wO 2021/029802 A1 |0 00000 KA 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 February 2021 (18.02.2021)

(10) International Publication Number

WO 2021/029802 Al

WIPO I PCT

(51) International Patent Classification:
GO6N 3/08 (2006.01) GO6N 3/04 (2006.01)

(21) International Application Number:
PCT/SE2020/050717

(22) International Filing Date:
08 July 2020 (08.07.2020)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

1950924-9 13 August 2019 (13.08.2019) SE

(72) Inventor; and
(71) Applicant: KABERG JOHARD, Leonard [SE/SE], Vat-
tugatan 4B, 802 64 Gévle (SE).

(74) Agent: AWA SWEDEN AB; P.O. Box 45086, 104 30
Stockholm (SE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: IMPROVED MACHINE LEARNING FOR TECHNICAL SYSTEMS

Value estimate gradient

Value estimate(s) Reward
Processor
Boot-
strapped
Observation Value Eligibility gradient
, . Gradient Estimate
estimator trace generator | ‘. | estimator

Trace

Memor

Value

estimation

parameters

Fig. 2

(57) Abstract: There is provided a system (100) for supporting machine learning comprising one or more processors (110); a memory
(120) configured to store one or more parameters of an estimator; a differentiate estimator of discounted reward, referred to as a value
estimator, configured to receive an observation an environment and/or system, access parameters of the value estimator from memory
and generate a discounted reward estimate, referred to as a value estimate. The system also comprises one or more eligibility trace
generators configured to receive the value estimate; receive from the value estimator a partial derivative of the value estimate; receive a
signal from the eligibility trace generator and generate an updated signal, referred to as an eligibility trace. The system further comprises
one or more bootstrapped gradient estimators configured to receive a reward signal from a technical reward system; receive the value
estimate and the eligibility trace; and create a gradient estimate based on an input.

[Continued on next page]

WO 20217029802 A |10 00000 OO O 0 A O

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

5

10

15

20

25

30

WO 2021/029802 PCT/SE2020/050717

IMPROVED MACHINE LEARNING FOR TECHNICAL SYSTEMS

TECHNICAL FIELD

The invention generally relates to machine learning systems for control of technical
systems, in particular methods and systems for value estimation for reinforcement
learning, and related data processors and processor control code, e.g. implemented
as a computer program and computer-program product. The proposed technology
specifically relates to a method and system for supporting machine learning, an
apparatus for reinforcement learning, a self-learning control system for a
controllable technical system, as well as a corresponding computer program and
computer-program product.

BACKGROUND

Machine learning through reinforcement learning involves training a technical
machine to generate actions from received observations from a technical system
(such as measurements from one or more sensors in a real-world environment)
and/or a technical simulation according to some automatic control system called a
policy. The policy is a stochastic control system whose behavior depends on some

parameters.

Such a learning machine is known as an agent and it is commonly described as
interacting with some environment that is in some certain state. The environment is
assumed to change state over time according to some distribution that depends on
its current state and the action taken by the agent and optionally also unknown
factors and/or influences to the environment. The environment generates an
observation and a reward, which can be regarded as a technical feedback, based
on this state.

Environment in this context is an abstraction that can include a very wide range of
subject systems such as sensors, a system for calculating reward, other learning

machines, simulators as well as the whole physical universe or part thereof.

35

40

45

50

55

60

65

WO 2021/029802 PCT/SE2020/050717

The goal of the training process in general is to generate a policy that optimizes the
reward given over time. Usually the specific task is to maximize the average
discounted reward.

Reinforcement learning has a larger range of applications than supervised learning,
but is also more challenging due to the limited feedback available. Unlike supervised
learning, a reinforcement learning agent has no specific outputs to imitate. Instead,
it has to explore the results of various possible actions empirically.

A common strategy to facilitate the reinforcement learning process is to use a value
estimator, which is a system that tries to estimate the future discounted reward. In
many reinforcement learning methods, the learning process takes place solely
through control and/or manipulation of the value estimator.

A change of state typically results in rewards with significant time delays. A central
problem in value estimation systems is the need to accurately track what
observations lead to later rewards in a computationally efficient way.

In particular, approaches using so-called backpropagation through time suffer from
problems with memory and computational scaling with time delays. Table-based
systems are inflexible, poor at generalizing and scale poorly with input size.
Approaches using Temporal Difference (TD) learning only locally at each time step
(e.g. TD(0)) have problems with scaling with changing time steps sizes and
generally need several passes or iterations to propagate rewards in time if the time
step is small. Monte Carlo-evaluations have a poor ability to use the data efficiently
due to the lack of bootstrapping. Extensions such as TD-lambda based methods are
known to not converge, while gradient TD methods are primarily working on linear
problems and/or with discrete actions.

In general, bootstrapping in the reinforcement learning context is defined as
methods that use an estimated value to estimate a similar kind of value. In particular,
it includes maintaining a statistical estimate of the future discounted reward that is
derived in part, or in full, from an existing estimate of the future discounted reward.

The temporal difference algorithm is a typical example of this.

WO 2021/029802 PCT/SE2020/050717

An overview of methods in reinforcement learning can be found in the
70 books: ”"Reinforcement learning and dynamic programming using function

approximators” [Busoniu, L., Babuska, R., De Schutter, B. and Ernst, D., 2017] and

"Reinforcement learning: An introduction." [Sutton, Richard S., and Andrew G.

Barto., 2011]. Further details on related approaches can be found in "True online

temporal-difference learning." [Van Seijen, Harm, et al., The Journal of Machine
75 Learning Research, 2016].

There is a general need for improvements for technical reinforcement learning

systems and/or applications.

80 SUMMARY

It is a general object to provide an efficient system and method for supporting and/or
assisting technical machine learning systems and/or related applications.

85 Itis a specific object to provide an efficient system and method for assisting and/or
supporting technical machine learning systems, given a specific reward system and
target technical system and/or environment for training, in estimating the gradient of
estimators of the discounted future reward.

90 It is another object to provide an efficient estimation of parameters for an estimator
of the discounted future reward system for a given reward system and a given a

target technical system and/or environment.

It is another object to efficiently generate technical value estimators for a given
95 reward system and a given target technical system and/or environment.

It is still another object to provide an efficient generation of control systems and/or
programs for controlling a given target technical system and/or technical system
which the target technical system approximates, wherein the efficiency of the control
100 is measured or approximated according to the technical objectives encoded in a

given reward system.

105

110

115

120

125

130

135

WO 2021/029802 PCT/SE2020/050717

It is yet another object to provide efficient generation of intelligent industrial planning
systems, robots and vehicles through reinforcement learning.

A specific object is to provide a method and system for supporting machine learning.

Another specific object is to provide an apparatus for reinforcement machine

learning.

Yet another specific object is to provide a self-learning control system for a

controllable technical system.

It is also a specific object to provide a corresponding computer program and

computer-program product.

It is another object to provide a method for at least partly assembling and/or

configuring a fully or partially automated robot and/or vehicle.

It is yet another object to provide a method for performing an at least partially
automated industrial process.

These and other objects are met by embodiments as defined herein.

According to a first aspect, there is provided a system for supporting machine
learning. The system comprises:

- ONne Of More Processors;

- a memory configured to store one or more parameters of an estimator;

- a differentiable estimator of discounted reward, the differentiable estimator
also being referred to as a value estimator, configured to, by the one or more
processors: receive an observation including information representative of one or
more observations of an environment and/or system at a moment in time, access
parameters of the value estimator from the memory and generate a discounted
reward estimate, also referred to as a value estimate, in a value estimation process;

- one or more eligibility trace generators configured to, continuously and/or

through several steps and/or moments of the eligibility trace generator and by the

140

145

150

155

160

165

170

WO 2021/029802 PCT/SE2020/050717

one or more processors: receive the value estimate; receive from the value
estimator a partial derivative of the value estimate with respect to one of the
parameters of the value estimation process; receive a signal from the eligibility trace
generator and generate an updated signal, also referred to as an eligibility trace,
such that each step and/or moment comprises operations such that:

e the signal is decaying in real or simulated time at a rate proportional to
the respective signal, i.e. exponential decay in time corresponding to the
observation;

¢ to the signal is added a value proportional to the partial derivative of the
value estimate;

thereby maintaining or keeping a signal, between steps and/or moments of the
eligibility trace generator, by values being added and/or subtracted at various
moments to the eligibility trace while the resulting sum undergoes an exponential
decay in time; and

- one or more bootstrapped gradient estimators configured to, by the one or
more processors: receive a reward signal from a technical reward system; receive
the value estimate; receive the eligibility trace; and create a gradient estimate based
on an input comprising: the reward; the eligibility trace; the value estimate; and the

gradient of the value estimate.

According to a second aspect, there is provided a computer-implemented and/or
apparatus-implemented method for supporting machine learning. The method
comprises the steps of:

- obtaining: a value based on an eligibility trace and/or another estimate of a
discounted sum of past gradient(s) of a value estimator, for each of one or more of
the value estimator parameters; and a reward as part of technical feedback from a
technical system and/or environment; and optionally any additional value estimate;

- generating a value estimator gradient estimate, for use in an apparatus or
computer-implemented program for performing gradient-based parameter
optimization of some value estimator, referred to as an optimizer, based on each of
the following signals:

o a value proportional to: the value estimate multiplied by the gradient of
the value estimate with respect to the weights such that this value is

also separable from any contribution to the gradient estimate that is

175

180

185

190

195

200

WO 2021/029802 PCT/SE2020/050717

proportional to the value estimate multiplied by the discounted sum of
past gradient(s);

o a value proportional to: the reward multiplied by the eligibility trace
and/or a value proportional to the other estimate of the discounted sum
of past gradient(s);

o a value proportional to: the eligibility trace and/or a value proportional to
the other estimate of discounted sum of past gradient(s) multiplied by
variable V2, V2 being any value estimate, for the same or a following
moment or time step; and

- directing said gradient estimate to said optimizer.

According to a third aspect, there is provided an apparatus for reinforcement
machine learning configured to perform such a method.

According to a fourth aspect, there is provided a computer program comprising
instructions, which when executed by at least one processor, cause the at least one
processor to perform such a method.

According to a fifth aspect, there is provided a computer-program product
comprising a non-transitory computer-readable medium having stored thereon such

a computer program.

According to a sixth aspect, there is provided a self-learning control system for a
controllable technical system, wherein the self-learning control system comprises a
system for supporting machine learning or an apparatus for reinforcement machine

learning as defined herein.

According to a seventh aspect, there is provided a method for at least partly
assembling and/or configuring a fully or partially automated robot and/or vehicle,
wherein the method comprises:

configuring one or more processors of the robot and/or vehicle
according to determined/optimized actor parameter(s); or

including in the robot and/or vehicle one or more processor(s) designed
and/or configured according to determined/optimized actor parameter(s).

205

210

215

220

225

230

235

WO 2021/029802 PCT/SE2020/050717

In this way, it is possible to provide efficient assembly and/or configuration of a fully
or partially automated robot and/or vehicle.

According to an eighth aspect, there is provided a method for performing an at least
partially automated industrial process, wherein the industrial process is conducted
based on control signal(s) from a carefully configured/designed technical planning

system.

In this way it is possible to, e.g. efficiently generate products of an automated

industrial process.

In a sense, the proposed technology can be regarded as a system that uses
statistical bootstrapping and allows the use of a subsystem known as eligibility
traces to optimize a value estimation for reinforcement machine learning. The
eligibility traces use exponentially decaying signals to store the information needed
to create a gradient estimate signal. Embodiments of this aspect are typically used
in actor-critic systems to create self-learning control systems for robots, vehicles

and planning systems.

By way of example, there is provided a method and corresponding system that by
bootstrapping and the possibility of using eligibility traces are able to optimize the
parameters of a neural network for the purpose of performing value estimation for

reinforcement machine learning.

At least one of the following technical effects can be contributed by the present
invention: reduced memory usage by not having to store past states; reduced
memory by improved scaling with number of parameters; reduced computation time;
non-linear approximation; simplified hardware architectures; gradual transition
between learning assumptions; faster expected value estimation convergence on a
large set of reinforcement learning problems through bootstrapping; better
convergence conditions; and providing an alternative to prior systems and methods.

Other advantages offered by the invention will be appreciated when reading the

below description of embodiments of the invention.

240

245

250

255

260

265

270

WO 2021/029802 PCT/SE2020/050717

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further objects and advantages thereof, may best be
understood by making reference to the following description taken together with the

accompanying drawings, in which:

FIG. 1 is a schematic diagram illustrating an example of the underlying technical
setting of a machine learning system adapted for generating actor parameters
through interaction with a technical target system and/or environment.

FIG. 2 is a schematic diagram illustrating an example of a processor-memory based
system for reinforcement machine learning and/or value estimation therefor

according to an embodiment.

FIG. 3 is a schematic diagram illustrating another example of a processor-memory
based system for reinforcement machine learning and/or value estimation therefor

according to an embodiment.

FIG. 4 is a schematic diagram illustrating yet another example of a processor-
memory based system for reinforcement machine learning and/or value estimation

therefor according to an embodiment.

FIG. 5 is a schematic diagram illustrating still another example of a processor-
memory based system for reinforcement machine learning and/or value estimation

therefor according to an embodiment.

FIG. 6 is a schematic flow diagram illustrating a computer-implemented and/or
apparatus-implemented method for supporting machine learning according to an

embodiment.

FIG. 7 is a schematic diagram illustrating an example of a computer-implementation
according to an embodiment.

275

280

285

290

295

300

WO 2021/029802 PCT/SE2020/050717

FIG. 8 is a schematic diagram illustrating an example of the underlying technical
setting of a trained agent adapted for interacting with a technical environment.

DETAILED DESCRIPTION

Throughout the drawings, the same reference numbers are used for similar or

corresponding elements.

For a better understanding of the proposed technology, it may be useful to begin
with a brief system overview and/or analysis of the technical problem. By way of
example, reference can be made to the illustrative example of FIG. 1.

Basically, the machine learning system is based around a machine learning agent,
sometimes simply referred to as an agent and in the context of actor-critic systems
as an actor, which is adapted for interaction with a technical environment and/or

system.

The machine learning agent normally receives a technical observation and
generates an action directed to a technical environment or system (a "target
technical system and/or environment"). The action is generated as a function of the
observation according to some probabilistic distribution over possible actions known
as a policy. This generation typically takes place in real-time in continuous

implementations and for every time step in discrete implementations.

The specific policy is a distribution dependent on the observation and is encoded as
one or more parameters ("actor parameters"). During the training process the agent
also receives a reward which is used to update the actor parameters. The actor
parameters, combined with an explicit or implicit function definition, such as a neural
network structure file for a neural network library, constitute a software program code
that can be executed by relevant neural network library or similar tool able to
interpret the actor parameters. The actor parameters can alternatively be interpreted
as a hardware architecture for a specific hardware implementation of said program
code.

305

310

315

320

325

330

335

WO 2021/029802 PCT/SE2020/050717
10

Expressed differently, the policy is a computer program code automatically
generated by the actor optimizer and stored to the memory. This program code,
together with explicit or implicit information about the functional interpretation of the
actor parameter space, can be interpreted, compiled or turned into hardware
equivalents by tools or systems such as a neural network framework. The functional
interpretation of the actor parameter space is also called the network structure in
the neural network context and is commonly stored in a separate structure file. Many
classes of structures, such as recursive neural networks, are Turing complete and
equivalent in expressive power to other program code for general purpose
computers. The automatically generated program code is adapted to the objective
defined by the reward function and the environment(s) used during training.

Depending on the application, some hyperparameters defining the structure can
also be considered parameters. Specifically, it is common practice to optimize
network structures using grid search, evolutionary optimization, automatic
differentiation etc. Since the output in these cases is both a parameters set and a
hyperparameter set describing the structure or similar they can collectively be
considered an interpretable program code for a neural network framework or similar.
Application of such methods in an embodiment of the invention can be considered

obvious to the skilled person.

