
US 20060248386A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0248386 A1

Barga et al. (43) Pub. Date: Nov. 2, 2006

(54) PERSISTENT STATEFUL Publication Classification
COMPONENT-BASED APPLICATIONS VA
AUTOMATIC RECOVERY (51) Int. Cl.

G06F II/00 (2006.01)
(75) Inventors: Roger S. Barga, Newcastle, WA (US); (52) U.S. Cl. .. 714/15

David B. Lomet, Redmond, WA (US)

Correspondence Address: (57) ABSTRACT
WOODCOCKWASHIBURN LLP
(MICROSOFT CORPORATION)
ONE LIBERTY PLACE - 46TH FLOOR Persistent components are provided across both process and
PHILADELPHIA, PA 19103 (US) server failures, without the application programmer needing

(73) Assignee: Microsoft Corporation, Redmond, WA take actions for component recoverability. Application inter
actions with a stateful component are transparently inter

(21) Appl. No.: 11/399,759 cepted and stably logged to persistent storage. A "virtual
component isolates an application from component failures,

(22) Filed: Apr. 7, 2006 permitting the mapping of a component to an arbitrary
“physical component. Component failures are detected and
masked from the application. A virtual component is re

(63) Continuation of application No. 10/879.324, filed on mapped to a new physical component, and the operations
Jun. 29, 2004, now Pat. No. 7,093,162, which is a required to recreate a component and reinstall state up to the
continuation of application No. 09/946,092, filed on point of the last logged interaction is replayed from the log
Sep. 4, 2001, now Pat. No. 6,820,218. automatically.

re-create component
state

Related U.S. Application Data

Client component Takes 1 300
cal

An error during the call is 1 310 Pass the new interface 380
detected pointer to the LRM

Component runtime 320 LRM logs recovery of the 1390
invokes the error handler Cornponent

Provide the interface
pointer to the error

hander
identify the failed r 330 400

component

information is passed to 1340
the LRM

identify and call the SRM -

Update tables 40

350 420
Replay the call

Has the
component been

ecovered

No.

Re-create the instance
of the object

Yes

Patent Application Publication Nov. 2, 2006 Sheet 1 of 7 US 2006/024838.6 A1

Patent Application Publication Nov. 2, 2006 Sheet 2 of 7 US 2006/024838.6 A1

DATA
NETWORK

— — assass
s

t

Program Memory 66
PrOCeSSOr

62

Volatile Memory

Input
Device(s)

68

US 2006/024838.6 A1

|And?no

ZEJ (WW}})

Patent Application Publication Nov. 2, 2006 Sheet 3 of 7

Patent Application Publication Nov. 2, 2006 Sheet 4 of 7 US 2006/024838.6 A1

205 2O7

2OO Client Cortext

CP2 = Client Return Policies

Patent Application Publication Nov. 2, 2006 Sheet 5 of 7 US 2006/024838.6 A1

6. Return interface Pointer
(Proxy

7. Log Instance Recovery ,

V 4A Recovet teinstance 2O1
207 Return

200

209 21 / N /
2O2 N 1

Patent Application Publication Nov. 2, 2006 Sheet 6 of 7 US 2006/024838.6 A1

Client component makes 300 Re-create component 375
State call

An error during the call is 1310 Pass the new interface 1380
detected pointer to the LRM

Component runtime 320 LRM logs recovery of the 1390
invokes the error handler component

Provide the interface 400 idely fied 330 pointer to the entor
mp handler

information is passed to 340 410
the LRM Update tables

350 420
Identify and call the SRM Replay the call

360
Has the Y

component been eS
ecovered 2

No. Fig. 6
Re-create the instance 370

of the object

Patent Application Publication Nov. 2, 2006 Sheet 7 of 7

Type Comp. Comp. Comp. Iface ID Logical
CLSD Location Context D

Info

TYPE = Create
Component CLSD = identify the class
Component location information = identity of the machine
Component context = context in which the component is to be created
I-face ID = identify the interface currently being used
Component Logical ID = logical identifier assigned to the component

Fig. 7

TYPE= (Call Return)(FirstReplay)
Client CLSID = identify the class
Client log. instance ID = identify the instance
Server CLSD = identify the class
Server log. instance ID = identify the instance
I-face ID = identify the interface currently being used
Method index = method called
Method log. D = instance of method call

Fig. 8

Type Component Component log. inst LastFlushedMethod
CLSD D

TYPE=LOG-FLUSHICHECKPOINT
Component CLSD = identify the class
Component log. instance D = identify the instance
LastFlushedMethod a corresponds to the method log. ID

Type Client Client Server Server I-face Method Method Args,
CLSD log. inst CLSD log. inst ID Index log. ID Retval

ID D

US 2006/024838.6 A1

Fig. 9

US 2006/024838.6 A1

PERSISTENT STATEFUL COMPONENT-BASED
APPLICATIONS VIA AUTOMATIC RECOVERY

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/879,324, filed on Jun. 29, 2004,
which is a continuation of U.S. patent application No.
09/946,092, filed on Sep. 4, 2001, now issued as U.S. Pat.
No. 6,820,218.

