w0 2019/120464 A1 |0 0000 00000 0 T 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/120464 Al

27 June 2019 (27.06.2019) WIPOIPCT

(51) International Patent Classification:
GO6F 9/46 (2006.01)

(21) International Application Number:
PCT/EP2017/083219

(22) International Filing Date:
18 December 2017 (18.12.2017)

(25) Filing Language: English
(26) Publication Language: English

(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building Bantian, Long-
gang District, Shenzhen, Guangdong 518129 (CN).

(72) Inventor; and

(71) Applicant (for US only): AVNI, Hillel [IL/DE]; c¢/o Huawei
Technologies Duesseldorf GmbH, Riesstr.25, 80992 Mu-
nich (DE).

(72) Inventor: AVITZUR, Aharon; c/o Huawei Technologies
Duesseldorf GmbH, Riesstr. 25, 80992 Munich (DE).

(74) Agent: KREUZ, Georg, Huawei Technologies Duessel-
dorf GmbH, Riesstr. 8, 80992 Munich (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

84

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: SCALABLE HARDWARE TRANSACTIONAL MEMORY

(57) Abstract: An apparatus for accessing data synchronized by hardware transac-

3(|)0
|

HTM access manager

[5%)

—_
—+to

>

Server

330

—+ %

Shared memory

Fig. 3

tional memory includes a hardware processor which, prior to performing an HTM
transaction with hardware transactional memory (HTM), allocates nodes of a data
structure for use during the transaction and performs the HTM transaction using
the allocated nodes.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

SCALABLE HARDWARE TRANSACTIONAL MEMORY

BACKGROUND

The present invention, in some embodiments thereof, relates to hardware transactional
memory and, more specifically, but not exclusively, to avoidance of conflicts in memories
synchronized by hardware transactional memory.

Hardware transactional memory (HTM) is a hardware synchronization mechanism which
enables parallel transactions that rarely conflict with each other to be efficiently executed
without the need for using locks. HTM transactions may execute and commit changes to the data
stored in the HTM, as long as there are no conflicts. When there is a conflict between concurrent
transactions, the transactions abort.

The use of HTM with various types of data structures has been investigated. For
example:

a) On a balanced tree such as an AVL tree, an insert or a delete may trigger log(n)
rotations which make it not scalable with HTM.

b) Use of an adaptive radix tree (ART) with HTM is fast but not scalable because of
contention in the memory allocation. An insert always triggers a memory allocation for a node.
A delete always triggers a memory release of a node. The allocations and frees cause cache
misses that abort the transactions. Such aborts occur relatively frequently in workloads with a
high percentage of inserts and deletes, regardless of the contention on the data structure itself.

There has been research on the use of HTM friendly memory allocation (malloc). This
research has only investigated the placement of allocated buffers relative to L1 cache

associatively sets.

SUMMARY

HTM conflicts may arise due to memory allocations and frees during an HTM
transaction. Embodiments of the invention avoid HTM conflicts that are due to memory
allocations and frees by performing these memory management operations outside the HTM
transaction itself. Data structure nodes that are required for performance of the HTM transaction
(e.g. for insert and/or delete) are pre-allocated before the HTM transaction which wraps the
actual insert and/or delete. Nodes released by the HTM transaction are freed after the HTM
transaction is successfully completed. Optionally, nodes that are released by the insert and/or
delete operations within the HTM transaction are buffered until they are freed after completion

of the HTM transaction.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

As used herein the terms “HTM transaction” and “transaction” mean a collection of
operations that may execute and commit changes in the data structure in accordance with an
HTM synchronization mechanism.

As used herein the term “memory management operation” means allocating and/or
freeing a node in the data structure.

As used herein the term “outside the HTM transaction” means that the operation is
performed either prior to beginning the HTM transaction or after successfully completing the
HTM transaction.

As used herein the term “the node is released” and similar terms means that the node is
marked as no longer being a valid node of the data structure. Nodes are released during
performance of the HTM transaction.

As used herein the term “allocating a node” and similar terms means that the node is
reserved for addition to the data structure if required by the HTM transaction.

As used herein the term “freeing a node” and similar terms means that the node is made
available for future HTM transaction(s).

As used herein the term “data structure” means a specified way of organizing and storing
data (such as a RADIX tree).

It is an object of the present invention to provide an apparatus, a system, a computer
program product, and a method for avoiding conflicts and aborts within HTM transactions on a
shared memory.

