» UK Patent Application

(19) GB (11) 2 443 866 (13) A

(43) Date of A Publication 21.05.2008

(21)

(22)

Application No: 0622764.9

Date of Filing: 15.11.2006

(71)

(72)

(74)

Applicant(s):

Motorola Inc

(Incorporated in USA - Delaware)

1303 East Algonquin Road, Schaumburg,
lllinois 60196, United States of America

Inventor(s):

Jean Sidon

Mihael S Bercovici
Yaron Shemesh

Agent and/or Address for Service:
Optimus

Grove House, Lutyens Close,
Chineham Court, BASINGSTOKE,
Hampshire, RG24 8AG, United Kingdom

(51)

(56)

(58)

INT CL:

HO3M 13/27 (2006.01) HO3M 13/29 (2006.01)
Documents Cited:

US 20050204262 A1 US 20030048206 A1

IEEE Transactions on Information Theory, Volume 46
Number 6, September 2000, Takeshita O Y et al, "New
deterministic interleaver designs for turbo codes",
pages 1988-2006.

Field of Search:
INT CL HO3M, HO4L
Other: EPODOC, WPI, INSPEC

(54) Abstract Title: Quadratic congruence condition turbo coding interleaver calculates and swaps multiple
element pairs in parallel in each interleaving step

(57)

An interleaver (100) is for re-arranging in each of L
cycles a first set of K data elements into a second set of
K data elements using a permutation vector which
defines, based on the calculation in each cycle of a ¢y,
an even number of pairs of positions of in the first set to
be swapped, wherein ¢, satisfies a quadratic
congruence condition.

A processor (103) computes for each of the L cycles a
value of the sequence ¢, and, based on the value, a set
of indexes indicating at least two pairs of elements to be
swapped, 15 and a processor (101) swaps in each cycle
pairs of indicated elements, the swapping of pairs in
each cycle being done together in a parallel swapping
operation.

100

105

101
b(0) —» > b(0)
bixt) —> > biy1)
b(x2) —» L b(y2)
§ | RE-ARRANGEMENT PROCESSOR |3 107
bly1) — > —> bix1)
b(y2) — > > b{x2)
B(K-1) — > h{K-1)
K
X1 (X2 |Y1 Y2 103 104
COMPUTING PROCESSOR |—MEMORY
o LOOP i
LIMIT

V 998 ¢EvP ¢ 9O

Original Printed on Recycled Paper

100

105<

-

\.

1/6

101
b(0) — > b(0)
b(x1) —» > biy1)
b(x2) —» - > b(y2)
: | RE-ARRANGEMENT PROCESSOR |3 107
bly1) —» — b(x1)
b(y2) -? > b(x2)
b(K-1)—> " b(K-1)
lX1 X2 Y1 |Y2 108 104

COMPUTING PROCESSOR

MEMORY

— 1

CO LOOP i
LIMIT

FiG. 1

200 2/6

203 201
el s N e —
205
NO DETERMINE IF i IS LESS
THAN LOOP LIMIT ?
207 209
END BLOCK CALCULATE VALUES OF SWAPPING
PROCESSING INDEXES USING ALGORITHM RULES
l il

COMPARE CALCULATED VALUES OF
SWAPPING INDEXES WITH K IN A
PARALLEL COMPARISON OPERATION

17 l 213

USE ANY STORED IDENTIFY A COMBINATION OF USABLE
USABLEq BV&PPING SWAPPING INDEXES LESS THAN K
I o5
> SELECT AND APPLY RULE OF ALGORITHM
TO DETERMINE WHICH PAIRS OF BITS TO
SWAP
v 219 l
STORE ANY UNUSED 223
USABLE SWAPPING | | INDICATE THE PAIRS OF BITS TO BE
INDEX SWAPPED
l 225
22 SWAP INDICATED PAIRS OF BITS IN A
PROVIDE BLOCK OF SINGLE PARALLEL OPERATION
INPUT DATA BITS
v 227
PROVIDE BLOCK OF OUTPUT DATA BITS |

FIG. 2

3/6

300
INPUT DATA
STREAM
)
301
309 OUTPUT
o303 r copeworn | PATA
205 ENCODER 1j— > CONSTRUCTOR T
N 311 315
INTERLEAVER
o307 [
L »{ENCODER2

FIG.

3

4/6

viva A
1NdLAO
L2p
HOLVIILST LIg e .
[A &
Y MOLONYLSNOD3A
l | @omIcnd S
NIAVITNILNIAA 1077 1NN
Y A
glb— 60r— 40P —
€S Y Sy
[yanvanaineaa 24300030 |«—{uaavaraiNje—]) ¥300030 |
615~ » "y~ oip 50r 7 1S &
HOLIMS
A 007

144

5/6

§ DIA

£05
(>
N ¥30093a momm_ooE_ | ¥30nasnvaL
pad [m(HOLVINAOWNAA—> “ogunl "TwNoIs LndLno 1ndLN0
6157 1267 §267 6267 L267
UNNIINY fe—s HOLVINOHID
UG e 5I§7 ﬁ
¥3IHITdINY HOLVINAOW H0SSI00Nd ¥IONASNYNL
¥amod € 4 < 83000 08UNL e— unais Taanl [1NdNI
815~ He- 605~ 408~ 505~
|
105

600

607

601

MOBILE STATION

6/6

605

BASE STATION

4——‘“%___——>

611

FIG. 6

609

603

MOBILE STATION

10

15

20

25

30

2443866

TITLE: INTERLEAVER FOR USE IN TURBO CODING
FIELD OF THE INVENTION

The present invention relates to an interleaver for
use in turbo coding. In particular, the present
invention relates to a quadratic congruence interleaver
suitable for use in turbo coding in forward error

correction in a digital communication system.

