

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) Int. Cl.

CO9K 11/06 (2006.01)

(21) 출원번호 10-2007-0114664

(22) 출원일자 **2007년11월12일** 심사청구일자 **2007년11월12일**

(65) 공개번호 **10-2009-0048685**

(43) 공개일자 **2009년05월15일**

(56) 선행기술조사문헌 US6835469 B2*

US6821645 B2

KR1020070088986 A

JP10072581 A

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2009년12월22일

(11) 등록번호 10-0933229

(24) 등록일자 2009년12월14일

(73) 특허권자

다우어드밴스드디스플레이머티리얼 유한회사

충청남도 천안시 서북구 백석동 735-2

(72) 발명자

김진호

서울시 성동구 성수2가 3동 277-37 성원상떼뷰

1404호 **음성진**

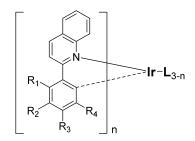
서울시 구로구 구로3동 1274번지 신성미소지움 104-805

(뒷면에 계속)

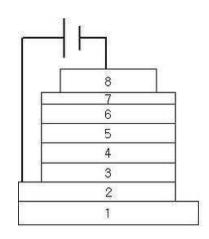
(74) 대리인

권오식, 박창희

전체 청구항 수 : 총 12 항


심사관 : 오현식

(54) 신규한 적색 인광 화합물 및 이를 발광재료로서 채용하고있는 유기발광소자


(57) 요 약

본 발명은 높은 발광효율을 보이는 신규한 적색 인광 화합물과 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 본 발명에 따른 신규한 적색 인광 화합물은 하기 화학식 I인 것을 특징으로 한다.

[화학식 I]

대 표 도 - 도1

(72) 발명자

조영준

서울시 성북구 돈암동 15-1 삼성아파트 101-1111

귀현주

서울시 동대문구 장안동 삼성레미안2차 224-2001

김봉옥

서울시 강남구 삼성동 4번지 한솔아파트 101-1108

김성민

서울시 강서구 화곡8동 392-27 살렘하우스 102호

윤숭수

서울시 강남구 수서동 삼익아파트 405-1409

특허청구의 범위

청구항 1

하기 화학식 I으로 표시되는 유기 인광 화합물.

[화학식 I]

$$R_1$$
 R_2
 R_3
 R_4
 R_3

[L은 유기리간드이며;

 R_1 및 R_2 는 서로 독립적으로 수소 또는 플루오르이고, R_1 과 R_2 가 동시에 수소인 경우는 제외되고;

R₃는 수소이고;

R₄는 플루오르이고;

n은 1 내지 3의 정수이다.]

청구항 2

삭제

청구항 3

삭제

청구항 4

삭제

청구항 5

제 1항에 있어서,

리간드 L은 하기의 구조인 것을 특징으로 하는 유기 인광 화합물.

$$R_{36}$$
 R_{36} R

$$R_{38}$$
 R_{39}
 R_{40}
 R_{40}
 R_{40}
 R_{41}
 R_{42}
 R_{42}
 R_{42}
 R_{42}
 R_{37}
 R_{37}
 R_{37}
 R_{37}

 $[R_{31} \ Q \ R_{32}$ 는 서로 독립적으로 수소, 할로겐이 치환되거나 치환되지 않은 (C_1-C_{20}) 알킬, (C_1-C_{20}) 알킬이 치환되거나 치환되지 않은 페닐 또는 할로겐이고;

 R_{33} 내지 R_{38} 은 서로 독립적으로 수소, (C_1-C_{20}) 알킬, (C_1-C_{20}) 알킬이 치환되거나 치환되지 않은 페닐, 트리 (C_1-C_{20}) 알킬실릴 또는 할로겐이고;

R₃₉ 내지 R₄₂는 서로 독립적으로 수소, (C₁-C₂₀)알킬 또는 (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐이고; R₄₃은 (C₁-C₂₀)알킬, (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐 또는 할로겐이다.]

청구항 6

제 5항에 있어서,

리간드 L은 하기의 구조인 것을 특징으로 하는 유기 인광 화합물.

청구항 7

제 1항, 제 5항 및 제 6항에서 선택되는 어느 한 항에 따른 유기 인광 화합물을 포함하는 것을 특징으로 하는 유기발광소자.

청구항 8

제 7항에 있어서,

상기 유기 인광 화합물은 발광층의 도판트 물질로 사용되는 것을 특징으로 하는 유기발광소자.

청구항 9

제1전극;

제2전극; 및

상기 제1전극 및 제2전극 사이에 개재되는 1층 이상의 유기물층으로 이루어진 유기발광소자에 있어서,

상기 유기물층은 하기 화학식 I로 표시되는 화합물을 하나 이상 포함하는 것을 특징으로 하는 유기발광소자.

[화학식 I]

$$R_1$$
 R_2
 R_3
 R_4
 R_3

[L은 유기리간드이며;

 R_1 및 R_2 는 서로 독립적으로 수소 또는 플루오르이고, R_1 과 R_2 가 동시에 수소인 경우는 제외되고;

R₃는 수소이고;

R4는 플루오르이고;

n은 1 내지 3의 정수이다.]

청구항 10

제 9항에 있어서,

상기 유기물층은 발광영역을 포함하며, 상기 발광영역은 상기 화학식 I으로 표시되는 하나 이상의 화합물과 하나 이상의 호스트를 포함하는 것을 특징으로 하는 유기발광소자.

청구항 11

제 10항에 있어서,

호스트는 하기 화학식 VIII 내지 화학식 X의 화합물에서 선택되는 것을 특징으로 하는 유기발광소자.

[화학식 VIII]

[화학식 IX]

[화학식X]

$L^1L^2M(Q)_v$

[상기 화학식 X에서, 리간드 L^1 및 L^2 는 서로 독립적으로 하기 구조로부터 선택되고;

M은 2가 또는 3가 금속이며;

M이 2가 금속인 경우 y는 0이고, M이 3가 금속인 경우 y는 1이고;

Q는 (C_6-C_{20}) 아릴옥시 또는 트리 (C_6-C_{20}) 아릴실릴이고, 상기 Q의 아릴옥시 및 트리아릴실릴은 (C_1-C_5) 알킬 또는 (C_6-C_{20}) 아릴이 더 치환될 수 있으며;

X는 0, S 또는 Se 이고;

A 고리는 옥사졸, 싸이아졸, 이미다졸, 옥사디아졸, 싸이아디아졸, 벤조옥사졸, 벤조싸이아졸, 벤조이미다졸, 피리딘 또는 퀴놀린이고;

B 고리는 피리딘 또는 퀴놀린이며, 상기 B 고리는 (C_1-C_5) 알킬, 치환되거나 치환되지 않은 페닐 또는 나프틸이 더 치환될 수 있고;

 R_{101} 내지 R_{104} 은 서로 독립적으로 수소, (C_1-C_5) 알킬, 할로겐, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴 또는 (C_6-C_{20}) 아릴이거나, 인접한 치환체와 (C_3-C_{12}) 알킬렌, 또는 (C_3-C_{12}) 알케닐렌으로 결합되어 융합고리를 형성할 수 있으며, 상기 피리딘 및 퀴놀린은 R_{101} 과 화학결합을 이루어 융합고리를 형성할 수 있으며;

상기 A 고리와 R_{101} 내지 R_{104} 의 아릴기는 (C_1-C_5) 알킬, 할로겐, 할로겐이 치환된 (C_1-C_5) 알킬, 페닐, 나프틸, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴 또는 아미노기로 더 치환될 수 있다.]