The foregoing and other objects are achieved by the features of the independent claims.
Further implementation forms are apparent from the dependent claims, the description and the
figures.

According to a first aspect, an apparatus for accessing data synchronized by hardware
transactional memory includes a hardware processor for:

prior to performing a transaction with hardware transactional memory (HTM), allocating

nodes of a data structure for use during the transaction; and

performing the transaction using the allocated nodes.

According to a second aspect, a method for accessing data synchronized by hardware
transactional memory includes:

prior to performing a transaction with hardware transactional memory (HTM), allocating

nodes of a data structure for use during the transaction; and

performing the transaction using the allocated nodes.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

Because the nodes are pre-allocated before the HTM transaction begins, memory allocation
operations (malloc) are not performed during the transaction and cannot conflict with any free
functions which may occur during the HTM transaction.

In a further implementation form of the first and second aspects, data structure nodes
released by the transaction are freed after transaction commit. This further reduces the memory
management operations performed within the HTM transaction, reducing the complexity of the
HTM transaction and efficiently releasing the shared memory for subsequent HTM transactions.
Because the released nodes have not yet been freed, in case of an abort there is no need to re-
allocate data structure nodes in their place.

In a further implementation form of the first and second aspects, nodes released by the
transaction are buffered until successful commit of the transaction. Buffering the nodes assists in
quick recovery of the state of the data structure before the HTM transaction was begun in cases
of a transaction abort.

In a further implementation form of the first and second aspects, the HTM operates on a
shared cache memory. Preventing aborts in transactions on a cache memory improves the
accessibility and speed of the cache memory, which is key to efficient operation of processor(s)
using the cache memory.

In a further implementation form of the first and second aspects, the data structure is a
RADIX tree. The RADIX tree is an important data structure often used for accessing databases.
Embodiments of the invention make the RADIX tree data structure scalable in HTM.

In a further implementation form of the first and second aspects, the transaction is an
atomic transaction. Atomic transactions are very useful in concurrent programming where
multiple processors try to modify the same shared data structure. The HTM makes their changes
consistent.

In a further implementation form of the first and second aspects, the transaction includes
an abort mechanism utilized in the case of a missed access to the data structure. Although
removing the memory management operations outside of the HTM transaction greatly reduces
the likelihood of an aborted transaction, such aborted transaction may nonetheless occur. The
abort mechanism may assist in such cases by returning the data structure to its state prior to
beginning the transaction, possibly using the buffered nodes.

In a further implementation form of the first aspect, the apparatus further includes an
HTM module adapted to perform the data synchronization. A dedicated HTM module is
particularly suitable for processor architectures which use dedicated modules or units (e.g.

arithmetic-logic unit, load-store unit, etc.) to reduce the idle time of CPU components.
3

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

In a further implementation form of the first aspect, the hardware processor executes
multiple threads performing concurrent transactions with HTM on a shared memory storing the
data structure.

In a further implementation form of the first aspect, the apparatus includes multiple
hardware processors performing concurrent transactions with HTM on a shared memory storing
the data structure.

Unless otherwise defined, all technical and/or scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which the invention
pertains. Although methods and materials similar or equivalent to those described herein can be
used in the practice or testing of embodiments of the invention, exemplary methods and/or
materials are described below. In case of conflict, the patent specification, including definitions,
will control. In addition, the materials, methods, and examples are illustrative only and are not

intended to be necessarily limiting.

BRIFF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with
reference to the accompanying drawings. With specific reference now to the drawings in detail,
it is stressed that the particulars shown are by way of example and for purposes of illustrative
discussion of embodiments of the invention. In this regard, the description taken with the
drawings makes apparent to those skilled in the art how embodiments of the invention may be
practiced.

In the drawings:

Figs. 1A-1C are simplified block diagrams of an HTM access manager, according to
respective embodiments of the invention;

Fig. 2 is a simplified block diagram of a server with HTM access manager, according to
embodiments of the invention;

Fig. 3 is a simplified diagram of an HTM access manager accessed by servers over a
network, according to embodiments of the invention;

Figs. 4, 5 and 6 are simplified flowcharts of methods for accessing data synchronized by
hardware transactional memory, according to respective embodiments of the invention;

Fig. 7 is a simplified flowchart of a method for accessing data from an adaptive RADIX
tree, according to exemplary embodiments of the invention; and

Figs 8 and 9 are graphs demonstrating the improved speed and scalability of an

embodiment of the invention relative to prior art HTM and Skiplist.
4

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

DETAILED DESCRIPTION

The present invention, in some embodiments thereof, relates to hardware transactional
memory and, more specifically, but not exclusively, to avoidance of conflicts in memories
synchronized by hardware transactional memory.