FIELD OF THE INVENTION

0002 The present invention relates generally to the field
of computer systems and applications that execute on them
and, more particularly, to the automatic recovery of Stateful
application components when the computer system or pro
cess Supporting the components fails.

BACKGROUND OF THE INVENTION

0003. A component is a discrete unit of code that delivers
a specified set of services through specified interfaces.
Components provide the services that clients request at run
time. A stateful component maintains private state resulting
from the execution of one or more method calls. Thus, for
example, a client application connecting to a component can
have a "conversation' with the component that spans mul
tiple method calls. The component can retain state across
those method calls.

0004 Building stateful components is a useful approach
in application design. Programmers typically write stateful
applications that retain state across component method calls.
This provides the information necessary for correct and
Successful execution across transaction boundaries. How
ever, such stateful components have availability and Scal
ability limitations. One problem with stateful applications is
the risk of losing the volatile state as a result of component
failure when the system or process Supporting the stateful
application fails. Such a failure typically requires human
intervention to repair or restart the application. Service
outages can be very long because of this. A conventional
response to this problem is to insist that applications be
stateless. A stateless application has “no meaningful state
maintained between transactions'. The loss of the compo
nent state prevents the masking of system failures from
clients, and degrades application availability.
0005. In view of the foregoing, there is a need for systems
and methods that overcome the limitations and drawbacks of
the prior art.

SUMMARY OF THE INVENTION

0006 The present invention provides persistent stateful
components via transparent logging and automatic recovery.
Persistent component state is based on method logging, in
which interactions between components are intercepted and
stably logged. Information Sufficient to re-create a compo
nent and reinstall state up to the point of the last logged
interaction (e.g., via redo recovery of the logged method
calls) is persisted on stable storage. In the event of a system
failure, aspects of the present invention automatically rec
reate failed components and recover lost state, without the
stateful application itself needing to take measures for its
recovery.

Nov. 2, 2006

0007 An embodiment of the present invention allows
stateful application components to begin and end transac
tions, and, because these components have a state outside of
transactions (i.e., a state that can persist across system
failures), they are able to recognize transaction error codes,
and act on them accordingly. For example, such an appli
cation can test the error code and decide whether to simply
re-execute the transaction or change input parameters before
re-execution, and decide at what point to abandon the effort
and return an error code to the caller describing what has
happened.
0008 Thus, component-based applications can be written
“naturally as stateful programs. The present invention deals
with System failures by logging component interactions and
possibly checkpointing state to ensure that the application
state can be automatically recovered should a failure occur.
0009. Other features of the invention are described
below.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The foregoing summary, as well as the following
detailed description of preferred embodiments, is better
understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there
is shown in the drawings exemplary constructions of the
invention; however, the invention is not limited to the
specific methods and instrumentalities disclosed. In the
drawings:
0011 FIG. 1 illustrates a high level example of a dis
tributed computing environment in which the invention may
be implemented;
0012 FIG. 2 shows an exemplary configuration of a
client implemented as a computer,
0013 FIG. 3 is a block diagram showing an exemplary
computing environment in which aspects of the invention
may be implemented;
0014 FIG. 4 illustrates an exemplary position and rela
tionship of various functional pieces of a component-based
application running in accordance with the present inven
tion;
0.015 FIG. 5 illustrates an exemplary flow of control in
server failure in accordance with the present invention;
0016 FIG. 6 is a flow chart of an exemplary recovery
method in accordance with the present invention; and
0017 FIGS. 7, 8, and 9 show various exemplary log
record formats in accordance with the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0018 Overview
0019. The present invention is directed to making nor
mally volatile and stateful components, e.g., COM compo
nents, persistent across both process and server failures,
without the component itself needing to be aware of its
recoverability. Persistent components provide improved
application availability and reduce the application-program
ming task of coping with system failures. The present
invention incorporates logging, in which interactions