BACKGROUND OF THE INVENTION

Digital communication systems, particularly for
specialized uses such as applications of the emergency
and public safety services, need to perform accurately
and reliably in the presence of noise and interference.
Forward error correction (‘FEC’) coding is a known way
of helping to achieve this goal. Forward error
correction coding (also called ‘channel coding’) is a
type of digital signal processing that improves data
reliability by introducing a known structure into a data
sequence prior to transmission. This known structure is
introduced by a coder (encoder) associated with a
transmitter that is to transmit a signal including the
data sequence. The coder inserts redundant (or ‘parity’)
bits into the data stream, thereby providing an output
formed of a longer sequence of data bits, called a
‘codeword’ . A decoder associlated with a receiver which
receives the signal is able to extract the original data
sequence and to detect and correct errors caused by
corruption during communication without requesting

retransmission of the original data.

10

15

20

25

30

A powerful known form of forward error correction
coding is turbo coding. In turbo coding, a turbo coder
includes a combination of at least two component
encoders. The turbo coder also includes an interleaver
(also sometimes referred to as a ‘permuter’ or a
‘shuffler’). The interleaver is a processor that
receives data and re-arranges it in a different order
using a programmed re-arrangement operation. A first of
the component encoders and the interleaver receive each
block of input data. Usually, the first component
encoder and the interleaver receive each input data
block in parallel in a mode known as a ‘parallel
concatenation’ mode. The interleaver processes the input
data block and delivers the processed block to a second
of the component encoders. The first and second
component encoders thereby generate different sets of
code bits based upon the input data block. This provides
diversity to the coded data sequence being transmitted.
Although in principle any interleaving processing
pattern can be adopted for use by the interleaver,
different patterns can result in significant differences
in the communication bit-error rate. Therefore, the
interleaver design contributes significantly to the
overall error correction performance of the turbo code

system.

The turbo decoding procedure must employ as many
component decoders associated with the receiver as
component encoders associated with the transmitter.
These decoders may be concatenated in a serial fashion

and may be joined by a series of interleavers and de-

10

15

20

25

30

interleavers in a feedback loop arrangement. Typically,
the decoding procedure is iterative by sending decoded
data round the feedback loop in a number of iterations
to improve the quality of the data, i.e. to improve the
probability of the data being correct. By use of the
iterative decoding process, turbo codes can achieve a
bit-error rate that approaches the theoretical Shannon

limit.

Various interleavers are known in the prior art.
For use in turbo code processing, interleavers are
typically selected which provide a combination of
desirable computational properties. Such interleavers
include pseudo-random or deterministic interleavers. An
example of such a known deterministic interleaver is the
Takeshita-Costello interleaver which is described in the
paper, herein referred to as Reference 1, entitled ‘New
Deterministic Interleaver Designs for Turbo Codes, by
Oscar Y. Takeshita and Daniel J. Costello Jr., published
in IEEE Transactions on Information Theory, Vol. 46.,
No. 6, September 2000. This interleaver is known to be
suitable for use in a convolutional turbo coder in its
parallel concatenation mode for forward error
correction. This interleaver provides an operation which
has a relatively low mathematical complexity, but its
known implementation in a real time environment is

relatively complex.

10

15

20

25

30

SUMMARY OF THE INVENTION

According to the present invention in a first
aspect there is provided an interleaver as defined in
claim 1 of the accompanying claims.

According to the present invention in a second
aspect there is provided a turbo coder as defined in
claim 11 of the accompanying claims.

According to the present invention in a third
aspect there is provided a turbo decoder as defined in
claim 12 of the accompanying claims.

According to the present invention in a fourth
aspect there is provided a digital communication system
as defined in claim 13 of the accompanying claims.

According to the present invention in a fifth
aspect there is provided a digital communication
terminal as defined in claim 14 of the accompanying
claims.

According to the present invention in a sixth
aspect there is provided method of operation in an
interleaver, the method being as defined in claim 15 of
the accompanying claims.

Further features of the invention are as defined in
the accompanying dependent claims and as disclosed in
the embodiments of the invention to be described.

Embodiments of the present invention will now be
described by way of example with reference to the

accompanying drawings.

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, in which like reference
numerals refer to identical or functionally similar
elements throughout the separate views and which
together with the detailed description below are
incorporated in and form part of the specification,
serve to further illustrate various embodiments and to
explain various principles and advantages of the present
invention.

In the accompanying drawings:

FIG. 1 is a block schematic diagram of an
interleaver embodying the invention.

FIG. 2 is a flow chart of a method embodying the
invention employed in the interleaver of FIG. 1.

FIG. 3 is a block schematic diagram of an
illustrative turbo coder embodying the invention.

FIG. 4 is a block schematic diagram of an
illustrative turbo decoder embodying the invention.

FIG. 5 is a block schematic diagram of a
transceiver of a digital communication terminal
embodying the invention.