HTM transactions often require allocation and/or freeing of one or more nodes of the data
structure upon which the HTM transaction is performed. As described above, the memory
management operations required to allocate or to free nodes within the HTM transaction may
cause misses that abort the HTM transaction.

Embodiments of the invention move some or all of the memory management operations
outside of the HTM transaction. Memory management operations may be moved out of the
HTM transaction by one or both of:

i) Pre-allocating memory for use during the HTM transaction before starting the
HTM transaction. The HTM transaction uses the pre-allocated memory when a node is created.
Thus the memory allocation operations are not performed during the HTM transaction.

ii) Freeing data structure nodes that are released by the HTM transaction after the
HTM transaction commits. Thus the memory free operations are not performed during the HTM
transaction.

Moving the memory allocations and frees out of the HTM transaction significantly
reduces the likelihood of HTM transaction aborts, as shown in Figs. 8-9 and discussed in more
detail below.

HTM transactions are atomic. The atomicity of the HTM transaction protects the data
structure from concurrent access by another HTM transaction, further limiting the probability of
an abort of the current HTM transaction. Embodiments of the invention increase the probability
that an HTM transaction will commit successfully to support the atomicity.

Before explaining at least one embodiment of the invention in detail, it is to be
understood that the invention is not necessarily limited in its application to the details of
construction and the arrangement of the components and/or methods set forth in the following
description and/or illustrated in the drawings and/or the Examples. The invention is capable of
other embodiments or of being practiced or carried out in various ways.

The present invention may be a system, a method, and/or a computer program product.
The computer program product may include a computer readable storage medium (or media)
having computer readable program instructions thereon for causing a processor to carry out

aspects of the present invention.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium
may be, for example, but is not limited to, an electronic storage device, a magnetic storage
device, an optical storage device, an electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing.

Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local area
network, a wide area network and/or a wireless network.

The computer readable program instructions may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's computer
and partly on a remote computer or entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider). In some embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program instructions by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry,
in order to perform aspects of the present invention.

Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer readable program
instructions.

The flowchart and block diagrams in the Figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods, and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of instructions, which
comprises one or more executable instructions for implementing the specified logical
function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks shown in succession may, in fact, be

executed substantially concurrently, or the blocks may sometimes be executed in the reverse
6

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

order, depending upon the functionality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

HTM access manager

Reference is now made to Figs. 1A-1C, which are simplified block diagrams of an HTM
access manager, according to respective embodiments of the invention. HTM access manager
100 manages access to a shared memory which is synchronized by HTM. For clarity, Figs. 1A-
1C illustrate respective non-limiting embodiments in which there is a single shared memory. In
alternate embodiments of the invention, the HTM access manager may perform HTM
transactions on multiple shared memories, internal and/or external to HTM access manager.

Optionally the shared memory is a shared cache memory of the hardware processor (such
as the L1 cache).

HTM access manager 100 includes at least one processor 110, and optionally a memory
storing code instructions 120 to be executed by processor 110.

Optionally HTM access manager 100 includes an HTM module (not shown) which
performs the HTM transaction on the shared memory. Further optionally, the HTM module
performs the pre-allocating and/or releasing of nodes outside the HTM transaction.

Prior to performing an HTM transaction on a data structure stored on a shared memory,
HTM access manager 100 allocates nodes of the data structure for use during the transaction
(denoted herein pre-allocated nodes). The HTM transaction is performed using the pre-allocated
nodes.

Optionally the data structure has more than one type of node, and multiple types of node
are pre-allocated for use during the transaction.

Optionally, information about how many nodes to pre-allocate for each type of node is
derived from the HTM transaction algorithm. Typically, an HTM transaction will use at most
one node from one of four different sizes per insert/delete operation.

Optionally, after the HTM transaction is performed (e.g. after commit) HTM access
manager 100 frees data structure nodes which were released by the transaction. Further
optionally, the released nodes are freed prior to the next HTM transaction on the shared memory.

Optionally, the released nodes are buffered until the HTM transaction is successful

committed.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

Optionally, during the HTM transaction the released nodes are marked (e.g. added to a
to-be freed list). Thus the released nodes are known and are easily freed when the HTM
transaction commits.

