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Description

Title of Invention: SYSTEM AND METHOD FOR VIDEO

[0001]

[0002]

[0003]

[0004]

[0005]

[0006]

CODING
Technical Field

This disclosure relates to video coding, and particularly to video encoding and
decoding systems, components, and methods in video coding and decoding, such as for

performing a CCALF (cross component adaptive loop filtering) process.

Background Art

With advancements in video coding technology, from H.261 and MPEG-1 to
H.264/AVC (Advanced Video Coding), MPEG-LA, H.265/HEVC (High Efficiency
Video Coding) and H.266/VVC (Versatile Video Codec), there remains a constant
need to provide improvements and optimizations to the video coding technology to
process an ever-increasing amount of digital video data in various applications. This
disclosure relates to further advancements, improvements and optimizations in video
coding, particularly in a CCALF (cross component adaptive loop filtering) process.
Summary of Invention

According to one aspect, an encoder is provided which includes circuitry and
memory coupled to the circuitry. The circuitry, in operation, generates a first co-
efficient value by applying a CCALF (cross component adaptive loop filtering) process
to a first reconstructed image sample of a luma component, and clips the first co-
efficient value. The circuitry generates a second coefficient value by applying an ALF
(adaptive loop filtering) process to a second reconstructed image sample of a chroma
component, and clips the second coefficient value. The circuitry generates a third co-
efficient value by adding the clipped first coefficient value to the clipped second co-
efficient value, and encodes a third reconstructed image sample of the chroma
component using the third coefficient value.

According to a further aspect, the first reconstructed image sample is located adjacent
to the second reconstructed image sample.

According to another aspect, the circuitry, in operation, sets the first coefficient value
to zero in response to the first coefficient value being less than 64.

According to another aspect, an encoder is provided which includes: a block splitter,
which, in operation, splits a first image into a plurality of blocks; an intra predictor,
which, in operation, predicts blocks included in the first image, using reference blocks
included in the first image; an inter predictor, which, in operation, predicts blocks
included in the first image, using reference blocks included in a second image different

from the first image; a loop filter, which, in operation, filters blocks included in the



WO 2021/025165 PCT/JP2020/030507

[0007]

[0008]

first image; a transformer, which, in operation, transforms a prediction error between
an original signal and a prediction signal generated by the intra predictor or the inter
predictor, to generate transform coefficients; a quantizer, which, in operation,
quantizes the transform coefficients to generate quantized coefficients; and an entropy
encoder, which, in operation, variably encodes the quantized coefficients to generate
an encoded bitstream including the encoded quantized coefficients and control in-
formation. The loop filter preforms the following:

generating a first coefficient value by applying a CCALF (cross component adaptive
loop filtering) process to a first reconstructed image sample of a luma component;
clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive loop filtering)
process to a second reconstructed image sample of a chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first coefficient value to the
clipped second coefficient value; and

encoding a third reconstructed image sample of the chroma component using the third
coefficient value.

According to a further aspect, a decoder is provided which includes circuitry and
memory coupled to the circuitry. The circuitry, in operation, generates a first co-
efficient value by applying a CCALF (cross component adaptive loop filtering) process
to a first reconstructed image sample of a luma component, and clips the first co-
efficient value. The circuitry generates a second coefficient value by applying an ALF
(adaptive loop filtering) process to a second reconstructed image sample of a chroma
component, and clips the second coefficient value. The circuitry generates a third co-
efficient value by adding the clipped first coefficient value to the clipped second co-
efficient value, and decodes a third reconstructed image sample of the chroma
component using the third coefficient value.

According to another aspect, a decoding apparatus is provided which includes: a
decoder, which, in operation, decodes an encoded bitstream to output quantized coef-
ficients; an inverse quantizer, which, in operation, inverse quantizes the quantized co-
efficients to output transform coefficients; an inverse transformer, which, in operation,
inverse transforms the transform coefficients to output a prediction error; an intra
predictor, which, in operation, predicts blocks included in a first image, using a
reference blocks included in the first image; an inter predictor, which, in operation,
predicts blocks included in the first image, using reference blocks included in a second
image different from the first image; a loop filter, which, in operation, filters blocks
included in the first image; and an output, which, in operation, outputs a picture

including the first image. The loop filter performs the following:
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[0009]

[0010]

[0011]

generating a first coefficient value by applying a CCALF (cross component adaptive
loop filtering) process to a first reconstructed image sample of a luma component;
clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive loop filtering)
process to a second reconstructed image sample of a chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first coefficient value to the
clipped second coefficient value; and

decoding a third reconstructed image sample of the chroma component using the third
coefficient value.

According to another aspect, an encoding method is provided, which includes:

generating a first coefficient value by applying a CCALF (cross component adaptive
loop filtering) process to a first reconstructed image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive loop filtering)
process to a second reconstructed image sample of a chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first coefficient value to the
clipped second coefficient value; and

encoding a third reconstructed image sample of the chroma component using the
third coefficient value.

According to a further aspect, a decoding method is provided, which includes:

generating a first coefficient value by applying a CCALF (cross component adaptive
loop filtering) process to a first reconstructed image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive loop filtering)
process to a second reconstructed image sample of a chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first coefficient value to the
clipped second coefficient value; and

decoding a third reconstructed image sample of the chroma component using the
third coefficient value.

In video coding technologyi, it is desirable to propose new methods in order to
improve coding efficiency, enhance image quality, and reduce circuit scale. Some im-
plementations of embodiments of the present disclosure, including constituent
elements of embodiments of the present disclosure considered alone or in various com-
binations, may facilitate one or more of the following: improvement in coding ef-

ficiency, enhancement in image quality, reduction in utilization of processing resources
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[0014]

[0015]

associated with encoding/decoding, reduction in circuit scale, improvement in

processing speed of encoding/decoding, etc.
In addition, some implementations of embodiments of the present disclosure,

including constituent elements of embodiments of the present disclosure considered
alone or in various combinations, may facilitate, in encoding and decoding, appropriate
selection of one or more elements, such as a filter, a block, a size, a motion vector, a
reference picture, a reference block or an operation. It is to be noted that the present
disclosure includes disclosure regarding configurations and methods which may
provide advantages other than the above-described advantages. Examples of such con-
figurations and methods include a configuration or method for improving coding ef-
ficiency while reducing an increase in the use of processing resources.

Additional benefits and advantages of the disclosed embodiments will become
apparent from the specification and drawings. The benefits and/or advantages may be
individually obtained by the various embodiments and features of the specification and
drawings, not all of which need to be provided in order to obtain one or more of such
benefits and/or advantages.

It should be noted that general or specific embodiments may be implemented as a
system, a method, an integrated circuit, a computer program, a storage medium, or any
selective combination thereof.

Brief Description of Drawings

[fig. 1]FIG. 1 is a schematic diagram illustrating one example of a functional con-
figuration of a transmission system according to an embodiment.

[fig.2]FIG. 2 is a conceptual diagram for illustrating one example of a hierarchical
structure of data in a stream.

[fig.3]FIG. 3 is a conceptual diagram for illustrating one example of a slice con-
figuration.

[fig.4]FIG. 4 is a conceptual diagram for illustrating one example of a tile con-
figuration.

[fig.5]FIG. 5 is a conceptual diagram for illustrating one example of an encoding
structure in scalable encoding.

[fig.6]FIG. 6 is a conceptual diagram for illustrating one example of an encoding
structure in scalable encoding.

[fig.7]FIG. 7 is a block diagram illustrating a functional configuration of an encoder
according to an embodiment.

[fig.8]FIG. 8 is functional block diagram illustrating a mounting example of the
encoder.

[fig.9]FIG. 9 is a flow chart indicating one example of an overall encoding process
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performed by the encoder.

[fig. 10]FIG. 10 is a conceptual diagram for illustrating one example of block splitting.
[fig. 11]FIG. 11 is a block diagram illustrating one example of a functional con-
figuration of a splitter according to an embodiment.

[fig.12]FIG. 12 is a conceptual diagram for illustrating examples of splitting patterns.
[fig. 13A]FIG. 13A is a conceptual diagram for illustrating one example of a syntax
tree of a splitting pattern.

[fig.13B]FIG. 13B is a conceptual diagram for illustrating another example of a syntax
tree of a splitting pattern.

[fig.14]FIG. 14 is a chart indicating example transform basis functions for various
transform types.

[fig. 15]FIG. 15 is a conceptual diagram for illustrating example spatially varying
transforms (SVT).

[fig.16]FIG. 16 is a flow chart illustrating one example of a process performed by a
transformer.

[fig.17]FIG. 17 is a flow chart illustrating another example of a process performed by
the transformer.

[fig.18]FIG. 18 is a block diagram illustrating one example of a functional con-
figuration of a quantizer according to an embodiment.

[fig.19]FIG. 19 is a flow chart illustrating one example of quantization process
performed by the quantizer.

[fig.20]FIG. 20 is a block diagram illustrating one example of a functional con-
figuration of an entropy encoder according to an embodiment.

[fig.21]FIG. 21 is a conceptual diagram for illustrating an example flow of a context-
based adaptive binary arithmetic coding (CABAC) process in the entropy encoder.
[fig.22]FIG. 22 is a block diagram illustrating one example of a functional con-
figuration of loop filter according to an embodiment.

[fig.23A]FIG. 23A is a conceptual diagram for illustrating one example of a filter
shape used in an adaptive loop filter (ALF).

[fig.23B]FIG. 23B is a conceptual diagram for illustrating another example of a filter
shape used in an ALF.

[fig.23C]FIG. 23C is a conceptual diagram for illustrating another example of a filter
shape used in an ALF.

[fig.23D]FIG. 23D is a conceptual diagram for illustrating an example flow of a cross
component ALF (CC-ALF).

[fig.23E]FIG. 23E is a conceptual diagram for illustrating an example of a filter shape
used in a CC-ALF.

[fig.23F]FIG. 23F is a conceptual diagram for illustrating an example flow of a Joint
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Chroma CCALF (JC-CCALF).

[fig.23G]FIG. 23G is a table illustrating example weight index candidates that may be
employed in a JC-CCALF.

[fig.24]FIG. 24 is a block diagram indicating one example of a specific configuration
of aloop filter which functions as a deblocking filter (DBF).

[fig.25]FIG. 25 is a conceptual diagram for illustrating an example of a deblocking
filter having a symmetrical filtering characteristic with respect to a block boundary.
[fig.26]FIG. 26 is a conceptual diagram for illustrating a block boundary on which a
deblocking filter process is performed.

[fig.27]FIG. 27 is a conceptual diagram for illustrating examples of Boundary strength
(Bs) values.

[fig.28]FIG. 28 is a flow chart illustrating one example of a process performed by a
predictor of the encoder.

[fig.29]FIG. 29 is a flow chart illustrating another example of a process performed by
the predictor of the encoder.

[fig.30]FIG. 30 is a flow chart illustrating another example of a process performed by
the predictor of the encoder.

[fig.31]FIG. 31 is a conceptual diagram for illustrating sixty-seven intra prediction
modes used in intra prediction in an embodiment.

[fig.32]FIG. 32 is a flow chart illustrating one example of a process performed by an
intra predictor.

[fig.33]FIG. 33 is a conceptual diagram for illustrating examples of reference pictures.
[fig.34]FIG. 34 is a conceptual diagram for illustrating examples of reference picture
lists.

[fig.35]FIG. 35 is a flow chart illustrating an example basic processing flow of inter
prediction.

[fig.36]FIG. 36 is a flow chart illustrating one example of a process of derivation of
motion vectors.

[fig.37]FIG. 37 is a flow chart illustrating another example of a process of derivation
of motion vectors.

[fig.38A]FIG. 38A is conceptual diagram for illustrating example characterizations of
modes for MV derivation.

[fig.38B]FIG. 38B is conceptual diagram for illustrating example characterizations of
modes for MV derivation.

[fig.39]FIG. 39 is a flow chart illustrating an example of a process of inter prediction
in normal inter mode.

[fig.40]FIG. 40 is a flow chart illustrating an example of a process of inter prediction

in normal merge mode.
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[fig.41]FIG. 41 is a conceptual diagram for illustrating one example of a motion vector
derivation process in merge mode.

[fig.42]FIG. 42 is a conceptual diagram for illustrating one example of a MV
derivation process for a current picture by HMVP merge mode.

[fig.43]FIG. 43 is a flow chart illustrating one example of a frame rate up conversion
(FRUC) process.

[fig.44]FIG. 44 is a conceptual diagram for illustrating one example of pattern
matching (bilateral matching) between two blocks along a motion trajectory.
[fig.45]FIG. 45 is a conceptual diagram for illustrating one example of pattern
matching (template matching) between a template in a current picture and a block in a
reference picture.

[fig.46A]FIG. 46A is a conceptual diagram for illustrating one example of deriving a
motion vector of each sub-block based on motion vectors of a plurality of neighboring
blocks.

[fig.46B]FIG. 46B is a conceptual diagram for illustrating one example of deriving a
motion vector of each sub-block in affine mode in which three control points are used.
[fig.47A]FIG. 47A is a conceptual diagram for illustrating an example MV derivation
at control points in an affine mode.

[fig.47B]FIG. 47B is a conceptual diagram for illustrating an example MV derivation
at control points in an affine mode.

[fig.47C]FIG. 47C is a conceptual diagram for illustrating an example MV derivation
at control points in an affine mode.

[fig.48A]FIG. 48A is a conceptual diagram for illustrating an affine mode in which
two control points are used.

[fig.48B]FIG. 48B is a conceptual diagram for illustrating an affine mode in which
three control points are used.

[fig.49A]FIG. 49A is a conceptual diagram for illustrating one example of a method
for MV derivation at control points when the number of control points for an encoded
block and the number of control points for a current block are different from each
other.

[fig.49B]FIG. 49B is a conceptual diagram for illustrating another example of a
method for MV derivation at control points when the number of control points for an
encoded block and the number of control points for a current block are different from
each other.

[fig.50]FIG. 50 is a flow chart illustrating one example of a process in affine merge
mode.

[fig.51]FIG. 51 is a flow chart illustrating one example of a process in affine inter

mode.
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[fig.52A]FIG. 52A is a conceptual diagram for illustrating generation of two triangular
prediction images.

[fig.52B]FIG. 52B is a conceptual diagram for illustrating examples of a first portion
of a first partition which overlaps with a second partition, and first and second sets of
samples which may be weighted as part of a correction process.

[fig.52C]FIG. 52C is a conceptual diagram for illustrating a first portion of a first
partition, which is a portion of the first partition that overlaps with a portion of an
adjacent partition.

[fig.53]FIG. 53 is a flow chart illustrating one example of a process in a triangle mode.
[fig.54]FIG. 54 is a conceptual diagram for illustrating one example of an Advanced
Temporal Motion Vector Prediction (ATMVP) mode in which a MV is derived in units
of a sub-block.

[fig.55]FIG. 55 is a flow chart illustrating a relationship between a merge mode and
dynamic motion vector refreshing (DMVR).

[fig.56]FIG. 56 is a conceptual diagram for illustrating one example of DMVR.
[fig.57]FIG. 57 is a conceptual diagram for illustrating another example of DM VR for
determining a MV.

[fig.58A]FIG. 58A is a conceptual diagram for illustrating one example of motion es-
timation in DMVR.

[fig.58B]FIG. 58B is a flow chart illustrating one example of a process of motion es-
timation in DMVR.

[fig.59]FIG. 59 is a flow chart illustrating one example of a process of generation of a
prediction image.

[fig.60]FIG. 60 is a flow chart illustrating another example of a process of generation
of a prediction image.

[fig.61]FIG. 61 is a flow chart illustrating one example of a correction process of a
prediction image by overlapped block motion compensation (OBMC).

[fig.62]FIG. 62 is a conceptual diagram for illustrating one example of a prediction
image correction process by OBMC.

[fig.63]FIG. 63 is a conceptual diagram for illustrating a model assuming uniform
linear motion.

[fig.64]FIG. 64 is a flow chart illustrating one example of a process of inter prediction
according to BIO.

[fig.65]FIG. 65 is a functional block diagram illustrating one example of a functional
configuration of an inter predictor which may perform inter prediction according to
BIO.

[fig.66 A]FIG. 66A is a conceptual diagram for illustrating one example of process of a

prediction image generation method using a luminance correction process performed
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by LIC.

[fig.66B]FIG. 66B is a flow chart illustrating one example of a process of prediction
image generation method using the LIC.

[fig.67]FIG. 67 is a block diagram illustrating a functional configuration of a decoder
according to an embodiment.

[fig.68]FIG. 68 is a functional block diagram illustrating a mounting example of a
decoder.

[fig.69]FIG. 69 is a flow chart illustrating one example of an overall decoding process
performed by the decoder.

[fig.70]FIG. 70 is a conceptual diagram for illustrating a relationship between a
splitting determiner and other constituent elements.

[fig.71]FIG. 71 is a block diagram illustrating one example of a functional con-
figuration of an entropy decoder.

[fig.72]FIG. 72 is a conceptual diagram for illustrating an example flow of a CABAC
process in the entropy decoder.

[fig.73]FIG. 73 is a block diagram illustrating one example of a functional con-
figuration of an inverse quantizer.

[fig.74]FIG. 74 is a flow chart illustrating one example of a process of inverse quan-
tization performed by the inverse quantizer.

[fig.75]FIG. 75 is a flow chart illustrating one example of a process performed by an
inverse transformer.

[fig.76]FIG. 76 is a flow chart illustrating another example of a process performed by
the inverse transformer.

[fig.77]FIG. 77 is a block diagram illustrating one example of a functional con-
figuration of a loop filter.

[fig.78]FIG. 78 is a flow chart illustrating one example of a process performed by a
predictor of the decoder.

[fig.79]FIG. 79 is a flow chart illustrating another example of a process performed by
the predictor of the decoder.

[fig.80A]FIG. 80A is a flow chart illustrating another example of a process performed
by the predictor of the decoder.

[fig.80B]FIG. 80B is a flow chart illustrating another example of a process performed
by the predictor of the decoder.

[fig.80C]FIG. 80C is a flow chart illustrating another example of a process performed
by the predictor of the decoder.

[fig.81]FIG. 81 is a diagram illustrating one example of a process performed by an
intra predictor of the decoder.

[fig.82]FIG. 82 is a flow chart illustrating one example of a process of MV derivation
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in the decoder.

[fig.83]FIG. 83 is a flow chart illustrating another example of a process of MV
derivation in the decoder.

[fig.84]FIG. 84 is a flow chart illustrating an example of a process of inter prediction
by normal inter mode in the decoder.

[fig.85]FIG. 85 is a flow chart illustrating an example of a process of inter prediction
by normal merge mode in the decoder.

[fig.86]FIG. 86 is a flow chart illustrating an example of a process of inter prediction
by FRUC mode in the decoder.

[fig.87]FIG. 87 is a flow chart illustrating an example of a process of inter prediction
by affine merge mode in the decoder.

[fig.88]FIG. 88 is a flow chart illustrating an example of a process of inter prediction
by affine inter mode in the decoder.

[fig.89]FIG. 89 is a flow chart illustrating an example of a process of inter prediction
by triangle mode in the decoder.

[fig.90]FIG. 90 is a flow chart illustrating an example of a process of motion es-
timation by DMVR in the decoder.

[fig.91]FIG. 91 is a flow chart illustrating one example process of motion estimation
by DMVR in the decoder.

[fig.92]FIG. 92 is a flow chart illustrating one example of a process of generation of a
prediction image in the decoder.

[fig.93]FIG. 93 is a flow chart illustrating another example of a process of generation
of a prediction image in the decoder.

[fig.94]FIG. 94 is a flow chart illustrating an example of a process of correction of a
prediction image by OBMC in the decoder.

[fig.95]FIG. 95 is a flow chart illustrating an example of a process of correction of a
prediction image by BIO in the decoder.

[fig.96]FIG. 96 is a flow chart illustrating an example of a process of correction of a
prediction image by LIC in the decoder.

[fig.97]FIG. 97 is a flow chart of a sample process flow of decoding an image applying
a CCALF (cross component adaptive loop filtering) process according to a first aspect.
[fig.98]FIG. 98 is a block diagram illustrating a functional configuration of an encoder
and a decoder according to an embodiment.

[fig.99]FIG. 99 is a block diagram illustrating a functional configuration of an encoder
and a decoder according to an embodiment.

[fig.100]FIG. 100 is a block diagram illustrating a functional configuration of an
encoder and a decoder according to an embodiment.

[fig.101]FIG. 101 is a block diagram illustrating a functional configuration of an
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encoder and a decoder according to an embodiment.

[fig. 102]FIG. 102 is a flow chart of a sample process flow of decoding an image
applying a CCALF process according to a second aspect.

[fig.103]FIG. 103 illustrates sample locations of clip parameters to be parsed from, for
example, a VPS, APS, SPS, PPS, slice header, CTU, or TU of a bitstream.
[fig.104]FIG. 104 illustrate examples of clip parameters.

[fig. 105]FIG. 105 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a filter coefficient according to a third aspect.
[fig.106]FIG. 106 is conceptual diagram of example indicating locations of filter coef-
ficients to be used in a CCALF process.

[fig. 107]FIG. 107 is conceptual diagram of example indicating locations of filter coef-
ficients to be used in a CCALF process.

[fig. 108]FIG. 108 is conceptual diagram of example indicating locations of filter coef-
ficients to be used in a CCALF process.

[fig. 109]FIG. 109 is conceptual diagram of example indicating locations of filter coef-
ficients to be used in a CCALF process.

[fig. 110]FIG. 110 is conceptual diagram of example indicating locations of filter coef-
ficients to be used in a CCALF process.

[fig. 111]FIG. 111 is conceptual diagram of further example indicating locations of
filter coefficients to be used in a CCALF process.

[fig. 112]FIG. 112 is conceptual diagram of further example indicating locations of
filter coefficients to be used in a CCALF process.

[fig. 113]FIG. 113 is a block diagram illustrating a functional configuration of a
CCALF process performed by an encoder and a decoder according to an embodiment.
[fig. 114]FIG. 114 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a filter selected from a plurality of filters according
to a fourth aspect.

[fig. 115]FIG. 115 illustrates an example of a process flow of selecting a filter.
[fig.116]FIG.116 illustrates examples of filters.

[fig. 117]FIG.117 illustrates examples of filters.

[fig. 118]FIG. 118 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a parameter according to a fifth aspect.

[fig. 119]FIG. 119 illustrates examples of the number of coefficients to be parsed from
a bitstream.

[fig.120]FIG. 120 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a parameter according to a sixth aspect.

[fig. 121]FIG. 121 is a conceptual diagram illustrating example of generating a CCALF

value of a luma component for a current chroma sample by calculating a weighted
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average value of neighboring samples.

[fig. 122]FIG. 122 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component for a current chroma sample by calculating a weighted
average value of neighboring samples.

[fig.123]FIG. 123 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component for a current chroma sample by calculating a weighted
average value of neighboring samples.

[fig.124]FIG. 124 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component for a current sample by calculating a weighted average
value of neighboring samples, wherein locations of neighboring samples are de-
termined adaptively to chroma type.

[fig. 125]FIG. 125 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component for a current sample by calculating a weighted average
value of neighboring samples, wherein locations of neighboring samples are de-
termined adaptively to chroma type.

[fig.126]FIG. 126 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component by applying a bit shift to an output value of weighting cal-
culation.

[fig. 127]FIG. 127 is a conceptual diagram illustrating example of generating a CCALF
value of a luma component by applying a bit shift to an output value of weighting cal-
culation.

[fig. 128]FIG. 128 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a parameter according to a seventh aspect.

[fig. 129]FIG. 129 illustrates sample locations of one or more parameters to be parsed
from a bitstream.

[fig.130]FIG. 130 shows sample processes of retrieving the one or more parameters.
[fig.131]FIG. 131 shows sample values of a second parameter.

[fig.132]FIG. 132 shows an example of parsing a second parameter using arithmetic
coding.

[fig.133]FIG. 133 is a conceptual diagram of a variation of this embodiment applied to
rectangular partitions and non-rectangular partitions such as triangular partitions.
[fig.134]FIG. 134 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a parameter according to an eight aspect.

[fig. 135]FIG. 135 is a flow chart of a sample process flow of decoding an image
applying a CCALF process using a parameter according to the eighth aspect.
[fig.136]FIG. 136 shows example locations of chroma sample types O to 5.
[fig.137]FIG. 137 is a conceptual diagram illustrating sample symmetric padding.
[fig.138]FIG. 138 is a conceptual diagram illustrating sample symmetric padding.
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[fig.145]FIG.

padding.

[fig.146]FIG.

padding.

[fig.147]FIG.

padding.

[fig. 148]FIG.

padding.

[fig. 149]FIG.

padding.

[fig. 150]FIG.

padding.

[fig. 151]FIG.

padding.

[fig. 152]FIG.

padding.

[fig. 153]FIG.

padding.

[fig. 154]FIG.

padding.
[fig. 155]FIG

13
PCT/JP2020/030507

. 139 is a conceptual diagram illustrating sample symmetric padding.

. 140 is a conceptual diagram illustrating sample non-symmetric padding.
. 141 is a conceptual diagram illustrating sample non-symmetric padding.
. 142 is a conceptual diagram illustrating sample non-symmetric padding.
. 143 is a conceptual diagram illustrating sample non-symmetric padding.

. 144 is a conceptual diagram illustrating further sample non-symmetric

145 is a conceptual diagram illustrating further sample non-symmetric

146 is a conceptual diagram illustrating further sample non-symmetric

147 is a conceptual diagram illustrating further sample non-symmetric

148 is a conceptual diagram illustrating further sample symmetric

149 is a conceptual diagram illustrating further sample symmetric

150 is a conceptual diagram illustrating further sample symmetric

151 is a conceptual diagram illustrating further sample non-symmetric

152 is a conceptual diagram illustrating further sample non-symmetric

153 is a conceptual diagram illustrating further sample non-symmetric

154 is a conceptual diagram illustrating further sample non-symmetric

. 155 illustrates further examples of padding with a horizontal and vertical

virtual boundary.

[fig. 156]FIG

. 156 is a block diagram illustrating a functional configuration of an

encoder and a decoder according to an example where symmetric padding is used on

virtual boundary locations for an ALF and either symmetric or non-symmetric padding

is used on virtual boundary locations for a CC-ALF.

[fig.157]FIG

. 157 is a block diagram illustrating a functional configuration of an

encoder and a decoder according to another example where symmetric padding is used

on virtual boundary locations for an ALF and single-side padding is used on virtual
boundary locations for a CC-ALF.

[fig. 158]FIG

. 158 is a conceptual diagram illustrating an example of single-side
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padding with either a horizontal or vertical virtual boundary.

[fig. 159]FIG. 159 is a conceptual diagram illustrating an example of single-side
padding with a horizontal and vertical virtual boundary.

[fig.160]FIG. 160 is a diagram illustrating an example overall configuration of a
content providing system for implementing a content distribution service.
[fig.161]FIG. 161 is a conceptual diagram for illustrating an example of a display
screen of a web page.

[fig. 162]FIG. 162 is a conceptual diagram for illustrating an example of a display
screen of a web page.

[fig.163]FIG. 163 is a block diagram illustrating one example of a smartphone.
[fig.164]FIG. 164 is a block diagram illustrating an example of a functional con-
figuration of a smartphone.

Description of Embodiments

In the drawings, identical reference numbers identify similar elements, unless the
context indicates otherwise. The sizes and relative positions of elements in the
drawings are not necessarily drawn to scale.

Hereinafter, embodiment(s) will be described with reference to the drawings. Note
that the embodiment(s) described below each show a general or specific example. The
numerical values, shapes, materials, components, the arrangement and connection of
the components, steps, the relation and order of the steps, etc., indicated in the
following embodiment(s) are mere examples, and are not intended to limit the scope of
the claims.

Embodiments of an encoder and a decoder will be described below. The em-
bodiments are examples of an encoder and a decoder to which the processes and/or
configurations presented in the description of aspects of the present disclosure are ap-
plicable. The processes and/or configurations can also be implemented in an encoder
and a decoder different from those according to the embodiments. For example,
regarding the processes and/or configurations as applied to the embodiments, any of
the following may be implemented:

(1) Any of the components of the encoder or the decoder according to the em-
bodiments presented in the description of aspects of the present disclosure may be sub-
stituted or combined with another component presented anywhere in the description of
aspects of the present disclosure.

(2) In the encoder or the decoder according to the embodiments, discretionary
changes may be made to functions or processes performed by one or more components
of the encoder or the decoder, such as addition, substitution, removal, etc., of the

functions or processes. For example, any function or process may be substituted or
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combined with another function or process presented anywhere in the description of
aspects of the present disclosure.

(3) In methods implemented by the encoder or the decoder according to the em-
bodiments, discretionary changes may be made such as addition, substitution, and
removal of one or more of the processes included in the method. For example, any
process in the method may be substituted or combined with another process presented
anywhere in the description of aspects of the present disclosure.

(4) One or more components included in the encoder or the decoder according to em-
bodiments may be combined with a component presented anywhere in the description
of aspects of the present disclosure, may be combined with a component including one
or more functions presented anywhere in the description of aspects of the present
disclosure, and may be combined with a component that implements one or more
processes implemented by a component presented in the description of aspects of the
present disclosure.

(5) A component including one or more functions of the encoder or the decoder
according to the embodiments, or a component that implements one or more processes
of the encoder or the decoder according to the embodiments, may be combined or sub-
stituted with a component presented anywhere in the description of aspects of the
present disclosure, with a component including one or more functions presented
anywhere in the description of aspects of the present disclosure, or with a component
that implements one or more processes presented anywhere in the description of
aspects of the present disclosure.

(6) In methods implemented by the encoder or the decoder according to the em-
bodiments, any of the processes included in the method may be substituted or
combined with a process presented anywhere in the description of aspects of the
present disclosure or with any corresponding or equivalent process.

(7) One or more processes included in methods implemented by the encoder or the
decoder according to the embodiments may be combined with a process presented
anywhere in the description of aspects of the present disclosure.

(8) The implementation of the processes and/or configurations presented in the de-
scription of aspects of the present disclosure is not limited to the encoder or the
decoder according to the embodiments. For example, the processes and/or config-
urations may be implemented in a device used for a purpose different from the moving
picture encoder or the moving picture decoder disclosed in the embodiments.

(Definitions of Terms)

The respective terms may be defined as indicated below as examples.

An image is a data unit configured with a set of pixels, is a picture, or includes

blocks smaller than a pixel. Images include a still image in addition to a video.
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A picture is an image processing unit configured with a set of pixels, and also may be
referred to as a frame or a field. A picture may, for example, take the form of an array
of luma samples in monochrome format or an array of luma samples and two corre-
sponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 color format.

A block is a processing unit which is a set of a determined number of pixels. Blocks
may have any number of different shapes. For example, a block may have a
rectangular shape of MxN (M-column by N-row) pixels, a square shape of M x M
pixels, a triangular shape, a circular shape, etc. Examples of blocks include slices, tiles,
bricks, CTUs, super blocks, basic splitting units, VPDUs, processing splitting units for
hardware, CUs, processing block units, prediction block units (PUs) orthogonal
transform block units (TUs), units, and sub-blocks. A block may take the form of an
MxN array of samples, or an MxN array of transform coefficients. For example, a
block may be a square or rectangular region of pixels including one Luma and two
Chroma matrices.

A pixel or sample is a smallest point of an image. Pixels or samples include a pixel at
an integer position, as well as pixels at sub-pixel positions, €.g., generated based on a
pixel at an integer position.

A pixel value or a sample value is an eigenvalue of a pixel. Pixel values or sample
values may include one or more of a luma value, a chroma value, an RGB gradation
level, a depth value, binary values of zero or 1, etc.

Chroma or chrominance is an intensity of a color, typically represented by the
symbols Cb and Cr, which specify that values of a sample array or a single sample
value represent values of one of two color difference signals related to the primary
colors.

Luma or luminance is a brightness of an image, typically represented by the symbol
or the subscript Y or L, which specify that values of a sample array or a single sample
value represent values of a monochrome signal related to the primary colors.

A flag comprises one or more bits which indicate a value, for example, of a
parameter or index. A flag may be a binary flag which indicates a binary value of the
flag, which also may indicate a non-binary value of a parameter.

A signal conveys information, which is symbolized by or encoded into the signal.
Signals include discrete digital signals and continuous analog signals.

A stream or a bitstream is a digital data string of a digital data flow. A stream or
bitstream may be one stream or may be configured with a plurality of streams having a
plurality of hierarchical layers. A stream or bitstream may be transmitted in serial com-
munication using a single transmission path, or may be transmitted in packet commu-
nication using a plurality of transmission paths.

A difference refers to various mathematical differences, such as a simple difference
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(x - y), an absolute value of a difference (Ix - yl), a squared difference (x"2 - y*2), a
square root of a difference (ix - y)), a weighted difference (ax - by: a and b are
constants), an offset difference (x - y + a: a is an offset), etc. In the case of scalar
quantity, a simple difference may suffice, and a difference calculation be included.

A sum refers to various mathematical sums, such as a simple sum (x + y), an absolute
value of a sum (Ix + yl), a squared sum (x2 + y”2), a square root of a sum (N(x + y)), a
weighted difference (ax + by: a and b are constants), an offset sum (x + y + a: ais an
offset), etc. In the case of scalar quantity, a simple sum may suffice, and a sum cal-
culation be included.

A frame is the composition of a top field and a bottom field, where sample rows 0, 2,
4, ... originate from the top field and sample rows 1, 3, 5, ... originate from the bottom
field.

A slice is an integer number of coding tree units contained in one independent slice
segment and all subsequent dependent slice segments (if any) that precede the next in-
dependent slice segment (if any) within the same access unit.

A tile is a rectangular region of coding tree blocks within a particular tile column and
a particular tile row in a picture. A tile may be a rectangular region of the frame that is
intended to be able to be decoded and encoded independently, although loop-filtering
across tile edges may still be applied.

A coding tree unit (CTU) may be a coding tree block of luma samples of a picture
that has three sample arrays, or two corresponding coding tree blocks of chroma
samples. Alternatively, a CTU may be a coding tree block of samples of one of a
monochrome picture and a picture that is coded using three separate color planes and
syntax structures used to code the samples. A super block may be a square block of
64x64 pixels that consists of either 1 or 2 mode info blocks or is recursively par-
titioned into four 32x32 blocks, which themselves can be further partitioned.

(System Configuration)

First, a transmission system according to an embodiment will be described. FIG. 1 is
a schematic diagram illustrating one example of a configuration of a transmission
system 400 according to an embodiment.

The transmission system 400 is a system which transmits a stream generated by
encoding an image and decodes the transmitted stream. As illustrated, transmission
system 400 includes an encoder 100, a network 300, and decoder 200 as illustrated in
FIG. 1.

An image is input to encoder 100. Encoder 100 generates a stream by encoding the
input image, and outputs the stream to network 300. The stream includes, for example,
the encoded image and control information for decoding the encoded image. The

image is compressed by the encoding.
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It is to be noted that an image before being encoded by the encoder 100 is also
referred to as the original image, the original signal, or the original sample. The image
may be a video or a still image. An image is a generic concept of a sequence, a picture,
and a block, and thus is not limited to a spatial region having a particular size and to a
temporal region having a particular size unless otherwise specified. An image is an
array of pixels or pixel values, and the signal representing the image or pixel values are
also referred to as samples. The stream may be referred to as a bitstream, an encoded
bitstream, a compressed bitstream, or an encoded signal. Furthermore, the encoder 100
may be referred to as an image encoder or a video encoder. The encoding method
performed by encoder 100 may be referred to as an encoding method, an image
encoding method, or a video encoding method.

The network 300 transmits the stream generated by encoder 100 to decoder 200. The
network 200 may be the Internet, a Wide Area Network (WAN), a Local Area
Network (LAN), or any combination of networks. The network 300 is not limited to a
bi-directional communication network, and may be a uni-directional communication
network which transmits broadcast waves of digital terrestrial broadcasting, satellite
broadcasting, or the like. Alternatively, the network 300 may be replaced by a
recording medium such as a Digital Versatile Disc (DVD) and a Blue-Ray Disc (BD),
etc. on which a stream is recorded.

The decoder 200 generates, for example, a decoded image which is an uncompressed
image, by decoding a stream transmitted by network 300. For example, the decoder
decodes a stream according to a decoding method corresponding to an encoding
method employed by encoder 100.

It is to be noted that the decoder 200 may also be referred to as an image decoder or a
video decoder, and that the decoding method performed by the decoder 200 may also
be referred to as a decoding method, an image decoding method, or a video decoding
method.

(Data Structure)

FIG. 2 is a conceptual diagram for illustrating one example of a hierarchical structure
of data in a stream. For convenience, FIG. 2 will be described with reference to the
transmission system 400 of FIG. 1. A stream includes, for example, a video sequence.
As illustrated in (a) of FIG. 2, the video sequence includes a one or more video
parameter sets (VPS), one or more sequence parameter sets (SPS), one or more picture
parameter sets (PPS), supplemental enhancement information (SEI), and a plurality of
pictures.

In a video having a plurality of layers, a VPS may include a coding parameter which
is common between some of the plurality of layers, and a coding parameter related to

some of the plurality of layers included in the video or to an individual layer.
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An SPS includes a parameter which is used for a sequence, that is, a coding
parameter which the decoder 200 refers to in order to decode the sequence. For
example, the coding parameter may indicate the width or height of a picture. It is to be
noted that a plurality of SPSs may be present.

A PPS includes a parameter which is used for a picture, that is, a coding parameter
which the decoder 200 refers to in order to decode each of the pictures in the sequence.
For example, the coding parameter may include a reference value for a quantization
width which is used to decode a picture and a flag indicating application of weighted
prediction. It is to be noted that a plurality of PPSs may be present. Each of the SPS
and the PPS may be simply referred to as a parameter set.

As illustrated in (b) of FIG. 2, a picture may include a picture header and one or more
slices. A picture header includes a coding parameter which the decoder 200 refers to in
order to decode the one or more slices.

As illustrated in (c) of FIG. 2, a slice includes a slice header and one or more bricks.
A slice header includes a coding parameter which the decoder 200 refers to in order to
decode the one or more bricks.

As illustrated in (d) of FIG. 2, a brick includes one or more coding tree units (CTU).

It is to be noted that a picture may not include any slice and may include a tile group
instead of a slice. In this case, the tile group includes at least one tile. In addition, a
brick may include a slice.

A CTU is also referred to as a super block or a basis splitting unit. As illustrated in
(e) of FIG. 2, a CTU includes a CTU header and at least one coding unit (CU). As il-
lustrated, the CTU includes four coding units CU(10), CU(11), (CU(12) and CU(13).
A CTU header includes a coding parameter which the decoder 200 refers to in order to
decode the at least one CU.

A CU may be split into a plurality of smaller CUs. As shown, CU(10) is not split into
smaller coding units; CU(11) is split into four smaller coding units CU(110), CU(111),
CU(112) and CU(113); CU(12) is not split into smaller coding units; and CU(13) is
split into seven smaller coding units CU(1310), CU(1311), CU(1312), CU(1313),
CU(132), CU(133) and CU(134) As illustrated in (f) of FIG. 2, a CU includes a CU
header, prediction information, and residual coefficient information. Prediction in-
formation is information for predicting the CU, and the residual coefficient information
is information indicating a prediction residual to be described later. Although a CU is
basically the same as a prediction unit (PU) and a transform unit (TU), it is to be noted
that, for example, a sub-block transform (SBT) to be described later may include a
plurality of TUs smaller than the CU. In addition, the CU may be processed for each
virtual pipeline decoding unit (VPDU) included in the CU. The VPDU is, for example,

a fixed unit which can be processed at one stage when pipeline processing is performed
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in FIG. 2. The order of the hierarchical layers may be exchanged, or any of the hier-
archical layers may be replaced by another hierarchical layer. Here, a picture which is
a target for a process which is about to be performed by a device such as encoder 100
or decoder 200 is referred to as a current picture. A current picture means a current
picture to be encoded when the process is an encoding process, and a current picture
means a current picture to be decoded when the process is a decoding process.
Likewise, for example, a CU or a block of CUs which is a target for a process which is
about to be performed by a device such as the encoder 100 or the decoder 200 is
referred to as a current block. A current block means a current block to be encoded
when the process is an encoding process, and a current block means a current block to
be decoded when the process is a decoding process.

