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A ROBOTIC FRUIT PICKING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The tield of the invention relates to systems and methods for robotic fruit picking.

A portion of the disclosure of this patent document contains material that is subject to
copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Oftice patent file or records, but otherwise reserves all

copyright rights whatsoever.

2. Description of the Prior Art

Horticultural producers depend critically on manual labour for harvesting their crops.
Many types of fresh produce are harvested manually including berry fruits such as
strawberries and raspberries, asparagus, table grapes and eating apples. Manual picking is
currently necessary because the produce is prone to damage and requires delicate
handling, or because the plant itself is valuable, producing fruit continuously over one or
more growing seasons. Thus the etficient but destructive mechanical methods used to

harvest crops such as wheat are not feasible.

Reliance on manual labour creates several problems for producers:

* Recruiting pickers for short, hard picking seasons is risky and expensive. Domestic
supply of picking labour 1s almost non-existent and so farmers must recruit from
overseas. However, immigration controls place a large administrative burden on the
producer and increase risk of labour shortage.

*  Supply and demand for low-skilled, migrant labour are unpredictable because they
depend on weather conditions throughout the growing season and economic
circumstances. This creates significant labour price fluctuations.

* In extremis, this can lead to crops being left un-harvested in the field. E.g. a single
250-acre strawberry farm near Hereford lost more than £200K of produce because

of labour shortage in 2007.
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* Human pickers give inconsistent results with direct consequences for profitability
(e.g. punnets containing strawberries with inconsistent size or shape or showing signs
of mishandling would typically be rejected by customers). Farmers use a variety of
training and monitoring procedures to increase consistency but these greatly increase

cost.

Current technologies for robotic soft fruit harvesting tend to rely on sophisticated
hardware and naive robot control systems. In consequence, other soft fruit picking
systems have not been commercially successtul because they are expensive and require

carefully controlled environments.

A small number of groups have developed robotic strawberry harvesting technology.
However, the robots often come at a high cost and still need human operators to grade
and post-process the fruit. Furthermore, the robots are often not compatible with table
top growing systems used in FEurope and are too expensive to be competitive with
human labour. Expensive hardware and dated object recognition technology are used,
and lacked the mechanical flexibility to pick other than carefully positioned, vertically
oriented strawberries or have been poorly suited to the problem of picking sott fruits
that cannot be handled except by their stalks. No product offering has therefore

materialized.

Hence most of the solutions to date fall down in at least two of the following key areas:

* They require growers to change their working practices significantly, or don’t support
the table top growing systems used in Europe.

* 'They rely heavily on human operators. In consequence, they use large machines with
disproportionately high production cost per unit picking capacity compared to small,

autonomous machines manufactured in larger quantities.

* They are too expensive to displace human labour at current prices.
Elsewhere, several academic groups have also applied (mostly quite dated 1980°s era)
robotics and computer vision technology to more general harvesting applications.

However, the resulting systems have been too limited for commercial exploitation.

Farmers need a dependable system for harvesting their crops, on demand, with
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consistent quality, and at predictable cost. Such a system will allow farmers to buy a high
quality, consistent harvesting capacity in advance at a predictable price, thereby reducing
their exposure to labour market price fluctuations. The machine will function
autonomously: traversing fields, orchard, or polytunnels; identifying and locating produce
ready for harvest; picking selected crops; and finally grading, sorting and depositing

picked produce into containers suitable for transfer to cold storage.
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SUMMARY OF THE INVENTION

A first aspect of the invention 1s a robotic fruit picking system comprising an
autonomous robot that includes the following subsystems:

a positioning subsystem operable to enable autonomous positioning of the robot
using a computer implemented guidance system, such as a computer vision guidance
system;

at least one picking arm;

at least one picking head, or other type of end eftector, mounted on each picking
arm to erther cut a stem or branch for a specific fruit or bunch of fruits or pluck that
fruit or bunch, and then transfer the fruit or bunch;

a computer vision subsystem to analyse images of the fruit to be picked or
stored;

a control subsystem that is programmed with or learns picking strategies;

a quality control (QC) subsystem to monitor the quality of fruit that has been
picked or could be picked and grade that fruit according to size and/or quality; and

a storage subsystem for recetving picked fruit and storing that fruit in containers

for storage or transportation, or in punnets for retail.

We use the term ‘picking head’ to cover any type of end eftector; an end effector 1s the
device, or multiple devices at the end of a robotic arm that interacts with the
environment — for example, the head or multiple heads that pick the edible and palatable

part of the fruit or that grab and cut the stems to fruits.



10

15

20

25

30

WO 2018/087546

5 PCT/GB2017/053367

BRIEF DESCRIPTION OF THE FIGURES

Aspects of the invention will now be described, by way of example(s), with reference to

the following Figures, which each show teatures of the invention:

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Figure 15

Figure 16
Figure 17

Figure 18
Figure 19

shows a top view (A) and a perspective view (B) of a robot suitable for
truit picking.

shows a perspective view of a robot suitable for fruit picking with arms in
picking position.

shows an example of a robot suitable for fruit picking.

shows another example of a robot suitable for fruit picking.

shows another example of a robot suitable for fruit picking.

shows an early embodiment of the invention designed for picking
tabletop-grown strawberries.

shows a system for mounting a ‘vector cable’ to the legs of the tables on
which crops are grown using metal brackets that simply clip to the legs.
shows a number of line drawings with different views of the picking arm
and picking head alone or in combination.

shows a sectional view of a typical embodiment of a QC imaging
chamber.

shows a diagram illustrating a space-saving scheme for storing trays of
punnets within a picking robot.

shows the main components of the end effector.

shows the hook extended relative to the gripper/cutter.

shows the hook retracted relative to the gripper/cutter.

shows the individual parts of the end etfector including the blade above
the hook.

shows a diagram illustrating the movement of the hook to ettect a capture
of the plant stem.

shows a diagram illustrating the plant stem being captured.

shows a diagram illustrating the produce being gripped and cut from the
parent plant.

shows a diagram illustrating the release operation.

shows the sequence of operations that constitute the picking process.
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Figure 20
Figure 21

Figure 22

Figure 23
Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

6 PCT/GB2017/053367

shows the main mechanical constituents of the loop and jaw assembly.
shows the loop and jaw assembly, shown with component 1, the loop,
extended.

shows an exploded diagram of the main constituent parts of the loop and
jaw assembly (the loop 1s omitted for clarity).

shows the components of the loop actuation mechanism.

shows the loop/jaw assembly on its approach vector towards the target
truit.

shows the loop extended and the assembly moving in parallel to the
major axis of the target produce and in the direction of the juncture
between stalk and fruit.

show the loop having travelled past the juncture of the stalk and the fruit,
the target produce 1s now selected and decision step 1 (Figure 19) may be
applied.

shows the loop 1s retracted to control the position of the target produce
and the jaw is actuated so as to grab and cut the stalk of the fruit in a
scissor-like motion.

shows the different elements of the cable management system.

shows drawings of the cable management system in situ within one of the
joints of an arm.

shows a sequence of drawings with the cable guide rotating within the
cable enclosure.

shows a cutaway view of cable winding,
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DETAILED DESCRIPTION

The invention relates to an innovative fruit picking system that uses robotic picking
machines capable of both fully autonomous fruit harvesting and working etficiently in

concert with human fruit pickers.

Whilst this description focuses on robotic fruit picking systems, the systems and methods
described can have a more generalized application in other areas, such as robotic litter

picking systems.

The picking system 1s applicable to a variety of different crops that grow on plants (like
strawberries, tomatoes), bushes (like raspberries, blueberries, grapes), and trees (like
apples, pears, logan berries). In this document, the term fiwt shall include the edible and
palatable part of all fruits, vegetables, and other kinds of produce that are picked from
plants (including e.g. nuts, seeds, vegetables) and plant shall mean all kinds of fruit
producing crop (including plants, bushes, trees). For fruits that grow in clusters or
bunches (e.g. grapes, blueberries), fiwit may reter to the individual fruit or the whole

cluster.

Many plants continue to produce fruit throughout the duration of a long picking season
and/or throughout several years of the plant’s life. Therefore, a picking robot must not
damage either the fruit or the plant on which it grows (including any not-yet-picked fruit,
whether ripe or unripe). Damage to the plant/bush/tree might occur either as the robot

moves near the plant or during the picking operation.

In contrast to current technologies, our development efforts have been directly informed
by the needs of real commercial growers. We will avoid high cost hardware by
capitalizing on state-of-the-art computer vision techniques to allow us to use lower cost
oft-the-shelf components. The appeal of this approach is that the marginal cost of
manufacturing software is lower than the marginal cost of manufacturing complex

hardware.

An mtelligent robot position control system capable of working at high speed without

damaging delicate picked fruit has been developed. Whilst typical naive robot control
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systems are useful for performing repeated tasks in controlled environments (such as car
tactories), they cannot deal with the varability and uncertainty inherent in tasks like fruit
picking. We address this problem using a state-of-the-art reinforcement learning
approach that will allow our robot control system to learn more eftficient picking

strategies using experience gained during picking.

Key components of the fruit picking robot are the following:

* A tracked rover capable of navigating autonomously along rows of crops using a

vision-based guidance system.

* A computer vision system comprising a 3D stereo camera and image processing
software for detecting target fruits, and deciding whether to pick them and how to

pick them.
* A fast, 6 degree-of-freedom robot arm for positioning a picking head and camera.
* A picking head, comprising a means of (1) cutting the strawberry stalk and (i1)
gripping the cut truit for transfer.
* A quality control subsystem for grading picked strawberries by size and quality.

* A packing subsystem for on-board punnetization of picked fruit.

The picking robot performs several functions completely automatically:

* loading and unloading itselt onto and oft ot a transport vehicle;
* navigating amongst fruit producing plants, e.g. along rows of apple trees or
strawberry plants;

* collaborating with other robots and human pickers to divide picking work

efticiently;
* determining the position, orientation, and shape of fruit;
* determining whether fruit is suitable for picking;
* separating the ripe fruit from the tree;
* grading the fruit by size and other measures of suitability;

* transferring the picked fruit to a suitable storage container.

The picking system is innovative in several ways. In what follows, some specific non-

obvious inventive steps are highlighted with wording like “A useful innovation 1s...”.
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1. System overview

The picking system comprises the following important subsystems:

* Total Positioning Subsystem

* Picking Arm

* Picking Head

* Computer Vision Subsystem

* Control Subsystem

*  Quality Control (QC) Subsystem
* Storage Subsystem

*  Mapping Subsystem

* Management Subsystem

The main purpose of the robot Total Positioning System is physically to move the whole
robot along the ground. When the robot is within reach of target fruit, the Picking Arm
moves an attached camera to allow the Computer Vision Subsystem to locate target
fruits and determine their pose and suitability for picking. The Picking Arm also
positions the Picking Head for picking and moves picked truit to the QC Subsystem (and
possibly the Storage Subsystem). The Total Positioning System and the Picking Arm
operate under the control of the Control Subsystem, which uses input from the
Computer Vision Subsystem to decide where and when to move the robot. The main
purpose of the Picking Head 1s to cut the fruit from the plant and to grip it securely for
transter to the QC and Storage subsystems. Finally, the QC Subsystem 1s responsible for
grading picked fruit, determining its suitability for retail or other use, and discarding

unusable fruit.

Figure 1 shows a top view (a) and a perspective view (b) of a robot suitable for fruit
picking. The robot includes a Positioning Subsystem operable to enable autonomous
positioning of the robot using a computer implemented guidance system, such as a
Computer Vision Guidance System. Two Picking Arms (100) are shown for this
configuration. A Picking Head (101) is mounted on each Picking Arm (100) to erther cut
a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch, and
then transter the fruit or bunch. The Picking Head also includes the camera component
(102) of the Computer Vision Subsystem, which 1s responsible for analysing images of

the fruit to be picked or stored. A Control Subsystem 1s programmed with or learns
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picking strategies. A Quality Control (QC) Subsystem (103) monitors the quality of fruit
that has been picked or could be picked and grade that fruit according to size and/or
quality and a Storage Subsystem (104) receives the picked fruit and stores that fruit in
containers for storage or transportation, or in punnets for retail. Figure 2 shows a

perspective view of the robot with arms in picking position.

Figures 3-5 show examples of a robot suitable for fruit picking. Three different
conceptual illustrations show the robot configured in several ditferent ways, suitable for
different picking applications. Important system components shown include the tracked
rover, two Picking Arms, and associated Quality Control units (QC). Multiple trays are
used to store punnets of picked fruit and are positioned so that a human operator can
easily remove full trays and replace them with empty trays. A discard shoot is positioned
adjacent to the Quality Control units for fruit not suitable for sale. When the robot picks
rotten or otherwise unsuitable fruit (either by accident or design), it is usually desirable to
discard the rotten fruit into a suitable container within the robot or onto the ground. A
useful time-saving innovation is to make the container accessible via a discard chute with
its aperture positioned at the bottom of the QC rig so that the arm can drop the fruit
immediately without the need to move to an alternative container. A related innovation is
to induce positive or negative air pressure in the chute or the body of the imaging
chamber (e.g. using a fan) to ensure that fungal spores coming from previously discarded
truit are kept away from healthy fruit in the imaging chamber. The two Picking Arms can
be positioned asymmetrically (as shown in Figure 5) to increase reach at the expense of

picking speed.

Figure 6 shows an early embodiment of the invention designed for picking tabletop-

grown strawberries and having a single Picking Arm and two storage trays.

These subsystems will be described in more detail in the following sections.

2. Total Positioning Subsystem

The Total Positioning Subsystem is responsible for movement of the whole robot across
the ground (typically in an intendedly straight line between a current position and an
input target position). The Total Positioning Subsystem is used by the Management

Subsystem to move the robot around. The Total Positioning System comprises a means
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of determining the present position and orientation of the robot, a means of eftecting the
motion of the robot along the ground, and a control system that translates information

about the current position and orientation of the robot into motor control signals.

2.1.Pose determination component

The purpose of the pose determination component is to allow the robot to determine its
current position and orientation in a map coordinate system for input to the Control
Component. Coarse position estimates may be obtained using diferential GPS but these
are insufficiently accurate for following rows of crops without collision. Therefore, a
combination of additional sensors is used for more precise determination of heading
along the row and lateral distance from the row. The combination may include
ultrasound sensors for approximate determination of distance from the row, a magnetic
compass for determining heading, accelerometers, and a forwards or backwards tacing
camera for determining orientation with respect to the crop rows. Information from the
sensors 1s fused with information from the GPS positioning system to obtain a more

accurate estimate than could be obtained by either GPS or the sensors individually.

An innovative means of allowing the robot to estimate its position and orientation with
respect to a crop row is to measure its displacement relative to a tensioned cable (perhaps

of nylon or other low cost material) that runs along the row (a ‘vector cable’).

One innovative means of measuring the displacement of the robot relative to the vector
cable 1s to use a computer vision system to measure the projected position of the cable in
2D images obtained by a camera mounted with known position and orientation in the
robot coordinate system. As a simplistic illustration, the orientation of a horizontal cable
in an image obtained by a vertically oriented camera has a simple linear relationship with
the orentation of the robot. In general, the edges of the cable will project to a pair of
lines in the mmage, which can be found easily by standard image processing techniques,
e.g. by applying an edge detector and computing a Hough transform to find long straight
edges. The image position of these lines is a function of the diameter of the cable, the
pose of the camera relative to the cable, and the camera’s intrinsic parameters (which
may be determined in advance). The pose of the camera relative to the cable may then be
determined using standard optimization techniques and an initialization provided by the

assumption that the robot is approximately aligned with the row. A remaining one-
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parameter ambiguity (corresponding to rotation of the camera about the axis of the
cable) may be eliminated knowing the approximate height of the camera above the

ground.

Another innovative approach to determining position relative to the vector cable is to
use a follower arm (or follower arms). This is connected at one end to the robot chassis
by means of a hinged joint and at the other to a truck that runs along the cable. The
angle at the hinged joint (which can be measured e.g. using the resistance of a
potentiometer that rotates with the hinge) can be used to determine the displacement
relative to the cable. Two follower arms (e.g. one at the front and one at the back) is

sufficient to determine displacement and orientation.

A related innovation 1s a bracket that allows vector cables to be attached easily to the legs
of the tables on which crops such as strawberries are commonly grown. This 1s illustrated
in Figure 7. The brackets allow the cable to be positioned a small and consistent
distance above the ground, typically 20 cm, so that is easy for humans to step over it
whilst ducking underneath elevated tables to move from row to row. One limitation of
this approach is that the robot may receive spurious position information if the follower
arm falls off the cable. Therefore, a usetul additional innovation is to equip the truck
with a microswitch positioned so as to break an electrical circuit when the truck loses
contact with the cable. This can be used to allow the control software to detect this
failure condition and stop the robot (typically, the control software waits until the
duration of detected loss of contact between the truck and the cable is greater than some
time threshold to eliminate false detections due to bouncing of the truck on the cable).
Since the follower arm might be subjected to significant forces in the event of collision
or other kind of failure of control system failure, another useful innovation 1s to use a
magnetic coupling to attach an outer portion of the follower arm to an inner portion.
Then in the event of failure the parts of the follower arm can separate without suftering
permanent damage. The magnetic coupling can include electrical connections required to
complete an electrical circuit (typically the same circuit that s interrupted by a
microswitch in the truck). By this means separation of the follower arm can also trigger
the control software to stop the robot. Another benefit of the magnetic coupling

arranging is ease of attachment of the follower arm by a human supervisor.
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An innovative aspect of the pose determination component is a computer vision based
system for determining the heading and lateral position of a robot with respect to a row
of crops using images obtained by a forwards or backwards facing camera pointing
approximately along the row. Such a system can be used to drive the robot in the middle
of two crop rows or at a fixed distance from a single crop row. In one embodiment of
this 1dea, this is achieved by tramning a regression function mmplemented using a
convolutional neural network (or otherwise) to predict robot heading and lateral position
with respect to rows of crops as a function of an input image. Training data may be
obtained by driving a robot equipped with multiple forwards and/or backwards facing
cameras between representative crop rows under human remote control. Because the
human controller keeps the robot approximately centred between the rows (with heading
parallel to the rows), each frame can be associated with approximate ground truth
heading and lateral displacement information. Multiple cameras are used to provide a
training images corresponding to different approximate lateral displacements from the
row. Training images corresponding to ditferent robot headings can be obtained by
resampling images obtained by a forwards looking camera using an appropriate 3-by-3
homography (which can be computed trivially from known camera intrinsic calibration

parameters).

A related innovation is to obtain additional training image data at night using an infrared

lluminator and suitable infrared receptive cameras.

In another embodiment of this idea, a computer vision system is designed to detect (in
images obtained by a forwards or backwards facing camera) the vertical legs of the tables
on which crops are grown. Vertically oriented table legs define vertical lines in the world,
which project to lines in the perspective view. Under the assumption that the legs of each
table are evenly spaced, vertically oriented, and arranged in a straight line, projected
image lines corresponding to a sequence of three or more table legs are sufficient to
determine the orientation of a calibrated camera and its lateral displacement with respect

to a 3D coordinate system defined by the legs.

Figure 7 shows a system for mounting a ‘vector cable’ to the legs of the tables on which
crops are grown () using metal brackets (b) that simply clip to the legs. The cable (e.g. a

nylon rope) may be secured to the metal brackets using n-shaped metal spring clips or
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tape (not shown). The row follower arm (seen in b) comprises a truck that rests on the
cable and an arm that attaches the truck to the robot (not shown). The brackets are

shaped such that the truck is not impeded as it traverses them.

2.2.Motor control component

The purpose of the motor control component 1s to map pose information provided by
the pose determination component to motor control signals to move the robot in a given
direction. It supports two kinds of motion: (i) moving a given distance along a row of
plants and (1) moving to a given point by travelling in an intendedly straight line. The
motor control system uses a PID controller to map control inputs obtained from the

pose determination component to motor control signals.

2.3.Rover

An important component of the Total Positioning System 1s the rover, the means by
which the robot moves over the ground. Typically, movement over the ground is
achieved using powered wheels with tracks. A usetul innovation 1s a mechanism to allow

the tracks to be removed so that the robot can also run on rails.

3. Picking Arm

The Picking Arm 1s a robot arm with several (typically 6) degrees of freedom that 1s
mounted to the main body of the robot. Whereas the purpose of the Total Positioning
System 1s to move the whole robot along the ground, the purpose of the Picking Arm is
to move the Picking Head (and its computer vision camera) to appropriate positions for
locating, localizing, and picking target fruit. Once it is in the picking position, the Picking
Head executes a picking routine that comprises a sequence of mechanical actions
including separation, gripping, and cutting (see the Picking Head description below).
Picking positions are chosen by the Control Subsystem to maximize picking performance

according to a desired metric.

Betore the Picking Head can be positioned to pick a target fruit the Computer Vision
Subsystem must carry out several important operations: (1) detecting the target fruit, (i1)
detecting obstructions that might complicate picking of the target fruit (e.g. leaves), (ii1)

determining the pose and shape of the target fruit. So that the Computer Vision
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Subsystem can perform these functions, the Picking Arm may be equipped with a
monocular or stereo camera, mounted e.g. to the end of the arm. The benefit of having a
camera mounted to the arm 1s the possibility of moving the camera to find viewpoints
tree from sources of occlusion that would otherwise prevent reliable detection or

localization of the target truit (leaves, other fruits, etc.).

Finally, the Picking Arm must move the Picking Head to an appropriate pose for picking
without colliding with the plant, or the support infrastructure used to grow the plant, or
itself. This 1s achieved using a route-planning algorithm described in the Control

Subsystem section below.

Figure 8 shows a number of line drawings with different views of the Picking Arm and
Picking Head alone or in combination. The Picking Head shown includes a hook and

camera system.

4. Picking Head

The purpose of the Picking Head is to sever the target fruit from the plant, to grasp it
securely while it 1s moved to the QC and Storage Subsystems, and to release it. A
secondary purpose is to move leaves and other sources of occlusion out of the way so
truit can be detected and localized, and to separate target fruit from the plant (before it is

permanently severed) to facilitate determination of picking suitability.

Picking soft fruits like strawberries 1s challenging because physical handling of the fruit
can cause bruising, reducing saleability. Therefore, such fruits are ideally picked by
severing the stem without handling the body of the fruit. An inventive aspect of our
system 1s the use of a stem-severing Picking Head that works in three phases (‘grab-grip-

cut’):

1. Physical separation of the fruit from the remainder of the plant (‘grab’). In
advance of permanently severing the fruit from the plant, this step facilitates (1)
deciding whether or not the fruit s suitable for picking and (i1) increases the
chances that picking in step 2 will proceed successtully without damage to the
target fruit of the rest of the plant.

2. Gripping of the picked fruit by its stem (‘grip’).
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3. Severing the stem (above the point at which 1t is gripped) so as permanently to

separate the fruit from the plant (‘cut’).

