JP 2005-504390 A 2005.2.10

(19) BFREREHFT (JP) 22 | F 4 |A) ()L EARES
$53%2005-504390
(P2005-5043904)
49 AEE FRI7E2H 108 (2005.2.10)
(51) Int.CL." Fl F—va—F (B%)
GOBF 9/45 GOBF 9/44 320C 5BO13
GOG6F 9/38 GOB8F 9/38 330A 5B0O81
GOBF 9/38 330K
SRR FWK TFREEMR RER (& 42 B
(2l HEES #5$FE2003-533105 (P2003-533105) |(71) HEEA 590000248
(86) (22) HERE TR 459H 9 (2002.9.9)
(85) BIRRCiRHH ERE1651H 308 (2004. 1. 30)
(86) EEHEES PCT/1B2002 /003646
B7) EERLHES ¥02003,/029961
(87 EEAMB TR I5545 108 (2003, 4. 10)
(31) EAEEEHEE 01402545.6
(32) & H ERE135F10H2H (2001.10.2)
(32) BARETEE NSRS EP)

I—=Fvwdh T4 0w TR TS
ho=FA IR w4
Koninklijke
Electronics N. V.
A5 FEH 5621 N—=F— T4
F=7z2y ZA—FT7rOV0zun
1

Philips

Groenewoudseweg 1, 5
621 BA Eindhoven, T
he Netherlands
(74) fRE A 100087789
#ELT BE E
(74 fRE A 100114753
#ELT B BE
BREICHRS

64 [RADER] Y+ in—Fo 77715 1L — 2 HORBNET

GNHOOO0O

0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000

1
160

T e

T
130

10

~—150

—
170

160

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

e e A s e e e e e s [|

O

OOooooooo0oooooo4o0oooooogoogooao

OOoo0ooooao
O O0Oo0ooooao
OoOoo0oo0oo0ooao
OoOoo0ooooao
OoOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
OO0Ooo0oo0oo0ooaoo

O

Ooooooooooooooo oo oDoDooooooDoDoooooooooodg
O

Ooooooooo0oooooo oo oDoDoooo0o oo oDoDoooooooooog

OOoo0oood
O Ooooo
O Ooooo
O 0OoOooo
O 0Oo0ooOoao
O 0Ooo0ooao
O 0Ooooo
O Ooooo
O 0Ooooo
O 0Oo0ooOoao
O 0Ooo0ooao
O 0Ooooo

O

Ooooooooo

oad

O
O

OOo0oooooooooooogogog
OO0 oooooogogooooogogg
OOo0ooooooooooooooggadg
OoOo0oooooooooooooogogaoQg
Oo0ooooooooooooogoQgo-g
Oo0oooooooooooogogog
OO0 ooooooogogooooogogog
Ooo0oooooooooooooogogadg
Oo0oooooooooooogoQgaQg

O O
O O

ood

O
O
O

0O O
O O
O O

ood

O
O

O O
O O

od

O
O

O

O
O

O

O 0Ooo0oooo
O 0Ooo0gooo
O Ooogoooo

O

(2)

O
O
O
O
O

Ooooooggdg
OoOoooooogoOoad
OooooooogoQgodg
OooooooogQg™g
OoooooogoQgdg

Oo0ooooooooooog
Oo0ooooooogoooog
O Oooo
O 0O oo
O 0ooo
O Oooo
O Oooo
O Oooo
OO oo
O 0ooo
O

O Oooo
O 0oo o
O 0Oooo

O O
O O
O d
0O O
O O

O
O
O

O
O
O
O
O

O Oooo
O 0Oooo
O 0O oo
O 0Oooo
O 0Oooo
O Oooo

ooooao

O
O

O Oooo
O Oooo

O
O

O
O

O
O

oad

|
|

OO oo
O 0Ooo
O 0Oooo
O 0Oooo
O Oooo
O Oooo
O 0Oooo
O 0Oooo
O Oooo
O Oooo
O Oooo
O 0Oooo
O 0Ooo
O 0Oooo
O Oooo

O 0Oood
O Oood

|
|

|
|

|
[

oo

JP 2005-504390 A 2005.2.10

O 0Oooo
O Oooo
O Oooo

O
O
O

O
O
O

O
O
O

oodd

O Oooo
O 0Ooogo

O
O

O
[

O
OJ

oo

O

O 0ooo
O Oooo

O
O

O
O

O
O

oad

O Oooo
O Oooo

O O
O O
O O
O
O
O
O
O

O Oooo
O Oooo
O Oooo
O 0ooo
O 0Oooo
O Oooo
O Oooo
O O

O
O
O
O
O
O
O
O

O
O
(]
O
O
O
O
O

O
O
OJ
O
O
O
O
O

oooooooao

goooboobobooboboobobooobooboobo*obognon
"“gboooboooboooboobobooboboooboobooobooobad

goooobooobooboobobooobooboobooobobobooboobodnb
gooooboobodanb
oooooooobobooooouooooooboooooOoooooboobooooao

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

e e A s e e e e e s [|

Ooooooooooooooo0 oo oDooooooDooooooooooQgodg

OOo0ooooooooooood
Ooooooooooooodg

Ooooocoooooooooooooao
Ooooooooooooogdg

OoOoo0oooao
O 0Oo0oooo
O0Ooo0oo0ooao
O0Ooo0o0ooao
OoOoo0oooaoo
OoOoo0oooao
O0Ooo0oooo
O0Oo0oo0ooao
Oo0Ooo0ooao
OoOoo0ooaoo
OoOoo0oooao
OOoo0oooao

Ooooooooooooodg
OooDoooooooooogodg

O 0Ooogooog
[Y |
OO ogogog
I [y |

O oOooo
O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo
O oOooo
O oOooo
O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo
O oOooo
O 0Oooo

O
O
O
O

O
O
O
O

O
O
O
O

O

O
O
O

O
O
O

OoooooogQgoooao

OO0 ooDooogQgoooao

OooooooogooOoooOoao

3) JP 2005-504390 A 2005.2.10

gbooobooboobdaoad
ooooooobooobooooooooooobooooooooooao
<gogooooooboobooooooooooboobooooooooao
ooooooobooooogoao

goooboao

oooooooooboooooooooooao
>0 00000bo0o0ooboobog
gobooooobdoobooboobooboadnb

O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
OJ

oooooooboooooogano
>0 00000bo0ooooobod
uobooobooboobooboobobooboobooooobooboboad

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
]
O
O
O
O
(]
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

[|
[|
O O
O d
0O O
[|
[|
O d
O d
0O O
[|
[|
O O
O d
O d
[|
[|
O
O
O
O
O
O
O
O
O
O
O
O
O

O
(]
O
O
O
O
O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O

Ooo0ooood
OoOoo0oooogod
OoOoo0oooogod
Ooo0Ooo0Oooood
OooOoo0oood
Ooo0oood
OoOoo0ooood
OoOoo0oooogod
OOo0o0oooogod
OooOoo0ooood

O

O

O

O

O

O

O

O

O 0Oooo
O oOooo
O 0Oooo

O
O
O
O
O
O
O
O
OJ
O
O
O
O
[
O
O
O
O
(]
O
O
O
O
O

Oooooooooogogoao
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

OoooocoooQogoooao
OoooooogooQogoooao
OoooooogogQgoooao
OO0 oooogQgoooao
OooooooooOoooOoao

10

20

30

40

50

ey e e e e R e Iy

O

e s e e s e e e A
e e s e e s e e e e s s [A v
e s) e e s e e s e e s e R v

oo ooooooo0 oo o ooo o oo ooooogoogooao

oo o0ooooooooooooogQgogoo

O 0Ooo0ooooo
Ooooooogd
Oo0oooooogd
OoOooooood
Oooooooogod

O

OoooooooOgoad
OoooooooQgooQgQd
OoooooogogoaoQg

Ooo0oooogoQgdg

Oo0oooogoQgg

Oooooooo0oooooogogQgogoao

O Oooooao
O Oo0oooao
O 0Oo0ooO0oo0oao
O 0Ooo0oo0ooao
O Ooo0oooao
O Ooo0oooao
O Ooo0oooao
O 0Oo0oo0oo0oao
O 0Ooo0oooao
O Ooo0oooao

O O
O O

Oooooogogdg
Ooooooggdg

OoOoo0oooogod
OOo0o0oooogod
OooOoo0ooood

O d
O d

O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo
O oOooo
O oOooo
O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Oooo
O o0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Ooo
O o0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo

ood

0O O
O O
O O

OooOoooooQdgdg
Ooo0oooogoQgdg
OoooooogoQgog

O 0Ooo0ooo

O 0Ooogoo

[|
O O
[|

ood

O O
O O

Ooooooggdg

Oo0oooogoQgdg

O d
O d

O
O

od

O
O

O
O

OooOoo0ooooQgadg

O
O

O
O

O
O

O

Ooo0oooogoQgdg

O

(4)

[Y |
OO ogogog
I [y
I [|
I [|
O 0OoogogooQg
O Ooogogoog
OO ogogog
I [|

O O
O O
O O
O
O

Oo0oooogQgdg
Ooo0oooogoQgdg
O Ooogooao
O 0Oo0oo0ooao
O 0Ooo0oo0ooao
O 0Ooo0oooo
O 0Ooo0oooao
O Ooogooao
O O0OoOgogoao
O 0Ooo0oo0ooao
O 0Ooo0oooao
O 0Ooogoo
O Ooogoog
O O0Oogogaog
O 0Ooo0gooo
O 0Ooo0ooo
O 0OooOooo
O Ooogoog
I [Y
O 0Ooo0ooo
O 0Ooo0ooo
O 0Ooo0gooo

[|
O d
O d
0O O
[|

O
O
O
O
O

ooooao

O
O
O
O

O

O

oo

JP 2005-504390 A 2005.2.10

O 0Oooo
O oOooo
O Oooo
O 0Ooo

O
O
O

oodd

O
O

oo

O
O
O
O

O oOooo
O 0Oooo

O
O
O
O
O
O

O
O
O
O
O
O
O
O

oooooooooaon

gooooboooogobooobogoboooboobooboo"booboboo
"uabooboooobooboobooboooobooboboobooodad

O
g
u
O
a
O
g

gobooobooao
gboooodoaano
ooooooaon
gbooooaoao

goboobogao

goboooboooboboooboobooboooboobodnb
uoobooboobobobooboobooooobooboadnnb
oooooooobobooooooooooboooooooao
goooboobobaodd

gobooobooobobogoboooboooboooboobodnb
usbooobooogoboobooboobooobooobooo*"booboobaoado
"oooooooobOoOobooooooboboboooooOooooobDboOobon
goooooboooognnb
goboodgbad
oooooao

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

s s e e e s e e s e e
[e A [e oY i [

OO0 Do oDooogoggogooooood

m S

nterpretedd 0 0000 O0OOCODODOOOOCODOOOOODOOODODODOOOD

Oo0ooooooooooooodg

O
O
O
O

443.,8650 0 0 0 00 0O0OooooOODOOOOoO0oOooooOoobODbODOOOoOoOn

Ooooooo0oooooooooDooooooooooogod

O Oooo

O0Ooo0oooo
OOoo0oooao
O 0Oo0oooaog
O0Oo0oo0ooao
O0Ooo0oooao
O0Ooo0oooao
O0Ooo0oooao
O 0Oo0oooao
O 0Oo0oo0ooao
O0Ooo0oooao
O0Ooo0oooao
O0Ooo0oooao
O0Ooo0oooao
O0Oo0oo0ooao
O0Ooo0oooao

O
O
O
O

O

OoOoooooao
OOoo0ooooao
O O0Oo0ooooao

Ooooooooooooooaoo
Oo0oooooogogoooooaog
OO0 oooDooogoggogoooooao
OOo0ooooooooooboood
Oo0ooooooooooao
OO0 ooooooooooao
OO0 oooooogogogoooao

O
O
O

O
O
OJ

O Ooogoo

O 0O oo

O O0ooo
O O0ooo

O 0Oooo

O Oooo

O Ooogo

O O0ooo

O O0ooo

O Oooo

O Oooo

O Ooogo

()

O 0ooo

O O0ooo

O O0ooo

O Ooo0ooo
O OooOooo
O OooOooo
O O o0goaog
O Ooo0ooo
O Ooooo
O Ooooo
O Ooooo
O O oOgooao
O Ooo0oono
O Ooo0ooo
O Ooooo
O Ooooo
O Oogoo
O Ooo0ooo
O Ooo0ooOoo
O Ooooo
O OooOooo
O O0OoOgoo

O Oooo

O Oooo

O o0ood

O O0ooo

O Oooo

JP 2005-504390 A 2005.

