%

» UK Patent Application « GB . 2210 480.A

{43) Date of A publication 07.06.1989

(21) Application No 8819018.6 (51) INT CL*
GO6F 12/12
(22). Date of filing 10.08.1988
(52) UK CL (Edition J)
(30) Priority data G4A AMC
(31) 104280 (32) 02.10.1987 (33) US
(56) Documents cited
US 0452138 B

(71) Applicant .
Sun Microsystems Inc (58) Field of search
UK CL (Edition J) G4A AMC
(Incorporated in the USA - Delaware) INT CL* GO6F

2550 Garcla Avenue, Mountain View, California 94043,
United States of America
(74) Agent and/or Address for Service

(72) Inventors Potts Kerr and Co
William Van Loo 15 Hamilton Square, Birkenhead, Merseyside,
.'Iaol:,n Watkins L41 6BR, United Kingdom
obert Garner
William Joy

Joseph Moran
William Shannon
Ray Cheng

(54) Flush support

(57) Hardware and software improvements in workstations which utilize virtual addressing in multi-user operating systems
with write back caches, including operating systems which allow each user to have multiple active processes. The present
invention supports data protection and the reassignment of virtual addresses within such a system. Multiple active
processes have their own virtual address spaces, and an operating system is shared by those processes in a manner
invisible to user programs. Cache "Flush” logic 33 is used to remove selected blocks from the virtual cache before virtual
addresses are reassigned. A cache hit detector is adapted to detect cache hits in the shared operating system across
multiple active user contexts.

FIG. | vAus Ty Lo
w cxva? 2\:) 25 Control Logic
. - f 27
2 VA(154)
21

45 51

l Rea Address Reg

Main
Memory

2 — ;l

3

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

This print takes account of replacement documents submitted after the date of filing to enable the application to comply with the formal
requirements of the Patents Rules 1982.

V087 0lcc @9

1723

910484

X

P

.

1olng Yoeg oM

(o:1e)a

_ (2e:e9)a

Keny eleq o;omo_.|!
7

c Kowapy
urepy
rd
L€
mmm SSaIppPY |esy
/
1S
NAIN
/
yx4
01607 jonuod
ov-T UONEBISHIOM

N7

1 21607
11 v VWAQ
Ge
—Ha
Nndo
L ™~ i

A | 01607 usni4 eyoen

125

/

<5 9wsibed al xewod

Vi

/

6l (r:SLVA
>m..~._< mmn_- QP_UNO
N
s¢ (9L L2)VA'XO
(EL:SHVA

A

| Old

2/23

221046

CPU Bus Address {
VA(15:4)

24

CX(2:0)

A Cache

VA(27:17)
Hit

VA(16)

Cache Address
VA(15:4)

Cache Tags
CX(2:0)

VA(27:17)

VA(16) st

Valid

Supervisor Prot

FIG. 2a

!

3/23

Virtual Addr

0910480

h .

che and MMU_Pr ion Violation

CPU Bus Controls

Write Bus Cycle

User Access ———

(Function Code = 0x2)

Cache Tags

e

Write Allowed

Supervisor Access
Required

Cache Controls

FIG. 2b

442

A 46

44b
48
Cache
Protection
Violation

>

Cache Hit

CPU Bus Controls

Write Bus Cycle

User Access
(Function Code = 0x2)

MMU Page Map Bits '_4
Write Allowed Iﬁl

Supervisor Access
Required

MMU Page Valid

FIG. 2¢C

30a

MMU
Protection
Violation

4/23

a2 irtyal r ri : ZQﬂOASS

Address Path
/
CX(2:0)
Context Reg
33
c.c{::g'i:::us" VA(27:4) CX, VA(27:16)
A -
—gpt Match In ' :
Ain Din
r L—— Cache Tags
11 |
' CX,VA@7:16) |V iMm]P
VA(27:0)
A
cPU CPU VA OE
D p
VAR
Clk VAR >
CX, VA(27:16)
VA(15:13) .
©
Data CX, VA(27:16) Hit =
and 8
Match %3
- Ctl ©
27
p
VAR v
MMU Sel
VAR/VA MUX VAR/VA
. J A\
RA(27:13) < 43
cX, CX, VA(27:16)
VA(27:13)
51
- N
To CPU Adr/Data Bus
RA(27:13) Real Adr Reg RAR(27:13)
ckRaR —AN

FIG. 3

5/23

221C4€30

Virtucl Address Cache: Address State Machine

7o)

MUX: Sel CPU YA
Assert Cache Tag OF

v

MUX: Sel CPU Y&
Assert Cache Tag OF
Transiate CPU ¥A

State (a)

State (c)

he Protec

Yiolation?

v

Assert Bus Ack to CPU
Assert Bus Error to CPU
Set Prot ¥iol bitin
Bus Error Reg

Assert Bus Ack t¢ CPU
Assert Bus Retryto CPU
MUX: Sel CPU YA
Assert Cache Tag OF
Clk Teg ¥A to YAR
Translate CPU YA

Memory Busy?

—

MUX: Sel CPU YA
Translate CPU ¥A

State
(e.m)

State
{g.b2)

3

MUX: Sel CPU YA
Clk CPUAdrin RAR
Translate CPU YA
Assert Mem Adr Strobe
Assert Cache to Mem OF

State (g)

MUX: Sel CPU YA 9(’““;
Assert Csche Tag OF e.v
Clk Teg YA to YAR . .
Translate CPU YA Yiolation?
l Goto {(i.n)
v Assert Bus Ack to CPU
Assert Bus Error to CPU
Assert Bus Ack to CPU Set Prot ¥Yiol bitin
MUX: Sel CPU ¥4 State Bus Error Reg
Assert Cache Tag OF (e.h) MUX: Sel CPU YA
Clk Tag YA to YAR) Transiate CPU YA
Translate CPU Y& Desssert Mem Adr Strobe
Yy L 4 |

FIG. 4a

State
{iv)

6/23 221@42{]

al Addre che: dress State chin
L 2
MUX: Sel YAR MUX: Sel YAR
Translate Cache YA State (i.n) Translate Cache YA State (q)
Assert CPU YA OF Assert CPU YA OF
Assert Mem Adr Strobe
Assert Cache to Mem OEF l
Jr MUX: Sel YAR
Translate Cache YA State ()
MUX: Sel YAR Assert CPU YA OF
Translate Cache Ya State (k) Clk YA to YAR (st s)
Assert CPU YA OF
Update Cache Tags
Assert Mem Adr Strobe ————4
Assert Cache to Mem OE

MUX: Sel YAR
‘ Transiate CPU YA State ()
Assert CPU YAOE

State (m)
MUX: Sel YAR
Translate Ceche YA
Assert CPUYAOE
Assert Mem Adr Strobe {N Mem >
Assert Cache to Mem OE Data Strobe 17
Y 1
Mem Adr Ack? MU Sel YAR
Translste CPU ¥A State (w)
Update MMU Statistic Bits ate (v
Assert CPUYAOLE
l Update Tag Yalid Bit
MUX: Sel YAR
Translate Cache YA
Ol Adr to RAR (ot py | St (®? ,
Assert CPU YA OE
Deassert Mem Adr Strobe

FIG. 4b

7/23 2210483

U A VA(15:3)
Cache Data
" Dats (127:64) A(3)=0
Data (63:0) A(3)=1
o LARELO CPU Write
! / OE.
ssira2=1-" | 7 N N
|~ cPuReatoE. Cache Data O.E.
/ (63:32)
Sel if A(2)=0 L
(31.0)]
Data Reg O.E.\ Clk Write Back Buffer
wrik L D(127:64)
Clk DataReg—{> Dala Reg (63:0) g D(63:0)
% 085 To Res)
/ Adr Reg
Write Back O.E.
(31:0) (63:32)

CPU Adr/Dats Bus (63:0)

z \7— Cache to Mem O.E.

Mem Bus AD(63:0) N Mem toCache O.E.

(31:0) (63:32)

-Main

Memory

D(127:64) A(3)=0
D(63:0) A(3)=1

FIG. 5

8/23

0910483

virtual Address Cache: Dota State Machine

4{ Geote {a) '

N
| PU Resd Cycle?
Assert CPU Write OF State Assert CPU Resd OF
{a.wr)
Assert CPU Write OF State Assert CPU Resd OF
{c.wr)
N Y N
@ @
ache Protectio
Yiolation?
Desssert CPU ¥yrite OF Deassert CPU Resd OF
Assert Bus Ack to CPU State Assert Bus Ack to CPU
Assert Bus Error to CPU (e.wv) Assert Bus Error to CPU
vrite CPU Data into Cache Resd Cache Data to CPU
Deassert CPU Write OF State Deassert CPU Read OF
Assert Bus Ack to CPU (e.wh) Assert Bus Ack to CPU

FIG. 62

State
(a.rd)

State
{c.rd)

State
{e.rv)

State
{e.rk)

s

£

9/23

0010480

irtual Address Cache: Data State Machine

m

Desssert CPU ¥rite OF l
Assert Bus ack tocpy | State
Assert Bus RretrytoCPU | (e.wm) Assert Cache Date OF
Clk Write Back Bufer State
‘ Invert Cache adr bita(3) | (i-8)

v

Assert Cache Data OF State (k)

Deassert CPU Read OF i

Assert Bus Ack to CPU State
Assert Bus Retryto CPU | (e-rm)

Assert Cache Data OF
———% Clk Write Back Bufer | State (m)
Invert Cache Adr bit A(3)

Assert Cache Data OF State {(g)

Yiolation?