The introduction of the physical separation phase (which take place before the fruit is
permanently severed from the plant) confers several benefits. Since target fruit may be
occluded by leaves or other fruit, pulling it tfurther away from the plan facilitates a better
view, allowing the computer vision system to determine more reliably whether the fruit is
ready for picking and whether the picking procedure is likely to be successtul (for
example because other fruits are in the target vicinity). A related innovation is a
mechanical gripper that can rotate the gripped fruit during this before-picking inspection
phase, e.g. by applying a twisting force to its stalk or otherwise. By this means, a camera
or other sensors can obtain information about parts of the fruit that would not otherwise
have been visible. One benefit of this innovation it the possibility of deciding to

postpone picking a fruit that appears unripe on the once-hidden side.

A possible further innovation s to combine the grip and cut phases (2 and 3) by means

of exploiting the gripping action to pull the stem against a cutting blade or blades.

Appendix A describes several innovative mechanical Picking Head designs embodying

some of these 1deas.

For some soft fruits such as raspberries, it is necessary to remove the fruit from its stem
during picking. For such fruits, a usetul innovation 1s to pick the fruit by first severing
and gripping its stem and then to remove the body of the fruit from its stem in a
subsequent operation. Compared to picking techniques that require holding or gripping
the body of the fruit, important benefits if this approach include: (1) minimizing handling
of the body of the fruit (which can significantly reduce shelf life, e.g. due to the
transterence of disease-causing pathogens from fruit to fruit on the surface of the
handling device), (1) the possibility of imaging the body of the picked fruit from all
directions for quality control, and (iif) the possibility of removing the stem under

controlled conditions.

Various means of removing the picked fruit from the stem are possible. One innovative
approach 1s to pull the fruit from its stem using a jet of compressed air. This allows

contact forces to be distributed evenly over a large contact area, minimizing bruising.
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Another possibility 1s to pull the fruit by it stem through a collar, shaped to facilitate
torcing the body of the fruit off the stem. Depending on the specific type of fruit, collars
might be designed to either to distribute the contact torce over a large area of the body
of the fruit or to concentrate the contact force (possibly via a cutting edge resembling
that of a knife of row of needles) in a circular pattern surrounding the stem. A related
innovation 1s to clean the collar after each use or to provide the collar with a disposable

surface to reduce the likelthood of transfer of pathogens from fruit to fruit.

Another innovation 1s to use the inertia of the body of the fruit to separate the body of
the fruit from the receptacle. This might be achieved by holding the fruit by its stalk and
rotating it about an axis perpendicular to its stalk at a high enough angular velocity. The
advantage of this approach is that inertial forces etfectively act over the entire mass of
the body of the fruit, eliminating the need for contact forces at the surface (more likely to
cause bruising because they are applied over a small contact area, increasing localized
pressure). One limitation of this approach is that, when the body of the fruit separates
trom the receptacle, it will fly off at speed on a tangent to the circle of rotation,
necessitating some means of arresting its motion sufticiently slowly that it doesn’t sufter
bruising. Therefore, another innovation is to use a reciprocating back-and-forth motion
of the fruit or its stalk in the direction approximately perpendicular to the stalk or an
oscillatory rotary motion with an axis of rotation approximately parallel to the stalk. By
performing the motion at an appropriate frequency and with appropriate amplitude it is
possible reliably to separate the body of the fruit from the husk without causing it to tly

oft at high velocity.

Atfter picking, the Picking Head grips the fruit as it transterred by the Picking Arm to the
Quality Control (QC) Subsystem. In a simple embodiment, the Picking Arm itselt might
be used to position the picked fruit inside the imaging component of the QC Subsystem
before subsequently moving the fruit to the storage. However, time spent transterring
picked fruit to the QC/Storage Subsystem is unproductive because the arm is not being
used for picking during the transter. Therefore, a useful innovation 1s to include multiple
picking units on a single muitiplexed Picking Head. This means that several fruits in a
particular local vicinity can be picked in succession before the arm has to pertorm the
time-consuming movement between the plant and the QC/Storage components and

back. This means that the transfer overhead can be amortized over more picked truits,
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increasing productivity. This is particularly advantageous in the common case that fruit
are bunched on the plant/tree such the robot arm needs to move only a small distance to

pick several targets before transter.

Picking units on the multiplexed Picking Head must be arranged so that inactive picking
units do not interfere with the operation of active picking units, or collide with the arm,

or other objects. Innovative ways of achieving this include:

* mounting the picking units radially about an axis chosen so that inactive picking
units are oriented away from the active picking unit and the fruit being picked.
* making each picking unit extend independently so it can engage with the fruit

while others do not disturb the scene.

Picking units typically have several moving parts e.g. for hooking, cutting, etc., which
may need to be driven independently. However, when multiplexing multiple units on a
single Picking Head, if each moving part is driven with its own actuator, the arm payload
increases proportionally to the number of picking units, which would adversely affect
arm speed, accuracy, and the overall cost of the machine. Several innovative aspects of
the implementation of the multiplexed Picking Head keep the overall mass ot the

multiplexed Picking Head low to allow the arm to move quickly and accurately:

*  Multiple picking functions on a picking unit can be driven by a single actuator or
motor, selectively engaged by lightweight means, for example electromagnets; an
engaging pin; rotary tab; or similar. This 1s challenging as the different functions
may require different actuator characteristics

* A single motor or actuator can drive one function across all units on the head,
selectively engaged by means of an electromagnet; an engaging pin; rotary tab; or
similar. This is reasonably straighttorward.

* 'The functions can be driven by lightweight means from elsewhere in the system,
for example using a Bowden cable, torsional drive cable/spring, pneumatic or

hydraulic means.
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5. Computer Vision Subsystem
The purpose of the Computer Vision Subsystem is to locate target fruits, determine their
pose in a robot coordinate system, and determine whether they are suitable for picking,

1.e. before the fruit 1s permanently separated from the plant.

To achieve this, the Computer Vision Subsystem uses one or more cameras mounted to
the end of the movable Picking Arm (or in general to any other part of the robot such as
the chassis). The camera attached to the robot arm 1s moved under computer control to
tacilitate the detection of target fruits, estimation of their pose (t.e. position and
orientation), and determination of their likely suitability for picking. Pose estimates and
picking suitability indicators associated with each target truit may be refined progressively
as the arm moves. However, this refinement stage takes time, which increases the time
required for picking. Therefore, an important innovation is a scheme for moving the arm
efticiently to optimize trade-ott between picking speed and picking accuracy (this scheme

1s described in more detail in the Robot Control Subsystem section, below).

The Computer Vision Subsystem operates under the control of the Robot Control
Subsystem, which makes a continuous sequence of decisions about which action to
perform next, e.g. moving the arm-mounted camera to new viewpoints to facilitate
discovery of more target fruits, or moving the camera to new points in the local vicinity
of a target fruit so as to refine estimates of its position/orientation or indicators of

picking suitability.

In outline, the Computer Vision Subsystem works as follows:

1. Under the control of the Robot Control Subsystem, the camera captures images of
the scene from multiple viewpoints.

2. Target fruits are detected in the captured images by pixel-wise semantic
segmentation.

3. Approximate estimates of pose and shape are recovered for each detected fruit.

4. More accurate estimates of pose and shape are recovered by combining
information in multiple views with statistical prior knowledge. This 1s achieved by
adapting the parameters of a generative model of strawberry appearance to

maximize agreement between the predictions and the images.
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5. Picking success probability for each detected fruit is estimated from visual and
geometric cues.

6. Under the control of the Control Subsystem, additional images of a particular
target fruit may be captured from new viewpoints so as to increase picking success

probability.

The important steps are described in more detail below.

Image capture. An important challenge is to control the exposure of the camera system
to obtain images that are consistently correctly exposed. Failure to do this increases the
amount of variability in the images, compromising the ability of the machine-learning-
based target detection software to detect fruit accurately and reliably. One exposure
control strategy is to obtain an image of a grey card exposed to ambient lighting
conditions. This image is then analysed to determine the adjustments to exposure time
and/or colour channel gains required to ensure that the grey card appears with a
predetermined target colour value. A grey card might be positioned on the robot chassis
with reach of the Picking Arms and oriented horizontally to measure ambient
lllumination arriving from the approximate direction of the sky. However, a potential
limitation of this approach is that the illumination of the grey card may not be
representative of the illumination of the plant or target fruit. Therefore, in a system
where a (stereo) camera is incorporated within the Picking Head, a useful innovation 1s to
arrange that a part of the Picking Head itself can be used as an exposure control target. A
prerequisite is that the exposure control target must appear within the field of view of the
camera. A suitable target could be a grey card imaged from in front or a translucent

plastic diffuser imaged from underneath.

Real world lighting conditions can compromise image quality, limiting the effectiveness
of 1mage processing operations such as target fruit detection. For example, images
obtained by a camera oriented directly towards the sun on a cloudless day may exhibit
lens ftlare. Therefore, a useful innovation 1s to have control system software use the
weather forecast to schedule picking operations so that the robot’s camera systems are
oriented to maximize the quality of the image data being obtained as a function of
expected lighting conditions over a given period. For example, on a day that is forecast to
be sunny in a farm where fruit is grown in rows, the robot might pick on one side of the

rows in the morning and the other side of the rows in the afternoon. On a cloudy day,
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robots might more usefully pick on both sides of the row simultaneously to amortize the
cost of advancing the robot along the row over more picked fruit at each position. A
related innovation is to adapt viewpoints dynamically as a function of lighting conditions
to maximize picking performance. For example, the Picking Head might be angled
downwards in conditions of direct sunlight to avoid lens flare even at the expense of a

reduction in working volume.

Target detection. Target fruit is detected automatically in images obtained by a camera
mounted to the Picking Arm or elsewhere. A machine learning approach is used to train
a detection algorithm to identify fruit in RGB colour images (and/or in depth images
obtained by dense stereo or otherwise). To provide training data, images obtained from
representative viewpoints are annotated manually with the position and/or extent of

target fruit. Various embodiments of this idea are possible:

1. A decision forest classifier or convolutional neural network (CNN) may be
trained to perform semantic segmentation, i.e. to label pixels corresponding to
ripe fruit, unripe fruit, and other objects. Pixel-wise labelling may be noisy, and
evidence may be aggregated across multiple pixels by using a clustering algorithm.

2. A CNN can be trained to distinguish image patches that contain a target fruit at
their centre from image patches that do not. A sliding window approach may be
used to determine the positions of all image patches likely to contain target truits.
Alternatively, the semantic labelling algorithm 1 may be used to identity the likely
image locations of target fruits for subsequent more accurate classification by a

(typically more computationally expensive) CNN.

Target pose determination. Picking Heads for different types of fruit may work in
different ways, e.g. by cutting the stalk or by twisting the fruit until the stalk is severed
(see above, and Appendix A). Depending on the Picking Head design, picking a target
fruit may necessitate first estimating the position and orientation (or pose) of the truit or
its stalk (in what follows, truit should be interpreted to mean the body of the fruit or its
stalk or both). Rigid body pose in general has 6 degrees of freedom (e.g. the X, Y, Z
coordinates of a fruit in a suitable world coordinate system and the three angles
describing its orientation relative to the world coordinate system’s axes). Pose may be

modelled as a 4-by-4 homography that maps homogenous 3D points in a suitable fruit
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coordinate system into the world coordinate system. The fruit coordinate system can be
aligned with fruits of specitic types as convenient. For example, the origin of the
coordinate system may be located at the point of intersection of the body of the fruit and
its stalk and the first axis points in the direction of the stalk. Many types of fruit (such as
strawberries and apples) and most kinds of stalk have a shape with an axis of
approximate rotational symmetry. This means that 5 degrees of freedom typically provide
a sutficiently complete representation of pose for picking purposes, i.e. the second and

third axes of the fruit coordinate system can be oriented arbitrarily.

The robot determines the pose of target fruit using images obtained from multiple
viewpoints, e.g. using a stereo camera or a monocular camera mounted to the moving
Picking Arm. For example, the detected position of a target fruit in two or more
calibrated views 1s sufficient to approximately to determine its X,Y,Z position by
triangniation. The orientation of the fruit or its stalk may then be estimated by assumption

(e.g. the assumption that fruits hang vertically) or recovered from image data.

A usetul innovation is to use a learned regression function to map images of target fruits
directly to their orientation in a camera coordinate system. This can be achieved using a
machine learning approach whereby a suitable regression model is trained to predict the
two angles describing the ortentation of an approximately rotationally symmetric fruit
trom 1mages (including monocular, stereo, and depth 1mages). This approach is ettective
tor truits such as strawberries that have surface texture that is aligned with the dominant
axis of the fruit. Suitable training images may be obtained using a camera mounted to the
end of a robot arm. First, the arm is moved manually until the camera is approximately
aligned with a suitable fruit-based coordinate system and a fixed distance away from the
truit’s centroid. The arm 1s aligned so the fruit has canonical orientation in a camera
image, i.e. so that the two or three angles used to describe orientation in the camera
coordinate frame are 0. Then the arm moves automatically to obtain additional training
images from new viewpoints with different, known relative orientations of the fruit.
Sufticiently high quality training data can be obtained by having a human operator judge
alignment between the camera and the fruit coordinate system visually by inspection of
the scene and the video signal produced by the camera. Typically training images are
cropped so that the centroid of the detected fruit appears in the centre of the frame and

scaled so that the fruit occupies constant size. Then a convolutional neural network or
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other regression model 1s trained to predict fruit orientation in previously unseen images.
Various image features are informative as to the orientation of the fruit in the camera
image frame (and can be exploited automatically by a suitable machine learning
approach), e.g. the density and orientation of any seeds on the surface of the fruit, the

location of the calyx (the leaty part around the stem), and image location of the stalk.

Because knowledge of the orientation of the stalk may be very important for picking
some types of fruits (or otherwise informative as to the orientation of the body of the
truit), another useful innovation is a stalk detection algorithm that identifies and
delineates stalks 1n images. A stalk detector can be implemented by training a pixel-wise
semantic labelling engine (e.g. a decision forest or CNN) using manually annotated
tramning images to identify pixels that lie on the central axis of a stalk. Then a line
growing algorithm can be used to delineate visible portions of stalk. If stereo or depth
images are used, then stalk orientation can be determined in a 3D coordinate frame by
matching corresponding lines corresponding to a single stalk in two or more frames.
Solution dense stereo matching problem 1s considerably facilitated by conducting
semantic segmentation of the scene first (stalks, target fruits). Assumptions about the
range of depths likely to be occupied by the stalk can be used to constrain the stereo

matching problem.

Given an approximate pose estimate for a target fruit, it may be that obtaining an
additional view will improve the pose estimate, for example by revealing an informative
part of the fruit such as the point where the stalk attaches. Theretore, a usetul innovation
is an algorithm for predicting the extent to which additional views out of a set of
available viewpoints will most significantly improve the quality of an initial pose estimate.
Pose estimates obtained using multiple views and statistical prior knowledge about the
likely shape and pose of target fruits can be fused using an innovative model fitting

approach (see below).

Size and shape determination and pose estimate refinement. Whether a target fruit
1s suitable for picking may depend on its shape and size, e.g. because a customer wants
fruit with diameter in a specified range. Furthermore, certain parameters of the picking
system may need to be tuned considering the shape and size of the fruit, e.g. the

trajectory of the Picking Head relative to the fruit during the initial ‘grab’ phase of the
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picking motion (see above). Therefore, it may be beneticial to estimate the shape and size
of candidate fruits before picking as well as to refine (possibly coarse) pose estimates
determined as above. This can be achieved using images of the fruit (including stereo

images) obtained from one or more viewpoints.

An innovative approach to recovering the 3D shape of a candidate fruit from one or
more images 1s to adapt the parameters of a generative model of the fruit’s image
appearance to maximize the agreement between the images and the model’s predictions,
e.g. by using Gauss-Newton optimization. This approach can also be used to retfine a
coarse initial estimate of the fruit’s position and orientation (provided as described
above). A suitable model could take the form of a (possibly textured) triangulated 3D
mesh projected into some perspective views. The shape of the 3D mesh could be
determined by a mathematical function of some parameters describing the shape of the
truit. A suitable function could be constructed by obtaining 3D models of a large number
of fruits, and then using Principal Component Analysis (or other dimensionality
reduction strategy) to discover a low-dimensional parameterization of the fruit’s
geometry. Another simpler but effective approach is to hand craft such a model, for
example by assuming that the 3D shape of fruit can be explained as a volume of
revolution to which parametric anisotropic scaling has been applied in the plane
perpendicular to the axis. A suitable mnitialization for optimization can be obtained by
using the 2D 1mage shape (or the mean 2D image shape of the fruit) to define a volume
of revolution. The pose parameters can be initialized using the method described above.

A key benefit of the model fitting approach is the possibility of combining information
trom several viewpoints simultaneously. Agreement between the real and predicted
image might be measured, e.g. using the distance between the real and predicted
silhouette or, for a model that includes lighting or texture, as the sum of squared
differences between pixel intensity values. A useful innovation is to use the geometric
model to predict not only the surface appearance of the fruit but the shadows cast by the
truit onto itself under difterent, controlled lighting conditions. Controlled lighting can be
provided by one or more illuminators attached to the end of the robot arm. Another
useful innovation 1s to model agreement using a composite cost function that comprises

terms reflecting agreement both between silhouette and stalk.
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Another benefit of the model fitting approach is the possibility of combining image
evidence with statistical prior knowledge to obtain a maximum lLkeihood estimate of shape
and pose parameters. Statistical prior knowledge can be incorporated by penalizing
unlikely parameter configurations that are unlikely according to a probabilistic model.
One valuable innovation is the use for this purpose of a statistical prior that model the
way that massive fruits hang from their stalks under the influence of gravity. In a simple
embodiment, the prior might reflect our knowledge that fruits (particularly large truits)
tend to hang vertically downwards from their stalks. Such a prior might take the simple
form of a probability distribution over fruit orientation. A more complex embodiment
might take the form of the joint distribution over the shape and size of the fruit, the pose
of the fruit, and the shape of the stalk near the point of attachment to the truit. Suitable
probability distributions are usually formed by making geometric measurements of fruit

growing under representative conditions.

Some Picking Head designs make 1t possible physically to separate a candidate fruit
turther from the plant and other fruits in the bunch before picking (see above). For
example, the ‘hook’ design of Picking Head (see Appendix A) allows a candidate fruit to
be supported by its stalk so that it hangs at a predictable distance from a camera
mounted to the robot arm. One benefit of this innovation is the possibility of capturing
an image (or stereo image) of the fruit from a controlled viewpoint, thereby facilitating

more accurate determination of the size and shape, e.g. via shape trom silhouette.

Determination of picking suitability. An attempt to pick a target fruit might or might
not be successful. Successtul picking usually means that (1) the picked fruit 1s suitable for
sale (e.g. ripe and undamaged) and delivered to the storage container in that condition,
(i) no other part of the plant or growing infrastructure is damaged during picking, and
(1) the Picking Arm does not undergo any collisions that could interfere with its
continuing operation. However, in the case of rotten fruits that are picked and discarded
to prolong the life of the plant, it is not a requirement that the picked fruit is in saleable

condition.

A valuable innovation is to determine the picking suitability of a target fruit by estimating
the statistical probability that an attempt to pick it will be successtul. This probability can

be estimated before attempting to pick a the target fruit via a particular approach
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trajectory and therefore can be used by the Control Subsystem to decide which fruit to
pick next and how to pick it. For example, the fruits that are easiest to pick (i.e. those
most likely to be picked successtully) might be picked first to facilitate subsequent
picking of fruits that are harder to pick, e.g. because they are partly hidden behind other
truits. The picking success probability estimate can also be used to decide 7o to pick a
particular target fruit, e.g. because the expected cost ot picking in terms of damage to the
plant or picked fruit will not outweigh the benefit provided by having one more picked
truit. The Control Subsystem 1s responsible for optimizing picking schedule to achieve

the optimal trade-oft between picking speed and failure rate (see below).

An important innovation is a scheme for estimating the probability of picking success
using 1mages of the scene obtained from viewpoints near the target fruit. For example,
we might 1mage the surface of the fruit by moving a camera (possibly a stereo or depth
camera) mounted to the Picking Arm’s end effector in its local vicinity. Various image
measurements might be used as indicators of picking success probability, including e.g.
(1) the estimated pose and shape of the fruit and its stalk, (i) the uncertainty assocrated
with the recovered pose and shape estimates, (i11) the colour of the target fruit’s surface,
(iv) the proximity of detected obstacles, and (v) the range of viewpoints from which the

candidate fruit 1s visible.

A suitable statistical model for estimating picking success probability might take the form
of a multivariate histogram or Gaussian defined on the space of all picking success
indicators. An important innovation is to learn and refine the parameters of such a model
using picking success data obtained by working robots. Because the Quality Control
Subsystem provides accurate judgments about the saleability of picked fruits, its output
can be used as an indicator of ground truth picking success or failure. An online learning
approach can be used to update the model dynamically as more data are generated to
tacilitate rapid adaptation of picking behaviour to the requirements of a new farm or

phase of the growing season. Multiple robots can share and update the same model.

Since the Picking Head might approach a target fruit via a range of possible trajectories
(depending on obstacle geometry and the degrees of freedom of the Picking Arm), the
probability of picking success 1s modelled as a function of hypothesized approach

trajectory. By this means, the Control Subsystem can decide how to pick the fruit to
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achieve the best trade-oft between picking time and probability of picking success. The
probability of collision between the Picking Arm and the scene can be modelled during
the path planning operation using an explicit 3D model of the scene (as described in the
Control Subsystem section below). However, an alternative and innovative approach is
to use an iplicit 3D model of the scene formed by the range of viewpoints trom which
the target fruit can be observed without occlusion. The underlying insight is that if the
target fruit 1s wholly visible from a particular viewpoint, then the volume defined by the
inverse projection of the 2D image perimeter of the fruit must be empty between the
camera and the fruit. By identitying one or more viewpoints from which the target fruit
appears un-occluded, obstacle free region of space 1s found. Provided no part of the
Picking Head or Arm strays outside of this region of space during picking, there should
be no collision. Occlusion of the target fruit by an obstacle between the fruit and the
camera when viewed from a particular viewpoint can be detected by several means

including e.g. stereo matching,.

Another important innovation s a Picking Head that can pull the target fruit away from
the plant, to facilitate more reliable determination of the fruit’s suitability for picking
before the fruit 1s permanently severed from the plant. Novel Picking Head designs are

described in Appendix A.