ugboobooaooboodoboad

O Oooo

O
OJ
O
O
O
O
O
O
O
O
O
O

.10

goooooboooobooooooooboboobooooooobobDboooo
goboo"oooboo"bo*"™ooobooboo"oooboobooobooan
ooooooobooooboooooooooboboobooooooooboboDbooOoon
gobooobooobogoboboogobooobooboogoboboboboobodnob

O

O

OoOooooood
Oooooooogod
Oooooooogodg
Ooooooogd
O Ooo0ooooao
O Ooo0ooo

woo9i1s4840 DD OO0 O DO0OODODOODODOODOODLDOODOOO

O

0O O
O O

O

O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
OJ
O
O
O
O
OJ
O
O
O
O
OJ
O
O
O
O
O

O

oooooobOoocoooooooboon
"oboooobooobooboooboo©o
goodoao
ooogogao
gooagao
oooogao
googao

0

OO0 ooooooogogoo
OoooooooogoOoooao
oo oooooogoooo
OO0 oo ooooQgoooo
OO0 oo oooogoooo
OO0 oo oDooogogooao
Ooooooooo0gooOoooao
oo oooooogoooo
OO0 oo ooooQgooooo
OO0 oooooogogoooo
OO0 oo oooogogooao
OO0 0o oDooogogogooao
OO0 oooooogogoooo
OO0 ooooooQgoooo
OO0 oo oooogoooo
OO0 oooooogogogooo
OO0 ooooDooogogooao
oo oooooogoooo
oo ooooooQgoooo
OO0 oo ooooQgoooo
OO0 oooooogogoooao
OO0 oo oDooogogooao
Oooooooogoooao
OO0 ooooooQgoooo
OO0 ooooooQgoooo
OO0 oo oooogogoooo
OO0 oo oDooogogooao

O

O 0Ooo0oooao
O Ooo0oooao
O Ooo0oooo
O Ooo0oooao
O O0Oo0oo0oo0oao

u
O
a
O
g
g

uon
ogagad
oono
oogad
oono

I I B

O

uoano
oogd
ooano
ood
ooano

O O0Oo0ooooao
O Oo0gooooao
O 0Oo0oo0oo0ooao
O 0Ooo0oo0oooao
O 0OoOo0ooooao
O O0Oo0ooooao
O OoQgooooao

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

e e A s e e e e e s [|

Oooooooo0 o0 oo oooo0 oo oDooo o0 oo oDo oo o0 oo oDooo0oo0 oo ooooooDoDoooQgooQgaoo

L [[e e) e e e e e [

Oooooo = oOooooo

OoooooogoQgogoaoQg

O

O

oo ooooooogogoo-g

oo oooooogogooo

w

(6) JP 2005-504390 A 2005.2.10
ugbooboboobouobooooboobooobooobooboobooboaadn
goooooboooobooooooooboboobooooooobobDboooo
oooDoOooovifeqn"oOOOoOOooooOOoOooo"o"OoOooooDOO
ooooooobooooboooooooooboboobooooooooboboDbooOoon
gobooobooobogoboboogobooobooboogoboboboboobodnob
ugbooboooooboooobooboooboooboobooboooboaodab
goooooboooobooooooooboboobooooooobobobooodnd
gobooobooobogobooogoboobooboooboboboboobodnb
ugbooboboobouobooooboobooobooobooboobooboaadn
goooooboooobooooooooboboobooooooobobDboooo
ugboooboooboobooooboooobooobooobooobooobot™d

"ooooooooobooOooooooobobDbOoboooooobobooboDoon
gobooobooobogoboboogobooobooboogoboboboboobodnob
ugbooboooooboooobooboooboooboobooboooboaodab
goooooboooobooooooooboboobooooooobobobooodnd
gobooobooobogobooogoboobooboooboboboboobodnb
ugbooboboobouobooooboobooobooobooboobooboaadn
goooooboooobooooooooboboobooooooobobDboooo
ugboooboooboobooogobooobooobooobooboboobooboaodnb
ooooooobooooboooooooooboboobooooooooboboDbooOoon
go"obooogobooo*ocobobooboboooboobooboognob
ugbooboooooboooobooboooboooboobooboooboaodab
goooooboooobooooooooboboobooooooobobobooodnd
gbooobooobooobooobooboobooboboobao
goooooboooobooooooooboboobooooooobobDboooo
ugboooboooboobooogobooobooobooobooboboobooboaodnb
oooooooboooooooooooooobooooooooo©tobotg
gobooobooobogoboboogobooobooboogoboboboboobodnob
ugbooboooooboooobooboooboooboobooboooboaodab
ocoooooobooobooogogoooobobboobooooooooobootoo”
gobooobooobogobooogoboobooboooboboboboobodnb
ugbooboboobouobooooboobooobooobooboobooboaadn
goooooboooobooooooooboboobooooooobobDboooo
ugboooboooboobooogobooobooobooobooboboobooboaodnb
ooooooobooooboooooooooboboobooooooooboboDbooOoon
gobooboooboogobooogoboobobobooboobao
goooooboooobooooooooboboobooooooobobobooodnd
gobooobooobogobooogoboobooboooboboboboobodnb
ugbooboboobouobooooboobooobooobooboobooboaadn
goooooboooobooooooooboboobooooooobobDboooo
ugboooboooboobooogobooobooobooobooboboobooboaodnb
6,696 0 0000 COOO0OO0OO0DO0OODODODOOOOOOOOODODODOOGO
gobooobooobogoboboogobooobooboogoboboboboobodnob
ugbooboooooboooobooboooboooboobooboooboaodab
goooooboooobooooooooboboobooooooobobobooodnd
gobooobooobogobooogoboobooboooboboboboobodnb
ugbooboboobouobooooboobooobooobooboobooboaadn
goooao

10

20

30

40

50

Ooooooooooooodg

-
(7]
-
o

OoOoooooo0oooooooo00 oo oooo oD ooDooooooDoooogoQgog
e e e e e e e e e Y O A [O [o Y

OO0 ooooooQgoooo

'O

O

OoOoooooQoUoooooo4o0UoooDooooo LoD oDMMnMPoDoUoooDoDoDood=DO0O 0000 o0DoDooogogggoQg

e

e e A s e e s e s s [|
Oooooooo0 o0 oo oooo0 oo oDoooo0 oo oDoo oo oooDoD oo o0 oo ooooooDooooQgogoQgao

e [ey e [s [y |

Oo0oooogoQgg

O

O Ooo0oooao
O Oooooao

OJ
O
O
O
O
O

Ooooooooooooaog
OoDooooogog4gogooooaog
OO0 oDoDoogog4gogooooaog
OOo0ooooooOogoooooao
Ooooooooooooao
OoDooooooooooaog
OoDooooogogooooaog
OO0 oDoDoog4ogooooaog
OOo0oooooooOoooooao
Ooooooooooooo
OoDooooooooooaono
OoDooooogogooooaog
OO0 ooDoogog4ogooooaog

I [|
O Ooogogog
OO ogogog
I [y |
I [y |
I [y |
I [Y |
OO ogogog
Iy |
I [y |
I [|
O 0Ooogogoog
OO ogogog
O 0O o0oogoo

Ooooooooogoogoao
Oooooooogogoao
OOoDooooogogogao
Oooooooooogoao
Ooooooooogoogoo
Oooooooogogogoo
Oooooooogogoao
OoDooooogogogao
OooooooooogooOoo
Ooooooooogoogoao
Oooooooogogogoo
Oooooooogogoao
Oooooooogogoao
OooooooooogooOoao

Oooooogogdg

O 0Ooo
O 0Oooo
O oOooo
O oOooo
O oOooo
O Oooo
O 0Oooo
O o0Oooo
O oOooo
O oOooo
O 0Oooo
O 0Ooo
O 0Oooo
O 0Oooo
O oOooo

Ooooooggdg

OooOoooooQdgdg

Ooo0oooogoQgdg

OoooooogoQgog

Oo0oooogoQgdg

Ooooooggdg

OooOoo0ooooQgadg

Ooo0oooogoQgdg

Oo0oooogQgdg

Ooo0oooogoQgdg

Oooooogogdg

€]

Ooo0oooooooOgoOooao
Ooooooooogooao
Oo0oooooogoQgooao
OO0 oooooogoQgooao

OooOoo0oooodgadg

O O0ooo
O O0ooo
O 0Oooo

Oooooooooogodg
oo ooooooogodg
OO0 ooooooogdg
OO0 ooooooogdg
oo oo ooooogdg
Oooooooooogodg
oo ooooooogog
oo ooooooogodg
OO0 ooooooogdg
OO0 ooooooogdg
Oooooooooogodg
oo ooooooogodg
oo ooooooogg
OO0 ooooooogdg
OO0 ooooooogdg
Oooooooooodg
oo ooooooogodg
oo ooooooogodg
OO0 ooooooogdg
OO0 ooooooogdg

OoooooogoQgdg

Oo0oooogQgdg

OoooooogoQgg

JP 2005-504390 A 2005.2.10

ooooooooocoooooooao
gboooboooboogoboobobooboao
gbooooooobooboobooboad
ooooooobooocoooooooao
gbooooooobooboobooboag
ooooooooocoooooooao
gboooboooboogoboobobooboao
gboobobooboob0odnlreve
goooobooOoocoooooooao
gboooboooogobooboboDbDao
uboobooooobooboobooboad
gooooobooocoooooooaob
gbooooooobooboobooboag
ooooooooocoooooooao
gboooboooboogoboobobooboao
gbooooooobooboobooboad
uboobooooobooboobooboad
gooo"ooooooboboooboodo
"goboooobooboooobao
ooooooooocoooooooao

Ooooooggg
Oo0oooogogdg
OooooooQgdg
Oo0oooogoQgdg
OooooogQgog
Ooooooggdg
Oo0oooogogdg
Ooooooodgdg
Ooo0oooogoQgg
OooooogQgg
OooooogoQgdg
Oooooogogdg
OooOooooodgadg
OoooooogoQgdg
OoooooogQgdg
Oo0oooogoQgdg
Ooooooggdg

10

20

30

40

50

e R ey [s R s [y |

Ooooooooooooogdg

OOo0oooooo0oooDooooo00 oo oDoooooooDoDooogogoooao
e s e e e s e

OO0 o0ooood4UoooDooo4ggUooooooogdg
OoooocoooooooooooooooOodg
Ooooocoooooooooooooooodg
Oooooooooooooogodg

OoOoo0oooogod

O

O

Oooooooooooooogod
OO0 oDoDooogog4gogoooooogod
Ooooooooooooood
Ooooocooooooooogod

Ooo0oooogQgoo
OooooogQgoao
OoooogQgogao
Oooo0ooogoao
Ooo0oooogoQgoo
Ooo0oooogogQgoao
Oo0oooogQgoo
Oooooggogao
Oooo0ooogoo
Ooo0ooooogooQgoo
OoooooogogQgoo
Oo0oooogQgoo
Ooooooggoao
OooOoo0ooooogogoo
Ooo0ooooogoQgoao
OoooooogoQgoo
OoooooogogQgoao
Oooooggoao
Oo0oooogoQgogao
OoooooogoQgoao
Ooo0oooogooQgoo
Oo0oooogogQgoao
OooooogQgoao
Oo0ooogogogao
OooooooQgoao
Ooo0oooogoogoo
Ooo0oooogogQgoo
Oo0oooogQgoao
Oooooggogao
Oooo0oooogoao
Ooo0oooogoQgoo
Ooo0oooogogQgoo
OooooogQgoao
Oooooggogao

OO0 oooDoooggogodg
Oooooooooogogoao
OoooooooooQgogooQm
OoooooogoQgg
Oooooooggg
OO0 oooooggg
OoooooooQgodg
OooooooogooQgodg
OooooooogoQgg
OoooooogoQgg
OO0 oooooggg
OoooooooQgodg
OooooooogooQodg
OooooooogQgdg
OooooooogoQgdg
Oooooooggdg
OoooooooOoadg
OooooooogoQodg
OooooooogoQgdg
OooooooogoQgg
OoooooogoQgg
OO0 ooooogogdg
OooooooogoQgodg
OooooooogoQgdg
OooooooogoQgg
OoooooogoQgg
OO0 ooooogogg
OoooooooQgodg
OooooooogoQgdg
OooooooogoQgg
OoooooogoQgg
OO0 oooooggg
OoooooooQgdg
OooooooogoQgodg
OooooooogoQgg
OooooooogoQgg
Oooooooggg

O Ooooo
O Ooooo
O 0OoOooo
O 0Oo0ooOoao
O 0Ooo0ooao

O 0OooOgooo
O Ooogoo
[Y
O 0Ooo0ooo
O 0Ooo0ooo
O 0Ooogoo
O Ooogoo
O O0OoQgogog
O 0Oo0ooo
O 0Ooo0ooo

