(12) UK Patent Application (19) GB (11) 2 303 145 (13) A (43) Date of A Publication 12.02.1997 (21) Application No 9611323.8 (22) Date of Filing 31.05.1996 (30) Priority Data (31) 9513956 (32) 08.07.1995 (33) **GB** (71) Applicant(s) The Procter & Gamble Company (Incorporated in USA - Ohio) One Procter & Gamble Plaza, Cincinnati, Ohio 45202, **United States of America** (72) Inventor(s) lan Martin Dodd **Christiaan Arthur Jacques Kamiel Thoen** Michael Alan John Moss (74) Agent and/or Address for Service **Tony Nicholas Gibson** Procter & Gamble Limited P O Box Forest Hall No 2, Whitley Road, Longbenton. **NEWCASTLE UPON TYNE, NE12 9TS, United Kingdom** (51) INT CL6 C11D 3/386 // C11D 1/12 1/28 1/38 1/62 3/10 3/12 3/37 3/39 (52) UK CL (Edition O) C5D DHZ D106 D107 D108 D117 D118 D120 D121 D123 D127 D128 D129 D149 D153 D162 D173 D180 (56) Documents Cited GB 2171710 A GB 2168989 A GB 2133028 A US 4239660 A (58) Field of Search UK CL (Edition O) C5D DEB DHC DHD DHE DHZ DJA DJX INT CL⁶ C11D Online: WPI #### (54) Detergent compositions There is provided a detergent composition suitable for use in laundry and dish washing methods (a) a cationic ester surfactant; and (b) a amylolytic enzyme present at a level of from 0.05% to 5.0% by weight of said detergent composition, on a 120KNU/g activity basis. The cationic surfactant is preferably a quaternary ammonium compound where one of the alkyl chains is interrupted by an ester-type linkage. CM1226F #### **Detergent compositions** #### Technical field The present invention relates to detergent compositions containing a cationic ester surfactant and an amylolytic enzyme which are suitable for use in laundry and dish washing methods. #### Background to the invention The satisfactory removal of greasy soils/stains, that is soils/stains having a high proportion of triglycerides or fatty acids, is a challenge faced by the formulator of detergent compositions for use in machine laundry washing methods. Surfactant components have traditionally been employed in detergent products to facilitate the removal of such greasy soils/stains. In particular, surfactant systems comprising cationic esters have been described for use in greasy soil/stain removal. Another known detergent component are amylolytic enzymes. Amylolytic enzymes or amylases are known in the art to contribute to stain/soil removal. For example, EP-B-21,491 discloses detergent compositions containing a nonionic/cationic surfactant mixture and a builder mixture comprising aluminosilicate and polycarboxylate builder. The cationic surfactant may be a cationic ester. Improved particulate and greasy/oily soil removal is described. US-A-4,228,042 discloses biodegradable cationic surfactants, including cationic ester surfactants for use in detergent compositions to provide greasy/oily soil removal. The combination of these cationic surfactants with nonionic surfactants in compositions designed for particulate soil removal is also described. US-A-4,260,529 discloses laundry detergent compositions having a pH of no greater than 11 containing cationic ester surfactant and nonionic surfactant at defined weight ratios. The removal of greasy soils/ stains from older, frequently washed fabric, especially cotton fabric, can be especially problematic. These fabrics tend to suffer from residual grease, deposited on the (cotton) fibres of the fabric, which can give the fabric a dingy, yellow appearance. The Applicants have now found that this problem can be ameliorated by the inclusion of amylolytic enzymes in a detergent composition, containing cationic ester surfactants. Detergent compositions employing both cationic ester surfactant and amylolytic enzyme provide a surprisingly better cleaning performance (especially by removal of residual grease, causing the 'dingy' appearance of the fabric) than that of detergent compositions employing either of the two components individually. The cleaning benefits are especially apparent after frequent washing of the fabrics. Two mechanisms are believed to be responsible for these benefits. Firstly, the greasy stain/soil removal from the stained fabric surface by the cationic ester surfactant can facilitate the amylolytic degradation of polysaccharide and starch material, comprised in stains/soils on the fabric, whereby an improved cleaning performance is achieved. Secondly, it is believed that the cationic ester surfactant interacts with free surfactant monomers present in the wash solution, especially with anionic surfactant monomers. Thereby, the amount of free surfactant monomers is reduced. Free surfactant monomers are known to inhibit the enzyme activity. Thus, reduction of the free surfactant monomer concentration in the wash solution by the cationic ester surfactant prevents the inhibition of the activity of the amylolytic enzymes. Thereby, the amylolytic enzyme performance will be assisted. All documents cited in the present description are, in relevant part, incorporated herein by reference. #### Summary of the Invention The detergent composition of the present invention comprises - (a) a cationic ester surfactant; and - (b) an amylolytic enzyme present at a level of from 0.05% to 5.0% by weight of said detergent composition, on a 120 KNU/g activity basis. In a preferred aspect, the cationic ester surfactant is selected from those having the formula: $$R_{1} - \left[\left[\left[\frac{R_{5}}{(CH)_{n}O} \right]_{b} \right]_{a} - (X)_{u} - (CH_{2})_{m} - (Y)_{v} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{a}} \right]_{c} + \frac{R_{2$$ wherein R₁ is a C₅-C₃₁ linear or branched alkyl, alkenyl or alkaryl chain or M⁻. N⁺(R₆R₇R₈)(CH₂)_s; X and Y, independently, are selected from the group consisting of COO, OCO, OCO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group; R₂, R₃, R₄, R₆, R₇, and R₈ are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxyalkenyl and alkaryl groups having from 1 to 4 carbon atoms; and R₅ is independently H or a C₁-C₃ alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter anion. The other essential component of the detergent composition of the invention is an amylase enzyme, incorporated into the compositions at a level of from 0.05% to 5%, more preferably from 0.1% to 2%, most preferably from 0.2% to 1% active enzyme by weight of the composition, on a 120KNU/g activity basis. #### Detailed description of the invention #### Cationic ester surfactant An essential element of the detergent compositions of the invention is a cationic ester surfactant. The cationic ester surfactant preferably is present at a level of from 0.1% to 20.0%, more preferably from 0.5% to 10%, most preferably from 1.0% to 5.0% by weight of the detergent composition. The cationic ester surfactant of the present invention is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group. Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529. In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -O-O- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH₂-O- CH₂- and -CH₂-NH-CH₂- linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain. Preferred cationic ester surfactants are those having the formula: $$R_{1} - \left[\left[O - \left[\frac{R_{5}}{(CH)_{n}} O \right]_{b} \right]_{a}^{-} (X)_{u} - \left(CH_{2} \right)_{m} - \left(Y \right)_{v} - \left(CH_{2} \right)_{t} - \left[\frac{R_{2}}{R_{A}} \right]_{c}^{+} R_{3} M^{-}$$ wherein R₁ is a C₅-C₃₁ linear or branched alkyl, alkenyl or alkaryl chain or M⁻. N⁺(R₆R₇R₈)(CH₂)_s; X and Y, independently, are selected from the group consisting of COO, OCO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCOO, OCONH or NHCOO group; R₂, R₃, R₄, R₆, R₇, and R₈ are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl and hydroxy-alkenyl groups having from 1 to 4 carbon atoms and alkaryl groups; and R₅ is independently H or a C₁-C₃ alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter anion. Preferably M is selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, more preferably methyl sulfate, chloride, bromide or iodide. In a preferred aspect, the cationic ester surfactant is selected from those having the formula: $$R_{1} - \left[O + \frac{R_{5}}{(CH)_{n}O} \right]_{b} = (X) - (CH_{2})_{m} - N + R_{3} M^{-}$$ wherein R₁ is a C₅-C₃₁ linear or branched alkyl, alkenyl or alkaryl chain; X is selected from the group consisting of COO, OCO, OCOO, OCONH and NHCOO; R₂, R₃, and R₄ are independently selected from the
group consisting of alkyl and hydroxyalkyl groups having from 1 to 4 carbon atoms; and R₅ is independently H or a C₁-C₃ alkyl group; wherein the value of n lies in the range of from 0 to 8, the value of b lies in the range from 0 to 20, the value of a is either 0 or 1, and the value of m is from 3 to 8. More preferably R₂, R₃ and R₄ are independently selected from a C₁-C₄ alkyl group and a C₁-C₄ hydroxyalkyl group. In one preferred aspect at least one, preferably only one, of R₂, R₃ and R₄ is a hydroxyalkyl group. The hydroxyalkyl preferably has from 1 to 4 carbon atoms, more preferably 2 or 3 carbon atoms, most preferably 2 carbon atoms. In another preferred aspect at least one of R₂, R₃ and R₄ is a C₂-C₃ alkyl group, more preferably two C₂-C₃ alkyl groups are present. Highly preferred water dispersible cationic ester surfactants are the esters having the formula: $$R_1 - C - O - (CH_2)_m - N^+ - CH_3$$ CH_3 CH_3 CH_3 where m is from 1 to 4, preferably 2 or 3 and wherein R₁ is a C₁₁-C₁₉ linear or branched alkyl chain. Particularly preferred choline esters of this type include the stearoyl choline ester quaternary methylammonium halides (R^1 = C_{17} alkyl), palmitoyl choline ester quaternary methylammonium halides (R^1 = C_{15} alkyl), myristoyl choline ester quaternary methylammonium halides (R^1 = C_{13} alkyl), lauroyl choline ester methylammonium halides (R^1 = C_{11} alkyl), cocoyl choline ester quaternary methylammonium halides (R^1 = C_{11} - C_{13} alkyl), tallowyl choline ester quaternary methylammonium halides (R^1 = C_{15} - C_{17} alkyl), and any mixtures thereof. Other suitable cationic ester surfactants have the structural formulas below, wherein d may be from 0 to 20. $$R_1$$ —O—C—(CH₂)_d—C—O—CH₂CH₂—N⁺—CH₃ M⁻ CH₃ In a preferred aspect the cationic ester surfactant is hydrolysable under the conditions of a laundry wash method. The particularly preferred choline esters, given above, may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst. The reaction product is then quaternized with a methyl halide, preferably in the presence of a solvent such as ethanol, water, propylene glycol or preferably a fatty alcohol ethoxylate such as C₁₀-C₁₈ fatty alcohol ethoxylate having a degree of ethoxylation of from 3 to 50 ethoxy groups per mole forming the desired cationic material. They may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, in the presence of an acid catalyst material. The reaction product is then quaternized with trimethylamine, forming the desired cationic material. #### Amylolytic enzyme The second essential component of the compositions is an amylolytic enzyme or amylase enzyme, which is an enzyme having amylolytic activity. The amylase enzyme is incorporated into the compositions in accordance with the invention at a level of from 0.05% to 5%, more preferably from 0.1% to 3%, most preferably from 0.2% to 1% active enzyme by weight of the composition, on a 120KNU/g activity basis. The units of 'Kilo Novo Units/gram (KNU/g)' are a well known means of defining amylolytic enzyme activity and are described in GB-1,269,839 A (Novo). In more detail, 1 KNU is the amount of enzyme which breaks down 5.25 grams of starch (Merck, Amylum Solubile Erg. B.6, Batch 9947275) per hour in the method described in GB-1,269,839 A, which has the following standard conditions: | Substrate | Soluble starch | |----------------------------|----------------| | Calcium content in solvent | 0.0043 M | | Reaction time | 7-20 minutes | | Temperature | 37°C | | pН | 5.6 | The amylase enzyme may be fungal or bacterial in origin. Amylases obtained by chemical or genetic manipulation of fungal or bacterial derived strains are also useful herein. The amylase enzyme is preferably an α -amylase. Preferred amylases include, for example, α-amylases obtained from a special strain of B. licheniformis, described in more detail in GB-1,269,839 A. Reported deposit numbers for B. licheniformis strains capable of producing α-amylases include NCIB 8061, NCIB 8059, ATCC 6634, ATCC 6598, ATCC 11945, ATCC 8480 and ATCC 9945a. Preferred commercially available α -amylases include for example, those sold under the tradename Rapidase and Maxamyl by Gist-Brocades; those sold under the tradename Taka-Therm L-340 by Miles Laboratories, Elkhart, Indiana; those sold under the tradename Rohalase AT by Rohm and Haas, West Philadelphia, PA; and those sold under the tradenames Termamyl 60T and 120T, Fungamyl and BAN by Novo Industries A/S. In a preferred aspect, the amylases have been designed to have improved stability, particularly having improved stability to oxidation, for example in a bleaching environment, and improved thermal stability. Stability can be measured using any of the technical tests known in the art including those referred to in WO 94/02597 A. Stability-enhanced amylases are commercially available from Novo Industries A/S or from Genencor International. Highly preferred amylases with enhanced oxidative stability are derived using site-directed mutagenesis from one or more of the Baccillus amylases, especially the Bacillus α -amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors. Preferred amylases of this type are described in WO 94/02597 A, and comprise a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B. licheniformis α -amylase, sold under the tradename Termamyl, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B. subtilis, or B. stearothermophilus. Other preferred amylases having enhanced oxidative stability, derived from B.licheniformis NCIB806, are described by Genencor International in a paper entitled "Oxidatively Resistant α -Amylases" which was presented at the 207th American Chemical Society National Meeting, March 13-17 1994, by C. Mitchinson. Methionine (Met) was identified as the most likely residue to be modified. Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T with the M197T variant being the most stable expressed variant. Other preferred amylases having enhanced oxidative stability include those described in WO 94/18314 A (Genencor International) and WO 94/02597 A (Novo). Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other enzyme modifications are acceptable including those described in WO 95/09909 A (Novo). It will be appreciated that enzymes for incorporation into solid detergent compositions are generally sold commercially as enzyme prills containing active enzyme supported on a variety of inert host materials, which for example, can include alkali metal sulfates, carbonates and silicates. Optionally, organic binder materials are also incorporated. In a preferred aspect, the calcium content of these enzyme prills is minimzed to ensure good in-product storage stability of the enzyme. #### Additional detergent components The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the precise nature of the washing operation for which it is to be used. The compositions of the invention preferably contain one or more additional detergent components selected from additional surfactants, bleaches, builders, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. ## Additional surfactant The detergent compositions of the invention preferably contain an additional surfactant selected from anionic, nonionic, non-ester cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof. A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981. Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants. #### Anionic surfactant The detergent compositions in accord with the invention preferably comprise an additional anionic surfactant. Essentially any anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred. Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C_{12} - C_{18} monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C_6 - C_{14} diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil. ## Anionic sulfate surfactant Anionic
sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein). Alkyl sulfate surfactants are preferably selected from the linear and branched primary C_{10} - C_{18} alkyl sulfates, more preferably the C_{11} - C_{15} branched chain alkyl sulfates and the C_{12} - C_{14} linear chain alkyl sulfates. Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C₁₀-C₁₈ alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C₁₁-C₁₈, most preferably C₁₁-C₁₅ alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule. A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124. #### Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof. ## Anionic carboxylate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein. Suitable alkyl ethoxy carboxylates include those with the formula $RO(CH_2CH_20)_X$ $CH_2C00^-M^+$ wherein R is a C₆ to C₁₈ alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR₁-CHR₂-O)-R₃ wherein R is a C₆ to C₁₈ alkyl group, x is from 1 to 25, R₁ and R₂ are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R₃ is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof. Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid. Certain soaps may also be included as suds suppressors. ## Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R^1) CH₂ COOM, wherein R is a C₅-C₁₇ linear or branched alkyl or alkenyl group, R^1 is a C₁-C₄ alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts. ## Alkoxylated nonionic surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred. Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts. ## Nonionic alkoxylated alcohol surfactant The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol. #### Nonionic polyhydroxy fatty acid amide surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R²CONR¹Z wherein: R1 is H, C₁-C₄ hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C₁ or C₂ alkyl, most preferably C₁ alkyl (i.e., methyl); and R₂ is a C₅-C₃₁ hydrocarbyl, preferably straight-chain C₅-C₁₉ alkyl or alkenyl, more preferably straight-chain C₉-C₁₇ alkyl or alkenyl, most preferably straight-chain C₁₁-C₁₇ alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl. ## Nonionic fatty acid amide surfactant Suitable fatty acid amide surfactants include those having the formula: $R^6CON(R^7)_2$ wherein R^6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R^7 is selected from the group consisting of hydrogen, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, and - $(C_2H_4O)_xH$, where x is in the range of from 1 to 3. ## Nonionic alkylpolysaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units. ## Preferred alkylpolyglycosides have the formula ## $R^2 O(C_n H_{2n} O) t(glycosyl)_X$ wherein R^2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose. #### Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids. Suitable amine oxides include those compounds having the formula $R^3(OR^4)_xN^0(R^5)_2$ wherein R^3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R^4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R^5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C_{10} - C_{18} alkyl dimethylamine oxide, and C_{10} -18 acylamido alkyl dimethylamine oxide. A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ. ## Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein. Suitable betaines are those compounds having the formula $R(R')_2N^+R^2COO^-$ wherein R is a C₆-C₁₈ hydrocarbyl group, each R¹ is typically C₁-C₃ alkyl, and R² is a C₁-C₅ hydrocarbyl group. Preferred betaines are C₁₂₋₁₈ dimethyl-ammonio hexanoate and the C₁₀₋₁₈ acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein. #### Cationic surfactants Additional cationic surfactants can also be used in the detergent compositions herein. Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C₆-C₁₆, preferably C₆-C₁₀ N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. #### **Alkalinity** In the detergent compositions of the present invention preferably a alkalinity system is present to achieve optimal cationic ester surfactant performance. The alkalinity system comprises components capable of providing alkalinity species in solution. By alkalinity species it is meant herein: carbonate, bicarbonate, hydroxide, the various silicate anions, percarbonate, perborates, perphosphates, persulfate and persilicate. Such alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof are dissolved in water. Examples of carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Suitable silicates include the water soluble sodium silicates with an Si0₂: Na₂0 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred. The silicates may be in
