
US 20210303165A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0303165 A1

Kaushik et al . (43) Pub . Date : Sep. 30 , 2021

(52) U.S. CI .
CPC

(54) DYNAMIC RECYCLING ALGORITHM TO
HANDLE OVERLAPPING WRITES DURING
SYNCHRONOUS REPLICATION OF
APPLICATION WORKLOADS WITH LARGE
NUMBER OF FILES

G06F 37065 (2013.01) ; G06F 370638
(2013.01) ; G06F 370604 (2013.01) ; G06F

37067 (2013.01)

(71) Applicant : NetApp Inc. , San Jose , CA (US) (57) ABSTRACT

(72) Inventors : Akhil Kaushik , Bangalore (IN) ; Anoop
Chakkalakkal VIJAYAN , Bangalore
(IN)

(21) Appl . No .: 17 / 344,805
(22) Filed : Jun . 10 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 903,518 , filed on

Jun . 17 , 2020 , now Pat . No. 11,036,423 , which is a
continuation of application No. 16 / 288,437 , filed on
Feb. 28 , 2019 , now Pat . No. 10,725,691 .

Techniques are provided for overlapping write handling .
Overlapping write managers are used to maintain the order
that write operations are executed at a first computing
environment and replicated to a second computing environ
ment . Overlapping write managers are pre - allocated as
available for managing overlapping write operations . A
mapping is used to track what overlapping write managers
are currently allocated for particular file handles of files .
Thus , if an incoming write operation targets a file handle of
an already allocated overlapping write manager , then that
overlapping write manager is used to execute and replicate
the incoming write operation so that the order of execution
of overlapping writes by the second computing environment
is the same as at the first computing environment . If there is
no allocated overlapping write manager for the file handle ,
then a new overlapping write manager is allocated and
utilized .

Publication Classification
(51) Int . Ci .

G06F 3/06 (2006.01)

PRE - ALLOCATE PERCENTAGE OVERLAPPING WRITE MANAGER OF TOTAL
NUMBER OF OVERLAPPING WAITE MANAGERS

TRACK ALLOCATED OVERLAPPING WRITE MANAGERS USING MAPPING

EVALUATE MAPPING USING FILE HANDLE OF FILE TARGETED BY INCOMING
WRITE TO DETERMINE WHETHER OVERLAPPING WRITE MANGER IS ALREADY

ALLOCATED FOR FLE HANDLE

UTILIZE OVERLAPPING WRITE MANAGER TO ACQUIRE RANGE LOOK FOR
RANGE OF FILE TO BE MODIFIED BY INCOMING WRITE

SERIALLY EXECUTE INCOMING WRITE UPON FILE AND REPLCATE INCOMING
WRITE TO REPLICATED FILE USING RANGE LOCK

132

www ww mm

w mm

w

}
}
}

wM

{ }

} } }

Patent Application Publication

128

DATA STORAGE DEVICE

CLENT

NETWORK MODULE 120
DISK MODULE

VOLUME

} }

132A

2

V

FABRIC

Sep. 30 , 2021 Sheet 1 of 8

LL LLL

LE
CID

ULT
LE

GUE LES

ELE
GUUUU

UU

118

} } }

130

DATA STORAGE DEVICE

CLIENT

NETWORK MODULE
DISK MODULE

VOLUME

} } $

1328

}

w

US 2021/0303165 A1

104 .

132

FIG . 1

222 - NODE

206 - MEMORY 208 - STORAGE OPERATING SYSTEM

Patent Application Publication

www

204 PROCESSOR
204 PROCESSOR

242

VIRTUAL VOL 1 QTREE DIR 235 236 LUN File
240

210 - NETWORK ADAPTER
212 - CLUSTER ACCESS ADAPTER

214 - STORAGE ADAPTER

annon

Sep. 30 , 2021 Sheet 2 of 8

205 - CLIENT

215 - FABRIC

4 *** ***

WANAW

AM2

216

D

D
226

228

224

!

E

? ? ?

218

220

US 2021/0303165 A1

VOL 1 - 230

VOL 2 - 232

FIG . 2

Patent Application Publication Sep. 30 , 2021 Sheet 3 of 8 US 2021/0303165 A1

300

302
PRE - ALLOCATE PERCENTAGE OVERLAPPING WRITE MANAGER OF TOTAL

NUMBER OF OVERLAPPING WRITE MANAGERS

TRACK ALLOCATED OVERLAPPING WRITE MANAGERS USING MAPPING

EVALUATE MAPPING USING FILE HANDLE OF FILE TARGETED BY INCOMING
WRITE TO DETERMINE WHETHER OVERLAPPING WRITE MANGER IS ALREADY

ALLOCATED FOR FILE HANDLE

UTILIZE OVERLAPPING WRITE MANAGER TO ACQUIRE RANGE LOCK FOR
RANGE OF FILE TO BE MODIFIED BY INCOMING WRITE

SERIALLY EXECUTE INCOMING WRITE UPON FILE AND REPUCATE INCOMING
WRITE TO REPLICATED FILE USING RANGE LOCK

FIG . 3

Patent Application Publication Sep. 30 , 2021 Sheet 4 of 8 US 2021/0303165 A1

402

ALLOCATOR

FREE POOL OF RESOURCES

406

MAPPING ALLOCATED OVERLAPPING WRITE
MANAGERS

420
OWM (A) - FILE D (5)
OWM (B) - FILE D (7)
OWM (C) - FILE ID (2)

OWM (A)
OWM (B)
OWM (C)

FIG . 4A

Patent Application Publication Sep. 30 , 2021 Sheet 5 of 8 US 2021/0303165 A1

ALLOCATOR

FREE POOL OF RESOURCES

406

MAPPING ALLOCATED OVERLAPPING WRITE
MANAGERS

420
OWM (A) - FILE ID (5)
OWM (B) - FILE ID (7)
OWM (C) - FILE ID (2)

OWM (A)

OWM (C)

www www 1

422
}

WRITE REQUEST
(FILE HANDLE = FILE D (7)

}

uu w M ??? ??? ??? ???

FIG . 4B

Patent Application Publication Sep. 30 , 2021 Sheet 6 of 8 US 2021/0303165 A1

ALLOCATOR

FREE POOL OF RESOURCES

406

MAPPING ALLOCATED OVERLAPPING WRITE
MANAGERS 416

418
420
430

OWM (A) - FILE D (5)
OWM (B) - FILE D (7)
OWM (C) - FILE ID (2)
OWM (D) - FILE ID (9)

OWM (A)
OWM (B)
OWM (C) 428

ma w 1

426

SECOND WRITE REQUEST
(FILE HANDLE = FILED (9))

1
??? ??? ??? ??? M

FIG . 4C

Patent Application Publication Sep. 30 , 2021 Sheet 7 of 8 US 2021/0303165 A1

500

ST }

}

I }

}
}
}

}
}

T T
}

COMPUTER
INSTRUCTIONS

506

01011010001010
10101011010101
101101011100 ...