State
l Null {o.wt)

Assert Bus Ackto CPU | State |
Assert Bus Error to CPU {i.v)
Assert Cache Data OF

Gote {(g)

State (o)

FIG. 6b

10/23

2910483

Yirtual Address Cache: Data State Machine

{Write Bus Cycle)

-

Cik Date Reg
Merge CPU Data with
Data Reg:
Assert CPU Write OF
Assert Data Reg OE for
Other Bytes

Mem
Data Strobe 072,

Assert CPU Write GE
Assert Dsta Reg OF for
Other Buytes
‘Update Dats Cache
invert Cache Adr bit 4(3)

State {(q.w)

State {s.vw)

'

Cik Data Reg
Deassert CPU Write OE
Assert Data Reg OF for

All Bytes

Assert Data Reg OE for
All Bytes
Update Data Cache

FIG. 6C

Assert Memory Busy
Assert Start Write
Back Cycle

|

State (u.v)

State {(w.w)

State (y.v)

Av

11/23 221@483

Virtua) Address Cache: Dnta State Machine
(Read Bus Cycle)

Cik Data Reg
Assert CPU Resd OF
Clk Data Reg
Assert Data Reg OF for State {q.r) Deassert CPU Read OF
All Bytes Assert Dats RegOE for | State {w.r)
' All Bytes

Mem
Data Strobe 17

Mem
Data Strobe 07

Assert CPU Read OF Assert Data Reg OE for
Assert Data Reg OE for State (s.r) All Bytes State {(v.r)
&11 Bytes Update Data Ceche

Update Data Cache
Invert Cache Adr bit A(3)

Assert Memory Busy
Assert Start Write State (y.r)
Back Cycle

FIG. ed

12/23

2210480

Write Back State Machine

Assert Memory Busy
Assert Memory Address Strobe
Assert Cache to Memory O.E.

Adr Ack?

—

Assert Memory Busy
Deassert Memory &dr Strobe
assert Cache to Memory OE

|

Assert Memory Busy
Assert Memory Data Strobe O
{First 64 bit transfer)
Assert Cache to Memory O.E.

N Mem Y

v

Assert Memory Busy
Desssert Memory Data Strobe O
Assert Cache to Memory O.E.

]

Assert Memory Busy
Assert Memory Data Strobe 1
(Second 64 bit transfer)

Assert Cache to Memory O.E.
Mem Y
Data Ack 17

——

Desssert Mem Data Strobe 1

Data Ack 07

I

FIG. 7

States

MMU

Cache Tag
Mgt

YA Mgt.

MUX Sel
VAR./ VA

Cache Miss
Read

CPU Bus
Intrtface
Cntls

13/23 ¢ 0
Cache Write Miss - Best Case Timing
] c e g] k (] o q s u w Y
Tronlate CPU Translate Cache Tranlate CPU
vict Adar. DT virtaddr. P virt Adr. P
- CPUVYAOE. S
"_ Teg0.E ¥ Updete Tog
Togs Valid
Cache| Clk Clk
Hit/ |Tag VA Uy
Miss? |to VAR to VAR
ICIK RA lClk RA
to RAR to RAR
|4_ MUX Sel CPU YA _,’4 MUX Sel YAR »>
(Merge CPU Data with Data Reg

CPU
Write OF

CPU —pl
Adr Strobe

Retry
to
CPU

Cache Data .. —

Clk Clk

riBk rtBk|

Bfr; Bfr;
Invert Invert
Adr A3

'4—

FIG. 8

—»|cPU Write OF |-

€— Data Reg 0.5, —

Clk |Updete} Cik [Updete
Dats | Data | Data | Data
Reg |Cache;] Reg | Cache
invert
Adr A3

CPU
Adr Strobe

Ack
to
CPU

)

States

MMU

Coche Tag
Mgt

YA Mgt.

MUX Sel
VAR / YA

Cache Miss
Read

CPU Bus
intrtface
Cntls

14/23

'4_ MUX Sel CPU VA
Cache Data 0.E. —
ReadOE

Adr Strobe

Retry
to
CPU

Clk
rtBk
Bfr;
Invert
A3

d— Data Reg 0.E. —
Clk Cik jUpdate] Cik [Updste
rtBk; Data | Data | Data | Deta
Bfr; Reg [Cache;| Reg | Ceche
invert Invert
A3 AT A3
CcPU
Adr Strobe
Ack | CPU
to |Latch
CPU | Dats

FIG. 9

221@A80

c e g] k m 0 q s u w Y
Tranlate CPU Translate Cache Tranlate CPU
< Vinaad, P virtadr. —PT% virt.Ade,)
Cach ¢ CPUVYAOQ.E. Upda%t

8 e
Teg0E — ¥ Update Teg
Togs - velid
Cache| Clk Clk
Hit/ {TegYA Uy
Miss? |to VAR to YAR
IClk RA lCIk RA
to RAR to RAR
MUX Sel YAR —p

—{ CPU Reed OF |-

15/23 22\@480

HMemory Data Bus

Block Read Cycle
! Y from CPU From Mem From Mem
CPU Contrels
Addr Strobe ——— ’ r—
Data Ack G ‘\ \ /
Deta Ack 1 \ -

\ /
R A I N

Data Strobe O : \ ! /
Data Strobe 1
FIG. 10a

T

E

Write Back Cycle
From CPU From CPU From CPU

CPU Centrols

Mem Busy —\
Addr Strobe " !

I
Dats Strobe 0 ‘\ 1 \ /
8 olro }
HemoDra‘:J (SZ:mtbreo:s ; l \ \-—/——
Addr Ack v &) T
— I

Data Ack O
1/ \
Data Ack 1 p

Note: All Control Signals are Negative Active Signals
FIG. 10b

16/23

Cache Flush Block Diagram

0010484

Bus Request

=t~ Bus Request to CP

== Bus Grant Ack to Cl

Flush A(27:9)

CPU Bus Grant Loglc:
) CPU Grants Bus
u omman Mastership
A(31:28)=0xA to Start Fiush
CPU VA(31:28) o000 State Machlne
CPU Func Code (2:0) A
Cycle Decode Timing ~ ;9 y
48
it D Context
CPUD(1:0) ==—=——=————=1-@® D(1:0)='01 Flush
Page
D(1 :O)='1 [0} L D Flush
D(1:0)=11" 5 a- is:ﬁgrgnem
Ck @
Flush Adr Reg
CPU A(27:9)
52/
A(8:4) J
§0 ol
Segment Match
Page Match
Context Match .
YA ﬁx‘b ass

Flush A(8:4)

Cache Conirols =—s—

Memory Busy

0O

58

Flush Match

Flush Controls

=1 Flush Controls

3
3

17723 Q'ZWDAED

Cache Address
VA(15:4)

Cache Tags

CX(2:0) ————

VA(27:17) s

VA(16) ——

Valid

Contex
Flush
Match

Supvsr Prot

Filush Address -
VA(15:4) _
\ Seg me 7
= Fiush
CX(2:0) - Match
VA(27:17)) Page
Fiush
}l Match
VA(16) A

FIG. 12

18/23

0910483 °

Flush State Machine:
Flush Command Decode and DVMA State Machine

! o)

Null : Null
N Flush Y
Request?
Decode CPU Cycle State {c)
Assert Bus Request to CPU
N Flush Y
& Command?
Bus Grant
{ from CPU?
Latch Flush Addr and
Type of Flush Cmd
Assert Bus Request to CPU | state (e)
Assert Bus Acknowledge]
to CPU to end cycle Assert Bus Grant Ack to CPU
Assert Flush Request Desssert Bus Request

FIG. I13a

19/23 nQﬁQAEU

L

Flush State Mochine:
DVMA State Machine, con't

Goto
Ether Test

N Ethernet Y
Request?

e

Assert Bus Grant Ack to CPU
Perform Ethernet Bus Cycle

h 4
Assert Flush Go
Assart Bus Grant Ack to CPU '&
N Flush Y
‘ Done?

Goto
{ DYMA Req)

I |

Assert Flush Go
Assert Bus Grant Ack to CPU

Assert Bus Grant Ack to CPU FIG. I3b

26/23 22,«\04&0

Flush State Machine:
Flush Compare State Machine

v {Goto {Init) '

Null

Flush
Request?

v

Assert Flush Request
Initialize Flush S/M: Goto {go)

Set Incr Count=0
for Start Address
Set Flush Bsse Adr =
Flush Cmd Address
Set Adr bit A3=0 incr Cnt=lncr Cot+ 1
Flush Adr=Base Adr+incr
Assert Cache Teg OE
Assert CPUWrite OF
¥
l o
Assert Cache Tag OE State {a)
Assert CPU Write OE
Assert Cache Tag OF State {c) F ' G ' 3 C
Assert CPU Write OE C

Gote
{Match)

21/23

2210483
Flush Stote Machine: L Z 1 D
Flush Match State Machine
Goto
' (1dle)
Null l
MUX: Sel YAR
Translate Cache ¥&
Assert CPU YA OF
Assert Cache Dats OF State {m)
Clk Write Back Buffer

Set Adr bit A3=0

'

Y
Memory Busy? MUX: Sel YAR

Translate Cache YA
Clk Adr to RAR (et p)

$——— #Assert CPU YA OF

State
Null (g.n) l

4

State (o)

Assert Write Back Req State (q)
(to Flush Reg S/M)

Assert Cache Data OE State (g
MUX: Sel YaR
Translate Cache YA
#Assert CPU YA OF State (i)

Assert Cache Date OF
Clk Write Back Buffer
Set Adr bit A3=1

:

MUX: Sel ¥YAR
Translate Cache Y&
Assert CPU VA OF State (k) ([I;:;lt:)
Negate Yalid Tag

Assert Cache Data OE
FIG. 13d

Assert Memory Busy
Assert Start Write State (s)
Back Cycle

22/23

Flush State Machine:

Flush Compare State Machine, con't

Flush Match?