US 2006/024838.6 A1

between stateful volatile components are captured and stably
logged. Using “virtual components isolates the application
from component failures, permitting the mapping of a vir
tual component to an arbitrary “physical component. Com
ponent failures are detected and masked from the application
program, and the virtual component is re-mapped to a new
physical component into which the virtual component state
is installed. Virtual components can also be re-mapped to
physical components to enable scalability and load balanc
ing. The result is persistent stateful components that can
Survive system failures without applications being aware of
the outage.
0020. The present invention enables robust applications
by providing transparent recovery from various kinds of
system failures. This enhances application availability by
avoiding the extended down-time that Such failures can
produce. The present invention “wraps' component-based
applications so as to perform logging that will enable
transparent recovery from crashes. The ability to program
matically respond to transaction aborts is provided because
application logic can exist outside of a transaction.
0021. The present invention provides high availability by
performing redo recovery for application components using
its own logging and recovery infrastructure. Replay of an
application component replaces those interactions with the
logged effects of the interactions that took place originally.
Hence, replay may be much faster than original execution.
0022 Computing Environment
0023 FIG. 1 illustrates a high level example of a dis
tributed computing environment 10 in which the invention
may be implemented. A plurality of servers 20, each having
memory 22, are interconnected, either directly or through an
optional switching network 30. A plurality of clients 40 are
connected to the servers 20, either directly or through the
optional switching network 30. Each of the clients 40 and
servers 20 are described in further detail below.

0024 FIG. 2 shows an exemplary configuration of a
client 40 implemented as a computer. It includes a central
processing unit 60 having a processor 62, Volatile memory
64 (e.g., random access memory (RAM)), and program
memory 66 (e.g., read only memory (ROM), flash, disk
drive, floppy disk drive, CD-ROM, and the like). The client
40 has one or more input devices 68 (e.g., keyboard, mouse,
etc.), a computer display 70 (e.g., VGA, SVGA), and a
stereo I/O 72 for interfacing with a stereo system.
0.025 The client 40 runs an operating system that Sup
ports multiple applications. The operating system is prefer
ably a multitasking operating system that allows simulta
neous execution of multiple applications. The operating
system employs a graphical user interface windowing envi
ronment that presents the applications or documents in
specially delineated areas of the display screen called “win
dows.” One preferred operating system is a Windows.(R)
brand operating system sold by Microsoft Corporation, Such
as Window SR 95 or Windows.(R) NT or other derivative
versions of Windows.(R). It is noted, however, that other
operating systems that provide windowing environments
may be employed. Such as the Macintosh operating system
from Apple Computer, Inc. and the OS/2 operating system
from IBM.

0026 FIG. 3 illustrates a more detailed example of a
suitable computing system environment 100 in which the

Nov. 2, 2006

invention may be implemented. Each server and client can
incorporate the environment 100 of FIG. 3. The computing
system environment 100 is only one example of a suitable
computing environment and is not intended to Suggest any
limitation as to the scope of use or functionality of the
invention. Neither should the computing environment 100
be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.

0027. The invention is operational with numerous other
general purpose or special purpose computing system envi
ronments or configurations. Examples of well known com
puting systems, environments, and/or configurations that
may be suitable for use with the invention include, but are
not limited to, personal computers, server computers, hand
held or laptop devices, multiprocessor systems, micropro
cessor-based systems, set top boxes, programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like.

0028. The invention may be described in the general
context of computer-executable instructions, such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network or other data
transmission medium. In a distributed computing environ
ment, program modules and other data may be located in
both local and remote computer storage media including
memory storage devices.

0029. With reference to FIG.3, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a computer 110. Compo
nents of computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components including
the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec
tures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus).
0030 Computer 110 typically includes a variety of com
puter readable media. Computer readable media can be any
available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for storage of information Such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory

US 2006/024838.6 A1

technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 110.
Communication media typically embodies computer read
able instructions, data structures, program modules or other
data in a modulated data signal Such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared and other wireless media. Combina
tions of any of the above should also be included within the
Scope of computer readable media.
0031. The system memory 130 includes computer stor
age media in the form of volatile and/or nonvolatile memory
such as ROM 131 and RAM 132. A basic input/output
system 133 (BIOS), containing the basic routines that help
to transfer information between elements within computer
110, such as during start-up, is typically stored in ROM 131.
RAM 132 typically contains data and/or program modules
that are immediately accessible to and/or presently being
operated on by processing unit 120. By way of example, and
not limitation, FIG. 3 illustrates operating system 134,
application programs 135, other program modules 136, and
program data 137.
0032. The computer 110 may also include other remov
able/non-removable, Volatile/nonvolatile computer storage
media. By way of example only, FIG. 3 illustrates a hard
disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that
reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or
writes to a removable, nonvolatile optical disk 156, such as
a CD-ROM or other optical media. Other removable/non
removable, Volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM, and the like. The hard
disk drive 141 is typically connected to the system bus 121
through a non-removable memory interface Such as interface
140, and magnetic disk drive 151 and optical disk drive 155
are typically connected to the system bus 121 by a remov
able memory interface, such as interface 150.
0033. The drives and their associated computer storage
media, discussed above and illustrated in FIG. 3, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In
FIG. 3, for example, hard disk drive 141 is illustrated as
storing operating system 144, application programs 145.
other program modules 146, and program data 147. Note
that these components can either be the same as or different
from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating
system 144, application programs 145, other program mod
ules 146, and program data 147 are given different numbers
here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the

Nov. 2, 2006

computer 20 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse,
trackball or touchpad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 191 or other type of display device is also connected
to the system bus 121 via an interface. Such as a video
interface 190. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
197 and printer 196, which may be connected through an
output peripheral interface 195.
0034. The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110.
although only a memory storage device 181 has been
illustrated in FIG. 3. The logical connections depicted in
FIG. 2 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networks. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet.

0035. When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet.
The modem 172, which may be internal or external, may be
connected to the system bus 121 via the user input interface
160, or other appropriate mechanism. In a networked envi
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory storage device. By way of example, and not limi
tation, FIG. 3 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.
0036) Stateful Applications
0037 Stateful application components can begin and end
transactions, and, because these components have a state
outside of transactions (and a state that persists across
system failures), they can recognize transaction error codes,
and act on them accordingly. For example, such an appli
cation can test the error code and decide whether to re
execute the transaction or change input parameters before
re-execution, and can decide at what point to abandon the
effort and itself return an error code describing what has
happened.

0038 Stateful application components can be recovered
(have their state re-created) by logging non-deterministic
events, and replaying those events during recovery. Between
the logged events, the application itself can be re-executed
because the non-deterministic events have been made deter

US 2006/024838.6 A1

ministic by logging and Subsequently replaying the now
deterministic events from the log. Such components are
called piece-wise deterministic (PWD) components.

0.039 Replay after failure involves a different process and
thread than used by the original execution. Therefore,
objects are virtualized by providing logical identifiers for
them that are independent of how the objects are mapped to
processes or threads. A logical identifier identifies the class
code and the persistent state of an instance. During execu
tion, these persistent logical identifiers are mapped to the
specific threads and processes realizing the objects.

0040 Transparent persistence is achieved with the use of
virtual components. Virtual components isolate an applica
tion from physical component failure. Virtual components
are saved during processing, and after a failure, physical
components are re-mapped using the saved virtual compo
nentS.

0041 Component Execution
0042. In order to perform component recovery (via
replay), the present invention logs, during normal execution,
information Sufficient to re-create a component and recover
its state to the last logged interaction. An activation hook
(interception code invoked during component creation) is
implemented that logs information related to component
creation, and policy functions (interception code invoked
during method calls and returns) are implemented that log
interactions (calls and responses) between client and server
components. Each component is associated with a context
that defines the boundary at which interception takes place.

0.043 FIG. 4 illustrates the position and relationship of
various functional elements of a component-based applica
tion running in accordance with the present invention. The
elements 200 and 220 can be any component, such as that
acting as a client, server, or both, and that the invention
should not be limited to the recovery of components acting
in the role of a server responding to requests from other
client components. For simplicity, it is assumed that the
client 200 and server 220 are disposed in different processes
or machines, so there are two different component runtimes
(a client-side component runtime 202 and server-side com
ponent runtime 222), along with a proxy 209 and a stub 211.
0044) With respect to FIG. 4, there is a logging policy on
each of CP1, CP2, SP1, SP2, and there is an activation hook
registered with both client (through a policy) and server
contexts. The activation hook records (logs) information
regarding the creation of an object. An error handler (not
shown in FIG. 4; elements 201, 221 in FIG. 5) is registered
with each component runtime 202, 222. Furthermore, two
recovery managers 205, 225 are provided because of the
machine boundary 210 between the server 220 and the client
2OO.