COMPUTER READABLE
MEDIUM

FIG . 5

Patent Application Publication Sep. 30 , 2021 Sheet 8 of 8 US 2021/0303165 A1

600

DISTRIBUTED COMPUTING PLATFORM

604 608

USER
INTERFACE

TIER

APPLICATION
SERVER
TIER

STORAGE
TIER

SERVICE SERVICE
DATASTORE

SERVER (1)

CLENT (1) CLIENT (1)
DATASTORE

622

SERVER (N) 624

CLIENT (N) 618
CLIENT (N)
DATASTORE

626

NETWORK

628 630

STORAGE
CONTROLLER DEVICE FIG . 6

US 2021/0303165 A1 Sep. 30 , 2021
1

DYNAMIC RECYCLING ALGORITHM TO
HANDLE OVERLAPPING WRITES DURING

SYNCHRONOUS REPLICATION OF
APPLICATION WORKLOADS WITH LARGE

NUMBER OF FILES

RELATED APPLICATIONS

[0001] This application claims priority to and is a con
tinuation of U.S. application Ser . No. 16 / 903,518 , filed on
Jun . 17 , 2020 , titled “ DYNAMIC RECYCLING ALGO
RITHM TO HANDLE OVERLAPPING WRITES DUR
ING SYNCHRONOUS REPLICATION OF APPLICA
TION WORKLOADS WITH LARGE NUMBER OF
FILE , ” which claims priority to and is a continuation of U.S.
Pat . No. 10,725,691 , filed on Feb. 28 , 2019 , titled
“ DYNAMIC RECYCLING ALGORITHM TO HANDLE
OVERLAPPING WRITES DURING SYNCHRONOUS
REPLICATION OF APPLICATION WORKLOADS WITH
LARGE NUMBER OF FILE , ” which is incorporated herein
by reference .

[0008] FIG . 4A is a component block diagram illustrating
an example system for overlapping write handling .
[0009] FIG . 4B is a component block diagram illustrating
an example system for overlapping write handling , where a
write request is processed using an existing overlapping
write manager .
[0010] FIG . 4C is a component block diagram illustrating
an example system for overlapping write handling , where a
write request is processed using a new overlapping write
manager .
[0011] FIG . 5 is an example of a computer readable
medium in which an embodiment of the invention may be
implemented
[0012] FIG . 6 is a component block diagram illustrating an
example computing environment in which an embodiment
of the invention may be implemented .

DETAILED DESCRIPTION

BACKGROUND

[0002] Many storage systems may implement data repli
cation and / or other redundancy data access techniques for
data loss protection and non - disruptive client access . For
example , a first computing device may be configured to
provide clients with primary access to data stored within a
first storage device and / or other storage devices . A second
computing device may be configured as a backup for the first
computing device in the event the first computing device
fails . Data may be replicated from the first computing device
to the second computing device . In this way , the second
computing device can provide clients with access to repli
cated data in the event the first computing device fails .
[0003] One type of replication is asynchronous replica
tion . When the first computing device receives an operation
from a client device , the first computing device transmits a
replication of the operation to the second computing device
for execution . Irrespective of whether the second computing
device has executed the replicated operation , the first com
puting device will transmit an acknowledgment of success
ful performance of the operation to the client device once the
first computing device has executed the operation .
[0004] Another type of replication is synchronous repli
cation , which provides a greater level of data protection
guarantees , such as a zero recovery point objective (RPO) .
This is because the first computing device does not transmit
the acknowledgment until the operation has been executed
by the first computing device and the replication operation
has been executed or acknowledged by the second comput
ing device . In this way , two copies of data and / or metadata
resulting from the operation are maintained before the client
receives acknowledgment that the operation was successful .

[0013] Some examples of the claimed subject matter are
now described with reference to the drawings , where like
reference numerals are generally used to refer to like ele
ments throughout . In the following description , for purposes
of explanation , numerous specific details are set forth in
order to provide an understanding of the claimed subject
matter . It may be evident , however , that the claimed subject
matter may be practiced without these specific details .
Nothing in this detailed description is admitted as prior art .
[0014] In asynchronous replication , incremental changes
to a storage object , such as a volume , a file , a directory , a
defined set of files or directories , a file system , or a sto ge
virtual machine comprising a plurality of volumes stored
across one or more nodes of a cluster , are replicated from the
storage object to a replicated storage object . In synchronous
replication , when an operation is received from a client
device (e.g. , a write operation targeting the storage object) ,
the operation is split to create a replicated operation that is
a replication of the operation . The operation is executed
upon the storage object , such as by a first computing device
managing the storage object . The replicated operation is
executed upon the replicated storage object , such as by a
second computing device managing the replicated storage
object . The operation is not acknowledged to the client
device as being complete until both the operation and the
replicated operation have successfully been executed upon
the storage object and the replicated storage object .
[0015] Accordingly , methods and / or systems are provided
herein that improve synchronous replication by dynamically
allocating and recycling file range locks , neutralizing repli
cation errors without going out of sync , and handling
misaligned holes and writes beyond an end of file during a
quick reconcile process . Synchronous replication may be
implemented for first storage object hosted by a first com
puting environment (e.g. , a first node) and a second storage
object hosted by a second computing environment (e.g. , a
second node) as a replica of the first storage object . A
synchronous replication relationship is established between
the first storage object and the second storage object .
[0016] In an embodiment of dynamically allocating and
recycling file range locks , overlapping writes can occur
where multiple parallel writes (e.g. , inflight write operations
not yet fully executed and replicated) target overlapping
ranges of the first storage object . The order that the over
lapping writes are executed upon the first storage object
needs to be maintained when replicated to the second

DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1 is a component block diagram illustrating an
example clustered network in which an embodiment of the
invention may be implemented .
[0006] FIG . 2 is a component block diagram illustrating an
example data storage system in which an embodiment of the
invention may be implemented .
[0007] FIG . 3 is a flow chart illustrating an example
method for overlapping write handling .

US 2021/0303165 A1 Sep. 30 , 2021
2

storage object . Otherwise a divergence will occur between
the first storage object and the second storage object . Order
of execution is preserved at the second storage object by
serializing the overlapping writes using a range lock . A
single range lock is used per storage object (per file) .
However , this does not scale well for storage environments
having a large number of files . Accordingly , the present
system can dynamically allocate and recycle range locks as
needed in order to scale to storage environments having
large numbers of files .
[0017] An overlapping write manager is used to maintain
the order of execution of writes between the first storage
object and the second storage object using range locks . In an
example , an overlapping write manager allocator is setup
and used to pre - allocate a percentage of a total number of
overlapping write managers to be available for managing
overlapping writes targeting files of the first computing
environment (e.g. , the first storage object managed by the
first node) and replicated to replicate files stored by the
second computing environment (e.g. , the second storage
object managed by the second node) .
[0018] In an embodiment of pre - allocating overlapping
write managers , when an outstanding allocation of overlap
ping write managers (e.g. , overlapping write managers being
used by incoming writes) grows beyond a threshold (e.g. ,
10 % , 20 % , etc.) , then additional overlapping write managers
are allocated for use by overlapping writes .
[0019] A mapping is used to track allocated overlapping
write managers . The mapping comprises file handles of files
for which allocated overlapping write managers have ben
pre - allocated (drawn) from the overlapping write manager
allocator , and thus are available for use to obtain range locks
for corresponding files . File handles are used as a key to the
mapping . When I / O to a file is received , the mapping is
search using a file handle of the file to see if an overlapping
write manager for the file handle of the file is already
allocated . For example , the mapping is evaluated using a file
handle of a file targeted by an incoming write to determine
whether an overlapping write manager is already allocated
for the file handle .
[0020] If the overlapping write manager is already allo
cated , then the overlapping write manager is utilized to
acquire a range lock for a range of the file to be modified by
the incoming write . The incoming write is serially executed
upon the file and is serially replicated to a replicated file
using the range lock (e.g. , the replicate file maintained as a
replica of the file) . In this way , the range lock is used to
block overlapping writes targeting at least a portion of the
range of the file targeted by the incoming write (e.g. ,
overlapping replicated writes targeting the replicated file) . If
the mapping does not comprise an entry for the file handle ,
then there is no pre - allocated overlapping write manager for
the file handle . Thus , a new overlapping write manager is
allocated by the overlapping write manager allocator . The
incoming write uses the new overlapping write manager to
obtain a range lock for the range of the file for serial
execution and replication . A new entry is created within the
mapping to track the new overlapping write manager allo
cated for the file handle .
[0021] In an embodiment , overlapping write managers are
recycled to return overlapping write managers back to the
overlapping write manager allocator . For example , once the
incoming write operation has completed execution upon the
file and completed replication to the replicated file , the range