Optionally the data structure is a RADIX tree (also denoted radix tree or compact prefix
tree). A RADIX tree represents a space-optimized tree in which each node that is the only child
of a parent node is merged with its parent. RADIX trees are in the heart of many applications.
Specifically the adaptive RADIX tree (ART) is used as an index in databases.

In a RADIX tree, each insert or delete operation allocates and/or deletes at least one node
to build the new node and new path. The insert or delete operation writes one cache line as the
last step of the operation so contention on the cache which may abort HTM is unlikely. This lack
of contention makes RADIX trees very suitable for use with HTM.

HTM access manager 100 performs memory management (i.e. node pre-allocation and/or
free) outside the HTM transaction thus preventing aborts due to misses to the shared memory
during the transaction. This yields the benefit of making the very useful RADIX tree data
structure scalable in HTM. The RADIX tree data structure is particularly beneficial for keys
which are long strings.

Alternate embodiments of the invention may use a different type of data structure, for
example an AVL tree.

Optionally, the HTM transaction includes an abort mechanism which is utilized in the
case of a missed access to the data structure. Further optionally, the abort mechanism frees the
pre-allocated nodes for use by a ditferent transaction.

Optionally, HTM access manager 100 includes at least one processor that executes
multiple threads which perform concurrent HTM transactions on shared memory 130. HTM
access manager 100 performs memory management operations outside the HTM transactions
issued by respective threads, thereby preventing aborts due to concurrent accesses to the data
structure by multiple threads.

Optionally, HTM access manager 100 includes multiple processors, which perform
concurrent HTM transactions on the shared memory. HTM access manager 100 performs
memory management operations outside the HTM transactions issued by respective processors,
thereby preventing aborts due to concurrent accesses to the data structure by multiple processors.

Figs. 1A-1B illustrate respective embodiments in which shared memory 130 is an
internal memory of HTM access manager 100. In Fig. 1A, HTM access manager 100 includes a
single processor 110, so that concurrent accesses to shared memory 130 may arise from parallel

threads executing in processor 110.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

In Fig. 1B, HTM access manager 140 includes multiple processors 110.1-110.m, in
which case concurrent accesses to shared memory 130 may arise from concurrent HTM
transactions by multiple processors and/or parallel threads executing in a given processor or
Pprocessors.

Fig. 1C illustrates an embodiment in which the shared memory is external to HTM access
manager 150. HTM access manager 150 includes interface 160 with which it communicates with
the external shared memory.

Reference is now made to Fig. 2, which is a simplified block diagram of a server with
HTM access manager, according to embodiments of the invention. Server 210 includes HTM
access manager 220 and shared memory 230. Concurrent accesses to shared memory 230 may
originate at multiple endpoints 200.1-200.n. HTM access manager 220 performs memory
management operations outside the HTM transactions which result from memory access
operations by endpoints 200.1-200.n, thereby preventing aborts due to concurrent accesses to
shared memory 230 by endpoints 200.1-200.n.

Reference is now made to Fig. 3, which is a simplified diagram of an HTM access
manager accessed by servers over a network, according to embodiments of the invention. In the
embodiment of Fig. 3, HTM access manager 300 includes shared memory 330. Servers 310.1-
310.x access shared memory 330 by communicating with HTM access manager 300 over
network 320. HTM access manager 300 performs memory management operations outside the
HTM transactions which result from memory access operations by servers 310.1-310.x, thereby

preventing aborts due to concurrent accesses to shared memory 330 by the multiple servers.

Method for accessing data synchronized by HTM

Reference is now made to Figs. 4-6, which are simplified flowcharts of a method for
accessing data synchronized by hardware transactional memory, according to respective
embodiments of the invention. As described above, nodes required for the HTM transaction are
pre-allocated before the HTM transaction is started. Optionally, nodes released during the HTM

transaction are freed after the HTM transaction ends.

Referring to Fig. 4, prior to performing an HTM transaction, in 410 data structure nodes
are pre-allocated for use during the HTM transaction. In 420 the HTM transaction is performed
using the pre-allocated nodes.

Optionally, in 430 the nodes of the data structure released by the transaction are freed

after the HTM transaction ends.

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

Optionally, in 440 the nodes released by the HTM transaction are buffered until after the
transaction is performed (e.g. after HTM transaction commit).

Optionally, the data structure is a RADIX tree.

Optionally, the HTM transaction includes an abort mechanism utilized in the case of a
missed access.