0045. When the client 200 wants to call the server 220,
the call is intercepted by the component runtime 202 (also
referred to as an enhanced component runtime) which then
invokes caller policies CP1, CP2. One of the caller policies
is logging which captures the message in a log 207 and the
call gets passed to the proxy, a unit of code in the local
process that stands in for the server. The proxy 209 then
sends the message, e.g. a method call message, across the
boundary 210 to the stub 211. The stub acts for the client in

Nov. 2, 2006

the server process. The stub calls the server side component
runtime 222, which invokes policies SP1, SP2 and then
delivers the call.

0046 Error Handling and Recovery
0047 A recoverable failure may occur for several reasons
including: (1) the proxy associated with the server object
returns a failure indicating that it is disconnected from the
server—this happens when the server process shuts down on
a failure; (2) one of the policies in the server context nullifies
the call with an interface specific error that indicates a
recoverable failure; and (3) the server object itself returns
the above error on a call. In Such cases, the component
runtime on the client side will detect an error. Note that in
the first case the server process does not exist any more.
When the client’s component runtime gets an error on a call,
it calls an error handler that is already registered with the
component runtime.
0048. The component runtime passes the identity of the
call that failed to the error handler. The information includes
the identity of the server, the identity of the client, and the
identity of the method. The error handler determines if the
cause of the error is from component failure and, if so,
invokes the local recovery manager (LRM) to recover the
failed component. The error is masked from the client and
recovery is initiated.
0049. If recovery is successful, the recovery manager will
return a new component reference to the recovered compo
nent to the error handler. The error handler updates compo
nent runtime tables on the client and logs the recovery event.
Finally, the error handler returns control to the component
runtime for normal method processing. Otherwise, if recov
ery is unsuccessful, the error handler unmasks the error by
returning a code indicating failure to the component runt
ime. Moreover, the error handler allows for canceling or
repeating the call, and can examine the call state (e.g., ID.
method, parameters, etc.).

0050 FIG. 5 illustrates an exemplary flow of control in
server failure in accordance with the present invention.
Regarding server failure, it is assumed a client 200 detects
the failure during processing of a call, or more accurately the
component runtime 202 on a client 200 detects the error. The
recovery manager that recovers the failed component can be
on the same machine as the failed component, though this is
not necessary

0051. In FIG. 5, the server recovery manager (SRM) 225
takes the following steps to recover the failed component. It
is first verified that the component has not already been
recovered. An instance of the failed component is re-created.
Methods from the log are replayed against the re-created
component and the component is brought to the state of the
last logged interaction. Control is returned to the local
recovery manager (LRM) 205, with the interface pointer
passed back to the recovered component. The error handler
201 on the client 200 updates the component runtime tables
and returns control to the component runtime 202 so that
method execution can resume normally.
0.052 Component Recovery

0053 FIG. 6 is a flow chart of an exemplary recovery
method in accordance with the present invention. At step
300, a call is made by the client component through the

US 2006/024838.6 A1

component runtime. At step 310, an error is detected during
the call and processing is returned to the component runtime.
At step 320, the component runtime invokes the error
handler, passing information related to the call. At step 330,
the error handler uses this information to identify the failed
component and then gathers additional information that will
be used to process the forthcoming recovery request. At step
340, the error handler then calls the LRM and passes the
information. The error handler blocks until this call returns.

0054) At step 350, the LRM identifies the SRM, which is
responsible for the component, via a table lookup or other
discovery process, and then calls the SRM using a timeout
(in case the SRM process or machine is down), passing
information about the failed component. To identify the
recovery manager, given the server, the LRM performs a
lookup in a global table, for example, to get a handle for the
SRM. This lookup could also be implemented as a discovery
service.

0055. The SRM is called to recover the failed component.
At step 360, the SRM checks an in-memory structure or log
to determine whether the component has already been
recovered with the client having a stale interface pointer
(reference). With a lazy update, for example, it is possible
another client or process already recovered the component,
and this was not broadcast. Duplicate call elimination pro
vides exactly-once semantics. When components recover,
they might resend a duplicate message. The system detects
whether or not a message has already been received and
eliminates duplicate messages, to guarantee that messages
are executed exactly once. An exemplary method of exactly
once execution comprises uniquely identifying messages at
a sender, detecting an original message and at least one
duplicate message at a receiver, eliminating the at least one
duplicate message, and providing a reply to the at least one
duplicate message that is the same as a reply to the original
message.

0056. If the component has been recovered, processing
continues at step 380; otherwise, at step 370, the SRM reads
its log to locate the activation log record and then re-creates
the instance of that object. This new instance will have a
different interface pointer, but is assigned the same logical
ID as the old one. For example, the SRM creates a special
component on the server using the COM cocreate call. This
object will be used to issue a “create instance' call. The
SRM preferably assigns the component the same logical ID
as before.

