(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 109590463 B (45) 授权公告日 2021.03.09

(21) 申请号 201811546294.2

(22) 申请日 2018.12.18

(65) 同一申请的已公布的文献号 申请公布号 CN 109590463 A

(43) 申请公布日 2019.04.09

(73) 专利权人 浙江中杭新材料科技有限公司 地址 315400 浙江省宁波市余姚市临山镇 凤栖西路17号

(72) 发明人 徐嘉诚

(74) 专利代理机构 六安市新图匠心专利代理事务所(普通合伙) 34139

代理人 胡艳

(51) Int.CI.

B22F 3/10 (2006.01) B22F 3/24 (2006.01) C22C 38/04 (2006.01)

C22C 38/10 (2006.01)

C23C 14/16 (2006.01)

C23C 14/35 (2006.01)

H01F 1/057 (2006.01)

H01F 41/02 (2006.01)

(56) 对比文件

JP 2018082168 A,2018.05.24

CN 104376947 A.2015.02.25

CN 103212714 A, 2013.07.24

CN 106207149 A,2016.12.07

CN 108637249 A,2018.10.12

CN 106735202 A,2017.05.31

CN 105185501 A,2015.12.23

审查员 邓进俊

权利要求书1页 说明书2页

(54) 发明名称

一种高矫顽力钕铁硼磁体的制备方法

(57) 摘要

本发明提供的一种高矫顽力钕铁硼磁体的制备方法,其在钕铁硼粉末中添加石墨烯,从而有效提高钕铁硼磁体的强度。改性剂Li₄-2xM_{3x}Ti_{5-x}O₁₂-C则用于提高钕铁硼磁体的磁能积,完善提高钕铁硼磁体的性能。利用磁控溅射工艺,在粉末颗粒表面溅射一层稀土金属薄膜,经压制烧结使晶界扩散,稀土金属进入钕铁硼的表面层中,增强其各项异性,而钕铁硼几乎不受影响,所以可以达到剩磁几乎不降低的情况下,大大提高磁体矫顽力的目的。另外阶梯式升温对钕铁硼磁体进行预烧,使得钕铁硼磁体外部和中心的温度梯度变小,在达到烧结温度时,使得钕铁硼压坯的中心部分快速达到烧结温度,提高烧结钕铁硼压坯的中心部分快速达到烧结温度,提高烧结钕铁硼压坯的密度与磁体性能。

- 1.一种高矫顽力钕铁硼磁体的制备方法,其特征在于,包括以下步骤:步骤一、改性体的制备,按Li_{4-2x}M_{3x}Ti_{5-x}O₁₂中Li:M:Ti的摩尔比4-2x:3x:5-x将Li、M、Ti的前驱体溶于20 mL溶剂中制得澄清溶液A;然后将1g PVP加入澄清溶液A中,搅拌直至得到溶液B;接着在溶液B加入静电纺丝机中,按1 mL/h的速度从针头挤出得到样品,其中针头到基板的距离为15cm,电压为10 kV,最后将样品首先在300℃的条件下空气的氛围中预烧3小时,后在850-1000℃的条件下氩气的保护气氛中焙烧4-8小时,得到改性剂Li_{4-2x}M_{3x}Ti_{5-x}O₁₂-C;步骤二、钕铁硼磁体的制备,按重量份将1-3份石墨烯、10-15份改性剂以及70-90份钕铁硼粉末混合均匀,然后利用磁控溅射工艺,在上述粉末颗粒表面溅射一层稀土金属薄膜,从而得到镀膜钕铁硼粉末;再将上述镀膜钕铁硼粉末经定型后放置于烧结炉中,抽真空后经150-180分钟升温至750-850℃,保温20-40分钟;再经过60-70分钟升温至1000-1050℃,保温10-30分钟;再经过0-10分钟升温至1050-1100℃,保温300-350分钟;最后充入惰性气体冷却,得到烧结钕铁硼磁体;改性剂中Li_{4-2x}M_{3x}Ti_{5-x}O₁₂的M为Ni、Co、Fe、Mn,0≤x≤0.25;所述惰性气体为氩气。
- 2.根据权利要求1所述的一种高矫顽力钕铁硼磁体的制备方法,其特征在于,在改性体的制备过程中溶剂为乙醇、异丙醇、丙酮中的一种或几种。

