matrix; and 

during the third time period, operating the memory in a 
low power mode. 

10. The method of claim 1, further comprising: 
during a third time period, refraining from updating any 

layer of any code matrix, wherein an updater updates a 
plurality of code matrices including the first code 
matrix and the second code matrix; and 

during the third time period, operating the updater in a 
low power mode. 

11. A decoder that decodes codewords received over a 
data channel in conjunction with a check code that defines 
variable nodes and check nodes, the decoder comprising: 

a memory; 
an updater, and 
a receive module configured to receive a first codeword 

and a second codeword, wherein a first code matrix is 
configured to be used to decode the first codeword, and 
wherein a second code matrix is configured to be used 
to decode the second codeword, 

wherein the decoder is configured to decode the first 
codeword and the second codeword by 
during a first time period, reading a first layer of the first 

code matrix from the memory, and 
during a second time period, (i) updating, using the 

updater, the first layer of the first code matrix and (ii) 
reading a first layer of the second code matrix from 
the memory. 

12. The decoder of claim 11, wherein the first layer of the 
first code matrix is updated at least in part simultaneously 
with reading the first layer of the second code matrix such 
that the first codeword and the second codeword are decoded 
at least in part in parallel. 

13. The decoder of claim 11, wherein the decoder is 
further configured to: 

receive a third codeword, wherein a third code matrix is 
configured to be used to decode the third codeword; 
and 

decode the second codeword and the third codeword by 
during a third time period, (i) updating the first layer of 

the second code matrix and (ii) reading a first layer 
of the third code matrix. 

14. The decoder of claim 13, wherein the decoder is 
further configured to: 

receive a fourth codeword, wherein a fourth code matrix 
is configured to be used to decode the fourth codeword; 
and 

decode the third codeword and the fourth codeword at 
least in part in parallel by 
iteratively reading and updating a plurality of layers of 

the third code matrix, and 
iteratively reading and updating a plurality of layers of 

the fourth code matrix, wherein while a layer of the 
plurality of layers of the third code matrix is being 
read, a layer of the plurality of layers of the fourth 
code matrix is being updated. 
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15. The decoder of claim 14, wherein while another layer 
of the plurality of layers of the third code matrix is being 
updated, another layer of the plurality of layers of the fourth 
code matrix is being read. 

16. The decoder of claim 11, wherein the decoder is 
configured to update the first layer of the first code matrix 
by: 

subsequent to reading the first layer of the first code 
matrix from the memory, modifying the first layer of 
the first code matrix; and 

subsequent to modifying the first layer of the first code 
matrix, writing the first layer of the first code matrix to 
the memory. 

17. The decoder of claim 11, wherein: 
the first code matrix comprises a plurality of circulants 

arranged in rows and columns; and 
the first layer of the first code matrix comprises circulants 

included in a first row of the first code matrix. 
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18. The decoder of claim 17, wherein: 
each circulant of the plurality of circulants of the first code 

matrix is a square matrix with individual entries being 
either Zero or one. 

19. The decoder of claim 11, wherein the decoder is 
further configured to: 

during a third time period, refrain from reading any layer 
of any code matrix from the memory; and 

during the third time period, operate the memory in a low 
power mode. 

20. The decoder of claim 11, wherein the decoder is 
further configured to: 

during a third time period, refrain from updating, using 
the updater, any layer of any code matrix; and 

during the third time period, operate the updater in a low 
power mode. 