O Ooogoo
O Oo0oooao
O 0Ooo0oo0oo0oao
O0Ooo0oooao
OOoo0oooao
OOoo0oooao
O Ooo0oooao
O 0Oo0oo0oo0oao
O0Ooo0ooo0oao
O Ooo0oooao
OOoo0oooao
O Ooo0oooao
O 0Oo0oo0oo0oao
O0Ooo0oo0oo0oao
OOoo0oooao
OOooooao
O Oooooao
O Oo0ooogoao
O 0Ooo0oo0oo0oao
O0Ooo0oooao
OOoo0ooooo
O Oooooao
O Oo0oooao
O 0Ooo0oo0oo0oao
O0Ooo0oooao
OOoo0oooao
O Ooo0oooao
O Oo0oooao
O 0Oo0oo0oo0oao
O0Ooo0oooao

O

"$ooooooobbOooooooobobbooboooOooooboDbDoon

O

Ooooooggdg

OooOoooooQdgdg

Ooo0oooogoQgdg

O Oooo
O Oooo
OO oo
O 0Ooo
O 0Oooo
O 0Oooo
O Oooo
O 0Oooo
O 0O oo
O 0Oooo
O 0Oooo
O Oooo
OO oo
O 0Ooo
O 0Oooo
O 0Oooo
O Oooo
O Oooo
O 0Oooo
O 0Oooo
O Oooo
O Oooo
O Oooo
O 0Oooo
O 0Ooo
O 0Oooo
O Oooo
O Oooo
O Oooo

OoooooogoQgog

Oo0oooogoQgdg

Ooooooggdg

OooOoo0ooooQgadg

Ooo0oooogoQgdg

Oo0oooogQgdg

(8)

O 0Ooo0oooo
OOoo0ooooog
OOoo0ooooaog
OO0Oo0ooooaog
OoOoo0oo0oooao
OoOoo0ooooao
OOoooooaogo
OOoooooaog
OO0Oo0ooooaog
O0Ooo0oo0oo0ooao
OoOoo0ooooao
OOoo0ooooog
OOoo0ooooaog
OO0Oo0ooooaog
O0Ooo0oo0oo0ooao
OoOoo0ooooao
OOoo0ooooao
OOoooooog
OOoo0ooooaog

O

Ooo0oooogoQgdg
Oooooogogdg
OooOoo0oooodgadg
OoooooogoQgdg

oooooooboooooooooao
oooooooooooogoooao

a
O
g

"ubooooobooboooon
ooooooboooooooao
gboboobooboobogbao

u
O
a

O
O
O
O

O Oooo
O Oooo
O oOooo
O oOooo
O 0Oooo
O oOooo
O Oooo

JP 2005-504390 A 2005.

ugboobooaooboodoboad

O 0Ooo0gooo
O Ooogoo
I [Y

.10

"0 0

"oooooooooboboooooogooao
"uboobooooooobooboboobobobooboooboooboooboobao

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e A e e ey e s e) e e s e e s Y Y I Y
Ooooooooo0 oo oooo o0 oo oDooo o0 oo oDoooo0 oo oDoooo0oooDooooogooOoooao
I e e e e R A Iy

Oooooooog
Ooooooodg
OO0 ooooodg
Oooooood
Ooooooood
Oooooooodg
Ooooooodg
OOoooooogodg
Ooooooood
Ooooooood
Oooooooodg
Ooooooodg
OOo0oooood
OoOooOoooood
Ooooooood
Oooooooodg
Oooooooog
OOooooood
OO0 oooood
Ooooooood
Oooooooodg
Ooooooodg
Ooooooodg
OO0 oooood
Ooooooood
Oooooooodg
Oooooooodg
Ooooooodg
OO0 ooooodg
Ooooooood
Oooooooodg
Oooooooodg
Ooooooodg

e e e e e e s e) s e e e e e s) R Y Y Iy
OO0 oooood

0

SPARCOOODOOCOCOOOOOOODODODOOOOOOOOODDODOOOOOOOOOO

O

OO0 oo ooooQgoooo
OO0 oo oooogogoooo
OO0 oo oDooogQgogogooao
Oooooooogooooao
oo ooooooQgoooo
OO0 oo ooooQgoooo
OO0 oo oooogoooo
OO0 oo oDooogogooao
OoooooooogoOoooao
oo oooooogoooo
OO0 oo ooooQgoooo
OO0 oo oooogoooo
OO0 oo oDooogogooao
Ooooooooo0gooOoooao
oo oooooogoooo
OO0 oo ooooQgooooo
OO0 oooooogogoooo
OO0 oo oooogogooao
OO0 0o oDooogogogooao
OO0 oooooogogoooo
OO0 ooooooQgoooo
OO0 oo oooogoooo
OO0 oooooogogogooo
OO0 ooooDooogogooao
oo oooooogoooo
oo ooooooQgoooo
OO0 oo ooooQgoooo
OO0 oooooogogoooao
OO0 oo oDooogogooao
Oooooooogoooao
OO0 ooooooQgoooo
OO0 ooooooQgoooo
OO0 oo oooogogoooo

O
O
O
O
O
O
O
O
O
O
O
O
O
(]
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
(]
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O

O Ooooo
O Ooooo

O
O

O
O
O

O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O

OoOoo0ooood
OO0oo0ooood
OO0Oo0oo0ooogod

OO oo
O 0ooo
O 0Oooo
O Oooo
O Oooo
O Oooo
O 0Ooo
O 0Oooo
O Oooo
O Oooo
O Oooo
O 0O oo
O 0Oooo
O Oooo
O Oooo
O Oooo
O 0O oo
O 0ooo
O Oooo
O Oooo
O Oooo
OO oo
O 0ooo
O 0Oooo
O Oooo
O Oooo
O 0Oooo
O 0ooo
O 0Oooo
O Oooo
O Oooo
O Oooo

.ooo0oooooooooooo0ooooooboooooooooaon

goodaao

O

O 0Oo0ooO0oo0oao
O 0Ooo0oo0ooao
O Ooo0oooao
O Ooo0oooao
O Ooo0oooao
O 0Oo0oo0oo0oao
O 0Ooo0oooao
O Ooo0oooao
O Ooo0oooo
O Ooo0oooao
O O0Oo0oo0oo0oao
O 0Ooo0oo0ooao
O Ooo0oooao
O Ooo0oooo
O Ooo0oooao
O 0Oo0oooao
O 0Ooo0oo0ooao
O 0Ooo0oooao
O Ooo0oooo
O Ooo0oooao
O Oo0oooo
O 0Ooo0oo0oo0oao
O 0Ooo0ooOooao
O Ooo0oooo
O Ooo0oooao
O Oo0oooao
O 0Oo0oo0oo0oao
O 0Ooo0oo0ooao
O Ooo0oooao
O Oooooo
O Ooo0oooao

O

O

O

O

~
©
~

goodgano

O

O

O

O

O

JP 2005-504390 A 2005.

gboooodoaan

O

0

O

O

O

O

0

ugoooaooboadd

O

O

O

O

O

O

O

O

AN
o

OOoDooooogoQgogooao

goooooobooboooooooooboooboooooooboobobobooooooooaob

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

e e A s e e e e e s [|

Oooooooo0 o0 oo oooo0 oo oDooo o0 oo oDo oo o0 oo oDooo0oo0 oo ooooooDoDoooQgooQgaoo

e [ey e [s [y [|

Oo0oooogoQgg

OooooooogogQgogooQg
Oo0ooooooggogooQg
OO0 oooDoooggogog
Ooo0oooooooOoogoo
OooooooooQgogogoaoQo
Oo0oooooogogoQgogooQg
OoooooooggogooQg
OO0 ooooooggogodg
Ooo0oooooooogooOgoo

OOoo0oo0oooao
O 0Ooo0oooo
O Ooo0oooo
O Ooo0gooo
O 0Oo0oo0ooao

OOoo0ooooao
OOoo0ooooao
OO0Oo0ooooao
OO0Ooo0oo0oo0ooao
OoOoo0ooooao
OOoo0ooooao
OOoo0ooooao
O O0Ooo0ooooao
OO0Ooo0ooO0oo0ooao
OOoo0oo0oooao
OOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
OO0Oo0oo0oo0ooao
OOoo0oo0oo0ooao
OOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
O 0O0o0OooOoooao
OOoo0oo0oo0ooao
OOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
O O0Oo0ooooao
OOoo0oo0oo0ooao
OOoo0ooooao
OOoo0ooooao
OOoo0ooooao
O 0Oo0ooooao
OO0Ooo0oo0oo0ooao
OOoo0oo0oooao

OOo0ooooooooDooooooooooao
OOo0ooOooooooooooogogooooao
OO0 oDoOooo4odogooDooogogogooooao
OOo0oooooooooooooooooooao
OoooooooooDooooooooooao
OOo0ooooooooDoDoooooooooao
OOoooooooooooooogoogooooao
OO0 oDooooooogoooDooogogogooooao
OOo0oooooooooooooooooooaobo
Ooooooooooooooooooooao
OOooooooooooDoooooooooao
OOoooooooooooooogooooooao
OO0 oDoooooooDoooogogogogooooao
OOo0oooooooooooooooooooaobo
Ooooooooooooooooooooao
OOoooooooooooooooooooao
OOo0ooooooooooooooooooao
OOo0ooooooooDoooogogogogooooao
OO0 0o oooddoooDoooggogogooooao
Oo0oooooooooooooooooooao
Ooooooooooooooooooooao
OOoooooooooooooooooooao
OOo0oDooooooooooogogogooooao
OO0 o0DoODooodggoooDoooggogogooooao

Oooooogogdg

Ooooooggdg

OooOoooooQdgdg

Ooo0oooogoQgdg

OoooooogoQgog

Oo0oooogoQgdg

Ooooooggdg

OooOoo0ooooQgadg

(10)

JP 2005-504390 A 2005.2.10

ubboobooboboobdoobobouobooobod
ooooooooboooooouooooobobooboogogao
obooobooboboobooboobooobobooboag

woo91848e0 U D D DO DODODDODOOOOOOOOODOODO

Ooo0oooogoQgdg

O

Oo0oooogQgdg

O

Ooo0oooogoQgdg

O

Oooooogogdg

O

OooOoo0oooodgadg

OOoo0oo0oo0ooao
OOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
O 0O0o0OooOoooao
OOoo0oo0oo0ooao
OOoo0ooooao
OOoo0ooooao
O Ooo0ooooao
O O0Oo0ooooao

OoooooogoQgdg

Oo0oooogQgdg

OoooooogoQgg

Ooooooggg

OoOoooogoood

OooooooQgdg

Oo0oooogoQgdg

OooooogQgog

Ooooooggdg

Oo0oooogogdg

O0Ooo0oo0ooao
O0Ooo0oooao
OoOoo0oooaoo
OoOoo0oooo
O0Oo0oooo
O0Oo0Oo0ooao
O0Ooo0ooaoo
OoOoo0oooaoo
OoOoo0oooao
O0Oo0oooo

Oooooooooooooooogoooooao

Ooooooodgdg

Oooooooo o0 ooooogogooooo

Ooo0oooogoQgg

Oo0ooooooo0ooooogogooooao

OooooogQgg

Oo0oooooo4o0ooooogooooao

OooooogoQgdg

OO0 oDooDoogog4o0ooDooo4gooooao

Oooooogogdg

Oooooooooooooooogoooooao

OooOooooodgadg

Oo0oooooo o0 oooooogoooooo

OoooooogoQgdg

OoOoo0oooaoo
OoOoo0oooao
O0Oo0oooo

Oo0ooooooo0ooooogogooooao

OoooooogQgdg

Oo0ooooooooooooogooooao

Oo0oooogoQgdg

OO0 oDooDooogo4o0ooDooo4gooooao

Ooooooggdg

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

OO0 oDooo4gogooooodg
Oo0ooooooooood
Oo0oooooooooodg
OoooooogooQooooao
Oooooogogogoooao
OO0 oDooogogogoooao
Oooooooogooooao
Ooooocooooooao
Ooooooogooooao
Ooooooogooooao
OO0 oooogogoooao
OoooooooOooOoooao
Oooooocooooooao
Oooooooooooao
Ooooooogogogoooao
Oooooogogogoooao
OoooooooOooOoooOoao
Ooooocooogooooao
Oooooooooooao
Ooooooogogooooao
OoDooooogogogoooao
OO0 oDooogogooooao
Oooooooooooao
Ooooocooooooao
Oooooooooooao
Ooooooogogoooao
OO0 oDooogogoooao
Ooooocooooooao
Oooooooooooao
Ooooooogoooooao
Ooooooogogogoooao
OO0 oooogogoooao
OooooooooOoooao
Ooooocooooooao
Ooooooogooooao
Ooooooogogogooooao
OoDoooogogoooao

e s e e s e e e e O R v
Ooooooooooooooo oo oDoDooooooDoDoooooooooodg
Ooooooooo0oooooo oo oDoDoooo0o oo oDoDoooooooooog