청구항 12

제 11항에 있어서,

상기 리간드 L^1 및 L^2 는 서로 독립적으로 하기 구조로부터 선택되는 것을 특징으로 하는 유기발광소자.

[X는 0, S 또는 Se 이고;

 R_{101} 내지 R_{104} 는 서로 독립적으로 수소, 할로겐이 치환되거나 치환되지 않은 (C_1-C_5) 알킬, 할로겐, (C_6-C_{20}) 아릴, (C_4-C_{20}) 헤테로아릴, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴, 디 (C_1-C_5) 알킬아미노, 디 (C_6-C_{20}) 아릴아미노, 싸이오펜일 또는 퓨란일이거나, 인접한 치환체와 (C_3-C_{12}) 알킬렌, 또는 (C_3-C_{12}) 알케닐렌으로 결합되어 융합고리를 형성할 수 있으며;

R₁₁₁ 내지 R₁₁₆, R₁₂₁ 및 R₁₂₂는 서로 독립적으로 수소, (C₁-C₅)알킬, 할로겐, 할로겐이 치환된 (C₁-C₅)알킬, 페닐, 나프틸, 비페닐, 플루오레닐, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴, 디(C₁-C₅)알킬아미노, 디(C₆-C₂₀)아릴 아미노, 싸이오펜일 또는 퓨란일이며;

R₁₂₃은 (C₁-C₁₀)알킬, 페닐 또는 나프틸이며;

 R_{124} 내지 R_{139} 는 서로 독립적으로 수소, (C_1-C_5) 알킬, 할로겐, 할로겐이 치환된 (C_1-C_5) 알킬, 페닐, 나프틸, 비페닐, 플루오레닐, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴, 디 (C_1-C_5) 알킬아미노, 디 (C_6-C_{20}) 아릴아미노, 싸이오펜일 또는 퓨란일이며;

상기 R_{111} 내지 R_{116} 및 R_{121} 내지 R_{139} 의 페닐, 나프틸, 비페닐, 플루오레닐, 싸이오펜일 또는 퓨란일은 (C_1-C_5) 알킬, 할로겐, 나프틸, 플루오레닐, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴, 디 (C_1-C_5) 알킬아미노 또는 디 (C_6-C_{20}) 아릴아미노로부터 선택된 하나 이상이 더 치환될 수 있다.]

청구항 13

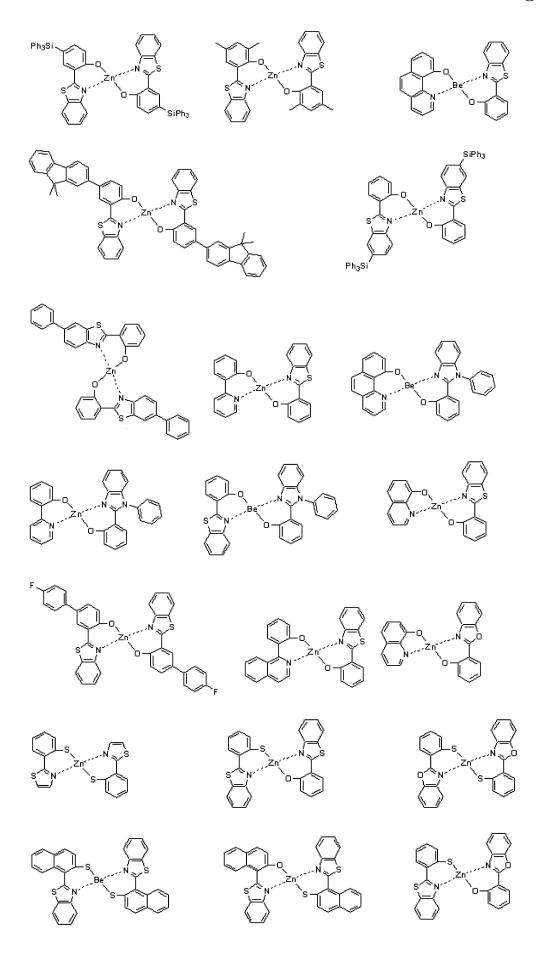
제 12항에 있어서,

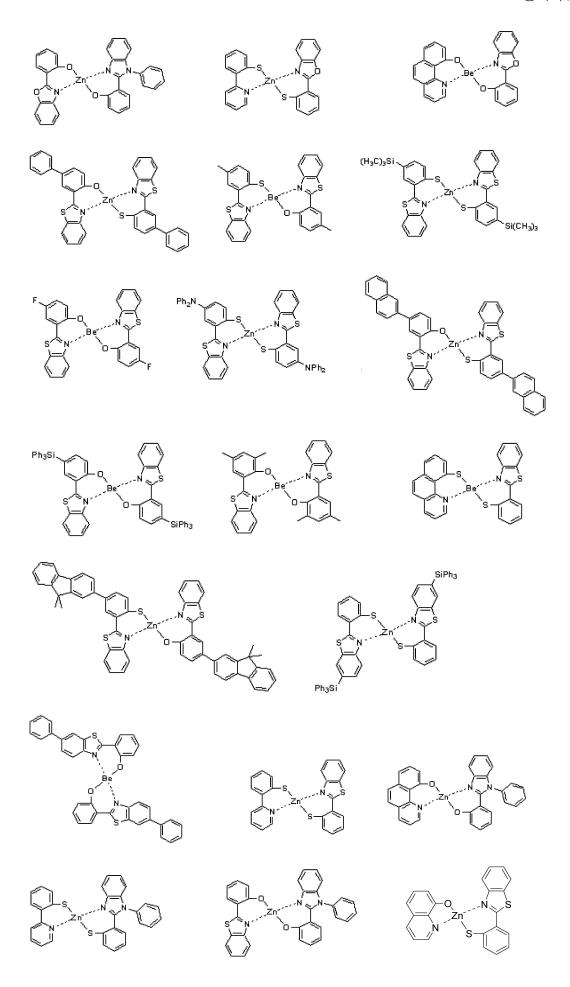
상기 M은 Be, Zn, Mg, Cu 및 Ni로 이루어진 군에서 선택되는 2가 금속 또는 Al, Ga, In 및 B 로 이루어진 군에서 선택되는 3가 금속인 것을 특징으로 하는 유기발광소자.

청구항 14

제 11항에 있어서,

상기 Q는 하기 구조로부터 선택되는 것을 특징으로 하는 유기발광소자.


$$\begin{picture}(100,0) \put(0,0){\line(1,0){0.5ex}} \put(0,0){\line(1,0){0.5e$$


$$\begin{picture}(20,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

청구항 15

제 11항에 있어서,

상기 호스트는 하기 구조의 화합물에서 선택되는 것을 특징으로 하는 유기발광소자.

명 세 서

발명의 상세한 설명

기술분야

<1> 본 발명은 높은 발광효율을 보이는 신규한 적색 인광 화합물과 이를 포함하는 유기발광소자에 관한 것이다.