The environment is a theoretical abstraction in reinforcement learning of any subject
system or combination of systems which the agent can influence with its actions and
that provides a reward to the agent. The reward can be regarded as a form of
technical feedback and/or connected system that gives a measurement or
approximation of the objective of the agent. In agents that learn to act in the physical
world, the environment usually means the whole or part of the physical universe.
For an agent that is learning in a simulator the environment usually refers to the
simulation. Depending on the context, the environment can also include sensors,
mechanisms for calculating the reward, memory modules and many other
subsystems of an embodiment of a learning machine or system. From a patent claim
perspective the environment as a whole is typically not an integral element of an
embodiment and the environment should not be considered a limitation for these

340

345

350

355

360

365

370

WO 2021/029802 PCT/SE2020/050717
1

purposes. The inclusion of an environment in the descriptions and figures herein is

purely in order to maintain consistency with current practice in the field.

The observation can be any kind of signal from or information about the environment.
In a typical embodiment the observation is encoded as several continuously valued
inputs representative of the technical or physical environment, such as a memory
array of floating point numbers. Also, binary and integers signals are common forms
of observations. In fully observable environments the observation contains all the
information required to define the state of the environment. Observations are
typically an encoding of raw, processed sensor inputs, readings from previously

stored data and/or outputs from neural networks and similar.

The action can be any kind of signal that is sent to the environment. In a typical
embodiment it is either an integer encoding a specific technical or physical action to
be taken with respect to the environment from a set or an array of continuously
valued floating point numbers. Typically, actions are control signals that control
torques for various motors, steering angles, speed, sounds, light etc. In planning
systems actions control or recommend production rates, valve settings, input signals
to various machines, inputs to control systems, storage levels, instructions to be

sent to personnel etc.

The reward, or immediate reward, is a scalar signal that a reinforcement learning
system receives and that encodes the aim the policy is being optimized for. This
reward signal can in turn be calculated from several relevant data and signals
encoding information such as energy efficiency, outcome, profit, achieved goals and
path length. The calculation of this reward signal is usually considered to be
performed by the environment and hence considered an input to an embodiment of
the invention rather than an integral part of it. The reward signal can be provided
continuously, at each time step and/or sparsely. Typically, the policy optimization is
set to maximize reward. In maximization tasks it is common to associate positive
reward signals with desired behaviour, such as reaching objectives or achieving high
productivity, while negative reward signals are associated with undesired behavior,
such as energy use, path length or failing an objective. For example, a reward

system for a vehicle might be set to as a linear combination with negative weights

375

380

385

390

395

400

405

WO 2021/029802 PCT/SE2020/050717
12

for path length, a fixed negative reward for hitting any obstacle, positive weights for

average velocity and a fixed positive reward for reaching the destination point.

A reward system is a technical system designed for measuring or approximating a
desired objective for a system and to encode this in a reward signal. Such systems
can be simple, such as giving a human operator a push button to be used when a
certain goal is achieved, or complex, such as a dedicated circuit embedding logic
for classifying the quality of a product on the product line using a camera system
while adding factors for penalizing energy and resource expense as measured in
separate sensor equipment. Reinforcement learning systems rely on appropriately
designed reward systems, but the reward systems are usually abstracted into the
environment since the appropriate design of such reward systems rely on technical
and non-technical considerations, such as the various aspects treated in the field of
operations management, that are vastly different from the considerations treated in

the field of reinforcement learning.

In a different perspective, reward systems can be seen as some technical
implementation of what is known in the abstract sense as a reward, in the biological
field as the fitness, in genetic algorithms as the fitness function and in applied
mathematics as the objective function. In most practical cases this reward system
will be a very simple computer-implemented algorithm designed by a user with the
technical purpose of providing meaningful measurement and efficient feedback
about the effectiveness of a given machine in a given task. The technical purpose
of the machine learning system is then to produce or improve a technical control
system that achieves the given objective as measured by the given reward system.
This reward system, typically a program code, in its entirety can then be considered
an input to the machine learning process and/or system instead of just its output
signal. Both this perspective of providing an entire reward system and the common
perspective of providing solely the reward signal, in contrast to the reward system
as a whole, as an input results in equivalent corresponding machine learning

process and/or machine learning systems.

Similarly, the specification of the target technical system and/or environment the

agentis to be trained in can be considered an input to the machine learning process.

410

415

420

425

430

435

WO 2021/029802 PCT/SE2020/050717
13

The target technical system and/or environment is preferably selected by a human
user in order to be identical or similar to the envisioned final target system and/or
environment where the control system is to be applied, but considerations such as
financial and/or computational costs for training in this system and/or environment
is also relevant factors in its selection and/or design. The specification can be implicit,
such as in connecting the system to a specific physical robot, or more explicit, such
as providing the program code for a simulator directly to the optimizer. This is the
common practice in certain existing reinforcement learning frameworks, where the
program code for simulated environments follow a standardized format that can then
be sent directly to the actor optimization system together with a reward function
program. In certain cases, the environment is also switched automatically to a more

detailed and expensive simulation in a certain point in the machine learning process.

Note that the reward and/or reward system may optionally be or comprise an
intrinsic reward, i.e. a reward different from the one naively being optimized. For
example, a reward system may combine an extrinsic reward encoding the energy
spent with an intrinsic reward encoding the amount of new information gained, i.e.
a curiosity. Another possibility is to use a value estimate from an external value
estimator as reward signal to the agent. Yet other possibilities is to encode risk
and/or making the balance between extrinsic reward and intrinsic reward
observation-dependent, e.g. in order to reduce the tendency for exploration in
certain states. Such reward systems may also depend on the parameters and
learning process of the agent.

Adiscounted reward signal for a given time has future rewards multiplied by a factor
that is decaying (i.e. decreasing) in time, which encourages prioritizing those
rewards that are closer in time. Usually it is chosen to be exponentially decreasing
in time. In a machine learning training process the rate of such decay may optionally
be chosen to be decreasing with time or the number of training rounds or iterations,
such that more distant rewards become more important as the training progresses.
Maximizing the expected discounted reward is a common objective of reinforcement
learning, but typically in reinforcement learning this value itself is not received nor
necessarily calculated explicitly in reinforcement learning. Only the immediate

reward is typically received.

440

445

450

455

460

465

470

WO 2021/029802 PCT/SE2020/050717
14

FIG. 8 is a schematic diagram illustrating an example of the underlying technical
setting of a trained agent adapted for interacting with a technical environment.

In the following reference will also be made to FIG.2 — FIG.5, which are schematic
diagrams illustrating different examples of a processor-memory based system for

reinforcement machine learning and/or value estimation.

To improve learning a critic might be added to an agent. This addition creates an
actor-critic system, where the actor is a subsystem that takes an observation and
generates an action based on the actor parameters. It receives an intrinsic reward.
An intrinsic reward is an (optional) signal calculated as some function of both the
received reward and the critic’s own value estimation. The purpose of the intrinsic
reward is to be a better estimate of any change in discounted future reward for times
before a given moment than the estimate given by simply measuring the immediate
reward received at that given moment. In the preferred embodiment it is simply the
immediate reward at a given moment plus the change in expected discounted future
reward after that moment. In other words, it is the reward given plus the derivative
or time step difference of the value estimate. If updated in time steps, the value
estimates from different time steps might, depending on conventions used, need to
be appropriately weighted in order to compensate for the time discount across the
different time step.

For training purposes past observations, actions and/or rewards can be stored in a
data storage and trained without sending actions to the environment at each time
step. Such training is called offline training (which is not to be confused from the
offline/online nature of training techniques). In these cases, the value estimate will
be trained on observations, actions and/or rewards sent from a data storage rather
than receiving these directly from the environment and/or actor.

In statistics, an estimator is a rule for calculating an estimate of a given quantity
based on observed data: thus, the rule (the estimator), the quantity of interest (the
estimand) and its result (the estimate) are distinguished. Here, an estimator is the
above and corresponding devices for performing such functionality.

475

480

485

490

495

500

505

WO 2021/029802 PCT/SE2020/050717
15

There are point and interval estimators. The point estimators yield single-valued
results, although this includes the possibility of single vector-valued results and
results that can be expressed as a single function. This is in contrast to an interval
estimator, where the result would be a range of plausible values (or vectors or

functions).

Estimation theory is concerned with the properties of estimators; that is, with
defining properties that can be used to compare different estimators (different rules
for creating estimates) for the same quantity, based on the same data. Such
properties can be used to determine the best rules to use under given circumstances.
The critic or value estimator is technical system that receives an observation,
typically the same observation as the actor, and generates an estimation of the
expected discounted reward. The value estimation is a function of the observation
and a set of estimator parameters, typically the weights from and/or for a neural
network. This observation is usually, but not necessarily, the same as that provided
to the actor. For reasons of scalability and generalization a neural network or other
differentiable estimator is usually used for value estimation. Since it is primarily
some gradient of the value estimate that is of interest, any constant can be added
to the estimate without affecting this gradient and any scaling applied to it will just
rescale the same gradient.

In this context a 'differentiable estimator’ can be any technical system taking an input
and producing an output designed so that the derivative of the output with respect
to the estimator parameters can be calculated automatically. In the typical
implementation of the invention this is done using symbolic or automatic
differentiation techniques implemented in software code, but alternatives such as
computer software implementations of finite difference methods and policy are
equally viable. Examples of automatic differentiation methods include source code
transformations into a static code, dynamic operator overloading and compiler-
based automatic differentiation. Each of these automatic differentiation approaches
may use methods known as forward mode, adjoint mode, reverse mode and/or
mixed mode automatic differentiation. Backpropagation is a specific example of
automatic differentiation. Also manually designed technical systems for

differentiation of specific value estimators are viable, especially for small and/or

510

515

520

525

530

535

540

WO 2021/029802 PCT/SE2020/050717
16

structurally simple estimators. Hardware implementations of such automatic
calculations of the derivatives are equally viable. In the preferred embodiment the
differentiable estimator is a typical universal function approximator such as an

artificial neural network, a Support Vector Machine (SVM) or similar.

A differentiable value estimator is a differentiable estimator that is also a value

estimator.

The value estimators used by some aspects of the invention are non-linear, which
differentiates them from/against the table-based and linear mappings commonly
used. Expressed differently, the gradient with respect to estimator parameters is
locally non-constant across the estimator parameters space. Many non-linear
estimators, such as artificial neural networks with a non-linear activation function,
allow universal function approximation and good generalization. Optionally, the non-

linear value estimators used by the invention are universal function approximators.

Q-learning is a reinforcement learning technique used in machine learning. The goal
of Q-learning is to learn a policy, which tells an agent what action to take under what
circumstances. Q-learning maintains a value estimate Q(a, o) as a function of action
and observation (or state. Its standard form uses iterations over all possible actions
given a state and/or observations in order to find the best action. This typically

makes the technique scale in complexity with the number of available actions.

Value estimation-centric learning frameworks, such as: temporal difference (TD)
learning; value iteration; and Q-learning, can also be seen as a special case of actor-
critics. For example, from this perspective a Q-learning algorithm combines the
external observation and action into a joint observation. The critic generates Q-
values from the joint observation, where Q is a value estimation based on the joint
observation and the use of Q instead of V for this particular value estimate has
become a convention. The actor picks the optimal action for selecting the new value
estimate, although it might then apply a different action to the environment for
exploration purposes. This can be viewed as a real-time training by performing a
search in the action space and creating an optimal mapping from a specific

observation to action. When fully trained the optimal action is usually applied to the

545

550

555

560

565

570

575

WO 2021/029802 PCT/SE2020/050717
17

environment as well. The resulting actor policy from this reward maximization is a
partial function, since it is only defined for a single external observation. The only
parameter in this case is the encoding of the optimal action given the current input.
The observation in the following description may include the action and so the value

estimate may also be a Q-function.

For optimizing the value estimation loss is commonly used. This value estimation
loss is typically defined as the (summed) squared difference between the received
discounted reward and the value estimation, but many other varieties exist. The
estimator parameters can then be updated by applying some gradient descent
method on this loss.

Reinforcement learning system may be treated as continuous time problems and/or
discrete time problems. In the discrete time the system is assumed to change state
in specific time steps. This is most common in digital computer-implemented
reinforcement learning formulations, where data and/or equations are typically
discreticized in time in order to be computable. Other implementations may be able
to handle or approximate these directly in a continuous formulation due to inherent
characteristics of the computational device. Generally, a “value at a time step” and
as the “value at a moment” can be used interchangeably to refer to the value
estimate at some point in time, as a continuous system can be seen as a discrete
system with an infinitesimal time step size and a discrete system as a discretizised

continuous system etc.

A gradient estimator is a system designed to estimate the gradient with respect to
one or more parameters selected from the parameters of the value estimator. An
important challenge in reinforcement learning is the efficient calculation of the
discounted future reward, since only the immediate reward is typically received at
each moment and the explicit storage of past states, observation and rewards is
often impractical on typical hardware. The invention allows the use of eligibility
traces as way to estimate the gradient on a loss based on the discounted future
reward efficiently. The resulting gradient estimate vectors are an essential input to

any optimizer of the value estimate.

580

585

590

595

600

605

WO 2021/029802 PCT/SE2020/050717
18

An eligibility traces, or trace for short, is a well-known technique introduced originally
for table-based learning systems, but that has since found various uses in other
systems. In short, the common functionality behind these so-called eligibility traces
is to keep a signal and/or memory that is decaying exponentially in time and that
tracks sufficient information through time. This allows a system to store accumulated
information about past states that allow the generation of updated value estimates
and/or the generation of gradients on the value estimate with respect to states
and/or parameters. Values are added and/or subtracted at various moments to this
eligibility trace while the resulting sum undergoes an exponential decay in time.

Below is an example of an eligibility trace in a pseudocode that is applied at each

time step in a discrete formulation:

trace := trace * lambda + value

where trace is the signal, lambda is the non-zero decay rate and value is the value
received at that time step. The lambda variable in the eligibility trace example above
is solely by convention not to be confused with the lambdas used in the descriptions
elsewhere, where lambda refers to a parameter relating to the transition rate to
bootstrapping (similar to how it used within the TD-lambda family of algorithms).
Some embodiments of the invention described below contain several eligibility
traces with non-homogenous decay rates. Further details on eligibility traces can be
found in the references provided herein. For clarity, trace in the specific examples
herein always refers to eligibility traces, but extension of these to related methods
such as so-called "Dutch traces” may be straight-forward.

Achieving equivalent eligibility trace mechanisms, the discrete eligibility trace
described above in a continuous setting is straightforward by taking the limit of small
time steps and well covered in available literature. Since exponential decay is easy
to achieve using a very wide range of physical mechanisms, such as chemical
and/or electrical components, they allow easy and efficient implementation in many
hardware implementations of the system.

610

615

620

625

630

635

640

WO 2021/029802 PCT/SE2020/050717
19

Eligibility traces calculate a value we herein refer to as the “discounted sum of past”
values. In other words, we sum all past values multiplied by a discount factor that
decays exponentially with how far in the past each value was collected. For example:

discountsum(t) := sum_dt (V(t-dt) * gamma”-dt)

where t in this example is the current time step, V(t) is some value at time t, dtis a
time difference variable being summed over, gamma is the discount factor and
sum_dt is a sum over dt with all integer values between 0 and infinity (or some
maximum dt, such as the start of a training episode or a time window considered
sufficient sufficiently large for training purposes). In continuous system this becomes
an integral. A-dt signifies that -dt is the exponent.

An eligibility trace may also be updated from the values of several time steps at once
in a so-called batch, which will not bias the estimate if the values or appropriately
weighted in the updating sum. Likewise, an eligibility trace might be used in
estimating the sum of some past value by using the eligibility trace to track values
up to a certain time step and then add appropriately weighted explicitly stored values
for the remaining time steps in the sum of the past value. Such variations can be
useful for purposes such as parallel processes and/or forimproving memory caching.
An example pseudocode of this follows:

trace(0) := gamma * gamma * trace(-2) + gamma*V(t - 1) + V(i)

where trace(-2) here is an eligibility trace updated by adding V(t - 2) instead of V(0).

There are many variations along these lines that add various terms to the sums that
are obvious to the skilled person.