Oooooooo0oooooogoggooao

O oOooo
O Oooo
O 0Ooo
O 0ooo
O O0ooo
O 0Oooo
O Oooo
O Oooo
O 0Ooo
O O0ooo
O 0Oooo

OooooooogooQgooao
Oooooooogogogooao
OO0 ooDooogogooao
Oooooooooogooao
Oooooooogoogoooao
Ooooooooogooao
Oooooooogogogooao
OO0 ooooogogooao
OoooooooogoOooao
Ooooooooogooao
oo oooooogoogoooao
Oooooooogoogooao
OO0 oooooogogooao
OOoooooooOgooOooao
Ooooooooogooao
Oooooooogoogoooo
Oooooooogoogooao

OoooDooo4ooooooogoggooao

OO0 ooDooo4gogooooooggogoao

Oooooooooooooogooao

Oooooooooooooogooao

Oooooooo0oooooogooao

Oooooooo0oooooogoggooao

OoDooDooo4ogooooooggogogoao

Oooooooooooooogooao

Oooooooooooooogooao

Oooooooo0oooooogooao

O
O

Oooooooo0oooooogogooao

OoDooDooo4gogooooooggooao

(11)

O
(]

Oooooooooooooogooao
Oooooooooooooogooao

O
O
O
O
O

Oooooooo0oooooogooao

Oooooooo0oooooogooao

OO0 oooooogogog
OO0 oo oDooogogodg
Oooooooooogoogo-g
oo oooooooQgogoo-g
oo oooooogogoo-g
OO0 oooooogogog
OO0 oooooogogogog
Oooooooooogoogo-g
OooooooooogogooQg
oo ooooooogogoog
OO0 oooooogogog
OO0 ooooooggogg
Oooooooooogoogod
Oooooooooogoogo-g
oo ooooooogogoo-g
OO0 oooooogogog
OO0 oooooogogogog

OoooDooo4gogoooooogoggooao

O

Oooooooooooooooogogo

Oooooooooooooogooao

"uboooooon

JP 2005-504390 A 2005.

ooooooooao
ooooooooao

Oooooooo0oooooogooao

Oooooooo0oooooogogooao

Ooooooo4o0oooooogoggooao

OO0 o0ooDoogog4ogooooooggogogoao

Oooooooooooooogooao

Oooooooooooooogooao

Oooooooo0oooooogogooao

Ooooooo4ogoooooogogooao

OO0 ooDooo4gogooooooggogogoao

O
O
O
O
O

Oooooooooooooogooao

Oooooooooooooogooao

Oooooooo0oooooogoggooao

Oooooooo0oooooogoggooao

.10

OoDooDooo4o0ooooooggogoao

10

20

30

40

50

e R ey [s R s [y |

e e e e e e e e s |

e e [e e e e s e s s [[|

e e A s e e e e e s [|

Oooooooo0 o0 oo oooo0 oo oDooo o0 oo oDo oo o0 oo oDooo0oo0 oo ooooooDoDoooQgooQgaoo

e [ey e [s [y [|

O Ooooo
O Ooooo
O 0OoOooo
O 0Oo0ooOoao
O 0Ooo0ooao
O 0Ooooo
O Ooooo
O 0Ooooo
O 0Oo0ooOoao
O 0Ooo0ooao
O 0Ooooo
O Ooooo
O 0Ooooo
O 0Oo0ooOoo
O 0Ooo0ooao
O 0Ooooo
O oOoooo
O Ooooo
O 0OoOooo
O 0Ooo0ooo
O 0Ooooo
O Ooooo
O Ooooo
O 0OoOooo
O 0Ooo0ooOoao
O 0Ooo0ooo
O oOoooo
O 0Ooooo
O 0OooOooo
O 0Oo0ooOoo
O 0Ooo0ooo
O 0Ooooo
O Ooooo
O 0Ooooo

OooooooogogQgogooQg
Oo0ooooooggogooQg
OO0 oooDoooggogog
Ooo0oooooooOoogoo
OooooooooQgogogoaoQo
Oo0oooooogogoQgogooQg
OoooooooggogooQg
OO0 ooooooggogodg
Ooo0oooooooogooOgoo
OooooooooQgoogoo
Oo0oooooogogogogooQg
Oo0oooooogogogoQg
OO0 ooooooggogog
OooooooooOooOood
OooooooooQgoogoao
OoooooooogogQgogooQg
Oo0oooooogogogogooQg
OO0 ooooooggogoQg
OO0 oooDoooggogdg
OooooooooQgoogoo
OO0 ooooooQgogooQg
Oo0oooooogogogogooQg
Oo0ooooooggogoQg
OO0 oooDoooggogodg
OooooooooOgoogod
OooooooooQgogooQo
Oo0oooooogogQgogooQg
Oo0ooooooggogooQg
OO0 ooooooggogog
Ooo0oooooooogoogood
OooooooooQgogogooQo
Oo0oooooogogogogoo-g
oo oooooogoggogooQg

Oooooooooooooogooao
Ooooooooooooooggogooao
OO0 ooooogogoooooogoggdgogoao
Ooooooooooooooogogogoao
Oooooooooooooogooao
Oooooooooooooogooao
Oooooooooooooogogogoao
OO0 ooooogogoooooogoggogoao
Ooooooooooooooogogooao
Ooooooooooooooogogooao
Oooooooooooooogooao
Oooooooooooooogogogoao
OOo0oooooogoooooogogogogoao
Ooooooooooooooogooao
Ooooooooooooooogogooao
Ooooooooooooooogooao
Oooooooooooooogooao
Oooooooooooooogoggogogoao
OO0 o0Doooo4gogogoooooogogdgogooao

Ooooooooogogog
OOooooooogoQgg
OO0 oooooogogg
OoOooooooooOodg
OoooooooogogoQgog
OoooooooogoQgog
Oooooooogogg
OO0 oooooogogg
OoOoooooooOod
OoooooooQgog
Ooooooooogogg
Oooooooogogg
OO0 oooooogogg
OOoooooooOod
OoooooooogooOodg
OoooooooogoQgog
OoooooooogoQgoog
Oooooooogogg
OO0 ooooogogg
OooooooooQgodg
OoooooooogoQog
OoooooooogoQgoog
Oooooooogogg
OO0 oooooggg
OoOoooooooQgodg
OoooooooogogQgog
OoooooooogoQgg
Oooooooogogg
OO0 ooooogogg
OoOoooooooOodg

O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O

~
[EnN
N
~

O O
O O

O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
OJ
O
O
O
O
[
O
O
O

OO0 oooooooooooooQgodg
OO0 oo ooooooooooooQgodg
OO0 o oooooooooooogogogdg
OO0 0o oooogogooooooogoggdg
OO0 0o oDooogoooooogogdg
oo oooooooooooooQgodg
OO0 oo ooooooooooooQgdg
OO0 oo ooooooooooogooQgdg
OO0 oDooooogooooooogoggg
OO0 0o oDooogooooooggdg
Oo0oooooooooooooogodg
OO0 oo ooooooooooogoQgodg
OO0 oD oooooooooooogoQgdg
OO0 oo oooogooooooogogogg
OO0 Do oDooogooooooggdg

JP 2005-504390 A 2005.

Ooooooooodg
oo ooooogooQgodg
oo ooooogogdg
OO0 ooooogggdg

AN
o

Oo0oooooggogog

10

20

30

40

50

OoooooooQooooao

O 0Oooo
O Oooo
OO oo

L T T e T e T e T s T e T e T s T e T e T s T e |

ooooDoDooooOooDoDoDooooDoooooooob

OoOoo0ooood
OO0Oo0ooood
OO0Oo0oo0ooogod
I A
OOoo0oood
OoOoo0ooood
OO0oo0ooood
OO0Oo0oo0ooogod
O0Ooo0Oo0oood
Ooo0oo0oood
Ooo0ooood
OO0oo0ooood
OO0Oo0oo0ooogod
O0Ooo0Oo0oood
Ooo0oo0oood
OoOoo0oood
OoOoo0ooood
OO0oOo0oooogod
O0O0o0Oo0ooogod
Ooo0Ooo0o0oood
Oo0o0o0ooood
OOoo0ooood
OO0O0Oo0oooogod
OO0Oo0oooogod
O0Ooo0o0oood
Oo0oo0ooood
OoOoo0ooood
OoOoo0oooogod
OO0Oo0oooogod
O0Ooo0o0oood
Oo0oo0oood
OoOoo0ooood
OoOoo0ooood
OO0Oo0oooogd
O0Ooo0Oo0oood
OoOoo0ooood
OoOoo0ooood
OOoo0ooood
O0O0Oo0oooogod

O O
O O
O
O

(13)

|

JP 2005-504390 A 2005.2.

cedl gl 1Pk S

% 75 5k

il 77 535

1 EZEREF

RET 5

{BE L7z

82 ERip

i

REEL

% 3 i p!

RETS

RET S

5 4 E R

TFREBRKFTS

OoOoooooo Ao ooooooooogoogoog

O0Ooo0oooao
OO0Oo0oooaog
O0Ooo0oo0ooao

O

O

Ooo0ooood
OoOoo0oooogod
OOo0o0oooogod
OooOoo0ooood
OooOoo0oood
Ooo0ooood
Ooo0oooogod
OoOoo0oooogod
Ooo0Ooo0oood
OooOoo0ooood
Ooo0ooood
OoOoo0oooogod
OoOoo0oooogod
OO0 o0oooogod
OooOoo0oood
Ooo0oood
OoOoo0ooood
OoOoo0oooogod
OOo0o0oooogod
OooOoo0ooood
OooOoo0oood
OoOoo0ooood
OoOoo0oooogod
OOo0o0oooogod
OoOoo0ooood
Ooo0o0o0oood

Oo0ooooooogoooooo

O 0OooOgooo
O Ooogoo
[Y
O 0Ooo0ooo
O 0Ooo0ooo
O 0Ooogoo
O Ooogoo
O O0OoQgogog
O 0Oo0ooo
O 0Ooo0ooo
O 0Ooogooo
O Ooogoo
O OooQgoaog
Y [Y
O 0Ooo0ooo
O 0Ooo0gooo
O Ooogoo
O Ooogoog
O O0OoQgogog
O 0Ooo0ooo

Oo0ooooooogogooooao
O 0Ooooo

Oooooooooooooogoao
Ooooooooooogooogo

O
OJ
O
O

oo

oad

OOoo0oooao
O Ooo0oooao
O Oo0oooao
O 0Oo0oo0oo0oao
O0Ooo0oooao
OOoo0oooao
OOoo0oooao
O Ooo0ooogoao

oo

oad

o

O

O
goooooooobooan
g>000o0ooooboogobad
oooooobOoooogao
goooboooboooboonn
ugboobooboobooouobooboobooboooboouobobobooboobao
oooooooobooOoocooooooobobooon

gooobooboogobooooboobobooboobobooboobao
gbobooboooobooboobooboooboooboobooboobooban

O
O
ooooooooooooooooooboooooooooboDboOoooooan
O
O
ooooooooooooooooooboooboooooooboboooooOoao

goooooobooboooooooooboooboooooooboobobobooooooooaob

10

20

30

40

50

I e e e [Ay Iy
I e e s e e [A I
I e e e s e e e e e) [Y I
e e e e e e e e Y Y I Y
Ooo0ooooOooo o0 oo oo oo0 o0 oo o oo o oo oD oD oo o0 oo oooogoogoooo
I e [R sy e e) A Iy

O Oooo

Ooooooooooooodg
Oo0ooooo4gogooooodg
OO0 oDoDooogogoooood
OOo0ooooooooooboood
Oo0ooooooooooodg
Ooooooooooooogdg
Oo0oooooogooooodg
OO0 ooooo4gogooooogodg
OOo0ooooooooooboood
OOoooooooooooodg
Ooooooooooooodg

O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
OJ
O
O
O
O
O
O
O
O
O
O

oo o oooooogoQgog
OO0 o oooooggg
OO0 oo ooDooogogg
Oooooooooogoogodg
oo o oooooogoQgog
oo o0 ooooogoQgg
OO0 o0 ooooogogg
OO0 oo oooooggg
Oooooooooogoogoodg
oo ooooooogoQg-g
oo o0oooooogoQgg
oo o oooooogogg