(Picture Structure: Slice/Tile)

A picture may be configured with one or more slice units or one or more tile units to
facilitate coding/decoding of the picture in parallel.

Slices are basic coding units included in a picture. A picture may include, for
example, one or more slices. In addition, a slice includes one or more coding tree units
(CTUs).

FIG. 3 is a conceptual diagram for illustrating one example of a slice configuration.
For example, in FIG. 3 a picture includes 11x8 CTUs, and is split into four slices
(slices 1 to 4). Slice 1 includes sixteen CTUs, slice 2 includes twenty-one CTUs, slice
3 includes twenty-nine CTUs, and slice 4 includes twenty-two CTUs. Here, each CTU
in the picture belongs to one of the slices. The shape of each slice is a shape obtained
by splitting the picture horizontally. A boundary of each slice does not need to
coincide with an image end, and may coincide with any of the boundaries between
CTUs in the image. The processing order of the CTUs in a slice (an encoding order or
a decoding order) is, for example, a raster-scan order. A slice includes a slice header
and encoded data. Features of the slice may be written in the slice header. The features
may include a CTU address of a top CTU in the slice, a slice type, etc.

A tile is a unit of a rectangular region included in a picture. Tiles of a picture may be
assigned with a number referred to as Tileld in raster-scan order.

FIG. 4 is a conceptual diagram for illustrating one example of a tile configuration.
For example, in FIG. 4 a picture includes 11x8 CTUs, and is split into four tiles of
rectangular regions (tiles 1 to 4). When tiles are used, the processing order of CTUs
may be different from the processing order in the case where tiles are not used. When
no tile is used, a plurality of CTUs in a picture generally are processed in raster-scan

order. When a plurality of tiles are used, at least one CTU in each of the plurality of
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tiles is processed in raster-scan order. For example, as illustrated in FIG. 4 the
processing order of the CTUs included in tile 1 from the left-end of the first column of
tile 1 toward the right-end of the first column of tile 1 and then continues from the left-
end of the second column of tile 1 toward the right-end of the second column of tile 1.

It is to be noted that the one tile may include one or more slices, and one slice may
include one or more tiles.

It is to be noted that the picture may be configured with one or more tile sets. A tile
set may include one or more tile groups, or one or more tiles. A picture may be
configured with one of a tile set, a tile group, and a tile. For example, an order for
scanning a plurality of tiles for each tile set in raster scan order is assumed to be a basic
encoding order of tiles. A set of one or more tiles which are continuous in the basic
encoding order in each tile set is assumed to be a tile group. Such a picture may be
configured by splitter 102 (see FIG. 7) to be described later.

(Scalable Encoding)

FIGs. 5 and 6 are conceptual diagrams illustrating examples of scalable stream
structures, and will be described for convenience with reference to FIG. 1.

As illustrated in FIG. 5, encoder 100 may generate a temporally/spatially scalable
stream by dividing each of a plurality of pictures into any of a plurality of layers and
encoding the picture in the layer. For example, encoder 100 encodes the picture for
each layer, thereby achieving scalability where an enhancement layer is present above
a base layer. Such encoding of each picture is also referred to as scalable encoding. In
this way, decoder 200 is capable of switching image quality of an image which is
displayed by decoding the stream. In other words, decoder 200 may determine which
layer to decode based on internal factors such as the processing ability of decoder 200
and external factors such as a state of a communication bandwidth. As a result, decoder
200 is capable of decoding a content while freely switching between low resolution
and high resolution. For example, the user of the stream watches a video of the stream
halfway using a smartphone on the way to home, and continues watching the video at
home on a device such as a TV connected to the Internet. It is to be noted that each of
the smartphone and the device described above includes decoder 200 having the same
or different performances. In this case, when the device decodes layers up to the higher
layer in the stream, the user can watch the video at high quality at home. In this way,
encoder 100 does not need to generate a plurality of streams having different image
qualities of the same content, and thus the processing load can be reduced.

Furthermore, the enhancement layer may include meta information based on sta-
tistical information on the image. Decoder 200 may generate a video whose image
quality has been enhanced by performing super-resolution imaging on a picture in the

base layer based on the metadata. Super-resolution imaging may include, for example,
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improvement in the SN ratio in the same resolution, an increase in resolution, etc.
Metadata may include, for example, information for identifying a linear or a non-linear
filter coefficient, as used in a super-resolution process, or information identifying a
parameter value in a filter process, machine learning, or a least squares method used in
super-resolution processing, etc.

In an embodiment, a configuration may be provided in which a picture is divided
into, for example, tiles in accordance with, for example, the meaning of an object in
the picture. In this case, decoder 200 may decode only a partial region in a picture by
selecting a tile to be decoded. In addition, an attribute of the object (person, car, ball,
etc.) and a position of the object in the picture (coordinates in identical images) may be
stored as metadata. In this case, decoder 200 is capable of identifying the position of a
desired object based on the metadata, and determining the tile including the object. For
example, as illustrated in FIG. 6, the metadata may be stored using a data storage
structure different from image data, such as an SEI (supplemental enhancement in-
formation) message in HEVC. This metadata indicates, for example, the position, size,
or color of the main object.

Metadata may be stored in units of a plurality of pictures, such as a stream, a
sequence, or a random access unit. In this way, decoder 200 is capable of obtaining, for
example, the time at which a specific person appears in the video, and by fitting the
time information with picture unit information, is capable of identifying a picture in
which the object (person) is present and determining the position of the object in the
picture.

(Encoder)

An encoder according to an embodiment will be described. FIG. 7 is a block diagram
illustrating a functional configuration of encoder 100 according to the embodiment.
Encoder 100 is a video encoder which encodes a video in units of a block.

As illustrated in FIG. 7, encoder 100 is an apparatus which encodes an image in units
of a block, and includes splitter 102, subtractor 104, transformer 106, quantizer 108,
entropy encoder 110, inverse quantizer 112, inverse transformer 114, adder 116, block
memory 118, loop filter 120, frame memory 122, intra predictor 124, inter predictor
126, prediction controller 128, and prediction parameter generator 130. As illustrated,
intra predictor 124 and inter predictor 126 are part of a prediction controller.

Encoder 100 is implemented as, for example, a generic processor and memory. In
this case, when a software program stored in the memory is executed by the processor,
the processor functions as splitter 102, subtractor 104, transformer 106, quantizer 108,
entropy encoder 110, inverse quantizer 112, inverse transformer 114, adder 116, loop
filter 120, intra predictor 124, inter predictor 126, and prediction controller 128. Alter-

natively, encoder 100 may be implemented as one or more dedicated electronic circuits
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corresponding to splitter 102, subtractor 104, transformer 106, quantizer 108, entropy
encoder 110, inverse quantizer 112, inverse transformer 114, adder 116, loop filter
120, intra predictor 124, inter predictor 126, and prediction controller 128.

(Mounting Example of Encoder)

FIG. 8 is a functional block diagram illustrating a mounting example of an encoder
100. Encoder 100 includes processor al and memory a2. For example, the plurality of
constituent elements of encoder 100 illustrated in FIG. 7 are mounted on processor al
and memory a2 illustrated in FIG. 8.

Processor al is circuitry which performs information processing and is coupled to
memory a2. For example, processor al is dedicated or general electronic circuitry
which encodes an image. Processor al may be a processor such as a CPU. In addition,
processor al may be an aggregate of a plurality of electronic circuits. In addition, for
example, processor al may take the roles of two or more constituent elements out of
the plurality of constituent elements of encoder 100 illustrated in FIG. 7, etc.

Memory a2 is dedicated or general memory for storing information that is used by
processor al to encode the image. Memory a2 may be electronic circuitry, and may be
connected to processor al. In addition, memory a2 may be included in processor al. In
addition, memory a2 may be an aggregate of a plurality of electronic circuits. In
addition, memory a2 may be a magnetic disc, an optical disc, or the like, or may be
represented as a storage, a recording medium, or the like. In addition, memory a2 may
be non-volatile memory, or volatile memory.

For example, memory a2 may store an image to be encoded or a bitstream corre-
sponding to an encoded image. In addition, memory a2 may store a program for
causing processor al to encode an image.

In addition, for example, memory a2 may take the roles of two or more constituent
elements for storing information out of the plurality of constituent elements of encoder
100 illustrated in FIG. 7, etc. For example, memory a2 may take the roles of block
memory 118 and frame memory 122 illustrated in FIG. 7. More specifically, memory
a2 may store a reconstructed block, a reconstructed picture, etc.

It is to be noted that, in encoder 100, all of the plurality of constituent elements
indicated in FIG. 7, etc. may not be implemented, and all the processes described
herein may not be performed. Part of the constituent elements indicated in FIG. 7, etc.
may be included in another device, or part of the processes described herein may be
performed by another device.

Hereinafter, an overall flow of processes performed by encoder 100 is described, and
then each of constituent elements included in encoder 100 will be described.

(Overall Flow of Encoding Process)

FIG. 9 is a flow chart indicating one example of an overall encoding process
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performed by encoder 100, and for convenience will be described with reference to
FIG. 7.

First, splitter 102 of encoder 100 splits each of the pictures included in an input
image into a plurality of blocks having a fixed size (e.g., 128x128 pixels) (Step Sa_1).
Splitter 102 then selects a splitting pattern for the fixed-size block (also referred to as a
block shape) (Step Sa_2). In other words, splitter 102 further splits the fixed-size block
into a plurality of blocks which form the selected splitting pattern. Encoder 100
performs, for each of the plurality of blocks, Steps Sa_3 to Sa_9 for the block (that is a
current block to be encoded).

Prediction controller 128 and prediction executor (which includes intra predictor 124
and inter predictor 126) generate a prediction image of a current block (Step Sa-3). The
prediction image may also be referred to as a prediction signal, a prediction block, or
prediction samples.

Next, subtractor 104 generates a difference between the current block and a
prediction image as a prediction residual (Step Sa_4). The prediction residual may also
be referred to as a prediction error.

Next, transformer 106 transforms the prediction image and quantizer 108 quantizes
the result, to generate a plurality of quantized coefficients (Step Sa_5). The plurality of
quantized coefficients may sometimes be referred to as a coefficient block.

Next, entropy encoder 110 encodes (specifically, entropy encodes) the plurality of
quantized coefficients and a prediction parameter related to generation of a prediction
image, to generate a stream (Step Sa_6). The stream may sometimes be referred to as
an encoded bitstream or a compressed bitstream.

Next, inverse quantizer 112 performs inverse quantization of the plurality of
quantized coefficients and inverse transformer 114 performs inverse transformation of
the result, to restore a prediction residual (Step Sa_7).

Next, adder 116 adds the prediction image to the restored prediction residual to re-
construct the current block (Step Sa_8). In this way, the reconstructed image is
generated. The reconstructed image may also be referred to as a reconstructed block or
a decoded image block.

When the reconstructed image is generated, loop filter 120 performs filtering of the
reconstructed image as necessary (Step Sa_9).

Encoder 100 then determines whether encoding of the entire picture has been
finished (Step Sa_10). When determining that the encoding has not yet been finished
(No in Step Sa_10), execution of processes from Step Sa_2 are repeated for the next
block of the picture.

Although encoder 100 selects one splitting pattern for a fixed-size block, and

encodes each block according to the splitting pattern in the above-described example,
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it is to be noted that each block may be encoded according to a corresponding one of a
plurality of splitting patterns. In this case, encoder 100 may evaluate a cost for each of
the plurality of splitting patterns, and, for example, may select the stream obtainable by
encoding according to the splitting pattern which yields the smallest cost as a stream
which is output.

As illustrated, the processes in Steps Sa_1 to Sa_10 are performed sequentially by
encoder 100. Alternatively, two or more of the processes may be performed in parallel,
the processes may be reordered, etc.

The encoding process employed by encoder 100 is a hybrid encoding using
prediction encoding and transform encoding. In addition, prediction encoding is
performed by an encoding loop configured with subtractor 104, transformer 106,
quantizer 108, inverse quantizer 112, inverse transformer 114, adder 116, loop filter
120, block memory 118, frame memory 122, intra predictor 124, inter predictor 126,
and prediction controller 128. In other words, the prediction executor configured with
intra predictor 124 and inter predictor 126 is part of the encoding loop.

(Splitter)

Splitter 102 splits each picture included in the original image into a plurality of
blocks, and outputs each block to subtractor 104. For example, splitter 102 first splits a
picture into blocks of a fixed size (for example, 128x128 pixels). Other fixed block
sizes may be employed. The fixed-size block is also referred to as a coding tree unit
(CTU). Splitter 102 then splits each fixed-size block into blocks of variable sizes (for
example, 64x64 pixels or smaller), based on recursive quadtree and/or binary tree
block splitting. In other words, splitter 102 selects a splitting pattern. The variable-size
block also may be referred to as a coding unit (CU), a prediction unit (PU), or a
transform unit (TU). It is to be noted that, in various kinds of processing examples,
there is no need to differentiate between CU, PU, and TU; all or some of the blocks in
a picture may be processed in units of a CU, a PU, or a TU.

FIG. 10 is a conceptual diagram for illustrating one example of block splitting
according to an embodiment. In FIG. 10, the solid lines represent block boundaries of
blocks split by quadtree block splitting, and the dashed lines represent block
boundaries of blocks split by binary tree block splitting.

Here, block 10 is a square block having 128x128 pixels (128x128 block). This
128x128 block 10 is first split into four square 64x64 pixel blocks (quadtree block
splitting).

The upper-left 64x64 pixel block is further vertically split into two rectangular 32x64
pixel blocks, and the left 32x64 pixel block is further vertically split into two
rectangular 16x64 pixel blocks (binary tree block splitting). As a result, the upper-left
64x64 pixel block is split into two 16x64 pixel blocks 11 and 12 and one 32x64 pixel
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block 13.

The upper-right 64x64 pixel block is horizontally split into two rectangular 64x32
pixel blocks 14 and 15 (binary tree block splitting).

The lower-left square 64x64 pixel block is first split into four square 32x32 pixel
blocks (quadtree block splitting). The upper-left block and the lower-right block
among the four square 32x32 pixel blocks are further split. The upper-left square
32x32 pixel block is vertically split into two rectangle 16x32 pixel blocks, and the
right 16x32 pixel block is further horizontally split into two 16x16 pixel blocks (binary
tree block splitting). The lower-right 32x32 pixel block is horizontally split into two
32x16 pixel blocks (binary tree block splitting). The upper-right square 32x32 pixel
block is horizontally split into two rectangle 32x16 pixel blocks (binary tree block
splitting). As a result, the lower-left square 64x64 pixel block is split into
rectangule16x32 pixel block 16, two square 16x16 pixel blocks 17 and 18, two square
32x32 pixel blocks 19 and 20, and two rectangle 32x16 pixel blocks 21 and 22.

The lower-right 64x64 pixel block 23 is not split.

As described above, in FIG. 10, block 10 is split into thirteen variable-size blocks 11
through 23 based on recursive quadtree and binary tree block splitting. This type of
splitting is also referred to as quadtree plus binary tree (QTBT) splitting.

It is to be noted that, in FIG. 10, one block is split into four or two blocks (quadtree
or binary tree block splitting), but splitting is not limited to these examples. For
example, one block may be split into three blocks (ternary block splitting). Splitting
including such ternary block splitting is also referred to as multi-type tree (MBT)
splitting.

FIG. 11 is a block diagram illustrating one example of a functional configuration of
splitter 102 according to one embodiment. As illustrated in FIG. 11, splitter 102 may
include block splitting determiner 102a. Block splitting determiner 102a may perform
the following processes as examples.

For example, block splitting determiner 102a may obtain or retrieve block in-
formation from block memory 118 and/or frame memory 122, and determine a
splitting pattern (e.g., the above-described splitting pattern) based on the block in-
formation. Splitter 102 splits the original image according to the splitting pattern, and
outputs at least one block obtained by the splitting to subtractor 104.

In addition, for example, block splitting determiner 102a outputs one or more pa-
rameters indicating the determined splitting pattern (e.g., the above-described splitting
pattern) to transformer 106, inverse transformer 114, intra predictor 124, inter predictor
126, and entropy encoder 110. Transformer 106 may transform a prediction residual
based on the one or more parameters. Intra predictor 124 and inter predictor 126 may

generate a prediction image based on the one or more parameters. In addition, entropy
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encoder 110 may entropy encode the one or more parameters.

The parameter related to the splitting pattern may be written in a stream as indicated
below as one example.

FIG. 12 is a conceptual diagram for illustrating examples of splitting patterns.
Examples of splitting patterns include: splitting into four regions (QT) in which a
block is split into two regions both horizontally and vertically; splitting into three
regions (HT or VT) in which a block is split in the same direction in a ratio of 1:2:1;
splitting into two regions (HB or VB) in which a block is split in the same direction in
aratio of 1:1; and no splitting (NS).

It is to be noted that the splitting pattern does not have a block splitting direction in
the case of splitting into four regions and no splitting, and that the splitting pattern has
splitting direction information in the case of splitting into two regions or three regions.

FIG. 13A is a conceptual diagram for illustrating one example of a syntax tree of a
splitting pattern.

FIG. 13B is a conceptual diagram for illustrating another example of a syntax tree of
a splitting pattern.

FIGs. 13A and 13B are conceptual diagrams for illustrating examples of a syntax tree
of a splitting pattern. In the example of FIG. 13A, first, information indicating whether
to perform splitting (S: Split flag) is present, and information indicating whether to
perform splitting into four regions (QT: QT flag) is present next. Information in-
dicating which one of splitting into three regions and two regions is to be performed
(TT: TT flag or BT: BT flag) is present next, and information indicating a division
direction (Ver: Vertical flag or Hor: Horizontal flag) is then present. It is to be noted
that each of at least one block obtained by splitting according to such a splitting pattern
may be further split repeatedly in a similar process. In other words, as one example,
whether splitting is performed, whether splitting into four regions is performed, which
one of the horizontal direction and the vertical direction is the direction in which a
splitting method is to be performed, which one of splitting into three regions and
splitting into two regions is to be performed may be recursively determined, and the
determination results may be encoded in a stream according to the encoding order
disclosed by the syntax tree illustrated in FIG. 13A.

In addition, although information items respectively indicating S, QT, TT, and Ver
are arranged in the listed order in the syntax tree illustrated in FIG. 13A, information
items respectively indicating S, QT, Ver, and BT may be arranged in the listed order.
In other words, in the example of FIG. 13B, first, information indicating whether to
perform splitting (S: Split flag) is present, and information indicating whether to
perform splitting into four regions (QT: QT flag) is present next. Information in-

dicating the splitting direction (Ver: Vertical flag or Hor: Horizontal flag) is present
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next, and information indicating which one of splitting into two regions and splitting
into three regions is to be performed (BT: BT flag or TT: TT flag) is then present.

It is to be noted that the splitting patterns described above are examples, and splitting
patterns other than the described splitting patterns may be used, or part of the described
splitting patterns may be used.

(Subtractor)

Subtractor 104 subtracts a prediction image (prediction sample that is input from
prediction controller 128 indicated below) from an original image in units of a block
input from splitter 102 and split by splitter 102. In other words, subtractor 104
calculates prediction residuals (also referred to as errors) of a current block. Subtractor
104 then outputs the calculated prediction residuals to transformer 106.

The original image may be an image which has been input into encoder 100 as a
signal representing an image of each picture included in a video (for example, a luma
signal and two chroma signals). A signal representing an image also may be referred to
as a sample.

(Transformer)

Transformer 106 transforms prediction residuals in a spatial domain into transform
coefficients in a frequency domain, and outputs the transform coefficients to quantizer
108. More specifically, transformer 106 applies, for example, a defined discrete cosine
transform (DCT) or discrete sine transform (DST) to prediction residuals in a spatial
domain. The defined DCT or DST may be predefined.

It is to be noted that transformer 106 may adaptively select a transform type from
among a plurality of transform types, and transform prediction residuals into transform
coefficients by using a transform basis function corresponding to the selected
transform type. This sort of transform is also referred to as explicit multiple core
transform (EMT) or adaptive multiple transform (AMT). A transform basis function
may also be referred to as a basis.

The transform types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I, and
DST-VII. It is noted that these transform types may be represented as DCT2, DCTS,
DCTS, DST1 and DST7. FIG. 14 is a chart indicating example transform basis
functions for the example transform types. In FIG. 14, N indicates the number of input
pixels. For example, selection of a transform type from among the plurality of
transform types may depend on a prediction type (one of intra prediction and inter
prediction), and may depend on an intra prediction mode.

Information indicating whether to apply such EMT or AMT (referred to as, for
example, an EMT flag or an AMT flag) and information indicating the selected
transform type is normally signaled at the CU level. It is to be noted that the signaling

of such information does not necessarily need to be performed at the CU level, and
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may be performed at another level (for example, at the sequence level, picture level,
slice level, tile level, or CTU level).

In addition, transformer 106 may re-transform the transform coefficients (which are
transform results). Such re-transform is also referred to as adaptive secondary
transform (AST) or non-separable secondary transform (NSST). For example,
transformer 106 performs re-transform in units of a sub-block (for example, 4x4 pixel
sub-block) included in a transform coefficient block corresponding to an intra
prediction residual. Information indicating whether to apply NSST and information
related to a transform matrix for use in NSST are normally signaled at the CU level. It
is to be noted that the signaling of such information does not necessarily need to be
performed at the CU level, and may be performed at another level (for example, at the
sequence level, picture level, slice level, tile level, or CTU level).

Transformer 106 may employ a separable transform and a non-separable transform.
A separable transform is a method in which a transform is performed a plurality of
times by separately performing a transform for each of a number of directions
according to the number of dimensions of inputs. A non-separable transform is a
method of performing a collective transform in which two or more dimensions in mul-
tidimensional inputs are collectively regarded as a single dimension.

In one example of a non-separable transform, when an input is a 4x4 pixel block, the
4x4 pixel block is regarded as a single array including sixteen elements, and the
transform applies a 16x16 transform matrix to the array.

In another example of a non-separable transform, an input block of 4x4 pixels is
regarded as a single array including sixteen elements, and then a transform (hypercube
givens transform) in which givens revolution is performed on the array a plurality of
times may be performed.

In the transform in transformer 106, the transform types of transform bases functions
to be transformed into the frequency domain according to regions in a CU can be
switched. Examples include a spatially varying transform (SVT).

FIG. 15 is a conceptual diagram for illustrating one example of an SVT.

In SVT, as illustrated in FIG. 15, CUs are split into two equal regions horizontally or
vertically, and only one of the regions is transformed into the frequency domain. A
transform basis type can be set for each region. For example, DST7 and DST8 are
used. For example, among the two regions obtained by splitting a CU vertically into
two equal regions, DST7 and DCT8 may be used for the region at position 0. Alter-
natively, among the two regions, DST7 is used for the region at position 1. Likewise,
among the two regions obtained by splitting a CU horizontally into two equal regions,
DST7 and DCTS are used for the region at position 0. Alternatively, among the two
regions, DST7 is used for the region at position 1. Although only one of the two
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regions in a CU is transformed and the other is not transformed in the example il-
lustrated in FIG. 15, each of the two regions may be transformed. In addition, a
splitting method may include not only splitting into two regions but also splitting into
four regions. In addition, the splitting method can be more flexible. For example, in-
formation indicating the splitting method may be encoded and may be signaled in the
same manner as the CU splitting. It is to be noted that SVT also may be referred to as
sub-block transform (SBT).

The AMT and EMT described above may be referred to as MTS (multiple transform
selection). When MTS is applied, a transform type that is DST7, DCTS, or the like can
be selected, and the information indicating the selected transform type may be encoded
as index information for each CU. There is another process referred to as IMTS
(implicit MTS) as a process for selecting a transform type to be used for orthogonal
transform performed without encoding index information. When IMTS is applied, for
example, when a CU has a rectangle shape, orthogonal transform of the rectangle
shape may be performed using DST7 for the short side and DST2 for the long side. In
addition, for example, when a CU has a square shape, orthogonal transform of the
rectangle shape may be performed using DCT2 when MTS is effective in a sequence
and using DST7 when MTS is ineffective in the sequence. DCT2 and DST7 are mere
examples. Other transform types may be used, and it is also possible to change the
combination of transform types for use to a different combination of transform types.
IMTS may be used only for intra prediction blocks, or may be used for both intra
prediction blocks and inter prediction block.

The three processes of MTS, SBT, and IMTS have been described above as selection
processes for selectively switching transform types for use in orthogonal transform.
However, all of the three selection processes may be employed, or only part of the
selection processes may be selectively employed. Whether one or more of the selection
processes is employed may be identified, for example, based on flag information or the
like in a header such as an SPS. For example, when all of the three selection processes
are available for use, one of the three selection processes is selected for each CU and
orthogonal transform of the CU is performed. It is to be noted that the selection
processes for selectively switching the transform types may be selection processes
different from the above three selection processes, or each of the three selection
processes may be replaced by another process. Typically, at least one of the following
four transfer functions [1] to [4] is performed. Function [1] is a function for performing
orthogonal transform of the entire CU and encoding information indicating the
transform type used in the transform. Function [2] is a function for performing or-
thogonal transform of the entire CU and determining the transform type based on a de-

termined rule without encoding information indicating the transform type. Function [3]
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is a function for performing orthogonal transform of a partial region of a CU and
encoding information indicating the transform type used in the transform. Function [4]
is a function for performing orthogonal transform of a partial region of a CU and de-
termining the transform type based on a determined rule without encoding information
indicating the transform type used in the transform. The determined rules may be pre-
determined.

It is to be noted that whether MTS, IMTS, and/or SBT is applied may be determined
for each processing unit. For example, whether MTS, IMTS, and/or SBT is applied
may be determined for each sequence, picture, brick, slice, CTU, or CU.

It is to be noted that a tool for selectively switching transform types in the present
disclosure may be described as a method for selectively selecting a basis for use in a
transform process, a selection process, or a process for selecting a basis. In addition,
the tool for selectively switching transform types may be described as a mode for
adaptively selecting transform types.

FIG. 16 is a flow chart illustrating one example of a process performed by
transformer 106, and will be described for convenience with reference to FIG. 7.

For example, transformer 106 determines whether to perform orthogonal transform
(Step St_1). Here, when determining to perform orthogonal transform (Yes in Step
St_1), transformer 106 selects a transform type for use in orthogonal transform from a
plurality of transform types (Step St_2). Next, transformer 106 performs orthogonal
transform by applying the selected transform type to the prediction residual of a
current block (Step St_3). Transformer 106 then outputs information indicating the
selected transform type to entropy encoder 110, so as to allow entropy encoder 110 to
encode the information (Step St_4). On the other hand, when determining not to
perform orthogonal transform (No in Step St_1), transformer 106 outputs information
indicating that no orthogonal transform is performed, so as to allow entropy encoder
110 to encode the information (Step St_5). It is to be noted that whether to perform or-
thogonal transform in Step St_1 may be determined based on, for example, the size of
a transform block, a prediction mode applied to the CU, etc. Alternatively, orthogonal
transform may be performed using a defined transform type without encoding in-
formation indicating the transform type for use in orthogonal transform. The defined
transform type may be predefined.

FIG. 17 is a flow chart illustrating one example of a process performed by
transformer 106, and will be described for convenience with reference to FIG. 7. It is
to be noted that the example illustrated in FIG. 17 is an example of orthogonal
transform in the case where transform types for use in orthogonal transform are se-
lectively switched as in the case of the example illustrated in FIG. 16.

As one example, a first transform type group may include DCT2, DST7, and DCTS.
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As another example, a second transform type group may include DCT2. The transform
types included in the first transform type group and the transform types included in the
second transform type group may partly overlap with each other, or may be totally
different from each other.

Transformer 106 determines whether a transform size is smaller than or equal to a
determined value (Step Su_1). Here, when determining that the transform size is
smaller than or equal to the determined value (Yes in Step Su_1), transformer 106
performs orthogonal transform of the prediction residual of the current block using the
transform type included in the first transform type group (Step Su_2). Next,
transformer 106 outputs information indicating the transform type to be used among at
least one transform type included in the first transform type group to entropy encoder
110, so as to allow entropy encoder 110 to encode the information (Step Su_3). On the
other hand, when determining that the transform size is not smaller than or equal to the
predetermined value (No in Step Su_1), transformer 106 performs orthogonal
transform of the prediction residual of the current block using the second transform
type group (Step Su_4). The determined value may be a threshold value, and may be a
predetermined value.

In Step Su_3, the information indicating the transform type for use in orthogonal
transform may be information indicating a combination of the transform type to be
applied vertically in the current block and the transform type to be applied horizontally
in the current block. The first type group may include only one transform type, and the
information indicating the transform type for use in orthogonal transform may not be
encoded. The second transform type group may include a plurality of transform types,
and information indicating the transform type for use in orthogonal transform among
the one or more transform types included in the second transform type group may be
encoded.

Alternatively, a transform type may be indicated based on a transform size without
encoding information indicating the transform type. It is to be noted that such deter-
minations are not limited to the determination as to whether the transform size is
smaller than or equal to the determined value, and other processes are also possible for
determining a transform type for use in orthogonal transform based on the transform
size.

(Quantizer)

Quantizer 108 quantizes the transform coefficients output from transformer 106.
More specifically, quantizer 108 scans, in a determined scanning order, the transform
coefficients of the current block, and quantizes the scanned transform coefficients
based on quantization parameters (QP) corresponding to the transform coefficients.

Quantizer 108 then outputs the quantized transform coefficients (hereinafter also
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referred to as quantized coefficients) of the current block to entropy encoder 110 and
inverse quantizer 112. The determined scanning order may be predetermined.

A determined scanning order is an order for quantizing/inverse quantizing transform
coefficients. For example, a determined scanning order may be defined as ascending
order of frequency (from low to high frequency) or descending order of frequency
(from high to low frequency).

A quantization parameter (QP) is a parameter defining a quantization step
(quantization width). For example, when the value of the quantization parameter
increases, the quantization step also increases. In other words, when the value of the
quantization parameter increases, the error in quantized coefficients (quantization
error) increases.

In addition, a quantization matrix may be used for quantization. For example, several
kinds of quantization matrices may be used correspondingly to frequency transform
sizes such as 4x4 and 8x8, prediction modes such as intra prediction and inter
prediction, and pixel components such as luma and chroma pixel components. It is to
be noted that quantization means digitalizing values sampled at determined intervals
correspondingly to determined levels. In this technical field, quantization may be
referred to using other expressions, such as rounding and scaling, and may employ
rounding and scaling. The determined intervals and determined levels may be prede-
termined.

Methods using quantization matrices may include a method using a quantization
matrix which has been set directly at the encoder 100 side, and a method using a quan-
tization matrix which has been set as a default (default matrix). At the encoder 100
side, a quantization matrix suitable for features of an image can be set by directly
setting a quantization matrix. This case, however, may have a disadvantage of in-
creasing a coding amount for encoding the quantization matrix. It is to be noted that a
quantization matrix to be used to quantize the current block may be generated based on
a default quantization matrix or an encoded quantization matrix, instead of directly
using the default quantization matrix or the encoded quantization matrix.

There is a method for quantizing a high-frequency coefficient and a low-frequency
coefficient without using a quantization matrix. It is to be noted that this method may
be viewed as equivalent to a method using a quantization matrix (flat matrix) whose
coefficients have the same value.

The quantization matrix may be encoded, for example, at the sequence level, picture
level, slice level, brick level, or CTU level. The quantization matrix may be specified
using, for example, a sequence parameter set (SPS) or a picture parameter set (PPS).
The SPS includes a parameter which is used for a sequence, and the PPS includes a

parameter which is used for a picture. Each of the SPS and the PPS may be simply
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referred to as a parameter set.

When using a quantization matrix, quantizer 108 scales, for each transform co-
efficient, for example a quantization width which can be calculated based on a quan-
tization parameter, etc., using the value of the quantization matrix. The quantization
process performed without using a quantization matrix may be a process for quantizing
transform coefficients based on the quantization width calculated based on the quan-
tization parameter, etc. It is to be noted that, in the quantization process performed
without using any quantization matrix, the quantization width may be multiplied by a
determined value which is common for all the transform coefficients in a block. The
determined value may be predetermined.

FIG. 18 is a block diagram illustrating one example of a functional configuration of a
quantizer according to an embodiment. For example, quantizer 108 includes difference
quantization parameter generator 108a, predicted quantization parameter generator
108b, quantization parameter generator 108c, quantization parameter storage 108d, and
quantization executor 108e.

FIG. 19 is a flow chart illustrating one example of a quantization process performed
by quantizer 108, and will be described for convenience with reference to FIGs. 7 and
18.

As one example, quantizer 108 may perform quantization for each CU based on the
flow chart illustrated in FIG. 19. More specifically, quantization parameter generator
108c determines whether to perform quantization (Step Sv_1). Here, when determining
to perform quantization (Yes in Step Sv_1), quantization parameter generator 108c
generates a quantization parameter for a current block (Step Sv_2), and stores the
quantization parameter to quantization parameter storage 108d (Step Sv_3).

Next, quantization executor 108e quantizes transform coefficients of the current
block using the quantization parameter generated in Step Sv_2 (Step Sv_4). Predicted
quantization parameter generator 108b then obtains a quantization parameter for a
processing unit different from the current block from quantization parameter storage
108d (Step Sv_5). Predicted quantization parameter generator 108b generates a
predicted quantization parameter of the current block based on the obtained quan-
tization parameter (Step Sv_6). Difference quantization parameter generator 108a
calculates the difference between the quantization parameter of the current block
generated by quantization parameter generator 108c and the predicted quantization
parameter of the current block generated by predicted quantization parameter generator
108b (Step Sv_7). The difference quantization parameter may be generated by cal-
culating the difference. Difference quantization parameter generator 108a outputs the
difference quantization parameter to entropy encoder 110, so as to allow entropy

encoder 110 to encode the difference quantization parameter (Step Sv_8).
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It is to be noted that the difference quantization parameter may be encoded, for
example, at the sequence level, picture level, slice level, brick level, or CTU level. In
addition, an initial value of the quantization parameter may be encoded at the sequence
level, picture level, slice level, brick level, or CTU level. At initialization, the quan-
tization parameter may be generated using the initial value of the quantization
parameter and the difference quantization parameter.

It is to be noted that quantizer 108 may include a plurality of quantizers, and may
apply dependent quantization in which transform coefficients are quantized using a
quantization method selected from a plurality of quantization methods.

(Entropy Encoder)

FIG. 20 is a block diagram illustrating one example of a functional configuration of
entropy encoder 110 according to an embodiment, and will be described for con-
venience with reference to FIG. 7. Entropy encoder 110 generates a stream by entropy
encoding the quantized coefficients input from quantizer 108 and a prediction
parameter input from prediction parameter generator 130. For example, context-based
adaptive binary arithmetic coding (CABAC) is used as the entropy encoding. More
specifically, entropy encoder 110 as illustrated includes binarizer 110a, context
controller 110b, and binary arithmetic encoder 110c. Binarizer 110a performs bina-
rization in which multi-level signals such as quantized coefficients and a prediction
parameter are transformed into binary signals. Examples of binarization methods
include truncated Rice binarization, exponential Golomb codes, and fixed length bina-
rization. Context controller 110b derives a context value according to a feature or a
surrounding state of a syntax element, that is an occurrence probability of a binary
signal. Examples of methods for deriving a context value include bypass, referring to a
syntax element, referring to an upper and left adjacent blocks, referring to hierarchical
information, etc. Binary arithmetic encoder 110c arithmetically encodes the binary
signal using the derived context.

FIG. 21 is a conceptual diagram for illustrating an example flow of a CABAC
process in the entropy encoder 110. First, initialization is performed in CABAC in
entropy encoder 110. In the initialization, initialization in binary arithmetic encoder
110c and setting of an initial context value are performed. For example, binarizer 110a
and binary arithmetic encoder 110c may execute binarization and arithmetic encoding
of the plurality of quantization coefficients in a CTU sequentially. Context controller
110b may update the context value each time arithmetic encoding is performed.
Context controller 110b may then save the context value as a post process. The saved
context value may be used, for example, to initialize the context value for the next
CTU.

(Inverse Quantizer)
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Inverse quantizer 112 inverse quantizes quantized coefficients which have been input
from quantizer 108. More specifically, inverse quantizer 112 inverse quantizes, in a de-
termined scanning order, quantized coefficients of the current block. Inverse quantizer
112 then outputs the inverse quantized transform coefficients of the current block to
inverse transformer 114. The determined scanning order may be predetermined.

(Inverse Transformer)

Inverse transformer 114 restores prediction residuals by inverse transforming
transform coefficients which have been input from inverse quantizer 112. More
specifically, inverse transformer 114 restores the prediction residuals of the current
block by performing an inverse transform corresponding to the transform applied to the
transform coefficients by the transformer 106. Inverse transformer 114 then outputs the
restored prediction residuals to adder 116.

It is to be noted that since information is normally lost in quantization, the restored
prediction residuals do not match the prediction residuals calculated by subtractor 104.
In other words, the restored prediction residuals normally include quantization errors.

(Adder)

Adder 116 reconstructs the current block by adding the prediction residuals which
have been input from inverse transformer 114 and prediction images which have been
input from prediction controller 128. Consequently, a reconstructed image is
generated. Adder 116 then outputs the reconstructed image to block memory 118 and
loop filter 120. A reconstructed block may also be referred to as a local decoded block.

(Block Memory)

Block memory 118 is storage for storing blocks in a current picture, for example, for
use in intra prediction. More specifically, block memory 118 stores reconstructed
images output from adder 116.

(Frame Memory)

Frame memory 122 is, for example, storage for storing reference pictures for use in
inter prediction, and is also referred to as a frame buffer. More specifically, frame
memory 122 stores reconstructed images filtered by loop filter 120.

(Loop Filter)

Loop filter 120 applies a loop filter to a reconstructed image output by adder 116,
and outputs the filtered reconstructed image to frame memory 122. A loop filter is a
filter used in an encoding loop (in-loop filter). Examples of loop filters include, for
example, an adaptive loop filter (ALF), a deblocking filter (DB or DBF), a sample
adaptive offset (SAO) filter, etc.

FIG. 22 is a block diagram illustrating one example of a functional configuration of
loop filter 120 according to an embodiment. For example, as illustrated in FIG. 22,
loop filter 120 includes deblocking filter executor 120a, SAO executor 120b, and ALF
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executor 120c. Deblocking filter executor 120a performs a deblocking filter process on
the reconstructed image. SAO executor 120b performs a SAO process on the recon-
structed image after being subjected to the deblocking filter process. ALF executor
120c performs an ALF process on the reconstructed image after being subjected to the
SAO process. The ALF and deblocking filter are described later in detail. The SAO
process is a process for enhancing image quality by reducing ringing (a phenomenon in
which pixel values are distorted like waves around an edge) and correcting deviation in
pixel value. Examples of SAO processes include an edge offset process and a band
offset process. It is to be noted that loop filter 120, in some embodiments, may not
include all the constituent elements disclosed in FIG. 22, and may include some of the
constituent elements, and may include additional elements. In addition, loop filter 120
may be configured to perform the above processes in a processing order different from
the one disclosed in FIG. 22, may not perform all of the processes, etc.