Other implementations of the method may include some or all of the abovementioned
optional features of the HTM access manager, such as a different type of data structure and/or
different types of concurrent access to the shared memory.

Referring to Fig. 5, in 510 memory is allocated for all data structure nodes that might be
used by insert(s) and/or delete(s) in the upcoming HTM transaction. In steady state this implies
replacing consumed nodes. In 520 nodes released by earlier transaction(s) are freed. 510 and 520
take place before beginning the HTM transaction in 530. In 540-550 insert and/or delete
operation(s) are performed using the pre-allocated memory for new nodes and buffering released
nodes without freeing their memory. In 560 the HTM transaction ends.

In Fig. 6 all the memory management which has inherent contention (and which would
prevent HTM scaling) is executed outside the HTM context by using two techniques:

a) Pre-allocating all possible required data structure nodes (use standard memory

allocation to prepare the potentially allocated nodes BEFORE starting HTM).

b) Post-transaction, freeing the nodes which were released inside the HTM

transaction after the HTM transaction commits.

Note that the HTM transaction begins at 630, is executed in 640 and is committed in 650. 610,
620 and 660 all occur outside the HTM transaction.

In 610 an insert or delete operation begins.

If there are not enough pre-allocated nodes of each node size, in 620 all possibly needed
nodes are pre-allocated using standard memory allocation before starting the HTM transaction in
630. If there are enough allocated buffers to perform the insert or delete without memory
allocation during the HTM transaction, the HTM transaction starts directly in 630.

The HTM transaction is executed in 640. New data structure nodes (e.g. RADIX tree) are
taken from the pre-allocated nodes. Nodes to be freed (i.e. released nodes) are marked and
buffered into post released pools. The HTM transaction is committed in 650.

In 660, the buffered nodes are freed.

Reference is now made to Fig. 7, which is a simplified flowchart of a method for
accessing data from an adaptive RADIX tree, according to exemplary embodiments of the

invention. Exemplary code for implementing the method is presented below.
10

10

15

20

25

WO 2019/120464 PCT/EP2017/083219

In the embodiments of Fig. 7, the data structure is an adaptive RADIX tree with path
compression (ART). The ART data structure requires an insert and/or a delete operation to
allocate and/or free nodes from a known, small set of different sized nodes.

Optionally, the ART has four type of nodes, with fanouts of: 4, 16, 48 and 256. An insert
or delete may need to allocate at most one of these nodes and may free a (typically small)
number of nodes.

In 710 the HTM transaction starts.

The ART operation starts in 720. If a node needs to be freed (i.e. is released), in 730 it is
added to the local to-be freed list. If a node of a given type (T) is needed, in 740 the type T node
is pre-allocated using the alloc-node(T) function presented below.

In 750 the HTM transaction is comitted.

In 760 the refresh-new function presented below is used to fill the allocated node type, if
needed. If nodes were released by the HTM transaction, the local to-be freed list is freed in 770.

Fig. 7 shows a non-limiting embodiment in which 730 and 740 are both performed in
parallel. In alternate implementations 730 and 740 may be performed in series. Similarly, Fig. 7
shows a non-limiting embodiment in which 760 and 770 are both performed in parallel. In
alternate implementations 760 and 770 may be performed in series.

Optionally, the HTM is a hardware block which is exposed by the architecture, e.g. x86,
by 2 ISA: HTM_BEGIN and HTM_END. If a block of code B is executed between these ISA
instructions, it is atomic, i.e. if in B, a processor P1 writes an address that was read by a
concurrent execution of B on processor P2, and the concurrent execution will be aborted, i.e.
canceled. An HTM conflict occurs when two (or more) concurrent transactions access the same
memory address and one of them is a write. As a result, either the writer or the readers are
aborted.

Following is exemplary code for performing the functions presented in Fig. 7. Each ART
operation (e.g. insert/delete/lookup) is wrapped with an HTM transaction.