Assert Flush Done

W%

—

)

2210483

Assert Flush Block Req
Assert Cache Tag O
Clk Tog YA to YAR
Deassert CPU Write OF

State
(e)

Assert Flush Block Reg

N Y
@

Assert Flush Request
Assert Flush Done

il

FIG. 136

202 2210483

Cache Flush- Flush Match Timing
States a c e 0] K m 0 q s u
MHMU Translate Cache
¢ Yirt. Addr.,
—— CPUVYA O.E. — ¥
Cache Tag Cache Nw:te '
M
gt ¢ 1y0OE. —® Yalid
Teg
incr. Flush| Clk Clk RA
VA Mgt. Fiush Match | Teg VA to RAR
Count ? |toVAR
MUX Sel MUX Sel YAR
YAR /7 YA
' CPU Cache Data 0.5, —
Write OF
Cache Flush
Match - Load
Clk Clk Set | write Back
Write Back Bfr wrtBk WriBk wrt Reqd?
Bfr; Bfr; Back Then set
Set Set Req | Mem Busy;
Ad=] A3=0 Start W/B

FIG. 14

- 1 -
FLUSH SUPPORT.

0210483

OF NVE

This invention is directed to certain hardware and
goftware improvements in workstations which utilize virtual
addregsing in multi-user operating systens with write back
caches, including operating systems which allow each user to
have multiple active processes. In this connection, for
convenience the invention will be described with reference
to a particular multi-user, multiple active prdcesses
operating system, namely the Unix oberating system.
However, the invention is not 1imited to use in connection
with the Unix operating system, nor are the claims to be
interpreted as covering an invention which may be used only

with the Unix operating system.

In a Unix based workstation, system performance may be
improved significantly by including a virtual address write
back cache as one of the systenm elements. The present
invention describes an efficient scheme for supporting data
protection and the reassignment of virtual addresses within
guch a system. The invention features support for multiple
active processes, each with its own virtual address space,
and an operating systen shared by those processes in a

manner which is invisible to user programs.

Cache #rlush" logic is used to remove selected blocks
from the virtual cache when virtual addresses are to be
reassigned. If a range of addresses (a virtual page

address, for example) ije to be reassigned, then all

-2 -

instances of addresses from within this range must be
removed, or "flushed", from the cache before the new address
assignment can be made. A cache block is "flushed" by
jnvalidating the valid bit in its tags and writing the block
back to memory, if the block has been modified. The *Flush"
logic includes logic to identify "Flush" commands within
_mcontrol Space"; logic to match particular virtual address
fields, within a Flush command, to corresponding virtual
address fields either within the cache's block address space
or its tag virtual address field; and (optional) logic to
flush multiple cache block addresses as a result of a single
nFlush" command issued by thé CPU (or DVMA deviqe, it
allowed); It also includes logic to invalidate the cache
valid tag on matching cache blocks and logic to enable
modified matching blocks to be written back to memory.

The present invention includes both hardware and
specific YFlush" commands inserted within the operating

system kernel.

BRIEF _DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram showing the main components
of a workstation utilizing virtual addresses with write back

cache.
Figure 2a is a schematic diagram of cache "hit" logic
25. '

- :3 -

Figure 2b is a schematic diagram of a circuit for

detectirg a cache protection violation.

Figure 2c is a schematlic diagram of 2 circuit fecr

detecting a MMU protection violatioen.

Flgura 3 is a detailed block diagraz showing the
address path utilized by the virtual address cache of the

present invention.

Figqure 4 (4(a), 4(b)) is a flow diagram of a state
pachine implementation for certain controls related to the

addressing of a virtual address write back cache.

Figqure 5 is a detailed block diagram showing the data
path utilized by the virtual address path of the present

invention.

Figure 6 (6a, 6€b, 6c and 6d) is a flou diagram of a state

machine implementation for certain controls related to data

transfers to and from a virtual address write back cache

(states (a) = (0})).

Figure 7 is a flow diagram of a state machine for
implementation for controlling Write Back bus cycles to

memory.

'Figure 8 is a timing diagram for best case timing for

a cache write miss.

Figure 9 is a timing diagram for best case timing for

a cache read niss.

Figure 10a is a timing diagram of the memory bus cycle

for performing a block read cycle.

Figure 10b is a timing diagram of the memory bus cycle

for performing a write back cycle.

Figure 11 is a schematic diagram showing the cache

flush implementation of the present invention.

Figure 12 is a schematic diagram showing the logic for
detection of Context Flush Match, Segment Flush Match and
Page Flush Match.

Figure 13 (13a - 13e) is a flow diagram of a state
machine implementation of a cache flush initiated by the

issuance of a flush command.
Figure 14 is a timing diagram for a cache flush.
ED DESC ION_OF THE

Figure 1 shows the functional blocks in a typical
workstation using virtual addresses in which the present

invention is implemented.

Bpécifically, such a workstation includes a
microprocessor or central processing unit (CPU) 11, cache

data array 19, cache tag array 23; cache hit comparator 25,

menmory management unit (MMU) 27, main memory 31, write back
puffer 39 and workstation control logic 40. S8uch
workstations may, optionally, also include context ID
register 32, cache f£lush logic 33, direct virtual memory

access “(DVMA) logic 35, and multiplexor 37.

In the present inventien, various changes are made to
cache flush logic 33, cache hit comparator 25 and
workstation contrel logic 40 which improve the performance

of a virtual address write back cache.’
escription of Necessa Elements of Worksta

CPU 11 issues bus cycles to address instructions and
data in memory (following address translation) and possibly
other system devices. The CPU address itself is a virtual
address of (2) bits in size which uniquely identifies bytes
of instructions or data within a virtual context. The bus
cycle may be characterized by one or more control fields to
uniquely identify the bus cycle. In particular, 2
Read/Write indicator is required, as well as & wType" field.
This field identifies the memory instruction and data
address space as well as the access priority (i.e.,
nsupervisor" or "User" access priority) for the bus cycle.
A CPU wiich may be utilized in a workstation having virtual
_addressing and capable of gsupporting a multi-=user operating

system is a MC68020.

-Another necessary elenent in a virtual address
workstation with write bgck cache shown in Figure 1 is
virtual address cache data array 19, which is organized as
an array of 2N blocks of data, each of which contains 2M
bytes. The 2M bytes within each block are uniquely
identified with the low order M address bits. Each of the
2N blocks is uniquely addressed as an array element by the
next lowest N address bits. 2As a virtual aé&ress cache, the
(N+M) bits addressing bytes within the cache are from the
virtual address space of (A+C) bits. (The (C) bits are
context bits from optional context ID registef 32 described
below.) The (N+M) bits include, in general, the (P)
untranslated page bits plus added virtual bits from the

(A+C~P) bits defining the virtual page address.

virtual address caché dats array 19 described herein is
a "direct mapped" cache, or "one way set associative" cache.
While this cache organization is used to {llustrate the
invention, it is not meant to restrict the scope of the
invention which may also be used in connection with multi-

way set associative caches.

Another recquired element shown in Figure 1 is virtual
addrees cache tag array 23 which has one tayg array element
for each block of data in cache data array 19. The tag
arra§ éﬂus contains 2N elements, each of which has a valia
bit (V), a Modified bit (M), two protection bits (P)

consisting of a Supervisor Protect bit (Supvsr Prot) and a

-7-

Write Allowed bit, and a-virtual address field (VA, and
optionally CX) as shown in Figure 3. The contents of the
virtual address field, together with low order address bits
used to address the cache tag and data arrays, uniquely
identify the cache block within the total virtual address
space of (A+C) bits. That is, the tag virtual address field
must contain ((A+C) = (M+N)) virtual address bits.

Cache "Hit" logic 25 compares virtual access addresses
with the contents of the virtuai address cache tag address
field. Within the access address, the lowest order M bits
address bytes within a block; the next lowest N bits address
a block within the cache; and the remaining ((a+C) =~ (M+N))
bits compare with the tag virtual address field, as part of
the cache "hit" logic.

The cache "hit" logic must identify, for systems with a
shared operating system, accesses to user instructions and
data, and to supervisor instructions and data. A "hit®
definition which catisfies these requirements is illustrated
in Figure 2a which comprises comparators 20, END gate 22, OR
gate 24 and AND gate 26.

MMU 27, which translates addresses within the virtual
space into a physical address, is another required element.
MMU 27 is organized on the basis of pages of size (2F)
bytes, which in turn are grouped as segments of size (25)

pages. Addressing within a page requires (P) bits. These

(P) bits are physical address pits which reguire no
translation. The role of MU 27 is to translate the virtual
page address bits ((A+C-P) or (A-P)) into physical page
addresses of (M¥) bits. The conposite physical address is
then (M) page address bits with (P) bits per page.