배경기술

OLED에서 발광 효율를 결정하는 가장 중요한 요인은 발광 재료이다. 발광 재료로는 현재까지 형광 재료가 널리 사용되고 있으나, 전기 발광의 메커니즘 상 인광 재료의 개발은 이론적으로 4배까지 발광 효율을 개선시킬 수 있는 가장 좋은 방법 중 하나이다.

전재까지 이리듐(III)착물 계열이 인광 발광 재료로 널리 알려져 있으며, 각 RGB 별로 (acac)Ir(btp)2, Ir(ppy)3 및 Firpic 등의 재료가 알려져 있다. 특히, 최근 일본, 구미에서 많은 인광 재료들이 연구되어지고 있다.

<5> 종래의 적색 인광 재료 중, 좋은 EL 특성을 보이는 재료로 몇 가지 보고가 되고 있으나, 아직까지 상용화 수준에 도달한 재료는 아주 미미한 것으 로 알려져 있다. 가장 좋은 재료로는 1-phenyl isoquinoline의 이리듐 착물이 있는데, EL 특성이 매우 우수 하여 진적색의 색순도 및 고 발광효율을 보이는 것으로 알려져 있다.(참고문헌: A, Tsuboyama, et. al., J. Am. Chem. Soc. 2003, 125(42), 12971-12979)

<4>

<6>

1-phenyl isoquinoline

- <7> 더구나, 적색 재료의 경우, 수명 상의 큰 문제가 없어 색순도 나 발광 효율이 우수하면 상용화가 용이한 경향을 가지고 있다. 따라서 상기의 이리듐 착물은 뛰어난 색순도 및 발광효율로 인해 상용화 가능성이 매우 높은 재 료라고 할 수 있다.
- <8> 그러나, 이리듐 착물은 아직 소형 디스플레이 정도에서나 적용이 가능한 재료로 판단되어지며, 실상 중대형 OLED 패널에서 요구되는 EL 특성 수준은 공지된 재료들 보다 더욱 우수해야 하는 문제점이 있다.

발명의 내용

해결 하고자하는 과제

본 발명은 상기한 문제점들을 해결하기 위하여 안출된 것으로 발광 효율이 뛰어나고 수명이 획기적으로 개선된 유기 EL 소자를 실현하기 위하여 퀴놀린과 벤젠 유도체로 이루어진 주리간드 및 보조리간드를 이용하여 신규한 이리듐 착물을 합성하였으며, 상기 합성된 이리듐 착물을 적색 인광 화합물로 적용하는 경우 발광효율 및 수명 특성이 개선되는 것을 발견하고 본 발명을 완성하였다. 본 발명의 목적은 기존의 적색 인광 재료보다 특성이 더욱 우수한 골격의 새로운 적색 인광 화합물을 제공하는 것이며, 또한 본 발명의 또 다른 목적은 중대형 OLED 패널에 적용가능한 신규한 인광 화합물을 제공하는 것이다.

과제 해결수단

<10> 본 발명은 신규한 적색 인광 화합물 및 이를 발광층에 채용하는 유기발광소자에 관한 것으로, 상세하게는 본 발명에 따른 적색 인광 화합물은 하기 화학식 I의 화합물인 것을 특징으로 한다.

<11> [화학식]]

$$R_1$$
 R_2
 R_3
 R_4
 R_3

<12>

<13> [L은 유기리간드이며;

<14> R₁ 내지 R₄는 서로 독립적으로 수소, (C₁-C₂₀)알킬, 할로겐, 시아노, 트리(C₁-C₂₀)알킬실릴, 트리(C₆-C₂₀)아릴실릴, (C₁-C₂₀)알콕시, (C₁-C₂₀)알킬카보닐, (C₆-C₂₀)아릴카보닐, 디(C₁-C₂₀)알킬아미노, 디(C₆-C₂₀)아릴아미노, 페닐, 나

프틸, 안트릴, 플루오레닐, 스피로바이플루오레닐 또는 이거나, R_1 내지 R_4 가 서로 인접한 R_1 내지 R_4 와 융합고리를 포함하거나 포함하지 않는 (C_3-C_{12}) 알킬렌 또는 (C_3-C_{12}) 알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있고;

<15> 상기 R₁ 내지 R₄의 알킬, 페닐, 나프틸, 안트릴, 플루오레닐 또는 융합고리를 포함하거나 포함하지 않는 (C₃-C₁₂)알킬렌 또는 (C₃-C₁₂)알케닐렌으로 연결되어 형성된 지환족 고리 및 단일환 또는 다환의 방향족 고리는 할로 겐이 치환되거나 치환되지 않은 (C₁-C₂₀)알킬, (C₁-C₂₀)알콕시, 할로겐, 트리(C₁-C₂₀)알킬실릴, 트리(C₆-C₂₀)아릴실 릴, (C₁-C₂₀)알킬카보닐, (C₆-C₂₀)아릴카보닐, 디(C₁-C₂₀)알킬아미노, 디(C₆-C₂₀)아릴아미노 및 (C₆-C₂₀)아릴로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;

<16> 단, R₁ 내지 R₄ 중 2개 이상이 수소를 제외한 치환기로 치환되며;

<17> n은 1 내지 3의 정수이다.]

<18> 상기 나프틸은 1-나프틸 및 2-나프틸을 포함하며, 안트릴은 1-안트릴, 2-안트릴 및 9-안트릴을 포함하며, 플루 오레닐은 1-플루오레닐, 2-플루오레닐, 3-플루오레닐, 4-플루오레닐 및 9-플루오레닐을 모두 포함한다.

본 발명에 따른 화학식 I 화합물의 R₁ 내지 R₄가 서로 인접한 R₁ 내지 R₄와 융합고리를 포함하거나 포함하지 않는 (C₃-C₁₂)알킬렌 또는 (C₃-C₁₂)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리는 벤젠, 나프탈렌, 안트라센, 플루오렌, 인덴 또는 페난트렌이다. 상기 화학식 I에서 [] 내의 화합물은 이리듐의 주리간 드로서 작용을 하며, L은 보조리간드의 역할을 하게 되며, 본 발명에 따른 유기 인광 화합물은 상기 보조리간드 L이 없는 n=3 인 트리스 배위(tris-chelated) 착물 구조 이외에 n=2 인 주리간드: 보조리간드가 2:1 인 착물 및 n=1 인 주리간드: 보조리간드가 1:2 인 착물도 포함한다.

<20> 상기 R₁ 내지 R₄는 서로 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실, n-헥틸, n-렉틸, 2-에틸헥실, n-노닐, 트리플루오르메틸, 플루오르, 시아노, 트리메틸실릴, 트리프로필실릴, 트리(t-부틸)실릴, t-부틸디메틸실릴, 트리페닐실릴, 메톡시, 에톡시, 부톡시, 메틸카보닐, 에틸카보닐, t-부틸카보닐, 페닐카보닐, 디메틸아미노, 디페닐아미노, 페닐, 나프틸, 안트릴, 플루오레닐, 스피로바

이플루오레닐 또는 이고, 상기 페닐, 나프틸, 안트릴 또는 플루오레닐은 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실, n-헥틸, n-옥틸, 2-에틸헥실, n-노닐, 트리플루오

르메틸, 메톡시, 에톡시, 프로폭시, 부톡시, 페닐, 나프틸, 안트릴, 트리메틸실릴, 트리프로필실릴, 트리(t-부틸)실릴, t-부틸디메틸실릴, 또는 트리페닐실릴로 더 치환될 수 있다.