6. Quality Control Subsystem

The primary tunction of the Quality Control Subsystem is to assign a measure of quality
to individual picked fruits (or possibly individual bunches of picked fruits for fruits that
are picked in bunches). Depending on the type of fruit being picked and the intended
customer, quality 1s a function of several properties of the fruit, such as ripeness, colour,
hardness, symmetry, size, stem length. Picked fruit may be assigned a grade classitfication
that reflects its quality, e.g. grade 1 (symmetric) or grade 2 (shows significant surface
creasing) or grade 3 (very deformed or otherwise unsuitable for sale). Fruit of too low
quality for retail sale may be discarded of stored separately for use in other applications,
e.g. jam manufacture. An important implementation challenge 1s to ensure that the QC
step can be carried out quickly to maximize the productivity of the picking robot.

A secondary function of the QC Subsystem 1s to determine a more accurate estimate of

the fruit’s size and shape. This estimate may be used for several purposes, e.g.
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* for quality grading, since any asymmetry in the 3D shape for the fruit may be
considered reason to assign a lower quality grade;

* as a means of estimating the fruit’s mass and thereby of ensuring that the require
mass of fruit is placed in each punnet according to the requirements of the
intended customer for average or minimum mass per punnet;

* to facilitate more precise placement of the fruit in the storage container, and

therefore to minimize the risk of bruising due to collisions.

The QC Subsystem generates a quality measure for each picked piece of fruit by means
of a computer vision component comprising some cameras, some lights, and some
software for image capture and analysis. Typically, the cameras are arranged so as to
obtain images of the entire surface of a picked fruit that has been suitably positioned, e.g.
by the Picking Arm. For example, for fruits like strawberries, which can be held so as to
hang vertically downwards from their stalks, one camera might be positioned below the
truit looking upwards and several more cameras might be positioned radially about a
vertical axis looking inwards. However, one limitation of this scheme is that a large
amount of volume would be required to accommodate cameras (allowing for the camera-
object distance, the maximum size of the fruit, and the tolerance inherent in the
positioning of the fruit). One solution might be to rotate the truit in front of a single
camera to obtain multiple views — however any undamped motion of the fruit
subsequent to rotation might complicate imaging. Theretore, another useful innovation is
to use murrors positioned and oriented so as to provide multiple virtual views of the fruit
to a single camera mounted underneath the fruit. This scheme considerably reduces the
both the cost and the size of the QC Subsystem. Cameras and/or mirrors are typically
arranged so that the fruit appears against a plain background in all views to facilitate

segmentation of the fruit in the images.

Another useful innovation is to obtain multiple images under different lighting
conditions. For example, this might be achieved by arranging a series of LED lights in a
circle around the fruit and activating them one at a time, capturing one exposure per
light. This innovation considerably increases the informativeness of the images because
directional lights induce shadows both on the surface of the fruit and on a suitability
positioned background screen. Such shadows can be used to obtain more information
about the 3D shape of the fruit and e.g. the positions of any surface folds that could

reduce saleability.
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Using these images, 1mage analysis software measures the fruit’s 3D shape and detects
various kinds of defect (e.g. rot, bird damage, spray residue, bruising, mildew, etc.). A
useful first step is a semantic labelling step that is used to segment fruit from background
and generate per pixel labels corresponding to the parts of the fruit (e.g. calyx, body,
achene, etc.). In the same manner as the Computer Vision Subsystem (which makes
crude 3D geometry measurements betore picking) 3D geometry can be recovered by the
QC Subsystem by adapting the parameters of a generative model to maximize the
agreement between the model and the image data. Again, a statistical prior can be used to
obtain a maximum likelihood estimate of the values of the shape parameters. A useful
innovation 1s to use an estimate of the mass density of the fruit to determine an estimate
of weight from an estimate of volume. By this means, we obviate the need to add the

extra complexity of a mechanical weighing device.

Most aspects of quality judgement are somewhat subjective. Whilst human experts can
grade picked fruit reasonably consistently, it may be hard for them to articulate exactly
what factors give rise to a particular quality label. Therefore, a useful innovation is to use
quality labelling data provided by human experts to train a machine learning system to
assign quality labels automatically to newly picked fruit. This may be achieved by training
an image classifier with training data comprising (1) images of the picked fruit obtained by
the QC hardware and (i) assoctated quality labels provided by the human expert. A
vartety of models could be used to map the image data to a quality label such as a simple
linear classifier using hand-crafted features approprate to the type of fruit in question.
E.g. in the case of strawberries, appropriate features might be intended to capture
information about geometric symmetry, seed density (which can indicate dryness of the
truit), ripeness, and surface folding. With enough training data, it would also be possible

to use a convolutional neural network to learn a mapping directly from images to quality

labels.

Figure 9 shows a sectional view of a typical embodiment of a QC imaging chamber.
Cameras (and possibly other sensors, such as cameras sensitive to specific (and possibly
non-visible) portions of the EM spectrum including IR, (i1) cameras and illuminators that
use polarised light, and (i11) sensors specific to particular chemical compounds that might

be emitted by the fruit.) positioned around the walls of the cylindrical imaging chamber
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provide a view of every part of the surface of the picked fruit. The picked fruit is gripped
by a suitable end effector (the one shown here is the hook design described in Appendix
A) and lowered into the chamber by the Picking Arm (of which only the head 1s shown).
A useful innovation is to create a ‘chimney’ to reduce the amount of ambient light
entering the QC rig — this is a small cylinder on top of the imaging chamber’s aperture
that blocks unwanted light from the sides. One difficulty associated with imaging fruit
inside the QC imaging chamber is that fruit debris can collect inside the chamber.
Theretore a valuable innovation 1s to equip the chamber with a base that can be pulled

out and wiped clean after a period of use.

7. Storage Subsystem

The purpose of the Storage Subsystem is to store picked fruit for transport by the robot
until it can be unloaded for subsequent distribution. Because some types of fruit can be
damaged by repeated handling, it 1s often desirable to package the fruit in a manner
suitable for retail immediately upon picking. For example, in the case of fruits like
strawberries or raspberries, picked fruits are typically transterred directly into the punnets
in which they will be shipped to retailers. Typically, punnets are stored in trays, with 10
punnets per tray arranged in a 2-by-5 grid. When all the punnets in each tray are filled,

the tray is ready for removal from the robot and replacement with an empty tray.

Since some fruit can be bruised easily by vibration caused by the motion of the robot
over the ground, a usetul innovation is to mount the trays via a suspension system (active
or passive) designed to minimize their acceleration under motion of the robot over rough

terrain.

Unloading tull trays ot picked fruit may necessitate the robot travelling to the end of the
row — so it 1s advantageous for the robot to accommodate more trays to amortize the
time cost of travelling to and from the end of the row over more picked fruit. However,
it 18 also advantageous for the robot to be small so that it can manoeuvred and stored
easily. Therefore a useful innovation is to equip the robot with tray-supporting shelves
that extend outwards at each end but detach or rotate (up or down) out of the way to
reduce the robot’s length when it needs to be manoeuvred or stored in a confined

spaced.
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Another useful innovation 1s to store trays in two vertically oriented stacks inside the
body of the robot as illustrated in Figure 3. One stack contains trays of yet-to-be-filled
punnets, the other stack contains trays of full punnets. The Picking Arm transters picked
truit directly into the topmost trays. Once the punnets in a tray are filled, the stack of full
trays descends by one tray depth to accommodate a new a tray, a tray slides horizontally
trom the top of the stack of yet-to-be-filled trays to the top of the stack of full trays, and
the stack of yet-to-be-filled trays ascends by one tray depth to bring a new yet-to-filled
tray within reach of the robot arm. This design allows the robot to store multiple trays
compactly within a limited footprint — which is important in a robot that must traverse

narrow rows of crops or be transported on a transport vehicle.

Refrigerating picked fruits soon after picking may dramatically increase shelf life. One
advantage of the compact arrangement of trays described above 1s that the full trays can
be stored in a refrigerated enclosure. In practice however, the power requirements of a
refrigeration unit on board the robot may be greater than can be met readily by
convenient portable energy sources such as rechargeable batteries. Theretore, another
useful innovation 1s to use one of various means of remote power delivery to the fruit
picking robot. One possibility 1s to use electrified overhead wires or rails like a passenger
train. Another is to use an electricity supply cable connected at one end to the robot and
at the other to a fixed electrical supply point. The electricity supply cable might be stored
in a coil that 1s wound and unwound automatically as the robot progresses along crop
rows and such a coil might be stored on a drum that 1s located inside the robot or at the
end of the crop row. As an alternative to delivering electrical power directly to the robot,
a coolant liquid may be circulated between the robot and a static refrigeration unit via
tlexible pipes. In this case, the robot can use an internal heat exchanger to withdraw heat

trom the storage container.

Figure 10 shows a diagram illustrating a space-saving scheme for storing trays of
punnets within a picking robot. Trays of full punnets are stored in one stack (shown
right), trays of empty punnets are stored in another (shown left). The Picking Arm can
place picked fruit only in the topmost trays. Once the right-hand side topmost tray is full
(A), the stack of trays of full punnets descends downwards, a tray slides sideways (B), and

the stack of empty trays ascends (C).
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Tray removal/replacement may be achieved by a human operator or by automatic
means. A useful innovation 1s a means of drawing the human operator’s attention to the
need for tray replacement via the combination of a strobe light on the robot itself and a
corresponding visual signal in the Management User Interface. A strobe light that tlashes
in a particular colour or with a particular pattern of tlashes may be advantageous in
allowing the operator to relate the visual signal in the UI to the specitic robot that
requires tray replacement or other intervention. Another useful innovation is the idea of
using a small, fast moving robot to work in concert with the larger, slower moving
picking robot. The small robot can remove trays (or full punnets) automatically from the
picking robot and deliver them quickly to a refrigeration unit where they can be

refrigerated for subsequent distribution.

For some types of fruit, it is common for the customer (supermarket etc.) to detine
requirements on the size and quality of fruit in each punnet (or in each tray if punnets).

Typical requirements include:

1. each full punnet has total weight within some allowable tolerance of a nominal
value;
. less than some proportion of the fruits in each punnet ditfer in size by more than
some threshold percentage from the mean; and
. less than some proportion of the fruit in each punnet exhibits unusual shape or

blemish.

Depending on the contract between the grower and the customer, punnets not meeting
these requirements (or e.g. trays containing one or more punnets not meeting these
requirements) may be rejected by the customer, reducing the grower’s profit. The
commercial requirements can be modelled by a cost function that is a monotonically
decreasing function of the grower’s expected profit from supplying a punnet or tray to a
customer. For example, a simple punnet cost function might depend on a linear

combination of factors as follows:

Cost = mpe + wyat + wyo + wy.d

Where e means the excess weight of strawberries in the punnet compared to the target

weight, u is an indicator variable that is 1 if the punnet 1s underweight or 0 otherwise,
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and c is a measure of the number of strawberries that are outside of the desired size
range. Finally, 41s a measure of how long it will take to place a strawberry in a particular
punnet, which is a consequence of how far the arm will have to travel to reach the
punnet. The weights »; reflect the relative importance of these factors to profitability, e.g.
w, retlects the cost of a tray containing an underweight punnet being rejected, weighted
by the risk that an additional underweight punnet will cause the tray to be rejected;
similarly, w;, reflects the impact on overall machine productivity of spending more time

placing strawberries in more distant punnets.

An interesting observation 1s that distributing the exact same picked fruits ditferently
between punnets could give rise to a different total cost according to the cost function
described above. For example, because meeting the punnet weight or other packaging
requirements more precisely means that less margin for error is required, so that a greater
number of punnets can be filled with the same amount of fruit, or because placing
similarly sized fruits in each punnet reduces the likelthood that a tray will be rejected by
the customer. Therefore, a useful innovation 1s a strategy for automating the allocation of
picked fruit into multiple punnets (or a discard container) based on size and quality
measures to minimize the statistical expectation of total cost according to the metric
described earlier, 1.e. to maximize expected profitability for the grower. Compared to
human pickers, a software system can maintain a more accurate and more complete
record of the contents of many punnets simultaneously. Thus, the robot can place picked
truit in any one of many partially filled punnets (or discard picked fruit that is of

insuftticient size or quality). However, the task is challenging because:

* there may be room for only a limited number of partially filled punnets;

* as the punnets are filled up, the amount of space available for additional fruit is
reduced;

* moving picked fruits from punnet to punnet is undesirable because it is time
consuming and may damage the fruit; and

* the size and quality of yet-to-be-picked fruits i1s generally not known a priori, and so
it 1S necessary to optimize over possible sequences of picked fruits and associated

quality and size grading,

In a simple embodiment of the above idea, each successive picked fruit might be placed

to maximize incremental cost decrease according to the cost metric described earlier.
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However, this greedy local optimization approach will not produce a globally optimal
distribution of fruit. A more sophisticated embodiment works by optimizing over the
expected future cost of the stream of yet-to-be-picked strawberries. Whist it may not be
possible to predict the size or quality of yet-to-be-picked strawberries, it 1s possible to
model the statistical distribution over these properties. This means that global
optimization of fruit placement can be achieved by Monte Carlo simulation or similar.
For example, each fruit can be placed to minimize total cost considering (1) the known
existing placement of strawberries in punnets and (if) expectation over many samples of
future streams of yet-to-be-picked strawberries. A probability distribution (Gaussian,
histogram, etc.) describing the size of picked truits and possibly other measures of quality

can be updated dynamically as fruit is picked.

Note that the final term in the above cost function (15.d) can be used to ensure that the
robot tends to place larger strawberries in more distant punnets. Since punnets
containing larger strawberries require fewer strawberries, this innovation minimizes the

number of time-consuming arm moves to distant punnets.

Sometimes, the Storage Subsystem cannot place picked fruit into any available punnet
without increasing the expected cost (i.e. reducing expected profitability), for example
because a strawberry is too large to be placed in any available space, or because its quality
or size cannot be determined with high statistical contidence. Therefore, another usetul
innovation 1s to have the robot place such fruits into a separate storage container for

subsequent scrutiny and possible re-packing by a human operator.

For fruits that are picked in bunches comprising several individual fruits on the same
branch structure, e.g. table grapes or on-the-vine tomatoes, it may be important that
none of the individual fruits 1s damaged or otherwise blemished, for example because a
single rotten fruit can shorten the life or spoil the appearance of the entire bunch.
Therefore, a valuable mnovation 1s a two-phase picking procedure in which first the
entire bunch s picked and second unsuitable individual fruits are removed from it. In

one embodiment, this might work as follows:

1. A first robot arm picks the bunch by severing the stalk.
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2. Visual inspection of the bunch is performed to determine the positions of any
blemished individual fruits. During visual inspection, the first robot arm continues to
hold the bunch for visual inspection.

3. A second robot arm trims blemished fruits from the bunch. A picking head similar to
that used to pick individual fruits like strawberries singly can also be used to trim

individual fruits from a bunch.

In another embodiment of this i1dea, a first robot arm might transter the bunch to a static
support for subsequent inspection and removal of unwanted individual fruits. By this

means, it is possible to use only a single robot arm.

As well as deciding into which punnet (or other container) picked fruit should be placed,
it may also be necessary or beneticial for a robot to decide where in the target punnet to
place the fruit. A key challenge is to place picked fruit so as to minimize bruising (or
other kinds of damage) due to collisions with the walls of floor of the punnet or with
other fruit already in the punnet. In the context of fruit picking systems that work by
eripping the stalk of the fruit, another challenge is to determine the height at which the
truit should be released into the punnet — too high and the fruit may be bruised on
impact, too low and the fruit may be squashed between the gripper and the base of the
punnet. Additionally, picked fruit doesn’t necessarily hang vertically because the stalk is
both non-straight and somewhat stiff. Theretore, a useful innovation is to measure the
vertical displacement between the base of the fruit and the point at which it is gripped or
the pose of the picked fruit in an end effector coordinate system, so that the fruit can be
released at the optimal height. This can be achieved by using a monocular or stereo
camera to determine the position of the bottom of the picked fruit relative to the
(presumed known) position of the gripper. A related nnovation is to use an image of the
punnet (obtained by the cameras in the Picking Head or otherwise) to determine the
position of other picked fruit already in the punnet. Then the position or release height
can be varied accordingly. For fruits such as strawberries that may be usefully held by
their stalks, another useful innovation is to orientate the gripper such that the stalk is
held horizontally before the fruit is released into the storage container. This allows the
compliance of the section of stalk between the gripper and the body of the fruit to be

used to cushion the landing of the fruit when it is placed into the container.
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A related nnovation 1s to position and orientate the fruit automatically to maximize
visual appeal. This might be achieved, for example, by placing fruit with consistent

orientation.

Because the robot knows which fruit was placed in each punnet, it can keep a record of
the quality of the punnet. Therefore, a useful innovation 1s to label each punnet with bar
code that can be read by the robot and therefore used to related specific back to the

record of which fruit the punnet contains.

8. Mapping Subsystem

A human supervisor uses the Management User Interface to indicate on a map where
robots should pick (see below). A prerequisite 1s a geo-referenced 2D map of the
environment, which defines both (i) regions in which robots are free to choose any path
(subject to the need to traverse the terrain and to avoid collision with other robots) and
(1) paths along which the robot must approximately follow, e.g. between rows of
growing plants. The robot can pick from plants that are distributed irregularly or

regularly, e.g. in rows.

A suitable map may be constructed by a human supervisor using the Mapping
Subsystem. To facilitate map creation, the Mapping Subsystem allows a human operator
easily to define piecewise-linear paths and polygonal regions. This is achieved by any of

several means:

* Using geo-referenced aerial imagery and image annotation software. The UI allows
the user to annotate the aerial imagery with the positions of the vertices of polygonal
regions and sequences of positions detining paths, e.g. via a series of mouse clicks.
When annotating the start and end points of rows of crops, an integer-based row
indexing scheme is used to facilitate logical correspondence between the start and
end locations.

* Using a physical survey device, the position of which can be determined accurately,
e.g. via differential GPS. The user defines region boundaries by positioning the
surveying tool manually, e.g. at a series of points along a path, or at the vertices of a
polygonal region. A simple UI device such as a button allows the user to initiate and

terminate definition of a region. The survey device may be used to define the physical
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locations of (1) waypoints along shared paths, (i1) the vertices of polygonal regions in
which the robot can choose any path, (it1) at the start and end of a row of crops. The
survey device may be a device designed for handheld use or a robot vehicle capable

of moving under radio remote control.

5 In the context of farming, an important concern 1s that heavy robots may damage soft
ground if too many robots take the same route over it (or if the same robot travels the
same route too many times). Therefore, a useful nnovation is to choose paths within
tree regions to distribute routes over the surface of the ground as far as possible. A
tuneable parameter allows for trade-off between travel time and distance and the degree

10 of spread.

9. Management Subsystem
The Management Subsystem (including its constituent Management User Interface) has

several important functions:

15 * It allows a human supervisor to detine which rows of crops should be picked
using a 2D map (created previously using the Mapping Subsystem).

* It allows a human supervisor to set the operating parameter values to be used
during picking and QC, e.g. the target ranges of fruit size and ripeness, the quality
metric to be used to decide whether to discard or keep fruit, how to distribute

20 truits between punnets, etc.

* It facilitates the movement of robots around the farm.

* It divides work to be done amongst one or more robots and human operators.

* It controls the movement of the robot along each row of strawberries.

* Itallows robots to signal status or fault conditions to the human supervisor.

25 * It allows the human supervisor immediately to put any or all robots into a

powered down state.
* It allows the human supervisor to monitor the position and progress of all

robots, by displaying the position of the robots on a map.

It there are multiple robots, then they collaborate to ensure they can move around in the

30 same vicinity without colliding,

In case tully autonomous navigation of the robots around a site 1s undesirable for safety
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or other reasons, it may be desirable for robots to be capable of being driven temporarily
under human remote control. Suitable controls might be made available by a radio
remote control handset or by a software user interface, e.g. displayed by a tablet

computer.

To obviate the need for the human operator to drive several robots separately (e.g. from
a storage container to the picking site), a valuable innovation 1s a means by which a chain
of several robots can automatically follow a single ‘lead’ robot driven under human
control. The 1idea is that each robot in the chain follows its predecessor at a given

approximate distance and takes approximately the same route over the ground.

A simple embodiment of this idea 1s to use removable mechanical couplings to couple
the second robot to the first and each successive robot to its predecessor. Optionally a
device to measure the direction and magnitude of force being transmitted by a robot’s
coupling to its predecessor might be used to derive a control signal for its motors. For
example, a following robot might always apply power to its wheels or tracks in such a
way as to minimize or otherwise regulate the force in the mechanical coupling. By this

means all the robots in the chain can share responsibility for providing motive force.

More sophisticated embodiments of this idea obviate the need for mechanical couplings
by using a combination of sensors to allow robots to determine estimates of both their
absolute pose and their pose relative to their neighbours in the chain. Possibly a
communication network (e.g. a WiFi network) might be used to allow all robots to share
time-stamped pose estimates obtained by individual robots. An important benefit is the
posstbility of combining possibly-noisy relative and absolute pose estimates obtained by
many individual robots to obtain a jointly optimal estimate of pose for all robots. In one
such embodiment, robots might be equipped with computer vision cameras designed to
detect both absolute pose in the world coordinate system and their pose relative to their

neighbours. Key elements of this design are described below:

. The robot 1s designed to have visually distinctive features with known position or
pose in a standard robot coordinate frame. For example, visually distinctive markers
might be attached to each robot in certain pre-determined locations. The markers are

typically designed for reliable automatic detection in the camera images.

. A camera (or cameras) 13 (are) attached to each robot with known pose in a
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standard robot coordinate trame. By detecting the 2D locations in its own camera
image frame of visually distinctive features belonging to a second robot, one robot
can estimate its pose relative to that of the second robot (e.g. via the Discrete Linear
Transtormation). Using visually distinctive markers that are unique to each robot (e.g.
a bar code or a QR code or a distinctive pattern of flashes made by a flashing light)
provides means by which a robot can uniquely identity the robot that 1s following it
or being followed by it.

. One or more robots 1n the chain also maintain an estimate of their absolute pose in
a suitable world coordinate system. This estimate may be obtained using a
combination of information sources, e.g. differential GPS or a computer-vision based
Simultaneous Localization and Mapping (SLAM) system. Absolute position estimates
trom several (possibly noisy or mnaccurate) sources may be fused to give less noisy
and more accurate estimates.

. Inter-robot communications infrastructure such as a wireless network allows
robots to communicate with each another. By this means robots can interrogate
other robots about their current pose relative to the robot in front. Pose information
1s provided along with a time stamp, e.g. so that the moving robots can compensate
tor latency when fusing pose estimates.

. In a chain of robots, the absolute and relative position estimates obtained by all

robots are fused to obtain a higher quality estimate of the pose of all robots.

. A PID control system 1s used by each robot to achieve a desired pose relative to
the trajectory of the lead robot. Typically, a target position for the control system 1s
obtained by tinding the point of closest approach on the lead robot’s trajectory. The
orientation of the target robot when it was previously at that point defines the target
orientation for the following robot. Target speed may be set e.g. to preserve a

constant spacing between all robots.