一种高矫顽力钕铁硼磁体的制备方法

技术领域

[0001] 本发明涉及钕铁硼领域,特别涉及一种高矫顽力钕铁硼磁体的制备方法。

背景技术

[0002] 烧结钕铁硼磁体作为第三代稀土永磁材料,具有其他永磁材料无法比拟的优异的磁性能和高的性价比。因此,自发现以来,其得到了广泛的研究和迅猛的发展,已在计算机、通讯电子、汽车、航空等高技术领域得到广泛应用。

[0003] 目前提高磁体矫顽力的研究多为双合金法。该法一般通过将铸锭或甩成条带的辅合金与NdFeB母合金破碎混合,进行烧结回火等热处理工艺,通过对母合金的晶界改性来提高磁体的矫顽力。该方法虽然能大幅度提高磁体的矫顽力,但会导致剩磁的大量下降,且在大规模生产中回导致贵金属(尤其是重稀土元素)的浪费,造成生产成本的增加。

发明内容

[0004] 本发明的目的是克服现有技术的不足,提供一种高矫顽力钕铁硼磁体的制备方法。

[0005] 为了实现上述目的,本发明提供的一种高矫顽力钕铁硼磁体的制备方法,包括以下步骤:

[0006] 步骤一、改性体的制备,按Li_{4-2x}M_{3x}Ti_{5-x}O₁₂中Li:M:Ti的摩尔比4-2x:3x:5-x将Li、M、Ti的前驱体溶于20 mL溶剂中制得澄清溶液A;然后将1g PVP加入澄清溶液A中,搅拌直至得到溶液B;接着在溶液B加入静电纺丝机中,按1 mL/h的速度从针头挤出得到样品,其中针头到基板的距离为15cm,电压为10 kV,最后将样品首先在300℃的条件下空气的氛围中预烧3小时,后在850-1000℃的条件下氩气的保护气氛中焙烧4-8小时,得到改性剂Li_{4-2x}M_{3x}Ti_{5-x}O₁₂-C;

[0007] 步骤二、钕铁硼磁体的制备,按重量份将1-3份石墨烯、10-15份改性剂以及70-90份钕铁硼粉末混合均匀,然后利用磁控溅射工艺,在上述粉末颗粒表面溅射一层稀土金属薄膜,从而得到镀膜钕铁硼粉末;再将上述镀膜钕铁硼粉末经定型后放置于于烧结炉中,抽真空后经150-180分钟升温至750-850℃,保温20-40分钟;再经过60-70分钟升温至1000-1050℃,保温10-30分钟;再经过0-10分钟升温至1050-1100℃,保温300-350分钟;最后充入惰性气体冷却,得到烧结钕铁硼磁体。

[0008] 改性剂中 $Li_{4-2x}M_{3x}Ti_{5-x}O_{12}$ 的M为Ni、Co、Fe、Mn,0 \leq x \leq 0.25。

[0009] 所述惰性气体为氩气。

[0010] 在改性体的制备过程中溶剂为乙醇、异丙醇、丙酮中的一种或几种。

[0011] 本发明提供的一种高矫顽力钕铁硼磁体的制备方法,在钕铁硼粉末中添加石墨烯,从而有效提高钕铁硼磁体的强度。改性剂Li_{4-2x}M_{3x}Ti_{5-x}O₁₂-C则用于提高钕铁硼磁体的磁能积,完善提高钕铁硼磁体的性能。利用磁控溅射工艺,在粉末颗粒表面溅射一层稀土金属薄膜,经压制烧结使晶界扩散,稀土金属进入钕铁硼的表面层中,增强其各项异性,而钕铁