FIG. 6 is a block schematic diagram of a digital
wireless communication system adapted in accordance with

an embodiment of the invention.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Before describing in detail embodiments that are in
accordance with the present invention, it should be

observed that the embodiments reside primarily in

10

15

20

25

30

combinations of method steps and apparatus components
related to interleavers and their use in turbo coders
for communication between a first terminal and a second
terminal. Accordingly, the apparatus components and
method steps have been represented where appropriate by
conventional symbols in the drawings, showing only those
specific details that are pertinent to understanding the
embodiments of the present invention so as not to
obscure the disclosure with details that will be readily
apparent to those of ordinary skill in the art having
the benefit of the description herein.

In this document, relational terms such as ‘first’
and ‘second’, ‘top’ and ‘bottom’, and the like may be
used solely to distinguish one entity or action from
another entity or action without necessarily requiring
or implying any actual such relationship or order
between such entities or actions. The terms ‘comprises’,
‘comprising’, or any other variation thereof, are
intended to cover a non-exclusive inclusion, such that a
process, method, article, or apparatus that comprises a
list of elements does not include only those elements
but may include other elements not expressly listed or
inherent to such process, method, article, or apparatus.
An element preceded by ‘comprises ..a’ does not, without
more constraints, preclude the existence of additional
identical elements in the process, method, article, or
apparatus that comprises the element.

It will be appreciated that embodiments of the
invention described herein may be comprised of one or
more conventional processors and unique stored program

instructions that control the one or more processors to

10

15

20

25

30

implement, in conjunction with certain non-processor
circuits, some, most, or all of the functions of
interleavers and their use in turbo coding for
communication between a first terminal and a second
terminal. As such, these functions may be interpreted as
steps of a method of operation to perform interleaving
in turbo coding in communication between a first
terminal and a second terminal. Alternatively, some or
all functions could be implemented by a state machine
that has no stored program instructions, or in one or
more application specific integrated circuits (ASICs),
in which each function or some combinations of certain
of the functions are implemented as custom logic. Of
course, a combination of the two approaches could be
used. Thus, methods and means for these functions have
been described herein. Further, it is expected that one
of ordinary skill, notwithstanding possibly significant
effort and many design choices motivated by, for
example, available time, current technology, and
economic considerations, when guided by the concepts and
principles disclosed herein will be readily capable of
generating such software instructions and programs and
ICs with minimal experimentation.

It has been recognised in the art that quadratic
congruence interleavers, as described in Reference 1
specified earlier, are powerful interleavers because
they can give a performance similar to random
interleavers. For example, the TETRA Series 2 set of
standards being developed by ETSI (the European
Telecommunications Standards Institute) has specified

that for forward error correction this type of

10

15

20

25

30

interleaver is to be used in a turbo encoder in the
parallel concatenation mode. In consequence, there is
considerable current interest in such interleavers.

In operation of a quadratic congruence interleaver,
also known as a ‘Takeshita - Costello’ interleaver, data
elements, e.g. bits or symbols each of which can have
different possible values, of an input set or block of K
data elements is delivered to the interleaver. The
interleaver re-arranges the data elements using an
algebraically derived permutation table defining
permutations of pairs of data elements whose positions
are to be swapped. The interleaver may construct the
permutation table by use of an index mapping function
giving for each of L re-arrangement cycles sequences cp
defining the position of pairs of the data elements to
be swapped. Each sequence ¢, is given by:

¢, =[c,, +hmlmodS,m=1,2,...,§ -1 Equation 1

where § is the smallest power of two which is greater
than or equal to K and h is a constant which is an odd
integer. Reference 1 shows that Equation 1 is equivalent
to a quadratic congruence condition for cn. The
permutation table which results is equivalent to
constructing a permutation vector in which the elements
are shifted left by an amount equal to h.

In the TETRA Series 2 set of standards referred to
earlier, operation of the quadratic congruence
interleaver is defined in terms of a two-step algorithm
that should be applied to give the required data element
re—-arrangement. This two step algorithm, which is

referred to herein as ‘Algorithm 1’, is specified in the

10

15

20

25

30

35

TETRA Series 2 set of standards (written using well
known algorithm shortened notations) as follows:

‘A quadratic-congruence block interleaver shall re-order
K bits b2(1), b2(2),.., b2(K) into K permuted bits
b'>2(1), b'2(2),.., b'2(K), by means of the following
two-step algorithm:

a) First, the sequence of indices ¢y, m = 0, 1,..,5-1,

is calculated, where S is the smallest power of 2

larger or equal than K as follows:

¢, =0,and
¢, =[c, , +mlmodS,m=12,.,5-1

b) Second, the K bits b2(1), b2(2),.., b2(K) undergo the
following procedure:
flag « false
i0
while i < (5-2)/2
x<c,
y<[c +5/2]mods
if (x<K,andy<K,)
swap bits 5, (x+1) and b,(v+1)
elseif (x< K, andy 2K.)
if (flag = true)
swap bits 5 (x+1) and &,(r+1)
flag « false
else
tex
flag « true
clseif (x> K, andy <K.)
if (flag = true)
swap positions 5,(y+1) and 5 (t+1)

flag « false
else
tev
flag < true
ie—i+l’

10

15

20

25

30

10

Thus, in the second step, step b of Algorithm 1, a
series of re-arrangement cycles are to be applied to a
block of data of length K. Each of these cycles is
identified by an index i. A series of algorithmic
operations is presented by Algorithm 1 defining pairs of
elements to be swapped for each cycle. Algorithm 1
implies that the swapping of pairs of elements in each
cycle is carried out as a series of individual swapping
steps. Carried out in this way step b requires many
individual swapping operations carried out serially. The
number of swapping operations is related to the size of
the block of data elements to be re-arranged. For
example, in accordance with the TETRA Release 2
standards, K can be up to 5,536. In a hardware
(programmable logic) implementation, this requires
typically 5536/2 clock cycles.