(Loop Filter > Adaptive Loop Filter)

In an ALF, a least square error filter for removing compression artifacts is applied.
For example, one filter selected from among a plurality of filters based on the direction
and activity of local gradients is applied for each 2x2 pixel sub-block in the current
block.

More specifically, first, each sub-block (for example, each 2x2 pixel sub-block) is
categorized into one out of a plurality of classes (for example, fifteen or twenty-five
classes). The classification of the sub-block may be based on, for example, gradient di-
rectionality and activity. In an example, category index C (for example, C=5D + A) is
calculated or determined based on gradient directionality D (for example, O to 2 or O to
4) and gradient activity A (for example, O to 4). Then, based on classification index C,
each sub-block is categorized into one out of a plurality of classes.

For example, gradient directionality D is calculated by comparing gradients of a
plurality of directions (for example, the horizontal, vertical, and two diagonal di-
rections). Moreover, for example, gradient activity A is calculated by adding gradients
of a plurality of directions and quantizing the result of addition.

The filter to be used for each sub-block may be determined from among the plurality
of filters based on the result of such categorization.

The filter shape to be used in an ALF is, for example, a circular symmetric filter
shape. FIG. 23A through FIG. 23C are conceptual diagrams for illustrating examples
of filter shapes used in ALFs. FIG. 23A illustrates a 5x5 diamond shape filter, FIG.
23B illustrates a 7x7 diamond shape filter, and FIG. 23C illustrates a 9x9 diamond
shape filter. Information indicating the filter shape is normally signaled at the picture
level. It is to be noted that the signaling of such information indicating the filter shape

does not necessarily need to be performed at the picture level, and may be performed at
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another level (for example, at the sequence level, slice level, tile level, CTU level, or
CU level).

The ON or OFF of the ALF may be determined, for example, at the picture level or
CU level. For example, the decision of whether to apply the ALF to luma may be made
at the CU level, and the decision of whether to apply ALF to chroma may be made at
the picture level. Information indicating ON or OFF of the ALF is normally signaled at
the picture level or CU level. It is to be noted that the signaling of information in-
dicating ON or OFF of the ALF does not necessarily need to be performed at the
picture level or CU level, and may be performed at another level (for example, at the
sequence level, slice level, tile level, or CTU level).

In addition, as described above, one filter is selected from the plurality of filters, and
an ALF process of a sub-block is performed. A coefficient set of coefficients to be
used for each of the plurality of filters (for example, up to the fifteenth or twenty-fifth
filter) is normally signaled at the picture level. It is to be noted that the signaling of the
coefficient set does not necessarily need to be performed at the picture level, and may
be performed at another level (for example, at the sequence level, slice level, tile level,
CTU level, CU level, or sub-block level).

(Loop Filter > Cross Component Adaptive Loop Filter)

FIG. 23D is a conceptual diagram for illustrating an example flow of a cross
component ALF (CC-ALF). FIG. 23E is a conceptual diagram for illustrating an
example of a filter shape used in a CC-ALF, such as the CC-ALF of FIG. 23D. The
example CC-ALF of FIGs.23D and 23E operates by applying a linear, diamond shaped
filter to the luma channel for each chroma component. The filter coefficients, for
example, may be transmitted in the APS, scaled by a factor of 2710, and rounded for
fixed point representation. For example, in FIG. 23D, Y samples (first component) are
used for CCALF for Cb and CCALF for Cr (components different from the first
component).

The application of the filters may be controlled on a variable block size and signaled
by a context-coded flag received for each block of samples. The block size along with
an CC-ALF enabling flag may be received at the slice-level for each chroma
component. CC-ALF may support various block sizes, for example (in chroma
samples) 16x16 pixels, 32x32 pixels, 64x64 pixels, 128x128 pixels.

(Loop Filter > Joint Chroma Cross Component Adaptive Loop Filter)

One example of Joint Chroma-CCALF, is illustrated in FIGs. 23F and 23G. FIG. 23F
is a conceptual diagram for illustrating an example flow of a Joint Chroma CCALF.
FIG. 23G is a table illustrating example weight index candidates. As illustrated, one
CCALF filter is used to generate one CCALF filtered output as the chroma refinement

signal for one color component, while a weighted version of the same chroma re-
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finement signal is applied to the other color component. In this way, the complexity of
existing CCALF is reduced roughly by half. The weight value may be coded into a
sign flag and a weight index. The weight index (denoted as weight_index) may be
coded into 3 bits, and specifies the magnitude of the JC-CCALF weight JceCcWeight,
which is a non-zero magnitude. The magnitude of JcCcWeight may, for example, be
determined as follows:

If weight_index is less than or equal to 4, JcCcWeight is equal to weight_index >> 2;
Otherwise, JcCcWeight is equal to 4 / (weight_index - 4 ).

The block-level on/off control of ALF filtering for Cb and Cr may be separate. This
is the same as in CCALF, and two separate sets of block-level on/off control flags may
be coded. Different from CCALF, herein, the Cb, Cr on/off control block sizes are the
same, and thus, only one block size variable may be coded.

(Loop Filter > Deblocking Filter)

In a deblocking filter process, loop filter 120 performs a filter process on a block
boundary in a reconstructed image so as to reduce distortion which occurs at the block
boundary.

FIG. 24 is a block diagram illustrating one example of a specific configuration of de-
blocking filter executor 120a of a loop filter 120 (see FIGs. 7 and 22) which functions
as a deblocking filter.

Deblocking filter executor 120a includes: boundary determiner 1201; filter de-
terminer 1203; filtering executor 12035; process determiner 1208; filter characteristic
determiner 1207; and switches 1202, 1204, and 1206.

Boundary determiner 1201 determines whether a pixel to be deblock-filtered (that is,
a current pixel) is present around a block boundary. Boundary determiner 1201 then
outputs the determination result to switch 1202 and processing determiner 1208.

In the case where boundary determiner 1201 has determined that a current pixel is
present around a block boundary, switch 1202 outputs an unfiltered image to switch
1204. In the opposite case where boundary determiner 1201 has determined that no
current pixel is present around a block boundary, switch 1202 outputs an unfiltered
image to switch 1206. It is to be noted that the unfiltered image is an image configured
with a current pixel and at least one surrounding pixel located around the current pixel.

Filter determiner 1203 determines whether to perform deblocking filtering of the
current pixel, based on the pixel value of at least one surrounding pixel located around
the current pixel. Filter determiner 1203 then outputs the determination result to switch
1204 and process determiner 1208.

In the case where filter determiner 1203 has determined to perform deblocking
filtering of the current pixel, switch 1204 outputs the unfiltered image obtained

through switch 1202 to filtering executor 1205. In the opposite case where filter de-
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terminer 1203 has determined not to perform deblocking filtering of the current pixel,
switch 1204 outputs the unfiltered image obtained through switch 1202 to switch 1206.

When obtaining the unfiltered image through switches 1202 and 1204, filtering
executor 1205 executes, for the current pixel, deblocking filtering with the filter char-
acteristic determined by filter characteristic determiner 1207. Filtering executor 1205
then outputs the filtered pixel to switch 1206.

Under control by processing determiner 1208, switch 1206 selectively outputs one of
a pixel which has not been deblock-filtered and a pixel which has been deblock-filtered
by filtering executor 1205.

Processing determiner 1208 controls switch 1206 based on the results of deter-
minations made by boundary determiner 1201 and filter determiner 1203. In other
words, processing determiner 1208 causes switch 1206 to output the pixel which has
been deblock-filtered when boundary determiner 1201 has determined that the current
pixel is present around the block boundary and when filter determiner 1203 has de-
termined to perform deblocking filtering of the current pixel. In addition, other than the
above case, processing determiner 1208 causes switch 1206 to output the pixel which
has not been deblock-filtered. A filtered image is output from switch 1206 by repeating
output of a pixel in this way. It is to be noted that the configuration illustrated in FIG.
24 is one example of a configuration in deblocking filter executor 120a. Deblocking
filter executor 120a may have various configurations.

FIG. 25 is a conceptual diagram for illustrating an example of a deblocking filter
having a symmetrical filtering characteristic with respect to a block boundary.

In a deblocking filter process, one of two deblocking filters having different charac-
teristics, that is, a strong filter and a weak filter, may be selected using pixel values and
quantization parameters. In the case of the strong filter, when pixels p0 to p2 and
pixels q0 to q2 are present across a block boundary as illustrated in FIG. 25, the pixel
values of the respective pixel qO to g2 are changed to pixel values q’0 to q’2 by
performing, for example, computations according to the expressions below.

qO0=0(pl+2xp0+2xq0+2xql+q2+4)/8

ql=pP0+q0+ql +q2+2)/4

q2=(p0+q0+ql+3xq2+2xq3+4)/8

It is to be noted that, in the above expressions, p0 to p2 and q0 to g2 are the pixel
values of respective pixels pO to p2 and pixels q0 to g2. In addition, g3 is the pixel
value of neighboring pixel q3 located at the opposite side of pixel q2 with respect to
the block boundary. In addition, in the right side of each of the expressions, coef-
ficients which are multiplied with the respective pixel values of the pixels to be used
for deblocking filtering are filter coefficients.

Furthermore, in the deblocking filtering, clipping may be performed so that the
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calculated pixel values are not changed more than a threshold value. For example, in
the clipping process the pixel values calculated according to the above expressions
may be clipped to a value obtained according to “a computation pixel value + 2 x a
threshold value” using a threshold value determined based on a quantization parameter.
In this way, it is possible to prevent excessive smoothing.

FIG. 26 is a conceptual diagram for illustrating a block boundary on which a de-
blocking filter process is performed. FIG. 27 is a conceptual diagram for illustrating
examples of Boundary strenth (Bs) values.

The block boundary on which the deblocking filter process is performed is, for
example, a boundary between CUSs, Pus, or TUs having 8x8 pixel blocks as illustrated
in FIG. 26. The deblocking filter process may be performed, for example, in units of
four rows or four columns. First, boundary strength (Bs) values are determined as
indicated in FIG. 27 for block P and block Q illustrated in FIG. 26.

According to the Bs values in FIG. 27, whether to perform deblocking filter
processes of block boundaries belonging to the same image using different strengths
may be determined. The deblocking filter process for a chroma signal is performed
when a Bs value is 2. The deblocking filter process for a luma signal is performed
when a Bs value is 1 or more and a determined condition is satisfied. The determined
condition may be predetermined. It is noted that conditions for determining Bs values
are not limited to those indicated in FIG. 27, and a Bs value may be determined based
on another parameter.

(Predictor (Intra Predictor, Inter Predictor, Prediction Controller))

FIG. 28 is a flow chart illustrating one example of a process performed by a predictor
of encoder 100. It is to be noted that the predictor includes all or part of the following
constituent elements: intra predictor 124; inter predictor 126; and prediction controller
128. The prediction executor includes, for example, intra predictor 124 and inter
predictor 126.

The predictor generates a prediction image of a current block (Step Sb_1). This
prediction image may also be referred to as a prediction signal or a prediction block. It
is to be noted that the prediction signal is, for example, an intra prediction image
(image prediction signal) or an inter prediction image (inter prediction signal). The
predictor generates the prediction image of the current block using a reconstructed
image which has been already obtained through another block through generation of a
prediction image, generation of a prediction residual, generation of quantized coef-
ficients, restoring of a prediction residual, and addition of the prediction image.

The reconstructed image may be, for example, an image in a reference picture, or an
image of an encoded block (that is, the other block described above) in a current

picture which is the picture including the current block. The encoded block in the



42

WO 2021/025165 PCT/JP2020/030507

[0197]

[0198]

[0199]

[0200]

[0201]

current picture is, for example, a neighboring block of the current block.

FIG. 29 is a flow chart illustrating another example of a process performed by the
predictor of the encoder 100.

The predictor generates a prediction image using a first method (Step Sc_1la),
generates a prediction image using a second method (Step Sc_1b), and generates a
prediction image using a third method (Step Sc_1c). The first method, the second
method, and the third method may be mutually different methods for generating a
prediction image. Each of the first to third methods may be an inter prediction method,
an intra prediction method, or another prediction method. The above-described recon-
structed image may be used in these prediction methods.

Next, the prediction processor evaluates the prediction images generated in Steps
Sc_la, Sc_1b, and Sc_1c (Step Sc_2). For example, the predictor calculates costs C for
the prediction images generated in Step Sc_1la, Sc_1b, and Sc_1, and evaluates the
prediction images by comparing the costs C of the prediction images. It is to be noted
that cost C may be calculated, for example, according to an expression of an R-D opti-
mization model, for example, C = D + A x R. In this expression, D indicates com-
pression artifacts of a prediction image, and is represented as, for example, a sum of
absolute differences between the pixel value of a current block and the pixel value of a
prediction image. In addition, R indicates a bit rate of a stream. In addition, A indicates,
for example, a multiplier according to the method of Lagrange multipliers.

The predictor then selects one of the prediction images generated in Steps Sc_la,
Sc_1b, and Sc_1c (Step Sc_3). In other words, the predictor selects a method or a
mode for obtaining a final prediction image. For example, the predictor selects the
prediction image having the smallest cost C, based on costs C calculated for the
prediction images. Alternatively, the evaluation in Step Sc_2 and the selection of the
prediction image in Step Sc_3 may be made based on a parameter which is used in an
encoding process. Encoder 100 may transform information for identifying the selected
prediction image, the method, or the mode into a stream. The information may be, for
example, a flag or the like. In this way, decoder 200 is capable of generating a
prediction image according to the method or the mode selected by encoder 100, based
on the information. It is to be noted that, in the example illustrated in FIG. 29, the
predictor selects any of the prediction images after the prediction images are generated
using the respective methods. However, the predictor may select a method or a mode
based on a parameter for use in the above-described encoding process before
generating prediction images, and may generate a prediction image according to the
method or mode selected.

For example, the first method and the second method may be intra prediction and

inter prediction, respectively, and the predictor may select a final prediction image for
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a current block from prediction images generated according to the prediction methods.

FIG. 30 is a flow chart illustrating another example of a process performed by the
predictor of encoder 100.

First, the predictor generates a prediction image using intra prediction (Step Sd_1a),
and generates a prediction image using inter prediction (Step Sd_1b). It is to be noted
that the prediction image generated by intra prediction is also referred to as an intra
prediction image, and the prediction image generated by inter prediction is also
referred to as an inter prediction image.

Next, the predictor evaluates each of the intra prediction image and the inter
prediction image (Step Sd_2). Cost C described above may be used in the evaluation.
The predictor may then select the prediction image for which the smallest cost C has
been calculated among the intra prediction image and the inter prediction image, as the
final prediction image for the current block (Step Sd_3). In other words, the prediction
method or the mode for generating the prediction image for the current block is
selected.

The prediction processor then selects the prediction image for which the smallest cost
C has been calculated among the intra prediction image and the inter prediction image,
as the final prediction image for the current block (Step Sd_3). In other words, the
prediction method or the mode for generating the prediction image for the current
block is selected.

(Intra Predictor)

Intra predictor 124 generates a prediction signal (that is, intra prediction image) by
performing intra prediction (also referred to as intra frame prediction) of the current
block by referring to a block or blocks in the current picture and stored in block
memory 118. More specifically, intra predictor 124 generates an intra prediction image
by performing intra prediction by referring to pixel values (for example, luma and/or
chroma values) of a block or blocks neighboring the current block, and then outputs
the intra prediction image to prediction controller 128.

For example, intra predictor 124 performs intra prediction by using one mode from
among a plurality of intra prediction modes which have been defined. The intra
prediction modes typically include one or more non-directional prediction modes and a
plurality of directional prediction modes. The defined modes may be predefined.

The one or more non-directional prediction modes include, for example, the planar
prediction mode and DC prediction mode defined in the H.265 / high-efficiency video
coding (HEVC) standard.

The plurality of directional prediction modes include, for example, the thirty-three di-
rectional prediction modes defined in the H.265/HEVC standard. It is to be noted that

the plurality of directional prediction modes may further include thirty-two directional
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prediction modes in addition to the thirty-three directional prediction modes (for a total
of sixty-five directional prediction modes). FIG. 31 is a conceptual diagram for il-
lustrating sixty-seven intra prediction modes in total that may be used in intra
prediction (two non-directional prediction modes and sixty-five directional prediction
modes). The solid arrows represent the thirty-three directions defined in the
H.265/HEVC standard, and the dashed arrows represent the additional thirty-two di-
rections (the two non-directional prediction modes are not illustrated in FIG. 31).

In various kinds of processing examples, a luma block may be referred to in intra
prediction of a chroma block. In other words, a chroma component of the current block
may be predicted based on a luma component of the current block. Such intra
prediction is also referred to as cross-component linear model (CCLM) prediction. The
intra prediction mode for a chroma block in which such a luma block is referred to
(also referred to as, for example, a CCLM mode) may be added as one of the intra
prediction modes for chroma blocks.

Intra predictor 124 may correct intra-predicted pixel values based on horizontal/
vertical reference pixel gradients. Intra prediction accompanied by this sort of
correcting is also referred to as position dependent intra prediction combination
(PDPC). Information indicating whether to apply PDPC (referred to as, for example, a
PDPC flag) is normally signaled at the CU level. It is to be noted that the signaling of
such information does not necessarily need to be performed at the CU level, and may
be performed at another level (for example, at the sequence level, picture level, slice
level, tile level, or CTU level).

FIG. 32 is a flow chart illustrating one example of a process performed by intra
predictor 124.

Intra predictor 124 selects one intra prediction mode from a plurality of intra
prediction modes (Step Sw_1). Intra predictor 124 then generates a prediction image
according to the selected intra prediction mode (Step Sw_2). Next, intra predictor 124
determines most probable modes (MPMs) (Step Sw_3). MPMs include, for example,
six intra prediction modes. For example, two modes among the six intra prediction
modes may be planar mode and DC prediction mode, and the other four modes may be
directional prediction modes. Intra predictor 124 determines whether the intra
prediction mode selected in Step Sw_1 is included in the MPMs (Step Sw_4).

Here, when determining that the intra prediction mode selected in Step Sw_1 is
included in the MPMs (Yes in Step Sw_4), intra predictor 124 sets an MPM flag to 1
(Step Sw_5), and generates information indicating the selected intra prediction mode
among the MPMs (Step Sw_6). It is to be noted that the MPM flag set to 1 and the in-
formation indicating the intra prediction mode may be encoded as prediction pa-

rameters by entropy encoder 110.
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When determining that the selected intra prediction mode is not included in the
MPMs (No in Step Sw_4), intra predictor 124 sets the MPM flag to O (Step Sw_7). Al-
ternatively, intra predictor 124 does not set any MPM flag. Intra predictor 124 then
generates information indicating the selected intra prediction mode among at least one
intra prediction mode which is not included in the MPMs (Step Sw_8). It is to be noted
that the MPM flag set to O and the information indicating the intra prediction mode
may be encoded as prediction parameters by entropy encoder 110. The information in-
dicating the intra prediction mode indicates, for example, any one of 0 to 60.

(Intra Predictor)

Inter predictor 126 generates a prediction image (inter prediction image) by
performing inter prediction (also referred to as inter frame prediction) of the current
block by referring to a block or blocks in a reference picture, which is different from
the current picture and is stored in frame memory 122. Inter prediction is performed in
units of a current block or a current sub-block (for example, a 4x4 block) in the current
block. The sub-block is included in the block and is a unit smaller than the block. The
size of the sub-block may be in the form of a slice, brick, picture, etc.

For example, inter predictor 126 performs motion estimation in a reference picture
for a current block or a current sub-block, and finds a reference block or a reference
sub-block which best matches the current block or the current sub-block. Inter
predictor 126 then obtains motion information (for example, a motion vector) which
compensates a motion or a change from the reference block or the reference sub-block
to the current block or the sub-block. Inter predictor 126 generates an inter prediction
image of the current block or the sub-block by performing motion compensation (or
motion prediction) based on the motion information. Inter predictor 126 outputs the
generated inter prediction image to prediction controller 128.

The motion information used in motion compensation may be signaled as inter
prediction signals in various forms. For example, a motion vector may be signaled. As
another example, the difference between a motion vector and a motion vector predictor
may be signaled.

(Reference Picture List)

FIG. 33 is a conceptual diagram for illustrating examples of reference pictures. FIG.
34 is a conceptual diagram for illustrating examples of reference picture lists. A
reference picture list is a list indicating at least one reference picture stored in frame
memory 122. It is to be noted that, in FIG. 33, each of rectangles indicates a picture,
each of arrows indicates a picture reference relationship, the horizontal axis indicates
time, I, P, and B in the rectangles indicate an intra prediction picture, a uni-prediction
picture, and a bi-prediction picture, respectively, and numerals in the rectangles

indicate a decoding order. As illustrated in FIG. 33, the decoding order of the pictures
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is an order of 10, P1, B2, B3, and B4, and the display order of the pictures is an order
of 10, B3, B2, B4, and P1. As illustrated in FIG. 34, the reference picture list is a list
representing reference picture candidates. For example, one picture (or a slice) may
include at least one reference picture list. For example, one reference picture list is
used when a current picture is a uni-prediction picture, and two reference picture lists
are used when a current picture is a bi-prediction picture. In the examples of FIGs. 33
and 34, picture B3 which is current picture currPic has two reference picture lists
which are the LO list and the L1 list. When current picture currPic is picture B3,
reference picture candidates for current picture currPic are 10, P1, and B2, and the
reference picture lists (which are the LO list and the L1 list) indicate these pictures.
Inter predictor 126 or prediction controller 128 specifies which picture in each
reference picture list is to be actually referred to in form of a reference picture index
refidxLx. In FIG. 34, reference pictures P1 and B2 are specified by reference picture
indices refldxLO and refldxL1.

Such a reference picture list may be generated for each unit such as a sequence,
picture, slice, brick, CTU, or CU. In addition, among reference pictures indicated in
reference picture lists, a reference picture index indicating a reference picture to be
referred to in inter prediction may be signaled at the sequence level, picture level, slice
level, brick level, CTU level, or CU level. In addition, a common reference picture list
may be used in a plurality of inter prediction modes.

(Basic Flow of Inter Prediction)

FIG. 35 is a flow chart illustrating an example basic processing flow of a process of
inter prediction.

First, inter predictor 126 generates a prediction signal (Steps Se_1 to Se_3). Next,
subtractor 104 generates the difference between a current block and a prediction image
as a prediction residual (Step Se_4).

Here, in the generation of the prediction image, inter predictor 126 generates the
prediction image through determination of a motion vector (MV) of the current block
(Steps Se_1 and Se_2) and motion compensation (Step Se_3). Furthermore, in deter-
mination of a MV, inter predictor 126 determines the MV through selection of a
motion vector candidate (MV candidate) (Step Se_1) and derivation of a MV (Step
Se_2). The selection of the MV candidate is made by, for example, intre predictor 126
generating a MV candidate list and selecting at least one MV candidate from the MV
candidate list. It is to be noted that MVs derived in the past may be added to the MV
candidate list. Alternatively, in derivation of a MV, inter predictor 126 may further
select at least one MV candidate from the at least one MV candidate, and determine the
selected at least one MV candidate as the MV for the current block. Alternatively, inter

predictor 126 may determine the MV for the current block by performing estimation in
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a reference picture region specified by each of the selected at least one MV candidate.
It is to be noted that the estimation in a reference picture region may be referred to as
motion estimation.

In addition, although Steps Se_1 to Se_3 are performed by inter predictor 126 in the
above-described example, a process that is for example Step Se_1, Step Se_2, or the
like may be performed by another constituent element included in encoder 100.

It is to be noted that a MV candidate list may be generated for each process in inter
prediction mode, or a common MV candidate list may be used in a plurality of inter
prediction modes. The processes in Steps Se_3 and Se_4 correspond to Steps Sa_3 and
Sa_4 illustrated in FIG. 9, respectively. The process in Step Se_3 corresponds to the
process in Step Sd_1b in FIG. 30.

(Motion Vector Derivation Flow)

FIG. 36 is a flow chart illustrating one example of a process of derivation of motion
vectors.

Inter predictor 126 may derive a MV of a current block in a mode for encoding
motion information (for example, a MV). In this case, for example, the motion in-
formation may be encoded as a prediction parameter, and may be signaled. In other
words, the encoded motion information is included in a stream.

Alternatively, inter predictor 126 may derive a MV in a mode in which motion in-
formation is not encoded. In this case, no motion information is included in the stream.

Here, MV derivation modes may include a normal inter mode, a normal merge mode,
a FRUC mode, an affine mode, etc. which are described later. Modes in which motion
information is encoded among the modes include the normal inter mode, the normal
merge mode, the affine mode (specifically, an affine inter mode and an affine merge
mode), etc. It is to be noted that motion information may include not only a MV but
also motion vector predictor selection information which is described later. Modes in
which no motion information is encoded include the FRUC mode, etc. Inter predictor
126 selects a mode for deriving a MV of the current block from the plurality of modes,
and derives the MV of the current block using the selected mode.

FIG. 37 is a flow chart illustrating another example of derivation of motion vectors.
Inter predictor 126 may derives a MV for a current block in a mode in which a MV
difference is encoded. In this case, for example, the MV difference may be encoded as

a prediction parameter, and may be signaled. In other words, the encoded MV
difference is included in a stream. The MV difference is the difference between the
MYV of the current block and the MV predictor. It is to be noted that the MV predictor
is a motion vector predictor.

Alternatively, inter predictor 126 may derive a MV in a mode in which no MV

difference is encoded. In this case, no encoded MYV difference is included in the



48

WO 2021/025165 PCT/JP2020/030507
stream.
[0233] Here, as described above, the MV derivation modes include the normal inter mode,

[0234]

[0235]

[0236]

the normal merge mode, the FRUC mode, the affine mode, etc. which are described
later. Modes in which a MV difference is encoded among the modes include the
normal inter mode, the affine mode (specifically, the affine inter mode), etc. Modes in
which no MV difference is encoded include the FRUC mode, the normal merge mode,
the affine mode (specifically, the affine merge mode), etc. Inter predictor 126 selects a
mode for deriving a MV of the current block from the plurality of modes, and derives
the MV of the current block using the selected mode.

(Motion Vector Derivation Modes)

FIGs. 38A and 38B are conceptual diagrams for illustrating example categorization
of modes for MV derivation. For example, as illustrated in FIG. 38A, MV derivation
modes are roughly categorized into three modes according to whether to encode
motion information and whether to encode MV differences. The three modes are inter
mode, merge mode, and frame rate up-conversion (FRUC) mode. The inter mode is a
mode in which motion estimation is performed, and in which motion information and a
MYV difference are encoded. For example, as illustrated in FIG. 38B, the inter mode
includes affine inter mode and normal inter mode. The merge mode is a mode in which
no motion estimation is performed, and in which a MV is selected from an encoded
surrounding block and a MV for the current block is derived using the MV. The merge
mode is a mode in which, basically, motion information is encoded and no MV
difference is encoded. For example, as illustrated in FIG. 38B, the merge modes
include normal merge mode (also referred to as normal merge mode or regular merge
mode), merge with motion vector difference (MMVD) mode, combined inter merge /
intra prediction (CIIP) mode, triangle mode, ATMVP mode, and affine merge mode.
Here, a MV difference is encoded exceptionally in the MM VD mode among the modes
included in the merge modes. It is to be noted that the affine merge mode and the
affine inter mode are modes included in the affine modes. The affine mode is a mode
for deriving, as a MV of a current block, a MV of each of a plurality of sub-blocks
included in the current block, assuming affine transform. The FRUC mode is a mode
which is for deriving a MV of the current block by performing estimation between
encoded regions, and in which neither motion information nor any MV difference is
encoded. It is to be noted that the respective modes will be described later in more
detail.

It is to be noted that the categorization of the modes illustrated in FIGs. 38A and 38B
are examples, and categorization is not limited thereto. For example, when a MV
difference is encoded in CIIP mode, the CIIP mode is categorized into inter modes.

(MYV Derivation > Normal Inter Mode)
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The normal inter mode is an inter prediction mode for deriving a MV of a current
block based on a block similar to the image of the current block from a reference
picture region specified by a MV candidate. In this normal inter mode, a MV
difference is encoded.

FIG. 39 is a flow chart illustrating an example of a process of inter prediction in
normal inter mode.

First, inter predictor 126 obtains a plurality of MV candidates for a current block
based on information such as MVs of a plurality of encoded blocks temporally or
spatially surrounding the current block (Step Sg_1). In other words, inter predictor 126
generates a MV candidate list.

Next, inter predictor 126 extracts N (an integer of 2 or larger) MV candidates from
the plurality of MV candidates obtained in Step Sg_1, as motion vector predictor
candidates (also referred to as MV predictor candidates) according to a determined
priority order (Step Sg_2). It is to be noted that the priority order may be determined in
advance for each of the N MV candidates.

Next, inter predictor 126 selects one motion vector predictor candidate from the N
motion vector predictor candidates, as the motion vector predictor (also referred to as a
MYV predictor) of the current block (Step Sg_3). At this time, inter predictor 126
encodes, in a stream, motion vector predictor selection information for identifying the
selected motion vector predictor. In other words, inter predictor 126 outputs the MV
predictor selection information as a prediction parameter to entropy encoder 110
through prediction parameter generator 130.

Next, inter predictor 126 derives a MV of a current block by referring to an encoded
reference picture (Step Sg_4). At this time, inter predictor 126 further encodes, in the
stream, the difference value between the derived MV and the motion vector predictor
as a MV difference. In other words, inter predictor 126 outputs the MV difference as a
prediction parameter to entropy encoder 110 through prediction parameter generator
130. It is to be noted that the encoded reference picture is a picture including a
plurality of blocks which have been reconstructed after being encoded.

Lastly, inter predictor 126 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
encoded reference picture (Step Sg_5). The processes in Steps Sg_1 to Sg_5 are
executed on each block. For example, when the processes in Steps Sg_1 to Sg_5 are
executed on all the blocks in the slice, inter prediction of the slice using the normal
inter mode finishes. For example, when the processes in Steps Sg_1to Sg_5 are
executed on all the blocks in the picture, inter prediction of the picture using the
normal inter mode finishes. It is to be noted that not all the blocks included in the slice

the processes may be subjected to in Steps Sg_1 to Sg_5, and inter prediction of the
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slice using the normal inter mode may finish when part of the blocks are subjected to
the processes. This also applies to processes in Steps Sg_1 to Sg_5. Inter prediction of
the picture using the normal inter mode may finish when the processes are executed on
part of the blocks in the picture.

It is to be noted that the prediction image is an inter prediction signal as described
above. In addition, information indicating the inter prediction mode (normal inter
mode in the above example) used to generate the prediction image is, for example,
encoded as a prediction parameter in an encoded signal.

It is to be noted that the MV candidate list may be also used as a list for use in
another mode. In addition, the processes related to the MV candidate list may be
applied to processes related to the list for use in another mode. The processes related to
the MV candidate list include, for example, extraction or selection of a MV candidate
from the MV candidate list, reordering of MV candidates, or deletion of a MV
candidate.

(MV Derivation > Normal Merge Mode)

The normal merge mode is an inter prediction mode for selecting a MV candidate
from a MV candidate list as a MV of a current block, thereby deriving the MV. It is to
be noted that the normal merge mode is a type of merge mode and may simply be
referred to as a merge mode. In this embodiment, the normal merge mode and the
merge mode are distinguished, and the merge mode is used in a broader meaning.

FIG. 40 is a flow chart illustrating an example of inter prediction in normal merge
mode.

First, inter predictor 126 obtains a plurality of MV candidates for a current block
based on information such as MVs of a plurality of encoded blocks temporally or
spatially surrounding the current block (Step Sh_1). In other words, inter predictor 126
generates a MV candidate list.

Next, inter predictor 126 selects one MV candidate from the plurality of MV
candidates obtained in Step Sh_1, thereby deriving a MV of the current block (Step
Sh_2). At this time, inter predictor 126 encodes, in a stream, MV selection information
for identifying the selected MV candidate. In other words, inter predictor 126 outputs
the MV selection information as a prediction parameter to entropy encoder 110
through prediction parameter generator 130.

Lastly, inter predictor 126 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
encoded reference picture (Step Sh_3). The processes in Steps Sh_1 to Sh_3 are
executed, for example, on each block. For example, when the processes in Steps Sh_1
to Sh_3 are executed on all the blocks in the slice, inter prediction of the slice using the

normal merge mode finishes. In addition, when the processes in Steps Sh_1 to Sh_3
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are executed on all the blocks in the picture, inter prediction of the picture using the
normal merge mode finishes. It is to be noted that not all the blocks included in the
slice may be subjected to the processes in Steps Sh_1 to Sh_3, and inter prediction of
the slice using the normal merge mode may finish when part of the blocks are
subjected to the processes. This also applies to processes in Steps Sh_1 to Sh_3. Inter
prediction of the picture using the normal merge mode may finish when the processes
are executed on part of the blocks in the picture.

In addition, information indicating the inter prediction mode (normal merge mode in
the above example) used to generate the prediction image and included in the encoded
signal is, for example, encoded as a prediction parameter in a stream.

FIG. 41 is a conceptual diagram for illustrating one example of a motion vector
derivation process of a current picture by a normal merge mode.

First, inter predictor 126 generates a MV candidate list in which MV candidates are
registered. Examples of MV candidates include: spatially neighboring MV candidates
which are MVs of a plurality of encoded blocks located spatially surrounding a current
block; temporally neighboring MV candidates which are MVs of surrounding blocks
on which the position of a current block in an encoded reference picture is projected;
combined MV candidates which are MVs generated by combining the MV value of a
spatially neighboring MV predictor and the MV value of a temporally neighboring MV
predictor; and a zero MV candidate which is a MV having a zero value.

Next, inter predictor 126 selects one MV candidate from a plurality of MV
candidates registered in a MV candidate list, and determines the MV candidate as the
MYV of the current block.

Furthermore, entropy encoder 110 writes and encodes, in a stream, merge_idx which
is a signal indicating which MV candidate has been selected.

It is to be noted that the MV candidates registered in the MV candidate list described
in FIG. 41 are examples. The number of MV candidates may be different from the
number of MV candidates in the diagram, the MV candidate list may be configured in
such a manner that some of the kinds of the MV candidates in the diagram may not be
included, or that one or more MV candidates other than the kinds of MV candidates in
the diagram are included.

A final MV may be determined by performing a dynamic motion vector refreshing
(DMVR) to be described later using the MV of the current block derived by normal
merge mode. It is to be noted that, in normal merge mode, motion information is
encoded and no MYV difference is encoded. In MMVD mode, one MV candidate is
selected from a MV candidate list as in the case of normal merge mode, a MV
difference is encoded. As illustrated in FIG. 38B, MMVD may be categorized into

merge modes together with normal merge mode. It is to be noted that the MV
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difference in MMVD mode does not always need to be the same as the MV difference
for use in inter mode. For example, MV difference derivation in MMVD mode may be
a process that requires a smaller amount of processing than the amount of processing
required for MV difference derivation in inter mode.

In addition, a combined inter merge / intra prediction (CIIP) mode may be
performed. The mode is for overlapping a prediction image generated in inter
prediction and a prediction image generated in intra prediction to generate a prediction
image for a current block.

It is to be noted that the MV candidate list may be referred to as a candidate list. In
addition, merge_idx is MV selection information.

(MYV Derivation > HMVP Mode)

FIG. 42 is a conceptual diagram for illustrating one example of a MV derivation
process for a current picture using HMVP merge mode.

In normal merge mode, a MV for, for example, a CU which is a current block is de-
termined by selecting one MV candidate from a MV list generated by referring to an
encoded block (for example, a CU). Here, another MV candidate may be registered in
the MV candidate list. The mode in which such another MV candidate is registered is
referred to as HMVP mode.

In HMVP mode, MV candidates are managed using a first-in first-out (FIFO) server
for HMVP, separately from the MV candidate list for normal merge mode.

In a FIFO buffer, motion information such as MVs of blocks processed in the past
are stored newest first. In the management of the FIFO buffer, each time when one
block is processed, the MV for the newest block (that is the CU processed immediately
before) is stored in the FIFO buffer, and the MV of the oldest CU (that is, the CU
processed earliest) is deleted from the FIFO buffer. In the example illustrated in FIG.
42, HMVP1 is the MYV for the newest block, and HM VPS5 is the MV for the oldest MV.

Inter predictor 126 then, for example, checks whether each MV managed in the FIFO
buffer is a MV different from all the MV candidates which have been already
registered in the MV candidate list for normal merge mode starting from HMVP1.
When determining that the MV is different from all the MV candidates, inter predictor
126 may add the MV managed in the FIFO buffer in the MV candidate list for normal
merge mode as a MV candidate. At this time, one or more of the MV candidates in the
FIFO buffer may be registered (added to the MV candidate list).

By using the HMVP mode in this way, it is possible to add not only the MV of a
block which neighbors the current block spatially or temporally but also a MV for a
block processed in the past. As a result, the variation of MV candidates for normal
merge mode is expanded, which increases the probability that coding efficiency can be

increased.
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It is to be noted that the MV may be motion information. In other words, information
stored in the MV candidate list and the FIFO buffer may include not only MV values
but also reference picture information, reference directions, the numbers of pictures,
etc. In addition, the block may be, for example, a CU.

It is to be noted that the MV candidate list and the FIFO buffer illustrated in FIG. 42
are examples. The MV candidate list and FIFO buffer may be different in size from
those in FIG. 42, or may be configured to register MV candidates in an order different
from the one in FIG. 42. In addition, the process described here may be common
between encoder 100 and decoder 200.

It is to be noted that the HMVP mode can be applied for modes other than the normal
merge mode. For example, it is also possible that motion information such as MVs of
blocks processed in affine mode in the past may be stored newest first, and may be
used as MV candidates, which may facilitate better efficiency. The mode obtained by
applying HMVP mode to affine mode may be referred to as history affine mode.

(MYV Derivation > FRUC Mode)

Motion information may be derived at the decoder side without being signaled from
the encoder side. For example, motion information may be derived by performing
motion estimation at the decoder 200 side. In an embodiment, at the decoder side,
motion estimation is performed without using any pixel value in a current block.
Modes for performing motion estimation at the decoder 200 side without using any
pixel value in a current block include a frame rate up-conversion (FRUC) mode, a
pattern matched motion vector derivation (PMMVD) mode, etc.

One example of a FRUC process in the form of a flow chart is illustrated in FIG. 43.
First, a list which indicates, as MV candidates, MVs for encoded blocks each of which
neighbors the current block spatially or temporally by referring to the MVs (the list
may be a MV candidate list, and be also used as the MV candidate list for normal
merge mode) (Step Si_1).

Next, a best MV candidate is selected from the plurality of MV candidates registered
in the MV candidate list (Step Si_2). For example, the evaluation values of the re-
spective MV candidates included in the MV candidate list are calculated, and one MV
candidate is selected based on the evaluation values. Based on the selected motion
vector candidates, a motion vector for the current block is then derived (Step Si_4).
More specifically, for example, the selected motion vector candidate (best MV
candidate) is derived directly as the motion vector for the current block. In addition, for
example, the motion vector for the current block may be derived using pattern
matching in a surrounding region of a position in a reference picture where the position
in the reference picture corresponds to the selected motion vector candidate. In other

words, estimation using the pattern matching and the evaluation values may be
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performed in the surrounding region of the best MV candidate, and when there is a MV
that yields a better evaluation value, the best MV candidate may be updated to the MV
that yields the better evaluation value, and the updated MV may be determined as the
final MV for the current block. In some embodiments, updating of the motion vector
which yields a better evaluation value may not be performed.