<21> 또한 본 발명에 따른 유기 인광 화합물은 하기 화학식 II 내지 화학식 VII로부터 선택되는 화합물로 예시될 수 있다.

<22> [화학식 II]

<24> [화학식 III]

<23>

<25>

<27>

<29>

<31>

<26> [화학식 IV]

<28> [화학식 V]

$$R_1$$
 R_4 R_4 R_4

<30> [화학식 VI]

<32> [화학식 VII]

<33>

<37>

<38>

<39>

<40>

$$R_2$$
 R_4 R_4 R_4

<34> [L 및 n은 상기 화학식 [에서의 정의와 동일하며;

<35> R₁, R₂, R₃ 및 R₄는 서로 독립적으로 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실, n-헵틸, n-옥틸, 2-에틸헥실, n-노닐, 트리플루오르메틸, 플루오르, 시아노, 메톡시, 에톡시, 부톡시, 페닐, 나프틸 또는 플루오레닐이고, 상기 페닐, 나프틸 또는 플루오레닐은 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, t-부틸, n-펜틸, i-펜틸, n-헥실, n-헵틸, n-옥틸, 2-에틸헥실, n-노닐, 트리플루오르메틸, 메톡시, 에톡시, 프로폭시, 부톡시, 페닐 또는 나프틸로 더 치환될 수 있다.]

<36> 본 발명에 따른 유기 인광 화합물은 구체적으로 하기의 화합물로서 예시될 수 있으나, 하기의 화합물이 본 발명을 한정하는 것은 아니다.

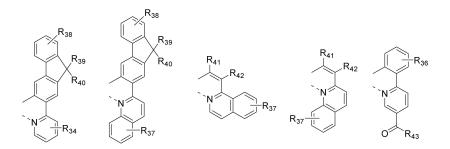
<41> [상기 구조에서 L은 유기리간드이고;

<42> R₁₁, R₁₂ 및 R₁₃은 서로 독립적으로 수소, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-

펜틸, n-헥실, n-헵틸, n-옥틸, 에틸헥실, 트리플루오르메틸, 플루오르, 시아노, 메톡시, 에톡시, 부톡시, 페닐 또는 나프틸이고;

- <43> R₁₄ 및 R₁₅는 서로 독립적으로 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, i-펜틸, n-헥 실, n-헵틸, n-옥틸, 에틸헥실, 페닐 또는 나프틸이거나, R₁₄ 내지 R₁₅가 서로 인접한 R₁₄ 내지 R₁₅와 융합고리를 포함하거나 포함하지 않는 (C₃-C₁₂)알킬렌 또는 (C₃-C₁₂)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환 의 방향족 고리를 형성할 수 있고;
- <44> a 및 b는 서로 독립적으로 0 내지 4의 정수이고, 2≤a+b≤4이고,
- <45> n은 1 내지 3의 정수이다.]

<47>


<48>

<49>

<55>

<46> 본 발명에 따른 유기 인광 화합물의 보조리간드 L은 하기의 구조를 포함한다.

 R_{36} R_{36} R

- <50> [R₃₁ 및 R₃₂는 서로 독립적으로 수소, 할로겐이 치환되거나 치환되지 않은 (C₁-C₂₀)알킬, (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐 또는 할로겐이고;
- <51> R₃₃ 내지 R₃₈은 서로 독립적으로 수소, (C₁-C₂₀)알킬, (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐, 트리(C₁-C₂₀)알킬실릴 또는 할로겐이고;
- <52> R₃₉ 내지 R₄₂는 서로 독립적으로 수소, (C₁-C₂₀)알킬 또는 (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐이고;
- <53> R₄₃은 (C₁-C₂₀)알킬, (C₁-C₂₀)알킬이 치환되거나 치환되지 않은 페닐 또는 할로겐이다.]
- <54> 본 발명에 따른 유기 인광 화합물의 보조리간드 L은 하기의 구조로 예시될 수 있으나, 이에 한정되는 것은 아니다.

<56>

<57>

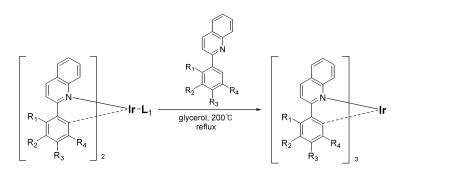
- 본 발명에 따른 유기 인광 화합물의 제조방법을 하기 반응식 1 내지 3을 바탕으로 설명한다.
- <59> [반응식 1]

$$L-H \xrightarrow{IrCl_3} [L]_2 - Ir \xrightarrow{Cl} Ir - [L]_2$$

$$R_1 \xrightarrow{R_2} R_4$$

$$R_2 \xrightarrow{R_3} R_4$$

$$R_1 \xrightarrow{R_2} R_4$$


$$R_2 \xrightarrow{R_3} R_4$$

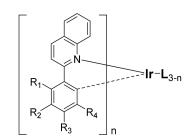
<60>

<61> [반응식 2]

<62>

<63> [반응식 3]

<64>


- <65> [상기 반응식 1 내지 3에서, R₁, R₂, R₃, R₄ 및 L은 상기 화학식 [에서의 정의와 동일하다.]
- <66> 상기 반응식 1은 화학식 I의 화합물의 n=1인 경우로, 삼염화이리듐(IrCl₃)과 보조리간드 화합물(L-H)을 1 : 2~3 몰의 비율로 용매에 혼합하여 환류시킨 후 디이리듐 다이머를 분리한다. 상기의 반응단계에서의 용매는 알콜 또

는 알콜/물 혼합용매가 바람직하며, 그 예로 2-에톡시에탄올, 2-에톡시에탄올/물 혼합용매가 사용된다. 분리된 디이리듐 다이머는 주리간드 화합물을 유기용매에 함께 혼합하여 가열하여 최종 생성물로 주리간드 : 보조리간드가 1 : 2인 유기 인광 이리듐 화합물을 제조한다. 이때 AgCF₃SO₃, Na₂CO₃, NaOH 등을 유기용매 2-에톡시에탄올, 2-메톡시에틸에테르에 함께 혼합하여 반응시킨다.