In relation to an embodiment of the invention it
has been recognised that a method equivalent to
Algorithm 1 can be implemented in less clock cycles than
as contemplated by the prior art referred to above. An
illustrative quadratic congruence interleaver 100
embodying the invention which is capable of implementing
a method equivalent to Algorithm 1 in a reduced number
of clock cycles will now be described with reference to
FIGS. 1 and 2.

Referring first to FIG. 1, the interleaver 100
embodying the invention comprises a re-arrangement
processor 101 which is operably connected to a computing
processor 103 operably connected in turn to a memory
104. A block 105 of K input data bits b is applied to

the re-arrangement processor 103. The block 105 may be a

10

15

20

25

30

11

sub-block of a larger block of data bits that has to be
re-arranged in steps or cycles of operation by the
interleaver 100. Each of the K input data bits b of the
block 105 is applied in parallel to the re-arrangement
processor 103. The block 105 is shown as having K input
data bits b having position indexes from 0 to K-1. For
illustrative simplicity, four (i.e. two pairs) of the
input bits b are candidates to be swapped in position in
pairs. However, in practice the block 105 may have many
more pairs of input data bits which are candidates for
swapping in each re-arrangement cycle. An input position
index of each of the input data bits b in turn is
indicated in FIG. 1 in brackets following each
designation of b, i.e. as 0,.. x1,.. x2,.. yl,.. y2 .. K-1
respectively. The input data bits b having the bracketed
position indexes x1, x2, yl and y2 are the bits which
are candidates to be swapped. These bits are not
necessarily adjacent in position in the block 105 of K
bits as indicated by dots between the wvarious data bits
b. The input data bits b having the bracketed position
indexes x1, x2, yl and y2 are re-arranged in position by
the re-arrangement processor 101 in each of L re-
arrangement cycles, where L is an integer herein
referred to as the ‘loop limit’ and is equal to (S-2)/2,
where S is as defined earlier. The data bits b are re-
arranged to form a block 107 of output data bits. In a
first re-arrangement cycle, the data bits of the block
107 of output data bits are as shown in FIG. 1, in which
the indexes in brackets of the output data bits refer to
the positions of the corresponding input bits b in the

block 105. Thus it can be seen for the first re-

10

15

20

25

30

12

arrangement cycle that the input bits b(yl) and b(x1l)
have been swapped in position and the input bits b(y2)
and b (x2) have been swapped in position. The swapping
operations in each of the L re-arrangement cycles are
carried out together as a parallel operation.

The swapping operations between pairs of bits b
required in each of the re-arrangement cycles may be
defined by swapping indexes. In FIG. 1, the swapping
indexes associated with each of bits b(xl), b(x2), b{(yl)
and b(y2) are indicated respectively as X1, X2, Y1 and
Y2. Thus, the swapping index X1 defines the position
index of the input data bit b (if any) with which the
data bit b(xl) is to be swapped in a given cycle. The
swapping index X2 defines the position index of the
input data bit b (if any) with which the data bit b (x2)
is to be swapped, and so on.

The values of the swapping indexes X1, X2, Y1 and
Y2 are computed by the computing processor 101 to give
output blocks 107 for each re-arrangement cycle which
are equivalent to output data as obtained by the
operation of Algorithm 1. The computing processor 101 is
provided with the following inputs:

(i) an input c¢o which is a parameter for the index
calculation, having an initial value of zero;

(ii) an input i which is a value of the current
cycle index; this may be provided by a cycle counter
(not shown);

(iii) an input indicating the ‘loop limit’, which
is a limit L of the number of re-arrangement cycles;

this input is an integer equal to the number (S-2)/2.

10

15

20

25

30

13

The computing processor 103 operates in a manner
described with reference to FIG. 2 to compute for each
cycle a sequence ¢, as defined earlier and, from the
sequence, pairs of bits b to be re-arranged in each
cycle. The computing processor 103 indicates to the re-
arrangement processor 101 the computed pairs, e.g. using
an indication provided in the form of values of the
swapping indexes X1, X2, Y1 and Y2. The re-arrangement
processor 101 applies the swapping operations defined by
the indication from the computing processor 103.
Multiple swapping operations are carried out in parallel
by the re-arrangement processor 101.

FIG. 2 is a flow chart of an illustrative method
200 of operation of the interleaver 100 in accordance
with an embodiment of the invention. The method 200
comprises multiple re-arrangement cycles or iterations
each indicated by a cycle index i. Each cycle begins at
a step 201. The cycle index is indicated in a step 203
by input to the computing processor 103 of a value of i
for the current cycle. In a step 205, the computing
processor 103 determines if the value of i for the
current cycle is less than a loop limit which is equal
to (S-2)/2. If step 205 produces a ‘No’ result, i.e. a
determination that the loop limit has been reached,
processing for the current block of input data ends at a
step 207. If step 205 produces a ‘Yes’ result, i.e. a
determination that the loop limit has not been reached,
the method 200 proceeds to a step 209. In step 209, the
computing processor 103 calculates values of swapping
indexes for the current cycle i. The computing processor

103 uses a set of relationships, obtained by inspection

10

15

20

25

30

14

of Algorithm 1, to compute values of the swapping
indexes. Where the swapping indexes are specifically X1,
X2, Y1 and Y2 as defined earlier, the relationships used
are as follows:

X1 is given by (cy + i) mod S:

X2 is given by (cg+2i + 1) mod S;

Y1l is given by (cp + S/2) mod S;

Y2 is given by (cg +2i + 1 + S/2) mod S.