MU 27 is also the locus for protection checking, i.e.,
comparing the access bus cycle priority with the protection
assigned to the page. To {1lustrate this point, there are
two types of protection that may be assigned to a page
namely, a Supervisor/User access designator and a Write
protect/Write Allowed designator. Although the subject
invention is not limited to such types of protection, given
this page protection, 2 uprotection Violation" can result if
either a "User" priority bus cycle accesses 2 page with
#gupervisor" protection; or {f a "Write" bus cycle accesses

a page with 2 nwrite Protect" designation.

The application of MMU protection checfing through the
MMU is shown in Figure 2c¢ which comprises inverter 28, ARD
gates 30a and 30b, OR gate 34 and AND gate 36. In addition,
wvith a virtual address write back cache, the concept of
protection checking can be extended to cache only CPU cycles
which do not access the MMU. Such cache only protection
logic is shown in Figure 2b conprising inverter 42, AND

gates 44a and 44b, OR gate 46 and AND gate 48.

- 9 -
Also shown in Figure 1 is main memory 31 which is

addressabls within the physical address space; control or

main memory access is through workstation control logic 4o0.

Write back buffer 39 is a reglster containing one block
" of cache data loaded from cache data array 19. Write back
buffer 39 is loaded whenever an existing cache block is to
be displaced. This may be caused by a need to update the
cache block with new contents, or because the block must be
flushed. -In either case, in a ﬁrite back cache, the state
of the cache tags for the existing cache block determine
whether thie block must be written back to memory. If the
tags indicate that the block is valia and modified, as
defined below, then the block contents must be written back
to memory 31 when the cache block is displaced. Write back
buffer 39 temporarily holds such data before it is written

to memery.

Workstation control logic 40 controls the overall
operation of the workstétion elements shown in Figure 1. 1In
the preferred embodiment, control logic 40 is implemented as
several state machines which are shown in Figures 4, 6, 7
and 13 as will be described more fully below in conjunction
with the description of cache f£lush logic 33, portions of
which are alsb, in the preferred embodiment, integrated into

the workstation control logic.

es t1 of Optiona ements of Worksta

- 10 -

Context ID register 32 is an opticnal external address

register which contains further virtual address bits to
identify a virtual context or process. This register,
containing C bits, identifies a total of (2%*C) active user
processes; the total virtual address space is of size

2%% (A+C)

An important component i{n this virtual address space of
2%% (A+C) bits is the address space occupied by the operating
system. The operating systen is common to ﬁll user
processes, and 0 it is assigned to a comnon address space
across all active user processes. That is, thé .(C) context
bits have no meaning in qualifying the addresses of pages
within the operating system. Rather, the operating systen
is assumed to lie within a common, exclusive region at the
top of the (2%*A) bytes of virtual address space for each
active context. No user pages may 1ie within this region.
So the operating system page addresses for two distinct user
processes are identical, while the user pages for the two
processes are distinct. 211 pages within the operating

system are marked as having *"Supervisor" protection.

cache flush logic 33 is alsoc an optional element in 2
workstation. However, cache flush logic 33 is included, and
modifiéa as described in detail below in order to imprbve
the performance of 2 virtual address, write back cache

system. Briefly however, cache flush logic 33 operates as

-1 -

follows. If a range of addresses (a virtual page address,
for example) is to be reassigned, then all instances of
addresses from within this range must be removed, or
wfiushed", from the cache before the new address assignment
can be made. A cache block is "flushed" by invalidating the
valid bit in its taés and writing the block back to memory,
if the block has been modified.

'In addition to CPU 11 as a source of bus cycles, the
workstation may include one or more external Input/Output
(I/0) devices such as DVMA logic 35. These external I/0
devices are capable of issuing bus cycles which parallel the
CcPU in accessing one or more “"Types" of virtual address
spaces. The virtual address from either the CPU 1l or DVMA
logic 35, together with the address in context ID register

32, is referred to as the access address.

Another optional element is data bus buffer 37, which
in the preferred embodiment is implemented as two buffers to
control data flow between a 32 bit bus and a 64 bit bus.
Such buffers are needed when the CPU data bus is 32 bits and
the cache data array data bus is 64 bits.

esc tio emente Unicue to the Invented Workstztion

In the present invention, the definition of a cache
ngit" is modified to take into account the use of a shared
operating system across multiple active user contexts, and

the access priority and page protection. By so doing, an

- 12 -

efficient indication of & protection violation within the

write back virtual addresé cache can be achieved.

specifically, to implement the protection definition

presented above, the following cache "Hit" definition is
utilized.

. A cache wgit" has three requirements:

1) The cache block must be marked as having valid

contents.

2) Ignoring the (¢) context bits, the access virtuzl
address bits (A-(N+M)) must match the corresponding tag
virtual address field bits (A-(N+M)), at thercache
block addressed by the (N) bus access bits.

3) Either the (C) bits of the access context ID must
match the corresponding (C) context bits in the cache
tag virtual address field, or the cache tag Supervisor

protection bit must be set active.

This definition of a cache "Hit" enables cache
protection checking to be applied directly to the virtual
address cache, rather than defined through an MMU check
during cache miss handling. A "Protection Vioclation" on a

cache "Hit" results:

-1) {f the access bus cycle has "User" priority and the

‘cache block has "Supervisor" protection; or

2) ir the access is a Write bus cycle and the cache

block has Write Protection.

An implementation of cache hit detector 25 according to the present

invention is shown in Figure 2a described hereinabove.

The present invention utilizes a set of "Flush"
commands in the Control Space to efficiently implement
virtual address reassignment in a2 virtual address write back

cache.

In general, Flush commands are bus cycles in Control
Space which specify, for each unique type of Flush command,
one or more virtual address fields to be compared with
corresponding virtual address fields in the virtual address
cache tags. "Matching" address fields cause the hardware to
wflush? thg cache block. To "flush" the cache block means

that:

-

1) A matching cache block that is marked as both
wyalid" and "Modiried" is written back to memory. This
requires a cache block "write back" bus cycle to the main
menory. A nyrite back" bus cycle writas.the contents of an
entire cache block into main memory at the appropriate
physical address. As a part of this cycle, the virtual
address_identifying the cache block is translated through
the ﬁku-into a physical memory address. Dufing this
translation, protection chgcking for the cache block is
{nhibited. The address translation through the MMU is

- -

comnleted prior to returning control to the processor at the

conclusion of the flush command.

2) Any matching cache block that is "valid", whether
wModified" or not, is marked as invaliad.

As described, the ®"write back" bus éycle requires the
translation of the cache block virtual address into a
physical address. The concept of the flush command and
nyrite back" bus cycle can also be extended to virtual
address caches which contain both virtual address and
physical address tag fields. If a physical address tag
field is present, no translation is required at the time the
wyrite back" bus cycle to main memor& is performed.

Howéver, the present invention is difected to the use of
virtual address tags to support a virtual address write back

cache.

The flush command as described above applies to a
single cache block. The application of the flush command
can also be extended so that a single flush command
activates hardware whicﬁ checks multiple cache blocks,
flushing those blocks which match the address fields of the
flush command. It is only reguired that the address
translation of the last cache block flushed be concluded
prior to returning control to the processor at the

conclusion of the cqmmand.

- 15. -

Three specitic flush commands are defined below. While
other similar commﬁnds zay be defined, these three are
particularly useful in effectively restricting the scope of
a "Flush" command to a minimal address range. These "Flush"
commands are also effective in iﬁplementing a multiple

context, shared operating system address space.
1. Context Match Flush Command

The Context Match Flush command flushes from the cache
all cache blocks within a specified context which are from
User protected pages. It specifies a context identifier of
(C) bits. The match criteria is to require éirst, that the
cache tags identify the block as having User protection; and
gecond, that the (C) bit field of the Flush command match
the corresponding (C) bit Context identification field of
the tags.

The Context Match Flush command is used to ensure cache
addressing consistency whenever a new active context
replaces an old context in the MMU. The Context Match Flush
must be performed before the old‘context references are
removed from the MMU, since the MMU is required to translate

the cache blocks' virtual addresses.
2.-Page Match Flush Command

The Page Match Flush command flushes from the cache all

cache blocks within a specified page, regardless of the page

-. 16 -

protection. It specifies a page address of (A+C~P) bits.
The match criteria is to require that tirst, the (A—P) bit
field of the Flush command, which identifies a virtual page
address within a Context, match the corresponding (A-P) bits
to 1dentify the virtual page address of a given cache block.
These (A-P) bits may be in the cacﬁé tag virtual address
field or in a combination of both the cache access address
and the cache tag'virtual address field, depending on the

page size and the size of the cache.

The second match criteria is to require that one of the
following tﬁo copditions is met: 1) the cache block's
Supervisor access protection tag is active; or ii) the
context ID register of (C) bits match the cache block's
corresponding Context ID tag field of (C) bits.

The Page Match Flush command is used during page
management to purge all references to a virtual page = with
| either Supervisor or User protection = from the cache. It
must be performed before the MMU is updated to remove the
page, since the MMU is required to translate the cache

blocks! virtual addresses.
3. Segment Match Flush Command

?hf Segment Match Flush command flushes from the cache
all caché blocks within a specified segment, regardless of
the page protection. 1It specifies a segment address of
((r+C)=(P+5)) bits, gince the segment size is (2#%%5) pages.

- 17. -

The match criteria is to reguire that first, the (A-(P+5))
bit field of the Flush command,.wﬁich identifies a segment
within a Context, match the corresponding (A-(P+S)) bits
identifying a segment for a given cache block. These (A-
(P+5)) bits may be in the cache tag virtual address field or
in a combination of both the cache access address and the
cache tag virtual address field, depending on the segment

size, the page size, and the size of the cache.