- <67> 상기 반응식 2는 화학식 I의 화합물의 n=2인 경우이며, 삼염화이리듐(IrCl₃)과 주리간드 화합물을 1 : 2~3 몰의 비율로 용매에 혼합하여 환류시킨 후 디이리듐 다이머를 분리한다. 상기의 반응단계에서의 용매는 알콜 또는 알콜/물 혼합용매가 바람직하며, 그 예로 2-에톡시에탄올, 2-에톡시에탄올/물 혼합용매가 사용된다. 분리된 디이리듐 다이머는 보조리간드 화합물(L-H)을 유기용매에 함께 혼합하여 가열하여 최종 생성물로 주리간드 : 보조리간드가 2 : 1인 유기 인광 이리듐 화합물을 제조한다. 최종 생성물의 주리간드인 화학식 I의 화합물 리간드와 보조리간드 L은 그 조성비에 따라 반응하는 몰비를 적절히 결정하여 사용하며 이때 AgCF₃SO₃, Na₂CO₃, NaOH 등을 유기용매 2-에톡시에탄올, 2-메톡시에틸에테르, 1,2-디클로로에탄에 함께 혼합하여 반응시킨다.
- <68> 상기 반응식 3은 화학식 I의 화합물의 n=3인 경우이며, 상기 반응식 2에서 제조된 이리듐 착화합물과 주리간드로 사용된 화학식 I의 화합물을 1 : 2~3 몰의 비율로 글리세롤에 혼합하여 환류시켜 3개의 주리간드가 배위된유기 인광 이리듐 착화합물을 제조한다.
- <69> 본 발명에서 주리간드로 사용되는 화합물은 공지의 방법을 바탕으로 하기의 반응식 4로 제조할 수 있다.
- <70> [반응식 4]

$$\begin{array}{c} \mathsf{B}(\mathsf{OH})_2 \\ \mathsf{R}_1 \\ \mathsf{R}_2 \\ \mathsf{R}_3 \end{array} + \begin{array}{c} \mathsf{CI} \\ \mathsf{N} \\ \mathsf{N} \end{array}$$

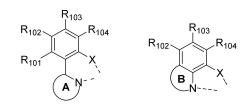
- <71>
- <72> [상기 반응식4에서, R₁, R₂, R₃ 및 R₄는 상기 화학식 I에서의 정의와 동일하다.]
- <73> 본 발명은 또한 유기발광소자를 제공하며, 본 발명에 따른 유기발광소자는 제1전극; 제2전극; 및 상기 제1전극 및 제2전극 사이에 개재되는 1층 이상의 유기물층으로 이루어진 유기발광소자에 있어서, 상기 유기물층은 하기 화학식 I로 표시되는 화합물을 하나 이상 포함하는 것을 특징으로 한다.
- <74> [화학식]]

- <75>
- <76> [L은 유기리간드이며;
- <77> R₁ 내지 R₄는 서로 독립적으로 수소, (C₁-C₂₀)알킬, 할로겐, 시아노, 트리(C₁-C₂₀)알킬실릴, 트리(C₆-C₂₀)아릴실릴, (C₁-C₂₀)알콕시, (C₁-C₂₀)알킬카보닐, (C₆-C₂₀)아릴카보닐, 디(C₁-C₂₀)알킬아미노, 디(C₆-C₂₀)아릴아미노, 페닐, 나

프틸, 안트릴, 플루오레닐, 스피로바이플루오레닐 또는 이거나, R_1 내지 R_4 가 서로 인접한 R_1 내지 R_4 와 융합고리를 포함하거나 포함하지 않는 (C_3-C_{12}) 알켈렌 또는 (C_3-C_{12}) 알케닐렌으로 연결되어 지환족 고리 및

단일환 또는 다환의 방향족 고리를 형성할 수 있고;

- <78> 상기 R₁ 내지 R₄의 알킬, 페닐, 나프틸, 안트릴, 플루오레닐 또는 융합고리를 포함하거나 포함하지 않는 (C₃-C₁₂)알킬렌 또는 (C₃-C₁₂)알케닐렌으로 연결되어 형성된 지환족 고리 및 단일환 또는 다환의 방향족 고리는 할로 겐이 치환되거나 치환되지 않은 (C₁-C₂₀)알킬, (C₁-C₂₀)알콕시, 할로겐, 트리(C₁-C₂₀)알킬실릴, 트리(C₆-C₂₀)아릴실릴, (C₁-C₂₀)알킬카보닐, (C₆-C₂₀)아릴카보닐, 디(C₁-C₂₀)알킬아미노, 디(C₆-C₂₀)아릴아미노 및 (C₆-C₂₀)아릴로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있으며;
- <79> 단, R₁ 내지 R₄ 중 2개 이상이 수소를 제외한 치환기로 치환되며;
- <80> n은 1 내지 3의 정수이다.]
- 본 발명에 따른 유기발광소자는 상기 유기물층이 발광영역을 포함하며, 상기 발광영역은 상기 화학식 I으로 표시되는 하나 이상의 화합물을 발광 도판트로 하여 하나 이상의 호스트를 포함하는 것을 특징으로 하며, 본 발명의 유기발광소자에 적용되는 호스트는 특별히 제한되지 않으나, 하기 화학식 VIII 내지 화학식 X의 화합물로 예시될 수 있다.
- <82> [화학식 VIII]


<84> [화학식 IX]

<83>

<85>

<89>

- <86> [화학식 X]
- <87> $L^1L^2M(Q)_y$
- < 88 > [상기 화학식 X에서, 리간드 L^1 및 L^2 는 서로 독립적으로 하기 구조로부터 선택되고;

- <90> M은 2가 또는 3가 금속이며;
- <91> M이 2가 금속인 경우 y는 0이고, M이 3가 금속인 경우 y는 1이고;
- <92> Q는 (C₆-C₂₀)아릴옥시 또는 트리(C₆-C₂₀)아릴실릴이고, 상기 Q의 아릴옥시 및 트리아릴실릴은 (C₁-C₅)알킬 또는 (C₆-C₂₀)아릴이 더 치환될 수 있으며;
- <93> X는 0, S 또는 Se 이고;
- <94> A 고리는 옥사졸, 싸이아졸, 이미다졸, 옥사디아졸, 싸이아디아졸, 벤조옥사졸, 벤조싸이아졸, 벤조이미다졸, 피리딘 또는 퀴놀린이고;

- <95> B 고리는 피리딘 또는 퀴놀린이며, 상기 B 고리는 (C₁-C₅)알킬, 치환되거나 치환되지 않은 페닐 또는 나프틸이 더 치환될 수 있고;
- <96> R₁₀₁ 내지 R₁₀₄은 서로 독립적으로 수소, (C₁-C₅)알킬, 할로겐, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴 또는 (C₆-C₂₀)아릴이거나, 인접한 치환체와 (C₃-C₁₂)알킬렌, 또는 (C₃-C₁₂)알케닐렌으로 결합되어 융합고리를 형성할 수 있으며, 상기 피리딘 및 퀴놀린은 R₁₀₁과 화학결합을 이루어 융합고리를 형성할 수 있으며;
- <97> 상기 A 고리와 R₁₀₁ 내지 R₁₀₄의 아릴기는 (C₁-C₅)알킬, 할로겐, 할로겐이 치환된 (C₁-C₅)알킬, 페닐, 나프틸, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴 또는 아미노기로 더 치환될 수 있다.]
- <98> 상기 리간드 L^1 및 L^2 는 서로 독립적으로 하기 구조로부터 선택된다.