the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an SiO₂: Na₂0 ratio of 2.0 is the most preferred silicate. Preferred crystalline layered silicates for use herein have the general formula ## $NaMSi_{x}0_{2x+1}.yH_{2}0$ wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. Herein, x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2. The most preferred material is δ -Na₂Si₂O₅, available from Hoechst AG as NaSKS-6. #### Water-soluble builder compound The detergent compositions of the present invention preferably contain a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition. Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing. The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance. Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447. Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates. The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components. Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein. Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid. ## Partially soluble or insoluble builder compound The detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition. Examples of largely water insoluble builders include the sodium aluminosilicates. Suitable aluminosilicate zeolites have the unit cell formula Na_Z[(AlO₂)_Z(SiO₂)y]. xH₂O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form. The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula Na 12 [AlO2) 12 (SiO2)12]. xH2O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na₈₆ [(AlO₂)₈₆(SiO₂)₁₀₆]. 276 H₂O. ## Organic peroxyacid bleaching system A preferred feature of detergent compositions of the invention is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an alternative preferred execution a preformed organic peroxyacid is incorporated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged. #### Inorganic perhydrate bleaches Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions. Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps. Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaBO₂H₂O₂ or the tetrahydrate NaBO₂H₂O₂.3H₂O. Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na₂CO₃.3H₂O₂, and is available commercially as a crystalline solid. Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein. ## Peroxyacid bleach precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as where L is a leaving group and X is essentially any functionality, such that on perhydrologsis the structure of the peroxyacid produced is Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions. Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386. ## Leaving groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition. Preferred L groups are selected from the group consisting of: and mixtures thereof, wherein R^1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R^3 is an alkyl chain containing from 1 to 8 carbon atoms, R^4 is H or R^3 , and Y is H or a solubilizing group. Any of R^1 , R^3 and R^4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups The preferred solubilizing groups are $-SO_3^-M^+$, $-CO_2^-M^+$, $-SO_4^-M^+$, $-N^+(R^3)_4X^-$ and $O<--N(R^3)_3$ and most preferably $-SO_3^-M^+$ and $-CO_2^-M^+$ wherein R^3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion. ## Alkyl percarboxylic acid bleach precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis. Preferred alkyl percarboxylic precursor compounds of the imide type include the
N-,N,N¹N¹ tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred. Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose. ## Amide substituted alkyl peroxyacid precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: $$R^{1} - C - N - R^{2} - C - L$$ $R^{1} - N - C - R^{2} - C - L$ $R^{5} = 0$ $R^{5} = 0$ $R^{5} = 0$ wherein R¹ is an alkyl group with from 1 to 14 carbon atoms, R² is an alkylene group containing from 1 to 14 carbon atoms, and R⁵ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0170386. ### Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl groupcontaining perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid. ## Cationic peroxyacid precursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis. Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group. Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion. The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332. Examples of preferred cationic peroxyacid precursors are described in UK Patent Application No. 9407944.9 and US Patent Application Nos. 08/298903, 08/298650, 08/298904 and 08/298906. Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams. ## Benzoxazin organic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula: wherein R₁ is H, alkyl, alkaryl, aryl, or arylalkyl. ## Preformed organic peroxyacid The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid, typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition. A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: wherein R¹ is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R² is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R⁵ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386. Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein. #### Bleach catalyst The compositions optionally contain a transition metal containing bleach catalyst. One suitable type of bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat. 4,430,243. Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV₂(u-O)₃(1,4,7-trimethyl-1,4,7-triazacyclononane)₂-(PF₆)₂, MnIII₂(u-O)₁(u-OAc)₂(1,4,7-trimethyl-1,4,7-triazacyclononane)₂-(ClO₄)₂, MnIV₄(u-O)₆(1,4,7-triazacyclononane)₄-(ClO₄)₂, MnIII_{Mn}IV₄(u-O)₁(u-OAc)₂-(1,4,7-trimethyl-1,4,7-triazacyclononane)₂-(ClO₄)₃, and mixtures thereof. Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl- 1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof. For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH₃)₃-(PF₆). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N₄Mn^{III}(u-O)₂Mn^{IV}N₄)⁺and [Bipy₂Mn^{III}(u-O)₂Mn^{IV}bipy₂]-(ClO₄)₃. Further suitable bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. 4,728,455 (manganese gluconate catalysts). ## Heavy metal ion sequestrant The detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper. Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions. Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates. Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate. Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof. Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The β -alanine-N,N'-diacetic acid, aspartic acid-N,n'-diacetic acid, aspartic acid-N,monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable. EP-A-476,257 describes suitable amino based sequestrants.
EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable. #### **Enzyme** Another preferred ingredient useful in the detergent compositions is one or more additional enzymes. Preferred additional enzymatic materials include the commercially available lipases, cutinases, cellulases, neutral and alkaline proteases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139. Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition. Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight of the compositions. The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of <u>Humicola sp.</u>, <u>Thermomyces sp.</u> or <u>Pseudomonas sp.</u> including <u>Pseudomonas pseudoalcaligenes or Pseudomas fluorescens.</u> Lipase from chemically or genetically modified mutants of these strains are also useful herein. A preferred lipase is derived from <u>Pseudomonas pseudoalcaligenes</u>, which is described in Granted European Patent, EP-B-0218272. Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989. #### Organic polymeric compound Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein. Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions. Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000. The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629. Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein. Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose. Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. ## Suds suppressing system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition. Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds. By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution. Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units. Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts. Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C₁₈-C₄₀ ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters. ## A preferred suds suppressing system comprises - (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination - (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and - (ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound; wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight; - (b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544; - (c) an inert carrier fluid compound, most preferably comprising a C₁₆-C₁₈ ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight; A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C. ## Clay softening system The detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent. The clay mineral compound is preferably a smectite clay compound. Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647. European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents. ## Polymeric dye transfer inhibiting agents The detergent compositions herein may also comprise from 0.01% to 10%, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents. The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof. ## a) Polyamine N-oxide polymers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula: wherein P is a polymerisable unit, and R are aliphatic, ethoxylated aliphatics, aromatic,
heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups. The N-O group can be represented by the following general structures : wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both. Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof. Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group. Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof. The polyamine N-oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000. # b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000. The preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2. ### c) Polyvinylpyrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000. Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12. ### d) Polyvinyloxazolidone The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000. ## e) Polyvinylimidazole The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000. ### Optical brightener The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners. Hydrophilic optical brighteners useful herein include those having the structural formula: wherein R₁ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R₂ is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium. When in the above formula, R₁ is anilino, R₂ is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein. When in the above formula, R₁ is anilino, R₂ is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation. When in the above formula, R₁ is anilino, R₂ is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation. ### Cationic fabric softening agents Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention. Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340. Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1% to 5% by weight. ### Other optional ingredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt. ### pH of the compositions The present compositions preferably have a pH measured as a 1% solution in distilled water of at least 8.5.0, preferably from 9.0 to 12.5, most preferably from 9.5 to 11.0. ### Form of the compositions The compositions in accordance with the invention can take a variety of physical forms including granular, tablet, bar and liquid forms. The compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load. In general, granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation. The mean particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.7mm in diameter and not more than 5% of particles are less than 0.15mm in diameter. The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass. The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre. Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml. To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required. # Surfactant agglomerate particles The cationic ester surfactant herein, preferably with additional surfactants, is preferably present in granular compositions in the form of surfactant agglomerate particles, which may take the form of flakes, prills, marumes, noodles, ribbons, but preferably take the form of granules. The most preferred way to process the particles is by agglomerating powders (e.g. aluminosilicate, carbonate) with high active surfactant pastes and to control the particle size of the resultant agglomerates within specified limits. Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050, Germany. Most preferably a high shear mixer is used, such as a Lodige CB (Trade Name). A high active surfactant paste comprising from 50% by weight to 95% by weight, preferably 70% by weight to 85% by weight of surfactant is typically used. The paste may be pumped into the agglomerator at a temperature high enough to maintain a pumpable viscosity, but low enough to avoid degradation of the anionic surfactants used. An operating temperature of the paste of 50°C to 80°C is typical. ### Laundry washing method Machine laundry methods herein
typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods. In a preferred use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method. Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water. To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle. Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette". Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent Application No. WO94/11562. Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form. Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678. Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene. # Packaging for the compositions Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in European Application No. 94921505.7. # Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications have the following meanings: | LAS | : | Sodium linear C ₁₂ alkyl benzene sulfonate | |-------------|---|---| | TAS | : | Sodium tallow alkyl sulfate | | C45AS | : | Sodium C ₁₄ -C ₁₅ linear alkyl sulfate | | CxyEzS | : | Sodium C _{1x} -C _{1y} branched alkyl sulfate | | | | condensed with z moles of ethylene oxide | | C45E7 | : | A C ₁₄₋₁₅ predominantly linear primary alcohol | | | | condensed with an average of 7 moles of ethylene | | | | oxide | | C25E3 | : | A C ₁₂₋₁₅ branched primary alcohol condensed | | | | with an average of 3 moles of ethylene oxide | | C25E5 | : | A C ₁₂₋₁₅ branched primary alcohol condensed | | | | with an average of 5 moles of ethylene oxide | | CEQ I | : | $R_1COOCH_2CH_2.N^+(CH_3)_3$ with $R_1 = C_{11}-C_{13}$ | | CEQ II | : | $R_1COOCH_2CH_2CH_2N^+(CH_3)_3$ with $R_1 = C_{11}$ - | | | | C ₁₃ | | CEQ III | : | R ₁ COO CH ₂ CH ₂ N ⁺ (CH ₃) ₂ (CH ₂ CH ₂ OH) with | | | | $R_1 = C_{11} - C_{13}$ | | CEQ IV | : | R ₁ COOCH ₂ CH ₂ N ⁺ (CH ₃ CH ₂) ₂ (CH ₃) with | | | | $R_1=C_{11}-C_{13}$ | | QAS | : | $R_2.N^+(CH_3)_2(C_2H_4OH)$ with $R_2 = C_{12} - C_{14}$ | | Soap | : | Sodium linear alkyl carboxylate derived from an | | | | 80/20 mixture of tallow and coconut oils. | | TFAA | : | C ₁₆ -C ₁₈ alkyl N-methyl glucamide | | TPKFA | : | C12-C14 topped whole cut fatty acids | | STPP | : | Anhydrous sodium tripolyphosphate | | Zeolite A | : | Hydrated Sodium Aluminosilicate of formula | | | | Na ₁₂ (A ₁₀₂ SiO ₂) ₁₂ . 27H ₂ O having a primary | | | | particle size in the range from 0.1 to 10 | | | | micrometers | | NaSKS-6 | : | Crystalline layered silicate of formula | | | | δ-Na ₂ Si ₂ O ₅ | | Citric acid | : | Anhydrous citric acid | Carbonate : Anhydrous sodium carbonate with a particle size between 200 µm and 900 µm Bicarbonate : Anhydrous sodium bicarbonate with a particle size distribution between 400 µm and 1200 µm Silicate : Amorphous Sodium Silicate (SiO2:Na2O; 2.0 ratio) Sodium sulfate: Anhydrous sodium sulfate Citrate : Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425 µm and 850 μm MA/AA : Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000. CMC : Sodium carboxymethyl cellulose Protease : Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the tradename Savinase Alcalase : Proteolytic enzyme of activity 3AU/g sold by NOVO Industries A/S Cellulase : Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme Amylase : Amylolytic enzyme of activity 120KNU/g sold by NOVO Industries A/S under the tradename Termamyl 120T Lipase : Lipolytic enzyme of activity 100kLU/g sold by NOVO Industries A/S under the tradename Lipolase Endolase : Endoglunase enzyme of activity 3000 CEVU/g sold by NOVO Industries A/S PB4 : Sodium perborate tetrahydrate of nominal formula NaBO₂.3H₂O.H₂O₂ PB1 : Anhydrous sodium perborate bleach of nominal formula NaBO2.H2O2 Percarbonate : Sodium Percarbonate of nominal formula 2Na₂CO₃.3H₂O₂ NOBS : Nonanoyloxybenzene sulfonate in the form of the sodium salt. TAED Tetraacetylethylenediamine **DTPMP** Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Trade name Dequest 2060 Photoactivated: Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate. **HEDP** 1,1-hydroxyethane diphosphonic acid **PVNO** Polyvinylpyridine N-oxide **PVPVI** Copolymer of polyvinylpyrolidone and vinylimidazole SRP 1 Sulfobenzoyl end capped esters with oxyethylene oxy and terephtaloyl backbone SRP₂ :Diethoxylated poly (1, 2 propylene terephtalate) short block polymer Silicone antifoam Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1. In the following Examples all levels are quoted as % by weight of the composition: Example 1 The following laundry detergent compositions A to F were prepared in accord with the invention: | | A | В | С | D | Е | F | |----------------|------|------|------|------|------|------| | LAS | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | C25E3 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | | CEQ I | - | 0.8 | 4.5 | 2.0 | - | 0.7 | | CEQ II | 6.0 | 0.5 | - | 0.7 | 2.0 | 0.8 | | QAS | - | - | 0.8 | - | - | 0.8 | | Zeolite A | 18.1 | 18.1 | 18.1 | 18.1 | 18.1 | 18.1 | | Carbonate | 13.0 | 13.0 | 13.0 | 27.0 | 27.0 | 27.0 | | Silicate | 1.4 | 1.4 | 1.4 | 3.0 | 3.0 | 3.0 | | Sodium sulfate | 26.1 | 26.1 | 26.1 | 26.1 | 26.1 | 26.1 | | PB4 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | | TAED | 1.5 | 1.5. | 1.5 | 1.5 | 1.5 | 1.5 | | DETPMP | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | HEDP | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Protease | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | | Amylase | 0.4 | 0.1 | 0.15 | 0.2 | 0.25 | 0.1 | |--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------
 | MA/AA | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | СМС | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Photoactivated
bleach (ppm) | 15
ppm | 15
ppm | 15
ppm | 15
ppm | 15
ppm | 15
ppm | | Brightener 1 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | Perfume | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Silicone antifoam | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Misc/minors to 100% | | | | | | | | Density in g/litre | 850 | 850 | 850 | 850 | 850 | 850 | The following granular laundry detergent compositions G to I of bulk density 750 g/litre were prepared in accord with the invention: Example 2 | | G | Н | I | |-----------------------------|------|------|------| | LAS | 5.25 | 5.61 | 4.76 | | TAS | 1.25 | 1.86 | 1.57 | | C45AS | - | 2.24 | 3.89 | | C25AE3S | - | 0.76 | 1.18 | | C45E7 | 3.25 | - | 5.0 | | C25E3 | - | 5.5 | - | | CEQ II | 0.8 | - | 2.0 | | CEQ III | 8.4 | 2.0 | 0.5 | | STPP | 19.7 | - | - | | Zeolite A | - | 19.5 | 19.5 | | NaSKS-6/citric acid (79:21) | - | 10.6 | 10.6 | | Carbonate | 6.1 | 21.4 | 21.4 | | Bicarbonate | - | 2.0 | 2.0 | | Silicate | 6.8 | - | - | | Sodium sulfate | 39.8 | - | 14.3 | |-----------------------------|--------|--------|--------| | PB4 | 5.0 | 12.7 | - | | TAED | 0.5 | 3.1 | - | | DETPMP | 0.25 | 0.2 | 0.2 | | HEDP | - | 0.3 | 0.3 | | Protease | 0.26 | 0.85 | 0.85 | | Lipase | 0.15 | 0.15 | 0.15 | | Cellulase | 0.28 | 0.28 | 0.28 | | Amylase | 0.1 | 0.1 | 0.1 | | MA/AA | 0.8 | 1.6 | 1.6 | | CMC | 0.2 | 0.4 | 0.4 | | Photoactivated bleach (ppm) | 15 ppm | 27 ppm | 27 ppm | | Brightener 1 | 0.08 | 0.19 | 0.19 | | Brightener 2 | - | 0.04 | 0.04 | | Perfume | 0.3 | 0.3 | 0.3 | | Silicone antifoam | 0.5 | 2.4 | 2.4 | | Minors/misc to 100% | | | | # Example 3 The following detergent formulations, according to the present invention were prepared, where J is a phosphorus-containing detergent composition, K is a zeolite-containing detergent composition and L is a compact detergent composition: | | J | K | L | |-----------------------|------|------|-------| | Blown Powder | | | | | STPP | 24.0 | - | 24.0 | | Zeolite A | - | 24.0 | - | | C45AS | 9.0 | 6.0 | 13.0 | | MA/AA | 2.0 | 4.0 | 2.0 | | LAS | 6.0 | 8.0 | 11.0 | | TAS | 2.0 | - | • | | CEQ I | - | 2.0 | • | | CEQ II | - | - | 2.0 | | CEQ III | 2.0 | - | | | Silicate | 7.0 | 3.0 | 3.0 | | CMC | 1.0 | 1.0 | 0.5 | | Brightener 2 | 0.2 | 0.2 | 0.2 | | Soap | 1.0 | 1.0 | 1.0 | | DTPMP | 0.4 | 0.4 | 0.2 | | Spray On | | | | | C45E7 | 2.5 | 2.5 | 2.0 | | C25E3 | 2.5 | 2.5 | 2.0 | | Silicone antifoam | 0.3 | 0.3 | 0.3 | | Perfume | 0.3 | 0.3 | 0.3 | | Dry additives | | | | | Carbonate | 6.0 | 13.0 | 15.0 | | PB4 | 18.0 | 18.0 | 10.0 | | PB1 | 4.0 | 4.0 | 0 | | TAED | 3.0 | 3.0 | 1.0 | | Photoactivated bleach | 0.02 | 0.02 | 0.02 | | Protease | 1.0 | 1.0 | . 