Eligibility traces are one of the basic mechanisms of reinforcement learning. There
are two main ways to view eligibility traces. One is the more theoretical view where
the traces are seen as a bridge from TD to Monte Carlo methods. According to
another view, an eligibility trace is a temporary record of some subset of past values.

In a sense, the trace is a selective memory that stores sufficient information about

645

650

655

660

665

670

675

WO 2021/029802 PCT/SE2020/050717
20

past events to allow the use of various learning algorithms in an online manner, i.e.
allow techniques that do not necessarily need to repeatedly iterate over each
observation in order to arrive at a single gradient estimate. This also means that the
estimation can be achieved without storing these observations in memory, as only
a single or subset of the states are kept in memory at any moment together with the

information from the eligibility traces.

A novel method for using eligibility traces in function approximators was introduced
by the inventor in the article: A connectionist actor-critic algorithm for faster
learning and biological plausibility” [Johard, Leonard, and Ruffaldi, Emanuele. 2014
IEEE International Conference on Robotics and Automation (ICRA).]. This method
is called supervised eligibility traces or supervised traces and allows Monte Carlo
estimation of the discounted reward. The invention can be seen as an extension of

this method by the inclusion of bootstrapping.

In this earlier work, using supervised traces in particular is a memory efficient way
to get an equivalent to a Monte Carlo-estimate of the value estimation loss gradient
using exponentially decaying signals. Supervised traces use one signal per
parameter, e2, and uses another parameter el for storing a trace of the value
estimates that is common for all parameters. The e1 signal in supervised traces can
optionally also be estimated locally for each parameter and/or subsystem in a

distributed system.

The e1 signal is exponentially decaying at a certain rate, to which a signal is added
that consist of the value estimate multiplied with the derivative of the value estimate

with respect to the parameter in question.

The e2 signal is also exponentially decaying at the same rate, to which a signal

proportional to the derivative value estimate is added.

The Monte Carlo loss gradient for the parameter in question can then be estimated
from these signals, for example by subtracting the e2 signal multiplied with the

reward from the e1 signal.

680

685

690

695

700

705

710

WO 2021/029802 PCT/SE2020/050717
21

A further study by the inventor revealed that only the e2 signal is strictly needed to
be an actual eligibility trace in the supervised traces in order to achieve the primary
computational and/or memory advantages. The contribution of the e1 signal from
the value estimate and its gradient at a specific moment to the gradient of the value
estimate becomes a geometric sum to infinity for each parameter that only depends
on the current value estimate and its gradient. The whole contribution of such
geometric sums is easily evaluated immediately from the decay rate, the current
value estimate and the current gradient of the value estimate, resulting directly in a
term proportional to the value estimate multiplied by its gradient. However, allowing
this contribution to the sum to unfold through the use of an eligibility trace also allows
convenient truncation of time series in problem settings with finite number of state
transitions in each rollout, i.e. in settings where the sum is only desired up to some
certain maximum future time step. The use of an eligibility trace for e1 is optional
and appropriate in such settings. This concludes the analysis of this earlier work by
the inventor and the definition of the traces e1 and e2 below may differ.

Bootstrapping is a methodology in statistics that uses an estimated value to estimate
other estimates. Our proposed system applies bootstrapping to a Monte Carlo
estimate related to the concepts used in supervised traces by performing gradient
ascent and/or descent on some combination comprising the reward and a value
estimate. This combination defines the introduction of bootstrapping in the Monte
Carlo estimate in a recursive manner or through an equivalent differential
formulation in the continuous case. Any discounted future reward estimate
generated from a value comprising a combination of the value and reward is called
a "bootstrapped value estimate". A technical system generating the bootstrapped

reward is referred to as a "bootstrapper".

According to a first aspect, there is provided a system for supporting machine
learning. The system comprises:

- ONe Or More processors;

- a memory configured to store one or more parameters of an estimator;

- adifferentiable estimator of discounted reward, the differentiable estimator
also being referred to as a value estimator, configured to, by the one or more

processors: receive an observation including information representative of one or

715

720

725

730

735

740

WO 2021/029802 PCT/SE2020/050717
22

more observations of an environment and/or system at a moment in time, access
parameters of the value estimator from the memory and generate a discounted
reward estimate, also referred to as a value estimate, in a value estimation process;

- one or more eligibility trace generators configured to, continuously and/or
(e.g. repeatedly or iteratively) through several steps and/or moments of the eligibility
trace generator and by the one or more processors: receive from the value estimator
a partial derivative of the value estimate with respect to one of the parameters of the
value estimation process; receive a signal from the eligibility trace generator and
generate an updated signal, also referred to as an eligibility trace, such that each
step and/or moment comprises operations such that:

e the signal is decaying in real or simulated time at a rate proportional to
the respective signal, i.e. exponential decay in time corresponding to the
observation;

¢ to the signal is added a value proportional to the partial derivative of the
value estimate;

thereby maintaining or keeping a signal, between steps and/or moments of the
eligibility trace generator, by values being added and/or subtracted at various
moments to the eligibility trace while the resulting sum undergoes an exponential
decay in time; and

- one or more bootstrapped gradient estimators configured to, by the one or
more processors: receive a reward signal from a technical reward system; receive
the value estimate; receive the eligibility trace; and create a gradient estimate based
on an input comprising: the reward; the eligibility trace; the value estimate; and the

gradient of the value estimate.

In a sense, it can be said that the signal persists between steps and/or moments of

the eligibility trace generator.

By way of example, it is possible to generate a set of eligibility traces, where the
eligibility traces can be regarded as a mechanism and/or intermediary signal(s) used

to generate the gradient estimate.

A notable step here is the (additional) use of the gradient directly, rather than solely
indirectly through the eligibility trace as is the case in the TD-lambda algorithm.

745

750

755

760

765

770

775

WO 2021/029802 PCT/SE2020/050717
23

By way of example, the one or more bootstrapped gradient estimators may be
configured to generate the gradient estimate in a process comprising adding and/or
subtracting each of:

- asignal proportional to the value estimate multiplied by the partial derivative
of the value estimate and with that product being separable from the value
estimate multiplied with the eligibility trace;

- a signal proportional to the eligibility trace multiplied by the reward; and

- asignal proportional to the eligibility trace multiplied with (a sum comprising)
the value estimate and/or another value estimate, with the value estimate(s)

in this signal being for the same or a following moment.

For example, the value estimator may be based on a non-linear function. In other

words, the value estimator may be a non-linear value estimator.

Optionally, the one or more bootstrapped gradient estimators is/are configured to,
by the one or more processors, create the gradient estimate based on an input
further comprising a value proportional to a linear combination of: the discounted

sum of the past reward and optionally any value estimate.

For example, the one or more bootstrapped gradient estimator may be configured
to generate the gradient estimate in a process comprising adding and/or subtracting
each of:

- asignal proportional to the value estimate multiplied by the partial derivative
of the value estimate;

- a signal proportional to the eligibility trace multiplied by the reward (e.g.
received in a discounted time window, at a time step or at an instant);

- a signal proportional to the eligibility trace multiplied with variable V2, V2
being the same value estimate or another value estimate, for the same or a future
moment;

and wherein the gradient estimator further generates a correction signal directed
to any gradient estimate and/or optimizer of V2 comprising each of the following
terms separately and/or summed together in any combination(s):

- a signal proportional to the discounted sum of the past value estimate

multiplied with the partial derivative of V2 at the same or a future moment;

WO 2021/029802 PCT/SE2020/050717
24

- a signal proportional to any eligibility trace (e.g. updated with the partial
780 derivative of V2 at same or future moment) multiplied by a discounted sum
of V2 (at the same or a future moment); and
- a signal proportional to any eligibility trace (e.g. updated with the partial
derivative of V2 at the same or a future moment) multiplied by a discounted
sum of the past reward.
785
In another example, the one or more bootstrapped gradient estimator generates the
gradient estimate in a process comprising adding and/or subtracting each of:
- a signal proportional to the value estimate multiplied by the partial
derivative of the value estimate;
790 - a signal proportional to the eligibility trace multiplied by the reward; and
- a signal proportional to the eligibility trace multiplied with variable V2, V2
being the same value estimate or another value estimate, for the same or a
future moment;
and wherein the gradient estimator further generates a correction signal directed
795 to any gradient estimate and/or optimizer of V2 comprising each of the following
terms separately and/or combined/summed together in any combination(s):
- a signal proportional to the discounted sum of the past value estimate
multiplied with the partial derivative of V2 at the same or a future moment;
- asignal proportional to the partial derivative of V2 multiplied by a discounted
800 sum of the past reward.
- a signal proportional to the reward multiplied by the partial derivative of V2
- asignal proportional to the partial derivative of V2 multiplied by V2.
- asignal proportional to any eligibility trace multiplied by the partial derivative
of V2
805

As an example, the value estimator may be based on a non-linear function.

In our provided pseudocode the same moment (time step) referred to above is the
variable V_0 and the following moment is the variable V_1. These may collapse to
810 the same variable in continuous time implementation (hence “same or following
moment”). Note that the “following moment” is not necessarily one time step ahead,

but may be multiple time steps (or a certain amount of continuous time) ahead of

815

820

825

830

835

840

845

WO 2021/029802 PCT/SE2020/050717
25

the time referred to as the “same moment”. In multiple step implementation the time
steps in between may also have to be handled explicitly by adding other
corresponding terms to gradient estimate.

Optionally, the system further comprises one or more optimizers configured to, by
the one or more processors: receive the gradient estimate, receive one or more
parameters controlling the functioning of any value estimator; and generate updated

parameters; and store the new parameter(s) in the memory.

For example, two or more parameters controlling the functioning of a value estimate
are updated:

- without estimating a value for each combination of individual parameter, i.e.
without computing any matrices with all combinations of parameters and hence
allowing a memory and/or computational complexity less than quadratic in the
number of parameters; and

- without storing in memory each observation and/or state used to calculate
by the eligibility trace the discounted sum of past derivates of the value estimate.

Note that the sums of signals used in the descriptions of the invention are fully
sufficient to generate a gradient estimate in themselves. This provides the possibility
to rely solely on these sums while avoiding the additional computational and/or
memory overhead of alternative gradient estimation methods that are using matrices
with values all parameter combinations and/or storing past states to arrive at the
gradient estimate. The additional overhead of these alternative estimation
mechanisms has widely been assumed to be unavoidable, and avoiding them is a
substantial benefit provided by the invention. However, these additional overheads
may still be justifiable in other aspects of the invention, where the computational
and/or memory advantages are not critical. One such example is when the past
states will be reused for visualization or further analysis of system dynamics in small

systems.

In a particular example, the system further comprises:
- a memory configured to store actor parameters controlling the functioning

of one or more technical actors;

850

855

860

865

870

875

WO 2021/029802 PCT/SE2020/050717
26

- one or more actors configured to, by the one or more processors: receive
an actor observation; access one or more actor parameters in the memory; and
generate an action directed to a technical system;

- an actor optimizer configured to, by the one or more processors: receive the
observation; receive the action; access the actor parameters in the memory; receive
the value estimate from the value estimator; receive the reward signal; generate

updated actor parameters; and store the updated parameters in the memory.

In the above example, the value estimator may comprise an artificial neural network.
The system may for example be configured for fully or partly controlling a technical
system and/or technical environment by the action(s) of the actor(s).

For example, the technical system and/or environment to be controlled may include

a vehicle, robot or technical planning system.

FIG. 6 is a schematic flow diagram illustrating a computer-implemented and/or
apparatus-implemented method for supporting machine learning according to an
embodiment. Alternatively, the method is regarded as a procedure for determining
parameters of a neural network for the purpose of value estimation in a machine
learning system. The method can be divided into two phases, defined by i) steps
S1-S3 and ii) steps S4-S6, which can be performed individually and/or in
combination. Depending on how the method is used, the first phase defined by steps
S1-S3 may be regarded as optional.

Basically, the method comprising the steps of:

S1: oblaining: an observation from a technical system and/or environment; and one

or more estimator parameters;

S2: generating a discounted reward estimate, referred to as a value estimate, by a
technical differentiable estimator, referred to as a value estimator, based on the

observation and the one or more estimator parameters;

880

885

890

895

900

905

910

WO 2021/029802 PCT/SE2020/050717
27

83: generating an estimate of the gradient of the value estimate with respect to one
or more estimator parameters of the value estimator, this estimate being referred to

as a gradient of the value estimator,

S4: obtaining: a value based on an eligibility trace and/or another estimate of a
discounted sum of past gradient(s) of a value estimator, for each of one or more of
the value estimator parameters; and a reward as part of technical feedback from a

technical system and/or environment; and optionally any additional value estimate;

S5: generating a value estimator gradient estimate, for use in an apparatus or
computer-implemented program for performing gradient-based parameter
optimization of a value estimator, referred to as an optimizer, based on each of the
following signals:

o a value proportional to: the value estimate multiplied by the gradient of
the value estimate with respect to the weights such that this value is
also separable from any contribution to the gradient estimate that is
proportional to the value estimate multiplied by the discounted sum of
past gradient(s);

o a value proportional to: the reward multiplied by the eligibility trace
and/or a value proportional to the other estimate of the discounted sum
of past gradient(s);

o a value proportional to: the eligibility trace and/or a value proportional to
the other estimate of discounted sum of past gradient(s) multiplied by
variable V2, V2 being any value estimate, for the same or a following

moment or time step; and

S6: directing said gradient estimate to said optimizer.

Alternatively and/or complementary, step S5 involves generating each of the above

signals, collectively defined as the gradient estimate, separately and/or
combined/summed together in any combination(s).

WO 2021/029802 PCT/SE2020/050717
28

In a particular example, the value obtained in step S4 is an eligibility trace and/or

915 another estimate of a discounted sum of past gradient(s), for each of one or more
of the estimator parameters; and a reward as part of technical feedback from the
technical system and/or environment; and optionally any additional value estimate.
The gradient estimate comprises each of the following signals, separately and/or
combined/summed together in any combination(s):

920
o a value proportional to: the value estimate multiplied by the gradient of

the value estimate with respect to the weights such that this value is

also separable from any contribution to the gradient estimate that is

proportional to the value estimate multiplied by the discounted sum of
925 past gradient(s);

o a value proportional to: the reward multiplied by the eligibility trace
and/or a value proportional to the other estimate of the discounted sum
of past gradient(s);

o a value proportional to: the eligibility trace and/or a value proportional to

930 the other estimate of discounted sum of past gradient(s) multiplied by
variable V2.

In other words, a collective of the above signals, defined as the gradient estimate,
is generated and directed to the optimizer, e.g. by sending or forwarding the

935 generated gradient estimate to the optimizer.

An implication of using the proposed gradient estimate is that it is possible to
generate gradient estimates using only past values in the time of the observation,
for example those values generated efficiently by eligibility traces. Use without

940 eligibility traces, such as methods storing the values necessary for the discounted
sums explicitly in memory rather than implicitly through eligibility traces, provides
lesser but still significant technical benefits. For example, we can generate the
gradient estimate online without an expensive backpropagation pass that can only
be started after a rollout is complete.

945

950

955

960

965

970

975

980

WO 2021/029802 PCT/SE2020/050717
29

Optionally, the method further comprises:

- extending the gradient estimate with, or directing toward any gradient
estimate and/or optimizer for the other gradient estimator for V2, the following
signals separately and/or combined/summed together in any combination(s):

o a value proportional to: the discounted sum of the past value estimate
multiplied by the gradient of V2 for the same or a following moment;
and

o a value proportional to: the product of the discounted sum of the past
gradient of V2 multiplied by V2, both terms being for the same time
moment or a following moment; and

o a value proportional to: the product of the discounted sum of the past
gradient of V2, V2 being for the same or a following moment, and the

reward.

When V2 is different from the differential estimator, the gradient of V2 also needs to
be obtained. Optionally, V2 is generated using a differentiable estimator.