0057. At step 375, the SRM reads the log and replays
methods on the server to re-create the component state. The
SRM scans the log, using the logical ID of the failed
component to identify log records pertaining to the failed
component. The SRM creates the new component instance
by reading the activation log record from the server log and
replaying the creation call. During recovery the SRM inter
cepts method return values. Next, the SRM invokes these
logged method calls one by one against the new component,
dropping the method return values. When completed,
handles and other references to the component are updated
with the new interface pointer.
0.058 At step 380, once the object has been brought back
to the state it was in before failure, the SRM returns to the
LRM, passing back the new interface pointer. The SRM
returns to the LRM with information about the new server

Nov. 2, 2006

instance, so the component runtime tables on the client side
can be modified. Also, the SRM logs the recovery of the
component on the server log.

0059) At step 390, the LRM logs the recovery of the
component, along with the new identifier, then at step 400,
returns the new interface pointer to the error handler. At step
410, the error handler updates component runtime tables
with the new interface pointer, and returns a status code to
the component runtime indicating Success. At step 420, the
component runtime replays the method call using the mar
shaled arguments (which are placed on the stack). If there is
an error during the method call, processing will return to
step 320; otherwise, control returns to the client.
0060 Logging

0061 Regarding information that is logged to facilitate
component recovery, it is specified below what is logged,
where the value will originate (e.g., context variable, from
the object create call or method call, off the stack, etc.), and
the format of the resulting log record. Sources of informa
tion include, but are not limited to: information associated
with object creation; the mapping between the logical iden
tifier for a component and its current interface pointer, and
information associated with method call and return, at both
client and server. There is other desirable information for
recovery that can be logged, such as component state
checkpoints, session information between client and server
components, recovery actions, etc.

0062. During client creation, an activation hook inter
cepts the creation call for the component. The activation
hook code contacts the recovery manager, providing argu
ments pertaining to the creation of the component. The
recovery manager generates a new logical identifier for the
component, and then logs the creation information. An
exemplary log record format is shown in FIG. 7. A logical
identifier is associated with the machine on which the
component is created, location information of the context,
and the class ID (CLSID) for the component.

0063 For server creation, the client calls for the creation
of the server on the same or different machine. During
component creation the activation hook code running on the
server can gather the CLSID, location information, logical
ID, etc. for the server component in a manner similar to
client creation.

0064. At this point, both client and server components
have been created and log records detailing the creation
information have been written to the log. To complete
initialization, the client is made aware of the server and,
similarly, the server is made aware of the client.

0065. To make the server aware of the client, the activa
tion hook on the client can contact the SRM through the
LRM to pass it the desired information. The LRM has a
mapping of the client's pointer to all the desired information.
To make the client aware of the server, the activation hook
on the client can record the desired information in the log or
pass it to the LRM.

0066 Once both server and client components have been
created and properly initialized, each can associate a refer
ence for the other component with the information desirable
to re-create the peer.

US 2006/024838.6 A1

0067. During a method call, the client-side logging policy
will log information pertaining to the call, including the
client identity, server identity, method identity, and argu
ments to the method. Each method call is stamped with a
new logical ID by the client side logging policy. Arguments
to the method call sitting on the stack are serialized. The
client identity and the method identity, including the logical
ID of the method, are passed to the server side policy using
the buffer. The server logging policy records this informa
tion, including its own identity. The same procedure is
executed on the return of the call.

0068 To log for method invocation and response, the
exemplary format of the log record is used as shown in FIG.
8. On a per-method basis, the following is desirably logged.
(1) identity of the client component comprising the client
component class ID (type CLSID); and the client component
logical ID; (2) identity of the server component comprising
the server component class ID (type CLSID); and the server
component logical ID; (3) identify call comprising the
interface ID (IID) on which the method was called; method
identifier—an index or name for the method; method
instance unique identifier preferably this identifier is
unique to the log for the call. This is because it is desirable
to uniquely identify the call, which is not always possible
using just its name and arguments. If the method was called
twice with the same arguments, then the return values might
be different based on server state. The argument can be
pre-marshal or post-marshal. Pre-marshal permits checks for
pointer validity, whereas post- marshal permits pointer
invalidity survival.
0069 Regarding logging for completion/checkpoint,
when a component goes stateless, that information is desir
ably retained in a log record, as this indicates that recovery
of the component is no longer needed for the component
state, though it still might be used to re-create the compo
nent's messages or calls. An exemplary log record for this is
shown in FIG. 9.