The parameters ¢y, i and S are as defined earlier.

The calculations of step 209 are carried out in
parallel (in contrast to the serial procedure implied by
Algorithm 1), for a plurality of bit pairs, in a
hardware implementation. In a step 211, the computing
processor 103 compares each of the swapping index values
calculated in step 211 with the value K, the number of
data bits in the block 107 of input data bits, to
determine whether each swapping index is less than or
not less than K. The comparisons for each of the
swapping indexes with the value K are carried out in
parallel in a single step operation in step 211. Each
calculated swapping index is not used further if it is
found in step 211 to be not less than K. Each calculated
swapping index is used further if it is found in step
211 to be less than K.

In a step 213, the computing processor 103
identifies a combination of the swapping indexes which
are less than K. For example, where the swapping indexes
X1, X2, Y1 and Y2 as described earlier are used, there
are four (or, in general p) such indexes giving sixteen
(or, in general, 2F) such combinations possible. This

arises as follows. For each and every one of the above

10

15

20

25

30

15

four variable swapping indexes X1, X2, Y1 and Y2 there
are two possibilities that can be found in step 211: (i)
the index is greater than or equal to K; and (ii) the
index is less than K. This gives a total number of two
to the power of four, that is sixteen, possible
combinations of the comparison results of the four
variables X1, X2, Y1, Y2 with respect to the value of K.
In a step 215, the computing processor 103 selects
and applies a logical rule of an algorithm to determine
which pairs of bits to swap. The algorithm essentially
has a different logical rule for each of the possible
combinations which can be identified in step 213. The
rules to be applied are obtained by inspection of
Algorithm 1. Thus, when a particular combination is
identified in step 213, the algorithm applied by the
computing processor 103 instantly selects and applies
the rule corresponding to that combination. This may be
done by the algorithm loocking in parallel at every one
of the possible combinations from step 213 to find which
one is currently ‘true’ and then operating a
corresponding rule defined in the algorithm in response
to the particular ‘true’ finding. The computing
processor 103 may for example include a lookup table or
a multiplexer to implement the algorithm in step 215.
In a first example of step 215, if all of the
indexes X1, X2, Y1 and Y2 are found in step 211 to be
less than K, then step 213 will identify the combination
of the four indexes X1, X2, Y1 and Y2 as usable, and
step 215 determines by application of the rule
corresponding to this combination that b(xl) should be
swapped with b(yl), and b(x2) should be swapped with

10

15

20

25

30

16

b(y2). In a second example, if both of X2 and Y2 are
less than K but both of X1 and Y1 are not less than K,
step 215 determines by application of the rule
corresponding to this combination that only b(x2) should
be swapped with b(y2).

The rules applied in step 215 also deal with the
following situation. If, as noted earlier, any
calculated swapping index is found in step 211 to be
less than K it can and will be used in swapping.
However, if one of the calculated indexes (say X1) is
unusable (i.e. not less than K), while the index with
which it should pair (say Y1) as identified in the rule
selected in step 215 is usable (i.e. is less than K) a
swap cannot be carried out between them. If there is
stored in the memory 104 any usable index from previous
calculations of the indexes, it is used by pairing with
Yl for a swap. This possibility, the use of any unused
usable swapping index, is indicated in FIG. 2 as a step
217. If no such index is already stored, no swap is
carried out in the current cycle using the usable
swapping index (Y1) and the usable swapping index (X1)
is temporarily stored in the memory 104. This
possibility, the storage of any unused usable swapping
index, is indicated in FIG. 2 as a step 219. Such a
stored index is to be used for pairing at the next
opportunity, e.g. in the next cycle of the method 200
following the current cycle.

In a step 221, a block of input data bits, e.g. as
illustrated by the block 105 in FIG. 1, is provided to
the re-arrangement processor 101. In a step 223, the

computing processor 103 provides to the re-arrangement

10

15

20

25

30

17

processor 101 an indication of the pairs of bits in the
input block that the re-arrangement processor 101 has to
swap, as determined by the computing processor 103 in
steps 209 to 215. Only the swapping indexes of bits that
have to be swapped may be indicated in step 223. Each
input indicates the indexes of the pair(s) of bits, e.g.
b(xl) with b(yl) and b(x2) with b(y2), to be swapped (if
any) . Thus, the minimum information that needs to be
indicated by the computing processor 103 to the re-
arrangement processor 101 consists of the swapping
indexes of the pairs of bits that are to be swapped. In
a step 225, the re-arrangement processor 101 swaps the
pairs of input bits indicated in step 223. Step 225 is
carried out as a single parallel operation in which all
swaps are carried out together. Finally, in a step 227,
a block of output data bits is provided by the re-
arrangement processor 101, e.g. as illustrated by the
block 107 in FIG. 1. This block includes output data
bits which have been swapped in position in step 225.
Following step 225, the method returns to step 201 to
begin the next cycle having a cycle index i+l, where 1
is the index of the cycle which has just ended. In each
cycle of the method 400 for each given block of input
data, a different output block 107 of data is produced.
Since each of steps 209, 211, 223 and 225 in the
method 200 is carried out as a parallel operation, the
number of overall steps required to achieve an output
equivalent to that produced by Algorithm 1 may be
considerably reduced compared with use of serial
operations, particularly serial swapping operations,

contemplated in the prior art. Beneficially, this allows

10

15

20

25

30

18

the interleaver 100 to operate more rapidly using fewer
processing resources. The interleaver 100 may therefore
be fabricated in a form which is more compact and less
expensive than a comparable serial interleaver.