Note that the gradient-related values will generally be vector values or other non-
scalar values, such as tensors, when more than one parameter is taken into
consideration. The terms can be summed together and/or otherwise manipulated in
any combination(s) where the signal(s) maintain the usability in an optimizer (i.e.
such that the whole sum of all terms may eventually be summed with the parameter
values). In a particular example, a linear transform can be used to generate one or
more signals, where a linear transform of these signal(s) can later be used to result
in the sum of the above six terms. Various such variants can easily be derived by
basic linear algebra and use our provided pseudocode as guidance for setting the
appropriate parameters of the transforms. In case the value estimator is used as V2,
all six terms directed to the gradient estimator, i.e. the three first ones and the three

optional ones above, can similarly be summed together in any combination.

The various terms in the sum that are proportional to the discounted sum of some
past value are not necessarily calculated using the same mechanism. They may rely
on different mechanisms, such as using different eligibility traces and/or different

explicit sums and/or other mechanisms while still achieving the objective of

985

990

995

1000

1005

1010

WO 2021/029802 PCT/SE2020/050717
30

estimating or calculating a value proportional to the discounted sum of past values
(e.g. the discounted sum of the past gradient).

For example, the extending signals except the discounted sum of the past value
estimate may be generated from another value estimator and directed to a gradient
estimate for that other value estimator.

Optionally, steps may be applied continuously and/or repeatedly; and the obtained
value in step S4 may change in order to correspond to a change in a system and/or

environment in real and/or simulated time.

By way of example, the output of the value estimator may be a non-linear function

of its inputs. In particular, it might be a universal function approximator.

As an example, the eligibility trace obtained may be decaying at a rate in real or
simulated time proportional to the eligibility trace and is increased based on the
gradient of the value estimate at one or more time steps; and the method further
comprises the steps of:

- obtaining: the estimate of the gradient of the value estimate with respect to
the value estimator parameters; and

- updating, for each of one or more received value estimator parameter, the
corresponding eligibility trace such that the eligibility trace is proportional to the
discounted sum of the past gradient of the value estimate.

By way of example, the gradient estimate is calculated without storing
simultaneously in memory every observation of relevance to the gradient estimate,

i.e. the gradient is estimated online.

Optionally, the method may further comprise the step of updating one or more value

estimator parameters based on the gradient estimate.

As an example, the value estimation parameters may encode a neural network.

1015

1020

1025

1030

1035

1040

1045

WO 2021/029802 PCT/SE2020/050717
31

Optionally, two or more value estimator parameters may be updated while updating
less than one value per parameter pair (i,j), i.e. the parameter updating allows a
sub-quadratic computational complexity in the number of parameters.

In a particular example, the method comprises:

- obtaining the parameters of a technical actor system; and an actor
observation;

- generating an action from the actor parameters and the observation; and

- optimizing the actor parameters of the technical actor system.

By way of example, the method may further comprise the step of controlling the
technical actor system at least partly based on the generated action.

For example, the technical actor system to be controlled may include a robot; vehicle;
or technical planning system.

Preferably, the method may be a computer-implemented method.

According to another aspect, there is also provided an apparatus for reinforcement
learning configured to perform the method as described herein.

According to yet another aspect, there is also provided a self-learning control system
for a controllable technical system, wherein the self-learning control system
comprises a system for supporting machine learning or an apparatus for

reinforcement machine learning as defined herein.

According to a further aspect, there is provided a method for at least partly
assembling and/or configuring a fully or partially automated robot and/or vehicle.
The method comprises:

configuring one or more processors of the robot and/or vehicle
according to determined/optimized actor parameter(s); or

including in the robot and/or vehicle one or more processor(s) designed
and/or configured according to determined/optimized actor parameter(s).

1050

1055

1060

1065

1070

1075

1080

WO 2021/029802 PCT/SE2020/050717
32

In this way, it is possible to provide efficient assembly and/or configuration of a fully
or partially automated robot and/or vehicle.

According to still another aspect, there is provided a method for performing an at
least partially automated industrial process, wherein the industrial process is
conducted based on control signal(s) from a technical planning system as defined

above.

In this way it is possible to, e.g. efficiently generate products of an automated

industrial process.

In the following, the proposed technology will be described with reference to non-

limiting examples:

Let us first consider the update used by TD(0) (here described in a time step problem

setting but easily transformable to a continuous setting):

Sum_i error_i

where

error_i=V_0-r_0- gamma*V_0

where V_0 = V(i + 0) is the value estimate at that time step as a function of some
observation ((0) is in the following text mostly omitted in our notation for brevity), r_0,
also herein called simply r, is the reward received after time stepi + 0, and sum_i is

a sum over one or more time steps.

Notation herein is for reference loosely based on LaTeX with may of the special
characters omitted. For example, * designates an exponent, _ is subscript etc. In

another example, sum_{a=0}"b is the sum of a from 0 to b.

This is an error of the TD(0) type used to update weights, which is not related to a
proper loss function, but there are modifications to temporal difference error which

make it such.

1085

1090

1095

1100

1105

1110

1115

WO 2021/029802 PCT/SE2020/050717
33

Sums over one or more time steps using an update rule are in the following notation
implicit and we focus in the following notation on the update being performed at each
time step and/or at each moment. Note that the use of a "time step” herein does not
necessarily refer to a discrete time implementation, but might also refer to a specific

moment in continuous time embodiments.

Note that the error and/or loss function in TD(0) or its gradient-based varieties
explicitly uses a time window of one time step as a window for the bootstrapping,
with any further propagation of error signals being applied indirectly through multiple
TD(0) updates. In the preferred embodiment of the bootstrapped gradient estimator
we would like to take a weighted average over several time windows of different
types, where larger windows are weighted less according to an exponentially
decaying weight as a function of the time window.

We can describe this as a proper loss function:

loss = sum_i error_i"2

where

error_i =sum_tau lambda*tau*(V_0 - sum_(t=0)*tau gamma’tr_tau }— gamma“’tau
V_tau)

where subscripts for V and r again means V(o(i+tau)) etc. Considerations of border
conditions etc have been omitted for simplicity. Tau is used as an index (within a time
window within which Monte Carlo sampling is used) and lambda is a parameter
describing the weighting of different time windows lengths.

The invention also works for various other error definitions, such as:

alt_error_i = \sum_{tau = 0}(lambda”™tau}V_0 - sum_{t=0}*tau}(gamma’t r_{t}) -
\gamma“tau \gamma V_{\tau+1})

1120

1125

1130

1135

1140

1145

1150

WO 2021/029802 PCT/SE2020/050717
34

but we do not treat them in detail here as the complexity will be higher for no obvious
advantages in most cases. However, they can be derived in a straightforward
fashion from the descriptions herein. For example, the alternative loss function
above can generate a gradient estimate consisting of 20 terms, with this set

including the specific necessary terms described herein as a subset.

Three notable equivalences that can aid in the design of the invention are the

following:

sum_i sum_j f(i,j) = sum_i sum_{j = i} f(i,j) + sum_j sum_{i = j} f(i,j) - \sum_i f(i,i)

and

sum_i sum_jN = sum_jsum_(i = j)

and

sum_i (f(i) sum_t (x*t g(t))= sum_i g(i) sum_j"i (x? f(j))

where the last factor can be described recursively as:

\sum_jNi (xA ()) = t_n

where t_n =f(n) + x t_{n-1}

The technical interpretation of these relations in the context of the invention is that:
1) sums of sums can be rewritten as three iterable sums of factors depending only
on current and past values, i.e. factors not relying on future values, and 2) a
discounted sum of past values can be calculated recursively using an eligibility trace
without explicitly storing past values. These equalities represent mechanical tricks
that allow us to avoid the expensive storage of information while maintaining strict
equality to the desired gradients and may also be used with the instructions herein
by the skilled person in order to derive many alternative designs of the invention
from various desired loss functions. The derivation of proper constants is generally
straightforward through an expansion of a loss function. The equalities listed above

1155

1160

1165

1170

1175

1180

WO 2021/029802 PCT/SE2020/050717
35

may aid in shaping the terms into the desired form corresponding to eligibility traces.
The preferred embodiments below provide precalculated designs that cover most

use cases.

In a truncated rollout, i.e. where we have some maximum final time step, the error
needs to be modified, as rewards after the rollout will not be available. The case of
a truncated rollout can, in short, be handled by using the final value estimate to
replace actual rewards received after the last time step in the rollout, i.e. the sum in
the error goes to either tau or the maximum time step, depending on which is
reached first. This will lead to an increased importance of the last value estimate in
the forms of a geometric sum. This means that the final value estimate can be
replaced with this geometric sum, which is easily calculated by the skilled person.
In other words, the update rule is modified by scaling the value estimate in the final
time step, but otherwise identical for the truncated case. Examples in a preferred
embodiment follow in the pseudocode below.

In particular, a careful study by the inventor reveals that a gradient estimate of the
loss function above with respect to the parameters of the value estimator can be
calculated using the following mechanisms:

el :=lambda * e1 + VO * d/dw (VO0)

eV_0:= gamma *lambda *eV_0+ V_0

edV_0 :=gamma * lambda * edV_0 + d/dw (V_0)
eV_1:=gamma *lambda *eV_1 + gamma™*V_1 + sigma *r_0
edV_1 :=gamma * lambda * edV_1 + gamma * d/dw (V_1)

grad_w := sigma * el - sigma * (sigma *r_0 + gamma * V_1) * edV_0 - sigma *
gamma *eV_0 *d/dw (V_1) + eV_1 *edV_1

where

w is a vector of value estimate parameters (also known as the "weights”).
grad_w is the gradient estimate of the value estimator

V_0 is the value estimate V(o(t), w) at the (current) time step t

V_1 is the value estimate for the next time step t + 1

1185

1190

1195

1200

1205

1210

1215

WO 2021/029802 PCT/SE2020/050717
36

r_0 is the reward r(t+0) given at the end of time step t

o(t) is the observation received at time t

lambda is a parameter controlling the transition rate from Monte Carlo estimate to
bootstrapping.

gamma is the discount rate per time step for the reward

sigma depends on lambda as sigma = 1/(1-lambda)

= is the assignment operator

(Subscripts in the names of eligibility traces eV_1 etc, unlike in V and r where they
denote time steps or moments, are purely a naming convention for eligibility traces

used here to demonstrate their connection to their respective values.)

Alternatively, we may for example also use the following update rule better
adapted for finite rollouts:

el =gamma * lambda * e1 + 1

e2 = gamma”2 * lambda’2 * e2 + 1

elV 0 =gamma *lambda *eldV_0+V_0

e1dV_0 =gamma * lambda * e1dV_0 + d/dw V_0

erl =gamma *lambda *elir + r * e

eldV_1 =gamma * lambda * e1dV_1 + gamma *e1 * d/dw V_1

e1V_1 =gamma *lambda *e1V_1 + gamma * V_1 e1

grad_w = sigma”2 V_0 d/dw (V_0) - sigma * (sigma *r + gamma * V_1) " el1dV_0
- sigma * gamma * eV_0 d/dw (V_1) + sigma * gamma * d/dw (V_1) er1 + sigma *
edV_1"r-sigma*gamma*e2*r *d/dwV_1+gammaV_1 edV1 + gamma * d/dw
(V_1)*eV_1- e2 gamma”2 V_1 d/dw V_1

when generating the final gradient estimate for a truncated rollout, we replace V_1
with sigma V_1 in the final iteration of the steps above.

The above gradient has been rescaled by 1/2 for simplicity of notation, since the
magnitude of the gradient estimate does not significantly a gradient descent scheme.

1220

1225

1230

1235

1240

1245

1250

WO 2021/029802 PCT/SE2020/050717
37

Optionally, the update rule above may, as has been mentioned, be repeated several
times with new values for i. For example V_0 may refer to a new time step V(i), r
refers to r(i), V_1 refers to V(i+1) (etc) in each step i of such iterations.

Note that time indications herein such as “current time step”, “same moment”, “next
time step” and "a future moment” etc only implies the relative ordering of these two
time steps (i.e. the relative time of the state of the environment generating the
corresponding observation and reward) and do not exclude offline calculation and/or
necessary imply any other relation between the data points and the timing of the
generation of signals etc. The affected variables can be assumed, for brevity, to be
for the same time step unless otherwise mentioned and the pseudocode can be
used as an indication in case of any ambiguity. The time step of the reward is

implicitly also in relation to these steps, as indicated in the pseudocode.

In a particular example, we can use a unique combination of different eligibility
traces in order to generate the gradient estimate. Note that we can perform the
whole optimization exactly given any lambda using only d/dw V(0) and d/dw V(1),
i.e. values momentously available when updating the environment fromtto t+1. ltis
possible to generate a single series of updates to the environment and learn online.
Scaling is proportional to n with a fixed memory requirement, while it takes into
consideration value estimates potentially infinite number of steps ahead in updating

each value estimate.

WO 2018/211139 A1 relates to reinforcement learning, where a reinforcement
learning neural network selects actions to be performed by an agent interacting with
an environment to perform a task in an attempt to achieve a specified result. The
reinforcement learning neural network has at least one input to receive an input
observation characterizing a state of the environment and at least one output for
determining an action to be performed by the agent in response to the input
observation. The system includes a reward function network coupled to the
reinforcement learning neural network. The reward function network more or less
corresponds to a value estimator, and has an input to receive reward data

characterizing a reward provided by one or more states of the environment and is

1255

1260

1265

1270

1275

1280

WO 2021/029802 PCT/SE2020/050717
38

configured to determine a reward function to provide one or more target values for

training the reinforcement learning neural network.

WO 2018/211139 A1 mentions a lambda network, but this lambda network cannot
be regarded as an eligibility trace generator, e.g., as the lambda network in its
forward operation does not make use of the derivatives of the value function. The
training of the lambda network, on the other hand, depends on the gradient with
respect to parameters of future values of the value estimate (in the time
corresponding to the observation) and not of past values of the value estimate (in

the same time), as can be seen in the derivation of the discounted return.

Generating a gradient requires knowledge originating both in the current time step
(in the time of the observation) and in other time steps. The eligibility traces is a
finite-dimensional information encoding that stores all the necessary information
from other steps and that depends only on the current eligibility trace and a finite set
of values depending on the current value estimate (and optionally one or more
previous time steps). In other words, we can calculate the gradient without storing
a large dynamically sized, and potentially infinite, series of past and/or future values
using the invented information encoding mechanism corresponding to the eligibility
trace.

The “persistence” (maintaining or keeping the trace) of the eligibility trace between
moments of its application to the gradient estimates is a distinguishing feature of the
invention. In clear contrast, WO 2018/211139 A1 discards its discounted signals
used in generating the gradient estimate for a time step when it starts to generate a

gradient estimate for the next time step.

A direct implication of having the eligibility trace generator as a block before the
gradient estimator is that the gradient estimator may use the output of the eligibility
trace generator as part input for generating the gradient estimate. This avoids the
necessity of the solution in WO 2018/211139 A1 to 1) store; and/or 2) regenerate,
for each gradient estimate, all the corresponding values for these other time steps.
Another proposed mechanism in WO 2018/211139 A1 is to limit the return to an

1285

1290

1295

1300

1305

1310

1315

WO 2021/029802 PCT/SE2020/050717
39

approximate finite m-step return, which obviously requires an undesirable trade-off
between accuracy of the training and computational and/or memory complexity.

Summarizing the technical arguments above, for generating a gradient estimate by
using a unique combination of eligibility traces and bootstrapping to generate a
gradient estimate, the present invention has better computational efficiency
compared to the method in WO 2018/211139 A1. The proposed technology is
therefore also capable of processing input from larger and more complex technical

system and/or environments.

The pseudocode describes aspects of the preferred embodiment of the invention

when implemented in a general purpose computer.

The general principles described in the pseudocode can easily be transformed into
preferred embodiments in the continuous case and/or embodiments that balance
the memory and/or computation characteristics most relevant to the desired
hardware and/or other considerations.

The first two terms in the sum of the pseudocode have some similarities with a TD-
lambda update with function approximation. The next two terms constitute correction
terms that makes the sum a gradient on an objective function, which improves the
convergence properties. The computational complexity of the correction term scales
exactly or approximately linearly with the number of parameters. This separates if
from many gradient TD-algorithms, e.g. RLS-TD, that maintain a matrix with at least

quadratic scaling in complexity as a result.