Lastly, inter predictor 126 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
encoded reference picture (Step Si_5). The processes in Steps Si_1 to Si_5 are
executed, for example, on each block. For example, when the processes in Steps Si_1
to Si_5 are executed on all the blocks in the slice, inter prediction of the slice using the
FRUC mode finishes. For example, when the processes in Steps Si_1 to Si_5 are
executed on all the blocks in the picture, inter prediction of the picture using the FRUC
mode finishes. It is to be noted that not all the blocks included in the slice may be
subjected to the processes in Steps Si_1 to Si_5, and inter prediction of the slice using
the FRUC mode may finish when part of the blocks are subjected to the processes.
When the processes in Steps Si_1 to Si_5 are executed on part of blocks included in a
picture in a similar manner, inter prediction of the picture using the FRUC mode may
finish.

A similar process may be performed in units of a sub-block.

Evaluation values may be calculated according to various kinds of methods. For
example, a comparison is made between a reconstructed image in a region in a
reference picture corresponding to a motion vector, and a reconstructed image in a de-
termined region (the region may be, for example, a region in another reference picture
or aregion in a neighboring block of a current picture, as indicated below). The de-
termined region may be predetermined.

The difference between the pixel values of the two reconstructed images may be used
for an evaluation value of the motion vectors. It is to be noted that an evaluation value
may be calculated using information other than the value of the difference.

Next, an example of pattern matching is described in detail. First, one MV candidate
included in a MV candidate list (for example, a merge list) is selected as a start point of
estimation by the pattern matching. For example, as the pattern matching, either a first
pattern matching or a second pattern matching may be used. The first pattern matching
and the second pattern matching may be referred to as bilateral matching and template
matching, respectively.

(MV Derivation > FRUC > Bilateral Matching)

In the first pattern matching, pattern matching is performed between two blocks
which are located along a motion trajectory of a current block and are included in two

different reference pictures. Accordingly, in the first pattern matching, a region in
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another reference picture along the motion trajectory of the current block is used as a
determined region for calculating the evaluation value of the above-described
candidate. The determined region may be predetermined.

FIG. 44 is a conceptual diagram for illustrating one example of the first pattern
matching (bilateral matching) between the two blocks in the two reference pictures
along the motion trajectory. As illustrated in FIG. 44, in the first pattern matching, two
motion vectors (MVO0, MV1) are derived by estimating a pair which best matches
among pairs in the two blocks included in the two different reference pictures (Ref0,
Refl) and located along the motion trajectory of the current block (Cur block). More
specifically, a difference between the reconstructed image at a specified location in the
first encoded reference picture (Ref0) specified by a MV candidate, and the recon-
structed image at a specified location in the second encoded reference picture (Refl)
specified by a symmetrical MV obtained by scaling the MV candidate at a display time
interval is derived for the current block, and an evaluation value is calculated using the
value of the obtained difference. It is possible to select, as the final MV, the MV
candidate which yields the best evaluation value among the plurality of MV
candidates, and which is likely to produce good results.

In the assumption of a continuous motion trajectory, the motion vectors (MV0, MV1)
specifying the two reference blocks are proportional to temporal distances (TDO, TD1)
between the current picture (Cur Pic) and the two reference pictures (Ref0, Refl). For
example, when the current picture is temporally located between the two reference
pictures and the temporal distances from the current picture to the respective two
reference pictures are equal to each other, mirror-symmetrical bi-directional motion
vectors are derived in the first pattern matching.

(MV Derivation > FRUC > Template Matching)

In the second pattern matching (template matching), pattern matching is performed
between a block in a reference picture and a template in the current picture (the
template is a block neighboring the current block in the current picture (the
neighboring block is, for example, an upper and/or left neighboring block(s))). Ac-
cordingly, in the second pattern matching, the block neighboring the current block in
the current picture is used as the determined region for calculating the evaluation value
of the above-described MV candidate.

FIG. 45 is a conceptual diagram for illustrating one example of pattern matching
(template matching) between a template in a current picture and a block in a reference
picture. As illustrated in FIG. 45, in the second pattern matching, the motion vector of
the current block (Cur block) is derived by estimating, in the reference picture (Ref0),
the block which best matches the block neighboring the current block in the current

picture (Cur Pic). More specifically, the difference between a reconstructed image in
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an encoded region which neighbors both left and above or either left or above and a re-
constructed image which is in a corresponding region in the encoded reference picture
(Ref0) and is specified by a MV candidate is derived, and an evaluation value is
calculated using the value of the obtained difference. The MV candidate which yields
the best evaluation value among a plurality of MV candidates may be selected as the
best MV candidate.

Such information indicating whether to apply the FRUC mode (referred to as, for
example, a FRUC flag) may be signaled at the CU level. In addition, when the FRUC
mode is applied (for example, when a FRUC flag is true), information indicating an ap-
plicable pattern matching method (e.g., the first pattern matching or the second pattern
matching) may be signaled at the CU level. It is to be noted that the signaling of such
information does not necessarily need to be performed at the CU level, and may be
performed at another level (for example, at the sequence level, picture level, slice
level, tile level, CTU level, or sub-block level).

(MYV Derivation > Affine Mode)

The affine mode is a mode for generating a MV using affine transform. For example,
a MV may be derived in units of a sub-block based on motion vectors of a plurality of
neighboring blocks. This mode is also referred to as an affine motion compensation
prediction mode.

FIG. 46A is a conceptual diagram for illustrating one example of MV derivation in
units of a sub-block based on motion vectors of a plurality of neighboring blocks. In
FIG. 46A, the current block includes, for example, sixteen 4x4 sub-blocks. Here,
motion vector V, at an upper-left corner control point in the current block is derived
based on a motion vector of a neighboring block, and likewise, motion vector V, at an
upper-right corner control point in the current block is derived based on a motion
vector of a neighboring sub-block. Two motion vectors v, and v, may be projected
according to an expression (1A) indicated below, and motion vectors (v, v,) for the re-

spective sub-blocks in the current block may be derived.

[Math.1]
. (Vix — Vox) (Vly - VOy)
x = X — -+ Vox
_ (Vl}’ B VOY) (le - vOx)
vy = ~ X — - y + Voy

Here, x and y indicate the horizontal position and the vertical position of the sub-
block, respectively, and w indicates a determined weighting coefficient. The de-
termined weighting coefficient may be predetermined.

Such information indicating the affine mode (for example, referred to as an affine
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flag) may be signaled at the CU level. It is to be noted that the signaling of the in-
formation indicating the affine mode does not necessarily need to be performed at the
CU level, and may be performed at another level (for example, at the sequence level,
picture level, slice level, tile level, CTU level, or sub-block level).

In addition, the affine mode may include several modes for different methods for
deriving motion vectors at the upper-left and upper-right corner control points. For
example, the affine mode include two modes which are the affine inter mode (also
referred to as an affine normal inter mode) and the affine merge mode.

(MYV Derivation > Affine Mode)

FIG. 46B is a conceptual diagram for illustrating one example of MV derivation in
units of a sub-block in affine mode in which three control points are used. In FIG. 46B,
the current block includes, for example, sixteen 4x4 blocks. Here, motion vector V, at
the upper-left corner control point in the current block is derived based on a motion
vector of a neighboring block. Here, motion vector V, at the upper-right corner control
point in the current block is derived based on a motion vector of a neighboring block,
and likewise motion vector V, at the lower-left corner control point for the current
block is derived based on a motion vector of a neighboring block. Three motion
vectors vy, vy, and v, may be projected according to an expression (1B) indicated
below, and motion vectors (v, v,) for the respective sub-blocks in the current block
may be derived.

[Math.2]

_ (le B VOX) X — (V2x B VOx) +v
X w h y 0x

_ (Vly - VOy) (sz - VOy)
— X —
w h

(1B)

y y+VOy

Here, x and y indicate the horizontal position and the vertical position of the sub-
block, respectively, and w and h may be weighting coefficients, which may be prede-
termined weighting coefficients. In an embodiment, w may indicate the width of the
current block, and h may indicate the height of the current block.

Affine modes in which different numbers of control points (for example, two and
three control points) are used may be switched and signaled at the CU level. It is to be
noted that information indicating the number of control points in affine mode used at
the CU level may be signaled at another level (for example, the sequence level, picture
level, slice level, tile level, CTU level, or sub-block level).

In addition, such an affine mode in which three control points are used may include
different methods for deriving motion vectors at the upper-left, upper-right, and lower-
left corner control points. For example, the affine modes in which three control points

are used may include two modes which are the affine inter mode and the affine merge



58

WO 2021/025165 PCT/JP2020/030507

[0293]

[0294]

[0295]

[0296]

[0297]

[0298]

[0299]

mode, as in the case of affine modes in which two control points are used.

It is to be noted that, in the affine modes, the size of each sub-block included in the
current block may not be limited to 4x4 pixels, and may be another size. For example,
the size of each sub-block may be 8x8 pixels.

(MYV Derivation > Affine Mode > Control Point)

FIG. 47A, FIG. 47B, and FIG. 47C are conceptual diagrams for illustrating examples
of MV derivation at control points in an affine mode.

As illustrated in FIG. 47A, in the affine mode, for example, motion vector predictors
at respective control points of a current block are calculated based on a plurality of
motion vectors corresponding to blocks encoded according to the affine mode among
encoded block A (left), block B (upper), block C (upper-right), block D (lower-left),
and block E (upper-left) which neighbor the current block. More specifically, encoded
block A (left), block B (upper), block C (upper-right), block D (lower-left), and block
E (upper-left) are checked in the listed order, and the first effective block encoded
according to the affine mode is identified. Motion vector predictors at the control
points of the current block are calculated based on a plurality of motion vectors corre-
sponding to the identified block.

For example, as illustrated in FIG. 47B, when block A which neighbors to the left of
the current block has been encoded according to an affine mode in which two control
points are used, motion vectors v; and v, projected at the upper-left corner position and
the upper-right corner position of the encoded block including block A are derived.
Motion vector v, at the upper-left corner control point of the current block and motion
vector v, at the upper-right corner control point of the current block are then calculated
from derived motion vectors v; and v,.

For example, as illustrated in FIG. 47C, when block A which neighbors to the left of
the current block has been encoded according to an affine mode in which three control
points are used, motion vectors v, v4, and vs projected at the upper-left corner position,
the upper-right corner position, and the lower-left corner position of the encoded block
including block A are derived. Motion vector v, at the upper-left corner control point
of the current block, motion vector v, at the upper-right corner control point of the
current block, and motion vector v, at the lower-left corner control point of the current
block are then calculated from derived motion vectors vs, vy, and vs.

The MV derivation methods illustrated in FIGs. 47A to 47C may be used in the MV
derivation at each control point for the current block in Step Sk_1 illustrated in FIG.
50, or may be used for MV predictor derivation at each control point for the current
block in Step Sj_1 illustrated in FIG. 51 described later.

FIGs. 48A and 48B are conceptual diagrams for illustrating examples of MV

derivation at control points in affine mode.
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FIG. 48A is a conceptual diagram for illustrating an example affine mode in which
two control points are used.

In the affine mode, as illustrated in FIG. 48A, a MV selected from MVs at encoded
block A, block B, and block C which neighbor the current block is used as motion
vector v at the upper-left corner control point for the current block. Likewise, a MV
selected from MVs of encoded block D and block E which neighbor the current block
is used as motion vector v; at the upper-right corner control point for the current block.

FIG. 48B is a conceptual diagram for illustrating an example affine mode in which
three control points are used.

In the affine mode, as illustrated in FIG. 48B, a MV selected from MVs at encoded
block A, block B, and block C which neighbor the current block is used as motion
vector v at the upper-left corner control point for the current block. Likewise, a MV
selected from MVs of encoded block D and block E which neighbor the current block
is used as motion vector v, at the upper-right corner control point for the current block.
Furthermore, a MV selected from MVs of encoded block F and block G which
neighbor the current block is used as motion vector v, at the lower-left corner control
point for the current block.

It is to be noted that the MV derivation methods illustrated in FIGs. 48A and 48B
may be used in the MV derivation at each control point for the current block in Step
Sk_1 illustrated in FIG. 50 described later, or may be used for MV predictor derivation
at each control point for the current block in Step Sj_1 illustrated in FIG. 51 described
later.

Here, when affine modes in which different numbers of control points (for example,
two and three control points) are used may be switched and signaled at the CU level,
the number of control points for an encoded block and the number of control points for
a current block may be different from each other.

FIGs. 49A and 49B are conceptual diagrams for illustrating examples of a method for
MYV derivation at control points when the number of control points for an encoded
block and the number of control points for a current block are different from each
other.

For example, as illustrated in FIG. 49A, a current block has three control points at the
upper-left corner, the upper-right corner, and the lower-left corner, and block A which
neighbors to the left of the current block has been encoded according to an affine mode
in which two control points are used. In this case, motion vectors v; and v, projected at
the upper-left corner position and the upper-right corner position in the encoded block
including block A are derived. Motion vector v, at the upper-left corner control point
and motion vector v, at the upper-right corner control point for the current block are

then calculated from derived motion vectors v; and v,. Furthermore, motion vector v,
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at the lower-left corner control point is calculated from derived motion vectors v, and v
T

For example, as illustrated in FIG. 49B, a current block has two control points at the
upper-left corner and the upper-right corner, and block A which neighbors to the left of
the current block has been encoded according to an affine mode in which three control
points are used. In this case, motion vectors v;, v,, and vs projected at the upper-left
corner position in the encoded block including block A, the upper-right corner position
in the encoded block, and the lower-left corner position in the encoded block are
derived. Motion vector v, at the upper-left corner control point for the current block
and motion vector v, at the upper-right corner control point for the current block are
then calculated from derived motion vectors vs, va, and vs.

It is to be noted that the MV derivation methods illustrated in FIGs. 49A and 49B
may be used in the MV derivation at each control point for the current block in Step
Sk_1 illustrated in FIG. 50 described later, or may be used for MV predictor derivation
at each control point for the current block in Step Sj_1 illustrated in FIG. 51 described
later.

(MV Derivation > Affine Mode > Affine Merge Mode)

FIG. 50 is a flow chart illustrating one example of a process in the affine merge
mode.

In affine merge mode as illustrated, first, inter predictor 126 derives MVs at re-
spective control points for a current block (Step Sk_1). The control points are an
upper-left corner point of the current block and an upper-right corner point of the
current block as illustrated in FIG. 46A, or an upper-left corner point of the current
block, an upper-right corner point of the current block, and a lower-left corner point of
the current block as illustrated in FIG. 46B. Inter predictor 126 may encode MV
selection information for identifying two or three derived MVs in a stream.

For example, when MV derivation methods illustrated in FIGs. 47A to 47C are used,
as illustrated in FIG. 47A, inter predictor 126 checks encoded block A (left), block B
(upper), block C (upper-right), block D (lower-left), and block E (upper-left) in the
listed order, and identifies the first effective block encoded according to the affine
mode.

Inter predictor 126 derives the MV at the control point using the identified first
effective block encoded according to the identified affine mode. For example, when
block A is identified and block A has two control points, as illustrated in FIG. 47B,
inter predictor 126 calculates motion vector v at the upper-left corner control point of
the current block and motion vector v, at the upper-right corner control point of the
current block from motion vectors v; and v, at the upper-left corner of the encoded

block including block A and the upper-right corner of the encoded block. For example,
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inter predictor 126 calculates motion vector v, at the upper-left corner control point of
the current block and motion vector v, at the upper-right corner control point of the
current block by projecting motion vectors v; and v, at the upper-left corner and the
upper-right corner of the encoded block onto the current block.

Alternatively, when block A is identified and block A has three control points, as il-
lustrated in FIG. 47C, inter predictor 126 calculates motion vector v, at the upper-left
corner control point of the current block, motion vector v, at the upper-right corner
control point of the current block, and motion vector v, at the lower-left corner control
point of the current block from motion vectors v, v4, and vs at the upper-left corner of
the encoded block including block A, the upper-right corner of the encoded block, and
the lower-left corner of the encoded block. For example, inter predictor 126 calculates
motion vector v, at the upper-left corner control point of the current block, motion
vector v, at the upper-right corner control point of the current block, and motion vector
v, at the lower-left corner control point of the current block by projecting motion
vectors vs, v4, and vs at the upper-left corner, the upper-right corner, and the lower-left
corner of the encoded block onto the current block.

It is to be noted that, as illustrated in FIG. 49A described above, MVs at three control
points may be calculated when block A is identified and block A has two control
points, and that, as illustrated in FIG. 49B described above, MVs at two control points
may be calculated when block A is identified and block A has three control points.

Next, inter predictor 126 performs motion compensation of each of a plurality of sub-
blocks included in the current block. In other words, inter predictor 126 calculates a
MYV for each of a plurality of sub-blocks as an affine MV, for example using two
motion vectors v, and v; and the above expression (1A) or three motion vectors vy, vy,
and v, and the above expression (1B) (Step Sk_2). Inter predictor 126 then performs
motion compensation of the sub-blocks using these affine MVs and encoded reference
pictures (Step Sk_3). When the processes in Steps Sk_2 and Sk_3 are executed for
each of all the sub-blocks included in the current block, the process for generating a
prediction image using the affine merge mode for the current block finishes. In other
words, motion compensation of the current block is performed to generate a prediction
image of the current block.

It is to be noted that the above-described MV candidate list may be generated in Step
Sk_1. The MV candidate list may be, for example, a list including MV candidates
derived using a plurality of MV derivation methods for each control point. The
plurality of MV derivation methods may be, for example, any combination of the MV
derivation methods illustrated in FIGs. 47A to 47C, the MV derivation methods il-
lustrated in FIGs. 48A and 48B, the MV derivation methods illustrated in FIGs. 49A
and 49B, and other MV derivation methods.
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It is to be noted that MV candidate lists may include MV candidates in a mode in
which prediction is performed in units of a sub-block, other than the affine mode.

It is to be noted that, for example, a MV candidate list including MV candidates in an
affine merge mode in which two control points are used and an affine merge mode in
which three control points are used may be generated as a MV candidate list. Alter-
natively, a MV candidate list including MV candidates in the affine merge mode in
which two control points are used and a MV candidate list including MV candidates in
the affine merge mode in which three control points are used may be generated
separately. Alternatively, a MV candidate list including MV candidates in one of the
affine merge mode in which two control points are used and the affine merge mode in
which three control points are used may be generated. The MV candidate(s) may be,
for example, MVs for encoded block A (left), block B (upper), block C (upper-right),
block D (lower-left), and block E (upper-left), or a MV for an effective block among
the blocks.

It is to be noted that index indicating one of the MVs in a MV candidate list may be
transmitted as MV selection information.

(MYV Derivation > Affine Mode > Affine Inter Mode)

FIG. 51 is a flow chart illustrating one example of a process in an affine inter mode.

In the affine inter mode, first, inter predictor 126 derives MV predictors (vg, vy) or (vy
, V1, V2) of respective two or three control points for a current block (Step Sj_1). The
control points may be, for example, an upper-left corner point for the current block, an
upper-right corner point of the current block, and an upper-right corner point for the
current block as illustrated in FIG. 46A or FIG. 46B.

For example, when the MV derivation methods illustrated in FIGs. 48A and 48B are
used, inter predictor 126 derives the MV predictors (vg, v;) or (vg, vy, V,) at respective
two or three control points for the current block by selecting MV of any of the blocks
among encoded blocks in the vicinity of the respective control points for the current
block illustrated in FIG. 48A or FIG. 48B. At this time, inter predictor 126 encodes, in
a stream, MV predictor selection information for identifying the selected two or three
MYV predictors.

For example, inter predictor 126 may determine, using a cost evaluation or the like,
the block from which a MV as a MV predictor at a control point is selected from
among encoded blocks neighboring the current block, and may write, in a bitstream, a
flag indicating which MV predictor has been selected. In other words, inter predictor
126 outputs, as a prediction parameter, the MV predictor selection information such as
a flag to entropy encoder 110 through prediction parameter generator 130.

Next, inter predictor 126 performs motion estimation (Step Sj_3 and Sj_4) while

updating the MV predictor selected or derived in Step Sj_1 (Step Sj_2). In other words,
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inter predictor 126 calculates, as an affine MV, a MV of each of sub-blocks which cor-
responds to an updated MV predictor, using the expression (1A) or expression (1B)
described above (Step Sj_3). Inter predictor 126 then performs motion compensation
of the sub-blocks using these affine MVs and encoded reference pictures (Step Sj_4).
The processes in Step Sj_3 and Sj_4 are executed on all the blocks in the current block
when a MV predictor is updated in Step Sj_2. As a result, for example, inter predictor
126 determines the MV predictor which yields the smallest cost as the MV at a control
point in a motion estimation loop (Step Sj_5). At this time, inter predictor 126 further
encodes, in the stream, the difference value between the determined MV and the MV
predictor as a MV difference. In other words, inter predictor 126 outputs the MV
difference as a prediction parameter to entropy encoder 110 through prediction
parameter generator 130.

Lastly, inter predictor 126 generates a prediction image for the current block by
performing motion compensation of the current block using the determined MV and
the encoded reference picture (Step Sj_6).

It is to be noted that the above-described MV candidate list may be generated in Step
Sj_1. The MV candidate list may be, for example, a list including MV candidates
derived using a plurality of MV derivation methods for each control point. The
plurality of MV derivation methods may be, for example, any combination of the MV
derivation methods illustrated in FIGs. 47A to 47C, the MV derivation methods il-
lustrated in FIGs. 48A and 48B, the MV derivation methods illustrated in FIGs. 49A
and 49B, and other MV derivation methods.

It is to be noted that MV candidate lists may include MV candidates in a mode in
which prediction is performed in units of a sub-block, other than the affine mode.

It is to be noted that, for example, a MV candidate list including MV candidates in an
affine inter mode in which two control points are used and an affine inter mode in
which three control points are used may be generated as a MV candidate list. Alter-
natively, a MV candidate list including MV candidates in the affine inter mode in
which two control points are used and a MV candidate list including MV candidates in
the affine inter mode in which three control points are used may be generated
separately. Alternatively, a MV candidate list including MV candidates in one of the
affine inter mode in which two control points are used and the affine inter mode in
which three control points are used may be generated. The MV candidate(s) may be,
for example, MVs for encoded block A (left), block B (upper), block C (upper-right),
block D (lower-left), and block E (upper-left), or a MV for an effective block among
the blocks.

It is to be noted that index indicating one of the MV candidates in a MV candidate

list may be transmitted as MV predictor selection information.
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(MV Derivation > Triangle Mode)

Inter predictor 126 generates one rectangular prediction image for a current
rectangular block in the above example. However, inter predictor 126 may generate a
plurality of prediction images each having a shape different from a rectangle for the
current rectangular block, and may combine the plurality of prediction images to
generate the final rectangular prediction image. The shape different from a rectangle
may be, for example, a triangle.

FIG. 52A is a conceptual diagram for illustrating generation of two triangular
prediction images.

Inter predictor 126 generates a triangular prediction image by performing motion
compensation of a first partition having a triangular shape in a current block by using a
first MV of the first partition, to generate a triangular prediction image. Likewise, inter
predictor 126 generates a triangular prediction image by performing motion com-
pensation of a second partition having a triangular shape in a current block by using a
second MV of the second partition, to generate a triangular prediction image. Inter
predictor 126 then generates a prediction image having the same rectangular shape as
the rectangular shape of the current block by combining these prediction images.

It is to be noted that a first prediction image having a rectangular shape corre-
sponding to a current block may be generated as a prediction image for a first partition,
using a first MV. In addition, a second prediction image having a rectangular shape
corresponding to a current block may be generated as a prediction image for a second
partition, using a second MV. A prediction image for the current block may be
generated by performing a weighted addition of the first prediction image and the
second prediction image. It is to be noted that the part which is subjected to the
weighted addition may be a partial region across the boundary between the first
partition and the second partition.

FIG. 52B is a conceptual diagram for illustrating examples of a first portion of a first
partition which overlaps with a second partition, and first and second sets of samples
which may be weighted as part of a correction process. The first portion may be, for
example, one quarter of the width or height of the first partition. In another example,
the first portion may have a width corresponding to N samples adjacent to an edge of
the first partition, where N is an integer greater than zero, for example, N may be the
integer 2. As illustrated, the left example of FIG. 52B shows a rectangular partition
having a rectangular portion with a width which is one fourth of the width of the first
partition, with the first set of samples including samples outside of the first portion and
samples inside of the first portion, and the second set of samples including samples
within the first portion. The center example of FIG. 52B shows a rectangular partition

having a rectangular portion with a height which is one fourth of the height of the first
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partition, with the first set of samples including samples outside of the first portion and
samples inside of the first portion, and the second set of samples including samples
within the first portion. The right example of FIG. 52B shows a triangular partition
having a polygonal portion with a height which corresponds to two samples, with the
first set of samples including samples outside of the first portion and samples inside of
the first portion, and the second set of samples including samples within the first
portion.

The first portion may be a portion of the first partition which overlaps with an
adjacent partition. FIG. 52C is a conceptual diagram for illustrating a first portion of a
first partition, which is a portion of the first partition that overlaps with a portion of an
adjacent partition. For ease of illustration, a rectangular partition having an
overlapping portion with a spatially adjacent rectangular partition is shown. Partitions
having other shapes, such as triangular partitions, may be employed, and the
overlapping portions may overlap with a spatially or temporally adjacent partition.

In addition, although an example is given in which a prediction image is generated
for each of two partitions using inter prediction, a prediction image may be generated
for at least one partition using intra prediction.

FIG. 53 is a flow chart illustrating one example of a process in a triangle mode.

In the triangle mode, first, inter predictor 126 splits the current block into the first
partition and the second partition (Step Sx_1). At this time, inter predictor 126 may
encode, in a stream, partition information which is information related to the splitting
into the partitions as a prediction parameter. In other words, inter predictor 126 may
output the partition information as the prediction parameter to entropy encoder 110
through prediction parameter generator 130.

First, inter predictor 126 obtains a plurality of MV candidates for a current block
based on information such as MVs of a plurality of encoded blocks temporally or
spatially surrounding the current block (Step Sx_2). In other words, inter predictor 126
generates a MV candidate list.

Inter predictor 126 then selects the MV candidate for the first partition and the MV
candidate for the second partition as a first MV and a second MV, respectively, from
the plurality of MV candidates obtained in Step Sx_1 (Step Sx_3). At this time, inter
predictor 126 encodes, in a stream, MV selection information for identifying the
selected MV candidate as a prediction parameter. In other words, inter predictor 126
outputs the MV selection information as a prediction parameter to entropy encoder 110
through prediction parameter generator 130.

Next, inter predictor 126 generates a first prediction image by performing motion
compensation using the selected first MV and an encoded reference picture (Step

Sx_4). Likewise, inter predictor 126 generates a second prediction image by
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performing motion compensation using the selected second MV and an encoded
reference picture (Step Sx_5).

Lastly, inter predictor 126 generates a prediction image for the current block by
performing a weighted addition of the first prediction image and the second prediction
image (Step Sx_6).

It is to be noted that, although the first partition and the second partition are triangles
in the example illustrated in FIG. 52A, the first partition and the second partition may
be trapezoids, or other shapes different from each other. Furthermore, although the
current block includes two partitions in the examples illustrated in FIGs. 52A and 52C,
the current block may include three or more partitions.

In addition, the first partition and the second partition may overlap with each other.
In other words, the first partition and the second partition may include the same pixel
region. In this case, a prediction image for a current block may be generated using a
prediction image in the first partition and a prediction image in the second partition.

In addition, although the example in which the prediction image is generated for each
of the two partitions using inter prediction has been illustrated, a prediction image may
be generated for at least one partition using intra prediction.

It is to be noted that the MV candidate list for selecting the first MV and the MV
candidate list for selecting the second MV may be different from each other, or the MV
candidate list for selecting the first MV may be also used as the MV candidate list for
selecting the second MV.

It is to be noted that partition information may include an index indicating the
splitting direction in which at least a current block is split into a plurality of partitions.
The MV selection information may include an index indicating the selected first MV
and an index indicating the selected second MV. One index may indicate a plurality of
pieces of information. For example, one index collectively indicating a part or the
entirety of partition information and a part or the entirety of MV selection information
may be encoded.

(MYV Derivation > ATMVP Mode)

FIG. 54 is a conceptual diagram for illustrating one example of an Advanced
Temporal Motion Vector Prediction (ATMVP) mode in which a MV is derived in units
of a sub-block.

The ATMVP mode is a mode categorized into the merge mode. For example, in the
ATMVP mode, a MV candidate for each sub-block is registered in a MV candidate list
for use in normal merge mode.

More specifically, in the ATMVP mode, first, as illustrated in FIG. 54, a temporal
MYV reference block associated with a current block is identified in an encoded

reference picture specified by a MV (MVO0) of a neighboring block located at the
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lower-left position with respect to the current block. Next, in each sub-block in the
current block, the MV used to encode the region corresponding to the sub-block in the
temporal MV reference block is identified. The MV identified in this way is included
in a MV candidate list as a MV candidate for the sub-block in the current block. When
the MV candidate for each sub-block is selected from the MV candidate list, the sub-
block is subjected to motion compensation in which the MV candidate is used as the
MYV for the sub-block. In this way, a prediction image for each sub-block is generated.

Although the block located at the lower-left position with respect the current block is
used as a surrounding MV reference block in the example illustrated in FIG. 54, it is to
be noted that another block may be used. In addition, the size of the sub-block may be
4x4 pixels, 8x8 pixels, or another size. The size of the sub-block may be switched for a
unit such as a slice, brick, picture, etc.

(MYV Derivation > DMVR)

FIG. 55 is a flow chart illustrating a relationship between the merge mode and
Decoder Motion Vector Refinement DMVR.

Inter predictor 126 derives a motion vector for a current block according to the merge
mode (Step S1_1). Next, inter predictor 126 determines whether to perform estimation
of a motion vector, that is, motion estimation (Step S1_2). Here, when determining not
to perform motion estimation (No in Step S1_2), inter predictor 126 determines the
motion vector derived in Step S1_1 as the final motion vector for the current block
(Step S1_4). In other words, in this case, the motion vector of the current block is de-
termined according to the merge mode.

When determining to perform motion estimation in Step SI_1 (Yes in Step S1_2),
inter predictor 126 derives the final motion vector for the current block by estimating a
surrounding region of the reference picture specified by the motion vector derived in
Step S1_1 (Step SI_3). In other words, in this case, the motion vector of the current
block is determined according to the DMVR.

FIG. 56 is a conceptual diagram for illustrating one example of a DMVR process for
determining a MV.

First, in the merge mode for example, MV candidates (LO and L1) are selected for
the current block. A reference pixel is identified from a first reference picture (LO)
which is an encoded picture in the LO list according to the MV candidate (LO).
Likewise, a reference pixel is identified from the second reference picture (L1) which
is an encoded picture in the L1 list according to the MV candidate (L1). A template is
generated by calculating an average of these reference pixels.

Next, each of the surrounding regions of MV candidates of the first reference picture
(LO) and the second reference picture (L1) are estimated using the template, and the
MYV which yields the smallest cost is determined to be the final MV. It is to be noted
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that the cost may be calculated, for example, using a difference value between each of
the pixel values in the template and a corresponding one of the pixel values in the es-
timation region, the values of MV candidates, etc.

Exactly the same processes described here do not always need to be performed.
Other process for enabling derivation of the final MV by estimation in surrounding
regions of MV candidates may be used.

FIG. 57 is a conceptual diagram for illustrating another example of DMVR for de-
termining a MV. Unlike the example of DM VR illustrated in FIG. 56, in the example
illustrated in FIG. 57, costs are calculated without generating a template.

First, inter predictor 126 estimates a surrounding region of a reference block included
in each of reference pictures in the LO list and L1 list, based on an initial MV which is
a MV candidate obtained from each MV candidate list. For example, as illustrated in
FIG. 57, the initial MV corresponding to the reference block in the LO list is
InitMV_LQ0, and the initial MV corresponding to the reference block in the L1 list is
InitMV_L1. In motion estimation, inter predictor 126 first sets the search position for
the reference picture in the LO list. Based on the position indicated by the vector
difference indicating the search position to be set, specifically, the initial MV (that is,
InitMV_LO0, the vector difference to the search position is MVd_LO. Inter predictor
126 then determines the estimation position in the reference picture in the L1 list. This
search position is indicated by the vector difference to the search position from the
position indicated by the initial MV (that is, InitMV_L1). More specifically, inter
predictor 126 determines the vector difference as MVd_L1 by mirroring of MVd_LO.
In other words, inter predictor 126 determines the position which is symmetrical with
respect to the position indicated by the initial MV to be the search position in each
reference picture in the LO list and the L1 list. Inter predictor 126 calculates, for each
search position, the total sum of the absolute differences (SADs) between values of
pixels at search positions in blocks as a cost, and finds out the search position that
yields the smallest cost.

FIG. 58A is a conceptual diagram for illustrating one example of motion estimation
in DMVR, and FIG. 58B is a flow chart illustrating one example of a process of
motion estimation.

First, in Step 1, inter predictor 126 calculates the cost between the search position
(also referred to as a starting point) indicated by the initial MV and eight surrounding
search positions. Inter predictor 126 then determines whether the cost at each of the
search positions other than the starting point is the smallest. Here, when determining
that the cost at the search position other than the starting point is the smallest, inter
predictor 126 changes a target to the search position at which the smallest cost is

obtained, and performs the process in Step 2. When the cost at the starting point is the



69

WO 2021/025165 PCT/JP2020/030507

[0364]

[0365]

[0366]

[0367]

[0368]

[0369]

[0370]

[0371]

smallest, inter predictor 126 skips the process in Step 2 and performs the process in
Step 3.

In Step 2, inter predictor 126 performs the search similar to the process in Step 1,
regarding, as a new starting point, the search position after the target change according
to the result of the process in Step 1. Inter predictor 126 then determines whether the
cost at each of the search positions other than the starting point is the smallest. Here,
when determining that the cost at the search position other than the starting point is the
smallest, inter predictor 126 performs the process in Step 4. When the cost at the
starting point is the smallest, inter predictor 126 performs the process in Step 3.

In Step 4, inter predictor 126 regards the search position at the starting point as the
final search position, and determines the difference between the position indicated by
the initial MV and the final search position to be a vector difference.

In Step 3, inter predictor 126 determines the pixel position at sub-pixel accuracy at
which the smallest cost is obtained, based on the costs at the four points located at
upper, lower, left, and right positions with respect to the starting point in Step 1 or Step
2, and regards the pixel position as the final search position. The pixel position at the
sub-pixel accuracy is determined by performing weighted addition of each of the four
upper, lower, left, and right vectors ((0, 1), (0, -1), (-1, 0), and (1, 0)), using, as a
weight, the cost at a corresponding one of the four search positions. Inter predictor 126
then determines the difference between the position indicated by the initial MV and the
final search position to be the vector difference.

(Motion Compensation > BIO/OBMC/LIC)

Motion compensation involves a mode for generating a prediction image, and
correcting the prediction image. The mode is, for example, bi-directional optical flow
(BIO), overlapped block motion compensation (OBMC), local illumination com-
pensation (LIC), to be described later, etc.

FIG. 59 is a flow chart illustrating one example of a process of generation of a
prediction image.

Inter predictor 126 generates a prediction image (Step Sm_1), and corrects the
prediction image, for example, according to, for example, any of the modes described
above (Step Sm_2).

FIG. 60 is a flow chart illustrating another example of a process of generation of a
prediction image.

Inter predictor 126 determines a motion vector of a current block (Step Sn_1). Next,
inter predictor 126 generates a prediction image using the motion vector (Step Sn_2),
and determines whether to perform a correction process (Step Sn_3). Here, when de-
termining to perform a correction process (Yes in Step Sn_3), inter predictor 126

generates the final prediction image by correcting the prediction image (Step Sn_4). It
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is to be noted that, in LIC described later, luminance and chrominance may be
corrected in Step Sn_4. When determining not to perform a correction process (No in
Step Sn_3), inter predictor 126 outputs the prediction image as the final prediction
image without correcting the prediction image (Step Sn_5).

(Motion Compensation > OBMC)

It is to be noted that an inter prediction image may be generated using motion in-
formation for a neighboring block in addition to motion information for the current
block obtained by motion estimation. More specifically, an inter prediction image may
be generated for each sub-block in a current block by performing weighted addition of
a prediction image based on the motion information obtained by motion estimation (in
a reference picture) and a prediction image based on the motion information of the
neighboring block (in the current picture). Such inter prediction (motion com-
pensation) is also referred to as overlapped block motion compensation (OBMC) or an
OBMC mode.

In OBMC mode, information indicating a sub-block size for OBMC (referred to as,
for example, an OBMC block size) may be signaled at the sequence level. Moreover,
information indicating whether to apply the OBMC mode (referred to as, for example,
an OBMC flag) may be signaled at the CU level. It is to be noted that the signaling of
such information does not necessarily need to be performed at the sequence level and
CU level, and may be performed at another level (for example, at the picture level,
slice level, brick level, CTU level, or sub-block level).

The OBMC mode will be described in further detail. FIGs. 61 and 62 are a flow chart
and a conceptual diagram for illustrating an outline of a prediction image correction
process performed by OBMC.

First, as illustrated in FIG. 62, a prediction image (Pred) by normal motion com-
pensation is obtained using a MV assigned to a current block. In FIG. 62, the arrow
“MV” points a reference picture, and indicates what the current block of the current
picture refers to in order to obtain the prediction image.

Next, a prediction image (Pred_L) is obtained by applying a motion vector (MV_L)
which has been already derived for the encoded block neighboring to the left of the
current block to the current block (re-using the motion vector for the current block).
The motion vector (MV_L) is indicated by an arrow “MV_L" indicating a reference
picture from a current block. A first correction of a prediction image is performed by
overlapping two prediction images Pred and Pred_L. This provides an effect of
blending the boundary between neighboring blocks.

Likewise, a prediction image (Pred_U) is obtained by applying a MV (MV_U) which
has been already derived for the encoded block neighboring above the current block to
the current block (re-using the MV for the current block). The MV (MV_U) is



71

WO 2021/025165 PCT/JP2020/030507

[0378]

[0379]

[0380]

[0381]

[0382]

[0383]

indicated by an arrow “MV_U” indicating a reference picture from a current block. A
second correction of a prediction image is performed by overlapping the prediction
image Pred_U to the prediction images (for example, Pred and Pred_L) on which the
first correction has been performed. This provides an effect of blending the boundary
between neighboring blocks. The prediction image obtained by the second correction is
the one in which the boundary between the neighboring blocks has been blended
(smoothed), and thus is the final prediction image of the current block.

Although the above example is a two-path correction method using left and upper
neighboring blocks, it is to be noted that the correction method may be three- or more-
path correction method using also the right neighboring block and/or the lower
neighboring block.

It is to be noted that the region in which such overlapping is performed may be only
part of a region near a block boundary instead of the pixel region of the entire block.

It is to be noted that the prediction image correction process according to OBMC for
obtaining one prediction image Pred from one reference picture by overlapping ad-
ditional prediction image Pred_L and Pred_U have been described above. However,
when a prediction image is corrected based on a plurality of reference images, a similar
process may be applied to each of the plurality of reference pictures. In such a case,
after corrected prediction images are obtained from the respective reference pictures by
performing OBMC image correction based on the plurality of reference pictures, the
obtained corrected prediction images are further overlapped to obtain the final
prediction image.