When picking, teams of robots may become dispersed over a large area. Because robots
are visually similar, this may make it very difficult for human supervisors to identity
individual robots. To allow the human supervisor to relate robot positions displayed on a
2D map in the software Ul to robot positions in the world, a useful innovation is to
equip each robot with a high visibility strobe light that gives an indication in response to
a mouse click (or other suitable UI gesture) on the displayed position in the UL
Individual robots can be made more uniquely identifiable by using strobes of different

colours and different temporal sequences of illumination. A related innovation is to
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direct the (possibly coloured) light produced by the strobe upwards onto the root of the
polytunnel in which the crops are being grown. This facilitates identification of robots
hidden from view by tall crops or the tables on which some crops (like strawberries) are

grown.

Because a single human supervisor may be responsible for multiple robots working
simultaneously, it 1s useful if the UI exposes controls (e.g. stop and start) for each robot
in the team. However, one difticulty 1s to know which remote control setting is necessary
to control which robot. In a situation where an emergency stop is needed, therefore, the
system 1s typically designed so that pressing the emergency stop button (for example on
the supervisor’s tablet UI) will stop all robots for which the supervisor is responsible.

This allows the supervisor to determine which robot was which after ensuring safety.

While picking, it is possible that robots will encounter so-called fault conditions that can
be only be resolved by human intervention. For example, a human might be required to
remove and replace a full tray of picked fruit or to untangle a robot from an obstacle that
has caused it to become mechanically stuck. This necessitates having a human supervisor
to move from robot to robot, e.g. by walking. To allow a human supervisor to do this
efficiently, a useful innovation 1s to use information about the position of the robots and
the urgency of their fault conditions (or impending fault conditions) to plan the human
supervisor’s route amongst them. Route planning algorithms can be used eg. to
minimize the time or that human supervisors spend moving between robots (and
therefore to minimize the number of human supervisors required and their cost).
Standard navigation algorithms need to be adapted to account for the fact that the

human operator moves at finite speed amongst the moving robots.

10. Robot Control Subsystem

10.1. Overview

Whilst the robot 1s picking, the Robot Control Subsystem makes a continuous sequence
of decisions about which action to perform next. The set of actions available may include
(1) moving the whole robot forwards or backwards (e.g. along a row of plants), (i)
moving the Picking Arm and attached camera to previously unexplored viewpoints so as
to facilitate detection of more candidate fruit, (i) moving the Picking Arm and attached

camera in the local vicinity of some candidate fruit so as to refine an estimate of its pose
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or suitability for picking, and (iv) attempting to pick candidate fruits (at a particular
hypothesized position/orientation). Each of these actions has some expected cost and
benefit. E.g. spending more time searching for fruit in a particular vicinity increases the
chances that more fruit will be picked (potentially increasing yield) but only at the
expense or more time spent (potentially decreasing productivity). The purpose of the
Robot Control System 1s to schedule actions, ideally in such a way as to maximize

expected profitability according to a desired metric.

In a simple embodiment, the Robot Control Subsystem might move the whole robot and
the picking head and camera in an alternating sequence of three phases. In the first
phase, the arm moves systematically, e.g. in a grid pattern, recording the image positions
of detected fruits as it does so. In the second phase, the picking head and camera move
to a position near each prospective target fruit in turn, gathering more image data or
other information to determine (1) whether or not to pick the fruit and (i) from what
approach direction to pick it. During this second phase, the system determines how
much time to spend gathering more information about the target fruit on the basis of a
continuously refined estimate of the probability of picking a suitable fruit successtully
(i.e. picking success probability). When the estimated picking success probability is
greater than some threshold, then picking should take place. Otherwise the control
system might continue to move the arm until either the picking success probability is
greater than the threshold or some time limit has expired. In the third phase, once all
detected fruits have been picked or rejected for picking then the whole robot might

move along the row of plants by a fixed distance.

10.2. Total Position Control

During picking, the Control Subsystem uses the Total Positioning Subsystem to move
the whole robot amongst the plants and within reach of fruit that 1s suitable for picking,
e.g. along a row of strawberry plants. Typically, the robot is moved in a sequence of
steps, pausing after each step to allow any fruit within reach of the robot to be picked. It
1s advantageous to use as few steps as possible, e.g. because time is required for the robot
to accelerate and decelerate during each step. Furthermore, because the time required to
pick the within-reach fruit depends on the relative position of the robot to the fruit, it is
advantageous to position the robot so to minimize expected picking time. Thus, a
valuable innovation is to choose the step sizes and directions dynamically so as to try to

maximize expected picking efficiency according to a suitable model.
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In a simple embodiment of this idea, a computer vision camera might be used to detect
target fruit that is nearby but outside of the robot’s present reach. Then the robot can be
either (1) repositioned so as to minimize expected picking time for the detected fruit or
(1) moved a greater distance if no suitable fruit was detected in its original vicinity.
Additionally, a statistical model of likely fruit positions might be used to tune step size.

The parameters of such a statistical model might be refined dynamically during picking,.

10.3. Robot Arm Path Planning

The Picking Arm and attached camera moves under the control of the Control
Subsystem to locate, localize, and pick target fruits. To enable the arm to move without
colliding with itselt or other obstacles, a path planning algorithm 1s used to find collision-
tree paths between an initial configuration (i.e. vector of joint angles) and a new
configuration that achieves a desired target end effector pose. Physics simulation based
on a 3D model of the geometry of the arm and the scene can be used to test whether a
candidate path will be collision free. However, because finding a collision-tree path at
runtime may be prohibitively time consuming, such paths may be identified in advance
by physical simulation of the motion of the robot between one or more pairs of points in
the configuration space — thereby defining a graph (or ‘route map’) in which the nodes
correspond to configurations (and associated end effector poses) and edges correspond
to valid routes between configurations. A useful innovation is to choose the cost (or
‘length’) assigned to each edge of the graph to reflect a weighted sum of tactors that
reflect the overall commercial effectiveness of the picking robot. These might include (1)
the approximate time required, (i) the energy cost (important in a battery powered
robot), and (i) the impact of component wear on expected time to failure of robot
components (which influences service intervals, downtime, etc.). Then path planning can

be conducted as follows:

1. Search over the nodes of the graph to find a contiguration CO that can be reached
without collision by a linear move trom the initial configuration Ci.

2. Search over the nodes of the graph to find a configuration C1 from which the
target pose can be reached without collision by a simple linear move. Configurations
corresponding to the target pose can be determined by inverse kinematics, possibly
using the configuration associated with each candidate configuration as starting point

tor non-linear optimization.
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3. Find the shortest path in the graph between nodes C0 and C1, e.g. using Djikstra’s

algorithm or otherwise.

One limitation of this approach is that the graph can only be precomputed for known
scene geometry — and in principle the scene geometry could change every time the robot
moves, e.g. along a row of crops. This motivates an interesting innovation, which is to
build a mapping between regions of space (‘voxels’) and the edges of the route map
graph corresponding to configuration space paths that would cause the robot to intersect
that region during some or all of its motion. Such a mapping can be built easily during
physical simulation of robot motion for each edge ot the graph. By approximating real
and possibly frequently changing scene geometry using voxels, those edges
corresponding to paths which would cause the arm to collide with the scene can be
quickly eliminated from the graph at runtime. A suitable voxel-based model of
approximate scene geometry might be obtained using prior knowledge of the geometry
of the growing infrastructure and the pose of the robot relative to it. Alternatively, a
model may be formed dynamically by any of a variety of means, such as depth cameras,

ultrasound, or stereo vision.

In the context of fruit picking, some kinds of collision may not be catastrophic, for
example, collision between the slow-moving arm and peripheral foliage. Therefore,
another useful innovation 1s to use a path planning algorithm that models obstacles not
as solid object (modelled e.g. as bounding boxes), but as probabilistic models of scene
space occupancy by different types of obstacle with different material properties, e.g.
toliage, watering pipe, grow bag. Then the path planning algorithm can assign different
costs to different kinds of collision, e.g. infinite cost to a collision with an immovable
object and a lower (and perhaps velocity-dependent) cost to collisions with foliage. By
choosing the path with the lowest expected cost, the path planning algorithm can
maximize motion efficiency, e.g. by adjusting a trade-off between economy of motion

and probability collision with foliage.

10.4. Learning Control Policies by Reinforcement Learning

Given an estimate of the approximate location of target fruit, the system can gain more
information about the target (e.g. its shape and size, its suitability for picking, its pose) by
obtaining more views from new viewpoints. Information from multiple views can be

combined to create a more accurate judgement with respect to the suitability of the fruit
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tor picking and the suitability of a particular approach vector. As a simplistic example,
the average colour of a target fruit in multiple views might be used to estimate ripeness.
As another example, the best viewpoint might be selected by taking the viewpoint
corresponding to the maximum confidence estimation of stalk orientation. However,
obtaining more views of the target may be time-consuming. Therefore, 1t is important (1)
to choose the viewpoints that will be provide the most useful additional information for
the minimum cost, and (11) to decide when to stop exploring more viewpoints and

attempt to pick the target or abandon it. For illustration:

It a target fruit (or its stem) 1s partially occluded (by foliage, other fruits, etc.) then it may
be valuable to move in the direction required to reduce the amount of occlusion.
Generally, 1t 1s desirable to find a viewpoint from which the whole fruit is visible without
occlusion because such a viewpoint defines, via the back-projected silhouette, a volume
of space in which the picking head (and picked fruit) can be moved towards the target

truit without colliding with any other obstacles.

It a target fruit 1s observed from a viewpoint that makes it hard to determine its pose (or
that of its stalk) for picking purposes, then it may be valuable to move to a viewpoint

trom which it would be easter to determine its pose.

It the target fruit is positioned near other target fruits so that which stalk belongs to
which fruit 1s ambiguous then it may be valuable to obtain another view from a

viewpoint in which the stalks can be more easily associated with target fruits

It approaching the fruit to pick it from the current viewpoint would require a time-
consuming move of the Picking Arm (e.g. because some moves require significant
reconfiguration of the robot arm’s joint angles) then it would be desirable to localize the

strawberry from a viewpoint corresponding to a faster move.

Sometimes multiple views will be required to determine with sufficient confidence that
the fruit should be picked. Sometimes, it will be unambiguous but rather than obtaining
more views it would be better to move on, e.g. leaving the fruit can be picked by human
pickers instead. However, designing an effective control routine manually may be

prohibitively dittficult.
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A strategy for doing this is to use reinforcement learning to learn a control policy that
decides on what to do next. The control policy maps some state and the current input
view to a new viewpoint. The state might include observations obtained using previous
views and the configuration of the arm, which could affect the cost of subsequent

moves.

To train a control policy via reinforcement learning, it is necessary to define a utility
tunction that rewards success (in this case picking saleable fruit) and penalizes cost (e.g.
time spent, energy consumed, etc.). This motivates the idea that a control policy could be
trained whilst robots operate in the field, using high quality picking success information
using their on-board QC rig to judge picking success. An interesting innovation is that
multiple picking robots can be used to explore the space of available control policies in
parallel, sharing results amongst themselves (e.g. via a communication network or central
server) so that all robots can benefit from using the best-known control policy. However,
one limitation of that approach 1s that it may take a great deal of time to obtain enough
training data for an effective control policy to be learned. This gives rise to an important
innovation, which 1s to use for training purposes images of the scene obtained from a set
of viewpoints arranged on a grid in camera pose space. Such a dataset might be captured
by driving the picking robot under programmatic control to visit each grid point in turn,
acquiring a (stereo) 1mage of the scene at each one. Using a training set acquired in this
way, reinforcement learning of a control policy can be achieved by simulating the
movements of the robot amongst the available viewpoints, accounting for the costs
associated with each movement. In simulation, the robot can move between to any of
the viewpoints on the grid (under the control of current control policy), perform image
processing on each, and decide to pick a target fruit along a hypothesized physical path.
It 1s not possible to be certain that picking a target fruit along a particular path have
succeeded in the physical world. However, for some target fruits, merely identifying the
correct stalk in a stereo viewpoint gives a high probability of picking success. Theretore,
we use correct identification of the stalk of a ripe fruit as a proxy for picking success in
reinforcement learning. Ground truth stalk positions may be provided by hand for the

training set.

Central to reinforcement learning is some means evaluating the effectiveness of a

particular control policy on the dataset. In outline, this 1s achieved as follows:
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1. Setcost=0
For each target fruit in dataset

Start at a randomly selected nearby viewpoint on grid

= N

Update state (includes current pose and suitabulity for picking estimate) using current
view
5. Use current control policy to map state to action (in {Move, Pick, Abandon})

6. Switch(action)

Move:
1. Move Picking Arm to new viewpoint (determined by current policy)
1. Increase cost by cost of move (function of time taken, power consumed,
etc.)
u.  Goto 3
Pick:
1. Increase cost by cost of moving Picking Arm along picking trajectory
(determined by current pose estimate)
. If picking was successtul, decrease cost by value of successtul pick
.  Goto 1 and select next target
Abandon:

1.Goto 1 and select next target

Using this cost evaluation scheme, we can compare the etfectiveness of multiple control

policies and select the best, e.g. by exhaustive search over available policies.

10.5. Holistic Robot Control

The reintorcement learning strategy described above relates to control policies for
localizing a truit and determining its suitability for picking given an approximate initial
estimate of its position. Note however that the same approach can also be used to train a
holistic control policy for the whole robot. This means expanding space of available
actions to include (1) moving the Picking Arm to more distant viewpoints (to find coarse
initial position estimates for target fruits) and (1) moving by a given amount along the
row of crops. An additional nnovation s to extend the reinforcement learning scheme to
include actions carried out by human operators, such as manual picking of hard to reach

fruit.
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11. Miscellaneous Innovations

1.

Because picking robots maintain a continuous estimate of their position in a map
coordinate system, they can gather geo-referenced data about the environment. A
useful innovation is therefore to have robots log undesirable conditions that might
require subsequent human intervention along with a map coordinate and possibly a
photograph of the scene. Such conditions might include:

* damage to the plant or growing infrastructure (e.g. caused by a failed picking
attempts or otherwise);
* the decision to leave ripe fruit unpicked because picking would incur too

great a risk of faillure or because the truit is out of reach of the Picking Arm.

A usetul and related idea 1s to have picking robots store the map coordinate system
locations of all detected fruit (whether ripe or unripe) in computer memory. This
makes possible several innovations:

a. One such 1nnovation 1s to perform yield mapping to enable the farmer to identity
problems such as disease or under- or over-watering early. Of interest might be
e.g. the density of fruit production or the proportion of unripe fruits that
subsequently mature into ripe fruits.

b. Another innovation is yield prediction. To pick ripe fruits in good time, picking
robots must typically traverse every crop row every few days. By acquiring images
of ripe and unripe fruits, they can measure the size of individual target fruits as
they grow and ripen. Since most unripe fruits will ripen in time, such data
tacilitates learning predictive models of future crop yield, e.g. in the next day,
week, etc. A suitable model might map current and historic ripeness and size
estimates for individual target fruits and weather forecast information (e.g. hours
of sunlight, temperature) to a crop yield forecast.

c. Another related innovation reduces the amount of time that robots must spend
searching for target fruit in the target detection phase of picking. During target
detection, the system determines the approximate position of ripe and unripe
target fruits. The system typically finds target fruits by moving a camera on the
end of the Picking Arm(s) to obtain images from a wide range of viewpoints.
However, spending more time searching for target fruits may increase yield but
only at the expense of a reduction in picking rate. Therefore, a useful innovation

is to store the map coordinate system position of unripe fruits that have been



10

15

20

25

30

WO 2018/087546 48 PCT/GB2017/053367

3.

detected but not picked in computer memory so that a robot can locate not-yet-
picked target fruits more quickly on a subsequent traversal of the crop row. In a
simple embodiment, the position of previously detected but not yet picked fruits
1s stored so the robot can return directly to the same position on the subsequent
traversal without spending time searching. In a more complex embodiment,
previous detections are used to form a probability density estimate that retlects
the probability of finding ripe fruit at a particular location in map coordinate
system space (e.g. by kernel density estimation of otherwise). This density
estimate might be used to help a search algorithm prioritize regions of space
where ripe fruits are likely to be found and deprioritize regions where they are
not. E.g. a simplistic search algorithm might obtain views from a denser sample
of viewpoints in regions of space where ripe fruits are likely to be found. In a
related innovation, yield prediction (as in (b) above) might be used to account of

the impact on time on the ripeness of previously unripe fruits.

The picking robot can be equipped to perform several functions in addition to
picking, including the ability to spray weeds or pests with suitable herbicides and
pesticides, or to reposition trusses (i.e. stalk structures) to facilitate vigorous fruit

growth or subsequent picking,

Using adjustable arms that can be repositioned to maximize picking efficiency for a
particular variety of strawberry or phase of the growing season. Picking Arms can
also be positioned asymmetrically to increase the reach of the two arms working in

concert (see Figure 5).

In use, it 1s likely that a robot will lean to one side or other due to ground slope or
local non-smoothness of the terrain. This effect may be exacerbated by the use of a
suspension system (intended to reduce shock as the robot travels over bumps)
because of the compliance of the suspension. An unfortunate consequence of leaning
over is that the position of the robot’s Picking Arms will not be positioned as
designed with respect to the plants (they may be e.g. closer or further, higher or
lower). This compromises performance because (1) pre-defined camera poses chosen
in the chassis coordinate frame may no longer be optimal if the chassis 1s rotated and

(1) chassis-relative models of environment geometry (which are used to prevent
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collisions between Picking Arms and the environment) may also be wrong. One
obvious strategy for compensating for the impact of lean on the environment
geometry model s to dilate the environment geometry in 3D to provide some
tolerance to error, however this reduces performance by compromising the available
working volume for the arm (in narrow crop rows, space may already be at a
premium). Therefore a valuable innovation 1s a system both to measure the degree to
which the robot is leaning over and then to compensate for the degree of the lean by
adapting models of the scene’s geometry and camera viewpoints accordingly. The
degree of lean might be measured directly using an accelerometer (which measures
the vertical direction) or indirectly by measuring the position of a part of the robot
(e.g. using a vector cable follower arm or GPS) in a coordinate frame based on the
crop row. The lean may then be allowed for by applying an appropriate 3D
transformation to pre-detined camera poses and environment geometry. Another
means of correcting for lean induced by sloping but smooth terrain is to adjust
dynamically the lateral position of the robot’s tracks in the row so that the Picking

Arms are closer to their design position despite the lean.

If a picked fruit is gripped by its stalk, then it may swing like a pendulum following
repositioning by a robot arm. This may incur a productivity cost, since for some
operations (e.g. placing the fruit into a QC imaging chamber or punnet) the pose of
the fruit must be carefully controlled to avoid collisions - which may necessitate
pausing arm motion following repositioning until the amplitude of such oscillations
decreases to an acceptable level. Therefore a valuable innovation is to use a means of
damping to reduce the amplitude the oscillations as soon as possible. In one
embodiment, damping is achieved passively, using a soft gripper. In another
embodiment, damping 1s achieved actively by modulating the velocity of the robot
arm’s end-effector in such a way as to bring the oscillation to a stop as quickly as
possible. An estimate of the mass and pendulum length of the strawberry can be used
to design a deceleration profile (dynamically or otherwise) required to minimize the

amplitude or duration of oscillation.

Many of the diseases and other defects that aftect soft fruits (and reduce their
quality grade) affect their visual appearance in the images obtained by our QC

imaging chamber. The first image processing step is to segment in each view the
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body of the fruit from the calyx (and the background of the imaging chamber).
Typically this 1s achieved by using a decision forest to label pixels. It may also be
useful to segment achenes (seeds) at the same time as described below. Then we
characterise the appearance of the body of the fruit using a variety of quality
measures (which may be innovative in 1solation or combination). Some features not
previously mentioned include:

a. The spatial distribution of achenes (e.g.in strawberries) or
drupelets (e.g. in raspberries). For healthy fruits, achenes and drupelets
are generally arranged quite regularly, te. the distances between
neighbouring achenes and drupelets are generally similar locally.
However, some diseases and other problems have the eftect of disrupting
this regular arrangement in the developing fruit. Therefore an innovative
idea 1s to use a measure of the regularity of the spatial arrangement of
achenes or drupelets as an indicator of the quality of the fruit. One
approach is to first detect (in images obtained by our QC imaging
chamber) the image positions of achenes or drupelets using computer
vision and then assign a cost at each such point using an energy function
that assigns lowest energy to regularly arranged points. Achenes can be
detected by semantic labelling, e.g. by using a decision forest classifier to
assign a table to each pixel. Drupelets may be detected e.g. by using a
point light source to induce a specular reflection on the shiny surface of
the fruit and then detecting local maxima in image brightness. Then the
sum of costs over points (or local clusters of points) can be used to give
an indication of fruit health.

b.  The colour of the achenes. In e.g. strawberries the achenes become
redder when the fruit becomes overripe and black when the fruit
becomes rotten. Labelled training images of fruits exhibiting particular
defects can be used to determine thresholds of acceptability for colour.

C. The colour of the flesh of the fruit (excluding the achenes). This is a
good indicator of under-ripeness, over-ripeness, and localised bruising.
Again labelled training data can be used to determine thresholds of
acceptabiuilty.

d.  The 3D shape of the fruit. An explicit 3D model of the fruit may be

obtained by model fitting to the silhouette and image intensity
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8.

information as described in the existing provisional application. However
an ‘implicit’ 3D model of the shape may be obtained more simply by
characterising the 2D shape in each of multiple views. An effective
strategy for doing this proceeds one 2D view at a time by first
determining the approximate long axis of the fruit and then by
characterising shape in a coordinate system aligned with the long axis.
The long axis position may be estimated e.g. by the line joining the
centroid of the body of the fruit and the image position of the gripper
that is used to hold the fruit. Shape may be characterised e.g. by
measuring the distance from the centroid of the fruit to the edge of the
truit in each of the clock face directions between 2 o’clock and 10 o’clock
given a 9-element vector (noting that we ignore the top of the clock face
to avoid the calyx). We can distinguish good (grade 1) shapes from bad
(grade 2) shapes using a body of training examples with associated expert-
derived ground truth labels. A suitable strategy is k nearest neighbours in
the 9D shape space. Robustness to errors in long axis localisation can be
achieved by generating multiple 9D shape vectors for randomly

perturbed versions of the detected long axis in the training images.

Typically, a picked fruit is considered grade 2 (sub-par) or grade 3 (reject) if any of
our several independent quality measures give a grade 2 or grade 3 score (although
other means of combining defect scores are possible). Note that an important
advantage of using image features specifically designed to detect specific kinds of
defect instead of a more black-box machine learning approach is that doing so allows
us to give the grower a clear and intuitive explanation (or, better, visual indication) for
why a particular picked fruit received a particular quality grade. This allows the grower
to adjust meaningful thresholds of acceptability for different kinds of defect. In
practice, it 13 commercially very important for growers to make different decisions
about the acceptability of ditferent kinds of defect at different times of the season,
considering the requirements of different customers, and as a function of productivity

and demand.