FIG. 3 is a block schematic diagram of an
illustrative turbo coder 300 embodying the invention. An
input data stream is delivered from a digital signal
processor (not shown) via a connection 301. The input
data stream represents information to be communicated,
e.g. speech information or text, picture or wvideo
information. The input data stream comprises a series of
discrete, consecutive blocks of data upon each of which
the turbo coder 300 operates. The input data stream is
applied in parallel to a first component encoder,
Encoder 1 303 and an interleaver 305. Each data block of
the input data stream is encoded in a known manner by
the Encoder 1 303 and is also rearranged by the
interleaver 305 in a manner embodying the invention
described earlier with reference to FIGS. 1 and 2 to
form a re-arranged data block. Each of the re-arranged
data blocks is delivered to a second component encoder,
Encoder 2 307 and is encoded in a known manner by the
Encoder 2 307.

A codeword constructor 309 receives three input
signals derived from the input data stream. A first
input signal delivered via the connection 301 is
provided by the unprocessed input data stream. A second
input signal is delivered via a connection 311 from the
Encoder 1 303 and 1s a series of data blocks which have
been encoded by the Encoder 1 303. A third input signal

is delivered via a connection 313 from the Encoder 2 307

10

15

20

25

30

19

and 1s a series of re-arranged data blocks which have
been encoded by the Encoder 2 307. The codeword
constructor 309 uses its three input signals in a known
manner to produce output data comprising a series of
code words each containing components from each of the
three input signals to the codeword constructor 309, The
output data is delivered by an output connection 315 to
a modulator (not shown) to provide modulation of a
communication signal, e.g. an RF carrier signal, using
the output data, in a known manner.

FIG. 4 is a block schematic diagram of an
illustrative turbo decoder 400 embodying the invention.
The turbo decoder 400 receives input data comprising a
demodulated signal comprising communicated code words.
The input data is delivered to a codeword deconstructor
401 which produces three output signals corresponding
respectively to the three input signals employed in the
code word constructor 309 shown in FIG. 3. A first
output signal S1 which comprises unencoded data is
applied to a first decoder, Decoder 1 405 via a
connection 407. A second output signal S2 which
comprises data encoded by the Encoder 1 303 (FIG. 3) is
applied to the Decoder 1 405 via a connection 409. A
third output signal S3 which comprises data encoded by
the Encoder 2 307 is applied to a second decoder,
Decoder 2 411 via a connection 413. The Decoder 1 405 is
serially coupled via an interleaver 415 to the Decoder 2
411.

A cycle of a loop processing operation in the turbo
decoder 400 proceeds as follows. The Decoder 1 405

decodes and uses the encoded data of the signal S2

10

15

20

25

30

20

correlated with the decoded data of the signal S1 to
produce statistical information relating to a bit error
rate of received data. The statistical information is
delivered to the Decoder 2 411. The Decoder 2 411
decodes and uses the encoded data of the signal S3
correlated with the unencoded data of the signal S1 re-
arranged by the interleaver 415 to produce statistical
information relating to a bit error rate of received
data. The interleaver 415 operates in the manner
embodying the invention described earlier with reference
to FIGS. 1 and 2. The Decoder 2 411 produces an output
signal including statistical information produced by the
Decoder 1 405 and improved by the Decoder 2 411 which is
delivered via a two-way switch 417 and a de-interleaver
419 to a feedback loop 421 which applies the signal back
to the Decoder 1 405. The output signal provided by the
Decoder 2 411 also includes decoded data which
corresponds to the unencoded but re-arranged data
delivered from the interleaver 305 to the Encoder 2 307
(FIG. .3). The de-interleaver 419 produces a reverse re-
arrangement of the data to provide an input signal S4
for the Decoder 1 405 which corresponds to a processed
version of the unencoded data of the signal S1. The
Decoder 1 405 uses the statistical information it
receives and the processed version of the encoded data
of the signal S4 delivered via the feedback loop 421 to
improve the reliability of the input unencoded data of
the signal S1. Another cycle of the loop processing
operation which has been described then begins. Several

cycles may be applied successively for each block of

10

15

20

25

30

21

data received, the gathered statistical information and
reliability of the data improving with each cycle.

When sufficient cycles of the loop processing
operation have been applied, the switch 417 is operated
to divert the output signal produced by the Decoder 2
411 via a de-interleaver 423 to a bit estimator 425.
Like the de-interleaver 419, the de-interleaver 423
produces a reverse re-arrangement of the decoded data
produced by the Decoder 2. The de-interleavers 419 and
423 may in practice be provided by a single interleaver.
Each of the de-interleavers 419 and 423 may be provided
by an interleaver operating in the manner embodying the
invention described earlier with reference to FIGS. 1
and 2. The signal S1 comprising unencoded data from the
codeword deconstructor 401 is also delivered to the bit
estimator 425 via a connection 427. The bit estimator
425 uses the respective inputs it receives to estimate
which bits in the unencoded data of the signal S1
require correction. The bit estimator 425 produces
output data including bits corrected by the bit
estimator 425 based upon error estimations made by the
bit estimator 425.