0070. It is contemplated that the invention can recover
any component, whether it is acting in the role of client,
server, or both, and that the invention should not be limited
to the recovery of components acting in the role of a server
responding to requests from other client components.
0071. The recovery manager responsible for the compo
nent, referred to as the component recovery manager
(CRM), is identified. The appropriate CRM is then called to
recover the failed component. Assuming execution is now
taking place on the CRM, it is verified that the component
has not already been recovered. The CRM searches an
in-memory structure or log. If it is determined that the
component has already been recovered, the CRM returns an
interface pointer for the already recovered component. Oth
erwise, the CRM creates a new instance of the failed
component by reading the activation log record from the log
and replaying the creation call. The state for the component
is reinstalled by replaying calls associated with the failed
component from the log. A recovery analysis pass may be
performed on the log to identify the appropriate log records.
Preferably, all references to the component are then updated
with the new interface pointer. The CRM will log the
recovery of the component on the log, and then return the
new component identifier to other recovery managers.
0072) If recovery is successful, the CRM recovery man
ager returns a status code indicating Success and a new

Nov. 2, 2006

physical identifier for the recovered component (a physical
component Supporting the virtual persistent component,
hence changing the virtual-to-physical mapping of the
recovered component) to the error handler. The error handler
will update component runtime tables with the new com
ponent identifier and return a status code to the component
runtime indicating it can resume (retry) method execution;
otherwise, the handler will return an error code to the
component runtime.
0073 Embodiments of the present invention are based on
an environment mechanism called contexts. A context is a
component wrapper mechanism that transparently intercepts
object events, such as creation, activation, and method calls.
New component services can be introduced to the runtime
by implementing “handlers', referred to as policies, for
object events and calls, and including them “in the context'.
However, the invention is applicable to any runtime infra
structure in which interception of interactions between com
ponents is possible.
0074 Automatic recovery is provided by the composition
of context policies that work together to log component state
and method calls, and in the event of system failure, to mask
the failure from the application and initiate recovery actions
to reconstruct impacted components.
0075. The various techniques described herein may be
implemented with hardware or software or, where appropri
ate, with a combination of both. Thus, the methods and
apparatus of the present invention, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, Such as floppy
diskettes, CD-ROMs, hard drives, or any other machine
readable storage medium, wherein, when the program code
is loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing
the invention. One or more programs are preferably imple
mented in a high level procedural or object oriented pro
gramming language to communicate with a computer sys
tem. However, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the
language may be a compiled or interpreted language, and
combined with hardware implementations.
0076. The methods and apparatus of the present invention
may also be embodied in the form of program code that is
transmitted over some transmission medium, Such as over
electrical wiring or cabling, through fiber optics, or via any
other form of transmission, wherein, when the program code
is received and loaded into and executed by a machine. Such
as an EPROM, a gate array, a programmable logic device
(PLD), a client computer, a video recorder or the like, the
machine becomes an apparatus for practicing the invention.
When implemented on a general-purpose processor, the
program code combines with the processor to provide a
unique apparatus that operates to perform the versioning
functionality of the present invention.
0077. It is noted that the foregoing examples have been
provided merely for the purpose of explanation and are in no
way to be construed as limiting of the present invention.
While the invention has been described with reference to
various embodiments, it is understood that the words which
have been used herein are words of description and illus
tration, rather than words of limitations. Further, although
the invention has been described herein with reference to

US 2006/024838.6 A1

particular means, materials and embodiments, the invention
is not intended to be limited to the particulars disclosed
herein; rather, the invention extends to all functionally
equivalent structures, methods and uses, such as are within
the scope of the appended claims.
What is claimed is:

1. A method of providing recovery in a computer system,
comprising:

intercepting events comprising at least one of a plurality
of method calls, component activations, and compo
nent deactivations;

logging the events during execution of stateful piece-wise
deterministic (PWD)-components having a component
State;

detecting a failure of one of the components based on an
error detected during execution; and

replaying the logged events to recover the component
State.

2. The method of claim 1, further comprising:
intercepting non-deterministic events;
providing a policy mechanism that, upon interception of

the events, permits the logging of the intercepted
events;

providing an error handler that is invoked when an error
is detected. Such error handler being capable of mask
ing the error from the component.

3. The method of claim 1, further comprising:
logging information about how the component is mapped

to a first set of resources such that the component can
be re-mapped to a different set of resources should a
system failure result in a termination of the first set of
resources, said re-mapping enabling Scalability and
load balancing.