The trace eV_1 in the example pseudo code calculate a discounted sum of both the
past reward and the past V_1 estimates in a single trace, which can be used to
directly generate the sum of the two corresponding terms sharing a factor.

The eV_0 and/or eV_1 traces are common for all parameters and only need to be
evaluated once for the value estimator. This removes the necessity to evaluate them
locally, although this might be a more suitable option in certain implementations

depending on the balance between factors such as the signal transmission costs

1320

1325

1330

1335

1340

1345

1350

WO 2021/029802 PCT/SE2020/050717
40

and the cost for additional local traces. Their computational costs in a general
purpose computer implementation are generally not limiting the performance due to
them only being evaluated once, unlike the other traces that need to be evaluated
for each parameter. For this reason it might be an option to use more expensive
computation options for these, such as storing precise past value estimates and
evaluate the eligibility traces at each time step. An equivalent value to eV_1 can
then explicitly computed as a discounted sum of the past V2 estimate (or V if V =
V2) and the reward. The specifics of setting up such a combination will be obvious
to the skilled person after explicitly describing the sums being tracked by the eV_1

trace.

Note that this gradient estimate becomes accurate when summed over a large
number of time steps, but that each estimate and/or component of the estimate can
be sent to the optimizer individually as is typical in various online gradient descent

mechanisms.

The above implementation has been kept simple for brevity, but there are many
minor changes and/or improvements, such as (in cases where V_0 and V_1 are
generated using the same estimator) avoid storing the edV_1 as this is similar to
edV_0 but for a time delay. We can then store the older value edV_0 and perform
the update steps from information obtained from the current time steps to regenerate
edV_1 wherever needed. Alternatively, by keeping traces proportional tor and eV_0,
we do not necessarily need to store eV_1 (again assuming they are generated by
the same value estimator). This is because eV_1 can be recalculated easily from
information obtained in the current time steps as a sum of eV_0, V1 and a trace
proportional to r. Since such modifications will come easily to a skilled person these
have been omitted from the above pseudocode for the benefit of brevity and clarity.

In a specific example of such minor alterations of the preferred embodiment we
might instead replace the trace edV_1 in the pseudocode above with the following

redefinition calculated from edV_0 and d/dw (V_1):

edV_1 :=gamma * gamma * lambda * edV_0 + gamma * d/dw (V_1)

1355

1360

1365

1370

1375

1380

1385

WO 2021/029802 PCT/SE2020/050717
41

Such a formulation of eV_1 shows more clearly that we can store only a single trace
per parameter and might also facilitate memory allocation to the stack by a compiler.

The complete gradient-based mechanism above can be simplified into the following

by removing the last few terms of the sum above and arrive at:

el :=lambda*e1 + VO d/dw (VO0)
edV_0 :=gamma * lambda * edV_0 + d/dw (V_0)
grad_w :=sigma * e1 - sigma * (sigma *r_0 + gamma *V_1) *edV_0

We may for example also use the related update rule, which is better adapted for
the truncated case (rescaled by 1/(2*lambda)):

e1dV_0 = gamma * lambda * e1dV_0 + d/dw (V_0)
grad_w = sigma * V_0 d/dw (V_0) - (sigma *r+gamma*V_1) *e1dV_0

In the final update in a truncated rollout, we replace V1 with \sigma V_1 in the
gradient estimate, i.e. grad_w = sigma * V_0 d/dw (V_0) - (sigma * r + gamma *
sigma *V_1) " e1dV_0.

This simplified mechanism often converges in practice, but the convergence
behaviour is more complex, as it is no longer a proper gradient on a loss function if
the same value estimator is used to generate V_0 and V_1. It differs from the TD
lambda algorithm in the first term in the gradient estimate, where the term above
has a term that depends only on V_0 * d/dw V_0, whereas TD-lambda has a term
that depends on V_0 * edV_0. Given that edV_0 is a discounted sum of past d/dw
V_0-values (including current d/dw V_0), this additionally includes cross terms such
as V_0 * dV_-1 etc (where dV_-1 = d/dw V(t-1) etc). A specific difference in the
provided invention is that the term V_0 * dVO is separable from (i.e. not linearly
dependent on the whole contribution to the gradient estimate from) the discounted
sum of past V_0 * dV_-dt (summed over dt) represented by the term used in TD
lambda. In other words, the contribution of our term V_0 * dVO0 is independent from
any contribution to the gradient estimate of a whole discounted sum of past V_0 *

1390

1395

1400

1405

1410

1415

WO 2021/029802 PCT/SE2020/050717
42

dV_-dt (where dt signifies the variable of the sum). In certain alternatives to the
proposed invention, such as the mentioned TD lambda, this discounted sum is
calculated using an eligibility trace updated with the gradient (i.e. partial derivative
in case of a single parameter). In other words, whereas TD lambda makes a
contribution to the gradient that is proportional to value estimate multiplied by the
eligibility trace, the contribution of our invention relies on multiplying the value
estimate by the gradient estimate, which is only one term in the discounted sum
implicitly calculated by the corresponding product of TD-lambda. A distinguishing
feature is thus that the contribution to the gradient estimate from this term alone is
different from any contribution to the gradient estimate caused by adding the whole
discounted sum used by the corresponding term in TD-lambda.

It can be noted that the correction terms will be zero in the gradient of the loss if
another independent value estimate is used for the following time step, since this
other value estimator is independent of the parameters of the first value estimator.
In other words, the removal of these terms means that the full gradient estimate will
be equivalent to the simplified gradient estimate in this case.

These pseudocodes are purely indicative and assisting in the design of an
embodiment of the invention. Using these as a guideline, various discrete and
continuous embodiments can be arrived at, e.g. by taking the limit of step size dt —
0, setting V_0 = V_1 (i.e. they are equal in the limit of the time step as t + 1*dt — 1)
and replacing step-based discount rate factors in the eligibility trace updates (e.g.
gamma and lambda) with a differential equation formulation with a differential decay
proportional to the eligibility trace, removing the various step based discounts before
the bootstrap V_1, d/dw(V1) etc (these steps disappear if we take a step t+1*dt in
the limit dt — 0) and so forth. Such transformations as such can be considered well-

known.

Sigma in the example pseudocode is the geometric sum based on lambda from 0
to infinity and can be replaced with the integral from O to infinity of the corresponding
exponential function described by the differential equation used to update the trace
in a continuous formulation. We can also update eligibility traces in a continuous

formulation while using a finite time step between V_0 and V_1 etc. Suitable step-

1420

1425

1430

1435

1440

1445

1450

WO 2021/029802 PCT/SE2020/050717
43

based discounts gamma and lambda should then preferably match the
corresponding integrals between times 0 and the discrete following time step for the
exponential formulations of the decay. Using the above and similar transformations
of the parameters described in our example pseudocode will provide sufficient
guiding to achieve proper learning functionality in any of these specific embodiments.
The time step effectively disappears as we take the limit in some continuous
formulations as describe above, meaning that V_1 in the pseudocode can be
interpreted as a value estimate generated from the same or a following time step
compared to the time step used to generate V_0. If a finite time step between V_0
and V_1 is used with a continuous reward function the reward function should be
integrated between time t and time t+1 with the reward weighted by the appropriate
exponential decay in this time window (i.e. “an integral in a discounted time window”).
Similarly, if the reward is given at certain time steps that are smaller than the time
steps between the value estimates, a discounted sum in an interval similar to the
integral in the discounted time window can instead be used. If a time step is used
this can be assumed to be handled by the appropriate discretization process. The
reward can be a momentaneous value, an integral in a discounted time window, a
discounted sum within a time window, or a value for a certain time step such as
those mentioned here, depending on the specific of the problem setting and
hardware. In other words, the role of the reward term of the pseudocode is to
evaluate the reward received between V_0 and V_1, taking discount into account.
We herein refer to the appropriate reward as the reward for short, with any variation
such as those above obvious to the skilled person from the description here.

The lambda of the supervised eligibility traces decides the rate at which value
estimates transition from a Monte Carlo estimate based on towards a bootstrapping
estimate similar to TD-learning. The discount rate of the bootstrapped estimate is
decided by the weights in the linear combination of the reward and the discounted
value estimate. The weight of the reward is set to 1 and the weight of the discounted
value estimate is set to a value in the range (0 1) in this preferred embodiment,
which makes the results easily interpretable as a value estimate related to those of
Continuous TD-lambda and similar methods. Note that a weight of 0 (zero) would
make the system a pure Monte Carlo estimation, which is outside the scope of the

1455

1460

1465

1470

1475

1480

1485

WO 2021/029802 PCT/SE2020/050717
44

invention, while values greater than or equal to 1 tend to be unstable in this preferred

embodiment.

Note that for patent limitation purposes, any linear combination, sums and/or signals
to be added/subtracted together in this context mean a contribution with a weight
different from 0. In other words, for a term to be considered a contribution to a
combination for this purpose it needs to have any effect on the output. Lambda and
gamma is expected to be different from 0 (at some moment) and will generally not
converge if kept in at values greater than 1. Sums etc can be either addition(s)
and/or subtraction(s) and/or other equivalent operation(s) for the same purpose.
More generally, adding a signal to another signal includes any suitable means of
combining the signals.

In general, the additions of other signals spanning the space spanned by the signals
in a sum can also be considered a sum of the original sum. As can any sum of

variables each constituting a sum of subsets of the signals, etc.

These and other signals can also be encoded within other signals, such as by
application of non-linear lossy rescaling for efficient transmission, e.g. using
alternative floating point representations, and/or application of various encryption
methods for secure transfer between computational nodes in a distributed processor.
In general the invention is resistant to noise, meaning that signals with noise and/or
relying on any approximation(s) may be used. In particular, small differences in the
corresponding timings of various signals may be acceptable approximations if these
differences are negligible in the context of the learning problem.

Signals and/or values obtained, and/or those used internally in the system, can
likewise be represented in a variety of formats including those indicated above. In
particular, pairs of terms sharing a common factor, one of them being the pair sigma
*r*edV_0 and gamma * V_1 * edV_0, can be generated together. For example
the mentioned pair can be generated as (sigma * r + gamma * V_1) * edV_0 with
the resulting signal directed to the gradient estimate (after additional multiplication

by sigma) being a sum of these two signals. Another option in these two cases is to

1490

1495

1500

1505

1510

1515

WO 2021/029802 PCT/SE2020/050717
45

send the signals representing reward and V2 estimate summed together as a single
signal in case of the simplified version of the invention.

The given preferred embodiments can also be generalized to subsampling in time,
updates merging several time steps into a single update and/or treating several time
steps as a single multistep update. This can be advantageous for adaptation to the
processor and such optimizations may also take place automatically by compilers.

Alternatively, we change the order of the computations in this preferred embodiment
by generating and feeding the terms individually into the gradient estimator. Such
linear transformations and/or other simple changes of this or any other step in the
generation can be considered trivial to the skilled person. Such trivial changes in the
evaluation order may also be automatically implemented by compiler optimization
and/or software for designing hardware. For example, memory addresses can be
changed, values can be sent implicitly and/or in compressed and/or sparse format
etc. An exhaustive list of precise possible variations could be prohibitive in terms of
the required descriptive length, but will in any case be understood by the skilled
person to be easily realized from and described by the conceptual descriptions of

the system used herein.

The lambda value in the bootstrapped reward estimate can be seen as a discount
rate for the bootstrap, i.e. similar to the discount factor in TD-based value estimation.
This decides the rate at which future rewards are discounted against current
rewards when performing bootstrapping. The discount rate for the bootstrap not
necessarily constant in this preferred embodiment. In fact, it might be better to
initially rely on Monte Carlo estimates until the bootstrap achieves lower variance
than the Monte Carlo samples. In the later stages of training it can again be
beneficial to switch to Monte Carlo sampling in order to do fine tuning with less
reliance on bootstrapping. In another example the discount can be adapted for
optimal learning, such as in the Adaptive Lambda Least-Squares Temporal
Difference Learning algorithm. Likewise, the discount rate for the reward may be
adapted similarly toe the discount rate of the bootstrap, i.e. lambda and gamma may
both change over the training process.

1520

1525

1530

1535

1540

1545

1550

WO 2021/029802 PCT/SE2020/050717
46

There are many possible variations on the particulars of the bootstrap. For example,
it can be combined with methods for choosing the degree of bootstrapping based
on the observation and/or the value estimate itself. Examples of these variations is
to rely on TD learning to a higher degree in certain areas of the state space where
its assumptions are known to be more appropriate, or the strategy to avoid Monte
Carlo estimates in areas with negative rewards due to the cost of exploration in
these.

The bootstrapped reward estimate in combination with eligibility traces and a policy
gradient actor-critic setup allows a natural transition between what can be
approximately seen as three different problem formulations: POMDP; Monte Carlo
estimation of an MDP; and TD learning.

The value estimate used to bootstrap the gradient estimate, which we herein call
V2, can be either from the value estimator or from another source of value
estimations. In particular, it may optionally be obtained from another differentiable
value estimator. As an example of this, a common variation on this theme is to have
a pair or set of value estimators that exchange value estimation in their gradient
updates. Such pairs of value estimators are often used in contemporary TD-learning
methods in order to avoid a systematic overestimation of the value of an observation
or state under certain conditions. In such an example, the embodiment of the
invention would implement an analogue strategy by using a set of value estimators.
They would use their own value estimator to generate the value estimate, but
calculate the gradient estimate partially using bootstrapping from another value
estimate V2 received from a separate value estimator. For example, in the provided
example pseudocode V_0 would be updated from the value estimator V, while V_1
could be generated from another estimator V2. The estimate in our pseudocode
would then more properly be named V2_1, again using our notation with subscript
as a short for V2(t+1) = V2(o(t+1), w). In our original example pseudo code we have
used the fact that V is the same as V2, i.e. the value estimate is being bootstrapped
using the same value estimator as that used to generate the value estimate in this

example.

1555

1560

1565

1570

1575

1580

1585

WO 2021/029802 PCT/SE2020/050717
47

Using only the terms of the simplified embodiment of the system is an option for
simplicity when bootstrapping with another value estimator. It is, however, possible
to send the correction terms depending on V2 to the gradient estimate of V2 (which
in turn might be a composite function of several value estimators, which means it
will propagate the gradient estimate to two or more such value estimator
subsystems). This approach of exchanging correction terms may imply a strategy
where we optimize two or more estimators simultaneously on a global loss function
comprising several loss functions on several estimators. The gradient estimate V
might then also receive several additional correction terms from the bootstrapped
gradient estimates of other estimators. As an example, the gradient estimate of V
can receive the correction terms from the gradient estimate of V2 that is
bootstrapping with V. In the simplest such setup we have two estimators V and V2
which send each other their respective correction terms. Note that the correction
terms in V depend on a gradient estimate for V2, which must also be obtained by V
from V2 if these correction terms are to be generated (and vice versa).

Note that V2 even when different from V might contain the value estimator as a
subsystem and/or use it as an input, which means that some parameters of V2
correspond to parameters in the value estimator. A simple example of this is if we
as V2 use a linear combination of the value estimate and one or more other value
estimators. Handling such cases is straightforward if V2 is differentiable, e.g. by
using automatic differentiation where the gradients will be propagated automatically
from V2 to the value estimator and added as terms to the gradient estimate of the

value estimator’s corresponding parameters.

For example, V2 may use a different parameterization and/or set of received
observation(s) from the value estimate (V1). The received value estimate V2 should
in the preferred embodiment be, either exactly or approximately, some value
estimate for the same agent as the agent whose value is being estimated by the
value estimate (V1) and for the same state as the state generating the observation
for the value estimate (V1) at the same moment or at some following moment.
However, some embodiments covered herein, such certain embodiments using a
decaying amount of bootstrapping throughout the training process, may reliably

achieve convergence with practically any V2. Bootstrapping with pure noise will

1590

1595

1600

1605

1610

1615

WO 2021/029802 PCT/SE2020/050717
48

generally not accelerate the learning process (and may slow it down) and should be
avoided whenever possible. However, when V2 is received from an outside source
verifying this is not always possible beforehand. An approximation used as V2 can
sometimes be very rough and still be useful in accelerating the learning process to

some degree.