It is to be noted that, in OBMC, a current block unit may be a PU or a sub-block unit
obtained by further splitting the PU.

One example of a method for determining whether to apply OBMC is a method for
using an obmc_flag which is a signal indicating whether to apply OBMC. As one
specific example, encoder 100 may determine whether the current block belongs to a
region having complicated motion. Encoder 100 sets the obmc_flag to a value of “1”
when the block belongs to a region having complicated motion and applies OBMC
when encoding, and sets the obmc_flag to a value of “0” when the block does not
belong to a region having complicated motion and encodes the block without applying
OBMC. Decoder 200 switches between application and non-application of OBMC by
decoding the obmc_flag written in a stream.

(Motion Compensation > BIO)

Next, a MV derivation method is described. First, a mode for deriving a MV based
on a model assuming uniform linear motion is described. This mode is also referred to
as a bi-directional optical flow (BIO) mode. In addition, this bi-directional optical flow
may be written as BDOF instead of BIO.
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FIG. 63 is a conceptual diagram for illustrating a model assuming uniform linear
motion. In FIG. 63, (v,, v,) indicates a velocity vector, and t0 and t1 indicate temporal
distances between a current picture (Cur Pic) and two reference pictures (Refy, Ref)).
(MV,0, MV ) indicate MVs corresponding to reference picture Refy, and (MV,;, MV,)
indicate MVs corresponding to reference picture Ref;.

Here, under the assumption of uniform linear motion exhibited by a velocity vector
(Vs Vy), MV, MV ) and (MV,,, MV,,) are represented as (v, Ty, V,Tp) and (v, -Vyo1),

respectively, and the following optical flow equation (2) is given.

[Math.3]
A® /ot + v, 010 fax + vy 010 fay =0 (2)
Here, I(k) indicates a motion-compensated luma value of reference picture k (k =0,

1) after motion compensation. This optical flow equation shows that the sum of (i) the
time derivative of the luma value, (ii) the product of the horizontal velocity and the
horizontal component of the spatial gradient of a reference image, and (iii) the product
of the vertical velocity and the vertical component of the spatial gradient of a reference
image is equal to zero. A motion vector of each block obtained from, for example, a
MYV candidate list may be corrected in units of a pixel, based on a combination of the
optical flow equation and Hermite interpolation.

It is to be noted that a motion vector may be derived on the decoder side 200 using a
method other than deriving a motion vector based on a model assuming uniform linear
motion. For example, a motion vector may be derived in units of a sub-block based on
motion vectors of a plurality of neighboring blocks.

FIG. 64 is a flow chart illustrating one example of a process of inter prediction
according to BIO. FIG. 65 is a functional block diagram illustrating one example of a
functional configuration of inter predictor 126 which may perform inter prediction
according to BIO.

As illustrated in FIG. 65, inter predictor 126 includes, for example, memory 126a, in-
terpolated image deriver 126b, gradient image deriver 126c, optical flow deriver 126d,
correction value deriver 126e, and prediction image corrector 126f. It is to be noted
that memory 126a may be frame memory 122.

Inter predictor 126 derives two motion vectors (My, M), using two reference pictures
(Ref, Ref)) different from the picture (Cur Pic) including a current block. Inter
predictor 126 then derives a prediction image for the current block using the two
motion vectors (Mg, M;) (Step Sy_1). It is to be noted that motion vector M, is motion
vector (MV,y, MV,) corresponding to reference picture Refy,, and motion vector M, is
motion vector (MV,;, MV,,) corresponding to reference picture Ref;.

Next, interpolated image deriver 126b derives interpolated image I° for the current
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block, using motion vector M, and reference picture L, by referring to memory 126a.
Next, interpolated image deriver 126b derives interpolated image I' for the current
block, using motion vector M; and reference picture L, by referring to memory 126a
(Step Sy_2). Here, interpolated image I° is an image included in reference picture Ref,
and to be derived for the current block, and interpolated image I' is an image included
in reference picture Ref; and to be derived for the current block. Each of interpolated
image I° and interpolated image I' may be the same in size as the current block. Alter-
natively, each of interpolated image 1° and interpolated image I' may be an image
larger than the current block. Furthermore, interpolated image I° and interpolated
image I' may include a prediction image obtained by using motion vectors (Mg, M)
and reference pictures (Lo, L;) and applying a motion compensation filter.

In addition, gradient image deriver 126c¢ derives gradient images (Ix%, Ix!, Iy, Iy!) of
the current block, from interpolated image I° and interpolated image I' (Step Sy_3). It
is to be noted that the gradient images in the horizontal direction are (Ix°, Ix!), and the
gradient images in the vertical direction are (Iy?, Iy!). Gradient image deriver 126¢c may
derive each gradient image by, for example, applying a gradient filter to the in-
terpolated images. The gradient image may indicate the amount of spatial change in
pixel value along the horizontal direction, along the vertical direction, or both.

Next, optical flow deriver 126d derives, for each sub-block of the current block, an
optical flow (vx, vy) which is a velocity vector, using the interpolated images (1%, I')
and the gradient images (Ix%, Ix!, Iy, Iy!) (Step Sy_4). The optical flow indicates coef-
ficients for correcting the amount of spatial pixel movement, and may be referred to as
a local motion estimation value, a corrected motion vector, or a corrected weighting
vector. As one example, a sub-block may be 4x4 pixel sub-CU. It is to be noted that
the optical flow derivation may be performed for each pixel unit, or the like, instead of
being performed for each sub-block.

Next, inter predictor 126 corrects a prediction image for the current block using the
optical flow (vx, vy). For example, correction value deriver 126e derives a correction
value for the value of a pixel included in a current block, using the optical flow (vx,
vy) (Step Sy_5). Prediction image corrector 126f may then correct the prediction
image for the current block using the correction value (Step Sy_6). It is to be noted that
the correction value may be derived in units of a pixel, or may be derived in units of a
plurality of pixels or in units of a sub-block.

It is to be noted that the BIO process flow is not limited to the process disclosed in
FIG. 64. For example, only part of the processes disclosed in FIG. 64 may be
performed, or a different process may be added or used as a replacement, or the
processes may be executed in a different processing order, etc.

(Motion Compensation > LIC)
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Next, one example of a mode for generating a prediction image (prediction) using a
local illumination compensation (LIC) process is described.

FIG. 66A is a conceptual diagram for illustrating one example of process of a
prediction image generation method using a luminance correction process performed
by LIC. FIG. 66B is a flow chart illustrating one example of a process of prediction
image generation method using the LIC.

First, inter predictor 126 derives a MV from an encoded reference picture, and
obtains a reference image corresponding to the current block (Step Sz_1).

Next, inter predictor 126 extracts, for the current block, information indicating how
the luma value has changed between the current block and the reference picture (Step
Sz_2). This extraction is performed based on the luma pixel values of the encoded left
neighboring reference region (surrounding reference region) and the encoded upper
neighboring reference region (surrounding reference region) in the current picture, and
the luma pixel values at the corresponding positions in the reference picture specified
by the derived MVs. Inter predictor 126 calculates a luminance correction parameter,
using the information indicating how the luma value has changed (Step Sz_3).

Inter predictor 126 generates a prediction image for the current block by performing
a luminance correction process in which the luminance correction parameter is applied
to the reference image in the reference picture specified by the MV (Step Sz_4). In
other words, the prediction image which is the reference image in the reference picture
specified by the MV is subjected to the correction based on the luminance correction
parameter. In this correction, luminance may be corrected, or chrominance may be
corrected, or both. In other words, a chrominance correction parameter may be
calculated using information indicating how chrominance has changed, and a
chrominance correction process may be performed.

It is to be noted that the shape of the surrounding reference region illustrated in FIG.
66A is one example; another shape may be used.

Moreover, although the process in which a prediction image is generated from a
single reference picture has been described here, cases in which a prediction image is
generated from a plurality of reference pictures can be described in the same manner.
The prediction image may be generated after performing a luminance correction
process of the reference images obtained from the reference pictures in the same
manner as described above.

One example of a method for determining whether to apply LIC is a method for
using a lic_flag which is a signal indicating whether to apply the LIC. As one specific
example, encoder 100 determines whether the current block belongs to a region having
a luminance change. Encoder 100 sets the lic_flag to a value of “1” when the block

belongs to a region having a luminance change and applies LIC when encoding, and
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sets the lic_flag to a value of “0” when the block does not belong to a region having a
luminance change and performs encoding without applying LIC. Decoder 200 may
decode the lic_flag written in the stream and decode the current block by switching
between application and non-application of LIC in accordance with the flag value.

One example of a different method of determining whether to apply a LIC process is
a determining method in accordance with whether a LIC process has been applied to a
surrounding block. As one specific example, when a current block has been processed
in merge mode, inter predictor 126 determines whether an encoded surrounding block
selected in MV derivation in merge mode has been encoded using LIC. Inter predictor
126 performs encoding by switching between application and non-application of LIC
according to the result. It is to be noted that, also in this example, the same processes
are applied in processes at the decoder 200 side.

The luminance correction (LIC) process has been described with reference to FIGs.
66A and 66B, and is further described below.

First, inter predictor 126 derives a MV for obtaining a reference image corresponding
to a current block to be encoded from a reference picture which is an encoded picture.
Next, inter predictor 126 extracts information indicating how the luma value of the

reference picture has been changed to the luma value of the current picture, using the
luma pixel values of encoded surrounding reference regions which neighbor to the left
of and above the current block and the luma values in the corresponding positions in
the reference pictures specified by MVs, and calculates a luminance correction
parameter. For example, it is assumed that the luma pixel value of a given pixel in the
surrounding reference region in the current picture is p0, and that the luma pixel value
of the pixel corresponding to the given pixel in the surrounding reference region in the
reference picture is pl. Inter predictor 126 calculates coefficients A and B for op-
timizing A x pl + B = p0 as the luminance correction parameter for a plurality of
pixels in the surrounding reference region.

Next, inter predictor 126 performs a luminance correction process using the
luminance correction parameter for the reference image in the reference picture
specified by the MV, to generate a prediction image for the current block. For
example, it is assumed that the luma pixel value in the reference image is p2, and that
the luminance-corrected luma pixel value of the prediction image is p3. Inter predictor
126 generates the prediction image after being subjected to the luminance correction
process by calculating A x p2 + B = p3 for each of the pixels in the reference image.

For example, a region having a determined number of pixels extracted from each of
an upper neighboring pixel and a left neighboring pixel may be used as a surrounding
reference region. In addition, the surrounding reference region is not limited to a

region which neighbors the current block, and may be a region which does not



76

WO 2021/025165 PCT/JP2020/030507

[0411]

[0412]

[0413]

[0414]

[0415]

[0416]

neighbor the current block. In the example illustrated in FIG. 66A, the surrounding
reference region in the reference picture may be a region specified by another MV in a
current picture, from a surrounding reference region in the current picture. For
example, the other MV may be a MV in a surrounding reference region in the current
picture.

Although operations performed by encoder 100 have been described here, it is to be
noted that decoder 200 performs similar operations.

It is to be noted that LIC may be applied not only to luma but also to chroma. At this
time, a correction parameter may be derived individually for each of Y, Cb, and Cr, or
a common correction parameter may be used for any of Y, Cb, and Cr.

In addition, the LIC process may be applied in units of a sub-block. For example, a
correction parameter may be derived using a surrounding reference region in a current
sub-block and a surrounding reference region in a reference sub-block in a reference
picture specified by a MV of the current sub-block.

(Prediction Controller)

Prediction controller 128 selects one of an intra prediction signal (an image or a
signal output from intra predictor 124) and an inter prediction signal (an image or a
signal output from inter predictor 126), and outputs the selected prediction image to
subtractor 104 and adder 116 as a prediction signal.

(Prediction Parameter Generator)

Prediction parameter generator 130 may output information related to intra
prediction, inter prediction, selection of a prediction image in prediction controller 128,
etc. as a prediction parameter to entropy encoder 110. Entropy encoder 110 may
generate a stream, based on the prediction parameter which is input from prediction
parameter generator 130 and quantized coefficients which are input from quantizer
108. The prediction parameter may be used in decoder 200. Decoder 200 may receive
and decode the stream, and perform the same processes as the prediction processes
performed by intra predictor 124, inter predictor 126, and prediction controller 128.
The prediction parameter may include, for example, (i) a selection prediction signal
(for example, a MV, a prediction type, or a prediction mode used by intra predictor 124
or inter predictor 126), or (ii) an optional index, a flag, or a value which is based on a
prediction process performed in each of intra predictor 124, inter predictor 126, and
prediction controller 128, or which indicates the prediction process.

(Decoder)

Next, decoder 200 capable of decoding a stream output from encoder 100 described
above is described. FIG. 67 is a block diagram illustrating a functional configuration of
decoder 200 according to this embodiment. Decoder 200 is an apparatus which

decodes a stream that is an encoded image in units of a block.
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As illustrated in FIG. 67, decoder 200 includes entropy decoder 202, inverse
quantizer 204, inverse transformer 206, adder 208, block memory 210, loop filter 212,
frame memory 214, intra predictor 216, inter predictor 218, prediction controller 220,
prediction parameter generator 222, and splitting determiner 224. It is to be noted that
intra predictor 216 and inter predictor 218 are configured as part of a prediction
executor.

(Mounting Example of Decoder)

FIG. 68 is a functional block diagram illustrating a mounting example of decoder
200. Decoder 200 includes processor bl and memory b2. For example, the plurality of
constituent elements of decoder 200 illustrated in FIG. 67 are mounted on processor bl
and memory b2 illustrated in FIG. 68.

Processor b1 is circuitry which performs information processing and is coupled to
memory b2. For example, processor bl is a dedicated or general electronic circuit
which decodes a stream. Processor bl may be a processor such as a CPU. In addition,
processor bl may be an aggregate of a plurality of electronic circuits. In addition, for
example, processor bl may take the roles of two or more constituent elements other
than a constituent element for storing information out of the plurality of constituent
elements of decoder 200 illustrated in FIG. 67, etc.

Memory b2 is dedicated or general memory for storing information that is used by
processor bl to decode a stream. Memory b2 may be electronic circuitry, and may be
connected to processor bl. In addition, memory b2 may be included in processor bl. In
addition, memory b2 may be an aggregate of a plurality of electronic circuits. In
addition, memory b2 may be a magnetic disc, an optical disc, or the like, or may be
represented as a storage, a recording medium, or the like. In addition, memory b2 may
be a non-volatile memory, or a volatile memory.

For example, memory b2 may store an image or a stream. In addition, memory b2
may store a program for causing processor bl to decode a stream.

In addition, for example, memory b2 may take the roles of two or more constituent
elements for storing information out of the plurality of constituent elements of decoder
200 illustrated in FIG. 67, etc. More specifically, memory b2 may take the roles of
block memory 210 and frame memory 214 illustrated in FIG. 67. More specifically,
memory b2 may store a reconstructed image (specifically, a reconstructed block, a re-
constructed picture, or the like).

It is to be noted that, in decoder 200, not all of the plurality of constituent elements
illustrated in FIG. 67, etc. may be implemented, and not all the processes described
herein may be performed. Part of the constituent elements indicated in FIG. 67, etc.
may be included in another device, or part of the processes described herein may be

performed by another device.
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Hereinafter, an overall flow of the processes performed by decoder 200 is described,
and then each of the constituent elements included in decoder 200 is described. It is to
be noted that, some of the constituent elements included in decoder 200 perform the
same processes as performed by some of encoder 100, and thus the same processes are
not repeatedly described in detail. For example, inverse quantizer 204, inverse
transformer 206, adder 208, block memory 210, frame memory 214, intra predictor
216, inter predictor 218, prediction controller 220, and loop filter 212 included in
decoder 200 perform similar processes as performed by inverse quantizer 112, inverse
transformer 114, adder 116, block memory 118, frame memory 122, intra predictor
124, inter predictor 126, prediction controller 128, and loop filter 120 included in
decoder 200, respectively.

(Overall Flow of Decoding Process)

FIG. 69 is a flow chart illustrating one example of an overall decoding process
performed by decoder 200.

First, splitting determiner 224 in decoder 200 determines a splitting pattern of each of
a plurality of fixed-size blocks (128x128 pixels) included in a picture, based on a
parameter which is input from entropy decoder 202 (Step Sp_1). This splitting pattern
is a splitting pattern selected by encoder 100. Decoder 200 then performs processes of
Step Sp_2 to Sp_6 for each of a plurality of blocks of the splitting pattern.

Entropy decoder 202 decodes (specifically, entropy decodes) encoded quantized co-
efficients and a prediction parameter of a current block (Step Sp_2).

Next, inverse quantizer 204 performs inverse quantization of the plurality of
quantized coefficients and inverse transformer 206 performs inverse transform of the
result, to restore prediction residuals (that is, a difference block) (Step Sp_3).

Next, the prediction executor including all or part of intra predictor 216, inter
predictor 218, and prediction controller 220 generates a prediction signal of the current
block (Step Sp_4).

Next, adder 208 adds the prediction image to a prediction residual to generate a re-
constructed image (also referred to as a decoded image block) of the current block
(Step Sp_5).

When the reconstructed image is generated, loop filter 212 performs filtering of the
reconstructed image (Step Sp_6).

Decoder 200 then determines whether decoding of the entire picture has been
finished (Step Sp_7). When determining that the decoding has not yet been finished
(No in Step Sp_7), decoder 200 repeats to the processes starting with Step Sp_1.

It is to be noted that the processes of these Steps Sp_1 to Sp_7 may be performed se-
quentially by decoder 200, or two or more of the processes may be performed in

parallel. The processing order of the two or more of the processes may be modified.
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(Splitting Determiner)

FIG. 70 is a conceptual diagram for illustrating a relationship between splitting de-
terminer 224 and other constituent elements in an embodiment. Splitting determiner
224 may perform the following processes as examples.

For example, splitting determiner 224 collects block information from block memory
210 or frame memory 214, and furthermore obtains a parameter from entropy decoder
202. Splitting determiner 224 may then determine the splitting pattern of a fixed-size
block, based on the block information and the parameter. Splitting determiner 224 may
then output the information indicating the determined splitting pattern to inverse
transformer 206, intra predictor 216, and inter predictor 218. Inverse transformer 206
may perform inverse transform of transform coefficients, based on the splitting pattern
indicated by the information from splitting determiner 224. Intra predictor 216 and
inter predictor 218 may generate a prediction image, based on the splitting pattern
indicated by the information from splitting determiner 224.

(Entropy Decoder)

FIG. 71 is a block diagram illustrating one example of a functional configuration of
entropy decoder 202.

Entropy decoder 202 generates quantized coefficients, a prediction parameter, and a
parameter related to a splitting pattern, by entropy decoding the stream. For example,
CABAC is used in the entropy decoding. More specifically, entropy decode 202
includes, for example, binary arithmetic decoder 202a, context controller 202b, and de-
binarizer 202c. Binary arithmetic decoder 202a arithmetically decodes the stream using
a context value derived by context controller 202b to a binary signal. Context
controller 202b derives a context value according to a feature or a surrounding state of
a syntax element, that is an occurrence probability of a binary signal, in the same
manner as performed by context controller 110b of encoder 100. Debinarizer 202¢
performs debinarization for transforming the binary signal output from binary
arithmetic decoder 202a to a multi-level signal indicating quantized coefficients as
described above. This binarization may be performed according to the binarization
method described above.

With this, entropy decoder 202 outputs quantized coefficients of each block to
inverse quantizer 204. Entropy decoder 202 may output a prediction parameter
included in a stream (see FIG. 1) to intra predictor 216, inter predictor 218, and
prediction controller 220. Intra predictor 216, inter predictor 218, and prediction
controller 220 are capable of executing the same prediction processes as those
performed by intra predictor 124, inter predictor 126, and prediction controller 128 at
the encoder 100 side.

FIG. 72 is a conceptual diagram for illustrating a flow of an example CABAC
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process in entropy decoder 202.

First, initialization is performed in CABAC in entropy decoder 202. In the ini-
tialization, initialization in binary arithmetic decoder 202a and setting of an initial
context value are performed. Binary arithmetic decoder 202a and debinarizer 202c¢ then
execute arithmetic decoding and debinarization of, for example, encoded data of a
CTU. At this time, context controller 202b updates the context value each time
arithmetic decoding is performed. Context controller 202b then saves the context value
as a post process. The saved context value is used, for example, to initialize the context
value for the next CTU.

(Inverse Quantizer)

Inverse quantizer 204 inverse quantizes quantized coefficients of a current block
which are inputs from entropy decoder 202. More specifically, inverse quantizer 204
inverse quantizes the quantized coefficients of the current block, based on quantization
parameters corresponding to the quantized coefficients. Inverse quantizer 204 then
outputs the inverse quantized transform coefficients (that are transform coefficients) of
the current block to inverse transformer 206.

FIG. 73 is a block diagram illustrating one example of a functional configuration of
inverse quantizer 204.

Inverse quantizer 204 includes, for example, quantization parameter generator 204a,
predicted quantization parameter generator 204b, quantization parameter storage 204d,
and inverse quantization executor 204e.

FIG. 74 is a flow chart illustrating one example of a process of inverse quantization
performed by inverse quantizer 204.

Inverse quantizer 204 may perform an inverse quantization process as one example
for each CU based on the flow illustrated in FIG. 74. More specifically, quantization
parameter generator 204a determines whether to perform inverse quantization (Step
Sv_11). Here, when determining to perform inverse quantization (Yes in Step Sv_11),
quantization parameter generator 204a obtains a difference quantization parameter for
the current block from entropy decoder 202 (Step Sv_12).

Next, predicted quantization parameter generator 204b then obtains a quantization
parameter for a processing unit different from the current block from quantization
parameter storage 204d (Step Sv_13). Predicted quantization parameter generator 204b
generates a predicted quantization parameter of the current block based on the obtained
quantization parameter (Step Sv_14).

Quantization parameter generator 204a then generates a quantization parameter for
the current block based on the difference quantization parameter for the current block
obtained from entropy decoder 202 and the predicted quantization parameter for the

current block generated by predicted quantization parameter generator 204b (Step
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Sv_15). For example, the difference quantization parameter for the current block
obtained from entropy decoder 202 and the predicted quantization parameter for the
current block generated by predicted quantization parameter generator 204b may be
added together to generate the quantization parameter for the current block. In
addition, quantization parameter generator 204a stores the quantization parameter for
the current block in quantization parameter storage 204d (Step Sv_16).

Next, inverse quantization executor 204e inverse quantizes the quantized coefficients
of the current block into transform coefficients, using the quantization parameter
generated in Step Sv_15 (Step Sv_17).

It is to be noted that the difference quantization parameter may be decoded at the bit
sequence level, picture level, slice level, brick level, or CTU level. In addition, the
initial value of the quantization parameter may be decoded at the sequence level,
picture level, slice level, brick level, or CTU level. At this time, the quantization
parameter may be generated using the initial value of the quantization parameter and
the difference quantization parameter.

It is to be noted that inverse quantizer 204 may include a plurality of inverse
quantizers, and may inverse quantize the quantized coefficients using an inverse quan-
tization method selected from a plurality of inverse quantization methods.

(Inverse Transformer)

Inverse transformer 206 restores prediction residuals by inverse transforming the
transform coefficients which are inputs from inverse quantizer 204.

For example, when information parsed from a stream indicates that EMT or AMT is
to be applied (for example, when an AMT flag is true), inverse transformer 206 inverse
transforms the transform coefficients of the current block based on information in-
dicating the parsed transform type.

Moreover, for example, when information parsed from a stream indicates that NSST
is to be applied, inverse transformer 206 applies a secondary inverse transform to the
transform coefficients.

FIG. 75 is a flow chart illustrating one example of a process performed by inverse
transformer 206.

For example, inverse transformer 206 determines whether information indicating that
no orthogonal transform is performed is present in a stream (Step St_11). Here, when
determining that no such information is present (No in Step St_11) (e.g.: the absence of
any indication as to whether an orthogonal transform is performed; the presence of an
indication that an orthogonal transform is to be performed); inverse transformer 206
obtains the information indicating the transform type decoded by entropy decoder 202
(Step St_12). Next, based on the information, inverse transformer 206 determines the

transform type used for the orthogonal transform in encoder 100 (Step St_13). Inverse
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transformer 206 then performs inverse orthogonal transform using the determined
transform type (Step St_14). As illustrated in FIG. 75, when determining that in-
formation indicating that no orthogonal transform is performed is present (Yes in Step
St _11) (e.g., an express indication that no orthogonal transform is performed; the
absence of an indication an orthogonal transform is performed), no orthogonal
transform is performed.

FIG. 76 is a flow chart illustrating one example of a process performed by inverse
transformer 206.

For example, inverse transformer 206 determines whether a transform size is smaller
than or equal to a determined value (Step Su_11). The determined value may be prede-
termined. Here, when determining that the transform size is smaller than or equal to a
determined value (Yes in Step Su_11), inverse transformer 206 obtains, from entropy
decoder 202, information indicating which transform type has been used by encoder
100 among the at least one transform type included in the first transform type group
(Step Su_12). It is to be noted that such information is decoded by entropy decoder 202
and output to inverse transformer 206.

Based on the information, inverse transformer 206 determines the transform type
used for the orthogonal transform in encoder 100 (Step Su_13). Inverse transformer
206 then inverse orthogonal transforms the transform coefficients of the current block
using the determined transform type (Step Su_14). When determining that a transform
size is not smaller than or equal to the determined value (No in Step Su_11), inverse
transformer 206 inverse transforms the transform coefficients of the current block
using the second transform type group (Step Su_15).

It is to be noted that the inverse orthogonal transform by inverse transformer 206
may be performed according to the flow illustrated in FIG. 75 or FIG. 76 for each TU
as one example. In addition, inverse orthogonal transform may be performed by using
a defined transform type without decoding information indicating a transform type
used for orthogonal transform. The defined transform type may be a predefined
transform type or a default transform type. In addition, the transform type may be
specifically DST7, DCTS, or the like. In an inverse orthogonal transform, an inverse
transform basis function corresponding to the transform type is used.

(Adder)

Adder 208 reconstructs the current block by adding a prediction residual which is an
input from inverse transformer 206 and a prediction image which is an input from
prediction controller 220. In other words, a reconstructed image of the current block is
generated. Adder 208 then outputs the reconstructed image of the current block to
block memory 210 and loop filter 212.

(Block Memory)
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Block memory 210 is storage for storing a block which is included in a current picture
and may be referred to in intra prediction. More specifically, block memory 210 stores
a reconstructed image output from adder 208.

(Loop Filter)

Loop filter 212 applies a loop filter to the reconstructed image generated by adder
208, and outputs the filtered reconstructed image to frame memory 214 and provides
an output of the decoder 200, e.g., and output to a display device, etc.

When information indicating ON or OFF of an ALF parsed from a stream indicates
that an ALF is ON, one filter from among a plurality of filters may be selected, for
example, based on the direction and activity of local gradients, and the selected filter is
applied to the reconstructed image.

FIG. 77 is a block diagram illustrating one example of a functional configuration of
loop filter 212. It is to be noted that loop filter 212 has a configuration similar to the
configuration of loop filter 120 of encoder 100.

For example, as illustrated in FIG. 77, loop filter 212 includes deblocking filter
executor 212a, SAO executor 212b, and ALF executor 212c. Deblocking filter
executor 212a performs a deblocking filter process on the reconstructed image. SAO
executor 212b performs a SAO process on the reconstructed image after being
subjected to the deblocking filter process. ALF executor 212¢ performs an ALF
process on the reconstructed image after being subjected to the SAO process. It is to be
noted that loop filter 212 does not always need to include all the constituent elements
disclosed in FIG. 77, and may include only part of the constituent elements. In
addition, loop filter 212 may be configured to perform the above processes in a
processing order different from the one disclosed in FIG. 77, may not perform all of
the processes illustrated in FIG. 77, etc.

(Frame Memory)

Frame memory 214 is, for example, storage for storing reference pictures for use in
inter prediction, and may also be referred to as a frame buffer. More specifically, frame
memory 214 stores a reconstructed image filtered by loop filter 212.

(Predictor (Intra Predictor, Inter Predictor, Prediction Controller))

FIG. 78 is a flow chart illustrating one example of a process performed by a predictor
of decoder 200. It is to be noted that the prediction executor may include all or part of
the following constituent elements: intra predictor 216; inter predictor 218; and
prediction controller 220. The prediction executor includes, for example, intra
predictor 216 and inter predictor 218.

The predictor generates a prediction image of a current block (Step Sq_1). This
prediction image is also referred to as a prediction signal or a prediction block. It is to

be noted that the prediction signal is, for example, an intra prediction signal or an inter
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prediction signal. More specifically, the predictor generates the prediction image of the
current block using a reconstructed image which has been already obtained for another
block through generation of a prediction image, restoration of a prediction residual,
and addition of a prediction image. The predictor of decoder 200 generates the same
prediction image as the prediction image generated by the predictor of encoder 100. In
other words, the prediction images are generated according to a method common
between the predictors or mutually corresponding methods.

The reconstructed image may be, for example, an image in a reference picture, or an
image of a decoded block (that is, the other block described above) in a current picture
which is the picture including the current block. The decoded block in the current
picture is, for example, a neighboring block of the current block.

FIG. 79 is a flow chart illustrating another example of a process performed by the
predictor of decoder 200.

The predictor determines either a method or a mode for generating a prediction
image (Step Sr_1). For example, the method or mode may be determined based on, for
example, a prediction parameter, etc.

When determining a first method as a mode for generating a prediction image, the
predictor generates a prediction image according to the first method (Step Sr_2a).
When determining a second method as a mode for generating a prediction image, the
predictor generates a prediction image according to the second method (Step Sr_2b).
When determining a third method as a mode for generating a prediction image, the
predictor generates a prediction image according to the third method (Step Sr_2c).

The first method, the second method, and the third method may be mutually different
methods for generating a prediction image. Each of the first to third methods may be
an inter prediction method, an intra prediction method, or another prediction method.
The above-described reconstructed image may be used in these prediction methods.

FIGs. 80A to 80C (collectively, FIG. 80) are a flow chart illustrating another
example of a process performed by a predictor of decoder 200.

The predictor may perform a prediction process according to the flow illustrated in
FIG. 80 as one example. It is to be noted that intra block copy illustrated in FIG. 80 is
one mode which belongs to inter prediction, and in which a block included in a current
picture is referred to as a reference image or a reference block. In other words, a
picture different from the current picture is not referred to in intra block copy. In
addition, the PCM mode illustrated in FIG. 80 is one mode which belongs to intra
prediction, and in which no transform and quantization is performed.

(Intra Predictor)

Intra predictor 216 performs intra prediction by referring to a block in a current

picture stored in block memory 210, based on the intra prediction mode parsed from
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the stream, to generate a prediction image of a current block (that is, an intra prediction
block). More specifically, intra predictor 216 performs intra prediction by referring to
pixel values (for example, luma and/or chroma values) of a block or blocks
neighboring the current block to generate an intra prediction image, and then outputs
the intra prediction image to prediction controller 220.

It is to be noted that when an intra prediction mode in which a luma block is referred
to in intra prediction of a chroma block is selected, intra predictor 216 may predict the
chroma component of the current block based on the luma component of the current
block.

Moreover, when information parsed from a stream indicates that PDPC is to be
applied, intra predictor 216 corrects intra predicted pixel values based on horizontal/
vertical reference pixel gradients.

FIG. 81 is a diagram illustrating one example of a process performed by intra
predictor 216 of decoder 200.

Intra predictor 216 first determines whether an MPM is to be employed. As il-
lustrated in FIG. 81, intra predictor 216 determines whether an MPM flag indicating 1
is present in the stream (Step Sw_11). Here, when determining that the MPM flag in-
dicating 1 is present (Yes in Step Sw_11), intra predictor 216 obtains, from entropy
decoder 202, information indicating the intra prediction mode selected in encoder 100
among MPMs. It is to be noted that such information is decoded by entropy decoder
202 and output to intra predictor 216. Next, intra predictor 216 determines the MPMs
(Step Sw_13). MPMs include, for example, six intra prediction modes. Intra predictor
216 then determines the intra prediction mode which is included in a plurality of intra
prediction modes included in the MPMs and is indicated by the information obtained
in Step Sw_12 (Step Sw_14).

When determining that no MPM flag indicating 1 is present (No in Step Sw_11),
intra predictor 216 obtains information indicating the intra prediction mode selected in
encoder 100 (Step Sw_15). In other words, intra predictor 216 obtains, from entropy
decoder 202, information indicating the intra prediction mode selected in encoder 100
from among the at least one intra prediction mode which is not included in the MPMs.
It is to be noted that such information is decoded by entropy decoder 202 and output to
intra predictor 216. Intra predictor 216 then determines the intra prediction mode
which is not included in a plurality of intra prediction modes included in the MPMs
and is indicated by the information obtained in Step Sw_15 (Step Sw_17).

Intra predictor 216 generates a prediction image according to the intra prediction
mode determined in Step Sw_14 or Step Sw_17 (Step Sw_18).

(Inter Predictor)

Inter predictor 218 predicts the current block by referring to a reference picture
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stored in frame memory 214. Prediction is performed in units of a current block or a
current sub-block in the current block. It is to be noted that the sub-block is included in
the block and is a unit smaller than the block. The size of the sub-block may be 4x4
pixels, 8x8 pixels, or another size. The size of the sub-block may be switched for a unit
such as a slice, brick, picture, etc.

For example, inter predictor 218 generates an inter prediction image of a current
block or a current sub-block by performing motion compensation using motion in-
formation (for example, a MV) parsed from a stream (for example, a prediction
parameter output from entropy decoder 202), and outputs the inter prediction image to
prediction controller 220.

When the information parsed from the stream indicates that the OBMC mode is to be
applied, inter predictor 218 generates the inter prediction image using motion in-
formation of a neighboring block in addition to motion information of the current
block obtained through motion estimation.

Moreover, when the information parsed from the stream indicates that the FRUC
mode is to be applied, inter predictor 218 derives motion information by performing
motion estimation in accordance with a pattern matching method (e.g., bilateral
matching or template matching) parsed from the stream. Inter predictor 218 then
performs motion compensation (prediction) using the derived motion information.

Moreover, when the BIO mode is to be applied, inter predictor 218 derives a MV
based on a model assuming uniform linear motion. In addition, when the information
parsed from the stream indicates that the affine mode is to be applied, inter predictor
218 derives a MV for each sub-block, based on the MVs of a plurality of neighboring
blocks.

(MYV Derivation Flow)

FIG. 82 is a flow chart illustrating one example of a process of MV derivation in
decoder 200.

Inter predictor 218 determines, for example, whether to decode motion information
(for example, a MV). For example, inter predictor 218 may make the determination
according to the prediction mode included in the stream, or may make the deter-
mination based on other information included in the stream. Here, when determining to
decode motion information, inter predictor 218 derives a MV for a current block in a
mode in which the motion information is decoded. When determining not to decode
motion information, inter predictor 218 derives a MV in a mode in which no motion
information is decoded.

Here, MV derivation modes include a normal inter mode, a normal merge mode, a
FRUC mode, an affine mode, etc. which are described later. Modes in which motion

information is decoded among the modes include the normal inter mode, the normal
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merge mode, the affine mode (specifically, an affine inter mode and an affine merge
mode), etc. It is to be noted that motion information may include not only a MV but
also MV predictor selection information which is described later. Modes in which no
motion information is decoded include the FRUC mode, etc. Inter predictor 218 selects
a mode for deriving a MV for the current block from the plurality of modes, and
derives the MV for the current block using the selected mode.

FIG. 83 is a flow chart illustrating one example of a process of MV derivation in
decoder 200.

For example, inter predictor 218 may determine whether to decode a MV difference,
that is for example, may make the determination according to the prediction mode
included in the stream, or may make the determination based on other information
included in the stream. Here, when determining to decode a MV difference, inter
predictor 218 may derive a MV for a current block in a mode in which the MV
difference is decoded. In this case, for example, the MV difference included in the
stream is decoded as a prediction parameter.

When determining not to decode any MV difference, inter predictor 218 derives a
MYV in a mode in which no MYV difference is decoded. In this case, no encoded MV
difference is included in the stream.

Here, as described above, the MV derivation modes include the normal inter mode,
the normal merge mode, the FRUC mode, the affine mode, etc. which are described
later. Modes in which a MV difference is encoded among the modes include the
normal inter mode and the affine mode (specifically, the affine inter mode), etc. Modes
in which no MV difference is encoded include the FRUC mode, the normal merge
mode, the affine mode (specifically, the affine merge mode), etc. Inter predictor 218
selects a mode for deriving a MV for the current block from the plurality of modes,
and derives the MV for the current block using the selected mode.

(MYV Derivation > Normal Inter Mode)

For example, when information parsed from a stream indicates that the normal inter
mode is to be applied, inter predictor 218 derives a MV based on the information
parsed from the stream and performs motion compensation (prediction) using the MV.

FIG. 84 is a flow chart illustrating an example of a process of inter prediction by
normal inter mode in decoder 200.

Inter predictor 218 of decoder 200 performs motion compensation for each block.
First, inter predictor 218 obtains a plurality of MV candidates for a current block based
on information such as MVs of a plurality of decoded blocks temporally or spatially
surrounding the current block (Step Sg_11). In other words, inter predictor 218
generates a MV candidate list.

Next, inter predictor 218 extracts N (an integer of 2 or larger) MV candidates from



88

WO 2021/025165 PCT/JP2020/030507

[0499]

[0500]

[0501]

[0502]

[0503]

[0504]

[0505]

the plurality of MV candidates obtained in Step Sg_11, as motion vector predictor
candidates (also referred to as MV predictor candidates) according to the determined
ranks in priority order (Step Sg_12). It is to be noted that the ranks in priority order
may be determined in advance for the respective N MV predictor candidates and may
be predetermined.

Next, inter predictor 218 decodes the MV predictor selection information from the
input stream, and selects one MV predictor candidate from the N MV predictor
candidates as the MV predictor for the current block using the decoded MV predictor
selection information (Step Sg_13).

Next, inter predictor 218 decodes a MV difference from the input stream, and derives
a MV for the current block by adding a difference value which is the decoded MV
difference and the selected MV predictor (Step Sg_14).

Lastly, inter predictor 218 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
decoded reference picture (Step Sg_15). The processes in Steps Sg_11 to Sg_15 are
executed on each block. For example, when the processes in Steps Sg_11 to Sg_15 are
executed on each of all the blocks in the slice, inter prediction of the slice using the
normal inter mode finishes. For example, when the processes in Steps Sg_11 to Sg_15
are executed on each of all the blocks in the picture, inter prediction of the picture
using the normal inter mode finishes. It is to be noted that not all the blocks included in
the slice may be subjected to the processes in Steps Sg_11 to Sg_15, and inter
prediction of the slice using the normal inter mode may finish when part of the blocks
are subjected to the processes. This also applies to pictures in Steps Sg_11 to Sg_15.
Inter prediction of the picture using the normal inter mode may finish when the
processes are executed on part of the blocks in the picture.

(MV Derivation > Normal Merge Mode)

For example, when information parsed from a stream indicates that the normal merge
mode is to be applied, inter predictor 218 derives a MV and performs motion com-
pensation (prediction) using the MV.

FIG. 85 is a flow chart illustrating an example of a process of inter prediction by
normal merge mode in decoder 200.

First, inter predictor 218 obtains a plurality of MV candidates for a current block
based on information such as MVs of a plurality of decoded blocks temporally or
spatially surrounding the current block (Step Sh_11). In other words, inter predictor
218 generates a MV candidate list.