Another application for agricultural robots 1s the targeted application of chemicals

such as herbicides and pesticides. By using computer vision to locate specific parts of
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the plant or instances of specific kinds of pathogen (insects, dry rot, wet rot, etc.),
robots can apply such chemicals only where they are needed, which may be
advantageous (in terms of cost, pollution, etc.) compared to treatment systems that
require spraying the whole crop. To facilitate doing this kind of work using a robot
that 1s otherwise used for picking it would obviously be advantageous for the robot to
support interchangeable end effectors, including one that can be used for picking and
one that can be used for spraying. The latter would usually require routing pipes along
the length of the robot arm, which may be ditficult. However, a useful mnovation is
to have the spraying end effector contain a small reservoir of liquid chemical - thereby
obviating the need for routing pipes. This might be achieved using a cartridge system
where the robot arm would visit a station on the chassis to gather a cartridge of
chemicals (which might be similar to the cartridges used in inkjet printers).
Alternatively the arm might visit a cartridge in the chassis to suck the required liquid
chemicals from a cartridge into its reservoir or to expel unused chemical from its
reservoir back into a cartridge. It might be that several different types of chemical are
combined in dynamically programmable combination to achieve more optimal local
treatment, or that multiple cartridges contain multiple different chemical

combinations.
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Appendix A: Produce-Picking End Effectors

This appendiz describes several innovative Picking Head designs,
fenl é

Background

Picking fruit necessitates having an end effector (such as may be attixed to a robot arm)
that 1s suftficiently small, strong, selective (so as to pick only fruit that 1s suitable for sale),
exclusive (so as not to pick other fruit). The picking operation must not damage plants or
growing infrastructure, e.g. grow bags. Additional constraints (low power, low cost,

lightweight, durable) further constrain the design.

This invention solves these problems with a lightweight end effector capable of reliable
picking. The compact nature of the designs considerably facilitates separating the desired

ttems of fruit from unwanted ttems.

In general picking of produce comprises selection of the fruit to be picked, exclusion of
items not mntended to be picked (including unripe fruits and growing infrastructure),
gripping of the fruit or its stem and separating the fruit from its parent plant. Here we
disclose a number of embodiments of the invention to mechanically select, grasp, and cut

produce from the host plant.

Hook Embodiment

The first embodiment of the invention selects and excludes with a hook that has a
dynamically programmable trajectory. Under the control of the Picking Arm (or
otherwise) the hook 1s mechanically swept through a (in general dynamically) chosen
volume of space, and any stems within this swept volume are gathered into the
hook. With the stem thus captured, the hook may be used to pull the target fruit away
from the plant (and potential sources of occlusion like leaves or other fruits) so that
measurements of picking suitability may be made (including visual, olfactory and tactile

measurements). Such measurements inform a decision to pick or release the target truit.

The hook might be made long and narrow (e.g. in the shape of the letter J) so as to
minimize the volume that needs to be swept out as it is moved (e.g. along its own long
axis) towards the target fruit, thereby minimizing the size of the gap needed (e.g. between

leaves, stems, or other fruit) for the hook to reach the target fruit without collision.
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Note that it may be advantageous to position the long axes of the hook nearly coincident
with the optical axis of the Picking Head camera (or nearly in the middle of the optical
axes of the two eyes of a stereo camera). Doing so simplifies the problem of tinding a
non-colliding path to target fruit because any target that appears from the camera’s
viewpoint to be unoccluded (by other fruit or foliage) can usually be sately approached
by moving along the line corresponding to the ray between the camera’s optical centre
and the target. This reasoning obwviates the need to obtain a 3D model of the

environment to plan sate routes towards target fruit.

At this stage the hook motion may be reversed to release the produce without damage,
or the gripper and cutter mechanism may be actuated to hold the produce and separate it

trom the stem prior to transport and release.

More detailed information about the mechanical aspect of the invention 1s now
presented. Referring to Figure 11, the main features of the invention as assembled are
shown. The main components of the end effector are specifically: (1) a hook, (2) a
gripper that fits within the hook, (3) a lower support and (4) a blade. The hook is square
in cross section and in conjunction with the blade forms a scissor cutting action. Screws

and other support structures not shown.

Figure 12 shows the hook extended relative to the grip/cut mechanism (prior to
selecting or picking — blade omitted). Figure 13 shows the hook retracted relative to the
gripper/cutter, the gripper fitting against the hook to grip the plant stem and the cutting
mechanism in its post actuation configuration (blade omutted). Figure 14 shows an
exploded view of the main parts in this embodiment, including the individual parts of the

end effector including (4) the blade above the hook.

Referring to Figures 12-14, the main features are: (item 1) the hook (comprising a long
thin section and a hook, which 1s semi-circular in this embodiment), which (through
movement in space, Figure 15 item 5) allows produce selection and exclusion of
unwanted items. The inside of the hook is shaped to form one half of the gripper

mechanism, and forms one half of the scissor style cutting surface. The tip 1s pointed in
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this embodiment, maximising selectivity and exclusivity and assisting location within the

gripper/blade mechanism when retracted.

There 1s a lower support (Figures 11-13 item 3) which constrains the retracted hook,
strengthening the gripping action and constraining the blade to be adjacent to the hook
cutting surface, increasing cutting reliability. In this embodiment the gripper (2) is
shaped to fit into the inside surface of the hook, allowing the mechanism to be

maximally compact. This embodiment uses a flexure spring,.

Figure 15 is an example of the invention showing the movement of the hook (5) to
effect a capture of the plant stem. The movement of the hook (5) captures the stem
within the hook. Instead of having a cutting/gripping mechanism of fixed size, in the
invention the hook 1s small (allowing good selection with maximal exclusion of unwanted
stems) while the hook movement is of variable size (allowing selectivity in the presence

of stem positional uncertainty).

Varying the capture volume (per item of produce) allows an optimum trade-ott between

selectivity (of the desired produce) and exclusivity (of unwanted items).

The grip and cut actions are performed in the same movement by actuation of the device
(refer to Figures 12 and 13). As the hook retracts relative to the gripper, the stem 1s
gripped first between the hook and the gripper (Figures 11-13, items 1 and 2). The
gripper includes a spring, allowing for a range of stem size and allowing the hook to
continue to retract. After the grip has been achieved, the continued movement of the
hook against the blade separates the produce from the parent plant. Release of the fruit is

achieved by extending the hook once more.

Construction method: Referring to Figure 11, in the present embodiment, the hook (1)
1s made of metal, e.g. steel. The gripper (2) 1s made of plastic (perhaps acetal if integrated
tlexure 1s required). The blade (4) 1s made of knife steel and the lower support (3) is

plastic.
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Figure 16 shows the plant stem thus captured. Figure 17 shows the produce gripped
and cut from the parent plant (optional operation). Figure 18 shows the release

operation (optional operation).

Figure 19 shows the sequence of operations that constitute the picking process. These

are as follows:

Detect Produce 1s performed by the Control and Computer Vision subsystems
described in the main body of this document.
*  Approach of the plant stem i1s made, locating the hook close to the plant stem of the

produce desired to be picked.

*  Select Irem 1s pertormed using a looping movement that 1s determined according to the
location of the desired produce and unwanted produce and infrastructure. An
example of this movement is shown in Figure 15 item 5.

*  Dedsion Step 1 1s performed with the selected item captured in the hook (as shown in
Figure 16). With the fruit thus isolated (but still attached to the parent plant), a
check (visual, olfactory, tactile) 1s made to detect the nature (and correctness) of the
truit. The result of this step 1s a decision to pick (produce for harvest or disposal) or
don’t-pick (unripe fruit, captured infrastructure, nothing captured, incorrect
capture). Initial grading and quality control of the item 1s performed and stored and
used if Decision Step 2 1s reached.

*  Release 1s performed in the case of undesired items being captured by the hook, with a
motion that is the reverse of capture (Figure 18).

* Pick s performed in the case of successtul capture of produce ready to harvest. The
hook is retracted relative to the gripper/cutter (transitioning from configuration as in
Figure 12 to configuration as in Figure 13). This eftects a grip operation followed
by a cut operation, separating the fruit from the parent plant (Figures 16 and 17
illustrate before and after state).

*  Decision Step 2 1s a secondary sensing operation performed with the fruit picked and
transterred to another part of the machine. The result of this decision is to store or
dispose of the fruit. This decision 1s performed with different sensors to that in
Decision Step 1. This forms a more detailled assessment of the fruit thus
picked. The result of this step (in conjunction with information from Decision Step
1) 1s a decision to store or dispose of the fruit. In the case of store, size and quality

grading is used to determine the location of storage.
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*  Store the fruit is moved to the storage area (according to size/quality grading from
Decision Steps 1 and 2) and released with the reversal of the picking operation
(extending the hook relative to the gripper, releasing the fruit).

*  Disposeis performed in the case of picked fruit that 1s mouldy or otherwise unsuitable
tor sale. The release operation 1s as per Szore above, with the exception that the

transter is to a disposal area.

Loop Embodiment

In a second embodiment of the invention the select and exclude phases of the picking
sequence described earlier is performed by means of actuating a loop e.g. of wire. The
diameter, position and orientation of the loop is programmatically controlled and
actuated such that it may:

1. have an arbitrarily small volume on its approach to the target fruit;

1. increase in diameter, to be larger than the estimated diameter of the target fruit,
as it 1s moved in parallel with, and centred on, the major axis of the target fruit
and in the direction of the juncture between the target truit and its stalk and;

ui.  have an arbitrarily small diameter once it has moved past the juncture of the stalk

and target fruit.

In this way the loop will select the stalk of the target fruit from other objects in the
environment (e.g. other produce, leaves, growing infrastructure etc.) the stalk can then be
manipulated such that the target fruit may be moved away from other objects in the

environment.

The fruit, if rejected after Decision Step 1, may be released by:
1. 1increasing the diameter of the loop to at least the estimated diameter of the target
produce; and
. moving the loop in parallel, and centred on, the major axis of the target produce

and away from the juncture of the stalk and target produce.

Once the produce 1s released a new picking operation may be started.
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Jaw Embodiment

In a third embodiment of the invention, the select, exclude, and grip phases of the
picking sequence described earlier are performed by a set of jaws. The position,
orientation and attitude (by which 1s meant whether opened, partially closed or closed) of
the jaws are programmatically controlled and actuated such that
1. they approach the stalk of the target truit in the closed attitude so as to minimize
their swept volume;
1. when arbitrarily near the stalk they are actuated to an open attitude;
ui.  when adjacent to the stalk they are in a partially closed attitude so as to perform
the select, exclude and grip phases simultaneously; the jaws may be further
actuated to a closed attitude, such that a mounted blade 1s moved perpendicular
to the stalk, cutting it using a scissor-like motion against the opposing side of the

jaw.

The fruit, if rejected after Decision Step 1, may be released in the third embodiment of
the invention by, following step (u11) in the above paragraph:

1. actuating the jaw to an open attitude; and

1. moving the jaw along the previous approach vector and in the opposite direction.

The produce is then released and the picking operation may be restarted.

Loop-and-Jaw Embodiment

As shown in Figures 24-27, in a fourth embodiment of the invention, the second and
third embodiments are combined such that a loop performs the select and exclude steps

and the jaws perform the grip and the cut steps.

Figure 20 shows the main mechanical constituents of the loop and jaw assembly (the

actuation mechanism of the jaw is omitted for clarity).

Figure 21 shows the loop and jaw assembly, shown with component 11, the loop,

extended.
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Figure 22 shows an exploded diagram of the main constituent parts of the loop and jaw

assembly (the loop is omitted for clarity).

Figure 23 shows the components of the loop actuation mechanism. The loop is
extended and retracted by means of the rotation of the drum (16). Both the drum and
loop (11) sit within housing (12) and (17), to constrain the motion of the loop during

actuation.

Figure 24 shows the loop/jaw assembly on its approach vector towards the target fruit.

Figure 25 shows the loop extended and the assembly moving in parallel to the major

axis of the target produce and in the direction of the juncture between stalk and fruit.

Figure 26 shows the loop having travelled past the juncture of the stalk and the fruit, the

target produce 1s now selected and decision step 1 (Figure 19) may be applied.

Figure 27 shows the loop 1s retracted to control the position of the target produce and

the jaw 1s actuated so as to grab and cut the stalk of the fruit in a scissor-like motion.

More detailed information about the mechanical aspect of the loop-and-jaw embodiment
of the invention are now presented. Figure 20 shows the main mechanical components
of the loop and jaw assembly, being: (11) a loop which 1s sutticiently tlexible in its plane
of operation — being the plane perpendicular to the major axis of the target produce; (12)
a housing for the loop to constrain the degrees of freedom of the loop to its plane of
operation; (13) a blade mounted statically w.r.t one side of the jaw; (14) one side of the
jaw, which may be sprung so as to allow stalks of various diameters to be gripped; (15)
the other side of the jaw, which forms the opposing side of grabbing mechanism and the
scissor-like cutting mechanism; (16) a drum, to which the loop 1s mounted, that by its
rotation extends or retracts the loop; and (17) a housing for the drum which constrains

the loop to move within the grooves of the drum.

These components (except 11 and 12) are displayed with greater clarity in the exploded

diagram, Figure 22.
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The loop 1tself (11) may be embodied in several different ways. In common they have the
properties that they are flexible in the plane of operation, and are resistant to plastic
deformation. This may be in the form of a single strand or multi-strand metal or plastic
wire, a series of static links joined such that adjoining links pivot about a common axis,
or a series of static links that overlap adjoining links and pivot about a flexible,

continuous member that is attached to each link.

The housing for the loop (12) 1s shown as a hollow tube. It i1s mounted statically w.r.t the
superstructure of the loop assembly. It has the properties that its inner surface has a low
coefticient of friction and that it has a cross sectional shape that matches that of the
loop. The housing may be made of plastic, rubber, or metal and may be reinforced with
strands of metal wire and may be lined with another material. It may also be in the form
of a grove cut within the superstructure of the loop assembly and may be of arbitrary

cross-sectional shape.

Components 16 and 17 constitute one embodiment of the actuation of the loop. It is
comprised of a drum (16) which rotates within a housing (17). Figure 18 shows detail of
the drum and its assembly within the housing. The drum has two grooves in its outer
circumference and the housing has matching grooves. When assembled these groves
constrain the movement of the loop to be static with respect to the drum and slide along
the inner circumference of the housing. In this embodiment the housing is shown
mounted perpendicular to the plane of operation of the loop. However, it may also be
mounted in the plane of operation of the loop so as to accommodate embodiments of
the loop that are inflexible in other planes (e.g. a series of pivoted links). The actuation
may have other embodiments for example a linear actuation that pulls the loop to retract

it and which 1s opposed by a sprung arm to extend it.

The jaws of the jaw assembly (14 and 15), may be constructed of acetal, for integrated
tlexure, or of less flexible material, either plastic or metal, and include a sprung and
pivoted subcomponent or have a rubberised inner surface to provide compliance. This
compliance is a necessary property of the jaw assembly to accommodate the gripping of
stalks of varying diameter with a gripping force of similar magnitude. The jaws are
mounted onto a superstructure about which they may pivot in 1 degree of freedom in the

same plane. They may be actuated in a variety of ways, one embodiment of which 1s a
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Bowden cable, another 1s by means of a servo motor driven toothed-gear. A blade (13) 1s
mounted rigidly to the compliant jaw (14) but this compliance 1s not static w.r.t the blade.
When the jaws are moved to the closed attitude the blade slides over the surtace of the

opposing jaw (15) creating a scissor-like cutting mechanism between them.

Miscellaneous innovations

Variations of the hook movement (Figure 15 item 5) may be used. E.g. rotation of the
hook along its major axis by approximately 90 degrees allows the hook itselt to be
approximately parallel to the produce stem, allowing for greater selectivity amongst stems
that are close to each other. This rotation is reversed before the gripping and cutting

actuation.

To increase the speed of picking, an end etfector holding picked fruit (or a part of the
end effector that is responsible for holding the fruit) may be detached and transterred to
another part of the machine, and another copy (or variation) of the end effector may be
used to pick more produce. In this way, picking can work in parallel with the storage or
disposal operations, thus increasing speed. Additionally, one of a variety of end effectors
may be selected according to which is best suited to the task of picking a particular item

of truit to be picked.

The hook and gripper may capture the produce into a smaller gripped pallet that may be
removed from the end etfector. This comprises the gripper part (Figure 11 Item 2)
along with the hook, a subset of the hook, or an additional part (that may fit inside the

hook as presented) that may be released from the machine.

The hook may be reconfigured to be a dual bifurcating hook, with gripper/cutter on
each side. This allows the capturing hook movement to be clockwise or counter

clockwise (a varration on Figure 15 item 5).

The blade may be in two places: above and below the gripper (separately actuated). By
twisting the hook through approximately 180 degrees before operation and using the
approprate blade, the hook movement may again be clockwise or counter clockwise
while still allowing the blade to be above the gripper, effecting correct holding of the

produce by the stem.
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Atfter picking, fruit may be lowered into an imaging chamber for grading purposes (see
the Quality Control section, above). It 1s usually desirable that the Picking Head can be
tilted downwards whilst holding the fruit in the imaging chamber (as illustrated in Figure
9) because otherwise the design of the imaging chamber would be compromised by the
need to avoid mechanical interference with the Picking Head. Therefore, for end
effectors that hold picked fruit by its stalk, a useful innovation 1s to have the surfaces that
contact the stalk oriented at an angle to the vertical direction when the Picking Head is
oriented such that there 1s no downwards tilt. This allows the picked fruit to hang

vertically when the picking head 1s pitched downwards compared to the horizontal.

The hook may be reshaped to be square, triangular, or other shapes. Instead of a hook, a
simple ‘L’ shape suftfices and allows for easier release of the fruit or other items during

the (optional) release stage (Figure 19, “Release”).

The cutter may be replaced with a less sharp blade, for a more scissor-like rather than

cutting action.

The gripper may be made of rubber (allowing use without a spring) or other materials,

and positioned above or below the hook, although this 1s less optimal for compactness.

The cross section of the hook may be varied. Generally, a flat inside surface 1s preferred

to ensure a reliable cutting action.

A related innovation is a hooking apparatus designed to allow the produce o be rotated
for more complete inspection at the pomt of deciding whether to pick (Figure 19). For
example by the mechanism of twisting its stem to allow the reverse ot the produce to be

imaged prior to commithing to picking.

Should the Picking Arm collide with immovable objects (e.g. infrastructure) during
picking, it may be able to stop automatically, for example by detecting that its intended
position 1s different to its actual position. However, the collision may still cause damage
to the arm or its end effector, or necessitate a time-consuming intervention by a human

supervisor to move the arm safely away from tangled obstacles. The probability of
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collision can be considerably reduced by designing the end etfector and its motion path
to minimize the volume of 3D space swept out whilst moving towards the target.
However, 1t 1s still possible that the front of the end effector may collide with an
immovable obstacle. In this event, the tollowing innovations significantly help to reduce
the likelthood of damage to the robot or to infrastructure and the requirement for human

intervention:

* The end effector may be designed to deform under compressive force. The Loop
design (above) self-evidently embodies this i1dea if the wire loop 1s sufticiently
deformable. If the Hook design 1s used, the hook can be designed to buckle
elastically or plastically if a sutticient compressive force 1s applied in the longitudinal
direction.

* By approaching target fruit by moving the end effector approximately in the direction
of the normal to the plane in which its cross-sectional area is minimized, the
probability that any obstacles will collide first with the deformable hook instead of
other non-deformable parts of the robot 1s increased.

* As an alternative to making the end effector deformable, a rigid end effector can be
mounted to a spring so that it will move backwards into the picking head if enough
torce 1s applied. Furthermore, a microswitch may be used to detect backwards
movement of the end effector so that the arm can stop moving (or reverse its
direction of motion) as soon as a collision occurs. The length and stiftness of the
spring should be calibrated so that the robot arm can stop harmlessly (and
subsequently reverse) before excessive force is applied to the obstacle.

¢ For the Hook embodiment, another useful innovation is to retract the hook into its

support when not actively picking to reduce the chances of snagging.
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Appendix B: A Rotary Cable Management System for a Robot Arm

In what follows, we describe an innovative solution to the problem of running various
types of cable through the articulating joints of robot arms. Here, bl should be
interpreted to mean any flexible object intended to guide matter or energy along its path,
either as a means of providing power or transmitting information or moving material.
This definition obviously includes (but is not limited to) electrical cables and wires,

optical fibres, and pipes.

An important challenge here 1s to allow a wide enough range of angular motion at each
joint. This 1s espectally important in robots that do not merely repeat pre-programmed
motion paths but instead determine dynamically where to move as a function of
observations of the environment. In the former case, it is usually possible to design the
motion paths so that the joints are never driven past their limits. But in the latter, the
desired motion path might not be predictable in advance. Sometimes it may not be
possible to move the robot arm directly from its current configuration to a desired target
pose because the range of motion at one or more joints is insufficient. When this
happens, it may be necessary to make a more complex ‘reconfiguration’ move so that the
joint in question is oriented further away from its end stop. However, reconfiguration
moves may be expensive in power or time, because they may require the robot to make
large moves at all joints. Increasing the range of motion at the joints, decreases the
probability that a reconfiguration move will be required for the robot to reach a new

target pose.

Design Requirements
Key design requirements for the rotary cable management system:

* Allows the joint to achieve large changes of rotation angle.

* Has high reliability (equates to low stress in the cable components and low reversal
of stress — which accelerates fatigue and plastic yield).

* (Capable of carrying complex cables — self-guided robots sense their environment and
act based on this, meaning high data rates are required to transfer enough

information for effective action, fast enough for efficient use of time. Typically, high
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data rates require either twisted pair cables or fibre optic, both of which are
particularly sensitive to twisting and cotling actions.

*  Compact - self-guided robotic systems that interact with their environment need a
small footprint to nimbly negotiate around the environment.

¢  Protected from the environment

Alternative solutions to these requirements are sub-optimal and include:

* Wik (or other wireless communications channel). However, limited network
bandwidth may make this difficult in environments where multiple robots are
working nearby and it is not a solution for transmitting power or conducting matter.

* Externally guided cables — this requires an ‘umbilical’ that can get caught and
damaged by the environment and severely limits the ability of the robot end etfector

to move with respect to the umbilical.
*  Optical data transmission and inductive power transfer - high cost.

* Slip rings (very high cost and size for reliable versions).

Description

Figure 28 shows the different elements of the cable management system. The system
consists of a cable enclosure (a) and a central cable guide (b) that twists relative to the
enclosure (c), allowing a coil of cable to expand and contract much like a clock spring as
the cable guide twists. The system may also be configured to support one or more coils

of cable (d).