lock is released . The overlapping write manager becomes
available for use by other writes . If no outstanding writes
having range locks for the file , then the entry is removed
from the mapping for the overlapping write manager and the
overlapping write manager is deallocated . If there are no
outstanding writes having references to the overlapping
write manager (e.g. , there are no writes attempting to acquire
range locks for the file) , then the entry is removed from the
mapping for the overlapping write manager and the over
lapping write manager is deallocated .
[0022] During recycling of overlapping write managers ,
an entry for an overlapping write manager is removed from
the mapping and the overlapping write manager is returned
to a free pool of pre - allocated overlapping write managers .
In an embodiment of recycling overlapping write managers ,
overlapping write managers are deallocated until a number
of allocated overlapping write managers is less than a
threshold , which reduces an allocation percentage . In an
embodiment , the total number of overlapping write manag
ers is maintained within the pool . A number of allocated
overlapping write managers is reduced from the pool such as
during recycling to free computing resources (e.g. , recycling
stops when an allocation percentage is low such as 20 %) .
[0023] In an embodiment , replication errors for synchro
nous replication are neutralized . A first storage object is
maintained by a first computing environment and a second
storage object is maintained by a second computing envi
ronment as a replica of the first storage object . An operation
is received while the first storage object and the second
storage object are in a synchronous replication state . The
operation is executed upon the first storage object and is
replicated as a replicated operation for execution upon the
second storage object .
[0024] The second computing environment may return a
first error for the replicated operation . The first error may
indicate that the replicated operation did not successfully
execute , such as due to a file system error (e.g. , the repli
cated operation targets a file handle that is stale because a
targeted file has been delete ; the replicated operation would
increase size of a file beyond sup rted file size ; etc.) .
Upon receiving the first error for the replicated operation ,
the operation is refrained from being aborted from being
executed upon the first storage object (e.g. , the operation
would normally be aborted due to the first error) . The first
storage object and the second storage object are refrained
from being transitioned to an out of sync state based upon
the first error . The synchronous replication would normally
be transitioned to an out of sync state , and thus a zero
recovery point objective (RPO) provided by synchronous
replication would be disrupted .
[0025] Synchronous replication waits until both the opera
tion and the replicated operation have finished . A second
error may be received for the operation from the first
computing environment . If the first error and the second
error are the same error , then the replication operation is
deemed to be successfully completed so that the synchro
nous replication is maintained and not transitioned to the out
of sync state . Accordingly , the first storage object and the
second storage object are maintained in a synchronous
replication state . The same error is returned to the client
device as the operation was a failure from client device's
perspective . However , if the first error and the second error
are different errors , the first storage object and the second
storage object could be different (inconsistent) due to dif

US 2021/0303165 A1 Sep. 30 , 2021
3

ferent results from the different errors . The synchronous
replication state will be transitioned to an out of sync state .
The client is responded to with the error from the first
(primary) computing environment .
[0026] In an embodiment of handling situations where no
response is returned for the replicated operation , the second
computing environment maintains a failed ops cache of
failed operations and error codes for each failed operation .
Sequence numbers assigned to replicated operations are
used as a key for the failed ops cache . If the first computing
environment does not receive a response for the replicated
operation , then a retry of the replicated operation with a
same sequence number will be transmitted to the second
computing environment . If a sequence number of the retry
replicated operation is specified by an entry / mapping within
the failed ops cache as mapping the replicated operation to
an error code , then the error code is transmitted to the first
computing environment . This is because the second com
puting environment already attempted to execute the repli
cated operation and the error code was generated . Thus ,
since the retry replicated operation is a retry of the replicated
operation (e.g. , the second computing environment may
have attempted to return the error code for the replicated
operation but a network failure cause the first computing
device to not receive the error code and thus the first
computing environment retried the replicated operation after
a timeout period) , the retry replicated operation is not
executed and the error code is returned .

[0027] In an embodiment of performing a quick reconcile
operation , misaligned holes and writes beyond an end of a
storage object (e.g. , an end of file of a file) are handled . The
quick reconcile operation is performed if an operation fails
to execute upon a first storage object and a replicated
operation of the operation succeeds at executing upon a
second storage object maintained as a replica of the first
storage object . The quick reconcile operation is executed to
read “ old ” data from the first storage object and write the
" old ” data from the first storage object to the second storage
object (e.g. , effectively undoing the execution of the repli
cated operation) so that the storage objects are consistent .
When the data is being read from the first storage object , the
data could have misaligned holes that do not start and / or end
at an aligned offset , such as at 4kb aligned offsets . Synchro
nous replication , such as the quick reconcile operation ,
cannot handle the misaligned holes because holes can only
be punched at aligned offsets and lengths , such as at the 4kb
aligned offsets . Further , if the failed operation was a write
operation to a range beyond an end of file , then the quick
reconcile operation cannot read that data from the first
storage object .
[0028] Accordingly , the present system is capable of han
dling misaligned holes and writes beyond an end of file (e.g. ,
an end of a storage object) . In an example of handling
misaligned holes , a read operation is executed against the
first storage object at an offset and length of a write
operation during a quick reconcile process to reconcile the
first storage object and the second storage object . For
example , the write operation was successfully replicated to
the second storage object but failed to execute against the
first storage object . Thus , the read operation is performed to
read “ old ” data from the first storage object to write to the
second storage object so that the storage objects are consis
tent .