When describing terms being proportional to some product of values and these
terms being added at several moments in time, this does not necessarily imply that
the proportions of these products are unchanged between moments. For example,
the example pseudocodes above include other factors in such terms that change

over time.

A skilled person realizes that there are many other possible embodiments, including
estimates that add noise, regularization and/or gradient substitutes such as: natural
gradients and/or conjugate gradients. The conditions for a gradient estimate to be
useful in a gradient descent strategy can be considered well-known. In short, the
projection of the gradient estimate onto the true gradient needs to lie in the direction
of the gradient estimate to guarantee a reduction of the loss under usual gradient
descent strategies. Scaling the gradient estimate by any scalar will not substantially
affect its usability in an optimizer and can be done at will. The gradient estimate can
be transmitted in various forms, e.g. a set of vector signals or a set of scalars.
Alternatively, the gradient estimate can be transmitted to the optimizer(s) in various
formats such as a number of separate terms in order to be combined at the

destination through linear combination or similar.

The value estimator can be stochastic and it may also be beneficial to artificially
introduce noise in its estimation during training, as this acts as a regularization. Such
mechanisms are common in the field of machine learning, where examples of

common noise types are Gaussian and Dropout.

The eligibility trace can be distributed and constitute several values or traces
updated in an equivalent way. For example, each term in a sum of terms each
comprising an eligibility trace can be calculated by its own subsystem with its own

eligibility trace. These subsystems then collectively constitute the eligibility trace.

1620

1625

1630

1635

1640

1645

1650

WO 2021/029802 PCT/SE2020/050717
49

This is also true if the subcomponents are out of time synchronization, i.e. their
values are different due to time differences and/or due to each subsystem sampling
from a different trajectory of the same Markov process. If two or more eligibility
traces with such time differences (i.e. different time differences from the time
differences as implied in the example pseudocode and description above) between
them are used within a single term, then some appropriate additional mechanism
will be needed to compensate for the time differences. In many cases we can
explicitly store states for a few time steps in order add additional terms that
compensate for time differences within some small time window. In other cases, we
can simply rely on the fact that the order of terms being summed to a gradient
estimate and/or parameter update will not affect the result of the summation. Also,
some small delays in updating the parameters, causing gradient estimates to be
updated using old parameter values for the value estimator, might not significantly
alter the functioning of the optimizer as the parameters can be expected to change
slowly (depending on specifics and hyperparameters of the optimizer).

Eligibility traces in general and our invention in particular are especially suited for
adaptation in contemporary general-purpose computers due to their efficient
memory use. Although standard techniques such as backpropagation through time
can provide equivalent mathematical results to the invention, the need to maintain
a storage of past states, observation and/or actions means that memory
requirements for typical contemporary general purpose computers become inviable
for a large group of practical problems on such systems. Especially reinforcement
learning systems relying on pixel-based visual inputs are known to lead to memory
problems on typical hardware. The use of traces solves this by reducing the amount
of information that need to be stored by encoding only the relevant parts of the
information in one or more signals called traces. A reduced memory usage also
allows a higher proportion of the computation to be performed using the limited
faster memories, such as a CPU cache or GPU memory. The invention may also
provide other computational advantages.

Similar advantages of the proposed system are valid for electronic circuit and similar
hardware embodiments of the processor(s) and memory of the invention. In addition,

in such embodiments the simplicity of the architecture allows a higher density of

1655

1660

1665

1670

1675

1680

1685

WO 2021/029802 PCT/SE2020/050717
50

processing units by removing the circuits for centralized memory access,
backpropagation information pipelines etc. An eligibility trace can be stored in
physical proximity to the parameter itself and exponential decay is a mechanism that
is usually extremely simple to implement through electronics, e.g. through
capacitors, feedback loops with delay and/or timed binary division. Such simpler
hardware architectures can be designed both cheaper and faster than traditional
reinforcement learning hardware architectures. We also note that the computations
involved can be made to rely only on local information and that computation and
memory requirements scale approximately linearly with parameter sizes in the

preferred embodiment.

Compared to Monte Carlo estimation, traces with bootstrapping offer substantially
faster convergence for a large class of problems where we can rely on the full or
extensive observability of the problem. Expressed differently, our bootstrapping
allows us to approximate the problem as a fully observable Markov decision process.
The gradual transition from Monte Carlo method to bootstrapping also allows us to
combine the weaker assumptions on observability in short-term patterns with the
stronger assumptions while looking for long-term patterns. This hybrid approach
between assumption types is especially sound when a learning system is presented
with feedback delays and/or gradual accumulation of information about past states
common in practical systems that limit the validity of full observability assumptions,
while the learning mechanisms for long-term state transitions can rely on the
stronger assumptions to bootstrap the information and boost convergence rates
over these long-term patterns where the number of independent samples is likely to
be sparser and hence learning efficiency more important. In general, reinforcement
learning involves very expensive training processes and any increase in
convergence speed is critical to such systems. At the same time, they frequently
suffer from convergence issues if inappropriate simplifying approximations are used.
The dynamic transition of the approximations used by the invention opens new
possibilities for combining the convergence advantages of both Monte Carlo and
bootstrapping methods.

Optionally, the invention includes an optimizer. Given a gradient estimate, an

optimizer is a technical system that tries to improve on the parameters in an iterative

1690

1695

1700

1705

1710

1715

1720

WO 2021/029802 PCT/SE2020/050717
51

manner. There are many possible optimizers, including but not limited to computer
implementations of the following: gradient descent; natural gradient descent;
descent methods utilizing estimates of the second-order derivatives; descent
including linear search; conjugate gradient descent; momentum-based strategies;
and methods discarding the magnitude of the gradient estimate. Variations on these
and other optimizers are obvious to the skilled person. The preferred embodiment
of the invention uses a regular gradient descent strategy with a decaying step sizes
in the direction of the gradient for reasons of simplicity and stability. Expressed
differently, the parameters are a program code automatically generated by the
optimizer and stored to the memory. This program code, together with information
about the encoding of the parameter space, can be interpreted, compiled or turned
into hardware equivalents by tools or systems such as a neural network framework.
The generated program is optimized for accurately predicting how well a given

system achieves the purpose defined by the reward system.

It should be understood that there is no need to store to parameter updates to
memory to have a desired technical effect. We would like to bring to attention that,
in light of very recent privacy developments within the EU, federated learning has
been widely adopted in the industry as a way to provide data anonymity while
training networks across multiple actors (e.g. Owkin, Googe Gboard, Tesla efc).
Federated learning also provides network load advantages compared to transfer of
data and is being implemented also for these reasons. The distributed nature of the
federated training system means that it is spread across several juridical persons,
usually with one central juridical person performing the actual updating of the
parameters and several juridical persons supplying the gradient estimates. Here the
gradient estimates for use in value estimators are effectively an industrial commodity
traded, sold or otherwise negotiated on between the companies and/or individuals
and the gradient estimates therefore constitutes an intended, valuable and tradeable
technical result in itself.

The parameters may at the same time be a representation for several possible
embodiments. For example, while we are optimizing a computer-implemented actor
we may at the same time be optimizing an equivalent hardware design and/or

configuration of another technical value estimation system based on these

1725

1730

1735

1740

1745

1750

1755

WO 2021/029802 PCT/SE2020/050717
52

parameters. Both the parameter set and a such designed and/or configured
hardware can then be considered outputs of the corresponding method.

The gradient estimate and the optimizer can also be combined in the invention in
such a way that they are difficult to clearly separate into different steps or
subsystems. An example of such case is estimates of higher order derivatives based

on a series of first-order derivatives.

It is also possible to split the gradient estimate sent to the optimizer over several
signals or to spread it over time. Example of such variations is to generate another
eligibility trace that slowly sends its contribution to the gradient across multiple time
steps, for example as the pseudocode example does by adding values to the trace
el. ltis also possible to send the terms one-by-one to optimizer and to update the
value estimator parameter until the parameters have been updated using all the
terms. Also in this case the optimizer generates an updated set of parameters based
on a gradient estimate comprising the mentioned terms sent in a distributed manner

across time and/or multiple signals.

It is also possible to distribute the functionality across a plurality of subsystems. A
particular example is collecting gradient estimates from several separate actors,
such as several identical robotic systems, and merging them into a more accurate
gradient estimate. Another example is merging several weight updates from several
optimizers into a global weight update. Variations on such distribution are common

in reinforcement learning and obvious to the skilled person.

In an optional embodiment, the invention includes an actor optimizer. An actor
optimizer is technical system with the purpose to adjust one or more of the actor
parameter(s) in order to produce a policy that achieves a better expected reward
over time. Although a policy can be improved through a policy gradient approach
using the reward and exploratory noise alone, it is often beneficial for the learning
process to instead improve the policy with help from the value estimate. The actor
optimizer then receives an input comprising the reward signal and the value
estimate and creates an intrinsic reward which is passed to the actor optimizer.

Finally, the actor optimizer generates a new set of one or more parameter(s) that

1760

1765

1770

1775

1780

1785

WO 2021/029802 PCT/SE2020/050717
53

improve the policy. Certain value-estimation frameworks, such as Q-learning,
generates an optimal or approximately optimal partial policy for each time step while
other frameworks, such as policy gradient methods, improve persistent policies
gradually over time. Systems using persistent policies can disconnect the actor from
the actor optimizer once the optimization phase is complete and then apply the
optimized actor independently for generating actions.

Note that the actor parameter(s), like those of the value estimator, may
simultaneously represent the policy of several actor systems. In other words, both
the actor generating actions in the optimization system and other equivalent
systems, for example a hardware implementation of said actor and/or a computer
implementing the actor in a slightly different way, may be considered optimized by
and outputs of the provided method.

The reliance on stronger assumptions about the problem type that are implicit in the
use of intrinsic rewards and/or bootstrapping often allows for faster convergence,
but might not perfectly align with best local solution due to the assumptions being at
least partly invalid. In these cases, their usage can be gradually decreased as
training progresses in order to gain both the benefit of faster learning and
convergence to the true local optimum. The decrease of bootstrapping can be
implemented in an embodiment by having a rate of bootstrapping in the value
estimate gradient that decreases over time rather than staying constant. The usage
of intrinsic reward by the actor optimizer can also be decreased over time and
instead be gradually replaced by the actual reward, possibly with the reward
discount being handled directly by methods such as eligibility traces in a policy
gradient actor. Another method is by making the decay of the eligibility trace used in
a policy gradient actor optimizer increase until it agrees with or having it converge
toward the rate used by the value approximation. If the rates agree the intrinsic
reward no longer biases the optimum of the actor optimizer. The critic can still
function as an observation-dependent baseline for a policy gradient actor, which
reduces the variance of its policy gradient estimates. It is also possible to connect
multiple critics with different decay rates to the same actor, or to bootstrap the critic
with a critic that is using a different eligibility trace.

1790

1795

1800

1805

1810

1815

1820

WO 2021/029802 PCT/SE2020/050717
54

One aspect of the system includes a technical subsystem controlled by the actor. A
possible subsystem is a planning system, which is a system that optimizes and
directly or indirectly controls the behaviour of an organization, factory, production
plant, heating or cooling system, manufacturing line, pipeline, transmission lines,
computer cluster, extraction unit or similar. A typical such system is an industrial
production planning system, where one or more policies are used for continuous
control or for planning a series of actions in order to optimize a reward created from
a combination of objectives such as: production; resource use; production times;
and quality. Observation used are collected from a variety of sensors and a
production plan is generated, which might be followed by human controllers and/or
automatic control. Other examples of planning systems include: marketing planning
systems and logistical planning systems.

Technical planning systems are computer programs that have become common and
critical to the profitability and/or efficient operation in many industrial and
governmental sectors, including: hydro power production; thermal power production;
geothermal heat exchange; heating systems; cooling systems; transmission lines;
manufacturing production lines; a specific machine in a production line; water
pumping systems; service content provision systems; computer load balancing;
automated marketing systems; water sanitation systems; oil and general resource
extraction; pipeline control; and mining operations. These systems control technical
systems or a mixture of technical and other (such as human) operation. The
planning system can control the operations directly or, perhaps more commonly,
indirectly by suggesting technical action plans for human decision makers and/or
operators. Commonly existing optimization software commonly rely on conventional
optimization techniques that scale poorly with problem size and/or do not take

generalization and overfitting into consideration.

The reinforcement learning approach has entered research stages in several
sectors as a promising alternative for technical planning applications. Providing
frequently and timely plans is a major challenge, as well as the computational and
memory challenges fueled by the recent decreases in sensor costs and structured
data collection efforts by relevant organizations. Information security needs that

prevent widespread cloud computation and storage further aggravate the issue of

1825

1830

1835

1840

1845

1850

1855

WO 2021/029802 PCT/SE2020/050717
55

memory and computational efficiency in executing planning systems. Another factor
giving rise to computational complexity is the desire to move to more accurate non-
linear models, whereas the existing system often rely in linearizations and other

simplifications in order to be computationally feasible.

Technical planning systems often use a simulator, model and/or digital twin for the
optimization process, which is assumed to have sufficient correspondence with the
real system. Commonly a specific simulation tool is used to produce this simulator
and historical data is applied to verify or improve it. The desired action can be a plan
for each moment or a plan for some time period. Actions at each moment are
generally a more correctly formulated optimization problems, since action plans are
purely hypothetical and tend to be modified as more information arrives to the
planning system, while the optimal actions at each moment lead to real actions
taken and corresponding changes in the environment. Generated immediate actions
do not constitute an action plan per se, but still perform operations planning given
the context of their generation for the purpose of optimizing the long-term overall
outcome given some explicit or implicit estimation of the deterministic or stochastic
estimation of the results of immediately taken actions. Industrial control system can
thus be considered planning system if the immediate control is optimized towards
achieving long-term objectives in a non-obvious fashion, i.e. when the linking of the

immediate results to long-term advantage is non-trivial.

The planning usually take place within some constraints. Traditional optimization
methods such as simplex method or dynamic programming usually embed such
constraints into the optimization methods, while reinforcement learning preferable
handles them with an appropriate negative reward. Since these systems tend to
contain some level of stochasticity this latter approach encourages the control

system to maintain some margin from the constraint boundaries.

For example, the technical planning system may, after optimization, control the
corresponding industrial process by communicating its control signals directly with
SCADA-systems or may alternatively be interfacing directly with the machines
and/or user interfaces. Generally, the many types of universal function

approximators that may be used in such technical planning system can also be

1860

1865

1870

1875

1880

1885

1890

WO 2021/029802 PCT/SE2020/050717
56

compiled into efficient code for deployment in edge computing solutions, for
example using the corresponding infrastructure around state-of-the-art Al
frameworks such as TensorFlow and/or Flux. For security reasons the actors can
be trained and/or deployed on a local network with access to sensors, but with no
or limited access to the internet. Sometimes external information can be allowed
through firewalls, such as updated resource costs for the various resources used in
the process.

The efficiency of industrial processes according to various aspects of commercial
interest, for example: human labour intensity, resource usage, production, reuse of
material and required energy input, is essential to the profitability of an industrial
process in a competitive segment. A small difference in such parameters can have
a large impact of the profitability of a process in a competitive environment and
constant adjustment of the operation can be assumed to be necessary in a non-
static society. Using the training method above as a part of these industrial
processes, preferably by training in a continuous manner to adapt to changes in the
parameters of relevance to the process, will generally lead to a more effective
production from these and other aspects and be able to produce the desired outputs
from these processes for a lesser cost per unit of production than alternative
methods with lower computational ability and the consequently less flexible

processes. Likewise, the environment impact and resource use can be reduced.

Another possible subsystem is motor control of a robotic system. Observation are
received from sensors and used to create an optimal motion, usually regarding
rewards based on factors such as: time; precision; force; distance covered; specific
achieved objectives; damage avoidance; and energy use. The robot can be a static

type, usually for industrial purposes, or a self-moving robot.