Figure 29 shows drawings of the cable management system in situ within one of the
joints of an arm. The one or more cables run through articulating joints of the robot arm.
The cable guide 1s designed such that the cable 1s ducted away through the centre to the
next stage of the arm. The cable 1s well supported by the cable guide, so only the well-
defined coil of cable moves. This is illustrated in Figure 30 with a sequence of drawings
showing the cable guide rotating within the cable enclosure. This arrangement minimises
cyclical stresses on the cable as it never reverse-bends, but merely bends slightly more or
less, to accommodate the twist.

At one end, the twisting motion is limited by the coil pulling tight. At the other end, the

cable unwinds itself to the point where the inner-most section of cable starts to rub on
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the inside of the next coil and bend backwards (a form of capstan lock), rather than the
whole coil continuing to unwind. The design must be arranged such that there is
sufficient margin for error both in manufacture, assembly and operation, such that these

limits are never reached, to prolong the life of the cable.

Figure 31 shows a cutaway view of cable winding. When wound at one end of stroke the
cable 1s pulled tight and there are more windings; and at the other the cable is pushed out
to the edge of the enclosure and there are fewer windings. At both extremes (and
between them) the change of curvature of the cable remains low, so the strain rate and
tatigue seen by e.g. the copper and plastic components of the cable 1s low - giving a long
life for large overall displacements.

Specific innovations:

Use of the arrangement of a central cable guide and enclosure to define a coil of
cable that can accommodate relative twisting of one to the other with low fatigue of
the cable.

* Use of this arrangement with wires, electrical cable, optical fibres, fibre optic cables,
pipes, ribbon cables, individual cores.

* Use of this arrangement especially with "flat" twisted pair cable, which is ideally sized
to be flexible in one direction but self-supporting in the other direction, so forming a
stable coil

*  Multiple stacks of coils can be arranged on top of each other enabling many cables to
be managed in a similar footprint, with the cable guide ducting all cables away
through the central axis.

* The enclosure can be made to open and close easily to facilitate build of the cables.
Among the many ways of doing this is to include a hinge in the enclosure, and make
the enclosure out of many parts and build them around the coul.

* Shelves can be added between the cables to provide a smooth running-surface.

* (Can lubricate the cables to minimise wear and friction; with added lubricant, or using
inherently lubricious materals in the cable, or an added membrane coiled with the
cable to lubricate the surfaces.

* (Can also add an extra element to the central cable guide or inner-most section of

cable to reduce the angle of contact with the next coil along and prevent capstan

lock, thus increasing the stroke and reducing stress.
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Screened cables are often used in data lines to improve resistance to emission of
notse; however screened cables are often less flexible and available in fewer
configurations than unscreened. It 1s possible to benetit from the flexibility and wide
vartety of unscreened cables, while maintaining high integrity, by modifying this
assembly to perform the screening tunction.

Screening the assembly involves making the key components (enclosure, cable guide,
shelves) from metal, conductively-filled material (e.g. carbon-loaded plastic) or
conductively-coated material (e.g. metallised plastic), and earthing them; or by placing
the whole assembly within a conductive shell. Effective screening 1s likely to require
continuity of an earth between rotating halves of the assembly which can be
implemented in various ways including an earthing conductor in the coiled cable; by
adding conductive compliant surfaces to either the inner cable guide or enclosure,
(e.g. brushes or conductive compliant seal elements); and capacitive coupling, by
reducing the gaps between components to a minimum.

At low temperatures, cables often sufter degradation faster due to materials nearing
their glass transition temperatures. Low temperature operation ot this cable
management system can be achieved by using the cables themselves as heaters,
running current through them to keep them warm.

Can pump hot and cold fluid through pipes to control temperature.

Can make some or all components transparent for ease of fabrication, inspection,

and maintenance.
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Appendix C: Features Summary

This section summarises the most important high-level features; an implementation of
the invention may include one or more of these high-level features, or any combination
of any of these. Note that each feature is therefore potentially a stand-alone invention
and may be combined with any one or more other feature or features; the actual
invention defined in this particular specification is however defined by the appended

claims.

The high level teatures are organized into the following categories:

* Robot hardware features or core robot features
*  Operational optimization features

* End effector features

* Computer Vision features

* Al/machine learning features

* Picking process features

* Methods or applications

There 1s inevitably a degree of overlap between these features. This approach to
organising the features is therefore not meant to be a rigid demarcation, but merely a

general high level guide.

Robot hardware features or core robot features

In this section, we summarise features which are robot hardware features or cotre robot
teatures.  The primary feature is a robotic fruit picking system comprisingan

autonomous robot that includes the tollowing subsystems:

a positioning subsystem operable to enable autonomous positioning of the robot
using a computer implemented guidance system, such as a computer vision guidance
system;

at least one picking arm;

at least one picking head, or other type of end eftector, or other type of end



10

15

20

25

30

WO 2018/087546 069 PCT/GB2017/053367

effector, mounted on each picking arm to either cut a stem or branch for a specitic fruit
or bunch of fruits or pluck that fruit or bunch, and then transter the fruit or bunch;

a computer vision subsystem to analyse images of the fruit to be picked or
stored;

a control subsystem that is programmed with or learns picking strategies;

a quality control (QC) Subsystem to monitor the quality of fruit that has been
picked or could be picked and grade that fruit according to size and/or quality; and

a storage subsystem for recetving picked fruit and storing that fruit in containers

tor storage or transportation, or in punnets for retail.

Whilst the primary application for this system is in picking strawberries, raspberries and
tomatoes, this approach may be re-purposed outside of the fruit picking context. For
example, 1t may be used for litter picking or collecting other kinds of items. One can

therefore generalise the system as follows:

A robotic picking system comprising an autonomous robot that includes the following
subsystems:

a positioning subsystem operable to enable autonomous positioning of the robot
using a computer implemented guidance system, such as a computer vision guidance
system;

at least one picking arm;

at least one end effector, or other type of end effector, mounted on each picking
arm to pick or collect an item, and then transfer that item;

a computer vision subsystem to analyse images of the item to be picked or
stored;

a control subsystem that is programmed with or learns picking or collecting
strategies;

a quality control (QC) subsystem to monitor the item that has been
picked/collected or could be picked/collected; and

a storage subsystem for receiving picked/collected items and storing that item in

containers for storage or transportation.

There are multiple, optional features that can be used in such a system, or that could

constitute a stand-alone feature, that can be used independently of the system defined
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above. We list these as follows. Whilst we specitically reterence a fruit picking system,
all of the following features can be used outside of that context, for example for litter
collecting or indeed collecting other items; generalizing beyond fruit is explicitly

envisaged in all that follows, throughout this Appendix C.

A robotic fruit picking system that comprises a tracked or wheeled rover or vehicle

capable of navigating autonomously using a computer vision-based guidance system.

A robotic fruit picking system in which the computer vision subsystem comprises at least

one 3D stereo camera.

A robotic fruit picking system in which the computer vision subsystem that analyses fruit
images comprises image processing software for detecting a fruit, and the control
subsystem comprises software for deciding whether to pick the fruit and the optimal
strategy for picking the fruit, based on automatically updateable strategies, such as

reinforcement learning based strategies, including deep reinforcement learning.

A robotic fruit picking system in which the control subsystem automatically learns fruit

picking strategies using reinforcement learning.

A robotic fruit picking system in which the picking arm has 6 degrees-of-freedom.

A robotic fruit picking system in which the picking arm positions the end eftector and a

camera, each mounted on the picking arm.

A robotic fruit picking system in which the end effector comprises a means of (i) cutting
the fruit stalk or stem and (i1) gripping the cut stalk or stem to transfer the fruit to the

QC and storage subsystems.

A robotic fruit picking system in which the robot automatically loads and unloads itself

onto, and oft of, a storage container or a transport vehicle.
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A robotic fruit picking system in which the robot automatically navigates amongst fruit
producing plants, such as along rows of apple trees or strawberry plants, including table

grown strawberry plants, or raspberry plants.

A robotic fruit picking system in which the system automatically collaborates with other

robotic systems and human pickers to divide picking work etticiently.

A robotic fruit picking system in which the system automatically determines the

position, ortentation, and shape of a target fruit.

A robotic fruit picking system in which the system automatically determines whether a
truit 1s suitable for picking based on factors which are automatically updateable in the

quality control subsystem.

A robotic fruit picking system in which the end effector separates the edible and

palatable part of a ripe fruit from its stem or stalk without contacting the edible part.

A robotic fruit picking system in which the system automatically grades a fruit by size
and other measures of suitability that are programmed in to, or learnt by, the QC

subsystem.

A robotic fruit picking system in which the system automatically transfers a picked fruit
to a suitable storage container held in the storage subsystem without handling the edible
and palatable part of the fruit or other sensitive parts of the fruit that could be bruised by

handling.

A robotic fruit picking system in which the control subsystem minimises the risk of the
end ettector or other part of the robot damaging a fruit or plant on which the fruit grows

using machine learning based picking strategies.

A robotic fruit picking system in which the picking arm moves an attached camera to
allow the computer vision subsystem to locate target fruits and determine their pose and

suitability for picking.
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A robotic fruit picking system in which the picking arm is a light weight robotic arm with
at least some joints that exhibit a range of motion of +/- 275 degrees that positions the

end effector for picking and moves picked fruit to the QC subsystem.

A robotic fruit picking system in which the control subsystem operates the total

positioning system and the picking arm.

A robotic fruit picking system in which the control subsystem uses input from the
computer vision subsystem that analyses fruit images to decide where and when to move

the robot.

A robotic fruit picking system in which the QC subsystem is responsible for grading
picked fruit, determining its suitability for retail or other use, and discarding unusable

fruit.

A robotic fruit picking system in which the robot picks rotten or otherwise unsuitable
truit (either by accident or design), and then discards that fruit into a suitable container
within the robot or onto the ground, and that container is accessible via a discard chute
with its aperture positioned at the bottom of the QC rig so that the arm can drop the

truit immediately without the need to move to an alternative container.

A robotic fruit picking system in which positive or negative air pressure is induced in a
discard chute or an imaging chamber (e.g. using a fan) to ensure that fungal spores
coming from previously discarded fruit are kept away from healthy fruit in the imaging

chamber.
A robotic fruit picking system in which the system comprises one or more 6-axis light
weight robotic picking arms with some or all joints that exhibit a range of motion of +/-

275 degrees.

A robotic fruit picking system in which the system comprises two or more picking arms

and the picking arms are positioned asymmetrically on the robot.

A robotic fruit picking system in which the robot has tracks that are removable and the
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robot can run on rails if the tracks are removed.

A robotic fruit picking system in which the robot is equipped with fruit holding trays that

are suspension mounted.

A robotic fruit picking system in which the robot is equipped with fruit holding trays that
are mounted on movable arms that move from a first extended position to a second,

more compact position.

A robotic fruit picking system in which the robot is equipped with truit holding trays

arranged as two or more vertically oriented stacks.

A robotic fruit picking system in which the robot i1s powered from a remote power

source.

A robotic fruit picking system in which the robot has one or more lights (e.g. strobe

lights) that activate when a fruit tray or holder needs to be replaced.

A robotic fruit picking system in which a fast moving robot removes trays or holders

automatically from a slower moving robot that does the fruit picking,.

A robotic fruit picking system in which the robot has one or more lights (e.g. strobe
lights) that activate in response to a user input and shine an identifying signal above the

robot.

A robotic fruit picking system in which the system includes an imaging or analysis
chamber 1n which fruit is placed by the picking arm and 1s then imaged or analysed for

grading or quality control purposes.

A robotic fruit picking system in which the system includes an imaging or analysis
chamber in which fruit is imaged or analysed for grading or quality control purposes and
in which the imaging or analysis chamber includes an aperture and a chimney or cylinder

or lid or baftle on top of the imaging or analysis chamber’s aperture that 1s designed to
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block unwanted light from entering the chamber whilst still permitting fruit to be

lowered or passed into it.

A robotic fruit picking system in which the system includes an imaging or analysis
chamber in which fruit 1s imaged or analysed for grading or quality control purposes and
in which the imaging or analysis chamber includes one or more cameras and/or other
sensors, such as cameras sensitive to specific (and possibly non-visible) portions of the
EM spectrum including IR, (if) cameras and illuminators that use polarised light, and (i11)

sensors specific to particular chemical compounds that might be emitted by the fruit.)

A robotic fruit picking system in which the system includes a cable management system
tor cables that run through the articulating joints of a robot, the cable management
system including a cable enclosure and a central cable guide that twists relative to the

enclosure, allowing a coil or spiral of cable to expand and contract as the joints rotate.

The robot may include a picking arm made up of several individual rigid bodies, each
attached to another rigid body at an articulating joint, and there i1s a cable enclosure
associated with one or more of each of the articulating joints. The cable guide may be
contigured such that the cable 1s ducted away through the centre of the cable enclosure
to the next body. The cable management system may be configured to minimise the
change of local curvature of the cable as the articulating joints move through their full
range of motion. The cables may be unscreened and the enclosure then provides
screening. The cables may also serve to provide sufficient heat to reduce cable
degradation

A robotic fruit picking system in which the picking arm is adjustable and can be
repositioned to maximize picking efficiency for a particular crop variety or growing

system, such as for the height of a specific table top growing system.

A robotic fruit picking system in which the system is configured to perform several
tunctions in addition to picking, including the ability to spray weeds or pests with suitable
herbicides and pesticides, or to reposition or prune trusses to facilitate vigorous fruit

growth or subsequent picking,
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A robotic fruit picking system in which the robot estimates its position and orientation
with respect to a crop row by measuring its position and/or orientation displacement

relattve to a tensioned cable.

A robotic fruit picking system in which the robot estimates its position and orientation
with respect to a crop row by measuring its displacement relative to a tensioned cable

that runs along the row (a ‘vector cable’).

A robotic fruit picking system in which the robot includes one or more follower arms

that are mounted to follow the robot.

A robotic fruit picking system in which the follower arm is connected at one end to the
robot chassis by means of a hinged joint and at the other to a truck that runs along the

cable.

A robotic fruit picking system in which the angle at the hinged joint is measured to

determine the displacement relative to the cable.

A robotic fruit picking system in which the angle 1s measured from the resistance of a

potentiometer.

A robotic fruit picking system in which two follower arms are used to determine

displacement and orientation relative to the vector cable.

A robotic fruit picking system in which a computer vision guidance system measures the

displacement of the robot relative to the vector cable.

A robotic fruit picking system in which the computer vision system measures the
projected position of the cable in 2D images obtained by a camera mounted with known

position and orientation in the robot coordinate system.

A robotic truit picking system in which a bracket allows the vector cable to be attached

to the legs of tables on which crops grow.
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A robotic fruit picking system in which a truck is equipped with a microswitch

positioned so as to break an electrical circuit with the truck loses contact with the cable.

A robotic fruit picking system in which magnetic coupling is used to attach an outer
portion of the follower arm to an inner portion of the follower arm, such that in the
event of a failure or other event the portions of the follower arm can separate without

damage.

A robotic truit picking system in which the separation of an outer portion and an inner

portion of the follower arm triggers a control software to stop the robot.

Operational optimization features

In this section, we summarise features which contribute to the operational effectiveness

of the system.

A robotic fruit picking system in which the picking arm is controlled to optimize trade-

oft between picking speed and picking accuracy.

A robotic fruit picking system in which the control sub-system determines the suitability
of a specitic target fruit or bunch for picking via a particular approach trajectory by
determining the statistical probability that an attempt to pick that target will be

successful.

A robotic fruit picking system in which estimating the probability of picking success 1s
determined from images of the scene obtained from viewpoints near a particular target

fruit.

A robotic fruit picking system in which determining the statistical probability is based on

a multivariate statistical mode, such as Monte Carlo simulation.

A robotic fruit picking system in which the statistical model s trained and updated from

picking success data obtained by working robots.
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A robotic fruit picking system in which the control sub-system determines the
probability of collision between a picking arm and an object using an implicit 3D model
of the scene formed by the range of viewpoints from which a target fruit can be

observed without occlusion.

A robotic truit picking system in which the control sub-system determines one or more
viewpoints from which the target fruit appears un-occluded, and hence identifies an

obstacle free region of space.

A robotic fruit picking system in which the computer vision subsystem uses a statistical
prior to obtain a maximum likelthood estimate of the values of the shape parameters of a
target fruit and the system then calculates an estimate of the volume of that target, and
trom that estimates the weight of the target.

A robotic fruit picking system in which the computer vision subsystem determines the

truit’s size and shape.

A robotic truit picking system in which the computer vision subsystem determines the
truit's size and shape as a means of estimating the fruit’s mass and thereby of ensuring
that the require mass of fruit 1s placed in each punnet according to the requirements of

the intended customer for average or minimum mass per punnet.

A robotic fruit picking system in which picked fruit is automatically allocated into
specific punnets or containers based on size and quality measures of the picked fruit to
minimize the statistical expectation of total cost according to a metric of maximizing the

expected profitability for a grower.

A robotic fruit picking system in which a probability distribution describing the size of

picked fruits and other measures of quality 1s updated dynamically as fruit is picked.

A robotic fruit picking system in which the picking arm places larger strawberries in
punnets that are more distant from the base of the picking arm, in order to minimize the

number of time-consuming arm moves to distant punnets.
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A robotic fruit picking system in which the picking arm places selected fruits in a
separate storage container for subsequent scrutiny and re-packing by a human operator,
if the quality control subsystem identifies those selected fruits as requiring scrutiny by a

human operator.

A robotic fruit picking system in which the control subsystem implements a two-phase
picking procedure for bunches of fruit, in which first the entire bunch is picked and

second, unsuitable individual fruits are removed from it.

A robotic fruit picking system in which the robot measures the pose of the picked fruit,
so that the fruit can be positioned at the optimal pose for imaging or analysis or for

release at the optimal height to fall into a punnet or container.

A robotic fruit picking system in which the robot determines the position of other picked
fruit already in a punnet or container and varies the release position or height into the

punnet or container accordingly for new fruit to be added to the punnet or container.

A robotic fruit picking system in which the robot automatically positions or orients

picked fruit in a punnet or other container to maximize visual appeal.

A robotic fruit picking system in which the robot automatically generates a record of the
quality or other properties of a fruit in a specific punnet and adds a machine readable

image to that punnet that is linked back to that record.

A robotic fruit picking system in which the robot chooses paths within free regions of
the ground so as to distribute routes over the surface of the ground in a way the

optimizes the trade oft between journey time and damage to the ground.

A robotic fruit picking system in which a chain of several robots automatically follow a

single “lead’ robot that is driven under human control.

A robotic fruit picking system in which information about the position of several robots
and the urgency of any fault condition, or impending fault condition, affecting one or

more robots 1s used to plan a human supervisor’s route amongst them.
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A robotic fruit picking system in which the position of the robot with respect to target
truit 1s controlled to optimize picking performance, such as minimizing expected picking

time.

A robotic fruit picking system in which collision-tree paths or obstacle free trajectories
are identified in advance of run-time by physical simulation of the motion of the robot
between one or more pairs of points in the contiguration space, thereby defining a graph
(or ‘route map’) in which the nodes correspond to contigurations (and associated end

effector poses) and edges correspond to valid routes between configurations.

A robotic fruit picking system in which a robot arm path planning is built by mapping
between regions of space (‘voxels’) and edges of a route map graph corresponding to
configuration space paths that would cause the robot to intersect that region during

some ot all of its motion,

A robotic fruit picking system in which the system logs undesirable conditions in the
environment that might require subsequent human intervention along with a map

coordinate.

A robotic fruit picking system in which the system stores locations of all detected fruit

(whether ripe or unripe) in computer memory in order to generate a yield map.

A robotic fruit picking system which the yield map enables a tarmer to identity problems

such as disease or under- or over-watering.

A robotic fruit picking system in which the system stores a map coordinate system

position of unripe fruits that have been detected but not picked in computer memory.

A robotic fruit picking system in which the yield map takes into account the impact on

time on the ripeness of previously unripe fruits.
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A robotic fruit picking system in which the system measures the degree to which the
robot 1s leaning over and compensates for the degree of lean by adapting models of the

scene’s geometry and camera viewpoints accordingly.

A robotic fruit picking system in which the system includes an accelerometer.

A robotic fruit picking system in which the degree of lean is directly measured using the
accelerometer or indirectly by measuring the position of a part of the robot in a

coordinate frame based on the crop row.

A robotic fruit picking system in which an appropriate 3D to 3D transtormation required

to correct for the lean 1s applied to pre-defined camera poses and environment geometry.

A robotic fruit picking system in which the lateral position of the robot’s tracks in the
row 1s dynamically adjusted so that the picking arms are closer to their design position

despite the lean.

A robotic fruit picking system in which oscillations of a fruit caused by picking the fruit

are reduced by damping achieved by a soft gripper.

A robotic fruit picking system in which oscillations of a fruit caused by picking the fruit
are reduced by damping achieved by modulating the acceleration or velocity or

movement of the robot arm’s end-effector.

A robotic fruit picking system in which the system estimates the mass and pendulum

length of the fruit.
A robotic fruit picking system in which the system designs a deceleration or acceleration

profile (dynamically or otherwise) required to minimize the amplitude or duration of

oscillations.

End effector features
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In this section, we summarise features which relate to the end effector; we refer to the

end effector as the ‘end effector’.

A robotic fruit picking system in which the end effector uses at least the following
phases:

(1) a selection phase during which the target fruit is physically partitioned or separated
from the plant or tree and/or other fruits growing on the plant/tree and/or growing
infrastructure and

(1) a severing phase during which the target truit 1s permanently severed from the

plant/tree.

A robotic fruit picking system in which the end eftector includes a hook.

A robotic fruit picking system in which the fruit is moved away trom its original growing

position during the selection phase.

A robotic fruit picking system in which a decision phase 1s introduced after the selection

phase and before the severing phase.

A robotic fruit picking system in which the decision phase includes rotation of the fruit

by its stem or otherwise.

A robotic fruit picking system in which the decision phase 1s used to determine whether

or not to sever the fruit, or the manner in which the fruit should be severed.

A robotic fruit picking system in which the selection phase 1s made reversible.

A robotic fruit picking system in which the reversibility 1s accomplished by a change of

shape of the hook.

A robotic fruit picking system in which the reversibility 1s accomplished by movement or

rotation of the hook.

A robotic fruit picking system in which the system 1s capable of simultaneously gripping

and cutting the stem of a target fruit.
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A robotic fruit picking system in which the system includes multiple picking units located

on a single multiplexed end etfector.

A robotic truit picking system in which multiple picking functions on a picking unit are
driven oft a single actuator or motor, selectively engaged by lightweight means, such as:

electromagnets, an engaging pin, rotary tab, or similar.