Next, inter predictor 218 selects one MV candidate from the plurality of MV
candidates obtained in Step Sh_11, deriving a MV for the current block (Step Sh_12).

More specifically, inter predictor 218 obtains MV selection information included as a
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prediction parameter in a stream, and selects the MV candidate identified by the MV
selection information as the MV for the current block.

Lastly, inter predictor 218 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
decoded reference picture (Step Sh_13). The processes in Steps Sh_11 to Sh_13 are
executed, for example, on each block. For example, when the processes in Steps Sh_11
to Sh_13 are executed on each of all the blocks in the slice, inter prediction of the slice
using the normal merge mode finishes. In addition, when the processes in Steps Sh_11
to Sh_13 are executed on each of all the blocks in the picture, inter prediction of the
picture using the normal merge mode finishes. It is to be noted that not all the blocks
included in the slice are subjected to the processes in Steps Sh_11 to Sh_13, and inter
prediction of the slice using the normal merge mode may finish when part of the
blocks are subjected to the processes. This also applies to pictures in Steps Sh_11 to
Sh_13. Inter prediction of the picture using the normal merge mode may finish when
the processes are executed on part of the blocks in the picture.

(MYV Derivation > FRUC Mode)

For example, when information parsed from a stream indicates that the FRUC mode
is to be applied, inter predictor 218 derives a MV in the FRUC mode and performs
motion compensation (prediction) using the MV. In this case, the motion information
is derived at the decoder 200 side without being signaled from the encoder 100 side.
For example, decoder 200 may derive the motion information by performing motion
estimation. In this case, decoder 200 performs motion estimation without using any
pixel values in a current block.

FIG. 86 is a flow chart illustrating an example of a process of inter prediction by
FRUC mode in decoder 200.

First, inter predictor 218 generates a list indicating MV's of decoded blocks spatially
or temporally neighboring the current block by referring to the MVs as MV candidates
(the list is a MV candidate list, and may, for example, be used also as a MV candidate
list for normal merge mode (Step Si_11). Next, a best MV candidate is selected from
the plurality of MV candidates registered in the MV candidate list (Step Si_12). For
example, inter predictor 218 calculates the evaluation value of each MV candidate
included in the MV candidate list, and selects one of the MV candidates as the best
MYV candidate based on the evaluation values. Based on the selected best MV
candidates, inter predictor 218 then derives a MV for the current block (Step Si_14).
More specifically, for example, the selected best MV candidates are directly derived as
the MV for the current block. In addition, for example, the MV for the current block
may be derived using pattern matching in a surrounding region of a position which is

included in a reference picture and corresponds to the selected best MV candidate. In
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other words, estimation using the pattern matching in a reference picture and the
evaluation values may be performed in the surrounding region of the best MV
candidate, and when there is a MV that yields a better evaluation value, the best MV
candidate may be updated to the MV that yields the better evaluation value, and the
updated MV may be determined as the final MV for the current block. In an em-
bodiment, updating to a MV that yields a better evaluation value may not be
performed.

Lastly, inter predictor 218 generates a prediction image for the current block by
performing motion compensation of the current block using the derived MV and the
decoded reference picture (Step Si_15). The processes in Steps Si_11 to Si_15 are
executed, for example, on each block. For example, when the processes in Steps Si_11
to Si_15 are executed on each of all the blocks in the slice, inter prediction of the slice
using the FRUC mode finishes. For example, when the processes in Steps Si_11 to
Si_15 are executed on each of all the blocks in the picture, inter prediction of the
picture using the FRUC mode finishes. Each sub-block may be processed similarly to
the case of each block.

(MYV Derivation > FRUC Mode)

For example, when information parsed from a stream indicates that the affine merge
mode is to be applied, inter predictor 218 derives a MV in the affine merge mode and
performs motion compensation (prediction) using the MV.

FIG. 87 is a flow chart illustrating an example of a process of inter prediction by the
affine merge mode in decoder 200.

In the affine merge mode, first, inter predictor 218 derives MVs at respective control
points for a current block (Step Sk_11). The control points are an upper-left corner
point of the current block and an upper-right corner point of the current block as il-
lustrated in FIG. 46A, or an upper-left corner point of the current block, an upper-right
corner point of the current block, and a lower-left corner point of the current block as
illustrated in FIG. 46B.

For example, when the MV derivation methods illustrated in FIGs. 47A to 47C are
used, as illustrated in FIG. 47A, inter predictor 218 checks decoded block A (left),
block B (upper), block C (upper-right), block D (lower-left), and block E (upper-left)
in this order, and identifies the first effective block decoded according to the affine
mode. Inter predictor 218 derives the MV at the control point using the identified first
effective block decoded according to the affine mode. For example, when block A is
identified and block A has two control points, as illustrated in FIG. 47B, inter predictor
218 calculates motion vector v0 at the upper-left corner control point of the current
block and motion vector v1 at the upper-right corner control point of the current block

from motion vectors v3 and v4 at the upper-left corner and the upper-right corner of
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the decoded block including block A. In this way, the MV at each control point is
derived.

It is to be noted that, as illustrated in FIG. 49A, MVs at three control points may be
calculated when block A is identified and block A has two control points, and that, as
illustrated in FIG. 49B, MVs at two control points may be calculated when block A is
identified and when block A has three control points.

In addition, when MV selection information is included as a prediction parameter in
a stream, inter predictor 218 may derive the MV at each control point for the current
block using the MV selection information.

Next, inter predictor 218 performs motion compensation of each of a plurality of sub-
blocks included in the current block. In other words, inter predictor 218 calculates a
MYV for each of a plurality of sub-blocks as an affine MV, using either two motion
vectors v0 and v1 and the above expression (1A) or three motion vectors v0, v1, and
v2 and the above expression (1B) (Step Sk_12). Inter predictor 218 then performs
motion compensation of the sub-blocks using these affine MVs and decoded reference
pictures (Step Sk_13). When the processes in Steps Sk_12 and Sk_13 are executed for
each of the sub-blocks included in the current block, the inter prediction using the
affine merge mode for the current block finishes. In other words, motion compensation
of the current block is performed to generate a prediction image of the current block.

It is to be noted that the above-described MV candidate list may be generated in Step
Sk_11. The MV candidate list may be, for example, a list including MV candidates
derived using a plurality of MV derivation methods for each control point. The
plurality of MV derivation methods may, for example, be any combination of the MV
derivation methods illustrated in FIGs. 47A to 47C, the MV derivation methods il-
lustrated in FIGs. 48A and 48B, the MV derivation methods illustrated in FIGs. 49A
and 49B, and other MV derivation methods.

It is to be noted that a MV candidate list may include MV candidates in a mode in
which prediction is performed in units of a sub-block, other than the affine mode.

It is to be noted that, for example, a MV candidate list including MV candidates in an
affine merge mode in which two control points are used and an affine merge mode in
which three control points are used may be generated as a MV candidate list. Alter-
natively, a MV candidate list including MV candidates in the affine merge mode in
which two control points are used and a MV candidate list including MV candidates in
the affine merge mode in which three control points are used may be generated
separately. Alternatively, a MV candidate list including MV candidates in one of the
affine merge mode in which two control points are used and the affine merge mode in
which three control points are used may be generated.

(MYV Derivation > Affine Inter Mode)
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For example, when information parsed from a stream indicates that the affine inter
mode is to be applied, inter predictor 218 derives a MV in the affine inter mode and
performs motion compensation (prediction) using the MV.

FIG. 88 is a flow chart illustrating an example of a process of inter prediction by the
affine inter mode in decoder 200.

In the affine inter mode, first, inter predictor 218 derives MV predictors (v0, v1) or
(v0, v1, v2) of respective two or three control points for a current block (Step Sj_11).
The control points are an upper-left corner point of the current block, an upper-right
corner point of the current block, and a lower-left corner point of the current block as
illustrated in FIG. 46A or FIG. 46B.

Inter predictor 218 obtains MV predictor selection information included as a
prediction parameter in the stream, and derives the MV predictor at each control point
for the current block using the MV identified by the MV predictor selection in-
formation. For example, when the MV derivation methods illustrated in FIGs. 48A and
48B are used, inter predictor 218 derives the motion vector predictors (v0, v1) or (v0,
v1, v2) at control points for the current block by selecting the MV of the block
identified by the MV predictor selection information among decoded blocks in the
vicinity of the respective control points for the current block illustrated in either FIG.
48A or FIG. 48B.

Next, inter predictor 218 obtains each MV difference included as a prediction
parameter in the stream, and adds the MV predictor at each control point for the
current block and the MV difference corresponding to the MV predictor (Step Sj_12).
In this way, the MV at each control point for the current block is derived.

Next, inter predictor 218 performs motion compensation of each of the plurality of
sub-blocks included in the current block. In other words, inter predictor 218 calculates
a MV for each of a plurality of sub-blocks as an affine MV, using either two motion
vectors v0 and v1 and the above expression (1A) or three motion vectors v0, v1, and
v2 and the above expression (1B) (Step Sj_13). Inter predictor 218 then performs
motion compensation of the sub-blocks using these affine MVs and decoded reference
pictures (Step Sj_14). When the processes in Steps Sj_13 and Sj_14 are executed for
each of the sub-blocks included in the current block, the inter prediction using the
affine merge mode for the current block finishes. In other words, motion compensation
of the current block is performed to generate a prediction image of the current block.

It is to be noted that the above-described MV candidate list may be generated in Step
Sj_11 as in Step Sk_11.

(MV Derivation > Triangle Mode)

For example, when information parsed from a stream indicates that the triangle mode

is to be applied, inter predictor 218 derives a MV in the triangle mode and performs
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motion compensation (prediction) using the MV.

FIG. 89 is a flow chart illustrating an example of a process of inter prediction by the
triangle mode in decoder 200.

In the triangle mode, first, inter predictor 218 splits the current block into the first
partition and the second partition (Step Sx_11). For example, inter predictor 218 may
obtain, from the stream, partition information which is information related to the
splitting as a prediction parameter. Inter predictor 218 may then split a current block
into a first partition and a second partition according to the partition information.

Next, inter predictor 218 obtains a plurality of MV candidates for a current block
based on information such as MVs of a plurality of decoded blocks temporally or
spatially surrounding the current block (Step Sx_12). In other words, inter predictor
218 generates a MV candidate list.

Inter predictor 218 then selects the MV candidate for the first partition and the MV
candidate for the second partition as a first MV and a second MV, respectively, from
the plurality of MV candidates obtained in Step Sx_11 (Step Sx_13). At this time, inter
predictor 218 may obtain, from the stream, MV selection information for identifying
each selected MV candidate as a prediction parameter. Inter predictor 218 may then
select the first MV and the second MV according to the MV selection information.

Next, inter predictor 218 generates a first prediction image by performing motion
compensation using the selected first MV and a decoded reference picture (Step
Sx_14). Likewise, inter predictor 218 generates a second prediction image by
performing motion compensation using the selected second MV and a decoded
reference picture (Step Sx_15).

Lastly, inter predictor 218 generates a prediction image for the current block by
performing a weighted addition of the first prediction image and the second prediction
image (Step Sx_16).

(MYV Estimation > DMVR)

For example, information parsed from a stream indicates that DMVR is to be applied,
inter predictor 218 performs motion estimation using DMVR.

FIG. 90 is a flow chart illustrating an example of a process of motion estimation by
DMVR in decoder 200.

Inter predictor 218 derives a MV for a current block according to the merge mode
(Step S1_11). Next, inter predictor 218 derives the final MV for the current block by
searching the region surrounding the reference picture indicated by the MV derived in
SI_11 (Step S1_12). In other words, in this case, the MV of the current block is de-
termined according to the DMVR.

FIG. 91 is a flow chart illustrating an example of a process of motion estimation by
DMVR in decoder 200, and is the same as FIG. 58B.
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First, in Step 1 illustrated in FIGs. 58A, inter predictor 218 calculates the cost
between the search position (also referred to as a starting point) indicated by the initial
MYV and eight surrounding search positions. Inter predictor 218 then determines
whether the cost at each of the search positions other than the starting point is the
smallest. Here, when determining that the cost at one of the search positions other than
the starting point is the smallest, inter predictor 218 changes a target to the search
position at which the smallest cost is obtained, and performs the process in Step 2 il-
lustrated in FIG. 58. When the cost at the starting point is the smallest, inter predictor
218 skips the process in Step 2 illustrated in FIG. S8A and performs the process in
Step 3.

In Step 2 illustrated in FIG. 58A, inter predictor 218 performs search similar the
process in Step 1, regarding the search position after the target change as new starting
point according to the result of the process in Step 1. Inter predictor 218 then de-
termines whether the cost at each of the search positions other than the starting point is
the smallest. Here, when determining that the cost at one of the search positions other
than the starting point is the smallest, inter predictor 218 performs the process in Step
4. When the cost at the starting point is the smallest, inter predictor 218 performs the
process in Step 3.

In Step 4, inter predictor 218 regards the search position at the starting point as the
final search position, and determines the difference between the position indicated by
the initial MV and the final search position to be a vector difference.

In Step 3 illustrated in FIG. 58A, inter predictor 218 determines the pixel position at
sub-pixel accuracy at which the smallest cost is obtained, based on the costs at the four
points located at upper, lower, left, and right positions with respect to the starting point
in Step 1 or Step 2, and regards the pixel position as the final search position.

The pixel position at the sub-pixel accuracy is determined by performing weighted
addition of each of the four upper, lower, left, and right vectors ((0, 1), (0, -1), (-1, 0),
and (1, 0)), using, as a weight, the cost at a corresponding one of the four search
positions. Inter predictor 218 then determines the difference between the position
indicated by the initial MV and the final search position to be the vector difference.

(Motion Compensation > BIO/OBMC/LIC)

For example, when information parsed from a stream indicates that correction of a
prediction image is to be performed, upon generating a prediction image, inter
predictor 218 corrects the prediction image based on the mode for the correction. The
mode is, for example, one of BIO, OBMC, and LIC described above.

FIG. 92 is a flow chart illustrating one example of a process of generation of a
prediction image in decoder 200.

Inter predictor 218 generates a prediction image (Step Sm_11), and corrects the
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prediction image according to any of the modes described above (Step Sm_12).

FIG. 93 is a flow chart illustrating another example of a process of generation of a
prediction image in decoder 200.

Inter predictor 218 derives a MV for a current block (Step Sn_11). Next, inter
predictor 218 generates a prediction image using the MV (Step Sn_12), and determines
whether to perform a correction process (Step Sn_13). For example, inter predictor 218
obtains a prediction parameter included in the stream, and determines whether to
perform a correction process based on the prediction parameter. This prediction
parameter is, for example, a flag indicating whether one or more of the above-
described modes is to be applied. Here, when determining to perform a correction
process (Yes in Step Sn_13), inter predictor 218 generates the final prediction image
by correcting the prediction image (Step Sn_14). It is to be noted that, in LIC,
luminance and chrominance may be corrected in Step Sn_14. When determining not to
perform a correction process (No in Step Sn_13), inter predictor 218 outputs the final
prediction image without correcting the prediction image (Step Sn_15).

(Motion Compensation > OBMC)

For example, when information parsed from a stream indicates that OBMC is to be
performed, upon generating a prediction image, inter predictor 218 corrects the
prediction image according to the OBMC.

FIG. 94 is a flow chart illustrating an example of a process of correction of a
prediction image by OBMC in decoder 200. It is to be noted that the flow chart in FIG.
94 indicates the correction flow of a prediction image using the current picture and the
reference picture illustrated in FIG. 62.

First, as illustrated in FIG. 62, inter predictor 218 obtains a prediction image (Pred)
by normal motion compensation using a MV assigned to the current block.

Next, inter predictor 218 obtains a prediction image (Pred_L) by applying a motion
vector (MV_L) which has been already derived for the decoded block neighboring to
the left of the current block to the current block (re-using the motion vector for the
current block). Inter predictor 218 then performs a first correction of a prediction
image by overlapping two prediction images Pred and Pred_L. This provides an effect
of blending the boundary between neighboring blocks.

Likewise, inter predictor 218 obtains a prediction image (Pred_U) by applying a MV
(MV_U) which has been already derived for the decoded block neighboring above the
current block to the current block (re-using the motion vector for the current block).
Inter predictor 218 then performs a second correction of a prediction image by
overlapping the prediction image Pred_U to the prediction images (for example, Pred
and Pred_L) on which the first correction has been performed. This provides an effect

of blending the boundary between neighboring blocks. The prediction image obtained
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by the second correction is the one in which the boundary between the neighboring
blocks has been blended (smoothed), and thus is the final prediction image of the
current block.

(Motion Compensation > BIO)

For example, when information parsed from a stream indicates that BIO is to be
performed, upon generating a prediction image, inter predictor 218 corrects the
prediction image according to the BIO.

FIG. 95 is a flow chart illustrating an example of a process of correction of a
prediction image by the BIO in decoder 200.

As illustrated in FIG. 63, inter predictor 218 derives two motion vectors (M,, M),
using two reference pictures (Refy, Ref) different from the picture (Cur Pic) including
a current block. Inter predictor 218 then derives a prediction image for the current
block using the two motion vectors (My, M;) (Step Sy_11). It is to be noted that motion
vector My is a motion vector (MV,,, MV ) corresponding to reference picture Refy,
and motion vector M, is a motion vector (MV,;, MV,,) corresponding to reference
picture Ref.

Next, inter predictor 218 derives interpolated image I° for the current block using
motion vector M, and reference picture L. In addition, inter predictor 218 derives in-
terpolated image I' for the current block using motion vector M, and reference picture
L, (Step Sy_12). Here, interpolated image 1° is an image included in reference picture
Ref; and to be derived for the current block, and interpolated image I' is an image
included in reference picture Ref; and to be derived for the current block. Each of in-
terpolated image I° and interpolated image I' may be the same in size as the current
block. Alternatively, each of interpolated image 1° and interpolated image I' may be an
image larger than the current block. Furthermore, interpolated image I° and in-
terpolated image I' may include a prediction image obtained by using motion vectors
(My, M)) and reference pictures (L, L;) and applying a motion compensation filter.

In addition, inter predictor 218 derives gradient images (Ix?, Ix!, Iy?, Iy') of the
current block, from interpolated image 1° and interpolated image I' (Step Sy_13). It is
to be noted that the gradient images in the horizontal direction are (Ix°, Ix'), and the
gradient images in the vertical direction are (Iy?, Iy!). Inter predictor 218 may derive
the gradient images by, for example, applying a gradient filter to the interpolated
images. The gradient images may be the ones each of which indicates the amount of
spatial change in pixel value along the horizontal direction or the amount of spatial
change in pixel value along the vertical direction.

Next, inter predictor 218 derives, for each sub-block of the current block, an optical
flow (vx, vy) which is a velocity vector, using the interpolated images (1%, I') and the

gradient images (Ix% Ix!, Iy°, Iy!) (Step Sy_14). As one example, a sub-block may be
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4x4 pixel sub-CU.

Next, inter predictor 218 corrects a prediction image for the current block using the
optical flow (vx, vy). For example, inter predictor 218 derives a correction value for
the value of a pixel included in a current block, using the optical flow (vx, vy) (Step
Sy_15). Inter predictor 218 may then correct the prediction image for the current block
using the correction value (Step Sy_16). It is to be noted that the correction value may
be derived in units of a pixel, or may be derived in units of a plurality of pixels or in
units of a sub-block, etc.

It is to be noted that the BIO process flow is not limited to the process disclosed in
FIG. 95. Only part of the processes disclosed in FIG. 95 may be performed, or a
different process may be added or used as a replacement, or the processes may be
executed in a different processing order.

(Motion Compensation > LIC)

For example, when information parsed from a stream indicates that LIC is to be
performed, upon generating a prediction image, inter predictor 218 corrects the
prediction image according to the LIC.

FIG. 96 is a flow chart illustrating an example of a process of correction of a
prediction image by the LIC in decoder 200.

First, inter predictor 218 obtains a reference image corresponding to a current block
from a decoded reference picture using a MV (Step Sz_11).

Next, inter predictor 218 extracts, for the current block, information indicating how
the luminance value has changed between the current picture and the reference picture
(Step Sz_12). This extraction may be performed based on the luma pixel values for the
decoded left neighboring reference region (surrounding reference region) and the
decoded upper neighboring reference region (surrounding reference region), and the
luma pixel values at the corresponding positions in the reference picture specified by
the derived MVs. Inter predictor 218 calculates a luminance correction parameter,
using the information indicating how the luma value changed (Step Sz_13).

Inter predictor 218 generates a prediction image for the current block by performing
a luminance correction process in which the luminance correction parameter is applied
to the reference image in the reference picture specified by the MV (Step Sz_14). In
other words, the prediction image which is the reference image in the reference picture
specified by the MV is subjected to the correction based on the luminance correction
parameter. In this correction, luminance may be corrected, or chrominance may be
corrected.

(Prediction Controller)

Prediction controller 220 selects an intra prediction image or an inter prediction

image, and outputs the selected image to adder 208. As a whole, the configurations,



98

WO 2021/025165 PCT/JP2020/030507

[0568]

[0569]

[0570]

[0571]

functions, and processes of prediction controller 220, intra predictor 216, and inter
predictor 218 at the decoder 200 side may correspond to the configurations, functions,
and processes of prediction controller 128, intra predictor 124, and inter predictor 126
at the encoder 100 side.

(First Aspect)

FIG. 97 is a flow chart of an example of a process flow 1000 of decoding an image
using a CCALF (cross component adaptive loop filtering) process according to a first
aspect. The process flow 1000 may be performed, for example, by the decoder 200 of
FIG. 67, etc.

In step S1001, a filtering process is applied to reconstructed image samples of a first
component. The first component may be, for example, a luma component. The luma
component may be represented as a Y component. The reconstructed image samples of
luma may be the output signals of an ALF process. The output signals of an ALF may
be reconstructed luma samples generated through a SAO process. In some em-
bodiments, this filtering process performed in step S1001 may be represented as a
CCALF process. The numbers of the reconstructed luma samples may be the same as
the number of coefficients of a filter to be used in the CCALF process. In other em-
bodiments, a clipping process may be performed on the filtered reconstructed luma
samples.

In step S1002, a reconstructed image sample of a second component is modified. The
second component may be a chroma component. The chroma component may be rep-
resented as a Cb and/or Cr component. The reconstructed image samples of chroma
may be the output signals of an ALF process. The output signals of an ALF may be re-
constructed chroma samples generated through a SAO process. The modified recon-
structed image sample may be the sum of the reconstructed samples of chroma and the
filtered reconstructed samples of luma, which are the output of step S1001. In other
words, the modification process may be performed by adding the filtered value of the
reconstructed luma samples generated by the CCALF process of step S1001 to the
filtered value of the reconstructed chroma samples generated by an ALF process. In
some embodiments, a clipping process may be performed on the reconstructed chroma
samples. The first component and the second component may belong to the same block
or may belong to different blocks.

In step S1003, the value of the modified reconstructed image sample of a chroma
component is clipped. By performing the clipping process, the value of samples may
be guaranteed to be in a determined range. Further, the clipping may facilitate better
convergence in the process of least square optimization, etc., to minimize the
difference between a residual (a difference between the original sample value and the

reconstructed sample value) and the filtered value of chroma samples in order to
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determine filter coefficients.

In step S1004, an image is decoded using the clipped reconstructed image sample of
a chroma component. In some embodiments, step S1003 need not be performed. In this
case, an image is decoded using the modified reconstructed chroma sample which is
not clipped.

FIG. 98 is a block diagram illustrating a functional configuration of an encoder and a
decoder according to an embodiment. In this embodiment, a clipping process is applied
to a modified reconstructed image sample of a chroma component, as in step S1003 of
FIG. 97. For example, the modified reconstructed image sample may be clipped to be
in arange of [0, 1023] for a 10 bit output. When filtered reconstructed image samples
of a luma component generated by the CCALF process are clipped, it may not be
necessary to clip the modified reconstructed image sample of a chroma component in
some embodiments.

FIG. 99 is a block diagram illustrating a functional configuration of an encoder and a
decoder according to an embodiment. In this embodiment, a clipping process is applied
to a modified reconstructed image sample of a chroma component, as in step S1003 of
FIG. 97. A clipping process is not applied to filtered reconstructed luma samples
generated by the CCALF process. The filtered value of the reconstructed chroma
samples generated by an ALF process need not be clipped, as shown by “No clipping”
in FIG. 99. In other words, the reconstructed image sample to be modified is generated
using a filtered value (ALF chroma) and a difference value (CCALF Cb/Cr), wherein
no clipping is applied to the output of the generated sample value.

FIG. 100 is a block diagram illustrating a functional configuration of an encoder and
a decoder according to an embodiment. In this embodiment, a clipping process is
applied to filtered reconstructed luma samples generated by the CCALF process
(“Clipping output samples”) and modified reconstructed image samples of a chroma
component (“Clipping after sum”). The filtered value of the reconstructed chroma
samples generated by an ALF process is not clipped (“No clipping”). As an example, a
clipped range applied to the filtered reconstructed image sample of a luma component
may be [-2/15, 2215-1] or [-2/7, 277-1].

FIG. 101 shows another example in which a clipping process is applied to filtered re-
constructed luma samples generated by the CCALF process (“Clipping output
samples”), to modified reconstructed image samples of a chroma component
(“Clipping after sum”), and to filtered reconstructed chroma samples generated by an
ALF process (“clipping”). In other words, output values from the CCALF process and
the ALF Chroma process are separately clipped, and clipped again after they are
summed. In this embodiment, the modified reconstructed image sample of a chroma

component need not be clipped. As an example, the final output from the ALF Chroma
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process may be clipped to a 10 bit value. As an example, a clipped range applied to the
filtered reconstructed image samples of a luma component may be [-2*15, 2415-1] or
[-277, 277-1]. This range may be fixed or may be adaptively determined. In either case,
the rage can be signaled in header information, for example, in SPS (Sequence
Parameter set) or APS (Adaptation Parameter set). In the case when a non-linear ALF
is used, clipping parameters may be defined for “Clipping after sum” in FIG. 101.

The reconstructed image samples of a luma component to be filtered by the CCALF
process may be neighboring samples which are adjacent to a current reconstructed
image sample of a chroma component. That is, the modified current reconstructed
image sample may be generated by adding a filtered value of neighboring image
samples of a luma component located adjacent to the current image sample to the
filtered value of the current image sample of a chroma component. The filtered value
of image samples of a luma component may be represented as a difference value.

Processes disclosed in this aspect may reduce hardware internal memory size
required to store filtered image sample values.

(Second Aspect)

FIG. 102 is a flow chart of an example of a process flow 2000 of decoding an image
applying a CCALF process using defined information, according to a second aspect.
The process flow 2000 may be performed, for example, by the decoder 200 of FIG. 67,
etc.

In step S2001, a clip parameter is parsed from a bitstream. The clip parameter may be
parsed from a VPS, APS, SPS, PPS, slice header, at CTU or TU level, as described in
FI1G.103. FIG.103 is a conceptual diagram indicating location(s) of clip parameters. A
parameter described in FIG. 103 may be replaced by a different type of clip parameter,
a flag, or an index. Two or more clip parameters may be parsed from two or more
parameter sets in the bitstream.

In step S2002, a difference is clipped using the clip parameter. The difference is
generated based on reconstructed image samples of a first component (e.g., the
difference value (CCALF Cb/Cr) in FIGS. 98-101). As an example, the first
component is a luma component and the difference is filtered reconstructed luma
samples generated by the CCALF process. In this case, a clipping process is applied to
the filtered reconstructed luma samples using a parsed clip parameter.

The clip parameter restricts a value to be within a desired range. If a desired range is
[-3, 3], for an example, value 5 is clipped to 3 using operation clip(-3, 3, 5). In this
example, value -3 is the lower range and value 3 is the upper range.

The clip parameter may indicate an index to derive a lower range and an upper range,
as shown in FIG. 104(i). In this example, ccalf_luma_clip_idx[] is the index, -

range_array[] is the lower range, and range_array|[] is the upper range. In this example,
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range_array[] is a determined range array which may be different from the range array
used for an ALF. The determined range array may be predetermined.

The clip parameter may indicate a lower range and an upper range, as shown in FIG.
104(i1). In this example, -ccalf_luma_clip_low_range[] is the lower range, and
ccalf luma_clip_up_range[] is the upper range.

The clip parameter may indicate a common range for both a lower range and an
upper range, as shown in FIG. 104(iii). In this example, -ccalf luma_clip_range is the
lower range, and ccalf luma_clip_range is the upper range.

The difference is generated by multiplying, dividing, adding or subtracting at least
two reconstructed image samples of the first component. The two reconstructed image
samples, for example, may come from current and neighboring image samples or two
neighboring image samples. The locations of the current and neighboring image
samples may be predetermined.

In step S2003, a reconstructed image sample of a second component different from
the first component is modified using the clipped value. The clipped value may be a
clipped value of a reconstructed image sample of a luma component. The second
component may be a chroma component. The modification may include an operation
to multiply, divide, add or subtract the clipped value with respect to the reconstructed
image sample of the second component.

In step S2004, an image is decoded using the modified reconstructed image sample.

In the present disclosure, one or more clip parameters for cross component adaptive
loop filtering are signaled in a bitstream. With this signaling, the syntax of cross
component adaptive loop filtering and the syntax of adaptive loop filter can be
combined for syntax simplification. Furthermore, with this signaling, the design of
cross component adaptive loop filtering may be more flexible for coding efficiency im-
provement.

The clip parameters may be defined or predefined for both encoder and decoder
without being signaled. The clip parameters may also be derived using luma in-
formation without being signaled. For example, the clip parameters corresponding to a
large clip range may be derived if a strong gradient or edge is detected in a luma recon-
structed image, and the clip parameters corresponding to a short clip range may be
derived if a weak gradient or edge is detected in a luma reconstructed image.

(Third Aspect)

FIG. 105 is a flow chart of an example of a process flow 3000 of decoding an image
applying CCALF process using a filter coefficient according to a third aspect. The
process flow 3000 may be performed, for example, by the decoder 200 of FIG. 67, etc.
A filter coefficient is used in a filtering step of a CCALF process to generate a filtered

reconstructed image sample of a luma component.
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In step S3001, it is determined whether a filtering coefficient is located inside a
defined symmetric region of a filter. Optionally, an additional step of judging if a
shape of the filter coefficients is symmetric or not may be performed. Information in-
dicating whether the sample of filter coefficients is symmetric or not may be coded
into a bitstream. If the shape is symmetric, the locations of coefficients that are inside
the symmetric region may be determined or predetermined.

In step S3002, if the filtering coefficient is inside a defined symmetric region (Yes in
step S3001), the filter coefficient is copied to the symmetric position and a set of filter
coefficients is generated.

In step S3003, the filter coefficients are used to filter the reconstructed image
samples of a first component. A first component may be a luma component.

In step S3004, an output of the filtering is used to modify a reconstructed image
sample of a second component different from the first component. The second
component may be a chroma component.

In step S3005, an image is decoded using the modified reconstructed image sample.

If filter coefficients are not symmetric (No in step S3001), all the filter coefficients
can be coded from a bitstream and a set of the filter coefficients may be generated
without copying.

This aspect may reduce the amount of information to be coded into the bitstream.
That is, only one of the filter coefficients that are symmetric may need to be coded in
the bitstream.

FIGS. 106, 107, 108, 109, and 110 are conceptual diagrams of examples indicating
locations of filter coefficients to be used in a CCALF process. In these examples, some
coefficients included in a set of coefficients are signaled, assuming symmetry exists.

Specifically, FIGS. 106(a), 106(b), 106(c), and 106(d) indicate examples in which a
part of a set of CCALF coefficients (marked by diagonal lines and grid patterns) is
located inside a defined symmetric region. In these examples, symmetric regions have
line-symmetric shape. Only some marked coefficients (marked by diagonal lines or
grid patterns) and white colored coefficients may be coded into a bitstream and other
coefficients may be generated by using coded coefficients. As other examples, only
marked coefficients may be generated and used in a filtering process. Other white
colored coefficients (not marked by any pattern) need not be used in a filtering process.

FIGS. 106(e), 106(f), 106(g), and 106(h) indicate examples in which the shape of the
symmetric region is horizontal, vertical, diagonal, along with a direction, point
symmetric, or point symmetric with a direction.

In these figures, only a part of the coefficients that are marked by diagonal lines or
grid patterns may need to be coded. Locations of coefficients to be coded may be de-

termined or predetermined. For example, coefficients may be coded in determined
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scanning order and the one appears first may be coded first. The coefficient in the
symmetric region whose coefficient is not coded may be copied from the coefficient
that is located at its symmetric position. In some embodiments, it may not be necessary
to process coefficients based on symmetry. For example, when it is determined that i-
th coefficient is the same as j-th coefficient in the scanning order, the process may just
copy j-th value to i-th value. The location may be determined based on other pa-
rameters.

FIGS. 107(a), 107(b), 107(c), and 107(d) indicate examples in which a part of a set
of CCALF coefficients (marked by diagonal lines and grid patterns) is located inside a
defined symmetric region. In these examples, the number of symmetric coefficients
may be different. The number of symmetric coefficients may be determined, prede-
termined, or may be signaled at a picture level, a slice level, or a block level.

FIGS. 107(e), 107(f), 107(g), and 107(h) indicate examples in which a part of a set of
CCALF coefficients (marked by diagonal lines and grid patterns) is located inside a
defined symmetric region. In these examples, symmetric coefficients in one symmetric
side may be different from the corresponding coefficients in the other symmetric side,
that is, some coefficients (e.g., a set of coefficients) in one side are symmetric with
different coefficient values (e.g., another set of coefficients) in the other side. As an
example, only a part of “grid pattern” coefficients in one symmetric side may be coded
into a bitstream and copied to generate “diagonal-line pattern™ coefficients in the other
symmetric side.

FIGS. 108(a), 108(b), 108(c), and 108(d) indicate examples of filter shapes in which
a chroma type serves as a determined format. The determined format may be YUV 420
Type 0, for example. Marked coefficients (diagonal-lined coefficients or grid-patterned
coefficients) are symmetric about the chroma position of the chroma type. The filter
shape may be designed to be symmetric about the chroma position of other YUV
formats. For example, these filter shapes of FIGS. 108(a)-108(d) may be used as a
default, and other filter shapes may be determined to be used in a filtering process
when a parameter coded in a bitstream indicates other formats.

FIGS. 108(e), 108(f), 108(g), and 108(h) indicate examples of filter shapes in which
a chroma type serves as a determined format. The determined format may be the YUV
chroma format different from YUV 420 Type 0. Different filter shapes can be used for
other formats.

FIGS. 109(a), 109(b), 109(c), and 109(d) indicate other examples of filter shapes. In
FIG. 109(a), the number of symmetric coefficients may be zero and all coefficients are
signaled independently. The number of symmetric coefficients need not be coded into
a bitstream. In FIG. 109(b), the number of symmetric coefficients may be one half of

all coefficients.
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FIGS. 110(a), 110(b), 110(c), and 110(d) indicate other examples of filter shapes and
signals to be coded with scan order indicated by arrows. In FIG. 110(a), raster scan
order is applied to filter coefficients regardless of a symmetry type. In FIG. 110(b),
raster scan order is applied to filter coefficients, regardless of a symmetry type, and
only white colored coefficients and grid-patterned coefficients are signaled in the
bitstream in the raster scan order. The decoder may use a LUT (look up table) to
duplicate the grid patterned coefficients to generate diagonal line patterned coef-
ficients. In FIG. 110(c), grid patterned coefficients located in a symmetric region are
scanned and signaled, and then white colored coefficients located in an asymmetric
region are scanned and signaled. In FIG. 110(d), coefficients located in an asymmetric
region are scanned and signaled, and then grid-patterned coefficients are scanned and
signaled.

FIGS. 111 and 112 are conceptual diagrams of further examples indicating locations
of filter coefficients to be used in a CCALF process. In these examples, symmetric
positions, locations, or numbers of coefficients in the set of filter coefficients may be
adaptive to chroma type.

FIG. 113 is a block diagram illustrating a functional configuration of a CCALF
process performed by an encoder and a decoder according to an embodiment. After
filtering the luma picture using the generated filter coefficients, the output samples are
applied on the chroma picture. The filter with the generated filter coefficients is
applied on the SAO Luma output picture. The filtered samples (CC ALF Cb and CC
ALF Cr) are then added to the ALF Chroma output picture.

(Fourth Aspect)

FIG. 114 is a flow chart of an example of a process flow 4000 of decoding an image
applying a CCALF process using a filter selected from a plurality of filters according
to a fourth aspect. The process flow 4000 may be performed, for example, by the
decoder 200 of FIG. 67, etc. This embodiment discloses methods of modifying recon-
structed samples of a component using information from a different component.

In step S4001, a parameter is determined. The parameter may be parsed from a VPS,
APS, SPS, PPS, slice header, or at a CTU or TU level as described in FIG. 103. The
parameter is parsed from a bitstream to specify a filter. For example, the parameter
may indicate an index to select a filter from a determined plurality of filters. The
parameter may be parsed from a bitstream to indicate a chroma sub-sampling format as
4:4:4, 4:2:0, 4:2:2, or 4:1:1. The parameter may be parsed from a bitstream to indicate
a color space as YCbCr or RGB. The parameter may be parsed from a bitstream to
indicate a picture resolution as 4K, FHD, CIF, QCIF. The parameter may indicate a
color component as Y, Cb, or Cr. The parameter may also be derived using luma in-

formation without being signaled. For an example, the parameter corresponding to a
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short tap filter may be derived if a strong gradient or edge is detected in a luma recon-
structed image, and the parameter corresponding to a long tap filter may be derived if a
weak gradient or edge is detected in a luma reconstructed image. As another example,
the parameter corresponding to a long tap filter may be derived if a strong gradient or
edge is detected in a luma reconstructed image, and the parameter corresponding to a
short tap filter may be derived if a weak gradient or edge is detected in a luma recon-
structed image.

In step S4002, a filter is selected from a plurality of filters based on the parameter.
The plurality of filters may be of different shapes or sizes. The plurality of filters may
be of the same shape and have different coefficient values. The parameter may indicate
the coefficient values to be used to generate a set of filter coefficients.

FIG. 115 shows an example of a process flow of selecting a filter.

In step S4011, it is determined if the parameter indicates a determined format. The
format may be predetermined. The determined format may indicate a chroma sub-
sampling format as 4:4:4, 4:2:0, 4:2:2, or 4:1:1. The determined format may indicate a
color component as Y, Cb, or Cr. The determined format may indicate a color space as
YCbCr or RGB. The determined format may indicate a picture resolution as 4K, FHD,
CIF, QCIF.

In step S4012, if it is determined that the parameter indicates the determined format
(YES in step S4011), a first filter from a plurality of filters is selected.

In step S4013, if it is determined that the parameter does not indicate the determined
format (No in step S4011), a filter different from the first filter is selected from a
plurality of filters. The shape, size, or values of the filter coefficients may be different
between S4012 and S4013.

FIG.116 and FIG.117 illustrate some examples of filters. In FIG. 116 showing filters
(la)-(1i), the total number of rows having the maximum number of coefficients is even
(e.g. 2,4, or 6). In FIG. 117 showing filters (2a)-(21), the total number of rows having
the maximum number of coefficients is odd (e.g. 1, 3, or 5).

For example, a filter from FIG. 116 may be selected if the parameter indicates that
4:2:0 chroma sub-sampling format is applied, while a filter from FIG. 117 may be
selected if the parameter indicates that 4:2:2, 4:4:4, or 4:1:1 chroma sub-sampling
format is applied. The selection of the filters from FIG. 116 and FIG. 117 may be
reversed.