FIG. 5 is a block schematic diagram of an
illustrative transceiver 500 embodying the invention.
The transceiver 500 is suitable for use in a mobile
digital wireless communication terminal and includes a
transmitter chain 501 and a receiver chain 503 either
one of which can be selected to be in operation for a
given operational period in a transmitting mode or a
receiving mode respectively. The transmitter chain 501

includes an input transducer 505 which in a transmitting

10

15

20

25

30

22

mode receives input information to be communicated, e.g.
speech from a user. The input information is applied in
the form of an input electronic signal to an input
signal processor 507 which provides preliminary signal
processing, e.g. to enhance signal quality of the
electronic signal. An output signal from the input
signal processor 507 comprises a digital data signal
which is delivered in the form of consecutive data
blocks to a turbo coder 509 which includes an
interleaver embodying the invention, e.g. as described
earlier with reference to FIGS. 1 and 2. The turbo coder
509 may for example be the turbo coder 300 shown in FIG.
3. An output from the turbo coder 509 in the form of a
series of code words is delivered to an RF modulator 511
which uses the code words to modulate an RF carrier
signal. An output from the RF modulator 511 comprising a
modulated RF signal is amplified by a power amplifier
513 and is delivered via a circulator 515 (or switch or
like device) to an antenna 517. The amplified modulated
RF signal is transmitted over-the-air by the antenna 517
to a receiver of another terminal (not shown).

When the transceiver 500 is in a receiving mode,
the antenna 517 receives a modulated RF signal sent
over—-the—air by a transmitter of another terminal (not
shown). The antenna 517 delivers the received signal to
the receiver chain 503 via the circulator 515. A
filter/amplifier 519 provides front end RF channel
filtering and amplification of the received signal. The
received signal after filtering and amplification is
delivered to a demodulator 521 which downconverts the RF

signal to baseband frequency to extract information

10

15

20

25

30

23

added to the RF signal as a modulation signal when it
was transmitted. The demodulator 521 produces a digital
output which is a series of code words corresponding to
the series formed in a coder similar to the coder 509 of
the transmitter that transmitted the signal. The output
signal from the demodulator 521 is applied to a turbo
decoder 523 including one or more interleavers embodying
the invention, e.g. as described earlier with reference
to FIGS. 1 and 2. For example, the turbo decoder 523 may
be the turbo decoder 400 shown in FIG. 4. Output data
from the turbo decoder 523 is further processed in an
output signal processor 525, e.g. to enhance the quality
of the signal represented by the data, and is delivered
to an output transducer 527, e.g. a speaker where the
transducer 527 is to deliver output speech information
to a user.

FIG. 6 is a block schematic diagram of a wireless
communication system 600 embodying the invention. The
system 600 includes a mobile station 601 and a mobile
station 603. Each of the mobile stations 601 and 603 may
be a mobile radio, a portable telephone, a wireless
enabled pda (personal digital assistant) or the like.
The mobile station 601 may communicate with the mobile
station 603 via a base station 605 in which case the
system 100 is a cellular or trunked mobile communication
system. This communication is established via a radio
link 607 between the mobile station 601 and the base
station 605 and a radio link 609 between the base
station 605 and the mobile station 603. Alternatively,
the mobile station 601 may communicate directly with the

mobile station 603 via a direct radio 1link 611. Each of

10

15

20

25

30

24

the mobile stations 601 and 603 includes a transceiver
which may be the transceiver 500 as shown in FIG. 5.
Thus, if the mobile station 601 is a transmitting
terminal and the mobile station 603 is a receiving
terminal in the same communication, the mobile station
601 includes a turbo coder embodying the invention, e.g.
the turbo coder 300, which encodes the data to be
communicated, and the mobile station 603 includes a
turbo decoder embodying the invention, e.g. the turbo
decoder 400, which decodes the communicated data when
received. The turbo coder of the mobile station 601 and
the turbo decoder of the mobile station 603 form a
forward error correction code system in communication
between the mobile station 601 and the mobile station
603.

As will be readily apparent to those of ordinary
skill in the art, two or more of the operational
functions of components of the interleaver 100 described
earlier with reference to FIG. 1 may be combined in a
signal digital signal processor. Furthermore, other
operational functions of the transceiver 500, e.q.
functions of the turbo coder 509 and/or of the turbo
decoder 523 and/or functions of the processors 507 and
509 may be incorporated into the same digital signal
processor. Thus, a digital signal processor including
the interleaver 100, optionally together with other
functional components or operations, may be in the form
of a suitable programmed microprocessor such as one
using ASIC (Application Specific Integrated Circuit)
technology or FGPA (Field Programmable Gate Array)
technology.

10

25

In the foregoing specification, specific
embodiments of the present invention have been
described. However, one of ordinary skill in the art
will appreciate that various modifications and changes
can be made without departing from the scope of the
present invention as set forth in the accompanying
below. Accordingly, this specification and the
accompanying drawings are to be regarded in an
illustrative rather than a restrictive sense, and all
such modifications are intended to be included within
the scope of present invention as defined by the

accompanying claims.