Commonly in robotic systems the state of the robots is assumed to be known and
movement planning is done analytically through inverse dynamics. Excellent
accuracy can be achieved through careful calibration of the parameters of the
dynamics in the unconstrained case, but when interacting with external objects the
validity of the assumptions fails to represent the problem at hand. Many promising

types of actuators, such as pneumatic actuators, also display a non-linear behaviour

1895

1900

1905

1910

1915

1920

1925

WO 2021/029802 PCT/SE2020/050717
57

that is difficult to handle computationally using inverse dynamics methods.
Reinforcement learning with its general problem formulation is not dependent on a
traditional dynamics model and is well adapted to handling such scenarios and
others.

Controlling robots through policies trained through reinforcement learning is a
challenging task. The objects and environments that the robot needs to interact with
are often very complex. Movements and reaction times are expected to be rapid in
order to maintain balance and appropriately react to variations in external forces,
friction and other active objects. At the same time rewards are often based on
achieved objectives and sparse in relation to the reaction times needed. As a
consequence, the credit assignment problem is rather difficult and the error signal
needs to be backpropagated through a large number of time steps with TD-based
or backpropagation methods. The memory or computational requirements grow with
the number of timesteps, which makes the approaches difficult. In addition, the
feedback delays from sensor systems might be noticeable in comparison to the time
scales used. This fact, combined with the large number of uncertainties and the
difficulty in exactly modelling the complex environment, makes the full observability
assumption used in TD-based learning impractical. The invention drastically
reduces the memory requirements in such cases, and allows a transition from short-
term POMDP assumptions using policy gradient training of the actor to the larger-
scale biased control variates provided by Monte Carlo value estimation and finally
to the MDP-like assumptions of the bootstrapping.

Another possible subsystem is vehicles designed to be controlled by any
combination of humans; conventional autonomous system and/or self-learning
agents. Vehicles can be any machine carrying cargo, passenger, payload and/or
equipment and includes: motor vehicles, propelled vehicles, aircraft, railed vehicles,
watercraft, rockets, spacecraft, missiles and guided projectiles. The control of the
actor can be either: the complete control of movement control as well as all other
functions of the vehicle; or be limited to controlling one or more subsystems. The
observation may include variables such as sensor inputs from LIDAR, radar,
cameras, speed sensors, pitot pipes, engine temperatures. Actions can be

parameters such as steering angels, desired movement coordinates, velocity, cabin

1930

1935

1940

1945

1950

1955

WO 2021/029802 PCT/SE2020/050717
58

temperature and instrument lights. The problems here are similar to those in robotics
and the distinction between the fields and methods used in each can be seen as
partly historical.

Robots, vehicles and planning systems usually involve a considerable capital and
time expense for sampling relevant data and/or in case of undesired behaviour by
the system. It is often preferable to train the relevant reinforcement learning system
in one or more simulator(s). After the simulator training process the system can be
applied the real environment with or without fine-tuning of value estimate and/or
agent parameters in the real environment. ldeally the training process can take
place in a series of simulator(s) with increasing computation complexity and
similarity with the real application. It is possible to also use offline data for training
the value estimator. Optionally, fine tuning of both the value estimator and actor may

later be done in the real system.

Vehicles and robots preferably deploy the actor without online training on every unit
when entering manufacturing. This is due to inefficiency of training on data received
from a single unit versus the risk from bias. Instead, data may preferably be collected
from all units and merged into a single efficient actor system and/or value estimator.
Also, the limited computing power on solutions disconnected from the power grid
may bring significant disadvantages to performing a learning process online. For a
vehicle it might also be preferable to train the actor to not rely on a single sensor by
introducing noise. In contrast, in an industrial planning system it may be more
feasible to replace sensor data with simulated data due to the redundancy of
sensors and availability of computing resources in such a setting.

Intelligent control systems is an increasing part of the technical development cost of
new vehicles. Aspects of the proposed method provides an efficient way to design
and/or manufacture such intelligent vehicles with expected benefits in control
complexity and/or cost of manufacture per unit compared to comparable methods.
Training neural networks for self-driving ground vehicles in particular is a central part
in the life cycle production process of cars and in general the creation intelligent
control is essential in reaching the expected functionality of modern vehicle

construction. In many of these cases the vehicle design inherently support the

1960

1965

1970

1975

1980

1985

1990

WO 2021/029802 PCT/SE2020/050717
59

deployment of actors in general purpose computers inside the vehicles that have
direct access to sensors. Likewise, the construction of complex control of rockets
have allowed reusability of components that allow launches at a fraction of the cost.
All these and other vehicles can achieve benefits, for example reducing production
costs over the production lifecycle, enhanced control (in the resulting vehicles),
increased safety, higher degrees of automation and/or reduced fuel consumption.

The value function estimator can be trained on historical data as an approximation
for the actual policy and/or actual environment. If the historical policy and/or
environment can be assumed to be close the final policy this can be a good
approximation. Training can also take place in real and/or simulated environments
fundamentally different from but in some aspects similar to the target application.

This is known as transfer learning and is relatively common in the field.

Alternatively, it is possible to regard the planning system, robot or vehicle as an
overall technical system that includes a reinforcement machine learning system as

a sub-system thereof.

The planning system, robot or vehicle may also be seen as controlled by the
reinforcement machine learning system, with the reinforcement machine learning

system as an integral sub-system thereof or as a separate but interconnected entity.

It will be appreciated that the methods and devices described above can be
combined and re-arranged in a variety of ways, and that the methods can be
performed by one or more suitably programmed or configured digital signal
processors and other known electronic circuits (e.g. discrete logic gates
interconnected to perform a specialized function, or application-specific integrated

circuits).

Many aspects of this invention are described in terms of sequences of actions that
can be performed by, for example, elements of a programmable computer system.

The steps, functions, procedures and/or blocks described above may be

implemented in hardware using any conventional technology, such as discrete

1995

2000

2005

2010

2015

2020

2025

WO 2021/029802 PCT/SE2020/050717
60

circuit or integrated circuit technology, including both general-purpose electronic
circuitry and application-specific circuitry.

Alternatively, at least some of the steps, functions, procedures and/or blocks
described above may be implemented in software for execution by a suitable
computer or processing device such as a microprocessor, Digital Signal Processor
(DSP) and/or any suitable programmable logic device such as a Field
Programmable Gate Array (FPGA) device and a Programmable Logic Controller
(PLC) device.

It should also be understood that it may be possible to re-use the general processing
capabilities of any device in which the invention is implemented. It may also be
possible to re-use existing software, e.g. by reprogramming of the existing software

or by adding new software components.

It can be noted that the term ‘state’ sometimes also refer to the observation and
sometimes refer to the value estimation. The mixing together of these terms is
common in the literature of the field, as much early work in Q-learning, TD-learning
and related approaches assumed a fully observable state.

It is also possible to provide a solution based on a combination of hardware and
software. The actual hardware-software partitioning can be decided by a system
designer based on a number of factors including processing speed, cost of

implementation and other requirements.

FIG. 7 is a schematic diagram illustrating an example of a computer-implementation
100 according to an embodiment. In this particular example, at least some of the
steps, functions, procedures, modules and/or blocks described herein are
implemented in a computer program 125; 135, which is loaded into the memory 120
for execution by processing circuitry including one or more processors 110. The
processor(s) 110 and memory 120 are interconnected to each other to enable
normal software execution. An optional input/output device 140 may also be
interconnected to the processor(s) 110 and/or the memory 120 to enable input

2030

2035

2040

2045

2050

2055

2060

WO 2021/029802 PCT/SE2020/050717
61

and/or output of relevant data such as input parameter(s) and/or resulting output

parameter(s).

The term ‘processor’ should be interpreted in a general sense as:

e any system or device capable of executing program code or computer
program instructions to perform a particular processing, determining or
computing task; and/or

e a dedicated hardware circuitry specifically designed to manipulate signals in
a specific manner; and/or

e a parameterized hardware circuitry specifically designed to manipulate
signals in a specific manner partly described by some parameters or
instructions with an expressive power that fall short of constituting a general

purpose programming language.

The processing circuitry including one or more processors 110 is thus configured to
perform, when executing the computer program 125, well-defined processing tasks

such as those described herein.

The processing circuitry does not have to be dedicated to only execute the above-
described steps, functions, procedure and/or blocks, but may also execute other tasks.

Moreover, this invention can additionally be considered to be embodied entirely
within any form of computer-readable storage medium having stored therein an
appropriate set of instructions for use by or in connection with an instruction-
execution system, apparatus, or device, such as a computer-based system,
processor-containing system, or other system that can fetch instructions from a

medium and execute the instructions.

According to an aspect, there is thus provided a computer program comprising
instructions, which when executed by at least one processor, cause the at least one
processor to perform any of the method or methods disclosed herein.

The software may be realized as a computer program product, which is normally

carried on a non-transitory computer-readable medium, for example a CD, DVD, USB

2065

2070

2075

2080

2085

2090

WO 2021/029802 PCT/SE2020/050717
62

memory, hard drive or any other conventional memory device. The software may thus
be loaded into the operating memory of a computer or equivalent processing system
for execution by a processor. The computer/processor does not have to be dedicated
to only execute the above-described steps, functions, procedure and/or blocks, but

may also execute other software tasks.

The flow diagram or diagrams presented herein may be regarded as a computer
flow diagram or diagrams, when performed by one or more processors. A
corresponding apparatus may be defined as a group of function modules, where
each step performed by the processor corresponds to a function module. In this
case, the function modules are implemented as a computer program running on the

processor.

The computer program residing in memory may thus be organized as appropriate
function modules configured to perform, when executed by the processor, at least
part of the steps and/or tasks described herein.

Alternatively, it is possible to realize the module(s) predominantly by hardware
modules, or alternatively by hardware, with suitable interconnections between
relevant modules. Particular examples include one or more suitably configured
digital signal processors and other known electronic circuits, e.g. discrete logic gates
interconnected to perform a specialized function, and/or Application Specific
Integrated Circuits (ASICs) as previously mentioned. Other examples of usable
hardware include input/output (I/O) circuitry and/or circuitry for receiving and/or
sending signals. The extent of software versus hardware is purely implementation

selection.

It is becoming increasingly popular to provide computing services (hardware and/or
software) where the resources are delivered as a service to remote locations over
a network. By way of example, this means that functionality, as described herein,
can be distributed or re-located to one or more separate physical nodes or servers.
The functionality may be re-located or distributed to one or more jointly acting
physical and/or virtual machines that can be positioned in separate physical node(s),

i.e. in the so-called cloud. This is sometimes also referred to as cloud computing,

WO 2021/029802 PCT/SE2020/050717
63

2095 which is a model for enabling ubiquitous on-demand network access to a pool of
configurable computing resources such as networks, servers, storage, applications

and general or customized services.

The embodiments described above are to be understood as a few illustrative

2100 examples of the present invention. It will be understood by those skilled in the art
that various modifications, combinations and changes may be made to the
embodiments without departing from the scope of the present invention. In particular,
different part solutions in the different embodiments can be combined in other
configurations, where technically possible.

2105

2110

2115

2120

2125

2130

2135

WO 2021/029802 PCT/SE2020/050717
64

CLAIMS

1. Asystem (100) for supporting machine learning, said system comprising:

- one or more processors (110);

- amemory (120) configured to store one or more parameters of an estimator;

- adifferentiable estimator of discounted reward, the differentiable estimator
also being referred to as a value estimator, configured to, by the one or more
processors (110): receive an observation including information representative of one
or more observations of an environment and/or system at a moment in time, access
parameters of the value estimator from the memory and generate a discounted
reward estimate, also referred to as a value estimate, in a value estimation process;

- one or more eligibility trace generators configured to, continuously and/or
through several steps and/or moments of the eligibility trace generator and by the
one or more processors (110): receive from the value estimator a partial derivative
of the value estimate with respect to one of the parameters of the value estimation
process; receive a signal from the eligibility trace generator and generate an
updated signal, also referred to as an eligibility trace, such that each step and/or
moment comprises operations such that:

e the signal is decaying in real or simulated time at a rate proportional to
the respective signal, i.e. exponential decay in time corresponding to the
observation;

¢ to the signal is added a value proportional to the partial derivative of the
value estimate;

thereby maintaining or keeping a signal, between steps and/or moments of the
eligibility trace generator, by values being added and/or subtracted at various
moments to the eligibility trace while the resulting sum undergoes an exponential
decay in time; and

- one or more bootstrapped gradient estimators configured to, by the one or
more processors (110): receive a reward signal from a technical reward system;
receive the value estimate; receive the eligibility trace; and create a gradient
estimate based on an input comprising: the reward; the eligibility trace; the value
estimate; and the gradient of the value estimate.

WO 2021/029802 PCT/SE2020/050717
65

2. The system of claim 1, wherein the one or more bootstrapped gradient estimators
generates the gradient estimate in a process comprising adding and/or subtracting
2140 each of:

- asignal proportional to the value estimate multiplied by the partial derivative
of the value estimate and with that product being separable from the value
estimate multiplied with the eligibility trace;

2145 - a signal proportional to the eligibility trace multiplied by the reward; and

- asignal proportional to the eligibility trace multiplied with the value estimate

and/or another value estimate, with the value estimate(s) in this signal being

for the same or a following moment.

2150 3. The system of claim 2, wherein the value estimator is non-linear.

4. The system of claim 1, wherein the one or more bootstrapped gradient estimators
are configured to, by the one or more processors, create the gradient estimate
based on an input further comprising a value proportional to a linear combination of:

2155 the discounted sum of the past reward and optionally any value estimate.

5. The system of claim 4, wherein the one or more bootstrapped gradient estimator
generates the gradient estimate in a process comprising adding and/or subtracting
each of:
2160 - a signal proportional to the value estimate multiplied by the partial
derivative of the value estimate;
- a signal proportional to the eligibility trace multiplied by the reward; and
- a signal proportional to the eligibility trace multiplied with variable V2, V2
being the same value estimate or another value estimate, for the same or a
2165 future moment;
and wherein the gradient estimator further generates a correction signal directed
to any gradient estimate and/or optimizer of V2 comprising each of the following
terms separately and/or combined/summed together in any combination(s):
- a signal proportional to the discounted sum of the past value estimate
2170 multiplied with the partial derivative of V2 at the same or a future moment;

WO 2021/029802 PCT/SE2020/050717
66

- a signal proportional to any eligibility trace multiplied by a discounted sum
of V2, and

- a signal proportional to any eligibility trace multiplied by a discounted sum
of the past reward.

2175
6. The system of claim 4, wherein the one or more bootstrapped gradient estimator

generates the gradient estimate in a process comprising adding and/or
subtracting each of:
- a signal proportional to the value estimate multiplied by the partial

2180 derivative of the value estimate;

- a signal proportional to the eligibility trace multiplied by the reward; and

- a signal proportional to the eligibility trace multiplied with variable V2, V2
being the same value estimate or another value estimate, for the same or a
future moment;

2185 and wherein the gradient estimator further generates a correction signal directed
to any gradient estimate and/or optimizer of V2 comprising each of the following
terms separately and/or combined/summed together in any combination(s):

- a signal proportional to the discounted sum of the past value estimate
multiplied with the partial derivative of V2 at the same or a future moment;

2190 - asignal proportional to the partial derivative of V2 multiplied by a discounted

sum of the past reward.
- asignal proportional to the reward multiplied by the partial derivative of V2
- a signal proportional to the partial derivative of V2 multiplied by V2.
- asignal proportional to any eligibility trace multiplied by the partial derivative

2195 of V2

7. The system of claim 5, wherein the value estimator is non-linear.

8. The system of claim 7, further comprising one or more optimizers configured to,
2200 by the one or more processors: receive the gradient estimate, receive one or more
parameters controlling the functioning of any value estimator; and generate updated

parameters; and store the new parameter(s) in the memory.

WO 2021/029802 PCT/SE2020/050717
67

9. The system of claim 8, wherein two or more parameters controlling the functioning
2205 of a value estimate are updated:

- without estimating a value for each combination of individual parameter, i.e.
e without computing any matrices with all combinations of parameters and
hence allowing a memory and/or computational complexity less than

quadratic in the number of parameters; and
2210 e without storing in memory each observation and/or state used to
calculate by the eligibility trace the discounted sum of past derivatives of

the value estimate.