[0029] A read response of the read operation is evaluated
to determine whether the read response has a misaligned
hole . If the read response comprises the misaligned hole
(e.g. , a first I / O vector entry is a hole and a start offset is not
4 kb aligned or a last 1/0 vector entry is a hole and an end
offset is not 4 k aligned) , then the read request is modified
to align the misaligned hole .
[0030] If the misaligned hole is due to the first I / O vector
entry having a misaligned start offset , then the start offset is
rounded down to a block size used to store the second
storage object (e.g. , to 4kb) . If the misaligned hole is due to
the last I / O vector entry having a misaligned end offset , then
the end offset is rounded up to a nearest aligned block size
value (e.g. , to 4kb) as a new length . The new read response
(e.g. , the “ old ” data read from the first storage object and
modified to address any misaligned holes) is replicated to
the second storage object .
[0031] In an example of handling writes beyond an end of
file , the read response of the read operation is evaluated to
determine whether an error code or length of read data
indicates whether the read data is beyond an end of the first
storage object . If the read response is completely beyond the
end of the first storage object , then a truncate command with
a size of the first storage object is executed upon the second
storage object . A volume barrier or dependency graph is
used to ensure that the truncate command is serially
executed with respect to other inflight replicated operations
targeting the second storage object .
[0032] If the read response is partially beyond the end of
the first storage object , then data from a start offset until the
end of file is read from the first storage object and replicated
to the second storage object . A truncate command having a
size of the first storage object is executed upon the second
storage object . In an example , the replication of the data and
the truncate command can be combined as a single com
mand transmitted to the second computing environment for
execution upon the second storage object . A flag or field
within the command can be used to indicate that the truncate
command is to be performed after the writing the replicate
data . A volume barrier or dependency graph is used to ensure
that the command such as the truncate command is serially
executed with respect to other inflight replicated operations
targeting the second storage object .
[0033] To provide for overlapping write handling , FIG . 1
illustrates an embodiment of a clustered network environ
ment 100 or a network storage environment . It may be
appreciated , however , that the techniques , etc. described
herein may be implemented within the clustered network
environment 100 , a non - cluster network environment , and /
or a variety of other computing environments , such as a
desktop computing environment . That is , the instant disclo
sure , including the scope of the appended claims , is not
meant to be limited to the examples provided herein . It will
be appreciated that where the same or similar components ,
elements , features , items , modules , etc. are illustrated in
later figures but were previously discussed with regard to
prior figures , that a similar (e.g. , redundant) discussion of
the same may be omitted when describing the subsequent
figures (e.g. , for purposes of simplicity and ease of under
standing) .
[0034] FIG . 1 is a block diagram illustrating the clustered
network environment 100 that may implement at least some
embodiments of the techniques and / or systems described
herein . The clustered network environment 100 comprises

US 2021/0303165 A1 Sep. 30 , 2021
4

data storage systems 102 and 104 that are coupled over a
cluster fabric 106 , such as a computing network embodied
as a private Infiniband , Fibre Channel (FC) , or Ethernet
network facilitating communication between the data stor
age systems 102 and 104 (and one or more modules ,
component , etc. therein , such as , nodes 116 and 118 , for
example) . It will be appreciated that while two data storage
systems 102 and 104 and two nodes 116 and 118 are
illustrated in FIG . 1 , that any suitable number of such
components is contemplated . In an example , nodes 116 , 118
comprise storage controllers (e.g. , node 116 may comprise a
primary or local storage controller and node 118 may
comprise a secondary or remote storage controller) that
provide client devices , such as host devices 108 , 110 , with
access to data stored within data storage devices 128 , 130 .
Similarly , unless specifically provided otherwise herein , the
same is true for other modules , elements , features , items , etc.
referenced herein and / or illustrated in the accompanying
drawings . That is , a particular number of components ,
modules , elements , features , items , etc. disclosed herein is
not meant to be interpreted in a limiting manner .
[0035] It will be further appreciated that clustered net
works are not limited to any particular geographic areas and
can be clustered locally and / or remotely . Thus , In an
embodiment a clustered network can be distributed over a
plurality of storage systems and / or nodes located in a
plurality of geographic locations ; while In an embodiment a
clustered network can include data storage systems (e.g. ,
102 , 104) residing in a same geographic location (e.g. , in a
single onsite rack of data storage devices) .
[0036] In the illustrated example , one or more host devices
108 , 110 which may comprise , for example , client devices ,
personal computers (PCs) , computing devices used for stor
age (e.g. , storage servers) , and other computers or peripheral
devices (e.g. , printers) , are coupled to the respective data
storage systems 102 , 104 by storage network connections
112 , 114. Network connection may comprise a local area
network (LAN) or wide area network (WAN) , for example ,
that utilizes Network Attached Storage (NAS) protocols ,
such as a Common Internet File System (CIFS) protocol or
a Network File System (NFS) protocol to exchange data
packets , a Storage Area Network (SAN) protocol , such as
Small Computer System Interface (SCSI) or Fiber Channel
Protocol (FCP) , an object protocol , such as S3 , etc. Illus
tratively , the host devices 108 , 110 may be general - purpose
computers running applications , and may interact with the
data storage systems 102 , 104 using a client / server model for
exchange of information . That is , the host device may
request data from the data storage system (e.g. , data on a
storage device managed by a network storage control con
figured to process I / O commands issued by the host device
for the storage device) , and the data storage system may
return results of the request to the host device via one or
more storage network connections 112 , 114 .
[0037] The nodes 116 , 118 on clustered data storage
systems 102 , 104 can comprise network or host nodes that
are interconnected as a cluster to provide data storage and
management services , such as to an enterprise having remote
locations , cloud storage (e.g. , a storage endpoint may be
stored within a data cloud) , etc. , for example . Such a node
in the clustered network environment 100 can be a device
attached to the network as a connection point , redistribution
point or communication endpoint , for example . A node may
be capable of sending , receiving , and / or forwarding infor

mation over a network communications channel , and could
comprise any device that meets any or all of these criteria .
One example of a node may be a data storage and manage
ment server attached to a network , where the server can
comprise a general purpose computer or a computing device
particularly configured to operate as a server in a data
storage and management system .
[0038] In an example , a first cluster of nodes such as the
nodes 116 , 118 (e.g. , a first set of storage controllers con
figured to provide access to a first storage aggregate com
prising a first logical grouping of one or more storage
devices) may be located on a first storage site . A second
cluster of nodes , not illustrated , may be located at a second
storage site (e.g. , a second set of storage controllers config
ured to provide access to a second storage aggregate com
prising a second logical grouping of one or more storage
devices) . The first cluster of nodes and the second cluster of
nodes may be configured according to a disaster recovery
configuration where a surviving cluster of nodes provides
switchover access to storage devices of a disaster cluster of
nodes in the event a disaster occurs at a disaster storage site
comprising the disaster cluster of nodes (e.g. , the first cluster
of nodes provides client devices with switchover data access
to storage devices of the second storage aggregate in the
event a disaster occurs at the second storage site) .
[0039] As illustrated in the clustered network environment
100 , nodes 116 , 118 can comprise various functional com
ponents that coordinate to provide distributed storage archi
tecture for the cluster . For example , the nodes can comprise
network modules 120 , 122 and disk modules 124 , 126 .
Network modules 120 , 122 can be configured to allow the
nodes 116 , 118 (e.g. , network storage controllers) to connect
with host devices 108 , 110 over the storage network con
nections 112 , 114 , for example , allowing the host devices
108 , 110 to access data stored in the distributed storage
system . Further , the network modules 120 , 122 can provide
connections with one or more other components through the
cluster fabric 106. For example , in FIG . 1 , the network
module 120 of node 116 can access a second data storage
device by sending a request through the disk module 126 of
node 118 .
[0040] Disk modules 124 , 126 can be configured to con
nect one or more data storage devices 128 , 130 , such as disks
or arrays of disks , flash memory , or some other form of data
storage , to the nodes 116 , 118. The nodes 116 , 118 can be
interconnected by the cluster fabric 106 , for example , allow
ing respective nodes in the cluster to access data on data
storage devices 128 , 130 connected to different nodes in the
cluster . Often , disk modules 124 , 126 communicate with the
data storage devices 128 , 130 according to the SAN proto
col , such as SCSI or FCP , for example . Thus , as seen from
an operating system on nodes 116 , 118 , the data storage
devices 128 , 130 can appear as locally attached to the
operating system . In this manner , different nodes 116 , 118 ,
etc. may access data blocks through the operating system ,
rather than expressly requesting abstract files .
[0041] It should be appreciated that , while the clustered
network environment 100 illustrates an equal number of
network and disk modules , other embodiments may com
prise a differing number of these modules . For example ,
there may be a plurality of network and disk modules
interconnected in a cluster that does not have a one - to - one
correspondence between the network and disk modules .
That is , different nodes can have a different number of