A robotic fruit picking system in which a single motor or actuator drives one function
across all units on the head, selectively engaged by means such as: an electromagnet, an

engaging pin, rotary tab, or similar.
gaging p ry

A robotic fruit picking system in which the functions are driven by lightweight means
tfrom elsewhere in the system, such as using: a bowden cable, torsional drive

cable/spring, pneumatic or hydraulic means.

A robotic fruit picking system in which the end effector pulls the target fruit away from
the plant in order to determine the fruit’s suitability for picking before the fruit is

permanently severed from the plant.

A robotic fruit picking system in which the end effector comprises a hook with a

dynamically programmable trajectory.

A robotic fruit picking system in which the end effector uses at least the following
phases:

(1) a selection phase during which the target fruit is physically partitioned or
separated from the tree and/or other fruits growing on the tree and/or growing
infrastructure;

(11) a severing phase during which the target fruit is permanently severed from the
tree; and

in which the selection and severing phases are performed by the actuation of a
loop, wherein the loop diameter, position and orientation are programmatically

controlled.
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A robotic fruit picking system in which the end effector uses at least the following
phases:

(1) a selection phase during which the target fruit is physically partitioned or
separated from the tree and/or other fruits growing on the tree and/or growing
infrastructure;

(11) a severing phase during which the target fruit is permanently severed from the
tree; and

and in which the selection and severing phases are performed by a set of jaws,

wherein the jaws diameter and position are programmatically controlled.

A robotic truit picking system in which the jaw attitude such as opened, partially closed

or closed 1s programmatically controlled.

Computer Vision features

In this section, we summarise features which relate to the computer vision system used

for autonomous navigation and the computer vision subsystem used for fruit imaging.

A robotic fruit picking system in which the computer vision based system is used in
order to determine heading and lateral positions of the robot with respect to a row of
crops using images obtained by a forwards or backwards facing camera pointing

approximately along the row.

A robotic fruit picking system in which the computer vision based subsystem detects a
target fruit and in which the robot includes an end effector wherein part of the end

effector is used as an exposure control target.

A robotic fruit picking system in which the control system software uses lighting
conditions inferred or derived from the weather forecast as an mnput to the control

subsystem or computer vision subsystem to control picking strategies or operations.
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A robotic fruit picking system in which the computer vision based subsystem detects a
target fruit and a end effector s able to physically separate a candidate fruit further from

the plant and other fruits in the bunch before picking.

A robotic fruit picking system in which mirrors are positioned and oriented to provide

multiple virtual views of the fruit.

A robotic fruit picking system in which the computer vision based system obtains
multiple images of a target fruit under different lighting conditions and infers

information about the shape of the target fruit.

A robotic fruit picking system in which the computer vision based subsystem uses an

image segmentation technique to provide an indication of a fruit health.

A robotic fruit picking system in which the computer vision based subsystem detects the
positions or points of the fruit achenes or drupelets and assigns a cost to those positions
or the arrangement of those positions using an energy function that assigns a lowest

energy to regularly arranged positions.

A robotic fruit picking system in which a semantic labelling approach 1s used to detect

achenes, such as a decision forest classifier.

A robotic fruit picking system in which the sum of costs over points provides an

indication of fruit health.

A robotic fruit picking system in which the indication of the truit health is provided from
analysing one or more of the following: colour of the achenes, colour of the tlesh of the

truit or 3D shape of the fruit.

A robotic fruit picking system in which a neural network or other machine learning
system, trained from a database of existing images with associated expert-derived ground

truth labels, is used.

A robotic fruit picking system in which the computer vision based subsystem 1s used to

classify a fruit, and in which the system allows a grower to adjust thresholds for
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classifying the fruit.

A robotic fruit picking system in which the computer vision based subsystem locates
specific parts of a plant or specific plants that require a targeted localized application of

chemicals such as herbicides or pesticides.

A robotic fruit picking system in which the computer vision based subsystem detects

instances of specific kinds of pathogen such as: insects, dry rot, wet rot.

A robotic fruit picking system in which the computer vision subsystem detects drupelets
or achenes using specularities induced on the surface of a fruit by a single point light

source.

A robotic fruit picking system in which an end eftector is used for picking and another

end effector 1s used for spraying.

A robotic fruit picking system in which an end effector is a spraying end effector that

contains a small reservoir of liquid chemical.

A robotic fruit picking system in which the picking arm visits a station on the chassis to

gather a cartridge of chemicals.
A robotic fruit picking system in which the picking arm visits a cartridge in the chassis to
suck the required liquid chemicals from a cartridge into its reservoir or to expel unused

chemical from its reservoir back into a cartridge.

A robotic fruit picking system in which several different types of chemical are combined

in dynamically programmable combination to achieve more optimal local treatment.

A robotic fruit picking system in which multiple cartridges contain multiple different

chemical combinations.

Al/machine learning features
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In this section, we summarise features which relate to Al or machine learning features.

A robotic fruit picking system in which a machine learning approach is used to train a

detection algorithm to automatically detect a target fruit.

A robotic fruit picking system in which the system identifies fruit in RGB color images

obtained by a camera.

A robotic fruit picking system in which the system identifies fruit in depth images

obtained by dense stereo or otherwise.

A robotic fruit picking system in which the training data is a dataset in which the position
and orientation of target fruit 1s annotated by hand in mmages of plants that are

representative of those likely to be obtained by the camera.

A robotic fruit picking system in which a detection algorithm is trained to perform

semantic segmentation on the images captured by the camera.

A robotic fruit picking system in which the semantic segmentation labels each image

pixels such as ripe fruit, unripe fruit or other object.

A robotic fruit picking system in which a clustering algorithm aggregates the results of

the semantic segmentation.

A robotic fruit picking system in which the machine learning approach is a decision

forest classifier.

A robotic fruit picking system in which the machine learning approach is a convolutional

neural network.

A robotic fruit picking system in which a convolutional neural network is trained to
distinguish image patches containing a target fruit at their center from image patches that

do not.
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A robotic fruit picking system in which a sliding window approach 1s used to determine

the positions of all images likely to contain a target fruit.

A robotic fruit picking system in which a semantic segmentation is used to identify the
likely image locations of a target fruit for subsequent more accurate classification or pose

determination by a CNN or other form of inference engine.

A robotic fruit picking system in which a machine learning approach with a regression
model 1s used to predict the angles describing the orientation of approximately

rotationally symmetric fruit from images, including monocular, stereo and depth images.

A robotic fruit picking system in which a machine learning approach is used to train a

detection algorithm to identify and delineate stalks in images captured by a camera.

A robotic fruit picking system in which a machine learning approach is used to train a
prediction algorithm to predict how much improvement to an initial pose estimate for a

target fruit is likely to be revealed by a given additional viewpoint.

A robotic fruit picking system in which the system predicts which additional information,
including which viewpoints out of a set of available viewpoints, is likely to be the most

valuable, including the most beneticial to overall productivity.

A robotic fruit picking system in which the additional information s the location or

point where the stalk attaches to the target fruit.

A robotic fruit picking system in which the additional information is the knowledge that

the fruit is visible without occlusion from a particular viewpoint.

A robotic fruit picking system in which the additional information is the knowledge that
the space between the camera and the fruit is free of obstacles from a particular

viewpoint.
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A robotic fruit picking system in which the system recovers a 3D shape of a target fruit
trom one or more images of the target fruit obtained from one or more viewpoints, and

in which a generative model of the target fruit’s image appearance is used.

A robotic fruit picking system in which a geometric and/or photometric model fitting
approach is used to predict the surface appearance of a target fruit as well as the shadows

cast by the target fruit onto itself under ditferent, controlled lightning conditions.

A robotic fruit picking system in which the cost function, namely the measure of
agreement between images, 1s made robust to occlusion or the fruit is physically

separated from sources of occlusion.

A robotic fruit picking system in which a machine learning approach is used to train a
labeling algorithm to automatically assign a label to an image captured by the system,

wherein pre-labeled images provided by human experts are used to train the system.

A robotic fruit picking system in which labelling data provided by human experts 1s used
to train a machine learning system to assign quality labels automatically to newly picked
truit, by training an image classifier with training data comprising (1) images of the picked
truit obtained by the QC subsystem and (i) associated quality labels provided by the

human expert.

A robotic fruit picking system in which the control policy subsystem is trained via

reinforcement learning while the robot is operating,.

A robotic fruit picking system in which the control subsystem is trained via
reinforcement learning, and wherein training 1s done by simulating the movements of the
robot using images of the real-world environment captured amongst available

viewpoints.
A robotic fruit picking system in which the control system is trained to predict picking
success via reinforcement learning, and in which training is done in a simulated picking

environment.

A robotic fruit picking system in which the system 1s trained to predict picking success
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via reinforcement learning, in which a predictor of picking success 1s to ensure that the
predicted path of the end effector sweeps through a 3D volume that encompasses the

target stalk but not other stalks.

A robotic fruit picking system in which the control subsystem is trained via

reinforcement learning that includes actions carried out by human operators.

A robotic fruit picking system in which a machine learning approach is used to train a

model to predict yield forecast.

A robotic fruit picking system in which the system records a map coordinate system
location along with an image of all detected fruit and the recorded data is used to train a

model to estimate a crop yield forecast.

A robotic fruit picking system in which the system uses picking success data obtained by
working robots to learn and refine the parameters of a dynamically updateable statistical

model for estimating picking success probability.

Picking process features

In this section, we summarise features which relate to the picking process used by the

system.

A robotic fruit picking system in which the system is operable to cut the stem of a fruit,
in which the fruit 1s picked by first severing and gripping its stem, and the body of the

truit is removed from its stem in a subsequent operation.

A robotic fruit picking system in which the system 1s operable to sever the fruit from its
stem using a jet of compressed air, without requiring the handling of the body of the

fruit.

A robotic fruit picking system in which the robot includes a collar, shaped to facilitate

torcing the body of the fruit off the stem.
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A robotic fruit picking system in which the system 1s operable to sever the stem from its
truit by using the inertia of the body of the target fruit to separate the body of the fruit

from its stem.

A robotic fruit picking system in which the system is operable to cut or sever the stalk of
a fruit using a reciprocating back-and-torth motion of the fruit in the direction
approximately perpendicular to its stalk or an oscillatory rotary motion with an axis of

rotation approximately parallel to the stalk.

A robotic fruit picking system in which a path planning algorithm 1s used to model
obstacles as probabilistic models of scene space occupancy by different types of obstacle

with different material properties.

A robotic fruit picking system in which the end effector 1s operable to cut the stem of a
truit, in which the system includes a deformable end effector that is designed to deform

under compressive force.

A robotic fruit picking system in which the system is operable to cut the stem of a fruit

without handling the body of the fruit.

A robotic fruit picking system in which the robot i1s operable at night with a computer
vision system that operates at night, and picks fruit when they are cooler and hence

tirmer to minimize bruising.

A robotic fruit picking system in which the end etfector is operable to cut a fruit stem

cleanly and without tearing to increase fruit productivity.

A robotic fruit picking system in which the quality control subsystem predicts the tlavour
or quality of a fruit and places the fruit in a specitic storage container according to the

tflavour or quality prediction.

A robotic fruit picking system in which the prediction of the flavour or quality ot a fruit

depends on the analysis of a growth trajectory data measured over time for the fruit.
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Methods or applications

In this section, we summarise features which relate to methods or applications of the

system.

A method of optimizing fruit yield prediction by imaging each fruit using the robotic

truit picking system defined above, to determine ripeness or suitability for picking.

A method of optimizing fruit yield mapping across a fruit farm or multiple fruit farms, by
imaging each fruit using the robotic fruit picking system defined above, to determine

ripeness or suitability for picking.

A method of maximizing fruit shelf life by using the robotic truit picking system defined

above.

A method of selectively storing or punnetising the fruit with the optimal flavor or quality

by using the robotic fruit picking system detined above.

A final aspect 1s the fruit when picked using the robotic fruit picking system defined
above. The fruit can be strawberries, including strawberries grown on a table. The fruit
can be raspberries. The fruit can be apples, or pears, or peaches, or grapes, plums,

cherries, or olives or tomatoes.
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Note

It is to be understood that the above-reterenced arrangements are only illustrative of the
application for the principles of the present invention. Numerous modifications and
alternative arrangements can be devised without departing from the spirit and scope of
the present invention. While the present invention has been shown in the drawings and
tully described above with particulanity and detail in connection with what is presently
deemed to be the most practical and preferred example(s) of the invention, it will be
apparent to those of ordinary skill in the art that numerous modifications can be made

without departing from the principles and concepts of the invention as set forth herein.
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CLAIMS

1. A robotic fruit picking system comprising an autonomous robot that includes the
tollowing subsystems:

a positioning subsystem operable to enable autonomous positioning of the robot
using a computer implemented guidance system, such as a computer vision guidance
system;

at least one picking arm;

at least one picking head or other type of end etfector, mounted on each picking
arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that
fruit or bunch, and then transfer the fruit or bunch;

a computer vision subsystem to analyse images of the fruit to be picked or
stored;

a control subsystem that is programmed with or learns picking strategies;

a quality control (QC) subsystem to monitor the quality of fruit that has been
picked or could be picked and grade that fruit according to size and/or quality; and

a storage subsystem for recetving picked fruit and storing that fruit in containers

for storage or transportation, or in punnets for retail.

2. The robotic fruit picking system of Claim 1 in which the system further comprises
a tracked or wheeled rover or vehicle capable of navigating autonomously using a

computer vision-based guidance system.

3. The robotic fruit picking system of any preceding Claim in which the computer

vision subsystem comprises at least one 3D stereo camera.

4. The robotic fruit picking system of any preceding Claim in which the computer
vision subsystem that analyses fruit images comprises image processing software for
detecting a fruit, and the control subsystem comprises software for deciding whether to
pick the fruit and the optimal strategy for picking the fruit, based on automatically

updateable strategies, such as reinforcement learning based strategies.

5. The robotic fruit picking system of any preceding Claim in which the control

subsystem automatically learns fruit picking strategies using reinforcement learning,
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6. The robotic fruit picking system of any preceding Claim in which the picking arm

has 6 degrees-of-freedom.

7. The robotic fruit picking system of any preceding Claim in which the picking arm

positions the end effector and a camera, each mounted on the picking arm.

8. The robotic fruit picking system of any preceding Claim in which the end
effector comprises a means of (1) cutting the fruit stalk or stem and (1) gripping the cut

stalk or stem to transfer the fruit to the QC and storage subsystems.

9. The robotic fruit picking system of any preceding Claim in which the robot
automatically loads and unloads itself onto, and oft of, a storage container or a transport

vehicle.

10. The robotic fruit picking system of any preceding Claim in which the robot
automatically navigates amongst fruit producing plants, such as along rows of apple trees

or strawberry plants, including table grown strawberry plants, or raspberry plants.

11. The robotic fruit picking system of any preceding Claim in which the system
automatically collaborates with other robotic systems and human pickers to divide

picking work efficiently.

12. The robotic fruit picking system of any preceding Claim in which the system

automatically determines the position, orientation, and shape of a target fruit.

13. The robotic fruit picking system of any preceding Claim in which the system
automatically determines whether a fruit is suitable for picking based on factors which

are automatically updateable in the quality control subsystem.

14. The robotic truit picking system of any preceding Claim in which the end
effector separates the edible and palatable part of a ripe fruit from its stem or stalk

without contacting the edible part.
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15. The robotic fruit picking system of any preceding Claim in which the system
automatically grades a fruit by size and other measures of suitability that are programmed

in to, or learnt by, the QC subsystem.

16. The robotic fruit picking system of any preceding Claim in which the system
automatically transters a picked fruit to a suitable storage container held in the storage
subsystem without handling the edible and palatable part of the fruit or other sensitive

parts of the fruit that could be bruised by handling.

17. The robotic fruit picking system of any preceding Claim in which the control
subsystem minimises the risk of the end effector or other part of the robot damaging a

truit or plant on which the fruit grows using machine learning based picking strategies.

18. The robotic fruit picking system of any preceding Claim in which the picking arm
moves an attached camera to allow the computer vision subsystem to locate target fruits

and determine their pose and suitability for picking.

19. The robotic fruit picking system of any preceding Claim in which the picking arm
is a light weight robotic arm with at least some joints that exhibit a range of motion of
+/- 275 degrees that positions the end effector for picking and moves picked fruit to the

QC subsystem.

20. The robotic fruit picking system of any preceding Claim in which the control

subsystem operates the total positioning system and the picking arm.

21. The robotic fruit picking system of any preceding Claim in which the control
subsystem uses nput from the computer vision subsystem that analyses fruit images to

decide where and when to move the robot.

22. The robotic truit picking system of any preceding Claim in which the QC
subsystem is responsible for grading picked fruit, determining its suitability for retail or

other use, and discarding unusable fruit.
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23. The robotic fruit picking system of any preceding Claim in which the robot picks
rotten or otherwise unsuitable fruit and then discards that fruit into a suitable container
within the robot or onto the ground, and that container is accessible via a discard chute
with its aperture positioned at the bottom of the QC subsystem so that the picking arm

can drop the fruit immediately without the need to move to an alternative container.

24. The robotic fruit picking system of any preceding Claim in which positive or
negative air pressure s induced in a discard chute or an imaging chamber to ensure that
tungal spores coming from previously discarded fruit are kept away from healthy fruit in

the imaging chamber.

25. The robotic fruit picking system of any preceding Claim in which the system
comprises one or more 6-axis light weight robotic picking arms with some or all joints

that exhibit a range of motion of +/- 275 degrees.

26. The robotic fruit picking system of any preceding Claim in which the system
comprises two or more picking arms and the picking arms are positioned asymmetrically

on the robot.

27. The robotic fruit picking system of any preceding Claim in which the robot has

tracks that are removable and the robot can run on rails if the tracks are removed.

28.  The robotic fruit picking system of any preceding Claim in which the robot is

equipped with fruit holding trays that are suspension mounted.

29. The robotic fruit picking system of any preceding Claim in which the robot s
equipped with fruit holding trays that are mounted on movable arms that move from a

tirst extended position to a second, more compact position.

30. The robotic fruit picking system of any preceding Claim in which the robot is

equipped with fruit holding trays arranged as two or more vertically oriented stacks.

31. The robotic fruit picking system of any preceding Claim in which the robot is

powered from a remote power source.
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32. The robotic fruit picking system of any preceding Claim in which the robot has

one or more lights that activate when a truit tray or holder needs to be replaced.

33. The robotic fruit picking system of any preceding Claim in which a fast moving
robot removes trays or holders automatically from a slower moving robot that does the

truit picking.

34. The robotic fruit picking system of any preceding Claim in which the robot has
one or more lights that activate in response to a user input and shine an identifying signal

above the robot.

35. The robotic fruit picking system of any preceding Claim in which the system
includes an imaging or analysis chamber in which fruit 1s placed by the picking arm and 1s

then imaged or analysed for grading or quality control purposes.

36. The robotic fruit picking system of any preceding Claim in which the system
includes an imaging or analysis chamber in which fruit is imaged or analysed for grading
or quality control purposes and in which the imaging or analysis chamber includes an
aperture and a chimney or cylinder or lid or baftle on top of the imaging or analysis
chamber’s aperture that is designed to block unwanted light tfrom entering the chamber,

whilst still permitting fruit to be lowered or passed into it.

37. The robotic fruit picking system of any preceding Claim in which the system
includes an imaging or analysis chamber in which fruit is imaged or analysed for grading
or quality control purposes and in which the imaging or analysis chamber includes one or
more cameras and/or other sensors, such as cameras sensitive to specific (and possibly
non-visible) portions of the EM spectrum including IR, (i) cameras and illuminators that
use polarised light, and (i11) sensors specific to particular chemical compounds that might

be emitted by the fruit.)

38. The robotic fruit picking system of any preceding Claim in which the system
includes a cable management system for cables that run through the articulating joints of

a robot, the cable management system including a cable enclosure and a central cable
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guide that twists relative to the enclosure, allowing a coil or spiral of cable to expand and

contract as the joints rotate.

39. The robotic truit picking system of claim 38 in which the robot includes a picking
arm made up of several individual rigid bodies, each attached to another rigid body at an
articulating joint, and there 1s a cable enclosure associated with one or more of each of

the articulating joints."

40. The robotic fruit picking system of Claim 38 - 39 in which the cable guide s
contigured such that the cable 1s ducted away through the centre of the cable enclosure

to the next body.

41. The robotic fruit picking system of Claim 38 - 40 in which the cable management
system 1s configured to minimise the change of local curvature of the cable as the

articulating joints move through their full range of motion.

42. The robotic fruit picking system of Claim 38 - 41 in which the cables are

unscreened and the enclosure provides screening.

43, The robotic truit picking system of Claim 38 - 42 in which the cables also serve to

provide sufticient heat to reduce cable degradation.

44. The robotic fruit picking system of any preceding Claim in which the picking arm
1s adjustable and can be repositioned to maximize picking efticiency for a particular crop

variety or growing system, such as for the height of a specific table top growing system.

45. The robotic truit picking system of any preceding Claim in which the system s
configured to perform several functions in addition to picking, including the ability to
spray weeds or pests with suitable herbicides and pesticides, or to reposition or prune

trusses to facilitate vigorous fruit growth or subsequent picking.

46. The robotic fruit picking system of any preceding Claim in which the robot
estimates its position and orientation with respect to a crop row by measuring its

position and/or orientation relative to a tensioned cable.
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47. The robotic fruit picking system of any preceding Claim in which the robot
estimates its position and orientation with respect to a crop row by measuring its

displacement relative to a tensioned cable that runs along the row (a ‘vector cable’).

48. The robotic fruit picking system of any preceding Claim in which the robot

includes one or more follower arms that are mounted to follow the robot.

49, The robotic fruit picking system of Claim 48 i which the follower arm is
connected at one end to the robot chassis by means of a hinged joint and at the other to

a truck that runs along the cable.

50. The robotic fruit picking system of Claim 49 in which the angle at the hinged

joint 1s measured to determine the displacement relative to the cable.

51. The robotic fruit picking system of Claim 49 - 50 in which the angle is measured

trom the resistance of a potentiometer.

52. The robotic fruit picking system of Claim 48 - 51 in which two follower arms are

used to determine displacement and orientation relative to the vector cable.

53. The robotic fruit picking system of Claim 46 - 52 in which a computer vision

guidance system measures the displacement of the robot relative to the vector cable.

54. The robotic fruit picking system of Claim 47 - 53 in which the computer vision
system measures the projected position of the cable in 2D images obtained by a camera

mounted with known position and orientation in the robot coordinate system.

55. The robotic fruit picking system of Claim 47 - 54 in which a bracket allows the

vector cable to be attached to the legs of tables on which crops grow.