4. The method of claim 3, wherein the information
includes a logical identifier for the component that identifies
logged State information for the component.

5. The method of claim 1, further comprising exactly
once execution comprising:

uniquely identifying messages at a sender;
detecting an original message and at least one duplicate

message at a receiver,
eliminating the at least one duplicate message; and
providing a reply to the at least one duplicate message that

is the same as a reply to the original message.
6. The method of claim 1, further comprising:
notifying an error handler when the error is detected;
contacting a recovery manager to recover the component

that has failed;
re-trying an interaction that failed at the time of the

failure; and
returning the result of the re-tried interaction to the

component.
7. (canceled)
8. The method of claim 1, further comprising:
retrieving information related to the failed call; and
identifying the component based on the retrieved infor

mation.

Nov. 2, 2006

9. The method of claim 1, further comprising:
updating references to the component with an interface

pointer corresponding to the component; and
logging the recovery of the component.
10. (canceled)
11. The method of claim 1, further comprising intercept

ing the method call and response, and invoking a policy on
at least one of the call and the response.

12. The method of claim 1, wherein the computer system
comprises a client and a server, and detecting the failure of
the component comprises the client or server detecting the
failure, and further comprising a component runtime asso
ciated with the client invoking an error handler associated
with the client and providing information related to the
failed call to the error handler.

13. The method of claim 12, further comprising identi
fying a recovery manager responsible for the component and
passing the information to the recovery manager.

14. (canceled)
15. A system for providing recovery in a computer sys

tem, comprising:

a storage device that logs events comprising at least one
of a plurality of method calls, component activations,
and component deactivations during execution of state
ful piece-wise deterministic (PWD) components hav
ing a component state;

a component runtime that receives the events from the
storage device;

a error handler that receives the events from the compo
nent runtime and identifies the component based on the
events; and

a recovery manager that receives the events from the
storage device and replays the events to transparently
and automatically recover the component state.

16. The system of claim 15, wherein the error handler is
notified of an error and contacts the recovery manager to
recover the component state.

17. (canceled)
18. The system of claim 15, wherein the component

runtime intercepts the at least one method call and invokes
a policy on the at least one method call.

19. The system of claim 15, further comprising an acti
Vation hook that logs information in the storage device that
is sufficient to re-create the component.

20-23. (canceled)
24. A computer readable medium having computer-ex

ecutable instructions for performing the steps comprising:

intercepting events comprising at least one of a plurality
of method calls, component activations, and compo
nent deactivations;

logging the events during execution of at least one stateful
piece-wise deterministic (PWD) component having a
component state in a computer system;

detecting a failure of one of the components based on an
error detected during execution; and

replaying the logged events to transparently and automati
cally recover the component state.

US 2006/024838.6 A1

25. The computer readable medium of claim 24, having
further computer-executable instructions for:

intercepting non-deterministic events;
providing a policy mechanism that, upon interception of

the events, permits the logging of the intercepted
events;

providing an error handler that is invoked when an error
is detected. Such error handler being capable of mask
ing the error from the component.

26. The computer readable medium of claim 24, having
further computer-executable instructions for:

logging information about how the component is mapped
to a first set of resources such that the component can
be re-mapped to a different set of resources should a
system failure result in a termination of the first set of
resources, said re-mapping enabling Scalability and
load balancing.

27. The computer readable medium of claim 26, wherein
the information includes a logical identifier for the compo
nent that identifies logged state information for the compo
nent.

28. The computer readable medium of claim 24, having
further computer-executable instructions for providing
exactly-once execution comprising:

uniquely identifying messages at a sender;
detecting an original message and at least one duplicate

message at a receiver,

Nov. 2, 2006

eliminating the at least one duplicate message; and
providing a reply to the at least one duplicate message that

is the same as a reply to the original message.
29. The computer readable medium of claim 24, having

further computer-executable instructions for:
notifying an error handler when the error is detected;
contacting a recovery manager to recover the component

that has failed;
re-trying an interaction that failed at the time of the

failure; and
returning the result of the re-tried interaction to the

component.
30. (canceled)
31. The computer readable medium of claim 24, having

further computer-executable instructions for:
retrieving information related to the failed call; and
identifying the component based on the retrieved infor

mation.
32. The computer readable medium of claim 24, having

further computer-executable instructions for:
updating references to the component with an interface

pointer corresponding to the component; and
logging the recovery of the component.
33. (canceled)