An exemplary embodiment of code for an insert operation according is:

11

10

WO 2019/120464 PCT/EP2017/083219

void *art_insert_os(art_tree *t, const unsigned char
*key, int key_len, void *value)
{
void *rc;
htmbegin (&global_fallback_lock);
rc = _art_insert_os(t, key, key_len, value);
htmend (&global_fallback_lock);
return rc;

The above insert operation makes the ART concurrent, but not scalable. The reason for
unscalability is that malloc and free functions, when executed inside HTM, generate conflict
aborts. To prevent the conflict aborts, the refresh-new function presented below allocates all the
nodes that may be required by an insert or delete locally in the thread, and out of HTM context.
In addition, the refresh-new function frees all the buffers that were released in the HTM

transaction out of the HTM context. When releasing in the HTM transaction, the to-be freed

buffer is only registered for freeing after the HTM transaction commit:

static void refresh-new () {

if (new_n4 == NULL)
_ n4 = calloc(l, sizeof (art_noded));
if (new_nl6 == NULL)
_nle = calloc(l, sizeof (art_nodelo));

if (new_n48 == NULL)

n48 = calloc(l, sizeof(art_node4d8));
if (new_n256 == NULL)

n256 = calloc(l, sizeof (art_node256));
if (new_1 == NULL)

1 = malloc (sizeof (art_leaf)+32);

while (there is a buffer n to free) free_n;

All potentially required nodes 4, 16, 48 and 256 fanout nodes are pre-allocated.

Inside the HTM transaction, when a node is required it is allocated from the local pre-

allocated nodes, according to its type, by the alloc-node function:

12

10

WO 2019/120464

PCT/EP2017/083219

static art_node* alloc—-node(uint8_t type)
art_node* n;
switch (type) {
case NODEA4:
n = new_n4;
new_n4 = NULL;
break;
case NODEl6:
n = new_nlo6;
new_nleé = NULL;
break;
case NODE48:
n = new_n48;
new_n48 = NULL;
break;
case NODE256:
n = new_n256;;
new_n256 = NULL;
break;
default:
abort () ;
}
n->type = type;
return nj;

Upon releasing in HTM context, the local to-be-freed buffer is added to the to-be-freed

buffers pool, which are freed out of HI'M context:

Add(localtobefreed, n);

Reference is now made to Figs. 8 and 9 which are graphs comparing the performance of

a typical database workload with concurrent indexing. The indexes compared are:

i) ART with HTM (i.e. prior art original ART code and labeled ART-HTM-ORIG

in Figs. 8-9);

i) ART with HTM implemented in accordance with an embodiment of the invention

(i.e. HTM with no memory management in the transaction and labeled ART-HTM-NO-MM in

Figs. 8-9); and

ii) Skiplist (a concurrent ordered map known in the art).

13

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

Fig. 8 demonstrates that embodiments of ART-HTM-NO-MM are scalable, whereas the
original ART code (ART-HTM-ORIG) is not scalable.

Fig. 9 demonstrates that the Lookups only workload is the same for both ART-HTM-NO-
MM and ART-HTM-ORIG.

In summary, Figs. 8 and 9 demonstrate that the ART-HTM-NO-MM embodiment of the
invention is faster than Skiplist and faster and more scalable than standard HTM.

Other systems, methods, features, and advantages of the present disclosure will be or
become apparent to one with skill in the art upon examination of the following drawings and
detailed description. It is intended that all such additional systems, methods, features, and
advantages be included within this description, be within the scope of the present disclosure, and
be protected by the accompanying claims.

The descriptions of the various embodiments of the present invention have been
presented for purposes of illustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art without departing from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the principles of the embodiments, the
practical application or technical improvement over technologies found in the marketplace, or to
enable others of ordinary skill in the art to understand the embodiments disclosed herein.

It is expected that during the life of a patent maturing from this application many relevant
HTMs, HTM transactions, processors, shared memories and data structures will be developed
and the scope of the terms HTM, HTM transaction, processor, shared memory and data structure
is intended to include all such new technologies a priori.

As used herein the term “about” refers to + 10 %.

The terms “comprises”, “comprising”, “includes”, “including”, “having” and their
conjugates mean “including but not limited to”. This term encompasses the terms “consisting of”
and “consisting essentially of”.

The phrase “consisting essentially of”” means that the composition or method may include
additional ingredients and/or steps, but only if the additional ingredients and/or steps do not
materially alter the basic and novel characteristics of the claimed composition or method.

As used herein, the singular form “a”, “an” and “the” include plural references unless the
context clearly dictates otherwise. For example, the term “a compound” or “at least one
compound” may include a plurality of compounds, including mixtures thereof.

The word “exemplary” is used herein to mean “serving as an example, instance or

illustration”. Any embodiment described as “exemplary” is not necessarily to be construed as
14

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

preferred or advantageous over other embodiments and/or to exclude the incorporation of
features from other embodiments.

The word “optionally” is used herein to mean “is provided in some embodiments and not
provided in other embodiments”. Any particular embodiment of the invention may include a
plurality of “optional” features unless such features conflict.