<102> [X는 0, S 또는 Se 이고;

<99>

<100>

<101>

- <103> R₁₀₁ 내지 R₁₀₄는 서로 독립적으로 수소, 할로겐이 치환되거나 치환되지 않은 (C₁-C₅)알킬, 할로겐, (C₆-C₂₀)아릴, (C₄-C₂₀)헤테로아릴, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴, 디(C₁-C₅)알킬아미노, 디(C₆-C₂₀)아릴아미노, 싸이오펜일 또는 퓨란일이거나, 인접한 치환체와 (C₃-C₁₂)알킬렌, 또는 (C₃-C₁₂)알케닐렌으로 결합되어 융합고리를 형성할 수 있으며;
- <104> R₁₁₁ 내지 R₁₁₆, R₁₂₁ 및 R₁₂₂는 서로 독립적으로 수소, (C₁-C₅)알킬, 할로겐, 할로겐이 치환된 (C₁-C₅)알킬, 페닐, 나프틸, 비페닐, 플루오레닐, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴, 디(C₁-C₅)알킬아미노, 디(C₆-C₂₀)아릴 아미노, 싸이오펜일 또는 퓨란일이며;
- <105> R₁₂₃은 (C₁-C₁₀)알킬, 페닐 또는 나프틸이며;
- <106> R₁₂₄ 내지 R₁₃₉는 서로 독립적으로 수소, (C₁-C₅)알킬, 할로겐, 할로겐이 치환된 (C₁-C₅)알킬, 페닐, 나프틸, 비페 닐, 플루오레닐, 트리(C₁-C₅)알킬실릴, 트리(C₆-C₂₀)아릴실릴, 디(C₁-C₅)알킬아미노, 디(C₆-C₂₀)아릴아미노, 싸이 오펜일 또는 퓨란일이며;
- <107> 상기 R₁₁₁ 내지 R₁₁₆ 및 R₁₂₁ 내지 R₁₃₉의 페닐, 나프틸, 비페닐, 플루오레닐, 싸이오펜일 또는 퓨란일은 (C₁-C₅)알

킬, 할로겐, 나프틸, 플루오레닐, 트리 (C_1-C_5) 알킬실릴, 트리 (C_6-C_{20}) 아릴실릴, 디 (C_1-C_5) 알킬아미노 또는 디 (C_6-C_{20}) 아릴아미노로부터 선택된 하나 이상이 더 치환될 수 있다.]

<108> 상기 화학식 X에서 M은 Be, Zn, Mg, Cu 및 Ni로 이루어진 군에서 선택되는 2가 금속이거나 Al, Ga, In 및 B로 이루어진 군에서 선택되는 3가 금속이고, Q는 하기 구조로부터 선택된다.

$$\label{eq:ch3} \begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0$$

<109>

<110>

<111>

<112>

<114>

<115>

<116>

<113> 상기 화학식 X의 화합물은 구체적으로 하기 구조의 화합물로 예시될 수 있으나, 이에 한정되는 것은 아니다.

<123>

<130>

直 과

<137>

<138> 본 발명에 따른 적색 인광 화합물은 기존의 적색 인광 재료보다 특성 및 열 안정성이 더욱 우수한 골격의 화합물로 기존 재료보다 발광효율이 뛰어나고, 색순도가 좋으며, 구동전압을 낮출 수 있는 OLED 소자를 제조할 수 있다는 장점이 있다.

발명의 실시를 위한 구체적인 내용

<139> 이하에서, 본 발명을 실시예에 의거하여 본 발명에 따른 신규한 유기 인광 화합물의 제조방법을 예시한다. 그러나, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한되는 것은 아니다.

<140> [제조예]

<141> [제조예 1] 화합물 5의 제조

<142>

<143> <u>화합물 A의 제조</u>

<144> 2-클로로퀴놀린(2-chloroquinoline) 15.0 g (75.4 mmol), 3,5-다이메틸페닐보론산(3,5-dimethylphenylboronic acid) 11.0 g (90.5 mmol), 테트라키스 팔라듐(0) 트리페닐포스핀(Pd(PPh₃)₄) 8.7 g (7.5 mmol)을 톨루엔 180 mL와 에탄올 90 mL에 녹인 다음, 2M 탄산나트륨수용액 180 mL을 넣고 120℃에서 4시간 동안 환류 교반하였다. 그런 다음 온도를 25℃로 낮추고 증류수 200 mL를 가해 반응을 종료하고, 에틸아세테이트 300 mL로 추출, 감압 건조하였다. 이를 실리카겔 컬럼 크로마토그래피로 분리하여 화합물 A 10.1 g (51.5 mmol)을 얻었다.

<145> <u>화합물 B의 제조</u>

<146> 화합물 A 10.1 g (51.5 mmol), 이리듐클로라이드(IrCl₃) 0.950 g (1.59 mmol), 2-ethoxyethanol 20.0 ml와 증류수 7.00 ml를 넣은 후 아르곤 가스 분위기 하에서 24시간동안 가열 환류 시켜 반응을 완결한 후 상온으로 냉각하여 침전물을 여과하여 완전 건조시켜 화합물 B 0.710 g (0.534 mmol)을 얻었다.

<147> 화합물 5의 제조

<148> 화합물 C 9.1 g (4.8 mmol), 2,4-펜탄디온(2,4-pentanedione) 1.0 g (9.7 mmol), Na₂CO₃ 2.6 g (24.2 mmol)을 2-에톡시에탄올 240 mL에 녹인다음 4시간동안 가열하였다. 반응이 종결되면 실온으로 냉각하고 이때 생성된 고체침전물을 여과한 다음 실리카겔 컬럼 크로마토그래피로 분리, 재결정하여 붉은색 결정의 화합물 5 5.7 g (2.7 mmol, 총 수율 16%)을 얻었다.

<149> 상기 제조예 1의 방법을 이용하여 하기 표 1의 유기 인광 화합물 1 내지 화합물 80 을 제조하였으며, 표 2에 제조된 화합물들의 H NMR 및 MS/FAB를 나타내었다.

$$R_1$$
 R_2
 R_3
 R_4

화합물 번호	R ₁₁ + C ₂ R ₁₄ R ₁₄	L	n	화합물 번호	R ₁₁	L	n
1	H ₃ C CH ₃	§−O ← CH ₃	2	41	H ₃ C + ¹ / ₂ ,	§−O ← CH ₃	2
2	H ₃ C	§−O ← CH ₃	2	42	F Zt ₅	§−O CH ₃	2
3	CH ₃	§−O CH ₃	2	43	F	\$-0 ← CH ₃	2
4	H ₃ C — 2 ² t ₃ , CH ₃	§−0 CH ₃	2	44	H ₃ C - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\$-0 \$-0 CH ₃	2

<151>

	5	H ₃ C CH ₃	§−0 ← CH ₃	2	45	H ₃ C - 1,1,1	§−0 ← CH ₃	2
	6	F F	§−O ← CH ₃	2	46	H ₃ C + t ₁	€-0- €-0- CH ₃	2
	7	F	€-O-CH ₃	2	47	H ₃ C H ₃ C H ₃ C	CH₃	2
	8	, , , , , , , , , , , , , , , , , , ,	ξ−O= ξ−O− CH ₃	2	48	F \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	§−O ← CH ₃	2
	9	F F	§−0→CH ₃	2	49		§−0 ← CH ₃	2
	10	F	§−O ← CH ₃	2	50	F	€-0- €-0- CH ₃	2
	11	F	€-O	2	51	H ₃ C H ₃ C	€-O	2
<152>	12	H ₃ C CH ₃	who was	2	52	NC The CH ₃	§−0 ← CH ₃	2