硼几乎不受影响,所以可以达到剩磁几乎不降低的情况下,大大提高磁体矫顽力的目的。 [0012] 另外阶梯式升温对钕铁硼磁体进行预烧,使得钕铁硼磁体外部和中心的温度梯度变小,在达到烧结温度时,使得钕铁硼压坯的中心部分快速达到烧结温度,提高烧结钕铁硼压坯的密度与磁体性能;采用气淬和自然冷却两者相结合的方式,通过烧结炉内温度实现钕铁硼压坯回火,节能效果明显,并且制备出的磁体性能无明显差别;同时在升温和保温过程中利用惰性气体对流,使得烧结过程放出的气体、挥发性物质在抽真空时被惰性气体带出,保护钕铁硼压坯不被氧化。

具体实施方式

[0013] 实施例1

[0014] 本实施例提供的一种高矫顽力钕铁硼磁体的制备方法,包括以下步骤:

[0015] 步骤一、改性体的制备,按Li_{3.8}Ni_{0.3}Ti_{4.9}O₁₂中Li:M:Ti的摩尔比3.8:0.3:4.9将醋酸锂、硝酸镍、异丙醇钛溶于20 ml异丙醇中中制得澄清溶液A,接着将1g PVP加入步骤a得到的澄清溶液A中,搅拌直至得到溶液B;再将步骤b中得到的溶液B加入静电纺丝机中,按1 ml/h的速度从针头挤出。针头到基板的距离为15cm,电压为10 kV,最后将通过静电纺丝得到的样品首先在300℃的条件下空气的氛围中预烧3小时,后在850℃的条件下氩气的保护气氛中焙烧6小时,得到改性剂Li_{3.8}Ni_{0.3}Ti_{4.9}O₁₂-C。

[0016] 步骤二、钕铁硼磁体的制备,按重量份将1份石墨烯、10份改性剂以及70份钕铁硼粉末混合均匀,然后利用磁控溅射工艺,在上述粉末颗粒表面溅射一层稀土金属薄膜,从而得到镀膜钕铁硼粉末;再将上述镀膜钕铁硼粉末经定型后放置于于烧结炉中,抽真空后经150-180分钟升温至750-850℃,保温20-40分钟;再经过60-70分钟升温至1000-1050℃,保温10-30分钟;再经过0-10分钟升温至1050-1100℃,保温300-350分钟;最后充入惰性气体冷却,得到烧结钕铁硼磁体。

[0017] 实施例2

[0018] 本实施例提供的一种高矫顽力钕铁硼磁体的制备方法,其与实施例1的区别在于所述钕铁硼磁体的制备的是按重量份将3份石墨烯、15份改性剂以及90份钕铁硼粉末混合均匀,然后利用磁控溅射工艺,在上述粉末颗粒表面溅射一层稀土金属薄膜,从而得到镀膜钕铁硼粉末;再将上述镀膜钕铁硼粉末经定型后放置于于烧结炉中,抽真空后经150-180分钟升温至750-850℃,保温20-40分钟;再经过60-70分钟升温至1000-1050℃,保温10-30分钟;再经过0-10分钟升温至1050-1100℃,保温300-350分钟;最后充入惰性气体冷却,得到烧结钕铁硼磁体。其中所述改性剂为 $Li_{3.6}Co_{0.6}Ti_{4.8}O_{12}$ -C。

[0019] 实施例3

[0020] 本实施例提供的一种高矫顽力钕铁硼磁体的制备方法,其与实施例1的区别在于所述钕铁硼磁体的制备的是按重量份将2份石墨烯、12份改性剂以及90份钕铁硼粉末混合均匀,然后利用磁控溅射工艺,在上述粉末颗粒表面溅射一层稀土金属薄膜,从而得到镀膜钕铁硼粉末;再将上述镀膜钕铁硼粉末经定型后放置于于烧结炉中,抽真空后经150-180分钟升温至750-850℃,保温20-40分钟;再经过60-70分钟升温至1000-1050℃,保温10-30分钟;再经过0-10分钟升温至1050-1100℃,保温300-350分钟;最后充入惰性气体冷却,得到烧结钕铁硼磁体。其中所述改性剂为Li_{3.7}Mn_{0.45}Ti_{4.75}O₁₂-C。