O Ooo0ooo
O Ooogooo
O O0Oo0gogo
O 0Ooo0ooo

O Ooogoo

O 0O oo

O O0ooo

O 0Oooo
O oOooo
O oOooo
O 0Oooo
O 0Oooo
O 0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Oooo
O o0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Ooo
O o0Oooo
O 0Oooo
O oOooo
O 0Oooo
O 0Oooo

O O0ooo

O 0Oooo

O Oooo

O Ooogo

O O0ooo

O O0ooo

O Oooo

OO0 oo oooogoooo
OO0 oo oDooogogooao
Ooooooooo0gooOoooao
oo oooooogoooo
OO0 oo ooooQgooooo
OO0 oooooogogoooo
OO0 oo oooogogooao
OO0 0o oDooogogogooao
OO0 oooooogogoooo
OO0 ooooooQgoooo
OO0 oo oooogoooo
OO0 oooooogogogooo
OO0 ooooDooogogooao
oo oooooogoooo
oo ooooooQgoooo
OO0 oo ooooQgoooo
OO0 oooooogogoooao
OO0 oo oDooogogooao
Oooooooogoooao
OO0 ooooooQgoooo
OO0 ooooooQgoooo
OO0 oo oooogogoooo
OO0 oo oDooogogooao

O Oooo

OOoooooogogg
OoOooooooogooOod
OooooooogooQgodg
Oooooooogogodg
Oooooooogogog
OOoooooogogg
OO0 ooooogogog
OoooooooogoQgdg
OooooooogoQgg
Oooooooogogog
Oooooooogogg
OO0 ooooogogg
OOooooooogoQgodg
OooooooogogoQgg
OooooooogoQgog
Ooooooogogog
OO0 ooooogogg
OoOooooooogoOodg
OooooooogooQgg
OooooooogoQgg
Oooooooogogog
OOoooooogogg

O Ooogo

~
[EEN
N
o’

0O O
O O

O 0ooo
O O0ooo

O O0ooo

O Oooo

O Oooo

O o0ood

O O0ooo

O Oooo

JP 2005-504390 A 2005.

O Oooo

O Oooo

O 0O oo

O
O
O
O
O
O
O
O
O
O

O O0ooo

AN
o

10

20

30

40

(15) JP 2005-504390 A 2005.2.10

good
CPU
AL i P
200
Bl |1 12 3 14 I 16 I7 18
&2 I I2 13 14 I8 16 17
B3 It 12 13 14 15 16
B®a n 12 I3 14 15
&5 n 12 13 I4
(] It 12 I3
B®7 I I2
B8 n

L T e T e T e T e T e T s T T T e T e T s T e T e T e T e T e T e T e T e B e R T e T e T e T e T e R e T e B e

ugbooobooodoboado

1 Al

(16)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) Tnternational Publication Date
10 April 2003 (10.04.2003)

(10) International Publication Number

WO 03/029961 Al

(51) International Patent Classification™ GOG6F 9/38, 9318
(21) International Application Number: PCT/IB02/03646

{22) International Filing Date:
9 September 2002 (09.09.2002)

(25) Filing Language: Linglish
{26) Publication Language: English

(30) Priority Data:
01402545.6 2 October 2001 (02.10.2001) 1P

(71) Applicant: KONINKLIJKE PHILIPS ELECTRON-
1CS NV, [NLANL]: Groenewoudseweg 1, NL-5621 BA
Eindhoven (NT.).

{72) Inventor: LINDWER, Menno, M.; Prof. Holstlaan 6,
NI-5656 AA lindhoven (NL).

{74) Agent: GROENENDAAL, Antonius, W., M.; Tnierna-
tionaal Octrooiburcau B.V., Prol. Tlolstlaan 6, NL-5656
AA Eindhoven (NL).

(81) Designated States (narional): All, AG, AL, AM, AT, AU,
A7, BA, BB, BG. BR. BY, BZ. CA, CIL CN, CO, CR, CU,
CZ, DE, DK. DM, DZ, EC, EE, ES, FI, GB, GD, GE, GII,
GM. IR, 11U, ID, 1L, IN, 18, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PL;, RO, RU, SID. SI. 8G,
SI, SK. SL. TI. TM, TN, TR, TT, T7, UA, UG, UZ, VC,
VN, YU. ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, 1.8. MW, M7, SD, ST, 87, T7, UG, 7M, 7W),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Luropean patent (AL, BL, BG, CH, CY, CZ, DL, DK,
LS, 11, IR, GB, GR, Ili, I'T, LU, MC, NI, PL, SI, SK,
TR, OAPT patent (BT, BJ, CT% CG, CI CM, GA, GN, GQ.
GW, MI., MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations. refer o the "Guid-
Votes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCY Gazetie,

ance

{54) Title: SPECULATIVE EXECUTION FOR JAVA HARDWARE ACCELERATOR

—120

_ -

A=
180

1150

{170

\D (57) Abstract: Conditional branch bytecodes are processed by a Virtual Machine Interpreter (VML) hardware accelerator that uti-
O\ Tlizes a branch prediction scheme Lo delermine whether 1o speculatively process hylecodes while waiting for the CPU Lo return a

condition control variable. Tn one branch prediction scheme, the VMT assumes the branch condition will be [ulfilled il a conditional
- branch bytecode calls for a backward jump and that the branch condition will not be fulfilled il a conditional branch bylecode calls
~. fora forward jump. In another branch predicrion scheme the VMI makes an assumption only if a conditional branch bytecode calls
for a backward jump. In yet another speculative execution scheme, the VMI assumes that the branch condition will be fulfilled
whenever it processes a conditional branch hytecode. The VM only speculatively pracesses bytecodes that ave easily reversible, (for
example, bytecodes rep ing simple stack), and suspends sp ive ing of bylecodes upon encountering
B abylecode thal is not casily reversible. The assumptions made by the VMT are confirmed or invalidated upon receipt of the condition

control variable. If an is invalidared, any latively processed by are reversed

003

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

20

25

an

WO 03/029961 PCT/IB02/03646
1

Speculative execution for java hardware accelerator

FIELD OF THE INVENTION
The present invention relates generally to computer programming languages,

and more particularly to the translation and execution of a virtual machine language.

BACKGROUND OF THE INVENTION

Computer programming languages are used to create applications consisting of
human-readable source code that represents instructions for a computer to perform. Before a
computer can follow the instructions however, the source code must be translated into
computer-readable binary machine code.

A programming language such as C, C-++, or COBOL typically uses a
compiler to generate assembly language from the source code, and then to translate the
assembly language into machine language which is converted to machine code. Thus, the
final translation of the source code occurs before runtime. Different computers require
different machine languages, so a program written in C++ for example, can only run on the
specific hardware platform for which the program was written.

Interpreted programming languages are designed to create applications with
source code that will run on multiple hardware platforms. Java™ is an interpreted
programming language that accomplishes platform independence by generating source code
that is converted before runtime to an intermediate language known as “bytecode” or “virtual
machine language.” At runtime, the bytecode is translated into platform-appropriate machine
code via interpreter software, as disclosed in U.S. Patent No. 4,443,865. To interpret each
bytecode, interpreter software performs a “fetch, decode, and dispatch” (FDD) series of
operations. For each bytecode instruction the interpreter software contains a corresponding
execution program expressed in native central processing unit (CPU) instructions. The
interpreter software causes the CPU to fetch or read a virtual machine instruction from
memory, to decode the CPU address of the execution program for the bytecode instruction,
and to dispatch by transferring control of the CPU to that execution program. The

interpretation process can be time-consuming.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

20

25

30

(18)

WO 03/029961 PCT/IB02/03646
2

As disclosed in PCT Patent Application No. W09918484 adding a
preprocessor (a virtual machine interpreter (VMI)) between a memory and a CPU improves
the processing of virtual machine instructions. In essence, the virtual machine is not a
physical structure, but rather is a self-contained operating environment that interprets
bytecode for the hardware platform by selecting the corresponding native machine language
instructions that are stored within the VM or in the CPU. The native instructions are then
supplied to and consecutively executed in the CPU of the hardware platform. A typical
virtual machine requires 20-60 cycles of processing time per bytecode (depending on the
quality and complexity of the bytecode) to perform an FDD series of operations. First, a VMI
reads (fetches) a bytecode from memory. Next, the VMI looks up a number of properties of
(decodes) the fetched bytecode. The properties accessed by the VMI determine how the
bytecode will be processed into native instructions for execution in the CPU. While the CPU
is executing an instruction, the VMI fetches and processes the next bytecode into CPU
instructions. The VMI can process simple bytecodes in 1-4 cycles.

- While interpreting a sequence of bytecodes, a virtual machine may encounter a
bytecode that represents a conditional branch instruction, hereinafier referred to as a2 CBL
‘When a CBI is encountered, the VMI generates a sequence of native instructions that causes
the CPU to determine whether the condition is fulfilled. The decision to execute the branch
therefore depends on earlier computations, which in the VMI concept were executed in the
CPU with the results remaining in CPU registers. For example, the Java™ bytecode “ifeq n”
offsets the bytecode counter by “n”, but only if the top of the stack is zero (i.¢., the previous
computation left the value 0 on the stack). The value of the branch condition (here, the top of
the stack) must be retrieved and written to the control register of the VMI (which is reserved
specifically for branch conditions). If the condition has been fulfilled, the CBI causes an
update to the VMI bytecode counter (a jump) which alters the sequence of bytecodes to be
executed. Typically, when one instruction is being processed in the VMI the next
instructions to be processed are already in the VMI pipeline, so if an instruction results in a
branch the bytecodes already in the VMI pipeline must be flushed. Additionally, the
“pipelined” structure of processor hardware creates an inherent delay for transporting
instructions and data between the instant that the instructions and/or data are dispatched to
the processor and the instant when the processor effectively executes the instruction and/or
processes the data. Specifically, becanse the typical CPU has a multistage (typically, 3 to 8
stages) pipeline the write operation will not be executed immediately after the instruction is
issued. In the case of a CBI, additional delay occurs while the CPU determines whether the

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

30

(19)

WO 03/029961 PCT/IB02/03646

3
condition is fulfilled and transfers the result of this determination to the VML If the value of
the branch condition (the control value) indicates that the branch condition is fulfilled,
several (depending on the size of the CPU pipeline) instructions will already have entered the
CPU pipeline. To keep the CPU and instruction cache busy, a series of “no operation”
(NOP) commands can be generated while waiting for the control value that indicates whether
the condition is fulfilled. The control value is received while the CPU executes the next to
the last NOP and the VMI generates the last NOP. After making the determination, the
VMI’s pipeline requires several cycles for the VMI to retrieve the bytecode representing the
next instruction from the VMI’s cache.

Other approaches speculatively execute potential branch instructions by
predicting whether an instruction will result in a branch to another location. An example of
this approach is directed to RISC (Reduced Instruction Set Computing) microprocessors, and
provides a branch instruction bit to determine which conditional branches are “easy” to
predict, and for those branches, uses software branch prediction to determine whether to
execute the jump. Software branch prediction predicts branches using a software-controlled
prediction bit. If the branch is determined to be “hard” to predict, the branch is predicted
using hardware branch prediction (such as a branch prediction array). This approach
discloses using a branch prediction scheme which predicts that a branch will be taken if the
offset is less than zero (a backward branch) and that a branch will not be taken if the offset is
greater than zero (a forward branch). A disadvantage of this approach is the consumption of
processor resources for the making and updating the ease-of-prediction determination, which
is based upon whether historical operation of the branch taken is important in determining
whether the branch will be taken.

Tt another branch prediction approach, bits from the address of the potential
branch instruction are compared to bits concatenated from a local branch history table and a
global history register. The result of the comparison is used to read a branch prediction table.

A disadvantage of this approach is the consumption of resources required to perform the
concatenation and comparison operations and to store and access the branch prediction table.
Furthermore, the approach does not disclose a means of correcting mispredictions. A similar
methodology is disclosed in U.S. Patent No. 5,136,696, wherein a branch prediction is made
by the branch cache based on the address of a potential branch instruction. According to that
disclosure, where the prediction is wrong the corresponding instruction is invalidated but is
executed anyway, so that the branch cache can be updated with the correct prediction in case

the same instruction is encountered again. The CPU pipeline is flushed during the same

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

25

30

(20)

WO 03/029961 PCT/IB02/03646
4

cycle as the branch cache update by invalidating all of the instructions in the first seven
stages of the pipeline and loading the contents of a program counter register.

Because conditional branches occur frequently (approximately 10% of all
virtual machine instructions) and are process-intensive when processed according to existing
approaches which achieve high accuracies but consume processor resources, there is a need
for a system of interpreting programming languages that accurately and efficiently executes
instructions intended by conditional branch instruction bytecodes while increasing the

processing speed.