1.0 | | Lipase | 0.4 | 0.4 | 0.4 | | Amylase | 0.25 | 0.30 | 0.15 | | Dry mixed sodium sulfate | 3.0 | 3.0 | 5.0 | |--------------------------|-------|-------|-------| | Balance (Moisture & | 100.0 | 100.0 | 100.0 | | Miscellaneous) | | | | | Density (g/litre) | 630 | 670 | 670 | # Example 4 The following nil bleach-containing detergent formulations of particular use in the washing of colored clothing, according to the present invention were prepared: | | M | N | 0 | |----------------|------|------|------| | Blown Powder | | | | | Zeolite A | 15.0 | 15.0 | - | | Sodium sulfate | 0.0 | 5.0 | - | | LAS | 3.0 | 3.0 | - | | CEQ I | 0.5 | 0.5 | 0.5 | | CEQ II | 1.0 | 1.5 | 0.5 | | CEQ IV | 0.5 | 1.5 | 2.0 | | DTPMP | 0.4 | 0.5 | - | | CMC | 0.4 | 0.4 | - | | MA/AA | 4.0 | 4.0 | - | | Agglomerates | | | | | C45AS | - | - | 11.0 | | LAS | 6.0 | 5.0 | - | | TAS | 3.0 | 2.0 | - | | Silicate | 4.0 | 4.0 | • | | Zeolite A | 10.0 | 15.0 | 13.0 | | CMC | - | - | 0.5 | | MA/AA | - | - | 2.0 | | Carbonate | 9.0 | 7.0 | 7.0 | | Spray On | | | | | Perfume | 0.3 | 0.3 | 0.5 | | C45E7 | 4.0 | 4.0 | 4.0 | | C25E3 | 2.0 | 2.0 | 2.0 | | Dry additives | | | | | MA/AA | - | _ | 3.0 | | NaSKS-6 | - | - | 12.0 | | Citrate | 10.0 | • | 8.0 | | Bicarbonate | 7.0 | 3.0 | 5.0 | | Carbonate | 8.0 | 5.0 | 7.0 | | PVPVI/PVNO | 0.5 | 0.5 | 0.5 | | Alcalase | 0.5 | 0.3 | 0.9 | | Lipase | 0.4 | 0.4 | 0.4 | |--------------------------------------|-------|-------|-------| | Amylase | 0.6 | 0.2 | 0.7 | | Cellulase | 0.6 | 0.6 | 0.6 | | Silicone antifoam | 5.0 | 5.0 | 5.0 | | Dry additives | | | | | Sodium sulfate | 0.0 | 9.0 | 0.0 | | Balance (Moisture and Miscellaneous) | 100.0 | 100.0 | 100.0 | | Density (g/litre) | 700 | 700 | 700 | Example 5 The following detergent formulations, according to the present invention were prepared: | | P | Q | R | S | |----------------|-------|-------|------|-------| | | - | | | | | LAS | 20.0 | 14.0 | 24.0 | 22.0 | | QAS | 0.7 | 1.0 | - | 0.7 | | TFAA | - | 1.0 | - | - | | C25E5/C45E7 | - | 2.0 | - | 0.5 | | C45E3S | _ | 2.5 | - | - | | CEQ III | 0.4 | - | 3.5 | 1.5 | | CEQ IV | 1.5 | 2.4 | - | 1.5 | | STPP | 30.0 | 18.0 | 30.0 | 22.0 | | Silicate | 9.0 | 5.0 | 10.0 | 8.0 | | Carbonate | 13.0 | 7.5 | - | 5.0 | | Bicarbonate | - | 7.5 | - | - | | DTPMP | 0.7 | 1.0 | - | - | | SRP 1 | 0.3 | 0.2 | _ | 0.1 | | MA/AA | 2.0 | 1.5 | 2.0 | 1.0 | | CMC | 0.8 | 0.4 | 0.4 | 0.2 | | Protease | 0.8 | 1.0 | 0.5 | 0.5 | | Amylase | 0.8 | 0.4 | - | 0.25 | | Lipase | 0.2 | 0.1 | 0.2 | 0.1 | | Cellulase | 0.15 | 0.05 | - | - | | Photoactivated | 70ppm | 45ppm | - | 10ppm | | bleach (ppm) | | | | | | Brightener 1 | 0.2 | 0.2 | 0.08 | 0.2 | | PB1 | 6.0 | 2.0 | - | - | | NOBS | 2.0 | 1.0 | - | - | | Balance | 100 | 100 | 100 | 100 | | (Moisture and | | | | | | Miscellaneous) | | | | | Example 6 The following detergent formulations, according to the present invention were prepared: | | T | U | V | |--------------------------------------|------|------|------| | Blown Powder | | | | | Zeolite A | 30.0 | 22.0 | 6.0 | | Sodium sulfate | 19.0 | 5.0 | 7.0 | | MA/AA | 3.0 | 3.0 | 6.0 | | LAS | 14.0 | 12.0 | 22.0 | | C45AS | 8.0 | 7.0 | 7.0 | | CEQ II | - | 0.4 | 2.5 | | CEQ IV | 1.5 | 1.5 | 0.5 | | Silicate | - | 1.0 | 5.0 | | Soap | - | - | 2.0 | | Brightener 1 | 0.2 | 0.2 | 0.2 | | Carbonate | 8.0 | 16.0 | 20.0 | | DTPMP | - | 0.4 | 0.4 | | Spray On | | | , | | C45E7 | 1.0 | 1.0 | 1.0 | | Dry additives | | | | | PVPVI/PVNO | 0.5 | 0.5 | 0.5 | | Protease | 1.0 | 1.0 | 1.0 | | Lipase | 0.4 | 0.4 | 0.4 | | Amylase | 0.1 | 0.3 | 0.6 | | Cellulase | 0.1 | 0.1 | 0.1 | | NOBS | - | 6.1 | 4.5 | | PB1 | 1.0 | 5.0 | 6.0 | | Sodium sulfate | - | 6.0 | - | | Balance (Moisture and Miscellaneous) | 100 | 100 | 100 | Example 7 The following high density and bleach-containing detergent formulations, according to the present invention were prepared: | | W | X | Y | |--------------------------|----------------|-------------|------| | Dlaum Davidan | | | | | Blown Powder Zeolite A | 15.0 | 15.0 | 15.0 | | Sodim sulfate | 0.0 | 5.0 | 0.0 | | | 3.0 | 3.0 | 3.0 | | LAS | 3.0 | | | | QAS | ^- | 1.5 | 1.5 | | CEQ II | 0.5 | 0.5 | 2.5 | | CEQ III | 0.9 | 1.2 | 2.5 | | DTPMP | 0.4 | 0.4 | 0.4 | | CMC | 0.4 | 0.4 | 0.4 | | MA/AA | 4.0 | 2.0 | 2.0 | | Agglomerates | , . | | | | LAS | 5.0 | 5.0 | 5.0 | | TAS | 2.0 | 2.0 | 1.0 | | Silicate | 3.0 | 3.0 | 4.0 | | Zeolite A | 8.0 | 8.0 | 8.0 | | Carbonate | 8.0 | 8.0 | 4.0 | | Spray On | <u></u> | | | | Perfume | 0.3 | 0.3 | 0.3 | | C45E7 | 2.0 | 2.0 | 2.0 | | C25E3 | 2.0 | - | - | | Dry additives | | | | | Citrate | 5.0 | - | 2.0 | | Bicarbonate | - | 3.0 | - | | Carbonate | 8.0 | 15.0 | 10.0 | | TAED | 6.0 | 2.0 | 5.0 | | PB1 | 14.0 | 7.0 | 10.0 | | Polyethylene oxide of MW | - | - | 0.2 | | 5,000,000 | | | | | Bentonite clay | • | - | 10.0 | | Protease | 1.0 | 1.0 | 1.0 | | Lipase | 0.4 | 0.4 | 0.4 | | Amylase | 0.6 | 1.0 | 0.8 | |--------------------------------------|-------|-------|-------| | Cellulase | 0.6 | 0.6 | 0.6 | | Silicone antifoam | 5.0 | 5.0 | 5.0 | | Dry additives | | | | | Sodium sulfate | 0.0 | 3.0 | 0.0 | | Balance (Moisture and Miscellaneous) | 100.0 | 100.0 | 100.0 | | Density (g/litre) | 850 | 850 | 850 | Example 8 The following high density detergent formulations, according to the present invention were prepared: | | Z | AA | |-----------------------|------|------| | Agglomerate | | | | C45AS | 11.0 | 14.0 | | CEQ IV | 3.8 | 2.2 | | Zeolite A | 15.0 | 6.0 | | Carbonate | 4.0 | 8.0 | | MA/AA | 4.0 | 2.0 | | CMC | 0.5 | 0.5 | | DTPMP | 0.4 | 0.4 | | Spray On | | | | C25E5 | 5.0 | 5.0 | | Perfume | 0.5 | 0.5 | | Dry Adds | | | | HEDP | 0.5 | 0.3 | | SKS 6 | 13.0 | 10.0 | | Citrate | 3.0 | 1.0 | | TAED | 5.0 | 7.0 | | Percarbonate | 20.0 | 20.0 | | SRP 1 | 0.3 | 0.3 | | Protease | 1.4 | 1.4 | | Lipase | 0.4 | 0.4 | | Cellulase | 0.6 | 0.6 | | Amylase | 0.6 | 0.2 | | Silicone antifoam | 5.0 | 5.0 | | Brightener 1 | 0.2 | 0.2 | | Brightener 2 | 0.2 | - | | Balance (Moisture and | 100 | 100 | | Miscellaneous) | | | | Density (g/litre) | 850 | 850 | Example 9 The following liquid detergent formulations, according to the present invention were prepared: | | AB | AC | AD | AE | AF | AG | AH | AI | |-------------------------|------|------|------|------|------|------|------|------| | CEO I | 0.4 | 1.0 | 0.0 | 0.4 | 2.6 | 1.5 | 1.0 | 2.5 | | CEQ I | 0.4 | 1.0 | 0.8 | 0.4 | | | | | | CEQ II | 0.6 | 1.2 | 0.7 | 0. | 1.2 | 0.5 | 2.5 | 1.5 | | LAS | 10.0 | 13.0 | 9.0 | 10.0 | 25.0 | 12.0 | 100 | 15.0 | | C25AS | 4.0 | 1.0 | 2.0 | 10.0 | - | 13.0 | 18.0 | 15.0 | | C25E3S | 1.0 | - | - | 3.0 | | 2.0 | 2.0 | 4.0 | | C25E7 | 6.0 | 8.0 | 13.0 | 2.5 | - | - | 4.0 | 4.0 | | TFAA | - | | • | 4.5 | - | 6.0 | 8.0 | 8.0 | | QAS | - | - | | - | 3.0 | 1.0 | - | - | | TPKFA | 2.0 | • | 13.0 | 2.0 | - | 15.0 | 7.0 | 7.0 | | Rapeseed fatty acids | - | - | - | 5.0 | - | - | 4.0 | 4.0 | | Citric acid | 2.0 | 3.0 | 1.