13	H ₃ C CH ₃	N N N N N N N N N N N N N N N N N N N	2	53	H ₃ C The	\$-0 \$-0 CH ₃	2
14	H ₃ C CH ₃	-N	2	54	(H ₃ C) ₃ C CH ₃	§−O ← CH ₃	2
15	H ₃ C CH ₃	CH ₃	2	55	H ₃ C	§−O ← CH ₃	2
16	H ₃ C CH ₃	-N	2	56	(H ₃ C) ₃ C	€-O ← CH ₃	2
17	H ₃ C CH ₃		2	57	H ₃ CO CH ₃	\$−0 CH ₃	2
18	H ₃ C CH ₃		2	58	H ₃ C OCH ₃	§-O ← CH ₃	2
19	H ₃ C CH ₃	F	2	59	CH ₃	§−0 §−0 CH ₃	2
20	H ₃ C CH ₃	F	2	60	CH ₃	§−0→ §−0→ CH ₃	2

<153>

21	H ₃ C CH ₃	F S S S S S S S S S S S S S S S S S S S	2	61	CH ₃	§−0 ← CH ₃	2
22	H ₃ C CH ₃		2	62	**************************************	ξ−0= ξ−0- CH ₃	2
23	H ₃ C CH ₃	CH ₃	2	63	F Land	§−0 ← CH ₃	2
24	H ₃ C CH ₃		2	64		€-0-CH ₃	2
25	H ₃ C CH ₃	CH ₃	2	65	CH ₃	€-O-CH ₃	2
26	H ₃ C CH ₃	H ₃ C O	2	66	H ₃ C	\$-0- \$-0- CH₃	2
27	H ₃ C CH ₃	more one	2	67	CH ₃	€-0	2

<154>

28	H ₃ C CH ₃	o t-Bu	2	68	F CH ₃	\$-O → CH ₃	2
29	H ₃ C CH ₃		2	69	(H ₃ C) ₃ C CH ₃	©H ₃	2
30	H ₃ C CH ₃	§−N−CH ₃	2	70	(H ₃ C) ₃ C	{−0=	2
31	H ₃ C CH ₃	2 Z	2	71	F CH ₃	\$-0 \$-0 CH₃	2
32	H ₃ C CH ₃	₹-O- t-Bu	2	72	F Zt,	§−0 ← CH ₃	2
33	H ₃ C CH ₃		1	73	H ₃ C CH ₃ CH ₃	{-0= CH ₃	2
34	H ₃ C CH ₃	-	3	74	CH ₃ CH ₃ CH ₃ CH ₃	§−0 ← CH ₃	2
35	F ₃ C CF ₃	\$-0 ← CH ₃	2	75	H ₉ C CH ₉	§−0=	2

<155>

36	(H ₃ C) ₃ C C(CH ₃) ₃	₹-0-CH ₃	2	76	H ₃ C F	\$-0 CH ₃	2
37	(H ₃ C) ₃ C	\$-0 → CH ₃	2	77	F CH ₃	%-0 ← CH ₃	2
38	H ₃ C F	\$-0 ← CH ₃	2	78	H ₃ C H ₃	%-O ← CH ₃	2
39	CH ₃	\$-0 → CH ₃	2	79	H ₃ C CH ₃	%-0 ← CH ₃	2
40	F CH ₃	\$-0= \$-0− CH ₃	2	80	CH ₃	§−O ← CH ₃	2

<156>

<157> [丑 2]

화합물	THE NIMP(ODOL - OOO MILE)	M:	S/FAB
번호	¹H NMR(CDCl₃, 200 MHz)	found	calculated
5	$\delta = 8.02$ (m, 2H), $7.60-7.72$ (m, 8H), 7.43 (m, 4H), 6.88 (m, 2H), 4.62 (s, 1H), 2.36 (s, 12H), 2.09 (s, 6H)	754	755.34
9	δ = 8.05(m, 2H), 7.62-7.72(m, 6H), 7.42-7.45(m, 6H), 4.61(s, 1H), 2.07(s, 6H)	806	807.80
10	δ = 8.05(m, 2H), 7.65-7.74(m, 6H), 7.42-7.49(m, 6H), 6.70(m, 2H), 4.59(s, 1H), 2.11(s, 6H)	770	771.82
12	$\delta = 8.56(m, 1H), 8.05-7.99(m, 3H), 7.72-7.60(m, 8H), 7.54-7.42(m, 6H), 7.35-7.28(m, 3H), 6.98(m, 1H), 6.88(m, 2H), 2.35(s, 12H)$	810	811.04
13	8 = 8.05-7.99(m, 4H), 7.72-7.68(m, 6H), 7.61-7.60(m, 5H), 7.43-7.42(m, 6H), 7.35-7.25(m, 3H), 6.90(m, 2H), 2.32(s, 12H)	860	861.09
14	δ = 8.42(d, 1H), 8.03-7.97(m, 3H), 7.87(m, 1H), 7.72-7.60(m, 9H), 7.57-7.42(m, 6H), 7.35-7.28(m, 3H), 7.10(m, 1H), 6.87(m, 2H), 2.39(s, 12H)	860	861.09
18	$\delta = 8.05-7.99$ (m, 4H), $7.72-7.62$ (m, 11H), $7.48-7.28$ (m, 13H), 6.87 (s, 2H), 2.34 (s, 12H)	936	937.19
38	$\delta = 8.02 (m, 2H), 7.72 - 7.68 (m, 4H), 7.61 - 7.56 (m, 4H), 7.43 - 4.42 (m, 4H), 6.78 (m, 2H), 4.62 (s, 1H), 2.36 (s, 6H), 2.08 (s, 6H)$	767	768.88
44	8 = 8.05(m, 2H), 7.72-7.61(m, 6H), 7.48-7.32(m, 16H), 7.22(m, 2H), 7.59(s, 1H), 2.36(s, 6H), 2.09(s, 6H)	879	880.10
46	δ = 8.02(m, 2H), 7.85(m, 2H), 7.72-7.54(m, 14H), 7.45-7.32(m, 12H), 4.58(s, 1H), 2.39(s, 6H), 2.05(s, 6H)	979	980.22
66	$\delta = 8.04(m, 2H), 7.75-7.62(m, 8H), 7.48-7.42(m, 8H), 7.32-7.30(m, 6H), 7.22(m, 2H), 4.63(s, 1H), 2.36(s, 6H), 2.05(s, 6H)$	879	880.10
80	δ = 8.05-8.02(m, 4H), 7.72(m, 2H), 7.68-7.61(m, 4H), 7.44-7.42(m, 6H), 7.30(m, 2H), 6.80-6.74(m, 4H), 4.62(s, 1H), 2.39(s, 6H), 2.09(s, 6H)	951	952.06

<158>

- <159> [실시예 1] OLED소자의 제작 1
- <160> 본 발명에 따른 적색 인광 화합물을 사용하여 OLED 소자를 제작하였다.
- <161> 먼저 OLED용 글래스(삼성-코닝사 제조)(1)로부터 얻어진 투명전극 ITO 박막(15 Ω/□, 2)을, 트리클로로에틸렌, 아세톤, 에탄올, 증류수를 순차적으로 사용하여 초음파 세척을 실시한 후, 이소프로판올에 넣어 보관한 후 사용 하였다.
- <162> 다음으로, 진공 증착 장비의 기판 폴더에 ITO 기판을 설치하고, 진공 증착 장비 내의 셀에 4,4',4"-tris(N,N-

(2-naphthyl)-phenylamino)triphenylamine (2-TNATA)을 넣고, 챔버 내의 진공도가 10^{-6} torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 2-TNATA를 증발시켜 ITO 기판 상에 60 nm 두께의 정공주입층(3)을 증착하였다.