The second match criteria is to require that one of the
following two conditions is met: i) the cache block's
Supervisor access protection tag is active; or ii) the
context ID register of (C) bits match the cache block's
correspending Context ID tag field of (C) bits.

The Segment Match Flush command is used during page
management to purge all references to a virtual segment -~
with either Supervisor or User protection - from the cache.
It may be required, depernding on the structure of the MMU,
whenever the pages of an entire virtual segment must be
reassigned to a new virtuzl segment. It must be performed
before the MU is updated to remove the segment mapping,
gince the MMU is required to translate the cache blocks'

virtual addresses.
Flush Command Usage

The three "Flush" commands defined above, together with

the respective "match" criteria, are executed only by the

-18 -

operating systen within the Unix kernel. The placement of
£lush commands within the kernel is described within
Appendix A. By proper placement of "Flush" commands within
the kernel, virtual address reassignment for a Unix systen
may-be implemented to support a virtual address write back

cache.

F

The set of flush commands defined above, when uséd in
the Unix kernel as shown in Appendix A, implement a
mechanism to support virtual address reassignment, as
required by a virtual dddress cache, for a Unix system with
multiple active contexts and an operating system shared
across those contexts for workstations having either write

through or write back caches.

The flush commands, when used in the Unix kernel as
shown in Appendix A, support a virtual address write back
cache within a Unix system so that the use of such a cache
is transparent to user application programs. No changes are
required to user programs to take advantage of the memory
speed improvements inherent in a virtual address write back

cache.

Additionally, the flush commands, when used in a Unix
kernel as shown in Appendix A, support a virtual address
write back cache implementation which contains only a
virtual address taé field for block identification, not a
physical address tag field. Avoiding the addition of a

' - 19 -
physical address tag field minimizes the number of cache
Vtags required for the virtual address write back cache. A
write back cache requires that at some point, any cache
block which hae been modified must be written back into main
memory. This "write back" operation may take place either
when the cache block is replaced by new block contents (the
normal block replacemenp on a cache "miss"), or when the
cache block is flushed prior to reassigning a range of

virtual addresses containing this cache block.

If the cache tags contain no physical address field,

then the virtual address tags must be translafed into a
physical address before the cache block may be written into
memory. In the case of cache flushes, this implies that all
address translations of cache block Qirtual address fields
which result from a flush match must be completed prior to
the operating system's réassignment of the virtual address
range within the MMU. Two features of the invention are in

part responsible for ensuring that this requirement is met:

1) first, that the flush command regquires the
completion of the cache block virtual address translation

before control is returned to the processor;

2) and second, that the flush commands are structured
in the kxernel, as shown in Appendix A, at strategic
locations which guarantee the flushing of all modified cache

- 20 -

blocks prior to the reassignment of the virtual address

range.

The set of three flush commands defined above, together
with their respective "match" criteria, constitute an
efficient virtual address reassignment mechanism when placed
4n the Unix kernel as shown in Appendix A. The mechanism is
efficient in that it optimizes flush performance for the
virtual address write back cache for the three cases of
virtual address reassignment required by the operating

system:

1) whenever an existing active context is being

replaced by a2 new context;

2) whenever MMU limitations require the reassignment of

a currently mapped segment to a new segment; and

. 3) whenever a physical page in memory is to be

c

reassigned to a new virtual address.

The three flush commands are defined, together with the
£lush match criteria, to specifically cover each of these
cases. Flush comnands are issued by the kernel by starting
at a base block address, and then incrementing block
addresses so as to check every block within a fixed address
range. - The flush commands as defined are efficient in

address reassignment for two primary reasons:

1) The flush match criteria restrict the number of
blocks flushed to be only those blocks which require
" flushing within the flush address range. Other extraneous
addresses, outside the flush range, are checked but are not .

£lushed.

2) For each of the three cases requiring address
flushing, the defined flush commands allow the cache £o be
checked with a single pass through the appropriate cache
block address range. For example, fo flush a segment, every
page within the segment must be flushed. If a segment flush
were not implemented, then multiple passes of page flush
commands with varying page addresses might be required to
complete the segment flush. .

The preferred embodiment of the virtual address cache
for the address path is shown in Figure 3 and for the data
path is shown in Figure 5. Flush control logic in the
preferred embodiment is implemented as showi in Figures 11,
. 12, the state machine of Figure 13 ;nd tining diagram of
Figure 14. A best case timing diagram for writes is shown
in Figure 8 and for reads is shown in Figure 9.

In addition to components previously discussed with
reference to Figure 1, Figure 3 includes virtual address
register (VAR) 54 which stores the current virtual address.
The elements of the invention appear in Figure 3 are cache

flush logic 33, the Protection bits (P) in the cache tag

array 23, and the rflush match logic 24 which is part of cache hit

detect log 25.

~ Also shown in Figure 5 is data register 61 which stores
data to be written to or which has been read from memory 31

or cache data array 19.

Iﬁ Figures 2, 3, 5, 11 and 12, to avoid unnecessarily
cluttering the Figures, not all control lines are shown.
However, the control lines necessary for proper operation of
the invention can be ascertained from the flow chart of the
st;te'nachines shown in Figures 4, 6, 7 and 13, and tining
diagrams shown in Figures 8-10 and 14.

In the flow charts, the following abbreviations are
utilized:

| MUX - multiplexor 45
Sel - select
VA = virtual address
RA .- real address

OE

cutput enable

Ack acknowledge
Cache Hit? - bDid cache "hit" logic 25

detect a cache hit? (Fig 2a)

Cache Protect Violation ?

Memory Busy?

MMU Protect Viol?

RAR

CLK

Adr

Mem Adr Strobe

VAR

Menm Adr Ack?

Mem Data Strobe 07

Mem Data Ack 02

- 23 -

pid control logic 40 detect a
detect a cache protect violation?
(Fig 2b)

Has Memory Bgsy been asserted?
pid control logic 40 detect a
¥MU protect vioclation?

(Fig 2c¢)

real address register 51

clock

address

memory 31 address strobe

virtual address register 54

Has a memory address acknowledge
been asserted by memory 317

Has memory data strobe 0 been
asserted?

Has memory data ackno&ledge 0 been

asserted?

- 2 -
Mem Data Strobe 17 <~ Has memory data strobe 1 been
‘asserted?
Mem Data Ack 1? = Has memory data acknowledge 1 been
asserted?

‘c1k Write Back Buffer

clock write back buffer 39

CPU Read Cycle? = Is CPU 11 in a read cycle

Cik Data Reg clock data register 61
valid and Modified Write - Has control logic 40 detected .

Back Data? valid bit(Vv) and Modified bit (M)

start Write Back Cycle? Has control logic 40 asserted

start Write Back Cycle

Similar abbreviations are used in the timing diagrams
of Figures 8-10 and 14.

The address state machine shown in Figures 4a and éb
defines certain of the controls related to the address
haﬁdlingrportion of cache 19. The cache tags 23 are written
as Valid during state (w), follewing a successful transfer
of all block data from memory 31. The invention is
inteériied through. the inclusion of the cache Protection
violation test following state (). If a Protection

vioclation is found on a cache Hit, then the CPU bus cycle is

- 25 -

. germinated immediately with a Bus Error response to the CFU.
The MMU Protection violation on the translated address is

performed later, following state (9).

The data state machine shown in Figures 6a = 6d define
certain controls related to the data transfer portion of the
cache. Again, the invention is supported by including a
test for the Cache Protection Violation following state (c).
The MMU Protection Violation test on the translated address

is similarly performed in state (g).

The write back state machine shown in Figure 7 defines
the control of the Write Back bus éycle to memory. This
cycle may be performed in parallel with CPU cache accesses,
gince both the Write Back controls and data path are
indgpendent of the cache access cogtrols and data path. As
described below, the "Memory Busy" signal causes the address
and data state machines to wait until a previous Write Back

cycle has completed.

The write cache miss timing diagram shown in Figure 8
defines the overall timing of a CPU write bus cycle to
memory which misses the cache. The cache Hit and

Protection Check occur in cycle (c) in this diagram.

A part of the miss handling sequence includes the
loading of the current cache block which is being replaced

-% -

into write back buffer 3% in cycles (i) and (n). The
translated addreés for the current cache block is also
joaded into real address register 51 in cycle (o). If the
current cache block is both Valid and Modified from a
previous CPU (or DVMA) write cycle, then this cache block
will be writtten backrto memory 31 through a Write Back bus
cycle, described in both the Memory pata Bus timing and the
Write Back state machine, Figures 10 and 7 respectively.

The CPU write data is merged with block data
returned from memory on the first data transfer of a
Block Read memory bus cycle. During cycles (q) through
(u), the CPU Write Output Enable controlling buffers 37
will be active for only those bytes to be written by
the CPU, while the Data Register Output Enable
controlling data register 61 will be active for allr
other bytes. During the second data transfer, cycle
(w); the Data Register Output Enables for all bytes
will be active. |

The read cache miss timing diagram shown in Figure 9
defines the overall timing of a CPU read bus cycle to a
cacheable page in memory which misses the cache. The cache
Hit and Protection Check occur in cycle (c) in this

diagranm.