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | | Dodecenyl/tetradecenyl | 12.0 | 10.0 | - | - | 15.0 | - | - | - | | succinic acid | | | | | | | | | | Oleic acid | 4.0 | 2.0 | 1.0 | • | 1.0 | • | - | - | | Ethanol | 4.0 | 4.0 | 7.0 | 2.0 | 7.0 | 2.0 | 3.0 | 2.0 | | 1,2
Propanediol | 4.0 | 4.0 | 2.0 | 7.0 | 6.0 | 8.0 | 10.0 | 13 | | Mono Ethanol Amine | - | - | - | 5.0 | - | • | 9.0 | 9.0 | | Tri Ethanol Amine | - | - | 8 | - | - | • | - | • | | NaOH up to pH | 8.0 | 8.0 | 7.6 | 7.7 | 8.0 | 7.5 | 8.0 | 8.2 | | Ethoxylated | 0.5 | - | 0.5 | 0.2 | - | - | 0.4 | 0.3 | | tetraethylene pentamine | | | | | | | | | | DTPMP | 1.0 | 1.0 | 0.5 | 1.0 | 2.0 | 1.2 | 1.0 | - | | SRP 2 | 0.3 | - | 0.3 | 0.1 | - | - | 0.2 | 0.1 | | PVNO | - | - | - | - | - | - | - | 0.10 | | Protease | 0.5 | 0.5 | 0.4 | 0.25 | - | 0.5 | 0.3 | 0.6 | | Alcalase | - | - | - | - | 1.5 | - | - | - | | Lipase | - | 0.10 | - | 0.01 | - | - | 0.15 | 0.15 | | Amylase | 0.25 | 0.3 | 0.6 | 0.5 | 0.1 | 0.9 | 0.6 | 0.8 | | Cellulase | - | - | _ | 0.05 | - | - | 0.15 | 0.15 | | Endolase | - | - | - | 0.10 | - | - | 0.07 | - | | Boric acid | 0.1 | 0.2 | - | 2.0 | 1.0 | 1.5 | 2.5 | 2.5 | | Na formate | - | _ | 1.0 | _ | - | - | - | _ | |--------------------------------------|-----|-------|-----|------|-----|-----|-----|-----| | Ca chloride | - | 0.015 | - | 0.01 | - | - | - | - | | Bentonite clay | - | - | - | • | 4.0 | 4.0 | - | - | | Suspending clay SD3 | - | - | - | - | 0.6 | 0.3 | - | - | | Balance (Moisture and Miscellaneous) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ### **CLAIMS** - 1. A detergent composition comprising - (a) a cationic ester surfactant; and - (b) an amylolytic enzyme present at a level of from 0.05% to 5.0% by weight of said detergent composition, on a 120 KNU/g activity basis. - 2. A detergent composition according to Claim 1 wherein said cationic ester surfactant is present at a level from 0.1% to 20.0% by weight of the detergent composition. - 3. A detergent composition according to either of Claims 1 or 2 wherein said amylolytic enzyme is present at a level from 0.1% to 3.0% by weight of the detergent composition, on a 120 KNU/g activity basis. - 4. A detergent composition according to any of Claims 1 to 3 wherein the cationic ester surfactant is selected from those having the formula: $$R_{1} - \left[\left[\frac{R_{5}}{(CH)_{n}O} \right]_{b} \right]_{a} (X)_{u} - (CH_{2})_{m} - (Y)_{v} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} - (CH_{2})_{m} - (Y)_{v} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} - (CH_{2})_{m} - (Y)_{v} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} - (CH_{2})_{m} - (Y)_{v} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} - (CH_{2})_{m} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} - (CH_{2})_{m} - (CH_{2})_{t} - \left[\frac{R_{2}}{N_{-}} R_{3} \right]_{R_{4}} (X)_{u} (CH_{2})_{u} (C$$ wherein R₁ is a C₅-C₃₁ linear or branched alkyl, alkenyl or alkaryl chain or M⁻. N⁺(R₆R₇R₈)(CH₂)_s; X and Y, independently, are selected from the group consisting of COO, OCO, OCO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group; R₂, R₃, R₄, R₆, R₇, and R₈ are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxy-alkenyl and alkaryl groups having from 1 to 4 carbon atoms; and R₅ is independently H or a C₁-C₃ alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter anion. - 5. A detergent composition according to Claim 4 wherein R₂,R₃ and R₄ are independently selected from the group consisting of -CH₃ and -CH₂CH₂OH. - 6. A detergent composition according to Claim 4 wherein both R₂ and R₃ are C₂-C₃ alkyl groups. - 7. A detergent composition according to Claim 4 wherein the cationic ester is selected from the choline esters having the formula: $$R_1 - C - O - (CH_2)_m - N^+ - CH_3$$ CH_3 CH_3 wherein m is from 1 to 4 and R₁ is a C₁₁-C₁₉ linear or branched alkyl chain. - 8. A detergent composition according to any of Claims 1 to 7, wherein the amylolytic enzyme is an α -amylase. - 9. A detergent composition according to any of Claims 1 to 8 wherein an cellulase or endolase enzyme is present, or mixtures thereof. - 10. A detergent system according to any of Claims 1 to 9 wherein an alkalinity system is provided, comprising components selected from the group consisting of carbonates, bicarbonates, silicates and any mixtures thereof. 11. A method of washing laundry in a domestic washing machine in which a dispensing device containing an effective amount of a solid detergent composition according to any of Claims 1 to 10 is introduced into the drum of the washing machine before the commencement of the wash, wherein said dispensing device permits progressive release of said detergent composition into the wash liquor during the wash. 64 **Application No:** GB 9611323.8 Claims searched: 1 to 11 Examiner: Michael Conlon **Date of search:** 26 September 1996 ## Patents Act 1977 Search Report under Section 17 #### **Databases searched:** UK Patent Office collections, including GB, EP, WO & US patent specifications, in: UK Cl (Ed.O): C5D (DHC, DHD, DHE, DHZ, DJA, DJX, DEB) Int Cl (Ed.6): C11D Other: Online: WPI #### Documents considered to be relevant: | Category | Identity of document and relevant passage | | | | | |----------|---|--|---|--|--| | X | GB2171710 A | (Procter & Gamble) embodiments III and IV on page 25 | 1 | | | | Х | GB2168989 A | (Procter & Gamble) Embodiments III and IV on page 24 | 1 | | | | X | GB2133028 A | (Procter & Gamble) embodiments III and IV on page 18 | 1 | | | | X | US4239660 | (Procter & Gamble) column 3 line 20 | 1 | | | - X Document indicating lack of novelty or inventive step - Y Document indicating lack of inventive step if combined with one or more other documents of same category. - & Member of the same patent family - A Document indicating technological background and/or state of the art. - P Document published on or after the declared priority date but before the filing date of this invention. - E Patent document published on or after, but with priority date earlier than, the filing date of this application.