Throughout this application, various embodiments of this invention may be presented in
a range format. It should be understood that the description in range format is merely for
convenience and brevity and should not be construed as an inflexible limitation on the scope of
the invention. Accordingly, the description of a range should be considered to have specifically
disclosed all the possible subranges as well as individual numerical values within that range. For
example, description of a range such as from 1 to 6 should be considered to have specifically
disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3
to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This
applies regardless of the breadth of the range.

Whenever a numerical range is indicated herein, it is meant to include any cited numeral
(fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first
indicate number and a second indicate number and “ranging/ranges from” a first indicate number
“to” a second indicate number are used herein interchangeably and are meant to include the first
and second indicated numbers and all the fractional and integral numerals therebetween.

It is appreciated that certain features of the invention, which are, for clarity, described in
the context of separate embodiments, may also be provided in combination in a single
embodiment. Conversely, various features of the invention, which are, for brevity, described in
the context of a single embodiment, may also be provided separately or in any suitable
subcombination or as suitable in any other described embodiment of the invention. Certain
features described in the context of various embodiments are not to be considered essential
features of those embodiments, unless the embodiment is inoperative without those elements.

All publications, patents and patent applications mentioned in this specification are
herein incorporated in their entirety by reference into the specification, to the same extent as if
each individual publication, patent or patent application was specifically and individually
indicated to be incorporated herein by reference. In addition, citation or identification of any
reference in this application shall not be construed as an admission that such reference is
available as prior art to the present invention. To the extent that section headings are used, they

should not be construed as necessarily limiting.

15

10

15

20

25

30

WO 2019/120464 PCT/EP2017/083219

CLAIMS

1. An apparatus for accessing data synchronized by hardware transactional memory,
comprising a hardware processor (110) for:

prior to performing a transaction with hardware transactional memory (HTM), allocating
nodes of a data structure for use during the transaction; and

performing the transaction using the allocated nodes.

2. An apparatus according to claim 1, wherein the hardware processor (110) is
further for:

freeing nodes of the data structure released by the transaction after transaction commit.

3. An apparatus according to claim 2, wherein the hardware processor (110) is
further for buffering the nodes released by the transaction until successful commit of the

transaction.

4. An apparatus according to any one of claims 1-3, wherein the HTM operates on a

shared cache memory of the hardware processor.

5. An apparatus according to any one of claims 1-4, further comprising an HTM

module adapted to perform the data synchronization.

6. An apparatus according to any one of claims 1-5, wherein the data structure is a
RADIX tree.
7. An apparatus according to any one of claims 1-6, wherein the transaction

comprises an abort mechanism utilized in the case of a missed access to the data structure.
8. An apparatus according to any one of claims 1-7, wherein the hardware processor

(110) executes a plurality of threads performing concurrent transactions with HTM on a shared

memory (130) storing the data structure.

16

10

15

20

WO 2019/120464 PCT/EP2017/083219

9. An apparatus according to any one of claims 1-7, wherein the apparatus
comprises a plurality of hardware processors (110.1-110.n) performing concurrent transactions

with HTM on a shared memory (130) storing the data structure.

10. A method for accessing data synchronized by hardware transactional memory,
comprising:

prior to performing a transaction with hardware transactional memory (HTM), allocating
nodes of a data structure for use during the transaction; and

performing the transaction using the allocated nodes.

11. A method according to claim 10, further comprising:
after performing the transaction, freeing nodes of the data structure released by the

transaction.

12. A method according to claim 11, further comprising buffering the nodes released

by the transaction until successful commit of the transaction.

13. A method according to any one of claims 10-12, wherein the data structure is a
RADIX tree.
14. A method according to any one of claims 10-13, wherein the transaction

comprises an abort mechanism utilized in the case of a missed access to the data structure.