US 2021/0303165 A1 Sep. 30 , 2021
5

network and disk modules , and the same node can have a
different number of network modules than disk modules .
[0042] Further , a host device 108 , 110 can be networked
with the nodes 116 , 118 in the cluster , over the storage
networking connections 112 , 114. As an example , respective
host devices 108 , 110 that are networked to a cluster may
request services (e.g. , exchanging of information in the form
of data packets) of nodes 116 , 118 in the cluster , and the
nodes 116 , 118 can return results of the requested services to
the host devices 108 , 110. In an embodiment , the host
devices 108 , 110 can exchange information with the network
modules 120 , 122 residing in the nodes 116 , 118 (e.g. ,
network hosts) in the data storage systems 102 , 104 .
[0043] In an embodiment , the data storage devices 128 ,
130 comprise volumes 132 , which is an implementation of
storage of information onto disk drives or disk arrays or
other storage (e.g. , flash) as a file - system for data , for
example . In an example , a disk array can include all tradi
tional hard drives , all flash drives , or a combination of
traditional hard drives and flash drives . Volumes can span a
portion of a disk , a collection of disks , or portions of disks ,
for example , and typically define an overall logical arrange
ment of file storage on disk space in the storage system . In
an embodiment a volume can comprise stored data as one or
more files that reside in a hierarchical directory structure
within the volume .

[0044] Volumes are typically configured in formats that
may be associated with particular storage systems , and
respective volume formats typically comprise features that
provide functionality to the volumes , such as providing an
ability for volumes to form clusters . For example , where a
first storage system may utilize a first format for their
volumes , a second storage system may utilize a second
format for their volumes .

[0045] In the clustered network environment 100 , the host
devices 108 , 110 can utilize the data storage systems 102 ,
104 to store and retrieve data from the volumes 132. In this
embodiment , for example , the host device 108 can send data
packets to the network module 120 in the node 116 within
data storage system 102. The node 116 can forward the data
to the data storage device 128 using the disk module 124 ,
where the data storage device 128 comprises volume 132A .
In this way , in this example , the host device can access the
volume 132A , to store and / or retrieve data , using the data
storage system 102 connected by the storage network con
nection 112. Further , in this embodiment , the host device
110 can exchange data with the network module 122 in the
node 118 within the data storage system 104 (e.g. , which
may be remote from the data storage system 102) . The node
118 can forward the data to the data storage device 130 using
the disk module 126 , thereby accessing volume 1328 asso
ciated with the data storage device 130 .
[0046] It may be appreciated that overlapping write han
dling may be implemented within the clustered network
environment 100. In an example , operations may be
executed at node 116 and replayed at node 118. It may be
appreciated that overlapping write handling may be imple
mented for and / or between any type of computing environ
ment , and may be transferrable between physical devices
(e.g. , node 116 , node 118 , a desktop computer , a tablet , a
laptop , a wearable device , a mobile device , a storage device ,
a server , etc.) and / or a cloud computing environment (e.g. ,
remote to the clustered network environment 100) .

[0047] FIG . 2 is an illustrative example of a data storage
system 200 (e.g. , 102 , 104 in FIG . 1) , providing further
detail of an embodiment of components that may implement
one or more of the techniques and / or systems described
herein . The data storage system 200 comprises a node 202
(e.g. , nodes 116 , 118 in FIG . 1) , and a data storage device
234 (e.g. , data storage devices 128 , 130 in FIG . 1) . The node
202 may be a general purpose computer , for example , or
some other computing device particularly configured to
operate as a storage server . A host device 205 (e.g. , 108 , 110
in FIG . 1) can be connected to the node 202 over a network
216 , for example , to provide access to files and / or other data
stored on the data storage device 234. In an example , the
node 202 comprises a storage controller that provides client
devices , such as the host device 205 , with access to data
stored within data storage device 234 .
[0048] The data storage device 234 can comprise mass
storage devices , such as disks 224 , 226 , 228 of a disk array
218 , 220 , 222. It will be appreciated that the techniques and
systems , described herein , are not limited by the example
embodiment . For example , disks 224 , 226 , 228 may com
prise any type of mass storage devices , including but not
limited to magnetic disk drives , flash memory , and any other
similar media adapted to store information , including , for
example , data (D) and / or parity (P) information .
[0049] The node 202 comprises one or more processors
204 , a memory 206 , a network adapter 210 , a cluster access
adapter 212 , and a storage adapter 214 interconnected by a
system bus 242. The data storage system 200 also includes
an operating system 208 installed in the memory 206 of the
node 202 that can , for example , implement a Redundant
Array of Independent (or Inexpensive) Disks (RAID) opti
mization technique to optimize a reconstruction process of
data of a failed disk in an array .
[0050] The operating system 208 can also manage com
munications for the data storage system , and communica
tions between other data storage systems that may be in a
clustered network , such as attached to a cluster fabric 215
(e.g. , 106 in FIG . 1) . Thus , the node 202 , such as a network
storage controller , can respond to host device requests to
manage data on the data storage device 234 (e.g. , or addi
tional clustered devices) in accordance with these host
device requests . The operating system 208 can often estab
lish one or more file systems on the data storage system 200 ,
where a file system can include software code and data
structures that implement persistent hierarchical
namespace of files and directories , for example . As an
example , when a new data storage device (not shown) is
added to a clustered network system , the operating system
208 is informed where , in an existing directory tree , new
files associated with the new data storage device are to be
stored . This is often referred to as “ mounting ” a file system .
[0051] In the example data storage system 200 , memory
206 can include storage locations that are addressable by the
processors 204 and adapters 210 , 212 , 214 for storing related
software application code and data structures . The proces
sors 204 and adapters 210 , 212 , 214 may , for example ,
include processing elements and / or logic circuitry config
ured to execute the software code and manipulate the data
structures . The operating system 208 , portions of which are
typically resident in the memory 206 and executed by the
processing elements , functionally organizes the storage sys
tem by , among other things , invoking storage operations in
support of a file service implemented by the storage system .