SUMMARY OF THE INVENTION

The present invention fulfills the needs described above by configuring a
virtual machine hardware accelerator (such as the VMI) such that when a conditional
bytecode (CBI) is encountered the VMI performs branch prediction and elects whether to
commence 2 speculative execution process. If elected, speculative execution continues as
Tong as the speculatively executed bytecodes are easily reversible or until the prediction is
confirmed. In most cases the prediction is correct, thereby enabling the VMI and CPU to
continue operating along the sequence of bytecodes that was speculatively chosen after the
prediction is confirmed. If the prediction is incorrect (and thus invalidated) the speculative
processes executed in the VMI and the CPU are flushed and the VML is returned to the state
just before the branch. Efficiency is realized by combining the performance gains of virtual
machine hardware acceleration technology with branch prediction schemes and potential
speculative execution, and by speculatively executing instructions only as long as the effects
can easily be reversed. Accuracy is achieved by correcting any misprediction. On average
therefore, a conditional branch instruction (CBI) will introduce only a relatively small delay.

The present invention comports with more complex branch prediction
methodologies (such as the hashing scheme and path history methodologies suggested in
Tuning Branch Predictors to Support Virtual Method Invocation in Java, Proceedings of the
Fifth USENIX Conference on Object-Oriented Technologies and Systems (1999), pp. 217-
228), as well as with schemes that make siﬁple (but probable) predictions based upon the
type of each potential branch instruction encountered.

Briefly, the present invention includes systems and methods for processing
conditional branch virtual machine instructions, which in the exemplary embodiment of the
present invention are generated by the Java™ programming language. At the programming

level, Java™ source code is compiled into an intermediate language called bytecode.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

20

30

(21)

WO 03/029961 PCT/IB02/03646
5

Bytecode consists of virtual machine instructions that can be interpreted by a virtual machine
for execution by a processor. According to the exemplary embodiment of the present
invention, at runtime a virtual machine (in the exemplary embodiments, a VMI) is initialized.
Parameters are initialized which enable the identification of certain properties of each
bytecode. For example, bytecodes may be characterized as simple or complex, and can
further characterized as conditional or recursive. A conditional bytecode is a virtual machine
instruction that alters the sequence of bytecodes to be executed, but only if a branch condition
is fulfilled.

The VMI proceeds to process each of a series of bytecodes into one or more
native instructions. The VMI maintains a bytecode counter which is incremented after each
bytecode is retrieved from an instruction memory. When a CBI is encountered, the VMI
generates a sequence of native instructions that causes the CPU to determine whether the
branch condition has been fulfiiled, by retrieving the branch condition control value.
According to the systems and methods of the exemplary embodiments of the present
invention, rather than suspending processing until the control value retrieval is complete the
VMI performs branch prediction and elects whether to perform speculative execution, i.e.,
whether to make an assumption as to whether the branch condition will be fulfilled. When an
assumption is made, a bytecode sequence is speculatively executed until the assumption is
confirmed or invalidated or until a bytecode that is not easily reversible is encountered.

In the first three embodiments of the present invention, the determination is
based upon the type of branch that is designated by the CBI. According to the first
embodiment, the VMI assames that the branch condition is true if the CBI designates a
backward branch, and updates the bytecode counter to jump to the next bytecode targeted by
the branch. If the CBI designates a forward branch, the VMI assumes that the branch
condition will not be fulfilled, and does not execute the branch. An alternative embodiment
assumes that the branch condition is fulfilled if the CBI calls for a backward branch, but
makes no assumption if the CBI calls for a forward branch. In another alternative
embodiment, the VMI assumes that the branch condition is always fulfilled, and thus
processes bytecodes along the speculative branch as long as the bytecodes along the
speculative branch are easily reversible and until the assumption has been confirmed or
invalidated.

In yet another embodiment a known branch prediction scheme is used to
determine whether to speculatively execute a branch, but the VMI only speculatively

processes bytecodes that are easily reversible, and then only until the assumption has been

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

30

(22)

WO 03/029961 PCT/IB02/03646
6

confirmed or invalidated. This methodology is described in detail below with respect to
implementation with a VMI, but can be implemented with more branch prediction or
speculative execution schemes.

According to the embodiments of the present invention, when an assumption
has been made the VMI continues to dispatch native instructions to the CPU which are
translations of successive bytecodes either along the speculatively executed branch or along
the original sequence of bytecodes as long as these native instructions are easily reversible,
such as instructions that involve stack manipulations (such as stack pushes). When an
instruction that is not easily reversed is encountered, a series of “no operation” (NOP)
commands are generated and dispatched by the VMI to keep the CPU busy until the control
value is received. If the subsequently received control value indicates that the assumption is
correct, the VMI thus continues to operate on the bytecodes present in the VMI pipeline and
the CPU continues to operate on the native instructions in the CPU pipeline. If the
subsequently received control value indicates that the assumption is incorrect (i.e., there has
been a misprediction) the CPU is caused to return to the state just before the branch, thereby
reversing the speculatively executed easily reversible bytecodes. Thus, reversal of a
misprediction due to an incorrect assumption requires returning both the VMI and the CPU to
their respective states just prior to the branch and is easily accomplished according to the
characteristics of the speculatively executed bytecodes. For instance, in an embodiment of
the present invention “easily reversible bytecode” is defined as a bytecode that performs only
stack manipulations or that does not modify any state outside the VMI, so execution of a
sequence of such bytecodes can be reversed by resetting the bytecode counter and the register
stack pointer in the VML Other definitions of “easily reversible” can be implemented
according to the present invention and some of those definitions may require that the
pipelines of the VMI and the CPU be flushed to reverse speculatively executed bytecodes.

Another aspect of the present invention is the system for executing virtual
machine instructions from an interpreted language such as Java™. The system includes a
processor (the CPU) and a preprocessor (the VMI), an instruction memory, and a translator (a
JVM). The processor contains and is configured to execute hardware-specific instructions,
hereinafter referred to as native instructions. The preprocessor is a virtual machine, for
example a VMI, configured to fetch bytecode from the instruction memory and to translate
the bytecode into native CPU instructions. The VMI includes a control register, a bytecode
counter BCC, an assumption variable register, and a speculation mode switch history. In the

exemplary embodiment of the present invention, the VMI is configured to dispatch native

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

30

(23)

WO 03/029961 PCT/IB02/03646
7

instructions called for by each bytecode to the CPU for processing. Where the processed
bytecode is a CBI, the native instructions dispatched by the VMI cause the CPU to send a
control value that indicates whether a branch is to be executed. The VMI is also configured
to update the BCC to execute the jump called for by a CBI when it has been speculated or
confirmed that the branch condition is fulfilled. While waiting for a control value, the VMI
is configured to speculatively process or decline to process a branch based upon a branch
prediction scheme according to the methods listed as the embodiments above. The VMI is
configured to update the value of an assumption variable upon making or declining to make
an assumption, by storing an assumed control value ACV. The VMI is configured to
maintain a speculative mode switch history, which is updated when a sequence is
speculatively executed or when speculative execution ceases, and is purged when a control
value is received. After making the assumption that a branch should be speculatively
executed, the VMI is configured to identify and process bytecodes that are reversible, to
receive the control value, and to reverse speculatively executed bytecodes if the VMI
subsequently receives a control value that indicates that the earlier assumption was incorrect.

Although it is possible to implement the methods of the present invention to
process various types of conditional branch instructions, the exemplary embodiment of the
present invention is directed to the processing of Java™ conditional branch bytecodes.

The present invention can be implemented in systems that execute Java™
bytecode using virtual machines, such as JVMs made by Sun Microsystems. However, the
invention can also be implemented using other Java™ virtnal machines such as the Microsoft
Virtual Machine, and is also applicable to systems that execute other interpreted languages
such as Visual Basic, dBASE, BASIC, and .NET.

Additional objects, advantages and novel features of the invention will be set
forth in part in the description which follows, and in part will become more apparent to those
skilled in the art upon examination of the following, or may be learned by practice of the

invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form part of the
specification, illustrate the present invention when viewed with reference to the description,
wherein:

FIG. 1 is a block diagram that shows the functional elements of an exemplary

embodiment of the environment of the present invention.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

30

(24)

WO 03/029961 PCT/IB02/03646
8

FIG. 2 is a chart that shows processing of instructions in the typical CPU
pipeline.

FIG. 3 illustrates an exemplary bytecode processing sequence.

FIG. 4 charts the flow of a method according to an exemplary embodiment of

the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed
herein; however, it is to be understood that the disclosed embodiments are merely exemplary
of the invention that may be embodied in various and alternative forms. The figures are not
necessarily to scale; some features may be exaggerated or minimized to show details of
particular components. Therefore, specific siructural and functional details disclosed herein
are not to be interpreted as limiting, but merely as a basis for the claims and as a
representative basis for teaching one skilled in the art to variously employ the present
invention.

Referring now in detail to an exemplary embodiment of the present invention,
which is illustrated in the accompanying drawings in which like numerals designate like
components, FIG. 1 is a block diagram of the exemplary embodiment of the environment of
the present invention. The basic components of the environment are a hardware platform 100
which includes a processor 110, a preprocessor 120, and an instruction memory 150 which
are all connected by a system bus 160. The preprocessor 120 includes control register 130
and a translator 140. A hardware platform 100 typically includes a cenfral processing unit
(CPU), basic peripherals, an operating system (OS). The processor 110 of the present
invention is a CPU such as MIPS, ARM, Intel x86, PowerPC, or SPARC type
microprocessors, and contains and is configured to execute hardware-specific instructions,
hereinafter referred to as native instructions, In the exemplary embodiment of the present
invention, the translator 140 is a Java™ virtual machine (JVM), such as the KVM by Sun
Microsystems. The instruction memory 150 contains virtual machine instructions, for
example, Java™ bytecode 170. The preprocessor 120 in the exemplary embodiment is the
Virtual Machine Interpreter (VMI) disclosed in W09918486, and is configured to fetch a
virtual machine instruction (for example, a bytecode 170) from the instruction memory 150
and to translate the virtual machine instruction into a sequence of native CPU instructions.
The VMI 120 is a peripheral on the bus 160 and may act as a memory-mapped peripheral,
where a predetermined range of CPU addresses is allocated to the VMI 120. The VMI 120

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

20

25

30

(25)

WO 03/029961 PCT/IB02/03646
9

manages an independent virtual machine instruction pointer 180 indicating the current (or
next) virtual machine instruction in the instruction memory 150. The VMI also manages a
speculation mode switch history and an assumption variable (not shown).

Referring now to FIG. 2 and according the exemplary embodiment of the
present invention, the processor 110 includes an multi-stage pipeline 200 such that execution
of machine instructions occurs in parallel and lockstep fashion during consecutive clock
cycles. In other words, when a first instruction I1 enters stage two of the pipeline, the
following instruction I2 enters stage one, and so on. Ideally, the instructions continue fo
enter the pipeline in consecutive cycles thereby enabling the concurrent processing of eight
instructions where one instruction is completely executed every clock cycle. Typically
however, execution of the average instruction actually requires more than one clock cycle.

As an example of the operation of the present invention, the VMI 120
proceeds to translate each of a first series 310 of bytecodes 170 info one or more native
instructions. Referring now to FIG. 3, bytecodes B0 through B2 are non-conditional, so the
VMI 120 simply fetches B0 through B2 from the instruction memory 150, selects the native
instruction or instructions defined for each bytecode 170, and supplies the instraction(s) to
the processor 110 for execution. "Bn s a conditional branch instruction (CBI 330), therefore
if the branch condition is fulfilled Bn causes the VMI to jump from the first sequence 310 to
a bytecode Br in a sequence 320. While the branch condition is being evaluated (i.e., the
VMI 120 waits for a control value to be returned from the CPU 110), a prediction is made
according branch prediction scheme as to whether the branch condition will be fulfilled and
the VMI 120 elects whether to speculatively execute instructions untit the prediction can be
verified. Branch prediction schemes are heuristic processes of varying complexities that
provide predictions as to whether a branch condition will be fulfilled and possibly a statistical
assessment of accuracy of the prediction. According to one embodiment of the present
invention, the VMI 120 implements a branch prediction scheme that assumes that if the CBI
330 (Bn) calls for a backward branch (i.e., a negative offset to the bytecode counter BCC),
the branch condition is fulfilled and the VMI 120 executes the jump to bytecode Br. The
VMI 120 concurrently dispatches the sequence of native instructions that causes the CPU 110
retrieve the control value that indicates whether the branch condition has been fulfilled.
According to the branch prediction scheme of another embodiment, if the CBI 330 (Bn) calls
for a forward branch (i.e., a positive offset to the BCC), the VMI 120 assumes that the branch

condition is not fulfilled and does not execute the jump. According to the branch prediction

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

20

25

30

(26)

WO 03/029961 PCT/IB02/03646
10

scheme of yet another embodiment, if the CBI 330 calls for a branch at all, the VMI 120
assumes that the branch condition is fulfilled and executes the jump.