A part of the miss handling seguence includes the
loading of the current cache block which is being replaced

- 27 -

1hto write back buffer 39 in cycles (1) and (m). The
translated address for the current cache block is also
loaded into real address register 51 in cycle (o). If the
current cache block is both Valid and Modified from a
previous CPU (or pvMA) write cycle, then this cache block
will be writtten back to memery 31 through a Write Back bus
cycle, described in both the Hemory Data Bus Timing and the
Write Back State ¥achine, Figures 10z and b and 7 respectively.

pata is read to the CFU by gimultaneously bypassing the-
data to the CPU through buffers 37 enabled by control signal
CPU Read Output Enable, active in states (g) through (u),
and updating the cache, in_state (5). The memory is designed
to always return the "missing data" on the first 64 bit
traﬁsfer, of a Block Read memory bus cycle and the alternate
64 bits on the subsequent transfer. After the CPU read bus
cycle data is returned, the CPU may run internal cycles
while the cache 1s being updated with the second data

transfer from memory.

The Memory Data Bus timing shown in Figure 10a and 10b.
shows the timing of Block Read and Write Back bus cycles.
since the cache block size is 128 bits, each cache block
update requires two data transfers. As indicated above the
€4 bits_containing the data addressed by CFU 11 are always
returne& on the first transfer for Block Read bus cycles.

The "Memory Busy" contrel siénal active during the Write

- 28 -

Back cycle is used to i{nhibit the start of the next cache

miss cycle until the previous Write Back cycle can complete.

cache flush logic 33 shown in Figure 11 outlines the
control and data path of the flush controller. This
controller implements the cache f1lush operations of the
présent invention for a system with multiple active user
contexts and a shared operating system. Cache flush logic
comprises AND gate 48, f1lip-flops 49, flush address register
52, incrementer 50, AND gates 55 and OR gate 58.

Three flush match signals are used by cache flush logic
33 to determine whether the addressed cache block is to be
f#lushed. Corresponding to the three f£lush match signals are
three flush commands issued by the CPU. A Flush Match is

said to occur if:

(Context Flush Command.) AND (Context Flush Match Signal)
OR (Segment Flush Command) AND (Segment Flush Match Signal)
OR (Page Flush Command) AND (Page Flush ﬁatch Signal).
An implementation of such flush match logic is showvn in
FIgqure 12 comprising comparators 60, AND gate 62, Inverter
64, OR gate 66 and AND gates €8.

Flush control logic 33 involves two distinct phases,
which are shown as separate sequences in the flush state
machine: Figure 13. The first phase involves decoding a
Flush_command from the CPU and optaining bus mastership for
the riush Control State Machine. The Flush command is

- 29 -

i{ssued by the CPU in Control Space (identified by Function
Code bits FC(2:0)=0x3). Within Control Space, the four high
order address bits A(31:28)=0xA indicate the Flush commznd.
The address field A(27:0) for the command correspond to the
28 bit virtual address field for data accesses. The Flush
command data bits D(1:0) encode the type of flush., After
the Flush command is decoded, the address field A(27:9) is
jatched together with the type of f£lush. A Bus Request
signal is ﬁsserted to the CPU to obtain bus mastership.

The secoend phase involves perfornming DVMA cycles to
test and flush, if necessary, 32 cache blocks using cache
f£iush logic 33 as a DVMA device. This DVMA device addresses
cache blocks with the virtual zddress A(27:9) éaptured trom
the flush command, plus address bits A(8:4) from an internal
5 bit flush address counter 50. Each cache block may be
checked in three cycles; with the three Flush Match signals
gated by the Flush command latches 55 to determine a "Flush
Match” condition. A npFlush Match® results in the cache
block being {nvalidated and a Modified block being written
to memory through the Write Back state machine. Following
the conclusion of the 32 block check, bus mastership may be
returned to the CPU.

Note that as a DVMA device, the cache flush loglc 33
competes with other DVMA devices for bus ownership. O0f the
possible three DVMA devices, Ethernet (not shown) has the

“highest priority; the cache flush logic 33 second priority:

- 30 -

and VHEbus devices third; The flush control state machiﬁe
does not include a complete arbitration description for all

DVMA devices, but rather only logic related to the Flush.

The cache flush state machine shown in Figure 13
comprises four interacting machines which control the flush
cperaiion. These four machines control the decode of the
CPU Flush command and its application to 32 cache blocks.

The four machines are described below::

1) The Command Decode machine decodes the Flush command
executed by the CFU. Upon deceding a Flush command,
the flush virtual address A(27:9) and the type of Flush
command are latched. The pachine asserts a Bus Request
£o the CPU to obtain bus mastership for the flush state
machine. It also asserts a Flush Request signal to
activate the DVMA machine, below.

2) The DVMA machine obtains bus mastership from the
crU, as indicated by the CPU's aésertiné Bus Grant, and
holds mastership by asserting Bus Grant Acknowledge.

It arbitrates the Flush with the higher priority
Ethernet reguests.

3) The Flush Compare machine initializes its address
counter A(8:4) to O with the Flush Request signal. It
céktinues to ‘check cache blocks as long as Flush Go is
asserted by the DVMA machine. When Flush Go is

deasserted, a Flush Done signal is set at the

-3 -

conclusion of the current block flush, which signals
the DVMA machine to grant mastership to the Etyernet
handler. If a Flush Match is detected, the Flush Block
Réquest gignal is asserted to activate the Flush Match
machine. At the conclusion of the Flush Match machine,
thies machine returns a Write Back Request signal to
complete the machiné's handling of the current cache

block.

4) The Flush Match machine loads the cache data into
. write back buffer 39, clocks the translated cache

address in real address register 51, and invalidates
the cache tags 33. Note that no protection check is
performed. At the conclusion, the Write Back Reguest
signal is asserted. If the cache block is marked as
Modifiéd, the Start Write Back Cycle signal is also
asserted to sctivate the write back state machine shown

in Figure 7.

Figure 14 shows cache flush timing and describes the
timing of a block flush in the event of a "Flush Match".
This condition is tested in state (c). The block is
inva}idated in state (k). If the'block gatisfies the "Flush
Match" and is Modified, then it must be written back to
memory. A “Start Write Back Cycle" signal is asserted in

state (s) to begin the Write Back state machine.

- %2 -
The kernel changes needed to support the virtual
address write back cache of the present invention for the

Unix operating system are shown in Appendix A.

Kernel Design Document for virtual Address Cache

. An Invariant Condition

To guarantee the correctness of the Virtual Address Cache (called
cache in short), we keep the following invariant condition true at all
tixes. ’ ’

If an entry is in the cache, its mapping from wvirtual
address to physical address must be corzect.

This is a sufficient condition for the correctness of the system
because of the following:)
While the mapping is correct, reading a byte/word from the
cache is the same as reading it £rom the physical memory through MU
with the cache being turned off. Thus, reading is coxzect.
The byte/word written to the cache will be written to” the corresponding
physical memory when this byte/wozd is fiushed. So, as long as we keep
the mapping correct when a byte/word in the cache is flushed, writing
to the cache is the same as writing to the physical memory through MU
with the cache being turned off. Thus, wziting is correct.

It is clear that the above invaziant condition can be kept
4¢ we flush the affected cache lines befors a virtual to physical
mapping becomes incorrect.

2I. Cache Flushing Strategies ,
1) Since cache Ziushing is time=-consuming, we avoid cache

£lushing if we can. On a SUN-3/200 machine, a page flush takes
no less than 50 microseconds and a segment ©oz. context flush
takes no less than 400 microseconds, excluding the ovezhead

of software instructions.

2) For doubly mapped virtual addresses, if both virtual addressses
can be accessed simultanecusly, they have to be arranged to
mateh in their low oxder 17 bits, i.e. modulo 128K, as
described in the Sun-3 Architecture Manual. Otherwise, i.e.
if they are accessed one at a time, we consider the
currently used mapping correct and other mappings
dncorzect at this time, That is, the virtual addresses of
other not-currently-used mappings are not in the cache.

3) We ignore the problems of reading /dev/mem bscause
a) access of /dev/mem is not guaranteed to be consistent
even ©n systems without the virtual sddress cache, 2) such
added inconsistence is minimal. (because most of such usages
are for the u areas of acn-running processes and these u pages
are already flushed during context switches), and 3) making
system behaves as the system without cache requires the kernel
turn off the cache of the entire system while /dev/mem is opened.
This means any user process €Gan slow down the entire system
considerably by open /dev/mem.

Iz, e new :outinegs
ahe following routines are added to the kernel:

oo ol

) 1) vac_ctxflush() flushes the cache by contextematch. It flushes
all cache lines whose supervisor bits in the cache tag are ©0f£f AND whose
context 1d’s in cache tags match that of the MU context register,

I.n. it flushes an entirs user context. .vac_ctxflush() is defined in
ol .

EP.S.
2) vac_segflush(segment_number) f£lushes the cache by ssgmente-match.

It flushes all cachs lines whose segment address parts (A<16-27> in gUN-3)

©f the cache tag match "segment_number™ either from a kernel @ddress

space or from the current user’s address space. I.e. it flushes either

a kernel segment or a user segment of the current user context.

vac_segflush() is defined in map.s.

. .3) vac_pageflush(virtual_address) flushes the cache by page-match.
It flushes all cache lines whose Page address parts (A<13-27> in SUN-3)
of the cache tag match the page number part of "virtual address” either
fzom a kernel address apace or from the current user’s address space.
Z.e. it flushes either a Xkeznel Page Or & user page of the current user
context. vac_pageflush() is defined in ;ap.s.