a

US 2021/0303165 A1 Sep. 30 , 2021
6

It will be apparent to those skilled in the art that other
processing and memory mechanisms , including various
computer readable media , may be used for storing and / or
executing application instructions pertaining to the tech
niques described herein . For example , the operating system
can also utilize one or more control files (not shown) to aid
in the provisioning of virtual machines .
[0052] The network adapter 210 includes the mechanical ,
electrical and signaling circuitry needed to connect the data
storage system 200 to a host device 205 over a network 216 ,
which may comprise , among other things , a point - to - point
connection or a shared medium , such as a local area net
work . The host device 205 (e.g. , 108 , 110 of FIG . 1) may be
a general - purpose computer configured to execute applica
tions . As described above , the host device 205 may interact
with the data storage system 200 in accordance with a
client / host model of information delivery .
[0053] The storage adapter 214 cooperates with the oper
ating system 208 executing on the node 202 to access
information requested by the host device 205 (e.g. , access
data on a storage device managed by a network storage
controller) . The information may be stored on any type of
attached array of writeable media such as magnetic disk
drives , flash memory , and / or any other similar media
adapted to store information . In the example data storage
system 200 , the information can be stored in data blocks on
the disks 224 , 226 , 228. The storage adapter 214 can include
input / output (1/0) interface circuitry that couples to the disks
over an I / O interconnect arrangement , such as a storage area
network (SAN) protocol (e.g. , Small Computer System
Interface (SCSI) , iSCSI , hyperSCSI , Fiber Channel Protocol
(FCP)) . The information is retrieved by the storage adapter
214 and , if necessary , processed by the one or more pro
cessors 204 (or the storage adapter 214 itself) prior to being
forwarded over the system bus 242 to the network adapter
210 (and / or the cluster access adapter 212 if sending to
another node in the cluster) where the information is for
matted into a data packet and returned to the host device 205
over the network 216 (and / or returned to another node
attached to the cluster over the cluster fabric 215) .
[0054] In an embodiment , storage of information on disk
arrays 218 , 220 , 222 can be implemented as one or more
storage volumes 230 , 232 that are comprised of a cluster of
disks 224 , 226 , 228 defining an overall logical arrangement
of disk space . The disks 224 , 226 , 228 that comprise one or
more volumes are typically organized as one or more groups
of RAIDs . As an example , volume 230 comprises an aggre
gate of disk arrays 218 and 220 , which comprise the cluster
of disks 224 and 226 .
[0055] In an embodiment , to facilitate access to disks 224 ,
226 , 228 , the operating system 208 may implement a file
system (e.g. , write anywhere file system) that logically
organizes the information as a hierarchical structure of
directories and files on the disks . In this embodiment ,
respective files may be implemented as a set of disk blocks
configured to store information , whereas directories may be
implemented as specially formatted files in which informa
tion about other files and directories are stored .
[0056] Whatever the underlying physical configuration
within this data storage system 200 , data can be stored as
files within physical and / or virtual volumes , which can be
associated with respective volume identifiers , such as file
system identifiers (FSIDs) , which can be 32 - bits in length in
one example .

[0057] A physical volume corresponds to at least a portion
of physical storage devices whose address , addressable
space , location , etc. doesn't change , such as at least some of
one or more data storage devices 234 (e.g. , a Redundant
Array of Independent (or Inexpensive) Disks (RAID sys
tem)) . Typically the location of the physical volume doesn't
change in that the (range of) address (es) used to access it
generally remains constant .
[0058] A virtual volume , in contrast , is stored over an
aggregate of disparate portions of different physical storage
devices . The virtual volume may be a collection of different
available portions of different physical storage device loca
tions , such as some available space from each of the disks
224 , 226 , and / or 228. It will be appreciated that since a
virtual volume is not " tied ” to any one particular storage
device , a virtual volume can be said to include a layer of
abstraction or virtualization , which allows it to be resized
and / or flexible in some regards .
[0059] Further , a virtual volume can include one or more
logical unit numbers (LUNS) 238 , directories 236 , Qtrees
235 , and files 240. Among other things , these features , but
more particularly LUNS , allow the disparate memory loca
tions within which data is stored to be identified , for
example , and grouped as data storage unit . As such , the
LUNs 238 may be characterized as constituting a virtual
disk or drive upon which data within the virtual volume is
stored within the aggregate . For example , LUNs are often
referred to as virtual drives , such that they emulate a hard
drive from a general purpose computer , while they actually
comprise data blocks stored in various parts of a volume .
[0060] In an embodiment , one or more data storage
devices 234 can have one or more physical ports , wherein
each physical port can be assigned a target address (e.g. ,
SCSI target address) . To represent respective volumes stored
on a data storage device , a target address on the data storage
device can be used to identify one or more LUNs 238. Thus ,
for example , when the node 202 connects to a volume 230 ,
232 through the storage adapter 214 , a connection between
the node 202 and the one or more LUNs 238 underlying the
volume is created .
[0061] In an embodiment , respective target addresses can
identify multiple LUNs , such that a target address can
represent multiple volumes . The I / O interface , which can be
implemented as circuitry and / or software in the storage
adapter 214 or as executable code residing in memory 206
and executed by the processors 204 , for example , can
connect to volume 230 by using one or more addresses that
identify the one or more LUNs 238 .
[0062] It may be appreciated that overlapping write han
dling may be implemented for the data storage system 200 .
It may be appreciated that overlapping write handling may
be implemented for and / or between any type of computing
environment , and may be transferrable between physical
devices (e.g. , node 202 , host device 205 , a desktop com
puter , a tablet , a laptop , a wearable device , a mobile device ,
a storage device , a server , etc.) and / or a cloud computing
environment (e.g. , remote to the node 202 and / or the host
device 205) .
[0063] One embodiment of overlapping write handling is
illustrated by an exemplary method 300 of FIG . 3 and
further described in conjunction with system 400 of FIGS .
4A - 4C . A first computing environment comprises nodes ,
storage controllers , and / or other hardware and software
(e.g. , software as a service) configured to store and manage

US 2021/0303165 A1 Sep. 30 , 2021
7

having a file handle of file ID (5) , and thus the mapping 414
comprises a first entry 416 mapping the overlapping write
manager (A) 408 to the file handle of the file (5) . The
overlapping write manager (B) 410 may be allocated for
managing writes targeting a file (7) having a file handle of
file ID (7) , and thus the mapping 414 comprises a second
entry 418 mapping the overlapping write manager (B) 410
to the file handle of the file (5) . The overlapping write
manager (C) 412 may be allocated for managing writes
targeting a file (2) having a file handle of file ID (2) , and thus
the mapping 414 comprises a third entry 420 mapping the
overlapping write manager (C) 412 to the file handle of the
file (2) .

primary data , such as files accessed by hosts and client
devices . A second computing environment comprises nodes ,
storage controllers , and / or other hardware and software
(e.g. , software as a service) configured to store and manage
secondary data that is a replica of the primary data , such as
replicated files , snapshots , etc. When write operations are
executed upon files of the first computing environment , the
order with which the write operations were executed should
be preserved when the write operations are replicated to the
second computing environment , otherwise a divergence and
data discrepancy will occur . Overlapping writes occur when
there are multiple parallel write operations that have over
lapping ranges (e.g. , two operations that target overlapping
data block ranges of a file) .
[0064] Overlapping write managers are used to maintain
the order of write operations , such as by tracking overlap
ping writes that are executed at the first computing envi
ronment so that the overlapping writes are executed in a
same order at the second computing environment . When an
overlapping write manager determines that there are over
lapping writes that are to modify data within overlapping
ranges , then the overlapping write manager will obtain and
use range locks for the overlapping writes . A range lock is
used to ensure that only one write operation is allowed to
access a range locked by the range lock , while other write
operations are queued for subsequently obtaining the range
lock in order to execute . The range lock only allows one
write operation (e.g. , a write operation holding / owning the
range lock) to access a locked range at a time . In this way ,
the parallel overlapping writes are serially executed using
the range lock . A range lock is file handle specific , and thus
works for a single file . Computing resource overutilization
can occur as more files require range locks . Thus , the
handling of overlapping write operations is improved by
managing the allocation of overlapping write managers in a
resource efficient manner .
[0065] Accordingly , an overlapping write allocator 402 is
initialized for managing the allocation and recycling of
overlapping write managers . At 302 , the overlapping write
allocator 402 pre - allocates a percentage of overlapping write
managers , of a total number of overlapping write managers ,
as available for managing overlapping writes targeting files
stored by the first computing environment and replicated to
replicated files stored by the second computing environ
ment . In an example , resources from a free pool of resources
404 are used by the overlapping write allocator 402 to
pre - allocate overlapping write managers as allocated over
lapping write managers 406 available for managing over
lapping writes . For example , an overlapping write manager
(A) 408 , an overlapping write manager (B) 410 , an over
lapping write manager (C) , and / or other overlapping write
managers are pre - allocated and ready for managing over
lapping writes
[0066] At 304 , a mapping 414 is used to track the allocated
overlapping write managers 406 drawn / allocated by the
overlapping write allocator 402. The overlapping write
managers 406 are used to obtain range locks on files . Thus ,
the mapping 414 is indexed with file handles as a key . In this
way , a file handle of a file can be used to query the mapping
414 to determine whether the mapping 414 comprises an
entry mapping the file handle to an overlapping write
manger currently allocated for obtaining range locks on the
file . For example , the overlapping write manager (A) 408
may be allocated for managing writes targeting a file (5)