56. The robotic truit picking system of Claim 49 - 55 in which the truck is equipped
with a microswitch positioned so as to break an electrical circuit with the truck loses

contact with the cable.
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57. The robotic fruit picking system of Claim 48 - 56 in which magnetic coupling is
used to attach an outer portion of the follower arm to an inner portion of the follower
arm, such that in the event of a failure or other event the portions of the follower arm

can separate without damage.

58. The robotic fruit picking system of Claim 48-57 in which the separation of an
outer portion and an inner portion of the follower arm triggers a control software to stop

the robot.

59. The robotic fruit picking system of any preceding Claim in which the picking arm

1s controlled to optimize trade-ott between picking speed and picking accuracy.

60. The robotic fruit picking system of any preceding Claim in which the control
sub-system determines the suitability of a specific target fruit or bunch for picking via a
particular approach trajectory by determining the statistical probability that an attempt to

pick that target will be successtul.

61. The robotic fruit picking system of Claim 60 in which estimating the probability
of picking success i1s determined from images of the scene obtained from viewpoints

near a particular target fruit.

62. The robotic fruit picking system of Claim 60 - 61 in which determining the
statistical probability 1s based on a multivariate statistical mode, such as monte carlo

stmulation.

63. 'The robotic fruit picking system of Claim 62 in which the statistical model is

trained and updated from picking success data obtained by working robots.

64. The robotic fruit picking system of any preceding Claim in which the control sub-
system determines the probability of collision between a picking arm and an object using
an 1mplicit 3D model of the scene formed by the range of viewpoints from which a

target fruit can be observed without occlusion.
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65. The robotic fruit picking system of any preceding Claim in which the control
sub-system determines one or more viewpoints from which the target fruit appears un-

occluded, and hence identifies an obstacle free region of space.

66. The robotic fruit picking system of any preceding Claim in which the computer
vision subsystem uses a statistical prior to obtain a maximum likelthood estimate of the
values of the shape parameters of a target fruit and the system then calculates an estimate

of the volume of that target, and from that estimates the weight of the target.

67. The robotic fruit picking system of any preceding Claim in which the computer

vision subsystem determines the fruit’s size and shape.

68. The robotic fruit picking system of any preceding Claim in which the computer
vision subsystem determines the fruit’s size and shape as a means of estimating the fruit’s
and thereby of ensuring that the require mass of fruit 1s placed in each punnet according

to the requirements of the intended customer for average or minimum mass per punnet.

69. The robotic fruit picking system of any preceding Claim in which picked fruit 1s
automatically allocated into specific punnets (or containers) based on size and quality
measures of the picked fruit to minimize the statistical expectation of total cost according

to a metric of maximizing the expected profitability for a grower.

70. The robotic fruit picking system of any preceding Claim in which a probability
distribution describing the size of picked fruits and other measures of quality is updated

dynamically as fruit 1s picked.

71. The robotic fruit picking system of any preceding Claim in which the picking
armplaces larger strawberries in punnets that are more distant from the base of the
picking arm, in order to minimize the number of time-consuming arm moves to distant

punnets.

72. The robotic fruit picking system of any preceding Claim in which the picking arm

places selected fruits in a separate storage container for subsequent scrutiny and re-
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packing by a human operator, if the quality control subsystem identities those selected

truits as requiring scrutiny by a human operator.

73. The robotic fruit picking system of any preceding Claim in which the control
subsystem implements a two-phase picking procedure for bunches of fruit, in which first

the entire bunch is picked and second, unsuitable individual fruits are removed from it.

74. The robotic fruit picking system of any preceding Claim in which the robot
measures the pose of the picked fruit, so that the fruit can be positioned at the optimal
pose for imaging or analysis or for release at the optimal height to fall into a punnet or

contatnet.

75. The robotic fruit picking system of any preceding Claim in which the robot
determines the position of other picked fruit already in a punnet or container and varies
the release position or height into the punnet or container accordingly for new fruit to be

added to the punnet or container.

76. The robotic fruit picking system of any preceding Claim in which the robot
automatically positions or orients picked fruit in a punnet or other container to maximize

visual appeal.

77. The robotic fruit picking system of any preceding Claim in which the robot
automatically generates a record of the quality or other properties of a fruit in a specific
punnet and adds a machine readable image to that punnet that is linked back to that

record.

78.  The robotic fruit picking system of any preceding Claim in which the robot
chooses paths within free regions of the ground so as to distribute routes over the
surface of the ground in a way the optimizes the trade off between journey time and

damage to the ground.

79.  The robotic fruit picking system of any preceding Claim in which a chain of several

robots automatically follow a single “lead’ robot that 1s driven under human control.
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80. The robotic fruit picking system of any preceding Claim in which information
about the position of several robots and the urgency of any fault condition, or impending
fault condition, affecting one or more robots is used to plan a human supervisot’s route

amongst them.

81. The robotic fruit picking system of any preceding Claim in which the position of
the robot with respect to target fruit is controlled to optimize picking performance, such

as minimizing expected picking time.

82. The robotic fruit picking system of any preceding Claim in which collision-free
paths or obstacle free trajectories are identified in advance of run-time by physical
simulation of the motion of the robot between one or more pairs of points in the
configuration space, thereby detining a graph (or ‘route map’) in which the nodes
correspond to configurations (and associated end effector poses) and edges correspond

to valid routes between configurations.

83. The robotic fruit picking system of any preceding Claim in which a robot arm
path planning is built by mapping between regions of space (‘voxels’) and edges of a
route map graph corresponding to configuration space paths that would cause the robot

to intersect that region during some or all of its motion.

84. The robotic fruit picking system of any preceding Claim in which the system logs
undesirable conditions in the environment that might require subsequent human

intervention along with a map coordinate.

85. The robotic fruit picking system of any preceding Claim in which the system
stores locations of all detected fruit (whether ripe or unripe) in computer memory in

order to generate a yield map.

86. The robotic fruit picking system of Claim 85 which the yield map enables a farmer

to identity problems such as disease or under- or over-watering.
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87. The robotic fruit picking system of any preceding Claim in which the system
stores a map coordinate system position of unripe fruits that have been detected but not

picked in computer memory.

88.  The robotic fruit picking system of Claim 85 - 87 in which the yield map takes

into account the impact on time on the ripeness of previously unripe fruits.

89. The robotic fruit picking system of any preceding Claim in which the system
measures the degree to which the robot is leaning over and compensates for the degree

of lean by adapting models of the scene’s geometry and camera viewpoints accordingly.

90. The robotic fruit picking system of any preceding Claim in which the system

includes an accelerometet.

91. The robotic fruit picking system of Claim 89 - 90 in which the degree of lean is
directly measured using the accelerometer or indirectly by measuring the position of a

part of the robot in a coordinate frame based on the crop row.

92. The robotic fruit picking system of Claim 89 - 91 in which an appropriate 3D to
3D transformation required to correct for the lean 1s applied to pre-defined camera poses

and environment geometry.

93. The robotic fruit picking system ot Claim 89 - 92 in which the lateral position of
the robot’s tracks in the row 1s dynamically adjusted so that the picking arms are closer to

their design position despite the lean.

94. The robotic fruit picking system of any preceding Claim in which oscillations of a

fruit caused by picking the fruit are reduced by damping achieved by a soft gripper.

95. The robotic fruit picking system of any preceding Claim in which in which
oscillations of a fruit caused by picking the fruit are reduced by damping achieved by

modulating the acceleration or velocity or movement of the robot arm’s end-etfector.
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96. The robotic fruit picking system of any preceding Claim in which the system

estimates the mass and pendulum length of the fruit.

97. The robotic fruit picking system of Claim 94 - 96 in which the system designs a
deceleration or acceleration profile (dynamically or otherwise) required to minimize the

amplitude or duration of oscillations.

98. The robotic truit picking system of any preceding Claim in which the end
effector uses at least the tollowing phases:

(1) a selection phase during which the target fruit is physically partitioned or
separated from the plant or tree and/or other fruits growing on the plant/tree and/or
growing infrastructure and

(1) a severing phase during which the target truit 1s permanently severed from the

plant/tree.

99. The robotic fruit picking system of any preceding Claim in which the end

effector includes a hook.

100.  The robotic fruit picking system of any preceding Claim in which the fruit is

moved away from its original growing position during the selection phase.

101.  The robotic fruit picking system of Claim 98 - 100 in which a decision phase 1s

introduced after the selection phase and before the severing phase.

102.  The robotic fruit picking system of Claim 101 in which the decision phase

includes rotation of the fruit by its stem or otherwise.

103.  The robotic fruit picking system of Claim 101 in which the decision phase is used
to determine whether or not to sever the fruit, or the manner in which the fruit should

be severed.

104.  The robotic fruit picking system of Claim 98 - 103 in which the selection phase 1s

made reversible.
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105.  The robotic fruit picking system of Claim 104 in which the reversibility 1s
accomplished by a change of shape of the hook.

106.  The robotic fruit picking system of Claim 104 in which the reversibility 1s

accomplished by movement or rotation of the hook.

107.  The robotic fruit picking system of any preceding Claim in which the system is

capable of simultaneously gripping and cutting the stem of a target fruit.

108.  The robotic fruit picking system of any preceding Claim in which the system

includes multiple picking units located on a single multiplexed end eftector.

109.  The robotic fruit picking system of Claim 108 in which multiple picking
tunctions on a picking unit are driven off a single actuator or motor, selectively engaged

by lightweight means, such as: electromagnets, an engaging pin, rotary tab, or similar.

110.  The robotic fruit picking system of Claim 108 - 109 in which a single motor or
actuator drives one function across all units on the head, selectively engaged by means

such as: an electromagnet, an engaging pin, rotary tab, or similar.

111.  The robotic fruit picking system of Claim 109 - 110 in which the functions are
driven by lightweight means from elsewhere in the system, such as using: a bowden

cable, torsional drive cable/spring, pneumatic or hydraulic means.

112.  The robotic fruit picking system of any preceding Claim in which the end
etfector pulls the target fruit away from the plant in order to determine the fruit’s

suitability for picking before the fruit is permanently severed from the plant.

113.  The robotic fruit picking system of any preceding Claim in which the end

effector comprises a hook with a dynamically programmable trajectory.
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114.  The robotic fruit picking system of any preceding Claim in which the end
effector uses at least the following phases:

(1) a selection phase during which the target fruit is physically partitioned or
separated from the tree and/or other fruits growing on the tree and/or growing
infrastructure;

(11) a severing phase during which the target fruit is permanently severed from the
tree; and

in which the selection and severing phases are performed by the actuation of a
loop, wherein the loop diameter, position and orientation are programmatically

controlled.

115.  The robotic fruit picking system of any preceding Claim in which the end
effector uses at least the following phases:

(1) a selection phase during which the target fruit is physically partitioned or
separated from the tree and/or other fruits growing on the tree and/or growing
infrastructure;

(11) a severing phase during which the target fruit s permanently severed from the
tree; and

and in which the selection and severing phases are performed by a set of jaws,

wherein the jaws diameter and position are programmatically controlled.

116.  The robotic fruit picking system of Claim 115 in which the jaw attitude such as

opened, partially closed or closed is programmatically controlled.

117.  The robotic fruit picking system of any preceding Claim in which the computer
vision based system is used in order to determine heading and lateral positions of the
robot with respect to a row of crops using images obtained by a forwards or backwards

tacing camera pointing approximately along the row.

118.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem detects a target fruit and in which the robot includes an end

eftector wherein part of the end effector is used as an exposure control target.
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119.  The robotic fruit picking system ot any preceding Claim in which the control
system software uses lighting conditions inferred or derived from the weather forecast as
an input to the control subsystem or computer vision subsystem to control picking

strategies or operations.

120.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem detects a target fruit and a end effector is able to physically
separate a candidate fruit further from the plant and other fruits in the bunch before

picking.

121.  The robotic fruit picking system of any preceding Claim in which mirrors are

positioned and oriented to provide multiple virtual views of the fruit.

122, The robotic fruit picking system of any preceding Claim in which the computer
vision based system obtains multiple images of a target fruit under different lighting

conditions and infers information about the shape of the target fruit.

123.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem uses an image segmentation technique to provide an indication

of a fruit health.

124.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem detects the positions or points of the fruit achenes or drupelets
and assigns a cost to those positions or the arrangement of those positions using an

energy function that assigns a lowest energy to regularly arranged positions.

125.  The robotic fruit picking system of any preceding Claim in which a semantic

labelling approach is used to detect achenes, such as a decision forest classifier.

126.  The robotic fruit picking system of Claim 124 - 125 in which the sum of costs

over points provides an indication of fruit health.

127.  The robotic fruit picking system of any preceding Claim in which an indication of

fruit health is provided from analysing one or more of the following: colour of the



10

15

20

25

30

WO 2018/087546 109 PCT/GB2017/053367

achenes, colour of the flesh of the fruit or 3D shape of the fruit.

128.  The robotic fruit picking system of Claim 127 in which a neural network or other
machine learning system, tramned from a database of existing images with associated

expert-derived ground truth labels, 1s used.

129.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem is used to classity a fruit, and in which the system allows a grower

to adjust thresholds for classifying the fruit.

130.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem locates specific parts of a plant or specific plants that require a

targeted localized application of chemicals such as herbicides or pesticides.

131.  The robotic fruit picking system of any preceding Claim in which the computer
vision based subsystem detects instances of specitic kinds of pathogen such as: insects,

dry rot, wet rot.

132.  The robotic fruit picking system of any preceding Claim in which the computer
vision subsystem detects drupelets or achenes using specularities induced on the surface

of a fruit by a single point light source.

133.  The robotic fruit picking system of Claim 132 in which an end effector is used

for picking and another end effector is used for spraying.

134.  The robotic fruit picking system of any preceding Claim in which an end etfector

1s a spraying end effector that contains a small reservoir of liquid chemical.

135.  The robotic fruit picking system of any preceding Claim in which the picking arm

visits a station on the chassis to gather a cartridge of chemicals.

136.  The robotic fruit picking system of any preceding Claim in which the picking arm

visits a cartridge in the chassis to suck the required liquid chemicals from a cartridge into
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its reservoir or to expel unused chemical from its reservoir back into a cartridge.

137. The robotic fruit picking system of Claim 130-136 in which several ditferent
types of chemical are combined in dynamically programmable combination to achieve

more optimal local treatment.

138.  The robotic fruit picking system of Claim 131 - 136 in which multiple cartridges

contain multiple different chemical combinations.

139.  The robotic fruit picking system of any preceding Claim in which a machine
learning approach 1s used to train a detection algorithm to automatically detect a target

fruit.

140.  The robotic fruit picking system of any preceding Claim in which the system

identifies truit in RGB color images obtained by a camera.

141.  The robotic fruit picking system of any preceding Claim in which the system

identifies truit in depth images obtained by dense stereo or otherwise.

142.  The robotic fruit picking system of Claim 139 - 141 in which the training data is a
dataset in which the position and orientation of target fruit is annotated by hand in

images of plants that are representative of those likely to be obtained by the camera.

143.  The robotic fruit picking system of any preceding Claim in which a detection
algorithm 1s trained to perform semantic segmentation on the images captured by the

camera.

144.  The robotic fruit picking system of Claim 143 in which the semantic

segmentation labels each image pixels such as ripe fruit, unripe fruit or other object.

145.  The robotic fruit picking system of Claim 144 in which a clustering algorithm

aggregates the results of the semantic segmentation.
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146.  The robotic fruit picking system of Claim 139 - 145 in which the machine

learning approach is a decision forest classitier.

147.  The robotic fruit picking system of Claim 139 - 146 in which the machine

learning approach 1s a convolutional neural network.

148.  The robotic fruit picking system of Claim 139 - 147 in which a convolutional
neural network is trained to distinguish image patches containing a target fruit at their

center from image patches that do not.

149.  The robotic fruit picking system of Claim 139 - 148 in which a sliding window

approach 1s used to determine the positions of all images likely to contain a target fruit.

150.  The robotic fruit picking system of Claim 139 - 149 in which a semantic
segmentation 1s used to identify the likely image locations of a target fruit for subsequent
more accurate classification or pose determination by a CNN or other form of inference

engine.

151.  The robotic fruit picking system of any preceding Claim in which a machine
learning approach with a regression model 1s used to predict the angles describing the
orientation of approximately rotationally symmetric fruit from images, including

monocular, stereo and depth images.

152.  The robotic fruit picking system of any preceding Claim in which a machine
learning approach is used to train a detection algorithm to identify and delineate stalks in

images captured by a camera.

153.  The robotic fruit picking system of any preceding Claim in which a machine
learning approach is used to train a prediction algorithm to predict how much
improvement to an initial pose estimate for a target fruit 1s likely to be revealed by a

given additional viewpoint.
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154.  The robotic fruit picking system of any preceding Claim in which the system
predicts which additional information, including which viewpoints out of a set of
available viewpoints, is likely to be the most valuable, including the most beneticial to

overall productivity.

155.  The robotic fruit picking system of Claim 154 in which the additional

information 1s the location or point where the stalk attaches to the target fruit.

156.  The robotic fruit picking system of Claim 154 in which the additional
information is the knowledge that the fruit is visible without occlusion from a particular

viewpoint.

157.  'The robotic fruit picking system of any preceding Claim in which the additional
information 1s the knowledge that the space between the camera and the fruit 1s free of

obstacles from a particular viewpoint.

158.  The robotic fruit picking system of any preceding Claim in which the system
recovers a 3D shape of a target fruit from one or more images of the target fruit
obtained from one or more viewpoints, and in which a generative model of the target

truit’s image appearance is used.

159.  The robotic fruit picking system of any preceding Claim in which a geometric
and/or photometric model fitting approach is used to predict the surface appearance of a
target fruit as well as the shadows cast by the target fruit onto itselt under different,

controlled lightning conditions.

160.  The robotic fruit picking system of Claim 159 in which the cost function, namely
the measure of agreement between images, is made robust to occlusion or the fruit is

physically separated from sources of occlusion.

161.  The robotic fruit picking system of any preceding Claim in which a machine

learning approach is used to train a labeling algorithm to automatically assign a label to
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an image captured by the system, wherein pre-labeled images provided by human experts

are used to train the system.

162.  The robotic fruit picking system of any preceding Claim in which labelling data
provided by human experts 1s used to train a machine learning system to assign quality
automatically to newly picked fruit, by training an image classifier with training data
comprising (1) images of the picked fruit obtained by the QC subsystem and (i)

associated quality labels provided by the human expert.

163.  The robotic fruit picking system ot any preceding Claim in which the control

policy subsystem 1s trained via reinforcement learning while the robot is operating.

164.  The robotic fruit picking system of any preceding Claim in which the control
subsystem 1s trained via reinforcement learning, and wherein training is done by
simulating the movements of the robot using images of the real-world environment

captured amongst available viewpoints.

165.  The robotic fruit picking system of any preceding Claim in which the control
system 1s trained to predict picking success via reinforcement learning, and in which

training 1s done in a simulated picking environment.

166.  The robotic fruit picking system of any preceding Claim in which the system 1s
trained to predict picking success via reinforcement learning, in which a predictor of
picking success 1s to ensure that the predicted path of the end eftector sweeps through a

3D volume that encompasses the target stalk but not other stalks.
167.  'The robotic fruit picking system of any preceding Claim in which the control
subsystem 1s trained via reinforcement learning that includes actions carried out by

human operators.

168.  'The robotic fruit picking system of any preceding Claim in which a machine

learning approach is used to train a model to predict yield forecast.

169.  The robotic fruit picking system of any preceding Claim in which the system
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records a2 map coordinate system location along with an image of all detected fruit and

the recorded data 1s used to train a model to estimate a crop yield forecast.

170.  The robotic fruit picking system of any preceding Claim in which the system uses
picking success data obtained by working robots to learn and refine the parameters of a

dynamically updateable statistical model for estimating picking success probability.

171.  The robotic fruit picking system of any preceding Claim in which the system 1s
operable to cut the stem of a fruit, in which the fruit 1s picked by first severing and
gripping its stem, and the body of the fruit is removed from its stem in a subsequent

operation.

172. The robotic fruit picking system of any preceding Claim in which the system
operable to sever the fruit from its stem using a jet of compressed air, without requiring

the handling of the body of the fruit.

173. The robotic fruit picking system of any preceding Claim in which the robot

includes a collar, shaped to facilitate forcing the body of the fruit oft the stem.

174.  The robotic fruit picking system of any preceding Claim in which the system 1s
operable to sever the stem from its fruit by using the inertia of the body of the target

truit to separate the body of the fruit from its stem.

175.  The robotic fruit picking system of any preceding Claim in which the system 1s
operable to cut or sever the stem of a fruit by moving the fruit or its stalk using a
reciprocating back-and-forth motion of the fruit in the direction approximately
perpendicular to its stalk or an oscillatory rotary motion with an axis of rotation

approximately parallel to the stalk.

176.  The robotic fruit picking system of any preceding Claim in which a path planning
algorithm 1s used to model obstacles as probabilistic models of scene space occupancy by

different types of obstacle with different material properties.
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177.  The robotic fruit picking system of any preceding Claim in which the end
effector 1s operable to cut the stem of a fruit, in which the system includes a deformable

end effector that 1s designed to deform under compressive force.

178.  The robotic fruit picking system of any preceding Claim in which the system 1s

operable to cut the stem of a fruit without handling the body of the frust.

179.  The robotic fruit picking system of any preceding Claim in which the robot is
operable at night with a computer vision system that operates at night, and picks fruit

when they are cooler and hence firmer to minimize bruising,

180.  The robotic fruit picking system of any preceding Claim in which the end
effector 1s operable to cut a fruit stem cleanly and without tearing to increase fruit

productivity.

181.  The robotic fruit picking system of any preceding Claim in which the quality
control subsystem predicts the flavour or quality of a fruit and places the fruit in a

specific storage container according to the tlavour or quality prediction.

182.  The robotic fruit picking system of Claim 181 in which the prediction of the
tlavour or quality of a fruit depends on the analysis of a growth trajectory data measured

over time for the fruit.

183. A method of optimizing fruit yield prediction by imaging each fruit using the
robotic fruit picking system of any preceding Claim 1 - 182, to determine ripeness or

suitability for picking.

184. A method of optimizing fruit yield mapping across a fruit farm or multiple fruit
farms, by imaging each fruit using the robotic fruit picking system of any preceding

Claim 1 - 182, to determine ripeness or suitability for picking.

185. A method of maximizing fruit shelf life by using the robotic fruit picking system

of any preceding Claim 1 - 182.
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186. A method of selectively storing or punnetising the fruit with the optimal tlavor or

quality by using the robotic fruit picking system of any preceding Claim 1 - 182.

187.  Fruit when picked using the robotic fruit picking system of any preceding Claim
1-182.

188.  The fruit of Claim 187, being strawberries, including strawberries grown on a

table.

189.  The fruit of Claim 187, being raspberries.

190.  The fruit of Claim 187, being apples, or pears, or peaches, or grapes, plums,

cherries, or olives.
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