According an exemplary embodiment of the present invention, if the branch
prediction scheme results in speculative execution of a sequence 320 of bytecodes, the impact
of an inaccurate prediction is minimized by speculatively executing only easily reversible
bytecodes 170. Ease of reversal is determined when the bytecode 170 is decoded (i.e., its
propetties are accessed) by the VMI 120. The CPU 110 speculatively executes each
dispatched instruction. For example, in many cases a branch is followed by a stack push
operation (i.e. a constant or variable gets pushed on the stack), which can easily be reversed
by resetting the stack pointer value (which is maintained in the VMI 120) to its state prior to
the branch. Such native instructions (commonly referred to as “stack pushes”) can be
speculatively executed until the control value has been received, because reversing the
speculative execution is accomplished by merely resetting a register, and thus the negative
effects of a misprediction are negligible.

Thus, when the VMI 120 assumes that a branch condition will be fulfilled,
processing of bytecodes Br through Bz (the speculative branch) subsequently continues in the
second sequence 320 unless the VMI 120 encounters a bytecode along the speculative branch
that represents a sequence of native instructions that cannot be casily reversed. When a
bytecode 170 along the speculative branch cannot easily be reversed, speculative execution is
suspended. If the VMI 120 subsequently receives a control value that indicates that the
branch condition has not been fulfilled, the VMI 120 resets the BCC and the register stack
pointer to reverse the jump (and if necessary, issues a native instruction to the CPU 110 to
purge the CPU pipeline 200). If the VMI 120 assumes that a branch condition will not be
fulfilled, the BCC is incremented and the branch is speculatively not processed. While
speculatively processing non-branch bytecodes, the VMI 120 continuously checks whether
the received control value has been written to its control register 130.

As shown in block 410 of FIG. 4, the VMI 120 increments 2 virtual machine
counter BCC before proceeding in block 420 to fetch cach bytecode 170 from the instruction
memory 150. Inblock 430, the VMI 120 decodes each bytecode 170 by accessing the
properties for the bytecode 170. Because the speculation mode switch SMS is off when the
first bytecode 170 of a sequence has been decoded, the VMI 120 (in block 435) dispatches
the sequence of native instructions that corresponds to the bytecode 170. If in block 445 it is
determined that the bytecode 170 is not a CBI 330, the method returns to block 410 where the

virtual machine counter (BCC) 180 is incremented, and the fetching process resumes (block

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

30

27)

WO 03/029961 PCT/IB02/03646
11

420). However, if it is determined in block 445 that the bytecode 170 is conditional, the
native instructions dispatched in block 435 will represent a control value retrieval process
within block 450. The native instructions that constitute the control value retrieval process
will cause the CPU 110 to send a control value that indicates whether the branch called for by
the CBI 330 is to be executed (i.e., whether to jump to a target bytecode 170 that is outside of
the current sequence of bytecodes being executed), and to write that control value to the
control register 130. Concurrently with the control value retrieval process, the VMI 120
elects (in block 470) whether to make an assumption that the branch condition will or will not
e fulfilled. The election is based upon the particular branch prediction or speculative
execution scheme in use.

If the VMI 120 elects to make an assumption as to the fulfillment of the
branch condition, the speculation mode switch (SMS) is turned on and an assumed control
value (ACV) is stored in 2 VMI register (the assumption variable 195). In block 475, the
BCC is updated (to reflect the jump called for by the CBI 330) if the branch is speculatively
taken. Regardless of whether the branch is speculatively taken, the method proceeds to block
410 where the BCC is incremented. The next bytecode 170 along the speculatively elected
sequence of bytecodes is processed if it is reversible (e.g., the native instructions
corresponding to the next bytecode 170 constitute a simple stack manipulation). The
determination of ease of reversibility is based upon the properties of the bytecode 170.

Easily reversible bytecodes typically represent operations that take place on stack positions
above the top-of-stack just after the CBI 330 translation and that do not modify the state of
the system (in particular, outside the VMI 120). The bytecode 170 is fetched in block 420
and decoded in block 430. The SMS is on because the VMI 120 elected to make an
assumption (the sequence is being speculatively executed), so if the control value has not yet
been retumed (block 485) and the decoded properties indicate the fetched bytecode 170 is
easily reversible, the native instructions corresponding to the fetched bytecode are dispatched
in block 435. Then as long as the fetched bytecode 170 is not another CBI 330 (block 445),
the BCC is incremented (block 410) and the next bytecode along the speculative sequence is
fetched and decoded (blocks 420 and 430). Thus, the processing of a speculative sequence
loops through blocks 410, 420, 430, 432, 485, 486, 460, and 435 as long as each next
bytecode 170 is easily reversible, and as long as the branch condition has not been received.

If in block 460 a bytecode 170 that is not easily reversible is encountered
during the processing of a speculative sequence, speculation is discontinued in block 461 by
switching the SMS off, which causes the VMI 120 to wait for receipt of the control value in

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

20

25

30

(28)

WO 03/029961 PCT/IB02/03646
12

block 485. The received control value RCV is stored in the control register 130 of the VMI
120. In block 487, the branch condition is evaluated. If the RCV indicates that the branch
condition was fulfilled and the SMS history indicates that current sequence was being
speculatively processed (the SMS history 190 shows that the SMS has been on at some point
during the current sequence) in block 494 the assumed control value ACV stored as the
assumption variable 195 is compared to the received control value RCV stored in the control
register 130 to determine whether the assumption made by the VMI 120 was correct (i.e.,
whether the speculative sequence should have been processed). If the assumption was
correct (i.e., ACV =RCV) then the speculative execution of the current branch sequence has
been confirmed. In other words, the VMI 120 correctly assumed that the branch should be
taken. The BCC is incremented in block 410 and fetching resumes. If the assumption was
incorrect then the VMI 120 failed to process the branch, and the VMI 120 and the CPU 110
are flushed to reverse the speculatively processed non-branch sequence of bytecodes, the
method updates the BCC to reflect the jump in block 498 and then returns to block 410 to
increment the BCC and process the next bytecode along the branch sequence.

If the RCV indicates that the branch condition was not fulfilled and the SMS
history 190 indicates that current sequence was being speculatively processed, in block 494
the assumed control value ACV is compared to the received control value RCV to determine
whether the assumption made by the VMI 120 was correct. If the assumption was correct
then the speculative execution of the current non-branch sequence has been confirmed. In
other words, the VMI 120 correctly assumed that the branch should not be taken. The BCC
is incremented in block 410 and fetching resumes. If the assumption was incorrect then the
branch should not have been taken, and all bytecodes along the speculatively processed
branch are reversed by resetting the BCC and the stack register pointer in block 495. If
necessary, the pipelines of the VMI 120 and the CPU 110 are flushed in block 495.

The SMS history 190 is reset whenever a control value is received because the
branch condition has been resolved thus confirming or purging any speculative processes.

If the VMI 120 elects in block 470 not to make an assumption as to the
fulfillment of the branch condition, the VMI 120 waits until the actual control value is
received by checking in block 485 for receipt of the control value. Because the SMS remains
off, block 486 returns to block 485 to continue checking until the control value is received.
‘When the control value is received, the method proceeds to block 487, where the branch
condition is evaluated. If the control value indicates that the branch condition was fulfilled,

because no speculation has occurred during execution of the bytecode sequence, the method

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

(29)

WO 03/029961 PCT/IB02/03646
13

proceeds to block 498 where the BCC is updated to reflect the jump called for by the CBI
330 and then bytecode fetching is resumed in block 410. If the control value indicates that
the branch condition was not fulfilled, the method returns to block 410 to resume bytecode
fetching. In this manner, if the VMT 120 elects not to make an assumption the VMI 120
processes the CBI 330 normally (taking the branch only if the branch condition is fulfilled).

As discussed above, the decision whether to make an assumption regarding the
fulfillment of the branch condition is based upon the branch prediction scheme implemented,
as illustrated below.

Branch Prediction Schemes

Backward Branch Forward Branch
First embodiment Assume taken Assume not taken
Second embodiment | Assume taken No assumption
Third embodiment Assume taken Assume taken
Fourth embodiment | Depends on prediction scheme

In a first embodiment of the present invention, the VMI 120 utilizes a
speculative execution scheme that assumes that backward branches will be takern, and that
forward branches will not be taken. In a second and alternative embodiment, the VMI 120
speculatively executes only backward branches, and makes no assumption regarding forward
branches. In a third and alternative embodiment, the VMI 120 utilizes a simpler speculative
execution scheme that assumes that all branches will be taken. Furthermore, according to a
fourth and alternative embodiment the VMI 120 utilizes a branch prediction scheme to
determine whether the branch is to be taken. According to any of the forgoing embodiments,
speculative execution only proceeds for bytecodes that are easily reversible.

According to the first embodiment of the present invention, the VMI 120
always makes an assumption regarding the outcome of the branch condition represented by a
CBI 330, but bases the speculation upon the type branch called for by the CBI 330. Ifthe
CBI 330 calls for a forward branch (BCC offset > 0) the VMI 120 assumes that the branch
condition will not be fulfilled and speculatively continues to process a non-branch bytecode
sequence as long as it is easily reversible. If the CBI 330 calls for a backward branch (BCC
offset < 0) the VMI 120 assumes that the branch condition will be fulfilled and speculatively
processes the branch bytecode sequence as long as it is easily reversible.

According to the second embodiment of the present invention, the VMI 120

makes an assumption regarding the outcome of the branch condition represented by a CBI

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

20

25

30

(30)

WO 03/029961 PCT/IB02/03646
14

330 only if the CBI 330 calls for a backward branch. Where the CBI 330 calls for a forward
branch the VMI 120 processes the branch condition normally, i.e., the VMI 120 waits for
receipt of the control value and processes the appropriate sequence of bytecodes accordingly.

In a third embodiment of the present invention, a scheme speculates that the
branch is always taken when a CBI is encountered. When processing RISC code this
speculative execution scheme is accurate approximately 70% of the time because branches
usually occur at the bottom of a loop, and loops are typically executed repeatedly. The
branch prediction improves the overall RISC code processing performance of VMI by
approximately 35%. According to Amdahl’s law, when processing Java code this simple
prediction will increase bytecode processing speed by 7-20%. Using branch prediction and
speculative operation, the overhead of branches as compared to a natively executing CPU can
be reduced from 10 to 20 cycles to approximately 2 to 4 cycles. According to an aspect of
the third embodiment, when the VMI 120 assumes that a branch condition has been fulfilled
the VMI 120 updates the bytecode counter BCC to reflect the branch offset, starts fetching
from the offsct address and recovers its pipeline. If the assurnption is correct, the time
required to process that branch is reduced to about 5 cycles. However, it cannot be
concluded that branch prediction according to this embodiment of the present invention
would reduce the processing time for every branch by an approximate factor of three (from
14 to 5 cycles) because approximately 10% of all branches results in cache misses.

In a fourth embodiment, any known branch prediction scheme is utilized in
combination with the VMI 120 to process each CBI330.

Many of the advantages of the systems and methods of the present invention
are described herein, although those skilled in the art will recognize other advantages exist.
For example, for optimal bus usage the CPU 110 reads native instructions in bursts (typically
consisting of at least 4 cycles). Therefore the CPU 110 must read an entire burst before it
will send the control value back to the VMI 120. The VMI 120 must generate some NOPs to
fill the burst containing the control value retrieval command so as to ensure that the CPU 110
processes the retrieval command while the VMI 120 processes a speculative branch. An
advantage of the present invention is that when a the VMI 120 keeps the CPU 110 and VMI
120 pipelines filled with meaningful instructions by speculatively dispatching the next
instructions from the speculative sequence 320 as long as the effects of each instruction can
be reversed, rather than having to occupy processor time with NOPs to fill the CPU burst.