[0067] When a write request 422 , targeting a file within
the first computing environment that is to be replicated as a
replicated write request targeting a replicated file in the
second computing environment , is received , the mapping
414 is used to determine whether an overlapping write
manager is already allocated for the file , as illustrated in
FIG . 4B . In particular , the mapping 414 is evaluated using
a file handle of the file targeted by the write request to
determine whether the mapping 414 comprises an entry
mapping the file handle to an overlapping write manager , at
306. For example , the write request 422 targets the file (7)
with the file handle of file ID (7) . The mapping 414 is
queried using the file handle of file ID (7) to determine
whether the mapping 414 comprises an entry mapping the
file handle of file ID (7) to an overlapping write manager .
For example , the second entry 418 maps the file handle of
file ID (7) to the overlapping write manager (B) 410 , and
thus the overlapping write manager (B) 410 is already
allocated for managing write requests targeting the file (7) .
[0068] Since the overlapping write manager (B) 410 is
already allocated for managing write requests targeting the
file (7) , the overlapping write manager (B) 410 is used to
acquire a range lock for a range of the file (7) targeted by the
write request 422 , at 308. At 310 , the overlapping write
manager (B) 410 uses the range lock to serially execute the
write request 422 upon the file (7) with respect to other write
operations targeting the file (7) (e.g. , write operations tar
geting overlapping ranges of the file (7)) and replicate the
write request 422 to the second computing environment for
serial execution upon a replicated file (7) (e.g. , serial execu
tion of replicate write operations at the second computing
environment according to an order at which write operations
were executed by the first computing environment) . The
overlapping write manager (B) 410 uses the range lock to
block overlapping writes targeting at least a portion of the
range of the file (7) targeted by the write request 422 and / or
a corresponding portion of the replicated file (7) targeted by
the replicated write request . In an example , the range lock is
released based upon the write request 422 finishing execu
tion upon the file (7) at the first computing environment and
being replicated to the replicated file (7) at the second
computing environment .
[0069] In an example , a second write request 426 is
received , as illustrated by FIG . 4C . The mapping 414 is
queried using a file handle of file ID (9) of a file (9) targeted
by the second write request 426. Because the mapping 414
does not comprise an entry for the file handle of file ID (9) ,
there is no allocated overlapping write manager for the file
(9) . Accordingly , the overlapping write allocator 402 creates
a new overlapping write manager (D) 428 for use for
managing overlapping write requests targeting the file (9)

US 2021/0303165 A1 Sep. 30 , 2021
8

having the file handle of file ID (9) . Accordingly , the new
overlapping write manager (D) 428 is used to obtain a range
lock for a range of the file (9) targeted by the second write
request 426. In this way , the range lock is used to serially
execute the second write request 426 upon the file (9) and
replicate the second write request 426 for serial execution
upon a replicated file (9) of the second computing environ
ment . A new entry 430 is created within the mapping 414 to
map the file handle of file ID (9) to the new overlapping
write manager (D) 428 .
[0070] In an example , additional overlapping write man
agers are pre - allocated from the free pool of resources 404
based upon a current allocation of used overlapping write
managers exceeding a threshold . For example , when an
outstanding allocation grows beyond the threshold (e.g. , a
watermark of 10 % , 20 % , etc.) , then more overlapping write
managers are pre - allocated and ready to use .
[0071] Dynamic recycling of overlapping write managers
may be initiated based upon various criteria , such as based
upon a range lock being released and / or a current allocation
of overlapping write manager exceeding a threshold (e.g. ,
over 50 %) . In an example , an entry within the mapping 414
for an overlapping write manager is removed and the
overlapping write manager is deallocated (e.g. , resources are
released back to the free pool of resources 404) based upon
no outstanding writes having range locks for a file having a
file handle to which the overlapping write manager is
mapped by the entry . In an example , an entry is removed
within the mapping 414 for an overlapping write manager
based upon no outstanding writes having references to
overlapping write managers , where the references corre
spond to attempts by outstanding writes to acquire range
locks for a file having a file handle to which the overlapping
write manager is mapped by the entry .
[0072] In an example where the total number of overlap
ping write managers (e.g. , free resources) available for
allocation / pre - allocation are maintained with the free pool of
resources 404 , a number of allocated overlapping write
managers 406 is reduced to free computing resources back
to the free pool of resources 404. In an example , overlapping
write managers are deallocated (recycled) until a number of
allocated overlapping write managers 406 is less than a
threshold such as 20 % .
[0073] Still another embodiment involves a computer
readable medium 500 comprising processor - executable
instructions configured to implement one or more of the
techniques presented herein . An example embodiment of a
computer - readable medium or a computer - readable device
that is devised in these ways is illustrated in FIG . 5 , wherein
the implementation comprises a computer - readable medium
508 , such as a compact disc - recordable (CD - R) , a digital
versatile disc - recordable (DVD - R) , flash drive , a platter of a
hard disk drive , etc. , on which is encoded computer - readable
data 506. This computer - readable data 506 , such as binary
data comprising at least one of a zero or a one , in turn
comprises a processor - executable computer instructions 504
configured to operate according to one or more of the
principles set forth herein . In some embodiments , the pro
cessor - executable computer instructions 504 are configured
to perform a method 502 , such as at least some of the
exemplary method 300 of FIG . 3 , for example . In some
embodiments , the processor - executable computer instruc
tions 504 are configured to implement a system , such as at
least some of the exemplary system 400 of FIGS . 4A - CD ,