For example, a filter from FIG. 116 may be selected if the parameter indicates that Y
is used to modify Cb or Cr, while a filter from FIG. 117 may be selected if the
parameter indicates that Cb is used to modify Cr, or Cr is used to modify Cb. The
selection of the filters from FIG. 116 and FIG. 117 may be reversed.

For example, a filter from FIG. 116 may be selected if the parameter indicates that
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color space YCbCr is applied, while a filter from FIG. 117 may be selected if the
parameter indicates that color space RGB is applied. The selection of the filters from
FIG. 116 and FIG. 117 can be reversed.

For example, a first filter from FIG. 116 may be selected if the parameter indicates
that image resolution is large (e.g. 4K or 8K), while a filter different from the first
filter from FIG. 116 may be selected if the parameter indicates that image resolution is
small (e.g. QCIF or CIF). The size of these two selected filters may be different. For
example, filter (1a) may be selected for image resolution QCIF, filter (1c) may be
selected for image resolution FHD, and filter (1e) may be selected for image resolution
8K.

For example, a first filter from FIG. 117 may be selected if the parameter indicates
that image resolution is large (e.g. 4K or 8K), while a filter different from the first
filter from FIG. 117 may be selected if the parameter indicates that image resolution is
small (e.g. QCIF or CIF). The size of these two selected filters may be different. For
example, filter (2a) may be selected for image resolution QCIF, filter (2¢) may be
selected for image resolution FHD, and filter (2e) may be selected for image resolution
8K.

In step S4003, reconstructed image samples of a first component are filtered using
the selected filter. The first component may be a luma component. The filtering
process contains at least an operation of multiplication, division, addition or sub-
traction on at least two reconstructed image samples of the first component. For
example, the two reconstructed image samples may come from current and
neighboring image samples, or may come from two neighboring image samples. The
locations of the current and neighboring image samples may be predetermined.

In step S4004, a reconstructed image sample of a second component different from
the first component is modified using the output of the filtering. The second
component may be a chroma component. The modification includes an operation to
multiply, divide, add or subtract the output of the filtering with the reconstructed image
sample.

At step S4005, an image is decoded using the modified reconstructed image sample.

The present disclosure relates to adaptively selecting one filter from a plurality of
filters for cross component filtering. Different filters may have different shapes or
sizes. The adaptive selection of a filter makes cross component filtering more flexible
for coding efficiency improvement.

More than one set of filters can be signaled. Different sets of filters may have
different shapes and sizes. Which filter to be used may be parsed or determined
thereafter (e.g. from filter_id).

(Fifth Aspect)
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FIG. 118 is a flow chart of an example of a process flow 5000 of decoding an image
applying a CCALF process using a parameter according to a fifth aspect. The process
flow 5000 may be performed, for example, by the decoder 200 of FIG. 67, etc.

In step S5001, a first parameter is parsed from a bitstream. The first parameter can be
parsed from a VPS, APS, SPS, PPS, slice header, or at a CTU or TU level (FIG.103,
wherein the“parameter” corresponds to the“first parameter”). The first parameter may
indicate a chroma sub-sampling format as 4:4:4, 4:2:0, 4:2:2, or 4:1:1. The first
parameter may indicate a color space as YCbCr or RGB. The first parameter may
indicate a picture resolution as 4K, FHD, CIF, QCIF. The first parameter may indicate
a color component as Y, Cb, or Cr.

In step S5002, it is determined if the first parameter is equal to a determined value.
The determined value may be predetermined.

In step S5003, if it is determined that the fist parameter is equal to a determined value
(YES in step S5002), a first number of coefficients is parsed from the bitstream. The
first number of coefficients can be parsed from a VPS, APS, SPS, PPS, slice header, or
ata CTU or TU level (FIG.103, wherein the*“parameter”’corresponds to the “first
number of coefficients”).

In step S5004, if it is determined that the fist parameter is not equal to a determined
value (NO in step S5003), a second number of coefficients not equal to the first
number of coefficients is parsed from the bitstream. The second number of coefficients
can be parsed from a VPS, APS, SPS, PPS, slice header, or at a CTU or TU level
(FIG.103, wherein the“parameter’corresponds to the“second number of coefficients”).
The first number and the second number from step S5002 and step S5003 can be
different.

For example, as shown in FIG. 119(i), the number of coefficients when the first
parameter indicates that 4:2:0 chroma sub-sampling format is applied is different from
the number of coefficients when the first parameter indicates that 4:2:2, 4:4:4, or 4:1:1
chroma sub-sampling format is applied.

For example, as shown in FIG. 119 (ii), the number of coefficients when the first
parameter indicates that color space YCbCr is applied is different from the number of
coefficients when the first parameter indicates that color space RGB is applied.

For example, as shown in FIG. 119 (iii), the number of coefficients when the first
parameter indicates that Y is used to modify Cb or Cr is different from the number of
coefficients when the first parameter indicates that Cb is used to modify Cr, or Cr is
used to modify Cb.

For example, as shown in FIG. 119 (iv), the number of coefficients when the first
parameter indicates that image resolution is large (e.g. 4K or 8K) is different from the

number of coefficients when the first parameter indicates that image resolution is small
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(e.g. QCIF or CIF).

In FIG. 119, information like the chroma sub-sampling format and the image
resolution can be obtained if SPS_id is coded in an APS.

In step S5005, reconstructed image samples of a first component are filtered using
parsed coefficients. The filtering process contains at least an operation of multi-
plication, division, addition or subtraction on at least two reconstructed image samples
of the first component. The two reconstructed image samples may come from current
and neighboring image samples, or may come from two neighboring image samples,
for example. The locations of the current and neighboring image samples may be pre-
determined.

In step S5006, a reconstructed image sample of a component different from the first
component is modified using the output of the filtering. The modification includes an
operation to multiply, divide, add or subtract the output of the filtering with the recon-
structed image sample.

In step S5007, an image is decoded using the modified reconstructed image sample.

The present disclosure relates to adaptively deriving the number of filter coefficients
for cross component filtering. The adaptive derivation of the number of filter coef-
ficients makes cross component filtering more flexible for coding efficiency im-
provement.

More than one set of coefficients may be signaled. Different sets of coefficients may
have different numbers of coefficients. Different sets of coefficients may have the
same number of coefficients. The number of coefficients of those sets of coefficients
may be fixed. Which set of coefficients to be used is parsed or determined thereafter
(e.g. from coeff_set_id, or filter_id).

(Sixth Aspect)

FIG. 120 is a flow chart of an example of a process flow 6000 of decoding an image
applying a CCALF process using a parameter according to a sixth aspect. The process
flow 6000 may be performed, for example, by the decoder 200 of FIG. 67, etc.

In S6001, the process selects at least a set of reconstructed samples from a first
component;

In S6002, the process derives a value based on the selected set of reconstructed
samples;

In S6003, the process filters the reconstructed samples based on the derived value;

In S6004, the process modifies a reconstructed image sample of a second component
using the output of the filtering;

In S6005, the process decodes an image using the filtered reconstructed image
sample.

FIGS. 121, 122, and 123 are conceptual diagrams illustrating examples of generating
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a CCALF value of a luma component (see step S6002) for a current chroma sample by
calculating a weighted average value of neighboring samples. In other words, in this
example, a CCALF value of luma samples for a chroma sample is generated by cal-
culating a weighted sum of luma samples located in a neighboring region of the
chroma sample. The luma samples include a sample located adjacent to the chroma
sample.

In FIG. 121, a location indicated by a diamond shape is a location of a current
chroma sample. For example, the value corresponding to the location (curr) for a
CCALF may be derived by calculating an averaged value of neighboring luma samples
that are marked with grid patterns. White colored luma samples need not be used for
the averaging process. In other words, a value for a CCALF may be derived by
referring to a sample value of a luma sample located adjacent to the current chroma
sample. There are two such luma samples in the example of FIG. 121.

FIG. 122 describes sample equations for calculating a CCALF value. The CCALF
value may be derived by using filter coefficient values and luma sample values. A
filter coefficient value is multiplied to a subconstruct of two neighboring luma sample
values. A luma sample used in each of the subconstruct calculation may be located
adjacent to the current chroma sample. The form of equations may be the same as the
form used in an ALF filtering process. In some embodiments, if the filter coefficient
value is less than 64, the coefficient value may be set to zero.

As described in FIG. 123, different numbers of luma samples can be averaged, and
the number of averaged neighboring luma samples may be predefined, or signaled in/at
a picture, slice, or block level. The positions of averaged neighboring luma samples
may be predefined, or signaled in/at a picture, slice, or block level. The weights of
averaged neighboring luma samples may be predefined, or signaled in/at a picture,
slice, or block level.

FIGS. 124 and 125 are conceptual diagrams illustrating examples of generating a
CCALF value of a luma component for a current sample by calculating a weighted
average value of neighboring samples, wherein locations of neighboring samples are
determined adaptively to (according to) chroma type. In other words, the locations of
luma samples to be used in the weighting calculation are determined based on a
location of a current chroma sample.

Samples marked with different patterns may represent different weights. The number
of averaged samples may be adaptive to (may correspond to) the chroma type. The
weights of averaged samples may be adaptive to (may correspond to) the chroma type

FIGS. 126 and 127 are conceptual diagrams illustrating examples of generating a
CCALF value of a luma component by applying a bit shift to an output value of the

weighting calculation. In other words, a scale-down shift process is applied to a filtered
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value of a luma samples in the same manner as in an ALF process. In some em-
bodiments, if the coefficient value is less than 64, the coefficient value may be set to
Zero.

The number of shift bits for a CCALF is represented as x. The value x may be de-
termined as the same value as in an ALF process. In some examples the value x may
be fixed to 10. In some examples the value x may be fixed to 7.

(Seventh Aspect)

FIG. 128 is a flow chart of an example of a process flow 7000 of decoding an image
applying a CCALF process using a parameter according to a seventh aspect. The
process flow 7000 may be performed, for example, by the decoder 200 of FIG. 67, etc.
Methods of determining reconstructed samples to be filtered using one or more pa-
rameters are described.

In step S7001, one or more parameters are parsed from a bitstream. The one or more
parameters may be coded in at least one of an APS, SPS, PPS, slice header or at a CTU
level, as shown in FIG. 129. FIG. 130 shows sample processes of retrieving the one or
more parameters.

The one or more parameters may be in a SPS. A slice firstly locates a PPS according
to PPS_id which is coded in the slice. The PPS then locates the SPS according to
SPS_id which is coded in the PPS. Through this connection, the slice can retrieve the
one or more parameters in the SPS as shown in FIG. 130(a).

The one or more parameters may be in a parameter set at a picture level, for example,
in a PPS. A slice firstly locates a PPS according to PPS_id which is coded in the slice.
Through this connection, the slice can retrieve the one or more parameters in the PPS
as shown in FIG. 130(b).

The one or more parameters may be in an APS. A slice firstly locates an APS
according to APS_id which is coded in the slice. Through this connection, the slice can
retrieve the one or more parameters in the APS as shown in FIG. 130(c).

The one or more parameters may be in a slice (FIG. 130(d)). The slice can obtain the
one or more parameters {rom its internal header or data.

The one or more parameters may include a first parameter that selects the size of
samples to be modified. The one or more parameters may indicate whether a CCALF
process is enabled. The one or more parameters may include parameters indicating
whether a CCALF process is enabled or not and parameters indicating coefficient
values of the filter to be used.

The samples can be grouped in a square shape having a specific size such as 4x4,
8x8, 16x16, 16x16, 32x32, 64x64, or 128x128 samples.

The first parameter can be parsed prior to the parsing of a slice header or a slice data.

For example, the first parameter may be parsed from an APS, SPS, or PPS.
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[0667]  The first parameter can be parsed from a slice header.

[0668]  The first parameter can be parsed from a coding tree unit (CTU) data.

[0669]  The first parameter can depend on a chroma sub-sampling type or a CTU size or
both. If the chroma sub-sampling type is 4:4:4, the block size selected by the first
parameter can be 4x4, 8x8, 16x16, 32x32, 64x64, or 128x128. If the chroma sub-
sampling type is 4:2:2 or 4:2:0, the block size selected by the first parameter can be
4x4, 8x8, 16x16, 32x32, or 64x64.

[0670]  The first parameter can depend on a CTU size where the selected block size cannot
exceed its CTU size.

[0671]  The one or more parameters may include a second parameter that indicates whether a
block of samples is to be filtered.

[0672]  The second parameter can be a flag with value of 1 or 0, wherein 1 indicates to
modify the reconstructed samples and O indicates not to modify the reconstructed
samples.

[0673]  The second parameter may be parsed prior to the parsing of the first coding tree unit
(CTU) data. For example, the second parameter can be parsed from an APS, SPS, PPS,
slice header, or slice data.

[0674]  The second parameter may be parsed from a coding tree unit (CTU) data. FIG. 131
shows sample values of the second parameter. A plurality of second parameters can
indicate whether a plurality of blocks in a coding tree unit (CTU) having the specific
sizes are to be modified.

[0675]  The second parameters may indicate if the modification of reconstructed samples is
disabled within a picture or a sequence. If the second parameters indicates that the
modification of reconstructed samples is disabled, step S7002 of FIG. 128 will lead to
step S7005 directly, which corresponds to “NO” branch in FIG. 128.

[0676]  The one or more parameters may include a parameter that can be parsed using non-
arithmetic coding such as fixed length coding, Exponential-Golomb coding, or VLC.

[0677]  The one or more parameters may include a parameter that can be parsed using
arithmetic coding such as CAVLC or CABAC.

[0678]  For an example, as shown in FIG. 132, the second parameter can be parsed using
arithmetic coding prior to the parsing of first coding tree unit data in a slice, followed
by byte-alignment or bit-alignment data. In this example, the initialization of
arithmetic coding for parsing parameters after the second parameter in the same slice
may be applied.

[0679]  In step S7002, it is determined if a filter is to be used based on the parsed parameters.

[0680]  If a filter is to be used, in step S7003, at least a reconstructed sample from a first
component is filtered. The first component can be luminance samples.

[0681]  In step S7004, the reconstructed samples are modified using at least one filtered re-
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constructed sample from a component different from the first component. The
component different from the first component can be chrominance samples.

In step S7005, a block of image samples is decoded using the modified reconstructed
samples.

The present disclosure illustrates the characteristics of one or more parameters at
multiple levels for filtering, including generation methods, functions and coding
methods. Using these control parameters, the design of filtering may be optimized to
save coding bits, enhance high-frequency components using modified samples, and
reduce redundancy between different channels, to thereby improve image quality.

FIG. 133 is a conceptual diagram of a variation of this embodiment.

The one or more parameters can depend on the partition of a coding tree unit. When
a partition has a different size from the size indicated by the first parameter, the second
parameter indicating if the partition is filtered is not coded and the filtering of the
partition is disabled. In this example, the coded bits of the second parameters are
reduced.

The shape or the samples described in the seventh aspect may be replaced with a
rectangular or a non-rectangular shape partition. Examples of the non-rectangular
shape partition may be at least one of a triangular shape partition, a L-shape partition, a
pentagon shape partition, a hexagon shape partition and a polygon shape partition as
shown in FIG. 133.

(Eighth Aspect)

FIG. 134 is a flow chart of an example of a process flow 8000 of decoding an image
applying a CCALF process using a parameter according to an eighth aspect. The
process flow 8000 may be performed, for example, by the decoder 200 of FIG. 67, etc.

In step S8001, it is determined whether a first sample of a first component is outside
a virtual boundary.

In step S8002, if it is determined that the first sample of a first component is outside
a virtual boundary, a second sample of the first component is copied to the first
sample, wherein the second sample is located inside the virtual boundary.

In step S8003, the reconstructed sample of the first component which includes the
first and second samples is filtered.

In step S8004, a reconstructed sample of a component different from the first
component is modified using the output of the filtering.

In step S8005, the modified reconstructed sample is used to decode an image.

A padding method in S8002 may be the same regardless of a chroma sampling
format. For example, symmetric padding may be used. A padding method can be
changed depending on the chroma sampling format, between symmetric padding and

non-symmetric padding for example.
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The first component may be luma samples and the different component whose
sample values are modified may be chroma samples. Chroma can be Cb, Cr, or both.

FIG. 135 is a flow chart of an example of a process flow 8100 of decoding an image
applying a CCALF process using a parameter according to the eighth aspect. The
process flow 8100 may be performed, for example, by the decoder 200 of FIG. 67, etc.

In S8101, it is determined whether the chroma sample type is of a first type. FIG. 136
shows the example locations of chroma sample types O to 5.

In S8102, if it is determined that the chroma sample type is of a first type, a first
sample and a second sample are used in filtering the reconstructed samples of a first
component, wherein the first sample is duplicated from the second reconstructed
sample.

In S8103, if it is determined that the chroma sample type is not of a first type, the
second sample and a third sample are used in filtering the reconstructed samples of the
first component, and the first sample is excluded, wherein the third sample is different
from the first or second sample.

In S8104, a reconstructed sample from a component different from the first
component is modified using the output of the filtering. For example, the first
component is indicating luminance and the output of the filtering is added to the recon-
structed sample from a chrominance component. In another example, the first
component is indicating chrominance Cr and the output of the filtering is added to the
reconstructed sample from chrominance Cb. In another example, the output of the
filtering and the reconstructed sample can be added, subtracted, multiplied, divided, or
subjected to any combination of the mathematical processes to obtain the modified re-
constructed sample.

In S8105, the modified reconstructed sample is used to decode an image. For
example, the modified reconstructed sample is stored in a reference picture buffer.

FIGS. 137, 138, and 139 are conceptual diagrams of examples of symmetric padding.

For example, in S8002 of FIG. 134, if the chroma sample type is equal to O or 1 and
the virtual boundary is between CO and C2 as shown in FIG. 137(a), the reconstructed
sample value of a second sample (C15) is duplicated to the first sample (C17).
Similarly, the reconstructed sample value of a second sample (C2) is duplicated to the
first sample (CO).

As another example, in S8002, if the chroma sample type is equal to 0 or 1 and the
virtual boundary is between C15 and C17 as shown in FIG. 137(b), the reconstructed
sample value of a second sample (C2) is duplicated to the first sample (C0O). Similarly,
the reconstructed sample value of a second sample (C15) is duplicated to the first
sample (C17).

As another example, in S8002, if the chroma sample type is equal to 0 or 1 and the
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virtual boundary is between C2 and C6 as shown in FIG. 137(c), the reconstructed
sample values of second samples (C10, C11 and C12) are duplicated to the first
samples (C14, C15, C16 and C17). Similarly, the reconstructed sample values of
second samples (C5, C6 and C7) are duplicated to the first samples (CO, C1, C2 and
C3).

As another example, in S8002, if the chroma sample type is equal to 0 or 1 and the
virtual boundary is between C11 and C15 as shown in FIG. 137(d), the reconstructed
sample values of second samples (C5, C6 and C7) are duplicated to the first samples
(CO, C1, C2 and C3).Similarly, the reconstructed sample values of second samples
(C10, C11 and C12) are duplicated to the first samples (C14, C15, C16 and C17).

FIGS. 138 and 139 show examples of samples which are duplicated in FIG. 137(a)
and FIG. 137(c), respectively.

After duplicating, the duplicated samples are used in the filtering of the reconstructed
samples of a first component.

FIG. 140, 141, 142, and 143 are conceptual diagrams of examples of non-symmetric
padding.

For example, in S8002, if the chroma sample type is equal to 2 or 3 and the virtual
boundary is between CO and C2 as shown in FIG. 140(a), the reconstructed sample
values of second samples (C10, C11 and C12) are duplicated to the first samples (C14,
C15, C16 or C17). Similarly, the reconstructed sample value of a second sample (C2)
is duplicated to the first sample (CO).

In another example of S8002, if the chroma sample type is equal to 2 or 3 and the
virtual boundary is between C15 and C17 as shown in FIG. 140(b), the reconstructed
sample value of a second sample (C15) is duplicated to the first sample (C17).

In another example of S8002, if the chroma sample type is equal to 2 or 3 and the
virtual boundary is between C2 and C6 as shown in FIG. 140(c), the reconstructed
sample values of second samples (C4, C5, C6, C7 and C8) are duplicated to the first
samples (C9, C10, C11, C12, C13, C14, C15, C16 and C17). Similarly, the recon-
structed sample values of second samples (C5, C6 and C7) are duplicated to the first
samples (CO, C1, C2 and C3).

In another example of S8002, if the chroma sample type is equal to 2 or 3 and the
virtual boundary is between C11 and C15 as shown in FIG. 140(d), the reconstructed
sample values of second samples (C5, C6 and C7) are duplicated to the first samples
(CO, C1, C2 and C3).

FIGS. 141, 142, and 143 show examples of samples which are duplicated in FIG.
140(a), FIG. 140(c) and FIG. 140(d), respectively.

After duplicating, the duplicated samples are used in the filtering of the reconstructed

samples of a first component.
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FIGS. 144, 145, 146, and 147 are conceptual diagrams of further examples of non-
symmetric padding.

In an example of S8002, if the chroma sample type is equal to 4 or 5 and the virtual
boundary is between CO and C2 as shown in FIG. 144(a), the reconstructed sample
value of a second sample (C2) is duplicated to the first sample (CO).

In another example of S8002, if the chroma sample type is equal to 4 or 5 and the
virtual boundary is between C15 and C17 as shown in FIG. 144(b), the reconstructed
sample values of second samples (C5, C6 and C7) are duplicated to the first samples
(CO, C1, C2 and C3). Similarly, the reconstructed sample value of a second sample
(C15) is duplicated to the first sample (C17).

In another example of S8002, if the chroma sample type is equal to 4 or 5 and the
virtual boundary is between C2 and C6 as shown in FIG. 144(c), the reconstructed
sample value of a second sample (C15) is duplicated to the first sample (C17).
Similarly, the reconstructed sample values of second samples (C5, C6 and C7) are du-
plicated to the first samples (CO, C1, C2 and C3).

In another example of S8002, if the chroma sample type is equal to 4 or 5 and the
virtual boundary is between C11 and C15 as shown in FIG. 144(d), the reconstructed
sample values of second samples (C9, C10, C11, C12 and C13) are duplicated to the
first samples (CO, C1, C2, C3, C4, C5, C6, C7 and C8).

FIGS. 145, 146, and 147 show examples of samples, which are duplicated in FIG.
144(b), FIG. 144(c) and FIG. 144(d), respectively.

After duplicating, the duplicated samples are used in the filtering of the reconstructed
samples of a first component.

FIGS. 148, 149, and 150 are conceptual diagrams of further examples of symmetric
padding.

In an example of S8002, if the chroma sample type is equal to 0, 2 or 4 and the
virtual boundary is between C4 and C5 as shown in FIG. 148(a), the reconstructed
sample values of second samples (C7 and C12) are duplicated to the first samples (C8
and C13). Similarly, the reconstructed sample values of second samples (C5 and C10)
are duplicated to the first samples (C4 and C9).

In another example of S8002, if the chroma sample type is equal to 0, 2 or 4 and the
virtual boundary is between C7 and C8 as shown in FIG. 148(b), the reconstructed
sample values of second samples (C5 and C10) are duplicated to the first samples (C4
and C9). Similarly, the reconstructed sample values of second samples (C7 and C12)
are duplicated to the first samples (C8 and C13).

In another example of S8002, if the chroma sample type is equal to 0, 2 or 4 and the
virtual boundary is between C5 and C6 as shown in FIG. 148(c), the reconstructed

sample values of second samples (C2, C6, C11 and C15) are duplicated to the first
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samples (C1, C4, C5, C9, C10 and C14). Similarly, the reconstructed sample values of
second samples (C2, C6, C11 and C15) are duplicated to the first samples (C3, C7, C8,
C12, C13 and C16).

In another example of S8002, if the chroma sample type is equal to 0, 2 or 4 and the
virtual boundary is between C6 and C7 as shown in FIG. 148(d), the reconstructed
sample values of second samples (C2, C6, C11 and C15) are duplicated to the first
samples (C1, C4, C5, C9, C10 and C14). Similarly, the reconstructed sample values of
second samples (C2, C6, C11 and C15) are duplicated to the first samples (C3, C7, C8,
C12, C13 and C16).

FIG. 149 and FIG. 150 show examples of samples which are duplicated in FIG.
148(a) and FIG. 148(c), respectively.

After duplicating, the duplicated samples are used in the filtering of the reconstructed
samples of a first component.

FIGS. 151, 152, 153, 154, and 155 are conceptual diagrams of further examples of
non-symmetric padding.

In an example of S8002, if the chroma sample type is equal to 1, 3 or 5 and the
virtual boundary is between C4 and C5 as shown in FIG. 151(a), the reconstructed
sample values of second samples (C5 and C10) are duplicated to the first samples (C4
and C9).

In another example of S8002, if the chroma sample type is equal to 1, 3 or 5 and the
virtual boundary is between C7 and C8 as shown in FIG. 151(b), the reconstructed
sample values of second samples (C2, C6, C11 and C15) are duplicated to the first
samples (C1, C4, C5, C9, C10 and C14). Similarly, the reconstructed sample values of
second samples (C7 and C12) are duplicated to the first samples (C8 and C13).

In another example of S8002, if the chroma sample type is equal to 1, 3 or 5 and the
virtual boundary is between C5 and C6 as shown in FIG. 151(c), the reconstructed
sample values of second samples (C7 and C12) are duplicated to the first samples (C8
and C13). Similarly, the reconstructed sample values of second samples (C2, C6, C11
and C15) are duplicated to the first samples (C1, C4, C5, C9, C10 and C14).

FIGS. 152, 153 and 154 show examples of samples, which are duplicated in FIG.
151(a), FIG. 151(b) and FIG. 151(c), respectively.

FIG. 155 shows further examples of padding with a horizontal and vertical virtual
boundary.

After duplicating, the duplicated samples are used in the filtering of the reconstructed
samples of a first component.

The present disclosure illustrates padding or duplicating samples used in a filter
based on the chroma sample type and the virtual boundary location in the filter. Such

method of padding or duplicating samples improves picture quality.
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(Variations)

The chroma sample type can be replaced with another information, which indicates
the relationship between the first component and another component different from the
first component.

The chroma sample type can be replaced with a flag, which selects symmetric or
non-symmetric padding at the virtual boundary, where 0 selects symmetric padding
and 1 selects non-symmetric padding, or 1 selects symmetric padding and O selects
non-symmetric padding.

The flag may be signaled from the bitstream or may be derived.

A default value of the flag may be symmetric padding at the virtual boundary.

A default value of the flag may be non-symmetric padding at the virtual boundary.

For example, the flag may be derived based on other filter’s on/off status. For
example, if an ALF filter is on, the flag may select symmetric padding. If an ALF filter
is off, the flag may select non-symmetric padding.

As another example, if an ALF filter is on, the flag may select non-symmetric
padding. If an ALF filter is off, the flag may select symmetric padding.

Other filters which can be used include LMCS, SAO, DBF, and other post-filters.

In some embodiments, the flag may be set based on a profile.

The virtual boundary can be replaced with a picture, slice, brick, tile, or subpicture
boundary.

FIG. 156 is a block diagram illustrating a functional configuration of an encoder and
a decoder according to an example where symmetric padding is used on virtual
boundary locations for an ALF, and either symmetric or non-symmetric padding is
used on virtual boundary locations for a CC-ALF based on a chroma sample type and a
virtual boundary location.

FIG. 157 is a block diagram illustrating a functional configuration of an encoder and
a decoder according to another example where symmetric padding is used on virtual
boundary locations for an ALF and single-side padding is used on virtual boundary
locations for a CC-ALF.

FIG. 158 is a conceptual diagram illustrating an example of single-side padding with
either a horizontal or vertical virtual boundary.

FIG. 159 is a conceptual diagram illustrating an example of single-side padding with
a horizontal and vertical virtual boundary.

The input to a CCALF (reconstructed samples of a first component used for filtering)
is not restricted to an SAO output. The input can be from output of luma mapping with
chroma scaling (LMCS), bilateral/hadamard, or deblocking filter or any post-filter
combinations.

CCALF may be switched on/off at each block. A block need not overlap between
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more than one CTU. Since ALF may be switched on/off at CTU, CCALF can be
switched on for CTU in which ALF is on.

One or more of the aspects disclosed herein may be performed in combination with
at least part of the other aspects in the present disclosure. In addition, one or more of
the aspects disclosed herein may be performed by combining, with other aspects, part
of the processes indicated in any of the flow charts according to the aspects, part of the
configuration of any of the devices, part of syntaxes, etc. Aspects described with
reference to a constituent element of an encoder may be performed similarly by a cor-
responding constituent element of a decoder.

(Implementations and Applications)

As described in each of the above embodiments, each functional or operational block
may typically be realized as an MPU (micro processing unit) and memory, for
example. Moreover, processes performed by each of the functional blocks may be
realized as a program execution unit, such as a processor which reads and executes
software (a program) recorded on a recording medium such as ROM. The software
may be distributed. The software may be recorded on a variety of recording media
such as semiconductor memory. Note that each functional block can also be realized as
hardware (dedicated circuit). Various combinations of hardware and software may be
employed.

The processing described in each of the embodiments may be realized via integrated
processing using a single apparatus (system), and, alternatively, may be realized via
decentralized processing using a plurality of apparatuses. Moreover, the processor that
executes the above-described program may be a single processor or a plurality of
processors. In other words, integrated processing may be performed, and, alternatively,
decentralized processing may be performed.

Embodiments of the present disclosure are not limited to the above exemplary em-
bodiments; various modifications may be made to the exemplary embodiments, the
results of which are also included within the scope of the embodiments of the present
disclosure.

Next, application examples of the moving picture encoding method (image encoding
method) and the moving picture decoding method (image decoding method) described
in each of the above embodiments will be described, as well as various systems that
implement the application examples. Such a system may be characterized as including
an image encoder that employs the image encoding method, an image decoder that
employs the image decoding method, or an image encoder-decoder that includes both
the image encoder and the image decoder. Other configurations of such a system may
be modified on a case-by-case basis.

(Usage Examples)
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FIG. 160 illustrates an overall configuration of content providing system ex100
suitable for implementing a content distribution service. The area in which the commu-
nication service is provided is divided into cells of desired sizes, and base stations
ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations in the il-
lustrated example, are located in respective cells.

In content providing system ex100, devices including computer ex111, gaming
device ex112, camera ex113, home appliance ex114, and smartphone ex115 are
connected to internet ex101 via internet service provider ex102 or communications
network ex104 and base stations ex106 through ex110. Content providing system
ex100 may combine and connect any combination of the above devices. In various im-
plementations, the devices may be directly or indirectly connected together via a
telephone network or near field communication, rather than via base stations ex106
through ex110. Further, streaming server ex103 may be connected to devices including
computer ex111, gaming device ex112, camera ex113, home appliance ex114, and
smartphone ex115 via, for example, internet ex101. Streaming server ex103 may also
be connected to, for example, a terminal in a hotspot in airplane ex117 via satellite
exl16.

Note that instead of base stations ex106 through ex110, wireless access points or
hotspots may be used. Streaming server ex103 may be connected to communications
network ex104 directly instead of via internet ex101 or internet service provider ex102,
and may be connected to airplane ex117 directly instead of via satellite ex116.

Camera ex113 may be a device capable of capturing still images and video, such as a
digital camera. Smartphone ex115 may be a smartphone device, cellular phone, or
personal handy-phone system (PHS) phone that can operate under the mobile commu-
nications system standards of the 2G, 3G, 3.9G, and 4G systems, as well as the next-
generation 5G system.

Home appliance ex114 is, for example, a refrigerator or a device included in a home
fuel cell cogeneration system.

In content providing system €x100, a terminal including an image and/or video
capturing function is capable of, for example, live streaming by connecting to
streaming server ex103 via, for example, base station ex106. When live streaming, a
terminal (e.g., computer ex111, gaming device ex112, camera ex113, home appliance
ex114, smartphone ex115, or a terminal in airplane ex117) may perform the encoding
processing described in the above embodiments on still-image or video content
captured by a user via the terminal, may multiplex video data obtained via the
encoding and audio data obtained by encoding audio corresponding to the video, and
may transmit the obtained data to streaming server ex103. In other words, the terminal

functions as the image encoder according to one aspect of the present disclosure.
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Streaming server ex103 streams transmitted content data to clients that request the
stream. Client examples include computer ex111, gaming device ex112, camera ex113,
home appliance ex114, smartphone ex115, and terminals inside airplane ex117, which
are capable of decoding the above-described encoded data. Devices that receive the
streamed data may decode and reproduce the received data. In other words, the devices
may each function as the image decoder, according to one aspect of the present
disclosure.

(Decentralized Processing)

Streaming server ex103 may be realized as a plurality of servers or computers
between which tasks such as the processing, recording, and streaming of data are
divided. For example, streaming server ex103 may be realized as a content delivery
network (CDN) that streams content via a network connecting multiple edge servers
located throughout the world. In a CDN, an edge server physically near the client may
be dynamically assigned to the client. Content is cached and streamed to the edge
server to reduce load times. In the event of, for example, some type of error or change
in connectivity due, for example, to a spike in traffic, it is possible to stream data
stably at high speeds, since it is possible to avoid affected parts of the network by, for
example, dividing the processing between a plurality of edge servers, or switching the
streaming duties to a different edge server and continuing streaming.

Decentralization is not limited to just the division of processing for streaming; the
encoding of the captured data may be divided between and performed by the terminals,
on the server side, or both. In one example, in typical encoding, the processing is
performed in two loops. The first loop is for detecting how complicated the image is on
a frame-by-frame or scene-by-scene basis, or detecting the encoding load. The second
loop is for processing that maintains image quality and improves encoding efficiency.
For example, it is possible to reduce the processing load of the terminals and improve
the quality and encoding efficiency of the content by having the terminals perform the
first loop of the encoding and having the server side that received the content perform
the second loop of the encoding. In such a case, upon receipt of a decoding request, it
is possible for the encoded data resulting from the first loop performed by one terminal
to be received and reproduced on another terminal in approximately real time. This
makes it possible to realize smooth, real-time streaming.

In another example, camera ex113 or the like extracts a feature amount (an amount of
features or characteristics) from an image, compresses data related to the feature
amount as metadata, and transmits the compressed metadata to a server. For example,
the server determines the significance of an object based on the feature amount, and
changes the quantization accuracy accordingly to perform compression suitable for the

meaning (or content significance) of the image. Feature amount data is particularly
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effective in improving the precision and efficiency of motion vector prediction during
the second compression pass performed by the server. Moreover, encoding that has a
relatively low processing load, such as variable length coding (VLC), may be handled
by the terminal, and encoding that has a relatively high processing load, such as
context-adaptive binary arithmetic coding (CABAC), may be handled by the server.

[0768]  In yet another example, there are instances in which a plurality of videos of ap-
proximately the same scene are captured by a plurality of terminals in, for example, a
stadium, shopping mall, or factory. In such a case, for example, the encoding may be
decentralized by dividing processing tasks between the plurality of terminals that
captured the videos and, if necessary, other terminals that did not capture the videos,
and the server, on a per-unit basis. The units may be, for example, groups of pictures
(GOP), pictures, or tiles resulting from dividing a picture. This makes it possible to
reduce load times and achieve streaming that is closer to real time.

[0769]  Since the videos are of approximately the same scene, management and/or in-
structions may be carried out by the server so that the videos captured by the terminals
can be cross-referenced. Moreover, the server may receive encoded data from the
terminals, change the reference relationship between items of data, or correct or
replace pictures themselves, and then perform the encoding. This makes it possible to
generate a stream with increased quality and efficiency for the individual items of data.

[0770]  Furthermore, the server may stream video data after performing transcoding to
convert the encoding format of the video data. For example, the server may convert the
encoding format from MPEG to VP (e.g., VP9), may convert H.264 to H.265, etc.

[0771]  In this way, encoding can be performed by a terminal or one or more servers. Ac-
cordingly, although the device that performs the encoding is referred to as a "server" or
"terminal” in the following description, some or all of the processes performed by the
server may be performed by the terminal, and likewise some or all of the processes
performed by the terminal may be performed by the server. This also applies to
decoding processes.

[0772] (3D, Multi-angle)

There has been an increase in usage of images or videos combined from images or
videos of different scenes concurrently captured, or of the same scene captured from
different angles, by a plurality of terminals such as camera ex113 and/or smartphone
ex115. Videos captured by the terminals may be combined based on, for example, the
separately obtained relative positional relationship between the terminals, or regions in
a video having matching feature points.

[0773]  In addition to the encoding of two-dimensional moving pictures, the server may
encode a still image based on scene analysis of a moving picture, for example auto-

matically or at a point in time specified by the user, and transmit the encoded still
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image to a reception terminal. Furthermore, when the server can obtain the relative po-
sitional relationship between the video capturing terminals, in addition to two-
dimensional moving pictures, the server can generate three-dimensional geometry of a
scene based on video of the same scene captured from different angles. The server may
separately encode three-dimensional data generated from, for example, a point cloud
and, based on a result of recognizing or tracking a person or object using three-
dimensional data, may select or reconstruct and generate a video to be transmitted to a
reception terminal, from videos captured by a plurality of terminals.

This allows the user to enjoy a scene by freely selecting videos corresponding to the
video capturing terminals, and allows the user to enjoy the content obtained by ex-
tracting a video at a selected viewpoint from three-dimensional data reconstructed
from a plurality of images or videos. Furthermore, as with video, sound may be
recorded from relatively different angles, and the server may multiplex audio from a
specific angle or space with the corresponding video, and transmit the multiplexed
video and audio.

In recent years, content that is a composite of the real world and a virtual world, such
as virtual reality (VR) and augmented reality (AR) content, has also become popular.
In the case of VR images, the server may create images from the viewpoints of both
the left and right eyes, and perform encoding that tolerates reference between the two
viewpoint images, such as multi-view coding (MVC), and, alternatively, may encode
the images as separate streams without referencing. When the images are decoded as
separate streams, the streams may be synchronized when reproduced, so as to recreate
a virtual three-dimensional space in accordance with the viewpoint of the user.

In the case of AR images, the server may superimpose virtual object information
existing in a virtual space onto camera information representing a real-world space, for
example based on a three-dimensional position or movement from the perspective of
the user. The decoder may obtain or store virtual object information and three-
dimensional data, generate two-dimensional images based on movement from the per-
spective of the user, and then generate superimposed data by seamlessly connecting the
images. Alternatively, the decoder may transmit, to the server, motion from the per-
spective of the user in addition to a request for virtual object information. The server
may generate superimposed data based on three-dimensional data stored in the server
in accordance with the received motion, and encode and stream the generated su-
perimposed data to the decoder. Note that superimposed data typically includes, in
addition to RGB values, an a value indicating transparency, and the server sets the a
value for sections other than the object generated from three-dimensional data to, for
example, 0, and may perform the encoding while those sections are transparent. Alter-

natively, the server may set the background to a determined RGB value, such as a
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chroma key, and generate data in which areas other than the object are set as the
background. The determined RGB value may be predetermined.

Decoding of similarly streamed data may be performed by the client (e.g., the
terminals), on the server side, or be divided therebetween. In one example, one
terminal may transmit a reception request to a server, the requested content may be
received and decoded by another terminal, and a decoded signal may be transmitted to
a device having a display. It is possible to reproduce high image quality data by decen-
tralizing processing and appropriately selecting content regardless of the processing
ability of the communications terminal itself. In yet another example, while a TV, for
example, is receiving image data that is large in size, a region of a picture, such as a
tile obtained by dividing the picture, may be decoded and displayed on a personal
terminal or terminals of a viewer or viewers of the TV. This makes it possible for the
viewers to share a big-picture view as well as for each viewer to check his or her
assigned area, or inspect a region in further detail up close.