<163> 2-TNATA

<164>

<167>

<169>

이어서, 진공 증착 장비 내의 다른 셀에 *N,N'-*bis(α-naphthyl)-*N,N'-*diphenyl-4,4'-diamine (NPB)을 넣고, 셀에 전류를 인가하여 NPB를 증발시켜 정공주입층 위에 20 nm 두께의 정공전달층(4)을 증착하였다.

<165> NPB

<166> 또한, 상기 진공 증착 장비 내의 다른 셀에 발광 호스트 재료인 4,4'-N,N'-dicarbazole-biphenyl(CBP)을 넣고, 또 다른 셀에는 본 발명에 따른 적색 인광 화합물(화합물1)을 넣은 후, 두 물질을 다른 속도로 증발시켜 도핑함으로써 상기 정공 전달층 위에 30 nm 두께의 발광층(5)을 증착하였다. 이때의 도핑 농도는 CBP 기준으로 4 내지 10 mol%가 적당하다.

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

<168> 이어서 NPB와 동일한 방법으로, 상기 발광층 위에 정공차단층으로 Bis(2-methyl-8-quinolinato)(p-phenylphenolato)aluminum(III) (BAlq)을 10 nm의 두께로 증착시키고, 이어서 전자전달층(6)으로써 tris(8-hydroxyquinoline)- aluminum(III) (Alq)을 20 nm 두께로 증착하였다. 다음으로 전자주입층(7)으로 lithium quinolate (Liq)를 1 내지 2 nm 두께로 증착한 후, 다른 진공 증착 장비를 이용하여 Al 음극(8)을 150 nm의 두 께로 증착하여 OLED를 제작하였다.

<170> [실시예 2] OLED소자의 제작 2

- <171> 실시예 1과 동일한 방법으로 정공주입층, 정공전달층을 형성시킨 후, 그 위에 발광층을 다음과 같이 증착시켰다. 또한, 상기 진공 증착 장비 내의 다른 셀에 본발명에 따른 발광 호스트 재료인 H-2를 넣고, 또 다른 셀에는 본 발명에 따른 적색 인광 화합물인 화합물 12를 넣은 후, 두 물질을 다른 속도로 증발시켜 도핑함으로써 상기 정공 전달층 위에 30 nm 두께의 발광층(5)을 증착하였다. 이때의 도핑 농도는 호스트 기준으로 4 내지 10 mol%가 적당하다. 이어서 실시예 1과 동일한 방법으로 정공차단층과 전자전달층, 전자주입층을 증착한후, 다른 진공 증착 장비를 이용하여 Al 음극을 150 nm의 두께로 증착하여 OLED를 제작하였다.
- <172> [실시예 3] OLED소자의 제작 3
- <173> 실시예 2와 동일한 방법으로 정공주입층, 정공전달층 및 발광층을 형성시킨 후, 이어서 전자전달층, 전자주입 층을 증착한 후, 다른 진공 증착 장비를 이용하여 Al 음극을 150 nm의 두께로 증착하여 OLED를 제작하였다.
- <174> 상기 실시예 1 내지 3에서 제조된 OLED의 성능을 확인하기 위하여 10 mA/cm²에서 OLED의 발광효율을 측정하였으며, 하기 표 3에 다양한 특성을 나타내었다.
- <175> [표 3]

	재료	호스트	정공차단층	색좌표	구동전압	최대발광 효율(cd/A)
	화합물 1	CBP	BAlq	(0.651, 0.348)	7.2	13.5
	화합물 2	CBP	BAlq	(0.660, 0.340)	7.0	9.6
	화합물 4	CBP	BAlq	(0.670, 0.326)	7.6	11.0
	화합물 5	CBP	BAlq	(0.668, 0.332)	7.2	12.7
	화합물 10	CBP	BAlq	(0.614, 0.385)	6.8	20.5
	화합물 11	CBP	BAlq	(0.599, 0.411)	6.7	21.4
실시예 1	화합물 12	CBP	BAlq	(0.640, 0.356)	7.0	14.3
	화합물 18	CBP	BAlq	(0.667, 0.333)	7.1	9.5
	화합물 24	CBP	BAlq	(0.662, 0.338)	7.0	11.1
	화합물 29	CBP	BAlq	(0.653, 0.346)	6.8	13.6
	화합물 34	CBP	BAlq	(0.667, 0.329)	7.1	10.2
	화합물 66	CBP	BAlq	(0.665, 0.342)	7.3	9.8
실시예 2	화합물 18	H-2	BAlq	(0.667, 0.333)	7.1	9.7
= 시에 스	화합물 24	H-63	BAlq	(0.662, 0.338)	6.9	11.0
VI 11 01 0	화합물 18	H-2	_	(0.667, 0.333)	6.0	10.0
실시예 3	화합물 24	H-63	-	(0.662, 0.338)	5.8	11.3

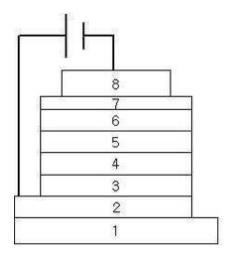
- <176>
- <177> 화합물 1, 2, 4, 5를 비교해 보았을 때 HOMO level을 가지는 phenyl기에 di-methyl을 도입했을 때 위치에 따라 색좌표와 효율의 차이를 보였으며, 화합물 1의 위치가 발광효율 13.5cd/A로 가장 좋은 효율을 보였고, 화합물 4의 위치가 (0.670, 0.326)으로 가장 좋은 색좌표를 가지는 것으로 나타났다. 또한 di-methyl대신 di-fluoro를 phenyl에 도입했을 때도 마찬가지로 위치에 따라 다른 효율 특성과 색좌표 특성을 확인할 수 있었다. 그리고 phenyl(6-phenylpyridin-3-yl)methanon, 2-styrylquinoline을 보조 리간드로 도입한 화합물도 효율특성에 좋은 결과를 얻을 수 있었다.
- <178> 소자 구조를 동일하게 했을 때, CBP 대신 본 발명에 의한 Host를 사용한 소자의 경우 효율과 색좌표, 구동전압이 CBP와 크게 다르지 않는 특성을 나타냈기 때문에 본 발명의 Dopant들과 같이 쓰이면 기존의 발광 Host인 CBP를 대신할 수 있는 인광 Host로 기대할 수 있다. 또한, 정공 차단층을 쓰지 않고, 본 발명의 Host를 사용할 경우 기존Host의 발광효율과 동등 이상의 효율을 나타내며, 1V의 구동전압 저하로써 OLED 소자의 소비전력을 현저히 낮출 수 있는 효과가 있으며, OLED 소자의 양산에 적용 한다면 양산시간 또한 획기적으로 줄일 수 있어서 상업화에 큰 도움이 될 것이라 기대된다.

도면의 간단한 설명

<179> 도 1 - OLED 소자의 단면도

<180> <도면 주요 부분에 대한 부호의 설명>

<181> 1 - 글래스 2 - 투명전극


<182> 3 - 정공주입층 4 - 정공전달층

<183> 5 - 발광층 6 - 전자전달층

<184> 7 - 전자주입층 8 - Al 음극

도면

도면1