4) vac_flush(virtual_address, nunbexr of bytes) flushes the cache
dines whose page address parts (A<13-27> in 5UN=3) of the cache tags are in
“the ranges of {"virtval address®, "virtual address™ + “aumber_of bytes® - 1},
It Llushes these lines sither from a kernel address space or from the
current usex’s address space. vac_flush() is used either to flush less
than a page, such as from resume(), or to flush a number of contigudus
Pages, such as £rom pageout (). vac_flush() is defined in map.s.

S) vac_flushall() flushes the entire cache. It is used to flush
the entire cache to the physical memory before we dump the physical
mamory from dumpsys(). It may also be used as an debugging teel.
vac_flushall() is defined in vm machdep.c. :

6) vac_disable_kpage (virtual address) turns off the caching of
& kernel page starting at “"virtual address™. It i3 used by the device
driver mmap() xoutine to enforce the consistency ©f sharing a keznel page
with user pages. vac_disable_kpage() is defined in vm_machdsp.c.

: 7) vac_snable_kpage (virtual address) turns on the caching of a
kernel page starting at "v.i.:tual_ndann'. If a device driver smap
Toutine knows that no more user pages are sharing a kernel page, it
calls vac_enable_kpage() to allow the caching of this kernsl page.

vac_snable_kpage() is defined in vim_machdep.c

IV. Where and how do we £lush the cache?
- 1) We call vac_ctxflush() from ctxfree() in vm_machdep.c.
{ Ctxfree() is called when a context is freed from U
and hence the mapping of the whole context is not wvalid,
Ctxfree () is called from ctxalloc() when the oldest
context is bumped out of MNU, from swapout () when a
process is swapped out, from exit() when a process
is terminated, and from Ptexpand() when this context
- is given up before its pte’s are sxpanded. }

2) We call vac_ctxflush() f£rom vrelvm() in vm TOC.C.
{ Vrelvm() releases the vm resources assoclated with this
process. This will cause a2ll virtual and physical pages of
the process be released and thus invalidate. all virtual to
pPhysical mappings of the current context. }

3) We call vac_ctxflush() from expand() in wm L proc.e.
{ This happens when a process is shrinking and it gives back
scme virtual memory. }

4) We call vac_ctxflush() from ovadvise() in kern_mman.c.
{ When the parameter to vadvise() is VA _YLUSH, we invalidate
all page table entries of the current process. A context f£lush
is more efficient than a sumber of page flushes.)

S) ¥We call vac_segflush() from pmegrelease () in vm machdep.c
{ Pmeqrelease() is called when a pmeq is taken away.

.5

Pmegrelease () can be called by either pmegalloc() or
pregallocres().) .

€) We call vac_segflush() from pmegload() in wm machdep.c.

. { A segment in the hole is to be freed and set to SEGINV
in the segment map. } . : :)

7) ¥We call vac pageflush() f£rom pageout() in vm page.c.’

{ This is when a page is mazked invalid by the pageout
demon. }

8) We call vac_pageflush() f£rom ovadvise() in kern_mman.c.

{ This is when ovadvise() marks a page invalid.)
9) ¥We call vac Ipaqeﬂ.uah() £rom mapout () ©of vm machdep.c.
{ Mapout () is called to release a mapping £rom kernel
virtual address to physical address.
Mapout () is called from:
a) physstrat () when mapping from kernel virtual address to
user buffer address is released. -
b) wmemfree ()
€) cleanup()
" d) ptexpand() to release old page tables.) .

10) We call vac_pageflush() from pagemove() of vm machdep.c.

{ In pagemove() we call vac_pageflush(to) because the mapping
of "to" to its physical page is not valid after setpgmap() call.
We call vac_pageflush(from) because the mapping of “from"™

to the physical page is not valid after the second

setpgmap () call. }

11) We call vac_pageflush() from nbrelse() of sundev/mb.c.

{ This is when setpgmap(addr, 0) is called to invalidate
the mapping from DVMA virtual addresses to physical
addresses.)}

12) We call vac_flush() from resume() in vax.s.

{ At the end of context switch time, the mapping of the
outgoing process’s u becomes invalid. We should flush

the outgoing process’s u before its u mapping becomes invalid.
Since context switch happens very frequent, we only flushes
the user struct and the kernel stack , instead of flushing
the entire u page. (Resume() is also called from procdup()
to force an update of u.)) .

13) We call vac_£lush() from smmap(), munmap(), and munmapfd()
in kern mman.c.

{ Virtual to physical mappings of some pages are changed.)

14) We call vac_flushall() from dumpsys() of mjchdep.c to
flush out the content of the entire vac to physical memory
in order to dump out the physical memory.

15) There are a number of places where virtual-to-physical
mappings are invalidated implicitly, e.g. the pme/pte mapping
is still valid but this mapping is never used again. We
must £lush the associated portion of cache, otherwise, when
a new mapping is set up from this virtual address, the
cache may contain some lines of the previous mapping.

a) We call vac_pageflush() from mbsetup() of sundev/mb.c.

{ In mbsetup(), the mapping from pte’s to physical
pages is temporarily (until mbrelase) zreplaced by the
mapping from DVMA virtual addresses.)

b) We call vac_pageflush() from dumpsys() of machdep.c.

* 1 The last page in the DVMA region is used to map to one
physical page at a time to dump out the physical memory.
Such a mapping is invalid each time after (*dumper)-()
is called.)

C) We call vac_pageflush() from physstrat() of machdep.c.

{ In physstrat(), "user™ pages are doubly mapped to

the kernel space. We flush these user pages when we set

up the associasted kernel pages. later, these mappings from
kernel virtual pages to physical pages are invalidated by
mapout (), there these kernel virtual addresses are

£lushed. }

d) We call vac pageflush() from copvsea({) of machdep.c.

e)

£)

g)

h)

i)

3)

k)

1)

{ In copyseg(), the mapping from virtual address CADDR1
1}:0 Physical address "pgno™ becomes invalid after copyin().

We call vac_pageflush() from mmrw() of sun3/mem.c.

{ In mmrw(), the mapping from "vmmap® to a physical address
is set up to copy physical data to the user space. This
mapping becomes invalid after uicmove().)

We call vac_pageflush() from pagein() in vm_pags.c.

{ The mapping from CADDR1 to physical page pf+i bscomes
invalid after bzero().)

We call vac_flush() from procdup() of wvm proc.c

to flush the kexrnel stack and u_* parts of forkutl.

{ In procdup(), forkutl maps to the physical u page

of the child process through vgetu(). -

Since the mapping from forkutl to the physical u page

of the child becomes invalid when the parent returns from
;;:ocdup(). forkutl is flushed before procdup() zetuzns.

We call vac_flush() from newproc() of kern_fork.c

to flush the u_* part of vfutl,

{ In newproc(), in the case of vfork, vfutl maps to
the physical page of the child through uaccess().

This mapping is not used anymore after vpassvm()

is called.)

We call vac_flush() £rom swapout() of vm swap.c

to flush the u_* part of utl,

{ In swapout(), mapping from utl, which is either
xswaputl or xswap2utl, to the physical u page of proc p
is invalid after proc p is swapped out. }

We call vac_flush() £from swapin() of vm _swap.c

to flush the u_* part of utl.

{ In swapin(), mapping from swaputl to the physical

u page of proc p becomes invalid before we return from
swapin(). }

We call vac_pageflush() from swap() of vm_swp.c.

{ The mapping from i-~th virtual page of process 2 to
the physical page is not valid anymore.)

We call vac_flush() from pageocut() of vm page.c

- to flush the u_* part of pushutl.

m)

n)

o)

P)

Q)

{ In pageout (), the mapping from pushutl to the physical
u page of rp becomes invalid after the vtod() call. }

We call vac_flush() from pageout() of vm page.c to

£lush the cluster of pages to be paged out.

{ Swap() maps the physical pages of these pages to virtual
addresses of procl[2] before it calls physstrat(). Thus,
the mappings from the outgoing virtual pages te physical
pages are to be replaced by those of proc[2] virtual pages
to these physical pages. Therefore, we flush these pages
in pageocut () befoxe swap() is called. }

We call vac Ipugef.lush() from kmcopy () of vm pt.c.

{ kmcopy () is called from ptexpand() to "copy" pte’s
from old pte’s to new pte’s. It “"copies™ by mapin()

new pte’s to the physical pages of old pte’s. We flush
old pte’s before new pte’s are mapped-in. }

We call vac_pageflush() from distpte() of vm y pt.c.

{ distpte() is called when the pte entries of a shared
text pte is changed. For example, pageout() changes its
valid bit to invalid. Since other processes sharing this
text page may have this text page in the cache, we £flush
out this page for all sharing processes. } :

We call vac_flush() from vrelpt() of vm pt.c to f£lush

the pte’s of the cutgoing process.

{ In vrelpt(), the pages that contains pte’s are released
but mapout () is not called.)

We call vac_pageflush() from wlok_unlock of
sunwindowdev/winlock.c. -

3.
.

' -

{ In wlok_unlock(), mapping from wlock=>lok user
to the physical u page of the current process becomes
dnvalid if wlock=> lok user is nonzero. }

r) We call vac_pageflush() from wlok_done() of
sunwindowdev/winlock.6. .
{ In wlok_done(), the mapping from wlock->lok user
to the physical u page becomes invalid.)