In situations in which a plurality of wireless connections are possible over near, mid,
and far distances, indoors or outdoors, it may be possible to seamlessly receive content
using a streaming system standard such as MPEG-DASH. The user may switch
between data in real time while freely selecting a decoder or display apparatus
including the user's terminal, displays arranged indoors or outdoors, etc. Moreover,
using, for example, information on the position of the user, decoding can be performed
while switching which terminal handles decoding and which terminal handles the
displaying of content. This makes it possible to map and display information, while the
user is on the move in route to a destination, on the wall of a nearby building in which
a device capable of displaying content is embedded, or on part of the ground.
Moreover, it is also possible to switch the bit rate of the received data based on the ac-
cessibility to the encoded data on a network, such as when encoded data is cached on a
server quickly accessible from the reception terminal, or when encoded data is copied
to an edge server in a content delivery service.

(Web Page Optimization)

FIG. 161 illustrates an example of a display screen of a web page on computer
ex111, for example. FIG. 162 illustrates an example of a display screen of a web page
on smartphone ex115, for example. As illustrated in FIG. 161 and FIG. 162, a web
page may include a plurality of image links that are links to image content, and the ap-
pearance of the web page may differ depending on the device used to view the web
page. When a plurality of image links are viewable on the screen, until the user ex-
plicitly selects an image link, or until the image link is in the approximate center of the
screen or the entire image link fits in the screen, the display apparatus (decoder) may

display, as the image links, still images included in the content or I pictures; may
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display video such as an animated gif using a plurality of still images or I pictures; or
may receive only the base layer, and decode and display the video.

When an image link is selected by the user, the display apparatus performs decoding
while, for example, giving the highest priority to the base layer. Note that if there is in-
formation in the HTML code of the web page indicating that the content is scalable,
the display apparatus may decode up to the enhancement layer. Further, in order to fa-
cilitate real-time reproduction, before a selection is made or when the bandwidth is
severely limited, the display apparatus can reduce delay between the point in time at
which the leading picture is decoded and the point in time at which the decoded picture
is displayed (that is, the delay between the start of the decoding of the content to the
displaying of the content) by decoding and displaying only forward reference pictures
(I picture, P picture, forward reference B picture). Still further, the display apparatus
may purposely ignore the reference relationship between pictures, and coarsely decode
all B and P pictures as forward reference pictures, and then perform normal decoding
as the number of pictures received over time increases.

(Autonomous Driving)

When transmitting and receiving still image or video data such as two- or three-
dimensional map information for autonomous driving or assisted driving of an au-
tomobile, the reception terminal may receive, in addition to image data belonging to
one or more layers, information on, for example, the weather or road construction as
metadata, and associate the metadata with the image data upon decoding. Note that
metadata may be assigned per layer and, alternatively, may simply be multiplexed with
the image data.

In such a case, since the automobile, drone, airplane, etc., containing the reception
terminal is mobile, the reception terminal may seamlessly receive and perform
decoding while switching between base stations among base stations ex106 through
ex110 by transmitting information indicating the position of the reception terminal.
Moreover, in accordance with the selection made by the user, the situation of the user,
and/or the bandwidth of the connection, the reception terminal may dynamically select
to what extent the metadata is received, or to what extent the map information, for
example, is updated.

In content providing system ex100, the client may receive, decode, and reproduce, in
real time, encoded information transmitted by the user.

(Streaming of Individual Content)

In content providing system ex100, in addition to high image quality, long content
distributed by a video distribution entity, unicast or multicast streaming of low image
quality, and short content from an individual are also possible. Such content from in-

dividuals is likely to further increase in popularity. The server may first perform
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editing processing on the content before the encoding processing, in order to refine the
individual content. This may be achieved using the following configuration, for
example.

In real time while capturing video or image content, or after the content has been
captured and accumulated, the server performs recognition processing based on the
raw data or encoded data, such as capture error processing, scene search processing,
meaning analysis, and/or object detection processing. Then, based on the result of the
recognition processing, the server - for example when prompted or automatically -
edits the content, examples of which include: correction such as focus and/or motion
blur correction; removing low-priority scenes such as scenes that are low in brightness
compared to other pictures, or out of focus; object edge adjustment; and color tone ad-
justment. The server encodes the edited data based on the result of the editing. It is
known that excessively long videos tend to receive fewer views. Accordingly, in order
to keep the content within a specific length that scales with the length of the original
video, the server may, in addition to the low-priority scenes described above, auto-
matically clip out scenes with low movement, based on an image processing result. Al-
ternatively, the server may generate and encode a video digest based on a result of an
analysis of the meaning of a scene.

There may be instances in which individual content may include content that
infringes a copyright, moral right, portrait rights, etc. Such instance may lead to an un-
favorable situation for the creator, such as when content is shared beyond the scope
intended by the creator. Accordingly, before encoding, the server may, for example,
edit images so as to blur faces of people in the periphery of the screen or blur the inside
of a house, for example. Further, the server may be configured to recognize the faces
of people other than a registered person in images to be encoded, and when such faces
appear in an image, may apply a mosaic filter, for example, to the face of the person.
Alternatively, as pre- or post-processing for encoding, the user may specity, for
copyright reasons, a region of an image including a person or a region of the
background to be processed. The server may process the specified region by, for
example, replacing the region with a different image, or blurring the region. If the
region includes a person, the person may be tracked in the moving picture, and the
person's head region may be replaced with another image as the person moves.

Since there is a demand for real-time viewing of content produced by individuals,
which tends to be small in data size, the decoder may first receive the base layer as the
highest priority, and perform decoding and reproduction, although this may differ
depending on bandwidth. When the content is reproduced two or more times, such as
when the decoder receives the enhancement layer during decoding and reproduction of

the base layer, and loops the reproduction, the decoder may reproduce a high image
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quality video including the enhancement layer. If the stream is encoded using such
scalable encoding, the video may be low quality when in an unselected state or at the
start of the video, but it can offer an experience in which the image quality of the
stream progressively increases in an intelligent manner. This is not limited to just
scalable encoding; the same experience can be offered by configuring a single stream
from a low quality stream reproduced for the first time and a second stream encoded
using the first stream as a reference.

(Other Implementation and Application Examples)

The encoding and decoding may be performed by LSI (large scale integration
circuitry) ex500 (see FIG. 160), which is typically included in each terminal. LSI
ex500 may be configured from a single chip or a plurality of chips. Software for
encoding and decoding moving pictures may be integrated into some type of a
recording medium (such as a CD-ROM, a flexible disk, or a hard disk) that is readable
by, for example, computer ex111, and the encoding and decoding may be performed
using the software. Furthermore, when smartphone ex115 is equipped with a camera,
the video data obtained by the camera may be transmitted. In this case, the video data
may be coded by LSI ex500 included in smartphone ex115.

Note that LSI ex500 may be configured to download and activate an application. In
such a case, the terminal first determines whether it is compatible with the scheme
used to encode the content, or whether it is capable of executing a specific service.
When the terminal is not compatible with the encoding scheme of the content, or when
the terminal is not capable of executing a specific service, the terminal may first
download a codec or application software and then obtain and reproduce the content.

Aside from the example of content providing system ex 100 that uses internet ex101,
at least the moving picture encoder (image encoder) or the moving picture decoder
(image decoder) described in the above embodiments may be implemented in a digital
broadcasting system. The same encoding processing and decoding processing may be
applied to transmit and receive broadcast radio waves superimposed with multiplexed
audio and video data using, for example, a satellite, even though this is geared toward
multicast, whereas unicast is easier with content providing system ex100.

(Hardware Configuration)

FIG. 163 illustrates further details of an example smartphone ex115 shown in FIG.
160. FIG. 164 illustrates a functional configuration example of a smartphone ex115.
Smartphone ex115 includes antenna ex450 for transmitting and receiving radio waves
to and from base station ex110, camera ex465 capable of capturing video and still
images, and display ex458 that displays decoded data, such as video captured by
camera €x465 and video received by antenna ex450. Smartphone ex115 further

includes user interface ex466 such as a touch panel; audio output unit ex457 such as a
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speaker for outputting speech or other audio; audio input unit ex456 such as a mi-
crophone for audio input; memory ex467 capable of storing decoded data such as
captured video or still images, recorded audio, received video or still images, and mail,
as well as decoded data; and slot ex464 which is an interface for SIM ex468 for au-
thorizing access to a network and various data. Note that external memory may be used
instead of or in addition to memory ex467.

Main controller ex460, which may comprehensively control display ex458 and user
interface ex466, power supply circuit ex461, user interface input controller ex462,
video signal processor ex455, camera interface ex463, display controller ex459,
modulator/demodulator ex452, multiplexer/demultiplexer ex453, audio signal
processor ex454, slot ex464, and memory ex467 are connected via bus ex470.

When the user turns on the power button of power supply circuit ex461, smartphone
ex115 is powered on into an operable state, and each component is supplied with
power, for example, from a battery pack.

Smartphone ex115 performs processing for, for example, calling and data
transmission, based on control performed by main controller ex460, which includes a
CPU, ROM, and RAM. When making calls, an audio signal recorded by audio input
unit ex456 is converted into a digital audio signal by audio signal processor ex454, to
which spread spectrum processing is applied by modulator/demodulator ex452 and
digital-analog conversion, and frequency conversion processing is applied by
transmitter/receiver ex451, and the resulting signal is transmitted via antenna ex450.
The received data is amplified, frequency converted, and analog-digital converted,
inverse spread spectrum processed by modulator/demodulator ex452, converted into an
analog audio signal by audio signal processor ex454, and then output from audio
output unit ex457.

In data transmission mode, text, still-image, or video data may be transmitted under
control of main controller ex460 via user interface input controller ex462 based on
operation of user interface ex466 of the main body, for example. Similar transmission
and reception processing is performed. In data transmission mode, when sending a
video, still image, or video and audio, video signal processor ex455 compression
encodes, via the moving picture encoding method described in the above em-
bodiments, a video signal stored in memory ex467 or a video signal input from camera
ex465, and transmits the encoded video data to multiplexer/demultiplexer ex453.
Audio signal processor ex454 encodes an audio signal recorded by audio input unit
ex456 while camera ex465 is capturing a video or still image, and transmits the
encoded audio data to multiplexer/demultiplexer ex453. Multiplexer/demultiplexer
ex453 multiplexes the encoded video data and encoded audio data using a determined

scheme, modulates and converts the data using modulator/demodulator
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(modulator/demodulator circuit) ex452 and transmitter/receiver ex451, and transmits
the result via antenna ex450. The determined scheme may be predetermined.

When video appended in an email or a chat, or a video linked from a web page, is
received, for example, in order to decode the multiplexed data received via antenna
ex450, multiplexer/demultiplexer ex453 demultiplexes the multiplexed data to divide
the multiplexed data into a bitstream of video data and a bitstream of audio data,
supplies the encoded video data to video signal processor ex455 via synchronous bus
ex470, and supplies the encoded audio data to audio signal processor ex454 via syn-
chronous bus €x470. Video signal processor €x455 decodes the video signal using a
moving picture decoding method corresponding to the moving picture encoding
method described in the above embodiments, and video or a still image included in the
linked moving picture file is displayed on display ex458 via display controller ex459.
Audio signal processor ex454 decodes the audio signal and outputs audio from audio
output unit ex457. Since real-time streaming is becoming increasingly popular, there
may be instances in which reproduction of the audio may be socially inappropriate,
depending on the user's environment. Accordingly, as an initial value, a configuration
in which only video data is reproduced, e.g., the audio signal is not reproduced, may be
preferable; audio may be synchronized and reproduced only when an input, such as
when the user clicks video data, is received.

Although smartphone ex115 was used in the above example, other implementations
are conceivable: a transceiver terminal including both an encoder and a decoder; a
transmitter terminal including only an encoder; and a receiver terminal including only
a decoder. In the description of the digital broadcasting system, an example is given in
which multiplexed data obtained as a result of video data being multiplexed with audio
data is received or transmitted. The multiplexed data, however, may be video data mul-
tiplexed with data other than audio data, such as text data related to the video. Further,
the video data itself rather than multiplexed data may be received or transmitted.

Although main controller ex460 including a CPU is described as controlling the
encoding or decoding processes, various terminals often include graphics processing
units (GPUs). Accordingly, a configuration is acceptable in which a large area is
processed at once by making use of the performance ability of the GPU via memory
shared by the CPU and GPU, or memory including an address that is managed so as to
allow common usage by the CPU and GPU, or via separate memories. This makes it
possible to shorten encoding time, maintain the real-time nature of the stream, and
reduce delay. In particular, processing relating to motion estimation, deblocking
filtering, sample adaptive offset (SAO), and transformation/quantization can be ef-
fectively carried out by the GPU instead of the CPU in units of pictures, for example,

all at once.
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Claims

An encoder, comprising:

circuitry; and

memory coupled to the circuitry;

wherein the circuitry, in operation:

generates a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clips the first coefficient value;

generates a second coefficient value by applying an ALF (adaptive loop
filtering) process to a second reconstructed image sample of a chroma
component;

clips the second coefficient value;

generates a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

encodes a third reconstructed image sample of the chroma component
using the third coefficient value.

The encoder of claim 1, wherein,

the first reconstructed image sample is located adjacent to the second
reconstructed image sample.

The encoder of claim 1, wherein the circuitry, in operation,

sets the first coefficient value to zero in response to the first coefficient
value being less than 64.

An encoder, comprising:

a block splitter, which, in operation, splits a first image into a plurality
of blocks;

an intra predictor, which, in operation, predicts blocks included in the
first image, using reference blocks included in the first image;

an inter predictor, which, in operation, predicts blocks included in the
first image, using reference blocks included in a second image different
from the first image;

a loop filter, which, in operation, filters blocks included in the first
image;

a transformer, which, in operation, transforms a prediction error
between an original signal and a prediction signal generated by the intra
predictor or the inter predictor, to generate transform coefficients;

a quantizer, which, in operation, quantizes the transform coefficients to



WO 2021/025165

[Claim 5]

[Claim 6]

[Claim 7]

130
PCT/JP2020/030507

generate quantized coefficients; and

an entropy encoder, which, in operation, variably encodes the quantized
coefficients to generate an encoded bitstream including the encoded
quantized coefficients and control information,

wherein the loop filter preforms:

generating a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image sample of a
chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

encoding a third reconstructed image sample of the chroma component
using the third coefficient value.

The encoder of claim 4, wherein,

the first reconstructed image sample is located adjacent to the second
reconstructed image sample.

The encoder of claim 4, wherein the loop filter

sets the first coefficient value to zero in response to the first coefficient
value being less than 64.

A decoder, comprising:

circuitry; and

memory coupled to the circuitry;

wherein the circuitry, in operation:

generates a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clips the first coefficient value;

generates a second coefficient value by applying an ALF (adaptive loop
filtering) process to a second reconstructed image sample of a chroma
component;

clips the second coefficient value;

generates a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

decodes a third reconstructed image sample of the chroma component
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using the third coefficient value.

The decoder of claim 7, wherein,

the first reconstructed image sample is located adjacent to the second
reconstructed image sample.

The decoder of claim 7, wherein the circuitry, in operation,

sets the first coefficient value to zero in response to the first coefficient
value being less than 64.

A decoding apparatus, comprising:

a decoder, which, in operation, decodes an encoded bitstream to output
quantized coefficients;

an inverse quantizer, which, in operation, inverse quantizes the
quantized coefficients to output transform coefficients;

an inverse transformer, which, in operation, inverse transforms the
transform coefficients to output a prediction error;

an intra predictor, which, in operation, predicts blocks included in a
first image, using a reference blocks included in the first image;

an inter predictor, which, in operation, predicts blocks included in the
first image, using reference blocks included in a second image different
from the first image;

a loop filter, which, in operation, filters blocks included in the first
image; and

an output, which, in operation, outputs a picture including the first
image,

wherein the loop filter performs:

generating a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image sample of a
chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

decoding a third reconstructed image sample of the chroma component
using the third coefficient value.

The decoding apparatus of claim 10, wherein,

the first reconstructed image sample is located adjacent to the second
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reconstructed image sample.

The decoding apparatus of claim 10, wherein the loop filter,

sets the first coefficient value to zero in response to the first coefficient
value being less than 64.

An encoding method, comprising:

generating a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image sample of a
chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

encoding a third reconstructed image sample of the chroma component
using the third coefficient value.

A decoding method, comprising:

generating a first coefficient value by applying a CCALF (cross
component adaptive loop filtering) process to a first reconstructed
image sample of a luma component;

clipping the first coefficient value;

generating a second coefficient value by applying an ALF (adaptive
loop filtering) process to a second reconstructed image sample of a
chroma component;

clipping the second coefficient value;

generating a third coefficient value by adding the clipped first co-
efficient value to the clipped second coefficient value; and

decoding a third reconstructed image sample of the chroma component

using the third coefficient value.
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[Fig. 112]
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[Fig. 114]
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[Fig. 116]
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[Fig. 118]

- >000
start
—~

- - $5001
parsing a first parameter from a -
bitstream
$5002

the first parameter
is equal to a predetermined
value

Yes No

A4

~ \

parsing a first number of coefficients
from the bitstream

parsing a second number of coefficients
not equal to the first number of
coefficients from the bitstream

v

filtering reconstructed image samples of
a first component using parsed
coefficients

'

modifying a reconstructed image sample $5006
of a component different from the first
component using the output of the
filtering

v

decoding an image using the modified
reconstructed image sample

S5005

55007

end



WO 2021/025165

[Fig. 119]
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[Fig. 121]
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derived value
(chroma sample type 0)

— The variable sum is derived as follows:

sum = f[idx[0]]
fTidx[1]]
flidx[2]]
flidx[3]]
flidx[4]]
flidx[5]]
flidx[6]]
f1dx[7]]
fadx[8]]
fidx[91]

som F CurT

*( Clip3(—c[1dx[0] ], c[idx[ 0
Clip3(—c[idx[01]]. c[1dx[ O
*( Clip3(~c[idx[ 11, c[idx[ 1
Clip3(—c[1dx[1]], [ tdx[ 1
*( Clip3(—e[1dx[2] ). c[1dx[2
Clip3( —c[i1dx[2 1], c[1dx[2
*( Clip3(—c[idx[3 1], c[idx[3
Clip3( —c[1dx[3]], c[ idx[ 3
*( Clip3(—c[idx[4]]), e[ 1dx[ 4
Clip3(—c[idx[4 1], c[idx[ 4
*( Clip3(—c[idx[5] ). c[1dx[ 5
Chip3(~c[idx[5]]. c[idx[3
*( Clip3(—c[idx[6]]. c[1dx][ 6
Clip3( —c[1dx[6 1], c[1dx[ 6
*( Clip3( —c[idx[ 717, c[idx[ 7
Clip3(—c[1dx[ 7). c[idx[ 7
*{ Clip3(—c[1dx[ 8]] e[ 1dx[ 8

Chip3( —c[idx[ 81, c[idx[8]1].
*( Clip3(—c[idx[91]). c[idx[9] 1],

Clip3( —c{1dx[9]]. c[idx[9] ]
fidx[ 10 7] * ( Clip3( —c[ idx[ 10] ], c[idx[ 10] ], recPicture;[ h.-», v ]
Clip3( —c[idx[ 1011, [ idx[ 10] ], recPicturer[ hx-1, v+ 11
fladx{ 1117 *( Clip3¢—c[idx[ 11 1], c[idx[ 11} ], recPicturer[ hy -, vy ]
Clip3(—c[1dx[ 117 ). ¢f idx[ 1117, recPicturer[ sy, v 11

((sum+64)>>7)

1]
11
11
1
11
11
11
1l
11
1
1]
1]
11
1]
1]
1]
1]

PCT/JP2020/030507

recPicture; [ by, Vyors ]
recPicturer| hy, vyo 53 ]
recPicture | ho -y, Voo
recPictures [ by 1, vy
recPicturer [ hy, vveypz ]
recPicturer [ by, vy-na ]
recPicture | heoy, vy oy
recPicture [ by, voey
recPicture [ hz- 2, Vo=
recPicturer [ he o3, v oy
recPicturer| he o, vooy
recPicturer | hy-1, Vo-y
recPicture [ he, vyer ]
recPicturer [ hy, vy-n1 ]
recPicturer [ he -y, oo
recPicturer| hy-1, Vo y
recPicture [ by -a, Voo
recPicturer[ hy- 1. Voo
recPicturer[ he .3, vy ]

recPicture [ hy -3, v 11

| curr ) +

Four ) )+
J-curr) 4
J-cur))
- curr ) +

- curr ) ) +
]—curr )4
J-curr})
] cuorr )
]—curr))
1-curr ) 4
1—-curr))
- curr ) +

- curr ) )+
J—curr ) 4
1-curr))
]1-curr ) 4
I~cur))
curr ) +

curr ) ) +
curr ) +

curr ) ) +
curr ) +

H-

-

H-

T

e~

curr ) )

Example of ALF chroma filter equation

— The varable sum is derived as follows:

sum =10 ]*( Clip3(—c[ 0], ¢[ 01 recPicture[ hy, vy-p2 ] — curr ) +
Clip3( —c[ 0 1. ¢[ 0 ], recPicture[ hy, vy-nn ] —cnrr ) ) +
fT11*(Clip3(—c[1]). e[ 1], recPicture[ by y, Viopy ] —curr ) +
Clip3(—c[1].¢[ 1], recPicture[ hy-y, vy—ny ] —curr)) +
fT27*(Clip3(—c[ 2 1. ¢[ 2], recPicture[ by, vy apy ] ~curr ) +
Chp3(—c[2]. ¢[2 ). recPicture[ hy, vy ry ]~ curr )} ) +
f1371*(Clip3(—e[3}. e[ 3], recPicture] by 1, vyur } —curr ) +
Clip3(—c[3 1. ¢f 3 1, recPicture[ hy-y, Voo J—curr) ) +
fT471*(Clip3(—c[ 4. c[4], recPicturef by+z, vy ] = curr ) +
Clip3(—c[ 4], [ 4]. recPicture[ hy—3, W]~ curr) ) +
fI571* (Clip3{—c[ 51 e[ 5], recPicturef by 1, vy ]~ curr ) +
Clip3(—c[ 51, ¢[ 5 ]. recPicture[ by -1, v ] —curr))

sum = curr +(sum + 64 ) >>7)

(8-1187)

(8-1188)

(8-1238)

(8-1239)
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[Fig. 123]
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[Fig. 124]

Example of chroma sample location
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Enterpretation of symbols
Luua sample position indications:

:“f\ Luma sample op ficld D {.uma sample bottom field

Chroma sample position indications, where gray fill indicates a bottom field
sample type and no fill indicates a top field sample type:
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[Fig. 125]
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[Fig. 127]
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— The variable sum is derived as follows:

sum=f[idx[0]] *( Clip3( —c[idx[0]], c[ idx[ 0

fidx[17]]
fldx[21]]
flidx[3]]
fidx[4]]
flidx[5]]
fidx[6]]
fide[7]]
fid=[ 8]
fidx[9]]

1]

Clip3(—c[dx[0]]. c[1dx[ 0 ]]

*( Clip3(—c[1dx[ 1] ] c[i1dx[1]]
Clip3(—~c[1dx[ 1] 1. e[idx[ 1]]

*( Chp3(—clidx[2]]. c[dx[27],
Clip3(—c[1dx[2] ] c[1dx[2]].

*( Chp3(—cl[1dx[3]) ] c[1dx[31]],
Clip3(—c[1dx[3] ] c[1dx[3]]

*( Clip3(—c[1dx[4] ] c[idx[4]]
Clip3( —c[1dx[ 4] ) c[idx[4]]

¥ Clip3(—c[1dx[ 3] ] c[idx[51).
Chp3( —c[idx[5] ). c[1dx[3]],

1
1

*( Clip3(—c[1dx[6] ], c[idx[6]1.

Clip3( —c[1dx[6]]. c[idx[6]],
*( Clip3(—e[1dx[ 7] ] c[idx[7 1],
Clip3(—c[1dx[ 7] 1. c[idx[ 7] 1.
*( Chip3(—c[1dx[8]) ). c[idx[ 811,
Clip3(~c[dx[8]]. c[1dx[8]1,
*( Clip3(—c[1dx[9]]. c[1dx[ 9]
Clip3(—c[18x[9] ], c[1dx[9]],

PCT/JP2020/030507

recPicture [ by, v r ] —cutr ) +
recPicture [ by, vieops ] —curr ) ) +
recPicture; [ hyo g, oo J—curr ) +
recPicturer [ hyg-y, Voory ] —curr ) ) +
recPicturer| by, vyapz ] —curr ) +
recPicture; [ by, v ] —cwr ) ) +
recPicturer [ By g, Vewpa ] —curr ) +
recPicturey [ by .y, Ve-np ] —curr ) ) +
recPicturer{ hyoo, vy J—curr) +
recPicture [ hyo3, voong J—curr ) ) +
recPicturer [ by -y, Veopr ] —cum ) +
recPicture [ b1, Veop1 ] —curr ) ) +
recPicturer by, vy J—curr) +
recPicturer[ hy, vion ] —curr ) ) +
recPicturer [ by, Voo J—curr ) +
recPicturer [ byop, veon J—curr ) ) +
recPicturer [ hy -2, Vyon ] —curr ) +
recPicture [ Bywz, Vouq ] —curr ) ) +
recPicturer{ heos, v} —curr ) +
recPicture [ hyo3, v ] —curr ) ) +

fidx[ 1071 % ( Clip3( —c[idx{ 1017, c[idx[ 10] ], recPictures[ hy-2, v ] ~curr) +
Clip3(—c[1dx[ 10 1], c[ idx[ 1011, recPicture; [ hy 2, vo ] —curr ) ) +
fladx[ 111} * ( Chp3(—c[idx[ 1171 c[idx[ 11 1], recPicturey[ bowy, v } —curr ) +
Clip3(—c[idx[ 1111, c[idx[ 11]], recPicturer [ hx-1, v ] ~curr) )

sum = cugr + ( ( sum + 64

> 7

Example of ALF chroma filter equation

—~ The variable sum is

derived as follows:

sum =1 0] * ( Clip3(—c[0]. ¢[ 01, recPicture[ by, vv:pz ] —curr) +
Clip3(—c[ 0 ). c[ 0], recPicture[ hy, voupp ] = cumr ) ) +
fI11*(Clip3(—c[ 1], c[ 1), recPicture[ byo1, vyory ] —curr ) +

Clip3(—c[1].¢[ 1], recPicture[ hy—;, Voo ] —curr ) )} +

f121*(Clip3(—c{2 1. ¢[ 2 1. recPicturef hg, veon ] —curr ) +
Clip3(—c[2 1. ¢[ 2], recPicture[ hy, vy—n ] —cumr ) ) +
f3]*(Clip3(—c[3]. ¢[ 3 ). recPicture{ hs-1, vyop ] —curr ) +
Clip3(—c[3 1. ¢[ 3 ]. recPicture[ hy- 1, vyon ] ~comr ) ) +
471> (Clip3(—c[ 4], c[4). recPicture] hy .2, v, ]~ curr } +
Clip3(—c[4].c[ 4 ]. recPicture[ hy -3, vy ] ~curr ) ) +
fI51*(Clip3(—c[51.c[5], recPicture[ hy-1, v ] - curr ) +

sum = curr + ( sum + 64 > 7

Clip3(—¢[ 3 5 ], recPicture] he—;, v ] —curr) )

(8-1187)

(8-1188)

(8-1238)

(8-1239)
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[Fig. 128]
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[Fig. 129]
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[Fig. 130]
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[Fig. 131]
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[Fig. 132]
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[Fig. 133]
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[Fig. 134]
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[Fig. 135]
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[Fig. 136]
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[Fig. 138]
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[Fig. 141]
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[Fig. 145]
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[Fig. 158]

duplicate Virtual Boundary

Luma
sample
locations % &
duplicate Virtual Boundary

(a) (b)

Virtual Boundary

duplicate 2.7}

(d)

Virtual )
' Virtual
Boundary Boundary
duplicate

Virtual Virtual

Boundary Boundary

ca.
Co:

! i
! i
! i
! 1
! i
! 1
! 1
! 1
! 1
! 1
! 1
! i
! 1
! !
! 1
! 1
! 1
! 1
! 1
! |
! 1
! !
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! |
! i
1

1 Luma sample :
1 tocations '
! 1
! !
! 1
! 1
! i
! i
! i
! i
! 1
! t
! i
! i
! i
! i
! i
! 1
! i
! }
! 1
} 1
! 1
! 1
! 1
! 1
' 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1




115/119

WO 2021/025165 PCT/JP2020/030507

[Fig. 159]

duplicate Virtual Boundary

duplicate

Luma
sample 1=
locations —

A duplicate
C-4 Virtual Boundary




116/119

PCT/JP2020/030507

WO 2021/025165

[Fig. 160]

7 001%e
GTTX0 J Z01X0 YHAIAOYd
ANOHJILIVINS N AOIANAS LANTALNI
,| 0TIX®
pIIXe =
TONVITddY _ =
Xa
et VHAYD P15 YHOMLAN
O || T z__sox SNOLUYOINDITIOD 1O1%6 LANMILLNI
oo | v | —
g11%e FOIAHA ONINVD  ,o1xo
N\ e—
/\ -
T11%0 YALAJINOD \_\
7, [
Iz / - N
7 Al -2 e €0T¥e YHANHS HDNINVIULS
' 00G%° IST \\
" l__:::___.l “
3L E P =
TR 91T%e ALITTALVS
wansns (1) annaes(§ \
L &

LTTX® UNV'IdYIV



117/119

WO 2021/025165 PCT/JP2020/030507

[Fig. 161]

vAg¢




118/119

WO 2021/025165 PCT/JP2020/030507

[Fig. 162]
/ — o\

[Fig. 163]
ex4b7
/ ex465
/7 —=
ex458f’/j
(ex466)
\_ \ /
\~ex456



119/119

WO 2021/025165 PCT/JP2020/030507
[Fig. 164]
ex470
ex458 ex459 61
DISPLAY £
DISPLAY € 0ONTROLLERIE - POWER > 10 EACH
ex450 ~ 7 |SUPPLY CIRCUIT }—=5 COMPONENT
ex451 ex452 / __ ex460
MAIN
TRANSMITTER} . | MODULATOR/ | =~ <>
e ke=>DmonyLAToRlE> CONTROLLER
ex464 ex468
ex467 >
—|MEMORY / S stor > s
ex453 —| MULTIPLEXER/ L .
DEMULTIPLEXER[S ex463 ex465
| CAMERA |
X455 {1 R0 SIGNALL. > INTERFACE[<™| CAMERA
ex456 — PROCESSOR |~
AUDIO
INPUT UNIT F€ ex462 ex466
ex457 AUDIO <> INTERFACE | _ | USER
AUDIO >| SIGNAL je> INPUT [ {INTERFACE
outPuT UNIT I€ PROCESSOR CONTROLLER




INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2020/030507

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N19/82 HO4N19/426
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y MISRA (SHARPLABS) K ET AL:

chroma",

$6.16 ),
no. JVET-00636

Retrieved from the Internet:

636-v2.zip JVET-00636 rl.docx
[retrieved on 2019-07-07]
section 1

figure 1

"Cross-Component Adaptive Loop Filter for
15. JVET MEETING; 20190703 - 20190712;

GOTHENBURG; (THE JOINT VIDEO EXPLORATION
TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T

7 July 2019 (2019-07-07), XP030220123,

URL:http://phenix.int-evry.fr/jvet/doc_end
user/documents/15 Gothenburg/wgll/JVET-00

1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

2 November 2020

Date of mailing of the international search report

11/11/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Regidor Arenales, R

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3




INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2020/030507

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

X,P

X,P

WO 2019/107994 Al (ELECTRONICS &
TELECOMMUNICATIONS RES INST [KR])

6 June 2019 (2019-06-06)

paragraph [0046]

& EP 3 720 129 Al (ELECTRONICS &
TELECOMMUNICATIONS RES INST [KR])

7 October 2020 (2020-10-07)

paragraph [0046]

US 9 313 505 B2 (DOLBY LAB LICENSING CORP
[US]) 12 April 2016 (2016-04-12)
Equations (8-476) and (8-477)

WO 2018/070914 Al (ERICSSON TELEFON AB L M
[SE]) 19 April 2018 (2018-04-19)

page 3, line 25 - line 27

US 2018/220138 Al (HE YONG [US] ET AL)

2 August 2018 (2018-08-02)

paragraph [0048] - paragraph [0049]
paragraph [0064] - paragraph [0066]

LI (PANASONIC) J ET AL: "AHG16/Non-CE5:
Cross component ALF simplification",

16. JVET MEETING; 20191001 - 20191011;
GENEVA; (THE JOINT VIDEO EXPLORATION TEAM
OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16

),

no. JVET-PO173

24 September 2019 (2019-09-24),
XP030216504,

Retrieved from the Internet:
URL:http://phenix.int-evry.fr/jvet/doc_end
_user/documents/16 _Geneva/wgll/JVET-PO173-
vl.zip JVET-PO173 v1/JVET-PO173-v1.docx
[retrieved on 2019-09-24]

section 1.2

T-C MA (KWAI) ET AL: "CE5-related: Joint
clip operation for CCALF and chroma ALF",
17. JVET MEETING; 20200107 - 20200117;
BRUSSELS; (THE JOINT VIDEO EXPLORATION
TEAM 0; ISO/IEC JTC1/SC29/WG11 AND ITU-T
SG.16 ),

no. JVET-Q0494

10 January 2020 (2020-01-10), XP030223696,
Retrieved from the Internet:
URL:http://phenix.int-evry.fr/jvet/doc_end
_user/documents/17 Brussels/wgll/JVET-Q049
4-v2.zip JVET-Q0494 rl.docx

[retrieved on 2020-01-10]

figure 1

1-14

1-14

1-14

1-14

1-14

1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3




INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2020/030507

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P HU (QUALCOMM) N ET AL: "CE5-related:
Dynamic range reduction for coefficients
of cross component adaptive loop filter",
16. JVET MEETING; 20191001 - 20191011;
GENEVA; (THE JOINT VIDEO EXPLORATION TEAM
OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16

),

no. JVET-P0O555

1 October 2019 (2019-10-01), XP030217687,
Retrieved from the Internet:
URL:http://phenix.int-evry.fr/jvet/doc_end
_user/documents/16 _Geneva/wgll/JVET-P0555-
v2.zip JVET-P0555-v2.docx

[retrieved on 2019-10-01]

section 2

1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/JP2020/030507
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2019107994 Al 06-06-2019  CN 111615828 A 01-09-2020
EP 3720129 Al 07-10-2020
KR 20190063452 A 07-06-2019
WO 2019107994 Al 06-06-2019

US 9313505 B2 12-04-2016  CN 103314581 A 18-09-2013
CN 103314592 A 18-09-2013
CN 106412577 A 15-02-2017
CN 106412578 A 15-02-2017
CN 106454339 A 22-02-2017
CN 106454340 A 22-02-2017
CN 106488228 A 08-03-2017
CN 106534847 A 22-03-2017
CN 106534848 A 22-03-2017
CN 106658000 A 10-05-2017
CN 106658001 A 10-05-2017
CN 106791830 A 31-05-2017
CN 106791831 A 31-05-2017
CN 106851268 A 13-06-2017
CN 107071407 A 18-08-2017
CN 107071408 A 18-08-2017
CN 107105230 A 29-08-2017
CY 1121428 T1 29-05-2020
DK 2659675 T3 24-08-2020
DK 2659679 T3 02-01-2019
EP 2659675 Al 06-11-2013
EP 2659679 Al 06-11-2013
EP 3445051 Al 20-02-2019
EP 3697087 Al 19-08-2020
ES 2698438 T3 04-02-2019
HK 1243570 Al 13-07-2018
HR P20181962 T1 08-02-2019
LT 2659675 T 10-09-2020
LT 2659679 T 10-12-2018
PL 2659679 T3 31-01-2019
PT 2659679 T 29-11-2018
SI 2659679 T1 31-12-2018
US 2012163452 Al 28-06-2012
US 2012163453 Al 28-06-2012
US 2015092842 Al 02-04-2015
US 2015237352 Al 20-08-2015
US 2015245025 Al 27-08-2015
US 2016142725 Al 19-05-2016
US 2016309155 Al 20-10-2016
US 2018367798 Al 20-12-2018
US 2019208212 Al 04-07-2019
WO 2012088594 Al 05-07-2012
WO 2012088595 Al 05-07-2012

WO 2018070914 Al 19-04-2018 EP 3526968 Al 21-08-2019
WO 2018070914 Al 19-04-2018

US 2018220138 Al 02-08-2018 CN 107836116 A 23-03-2018
EP 3320684 Al 16-05-2018
JP 2018527784 A 20-09-2018
KR 20180039052 A 17-04-2018
TW 201724854 A 01-07-2017
US 2018220138 Al 02-08-2018

Form PCT/ISA/210 (patent family annex) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/JP2020/030507
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2017007989 Al 12-01-2017

Form PCT/ISA/210 (patent family annex) (April 2005)

page 2 of 2




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - claims
	Page 132 - claims
	Page 133 - claims
	Page 134 - claims
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - drawings
	Page 174 - drawings
	Page 175 - drawings
	Page 176 - drawings
	Page 177 - drawings
	Page 178 - drawings
	Page 179 - drawings
	Page 180 - drawings
	Page 181 - drawings
	Page 182 - drawings
	Page 183 - drawings
	Page 184 - drawings
	Page 185 - drawings
	Page 186 - drawings
	Page 187 - drawings
	Page 188 - drawings
	Page 189 - drawings
	Page 190 - drawings
	Page 191 - drawings
	Page 192 - drawings
	Page 193 - drawings
	Page 194 - drawings
	Page 195 - drawings
	Page 196 - drawings
	Page 197 - drawings
	Page 198 - drawings
	Page 199 - drawings
	Page 200 - drawings
	Page 201 - drawings
	Page 202 - drawings
	Page 203 - drawings
	Page 204 - drawings
	Page 205 - drawings
	Page 206 - drawings
	Page 207 - drawings
	Page 208 - drawings
	Page 209 - drawings
	Page 210 - drawings
	Page 211 - drawings
	Page 212 - drawings
	Page 213 - drawings
	Page 214 - drawings
	Page 215 - drawings
	Page 216 - drawings
	Page 217 - drawings
	Page 218 - drawings
	Page 219 - drawings
	Page 220 - drawings
	Page 221 - drawings
	Page 222 - drawings
	Page 223 - drawings
	Page 224 - drawings
	Page 225 - drawings
	Page 226 - drawings
	Page 227 - drawings
	Page 228 - drawings
	Page 229 - drawings
	Page 230 - drawings
	Page 231 - drawings
	Page 232 - drawings
	Page 233 - drawings
	Page 234 - drawings
	Page 235 - drawings
	Page 236 - drawings
	Page 237 - drawings
	Page 238 - drawings
	Page 239 - drawings
	Page 240 - drawings
	Page 241 - drawings
	Page 242 - drawings
	Page 243 - drawings
	Page 244 - drawings
	Page 245 - drawings
	Page 246 - drawings
	Page 247 - drawings
	Page 248 - drawings
	Page 249 - drawings
	Page 250 - drawings
	Page 251 - drawings
	Page 252 - drawings
	Page 253 - drawings
	Page 254 - wo-search-report
	Page 255 - wo-search-report
	Page 256 - wo-search-report
	Page 257 - wo-search-report
	Page 258 - wo-search-report