17

WO 2019/120464

1/9

PCT/EP2017/083219

100
I
HTM access manager
13|()
|
Shared
memory
120 110
|
Code |
)) Processor
mstructions

Fig. 1A

WO 2019/120464 PCT/EP2017/083219

2/9
léllO
|
HTM access manager
120.1 110.1 130
| |
Code |
. . Processor
1nstructions
120.2 110.2
I
|
Code |
. . Processor
1nstructions
. Shared
! memory
12|0-m 110.m
Code |
. . Processor
1nstructions

Fig. 1B

WO 2019/120464

PCT/EP2017/083219
3/9
1?0
|
HTM access manager
1|60
|
Shared
Interface <::> i
12|() 1 }O
|
Code |
instructions Processor
Fig. 1C
200.1
2}0
Endpoint
\ |
Server 220
2002 I
| HTM access

Endpoint [—u | manager

; 23|O

i 200.n |

: | / Shared

: memory

Endpoint

Fig. 2

WO 2019/120464 PCT/EP2017/083219

4/9
3 1|(). 1 320
I
Server
310.2 Network
I
Server
| 300
- 310x I
| HTM access manager
Server
330

Shared memory

Fig. 3

WO 2019/120464

Buffer
released
nodes

PCT/EP2017/083219
5/9
—T1 410
Allocate nodes for
use during
transaction Prior to
transaction
y
— 440 Perform | 420
D R Rl transaction
using
allocated
nodes Transaction
After
transaction
Free | _ 430
released
nodes

Fig. 4

WO 2019/120464 PCT/EP2017/083219

6/9

Allocate all nodes possibly needed
by an insert/delete —T—510

Free all nodes released by earlier

inserts/deletes

—T—520
HTM Begin 530

Perform an insertion/deletion
operation 540

A 4
Use pre-allocated nodes and 550
buffer released nodes

—T—560

HTM End

Fig. 5

WO 2019/120464 PCT/EP2017/083219

719

610

Start insert
or delete
operation

A

Missing pre-
allocated nodes

Enough nodes
Allocate pre-allocated
enough from
each node
size 620
—1—630 —T660
Start HTM Free post
transaction released
nodes
A
Allocate from —— 640

preallocates and
free into post
released pools

There are post
released nodes

650

Commit
HTM

Fig. 6

WO 2019/120464 PCT/EP2017/083219

8/9

710

Start HTM

720

Start ART operation

Meed to allocate &

Nead to free a node node fm type T

740

Use alloc-node{T)

Add node to local To allocate a node

to-be freed list

From type T

" Nodeswere freed inthe HTM

Modeswere a%ated iy HT M

770

Use refresh-new
To fill the allocated
Node type

Freethe local
to-be freed list

Fig. 7

WO 2019/120464
3
2.5
2
g
= LS
=

M tx [/ sec

PCT/EP2017/083219

9/9

TPCC - Only Updates

@ SKIPLIST —O—

! i I ‘

e

-
-
P
‘_,-
Py

- et

ART-HTM-ORIG —H— -

i i { i
1 2 4 5 6 7 8
Threads #
Fig. 8
TPCC - Read Only
18
16
14
12
10 SKIPLIST —&— _
ART-HTM-ORIG —(F—
8 ART-HTM-NO-MM - -@ -
6
4 D
2
0] f ! {

3 4 5 6 7 8
Threads #

Fig. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2017/083219

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/46
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20157074219 Al (CHIN BILL YING [US] ET 1-14
AL) 12 March 2015 (2015-03-12)
paragraphs [0030], [0041], [0052],
[0059], [0073] - [0077], [0086],
[0103], [0108], [0110], ([0111],
[0124], [0126]
X US 2012/310987 Al (DRAGOJEVIC ALEKSANDAR 1-14
[CH] ET AL) 6 December 2012 (2012-12-06)
paragraphs [0007] - [0010], [0026] -
[0030]
X US 20167004557 Al (CASTANOS JOSE G [US] ET 1-14
AL) 7 January 2016 (2016-01-07)
paragraphs [0019], [0029], [0063],
[0074], [0080]
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 August 2018

Date of mailing of the international search report

05/09/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Buzgan, C

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2017/083219
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/013899 Al (BARTON CHRISTOPHER M 1-14

[CA] ET AL) 10 January 2013 (2013-01-10)
paragraphs [0019], [0020], [0024] -
[0026], [0043], [0054], [0059], [0063]
- [0065]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2017/083219
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015074219 Al 12-03-2015 US 2015074219 Al 12-03-2015
US 2015081986 Al 19-03-2015
US 2015082085 Al 19-03-2015
US 2017199760 Al 13-07-2017
US 2012310987 Al 06-12-2012 NONE
US 2016004557 Al 07-01-2016 JP 5901835 B2 13-04-2016
JP W02014129247 Al 02-02-2017
US 2016004557 Al 07-01-2016
WO 2014129247 Al 28-08-2014
US 2013013899 Al 10-01-2013 US 2013013899 Al 10-01-2013
WO 2013006525 Al 10-01-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