16) When protection bits are changed and the affected portion

of the cache should be flushed. BSuch places are:

a) in chgprot () of vm machdep.c, we change the protection
of text pages. We call vac_pageflush() there to avoid
having any entry in the cache with different protection
with the MMU.

b) in settproc() of vm machdep.c we change the protection
bits of text pages. We call vac_f£lush() to flush
the text part of the process. (settprot() is called
from vm_text.c.) '

¢) in'vac_disable_kpage() of vm machdep.c we call
vac_pageflush(} to flush all cache lines of this page
before making the page non<cached.

V. Why don’t we flush the cache here?

The following 18 a 1ist of places where the mapping from
virtual addresses to physical addresses are changed but the cache
“4s not flushed. We describe the reasons why cache flushings
are not necessary.

1) In ctxpass() of vm machdep.c, the virtual to physical
mapping of proc p is changed to that of proc q. But, g
gets whatever in the cache previous belong to p, 80 no
need to flush cache for p.

{ ctxpass() is called by vpasspt() to pass the context of p
to q. wvpasspt() is called by vpassvm() which is called before
and after vfork(). vpassvm() passes the vm resources and

the MMU context of p to q. When vpassvm() returns, the
virtual to physical mapping for the context is not changed.
Since the context is alsc passed, the affected mappings in
the cache are still correct, except that now they belong to
proc q instead of proc p. Therefore, there 4s no need to
flush the cache either in ctxpass() or in vpassvm(). }

2) In vpasspt(), the virtual-to-physical mappings of processes
wup" and "ugq® are not changed when vpasspt () returns.

(Or more precisely, the mappings are changel back to
the same as the mappings when vpasspt() is entered).

3) In swap() of vm _swp.c, if "flag" indicates a dirty page
push, the mapping of addr to physical address is replaced
by that of the i-th page of procl2). Since dirty pages
have been flushed in pageout (), there is no need to flush
waddr® again in swap().

4) In pmegload() of vm machdep.c, when *pmxp (ctx Ipmeg[aeq])
is zero and {need, we invalidate pmeg[seg]. Since we did
either a context flush (in ctxfree()) or a segment flush
(in pmegrelease()) when we set ctx glseg] to zero,
there is no need to do a segment flush here.

{ There are only two places where we set (struct context *)=>
. etx _pmeg(seg] to zero. One is in pmegrelease() where we

vac_segflush(seg) and setsegmap (seg, SEGINV).

The other place is in ctxfree() where we call vac_ctxflush()

but don’t setsegmap(seg, SEGINV).

Hence (struct context ¥*)e=>ctx _pmeq[seq] is zero but MU

segmap is not SEGINV in this case. The reason that

when *pmxp == 0 and !need in pmegload() needs a

setsegmap (seg, SEGINV) is to make MU segmap to be SEGINV.

Since we have done a vac_ctxflush() in ctxfree(), this

segment should not have any left-over in the cache.)

5) In ctxalloc() of vm machdep.c, setsegmap() is called
to invalidate all mappings from the segment map. Since

€)

ctxfres () is called earlier to flush the entire

context, no lines associated with these segments

c::d ixd: the cache. Therefore, segment flushes are not

ne {1+ 99 .

In ptesync() of vm machdep.c, ptesync() calls pmegunload ()
which ox’s the mod bits to pte’s and reset the mod bits of

the pmeg. When we check if another page in this pmeg is dirty,

" we check its pte which remembers the mod bit was on.

7)

8)

9)

¥e don’t need to f£lush the segment because pmegunload turns
off the mod bits in this pmeg.

unloadpgmap () of map.s saves the referenced and modified
bits from MMU pme to soft pte and clears these bits in the
pme. Since when we do pageout or swapout, it is the soft
pte that we check to decide 3f a page is dirty, there is no
need to flush the cache when the referenced and modified

bits of a pme is changed. o

In pmegunload() of vm machdep.c, we call setsegmap (CSEG,
pmp-pmeg) , unloadpgmap(v, pte, num), and setsegmap (CSEG,
SEGINV). In unloadpgmap(), segment map of CSEG is used to
access the pme’s in this segment. Virtual address of

segment CSEG is not accessed, thus segment CSEG doesn’t

have anything in the cache. Therefore, there is no need

to call vac_segflush (CSEG) before we invalidate this

segment.

In mapout () of vm machdep.c, when we invalidate a segment

by calling setsegmap ((u_int)ptds (btop (vaddr)), (u_char)SEGINV),
we have done pageflushes on all previously used pages in this
segment. Therefore, there is no need to do a segment flush.

- 29 -
CLAIMS

1. In & workstation utilizing a virtual address write back
cache including a central processor having an address bus and a
data bus, a cache data array, having a plurality of cache blocks,
a cache tag array having an array element for each of said cache
blocks} each of said array elements having a valid bit, a Modified
bit and a supervisor Protect bit, a write back buffer, a memory
management unit, a main memory, a cache hit detector, a context
identification vegister, flush control logic and workstation
control logic, the improvement wherein said cache hit detector is
modified to detect cache hits in a shared operating system across
multible active user contexts, and wherein said workstation further

comprises:

a) means for reassigning virtual addresses across multiple

user contexts;

b) means for completing a cache block flush operation before
contrel is returned to the central processor upon the issuance of a
flush command, and in each said flush operation, flushing all cache
blocks having their associated cache tag array.element valid bit

set, prior to reassignment of the virtual addresses.

2. The improvement defined by Claim 1 wherein said modified

cache hit detector comprises:

a) means for detecting cache blocks having their corresponding

cache tag array element Valid bit set;

- Lo -

b) first means for determining whether for the cache block
being addressed by the central processor, said cache block address
having a plurality of access virtual address bits, sald access
virtual address bits match virtual address field bits in a

corresponding cache tag array element;

c) second means for determining whether i) for the cache block
being addressed by the central processor, said sald cache block
address having a plurality of access context bits, said acéess
context bits match context bits in the corresponding cache tag
array»element: and ii) the Supervisor Protect bit is set in the

corresponding cache tag array eleument.

3. The improvement defined by Claim 1 wherein said

reassigning means comprises:

a2 set of flush commands disposed within the shared operating
system, said flush commands being a context match flush command, a

page match flush command, and a segment match flush command.

k. The improvement defined by Claim 1 wherein said flush

operation completing means comprises:

a) means for decoding said flush command, said flush command
b;ing one of a context match flush cemmand, page match flush

command and segment match flush command;

b) flush address register means for storing an address

included in said decoded flush command;

— bl -
c¢) incrementing means for incrementing predetermined address

bits for combining with the address bits in said flush address

register means;

d) flush match means coupled to said decoding means for

generatiﬂg a flush match logic signal,

whereby the issuance of a flush command causes all cache
blocks having their associated Valid bit set to be flushed prior to

reassignment of the virtual addresses.

5. The impfovement defined by Claim 2 wherein said detecting
means comprises & first AND gate having a first input coupled to
the Valid bit of the array element in the cache tag array
correspending to the cache block being addressed by the central

processor.

6. The improvement defined by Claim 5 wherein said first
deternining means comprises a first comparator coupled to said
address bus and said cache tag array, the output of said first

comparator coupled to a second input of said first AND gate.

7. The improvement defined by Claimf wherein said second
determining means comprises a second comparator coupled to said
context identification register and said cache tag array, the
output of said second comparator coupled to a first input of an XOR
gate, a second input of said XOR gate coupled to the Supervisor
Protect bit in the cache tég array element corresponding to the

cache bloék addressed by the central processor.

8. The improvement defined by Claim 7 whereih gaid modified

cache hit detector further comprises:

a) a second AND gate having one input coupled to the outpﬁt of
gaid XOR gate, 2 aeconé input coupled to the output of said first
AND gate and a third input coupled to the output of a third
comparator whose inputs are coupled to said address bus and the
array element of gaid cache tag array addressed by said central

Processor;

b) a fourth comparator vhose inputs are coupled to saiad
address bus and the array element of said cache tag array addressed
by said central processor, the output of said fourth comparator

being a third input of said f£irst AND gate.

9. The improvement defined by Claim L wherein said
decoding means comprises an AND gate coupled to said central
processor and first, gecond and third f£lip-flops having their clock
inputs coupled to the outﬁﬁt of said AND gate and their D-inputs
coupled to said data bus.

10, The improvement defined by Claim 2 vherein said
flush address register means comprises a register which loads
predetermined bits from the address bus when the output of said AND
gate is set.

1. The improvement defined by Claim 9 wherein sald
f£lush match means comprises first, gsecond and third AND gates, each

having one input coupled to the Q outputs of said first, second and

- -
third £1{p-ficps respactiﬁfly and a second input coupled to means
for generating a sagment match signal, a page match signal and a
context match signal, an OR gate having first, second and thira
inputs coupled respectively to the outputs of said first, secona
and third AND gates, whereby the output of sald OR gate is set when
" ona of sald segment, pags and context match signals are set and a

corresponding segment, page and segment command has been decoded.

12. A workstation substantially as herein described with reference to

and as illustfateé in the accompanying drawings.

e e I wal &l > < v i Ii nt Office,
Published 1988 at The Patent Office Ste E'HOUSE. 6671 High Holborn. Londor WC1R 4TP. F u:t.l. 1er copies may be obtained fror 'I'hle Patent O
. 8 s By, h, St Mary C.ray Orpington, Kent BRS5 3RD. Printed by Multiplex techniques 1td, St Mary Cray, Kent. Con. 1/87.

ale anch, . 3)