10. The system of claim 4 or claim 9, further comprising:
2215 - a memory configured to store actor parameters controlling the functioning
of one or more technical actors;

- one or more actors configured to, by the one or more processors: receive
an actor observation; access one or more actor parameters in the memory; and
generate an action directed to a technical system;

2220 - an actor optimizer configured to, by the one or more processors: receive the
observation; receive the action; access the actor parameters in the memory; receive
the value estimate from the value estimator; receive the reward signal; generate

updated actor parameters; and store the updated parameters in the memory.

2225 11. The system of claim 10, wherein the value estimator comprises an artificial

neural network.

12. The system of claim 10 or 11, wherein the system is configured for fully or partly
controlling a technical system and/or technical environment by the action(s) of the
2230 actor(s).

13. The system of claim 12, wherein the technical system and/or environment to be
controlled includes a vehicle, robot or technical planning system.

2235 14. Acomputer-implemented and/or apparatus-implemented method for supporting
machine learning, said method comprising the steps of:

WO 2021/029802 PCT/SE2020/050717
68

- obtaining (S4): a value based on an eligibility trace and/or another estimate
of a discounted sum of past gradient(s) of a value estimator, for each of one or more
of the value estimator parameters; and a reward as part of technical feedback from

2240 atechnical system and/or environment; and optionally any additional value estimate;

- generating (S5) a value estimator gradient estimate, for use in an apparatus
or computer-implemented program for performing gradient-based parameter
optimization of some value estimator, referred to as an optimizer, based on each of
the following signals:

2245 o a value proportional to: the value estimate multiplied by the gradient of
the value estimate with respect to the weights such that this value is
also separable from any contribution to the gradient estimate that is
proportional to the value estimate multiplied by the discounted sum of
past gradient(s);

2250 o a value proportional to: the reward multiplied by the eligibility trace
and/or a value proportional to the other estimate of the discounted sum
of past gradient(s);

o a value proportional to: the eligibility trace and/or a value proportional to
the other estimate of discounted sum of past gradient(s) multiplied by

2255 variable V2, V2 being any value estimate, for the same or a following
moment or time step; and

- directing (S6) said gradient estimate to said optimizer.

15. The method of claim 14, wherein:

2260 - the value obtained in step S4 is an eligibility trace and/or another estimate
of a discounted sum of past gradient(s), for each of one or more of the estimator
parameters; and a reward as part of technical feedback from the technical system
and/or environment; and optionally any additional value estimate;

- the gradient estimate comprises each of the following signals, separately

2265 and/or combined/summed together in any combination(s):

o a value proportional to: the value estimate multiplied by the gradient of
the value estimate with respect to the weights such that this value is
also separable from any contribution to the gradient estimate that is

2270

2275

2280

2285

2290

2295

2300

WO 2021/029802 PCT/SE2020/050717
69

proportional to the value estimate multiplied by the discounted sum of
past gradient(s);

o a value proportional to: the reward multiplied by the eligibility trace
and/or a value proportional to the other estimate of the discounted sum
of past gradient(s);

o a value proportional to: the eligibility trace and/or a value proportional to
the other estimate of discounted sum of past gradient(s) multiplied by
variable V2.

16. The method of claim 14 or 15, further comprising the steps of:

- obtaining (S1): an observation from a technical system and/or environment;
and one or more estimator parameters;

- generating (S2) a discounted reward estimate, referred to as a value
estimate, by a technical differentiable estimator, referred to as a value estimator,
based on the observation and the one or more estimator parameters;

- generating (S3) the estimate of the gradient of the value estimate with
respect to one or more estimator parameters of the value estimator, this estimate

being referred to as a gradient of the value estimator.

17. The method of any of the claims 14-16, further comprising:

- extending the gradient estimate with, or directing toward any gradient
estimate and/or optimizer for the other gradient estimator for V2, the following
signals separately and/or combined/summed together in any combination(s):

o a value proportional to: the discounted sum of the past value estimate
multiplied by the gradient of V2 for the same or a following moment;
and

o a value proportional to: the product of the discounted sum of the past
gradient of V2 multiplied by V2, both terms being for the same moment
or a following moment; and

o a value proportional to: the product of the discounted sum of the past
gradient of V2, V2 being for the same or a following moment, and the

reward.

2305

2310

2315

2320

2325

2330

2335

WO 2021/029802 PCT/SE2020/050717
70

18. The methods of any of the claims 14-16, wherein:
- the steps are applied continuously and/or repeatedly; and
- the obtained value in step S4 changes in order to correspond to a change

in a system and/or environment in real and/or simulated time.

19. The method of any of the claims 14-18, wherein the output of the value estimator

is a non-linear function of its inputs.

20. The method of any of the claims 14-18, wherein the eligibility trace obtained (S4)
is decaying at a rate in real or simulated time proportional to the eligibility trace and
is increased based on the gradient of the value estimate at one or more moments;
and the method further comprises the steps of:

- obtaining: the estimate of the gradient of the value estimate with respect to
the value estimator parameters; and

- updating, for each of one or more received value estimator parameter, the
corresponding eligibility trace such that the eligibility trace is proportional to the
discounted sum of the past gradient of the value estimate.

21. The method of any of the claims 14-18, wherein the gradient estimate is
calculated without storing simultaneously in memory every observation of relevance

to the gradient estimate, i.e. the gradient is estimated online.

22. The method of any of the claims 14-21, further comprising the step of updating

one or more value estimator parameters based on the gradient estimate.

23. The method of any of the claims 14-22, wherein the value estimation parameters

encode a neural network.

24. The method of claim 17, wherein two or more value estimator parameters are
updated while updating less than one value per parameter pair (i,j), i.e. the
parameter updating allows a sub-quadratic computational complexity in the number
of parameters.

25. The method of any of the claims 14-24, further comprising the steps of:

2340

2345

2350

2355

2360

2365

2370

WO 2021/029802 PCT/SE2020/050717
71

- obtaining the parameters of a technical actor system; and an actor
observation;

- generating an action from the actor parameters and the observation; and

- optimizing the actor parameters of the technical actor system.

26. The method of claim 25, further comprising the step of:
- controlling the technical actor system at least partly based on the generated

action.

27. The method of claim 26, wherein the technical actor system to be controlled
includes a robot; vehicle; or technical planning system.

28. The method of any of the claims 14-27, wherein the method is a computer-

implemented method.

29. An apparatus (100) for reinforcement machine learning configured to perform
the method according to any of the claims 14-28.

30. A computer program (125; 135) comprising instructions, which when executed
by at least one processor (110), cause the at least one processor (110) to perform
the method according to any of the claims 14-28.

31. A computer-program product comprising a non-transitory computer-readable
medium (120; 130) having stored thereon a computer program of claim 30.

32. A seli-learning control system for a controllable technical system, wherein the
self-learning control system comprises a system (100) for supporting machine
learning according to any of the claims 1-13 or an apparatus (100) for reinforcement
machine learning according to claim 29.

33. The method of claim 25, further comprising:
at least partly assembling and/or configuring a fully or partially automated robot
and/or vehicle, and

WO 2021/029802 PCT/SE2020/050717
72

configuring one or more processors of the robot and/or vehicle according to
the actor parameter(s); or
including in the robot and/or vehicle one or more processor(s) designed and/or
configured according to the actor parameter(s).
2375
34. The method of claim 27, further comprising performing an at least partially
automated industrial process, wherein the industrial process is conducted based on

control signal(s) from the technical planning system.

PCT/SE2020/050717

WO 2021/029802

1/8

ANFOV

a3NIvVHL
A
|- - -"—-----"-"=-"-"-----"r--=-"="—-"-"""-""="-"="-"=-"=-"=-"=-"=-"=-=-= I
| |
| |
| |
NOILVINISTHdT
| SYTLINVEVL J3qooNT |
INOLLYINMIS TVOINHOTL 1 < NOLLOY FIEVISArav 5=y o vaNgsgo |
HO aT1HOM Tv3y) | INTOY TVOINHO3L |
INIFWNOHIANT _ |
I A

4 %(_ "

|
WILSAS | |
LE | Movga33d |
. TYOINHOIL/AHYMI |

|
_ "
| |

WHLSAS ONINYVIT IANIHOVIN

PCT/SE2020/050717

WO 2021/029802

2/8

Z 'bi4

alewnsg jusipels)

sio)owesed

d
T~

uonewrss
anjeA
ATowBpy
aoel|
J0jewnss Jojeisusb aokl] Jojewijse
Juopeib | [Auqiby3 anfeA
padde.s
-]100g
N\ N\ —_
10SS820.i4
plemay (s)erewnse anjep

JusIpeIb a1eWwNSs anjep

uoneAIasqQ

PCT/SE2020/050717

WO 2021/029802

3/8

arepdn Jajoweled

alewnse usipels)

g bi4

sio)owesed
> uolBWIjSe
anjea
Aiowispy
Jaziwndo
/
aoel |
I
N
lojew}se / Jojeirsushb soe.] lojew}se
Juoipef Ll Auqiby3 anjeA
padde.s
-joog
4 1 J0SS820.1d
piemoy (s)erewnse anjep usIpeIB S1eWINSS aNneA

uoneAIasqQ

PCT/SE2020/050717

WO 2021/029802

4/8

sio)owesed

10]oYy

sio)owesed

anjep

uonewss |—

AIOWIB

4

A

uonoy

&

T~

10]oYy

uoneAIasqQ

alewnse jusipels)

Vv

Jaziwndo

10]oYy

Jaziwndo

/

ooel]

I

|

-100g

10]JBeLso /

Jusipeib ¢_\

padde.s

Jojeiauab aorl]

Aunqibyg

10]JBeLso

anjep

bl

alewnss anjeA

A A

10558001

pJemay

(s)erewnse anjep

JusIpeIb a1eWwNSs anjep

uoneAIasqQ

PCT/SE2020/050717

WO 2021/029802

5/8

wojsAs buiuued Jo
]0QgoJ ‘8JoIyaA

uonoy

sio)owesed

10]oYy

sio)owesed

anjep

uonewss |—

4

AIOUWIB

A

10]oYy

uoneAIasqQ

alewnse jusipels)

\ 4

Jaziwndo

10]oYy

Jaziwndo

N

ooel]

I

|

-100g

10]JBeLso /

Jusipeib ¢_\

padde.s

Jojeiauab aorl]

Aujiqibyg

10]JBeLso

anjep

G b4

alewnss anjeA

A A

10558001

pJemay

(s)erewnse anjep

JusIpeIb a1eWwNSs anjep

uoneAIasqQ

WO 2021/029802 PCT/SE2020/050717

6/8

S4: OBTAINING A VALUE BASED ON AN ELIGIBILITY TRACE AND/OR
ANOTHER ESTIMATE OF A DISCOUNTED SUM OF PAST GRADIENT(S),
AND A REWARD

)

y

S5: GENERATING A COLLECTIVE OF SIGNALS, DEFINED AS A
GRADIENT ESTIMATE, FOR USE IN AN APPARTUS OR COMPUTER-
IMPLEMENTED PROGRAM, REFERRED TO AS AN OPTIMIZER, FOR

PERFORMING GRADIENT-BASED PARTAMETER OPTIMIZATION

A4

S6: DIRECTING THE GRADIENT ESTIMATE TO THE OPTIMIZER

Y TN

Fig. 6

WO 2021/029802

Fig. 7

//8

PCT/SE2020/050717

COMPUTER
PROGRAM

135

130

—

~~

PROCESSOR

COMPUTER
PROGRAM

125

MEMORY
120

COMPUTER IMPLEMENTATION

100

PCT/SE2020/050717

WO 2021/029802

8/8

(NOLLYINWIS TVIINHOAL
4O dTHOM Tv3Y)
INIWNOYIANT

8 b4

F——————,—, e —_ —_ —_—_ —_E —_—_ e —————

NOLLV.INISIHdTY
SYILINVSEV d3JooON
a=zINLdo NOLLYAYISEO

NOILOV
INFOV G3NIVHL TVOINHO3L

WHLSAS TOHLNOD a3I'lddV

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE2020/050717

A CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC: GO6N

Minimum documentation searched (classification system followed by classification symbols)

SE, DK, FI, NO classes as above

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data, BIOSIS, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

1,3

arxiv.org; abstract

08-30); abstract

WO 2018211139 A1 (DEEPMIND TECH LIMITED), 22
November 2018 (2018-11-22); abstract; paragraphs [0005]-
[0006], [0031], [0034]-[0041], [0046], [0048], [0058]; figures

J Bhandari, D Russo, R Singal, "A finite time analysis of
temporal difference learning with linear function
approximation" - arXiv preprint arXiv:1806.02450, 2018 -

WO 2018156891 A1 (GOOGLE LLC), 30 August 2018 (2018-

1-34

1-34

1-34

& Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

«aA» document defining the general state of the art which is not
considered to be of particular relevance

“D” document cited by the applicant in the international application

«p» earlier application or patent but published on or after the
international filing date

«r document which may throw doubts on priority claim(s) or which is

L7 (ited to establish the publication date of another citation or other

special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

19-10-2020

Date of mailing of the international search report

19-10-2020

Name and mailing address of the ISA/SE
Patent- och registreringsverket

Box 5055

S$-102 42 STOCKHOLM

Facsimile No. + 46 8 666 02 86

Authorized officer
Lars Magnusson

Telephone No. + 46 8 782 28 00

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT International application No.

PCT/SE2020/050717

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 2018083532 A1 (DEEPMIND TECH LIMITED), 11 May 1-34
2018 (2018-05-11); abstract
A US 20170140270 A1 (MNIH VOLODYMYR ET AL), 18 May 1-34
2017 (2017-05-18); abstract
A WO 2018224695 A1 (DEEPMIND TECH LIMITED), 13 1-34
December 2018 (2018-12-13); abstract
A WO 2018153807 A1 (DEEPMIND TECH LIMITED), 30 August | 1-34
2018 (2018-08-30); abstract
A US 20130325774 A1 (SINYAVSKIY OLEG ET AL), 5 1-34

December 2013 (2013-12-05); abstract

Form PCT/ISA/210 (continuation of second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE2020/050717

Continuation of: second sheet
International Patent Classification (IPC)

GO6N 3/08 (2006.01)
GOG6N 3/04 (2006.01)

Form PCT/ISA/210 (extra sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/SE2020/050717
WO 2018211139 A1 22/11/2018 EP 3593289 A1 15/01/2020
o US 20200175364 AT 04/06/2020
WO 2018156891 A1 30/08/2018 CN 110326004 A 11/10/2019
EP 3586277 A1 01/01/2020
us 20190332922 A1 31/10/2019
us 20200320372 A1 08/10/2020
N * - S 10733502 B2 04/08/2020
WO 2018083532 A1 11/05/2018 CN 110235148 A 13/09/2019
EP 3696737 A1 19/08/2020
EP 3516595 B1 09/09/2020
JP 2019537132 A 19/12/2019
us 10706352 B2 07/07/2020
us 20190258918 A1 22/08/2019
. US_____ 20200293862 A1__17/09/2020
us 20170140270 A1 18/05/2017 AU 2016354558 B2 28/11/2019
CA 3004885 C 14/07/2020
CN 108885717 A 23/11/2018
EP 3360085 A1 15/08/2018
JP 2018537767 A 20/12/2018
JP 6621920 B2 18/12/2019
JP 2020042837 A 19/03/2020
KR 102156303 B1 15/09/2020
KR 20180090989 A 14/08/2018
us 20180260708 A1 13/09/2018
us 20190258929 A1 22/08/2019
us 10346741 B2 09/07/2019
WO 2017083772 A1 18/05/2017
wo 2018224695 A1 13/12/2018 EP 3593292 A1 15/01/2020
WO 2018153807 A1 30/08/2018 CN 110546653 A 06/12/2019
EP 3568810 A1 20/11/2019
JP 2020508524 A 19/03/2020
us 20190340509 A1 07/11/2019
us 20200265313 A1 20/08/2020
N * - S 10679126 B2 09/06/2020
us 20130325774 A1 05/12/2013 NONE

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - wo-search-report
	Page 84 - wo-search-report
	Page 85 - wo-search-report
	Page 86 - wo-search-report