10

15

20

25

30

26

CLAIMS

1. An interleaver for re-arranging in each of a
plurality of L re-arrangement cycles a first set of K
data elements into a second set of K data elements using
a permutation vector defining an even number of swapping
indexes of positions of data elements in the first set
to be swapped, wherein the computation of the swapping
indexes is based on a sequence c, that satisfies a
quadratic congruence condition, the interleaver
including a computing processor for computing in each
cycle a set of swapping indexes based on the sequence Cn
indicating pairs of data elements to be swapped in the
cycle, and a re-arrangement processor for swapping in
each cycle pairs of data elements in the first set
indicated by the swapping indexes computed by the
computing processor, the re-arrangement processor being
operable in each cycle to swap the pairs of elements
together in a parallel swapping operation.

2. An interleaver according to claim 1 wherein the
computing processor is operable to calculate in each of
the L cycles a value of the sequence cp which is given by
Cm = [Cm-1 + hm] modulo S, where m is an integer in the
integer series 0,1,..,S-1, where h is a given integer,
and S is the smallest power of two which is not less
than K.

3. An interleaver according to claim 2 wherein the
computing processor is operable to calculate in each
cycle, based on the values of the sequence cn calculated,
the swapping indexes for a number of bit pairs from the

K data elements in the first set and to detect whether

10

15

20

25

30

27

each of the values of the swapping indexes computed has
a value less than the value K, and to indicate that each
of the computed indexes is usable in re-arrangement only
if the computed value of the indexes is less than the
value K.

4, An interleaver according to claim 2 or claim 3
wherein the computing processor is operable to compute
at least one of: (i) values of the sequence cp; and (ii)
the swapping indexes of the pairs of bits to be swapped;
by a parallel computing operation.

5. An interleaver according to claim 3 or claim 4
wherein the computing processor is operable to compare
computed values of the swapping indexes with the value K
in a parallel comparison operation.

6. An interleaver according to any one of the
preceding claims wherein the computing processor is
operable to identify in each cycle a particular
combination of swapping indexes, greater than or equal
to four, having a value less than K and to select and
apply a particular rule corresponding to the particular
identified combination which identifies the pairs of
data elements to be swapped.

7. An interleaver according to claim 6 wherein the
computing processor is operable to run an algorithm
having defined rules for each of the possible
combinations of swapping indexes having a value less
than K, and the corresponding rule is executed by the
algorithm when the particular combination for a given
cycle is found.

8. An interleaver according to claim 6 or claim 7

wherein the computing processor is operable to apply in

10

15

20

25

30

28

a given cycle a rule which requires use of a stored
usable swapping index computed in a previous cycle to
identify a data element to be subject to swapping in the
given cycle.

9. An interleaver according to any one of claims 6 to
8 wherein the computing processor is operable to apply
in a given cycle a rule which requires, for a usable
swapping index computed in the given cycle which cannot
be used in the given cycle, storage of the index for use
in a subsequent cycle.

10. An interleaver according to any one of claims 1 to
9 including a single processor operable to carry out the
combined functions of the computing processor and the
re-arrangement processor.

11. An turbo coder including a first component encoder
for encoding a first set of data elements, a second
component encoder for encoding a second set of data
elements and, operably coupled to the first and second
component encoders to re-arrange the first set of data
elements into the second set of data elements, an
interleaver according to any one of the preceding
claims.

12. An turbo decoder including a first component
decoder for decoding a first set of data elements, a
second component decoder for decoding a second set of
data elements and, operably coupled to at least one of
the first and second component decoders, at least one
interleaver according to any one of the preceding claims
1 to 10.

13. A digital communication system including a

transmitter including at least one turbo coder according

10

15

20

29

to claim 11 and a receiver including at least one turbo
decoder according to claim 12.

14. A digital communication terminal including at least
one of: (i) a transmitter including at least one turbo
coder according to claim 11; and (ii) a receiver
including at least one turbo decoder according to claim
12.

15. A method of operation in an interleaver for re-
arranging in each of a plurality of L re-arrangement
cycles a first set of K data elements into a second set
of K data elements using a permutation vector defining
an even number of swapping indexes of positions of data
elements in the first set to be swapped, including
computing for each of the cycles a sequence cp that
satisfies a quadratic congruence condition, computing

in each cycle from the sequence c, at least four swapping
indexes defining the positions of data elements in the
first set to be swapped, and swapping in each cycle by a
re-arrangement processor the pairs of data elements in
the first set indicated by the computed swapping
indexes, the swapping of pairs of data elements in each
cycle by the re-arrangement processor being carried out

together in a parallel swapping operation.

- nal -
Far innovauin

20

Owen Wheeler
22 February 2007

GB0622764.9 Examiner:

1-15

Application No:

Claims searched: Date of search:

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category [Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US 2003/048206 Al
[GATHERER] Sec abstract.
A - US 2005/204262 Al
[BERENS] See abstract.
A - IEEE Transactions on Information Theory. Volume 46 Number 6,
September 2000, Takeshita O Y et al, "New deterministic interleaver
designs for turbo codes"”, pages 1988-2006.
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after. but with priority date
earlier than, the filing date of this application.
Field of Search:

Search of GB. EP, WO & US patent documents classified in the following areas of the UKCx :

=

Worldwide search of patent documents classified in the following areas of the 1PC
[HO3M; HO4L

The following online and other databases have been used in the preparation of this search report

[EPODOC, WPI, INSPEC

|
|

	ABSTRACT
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