In view of the foregoing, it will be appreciated that the present inven.tion

provides a system and a method for accurate and efficient processing of conditional branch

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

G

WO 03/029961 PCT/IB02/03646
15

virtual machine instructions. Still, it should be understood that the foregoing relates only to
the exemplary embodiments of the present invention, and that numerous changes may be
made thereto without departing from the spirit and scope of the invention as defined by the

following claims.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

15

20

25

(32)

WO 03/029961 PCT/IB02/03646
16
CLAIMS:
1. A method of processing virtual machine instructions, the method comprising
the steps of:

identifying a subset of virtual machine instructions the processing of which is
conditionally dependent upon the value of a condition control variable;

fetching and processing a range of the virtual machine instructions into native
instructions executable by a processor, wherein a virtual machine instruction counter is
incremented after processing and dispatching to the processor for execution a virtual machine
instruction of said range, and continuing until a member of said subset of the virtual machine
instructions is encountered;

injtiating a control value retrieval process upon encountering said member, by
dispatching native instructions represented by said member to the processor for execution;
and

processing a speculative sequence of virtual machine instructions when an
assumption has been made for an assumed value of a real value of the condition control
variable, by:

switching a speculative mode switch on;

updating the virtual machine instruction counter according to the assumed
value, so as to process into native instruction each virtual machine instruction of said
speculative sequence of virtual machine instructions, incrementing the virtual machine
instruction counter and dispatching the native instructions after each virtual machine
instruction is processed, until the real value of the condition control variable has been
received;

comparing the real value to the assumed value; and

reversing the processing of the speculative sequence of virtual machine
instructions, purging a speculation mode history, and reversing the update to the virtual
machine counter, if the real value is not equal to the assumed value; or

switching said speculation mode switch off and purging said speculation mode

history, if the real value is equal to the assumed value;

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

20

25

30

(33)

WO 03/029961 PCT/IB02/03646
17

delaying further fetching and processing of the range of the virtual machine
instructions until the real value of the condition control variable is received and then
processing the next virtual machine instruction according to the real control value, if no

assumption is made for the assumed value of the real value of the condition control variable.

2. The method of Claim 1, wherein fetching and processing of said range of the
virtual machine instructions into native instructions executable by a processor is
accomplished by a Virtual Machine Interpreter (VML) virtual machine hardware accelerator,

3. The method of Claim 1, wherein processing said speculative sequence of
virtual machine instructions further comprises:

processing each virtual machine instruction of said speculative sequence only
if the virtual machine instruction is easily reversible; and

suspending processing of said speculative sequence of virtual machine
instructions until the real value of the condition control variable is received, if the next virtual

machine instruction does not represent a stack manipulation.

4. The method of Claim 3, wherein suspending processing of said speculative
sequence further comprises dispatching to the processor a series of “no operation”

instructions until the real value of the condition control variable is received.

5. The method of Claim 2, wherein determining whether to make an assumption
for the assumed value of the real value of the condition control variable further comprises:
determining a displacement to the virtual machine counter that is called for by
said member of said identified subset of virtual machine instructions; and
setting the assumed value of the condition control variable to indicate that the
branch condition is fulfilled, if the member of said identified subset of virtual machine

instructions calls for a negative displacement (offset < 0) of the virtual machine counter.

6. The method of Claim 5 further comprising setting the assumed value of the
condition control variable to indicate that the branch condition is not fulfilled, if the member
of said identified subset of virtual machine instructions calls for a positive displacement
(offset > 0) of the virtual machine counter.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

20

25

30

34)

WO 03/029961 PCT/IB02/03646
18

7. The method of Claim 5 further comprising making no assumption for the real
value of the condition control variable, if the member of said identified subset of virtual
machine instructions calls for a positive displacement (offset > 0) of the virtual machine

counter,

8. The method of Claim 2, wherein determining whether to make an assumption
for the assumed value of the real value of the condition control variable further comprises
setting the assumed value of the condition control variable to indicate that the branch
condition is fulfilled.

9. The method of Claim 2, wherein determining whether to make an assumption
for the assumed value of the real value of the condition control variable further comprises
setting the assumed value of the condition control variable according to a branch prediction

scheme.

10. The method of Claim 2, wherein determining whether to make an assumption
for the assumed value of the real value of the condition control variable further comprises
setting the assumed value of the condition control variable according to a speculative

execution scheme.

11. A method of processing virtual machine instructions, the method comprising:

fetching and processing a range of the virtual machine instructions into native
instructions executable by a processor, and continuing until a conditional branch instruction
is encountered;

initiating a control value retrieval process by dispatching a native instruction
represented by the conditional branch instruction to the processor for execution, upon
encountering the conditional branch instruction;

determining whether to make an assumption as to a value of a condition
control variable; and

processing a speculative sequence of virtual machine instructions when an
assumption is made as to the value of the condition control variable, by:

processing a virtual machine instruction of said speculative sequence of virtual
machine instructions into a preliminary native instruction, only if the virtual machine

instruction is easily reversible; and

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

30

(35)

WO 03/029961 PCT/IB02/03646
19

suspending processing of said speculative sequence of virtual machine
instructions until the value of the condition control variable is received, if the virtual machine
instruction does not represent a stack manipulation,

delaying further fetching and processing of the range of the virtual machine
instructions until the value of the condition control variable is received and then processing
the next virtual machine instruction according to the received value, if no assumption is made

as to the value of the condition control variable.

12. The method of Claim 11, wherein processing the speculative sequence of
virtual machine instructions further comprises:

comparing the value of the received condition control variable to an assumed
value;

reversing the processing of the speculative sequence of virtual machine
instructions, purging a speculation mode history, if the value of the condition control variable
is not equal to the assumed value; and

switching said speculation mode switch off, and purging said speculation

mode history, if the value of the Acondition control variable is equal to the assumed value.

13. An apparatus for processing virtual machine instructions, comprising:

a processor (110) having a native instruction set and configured to execute
native instructions;

an instruction memory (150), configured to store virtual machine instructions;

a preprocessor (120), configured to fetch virtual machine instructions from the
instruction memory and to process the fetched vittual machine instructions into native
instructions executable by the processor (110), to identify conditional virtual machine
instructions, to determine whether to speculatively process virtual machine instructions while
the value of a condition control variable is being sent by the processor, and to confirm or
reverse said speculatively processed virtual machine instructions upon receipt of the
condition control vatiable, and further comprising:

a control register (180), configured to store the value of the condition control
variable received from the processor;

a virtual machine instruction counter, configured to indicate the next virtual

machine instruction to be processed;

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

10

15

20

25

(36)

WO 03/029961 PCT/IB02/03646
20

an assumption variable register, configured to store the value of an assumed
control variable;

a speculation mode bit, configured to indicate whether the preprocessor has
made an assumption regarding the value of the condition control variable; and

a speculation mode history, configured to store speculation mode bits while

the value of the control variable is being sent.

14, The apparatus of Claim 13, wherein the preprocessor (120) is a Virtual
Machine Interpreter (VMI) virtual machine hardware accelerator.

15. The apparatus of Claim 13, wherein the preprocessor (120) is further
configured to speculatively process only virtual machine instructions that are easily
reversible, and to suspend speculative processing of virtual machine instructions until the
value of the condition control variable is received when a virtual machine instruction that is

not easily reversible is encountered.

16. The apparatus of Claim 15, wherein the preprocessor (120) is further
configured to dispatch a series of “no operation™ instructions while speculative processing is

suspended and until the value of the condition control variable is received.

17. The apparatus of Claim 15, wherein the preprocessor (120) is further
configured to speculatively process only virtual machine instructions that represent stack
manipulations, and to suspend speculative processing of virtual machine instructions until the
value of the condition control variable is received when a virtual machine instruction that is

not a stack manipulation is encountered.

18. The apparatus of Claim 17, wherein the preprocessor (120) is further
configured to dispatch a series of “no operation” instructions while speculative processing is

suspended and until the value of the condition control variable is received.

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

(37) JP 2005-504390 A 2005.2.10

WO 03/029961 PCT/IB02/03646
13
100
1
120
160
T4
\
(\ i
110 130
150

—p
180
—170

FIG. 1

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

(38) JP 2005-504390 A 2005.2.10

WO 03/029961 PCT/IB02/03646
2/3

CPU
pipeline

200
Stage 1 | I1 2 18 14 15 18 I7 18
Stage 2 I 2 13 14 15 16 I7
Stage 3 I1 2 13 14 15 16
Stage 4 il I2 18 14 I5
Stage 5 I 2 13 14
Stage 6 It 12 I3
Stage 7 I 12
Stage 8 I1

FIG. 2

300

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

WO 03/029961

410

33

(39)

PCT/IB02/03646

487

[—492

FIG. 4

T—495

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T s T T T e T e T s T e T e T e T e T e T e T e T e B e R T e T e T e T e T e R e T e B e

gbooogbodaoan

INTERNATIONAL SEARCH REPORT

(40)

inte snal Applioation No

PCT/IB 02/03646

A, CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/38 606F9/318
According to Intemational Patent Glassification (IPG) or to both national classf and IPG
B. FIELDS SEARCHED
ini searched ification system followed by symbols)
IPC 7 GO6F
D than minimum o the extent that such documents are included in the fialds searched

Electronic data base consulted during the Inlernational search {name of deta base and, where practical, search terms used)

EPO-Internal

. DOCUMENTS CONSIDERED TO BE RELEVANT

12 September 1995 (1995-09-12)
column 23, line 58 —column 24, line 9

Category ® | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 01 27752 A (TRANSMETA CORP) 1,11,13
19 April 2001 (2001-04-19)
the whole document
A US 6 167 509 A (SITES RICHARD LEE ET AL) 5-7
26 December 2000 (2000-12-26)
column 16, Tine 59 - Tine 65
A US 5 450 560 A (BRIDGES JEFFREY T ET AL) 3,11,15

D Further docaments are listed in the continuation of box C.

Patent family members are listed in annex,

° Speclal calegories of cited documents :

‘A" document deflning the general state of the art which is not

citation or other special reason (as specifie

0" document referring to an oral disclosure, use, exhibition or
other means.

P* documnent pubiished prior to ihe international fifing date but
later than the priority date claimed

inthe an,

T* fater docurnent published after the inlemational filing date
or priorily dale and ol in confiict with the application but
cited to understand the principle or theory underlying the

consldered to be of particular relevance invention

E earller document but published on or afier the international " document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considared to

L document which may throw douibts on priorily claim(s) or involve an Inventive step when the document s taken alone
which is cited to establish the publication date of ancther *y* document of paricutar relevance; the claimed Invention

cannol be considered to involve an inventive step when the
document is combined with ane or more other stich docu-—
ments, such combination being obvious to a person skilled

'&" document member of the same patent family

Date of the actual completion of the international search

17 December 2002

Date of malling of the internatlonal search repotl

27/12/2002

Narme and maiiing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Authorized officar

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Moraiti. M
»

Fax: (+31-70) 340-3016

Form PCTASA210 {secand shest) (uly 1982)

JP 2005-504390 A 2005.2.10

L T e T e T e T e T e T e T e T T e T e T s O s O s O e TR s T e O e, T s T e, O e, T e, O e T e TR e O e, IO e T e T s R |

INTERNATIONAL SEARCH REPORT

(41)

Inte onal Appiication No

PCT/IB 02/03646

Patent document Publication Patent family ‘ Publication

cited in search report date member(s) date

WO 0127752 A 19-04-2001 CN 1379875 T 13~11-2002
EP 1230594 Al 14-08-2002
Wo 0127752 Al 19-04-2001

Us 6167509 A 26-12-2000 CA 2045791 Al 30-12-1991
DE 69129881 D1 03-09-1998
DE 69129881 T2 01-04-1999
EP 0463977 A2 02-01-1992
JP 2951064 B2 20-09-1999
JP 6103067 A 15~04~1994
KR 190252 Bl 01-06-1999

US 5450560 A 12-09-1995 NONE

Fom PCT/ISA/210 (patent famlly annex) (July 1992)

JP 2005-504390 A 2005.2.10

(42) JP 2005-504390 A 2005.2.10

gobogooaon

@éGnoooooono AP(GH,GM,KE,LS,Mw,Mz,SD,SL,SZ,TZ,UG,ZM,ZW) ,EA(AM,AZ,,BY ,KG,KZ ,MD,RU, TJ, TM) ,EP (AT,
BE,BG,CH,CY,CZ,DE,DK, EE,ES,FI ,FR,GB,GR, IE, IT,LU,MC,NL,PT,SE,SK, TR) ,0A(BF,BJ,CF,CG,CI,,CM,GA,GN,GQ,GW,
ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ ,EC,EE,ES,
FI,GB,GD,GE,GH,GM,HR,HU, ID, IL, IN, 1S, JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD, MG, MK, MN , MW, MX,MZ ,N
0,Nz,0M,PH,PL,PT,RO,RU,SD, SE, SG,SI,SK,SL, T, TM, TN, TR, TT, TZ,UA, UG, UZ,VC,VN, YU, ZA, ZM, ZW

(74)000 100122769
ooooooooo
(72000 000000000000
00000000000000000000000000000000000000
0000 (0 0) 58013 BBOL BB1S
0000 OO 58081 AAO9 DDO2

ooboogoo
uboboobbouobooobooboooboobbooobooobooobooobooooboaon

	bibliographic-data
	abstract
	claims
	description
	drawings
	international-document-image-group
	search-report
	overflow