for example . Many such computer - readable media are con
templated to operate in accordance with the techniques
presented herein .
[0074] FIG . 6 is a diagram illustrating an example oper
ating environment 600 in which an embodiment of the
techniques described herein may be implemented . In one
example , the techniques described herein may be imple
mented within a client device 628 , such as a laptop , tablet ,
personal computer , mobile device , wearable device , etc. In
another example , the techniques described herein may be
implemented within a storage controller 630 , such as a node
configured to manage the storage and access to data on
behalf of the client device 628 and / or other client devices . In
another example , the techniques described herein may be
implemented within a distributed computing platform 602
such as a cloud computing environment (e.g. , a cloud
storage environment , a multi - tenant platform , etc.) config
ured to manage the storage and access to data on behalf of
the client device 628 and / or other client devices .
[0075] In yet another example , at least some of the tech
niques described herein are implemented across one or more
of the client device 628 , the storage controller 630 , and the
distributed computing platform 602. For example , the client
device 628 may transmit operations , such as data operations
to read data and write data and metadata operations (e.g. , a
create file operation , a rename directory operation , a resize
operation , a set attribute operation , etc.) , over a network 626
to the storage controller 630 for implementation by the
storage controller 630 upon storage . The storage controller
630 may store data associated with the operations within
volumes or other data objects / structures hosted within
locally attached storage , remote storage hosted by other
computing devices accessible over the network 626 , storage
provided by the distributed computing platform 602 , etc.
The storage controller 630 may replicate the data and / or the
operations to other computing devices so that one or more
replicas , such as a destination storage volume that is main
tained as a replica of a source storage volume , are main
tained . Such replicas can be used for disaster recovery and
failover .
[0076] The storage controller 630 may store the data or a
portion thereof within storage hosted by the distributed
computing platform 602 by transmitting the data to the
distributed computing platform 602. In one example , the
storage controller 630 may locally store frequently accessed
data within locally attached storage . Less frequently
accessed data may be transmitted to the distributed comput
ing platform 602 for storage within a data storage tier 608 .
The data storage tier 608 may store data within a service data
store 620 , and may store client specific data within client
data stores assigned to such clients such as a client (1) data
store 622 used to store data of a client (1) and a client (N)
data store 624 used to store data of a client (N) . The data
stores may be physical storage devices or may be defined as
logical storage , such as a virtual volume , LUNs , or other
logical organizations of data that can be defined across one
or more physical storage devices . In another example , the
storage controller 630 transmits and stores all client data to
the distributed computing platform 602. In yet another
example , the client device 628 transmits and stores the data
directly to the distributed computing platform 602 without
the use of the storage controller 630 .
[0077] The management of storage and access to data can
be performed by one or more storage virtual machines

US 2021/0303165 A1 Sep. 30 , 2021
9

or more

(SMVs) or other storage applications that provide software
as a service (SaaS) such as storage software services . In one
example , an SVM may be hosted within the client device
628 , within the storage controller 630 , or within the distrib
uted computing platform 602 such as by the application
server tier 606. In another example , one or more SVMs may
be hosted across one or more of the client device 628 , the
storage controller 630 , and the distributed computing plat
form 602 .
[0078] In one example of the distributed computing plat
form 602 , one or more SVMs may be hosted by the
application server tier 606. For example , a server (1) 616 is
configured to host SVMs used to execute applications such
as storage applications that manage the storage of data of the
client (1) within the client (1) data store 622. Thus , an SVM
executing on the server (1) 616 may receive data and / or
operations from the client device 628 and / or the storage
controller 630 over the network 626. The SVM executes a
storage application to process the operations and / or store the
data within the client (1) data store 622. The SVM may
transmit a response back to the client device 628 and / or the
storage controller 630 over the network 626 , such as a
success message or an error message . In this way , the
application server tier 606 may host SVMs , services , and / or
other storage applications using the server (1) 616 , the server
(N) 618 , etc.
[0079] A user interface tier 604 of the distributed com
puting platform 602 may provide the client device 628
and / or the storage controller 630 with access to user inter
faces associated with the storage and access of data and / or
other services provided by the distributed computing plat
form 602. In an example , a service user interface 610 may
be accessible from the distributed computing platform 602
for accessing services subscribed to by clients and / or storage
controllers , such as data replication services , application
hosting services , data security services , human resource
services , warehouse tracking services , accounting services ,
etc. For example , client user interfaces may be provided to
corresponding clients , such as a client (1) user interface 612 ,
a client (N) user interface 614 , etc. The client (1) can access
various services and resources subscribed to by the client (1)
through the client (1) user interface 612 , such as access to a
web service , a development environment , a human resource
application , a warehouse tracking application , and / or other
services and resources provided by the application server
tier 606 , which may use data stored within the data storage
tier 608 .
[0080] The client device 628 and / or the storage controller
630 may subscribe to certain types and amounts of services
and resources provided by the distributed computing plat
form 602. For example , the client device 628 may establish
a subscription to have access to three virtual machines , a
certain amount of storage , a certain type / amount of data
redundancy , a certain type / amount of data security , certain
service level agreements (SLAs) and service level objectives
(SLOs) , latency guarantees , bandwidth guarantees , access to
execute or host certain applications , etc. Similarly , the
storage controller 630 can establish a subscription to have
access to certain services and resources of the distributed
computing platform 602 .
[0081] As shown , a variety of clients , such as the client
device 628 and the storage controller 630 , incorporating
and / or incorporated into a variety of computing devices may
communicate with the distributed computing platform 602

through one or more networks , such as the network 626. For
example , a client may incorporate and / or be incorporated
into a client application (e.g. , software) implemented at least
in part by one or more of the computing devices .
[0082] Examples of suitable computing devices include
personal computers , server computers , desktop computers ,
nodes , storage servers , storage controllers , laptop comput
ers , notebook computers , tablet computers or personal digi
tal assistants (PDAs) , smart phones , cell phones , and con
sumer electronic devices incorporating one
computing device components , such as one or more elec
tronic processors , microprocessors , central processing units
(CPU) , or controllers . Examples of suitable networks
include networks utilizing wired and / or wireless communi
cation technologies and networks operating in accordance
with any suitable networking and / or communication proto
col (e.g. , the Internet) . In use cases involving the delivery of
customer support services , the computing devices noted
represent the endpoint of the customer support delivery
process , i.e. , the consumer's device .
[0083] The distributed computing platform 602 , such as a
multi - tenant business data processing platform or cloud
computing environment , may include multiple processing
tiers , including the user interface tier 604 , the application
server tier 606 , and a data storage tier 608. The user interface
tier 604 may maintain multiple user interfaces , including
graphical user interfaces and / or web - based interfaces . The
user interfaces may include the service user interface 610 for
a service to provide access to applications and data for a
client (e.g. , a “ tenant ”) of the service , as well as one or more
user interfaces that have been specialized / customized in
accordance with user specific requirements , which may be
accessed via one or more APIs .
[0084] The service user interface 610 may include com
ponents enabling a tenant to administer the tenant's partici
pation in the functions and capabilities provided by the
distributed computing platform 602 , such as accessing data ,
causing execution of specific data processing operations , etc.
Each processing tier may be implemented with a set of
computers , virtualized computing environments such as a
storage virtual machine or storage virtual server , and / or
computer components including computer servers and pro
cessors , and may perform various functions , methods , pro
cesses , or operations as determined by the execution of a
software application or set of instructions .
[0085] The data storage tier 608 may include one or more
data stores , which may include the service data store 620 and
one or more client data stores . Each client data store may
contain tenant - specific data that is used as part of providing
a range of tenant - specific business and storage services or
functions , including but not limited to ERP , CRM , eCom
merce , Human Resources management , payroll , storage
services , etc. Data stores may be implemented with any
suitable data storage technology , including structured query
language (SQL) based relational database management sys
tems (RDBMS) , file systems hosted by operating systems ,
object storage , etc.
[0086] In accordance with one embodiment of the inven
tion , the distributed computing platform 602 may be a
multi - tenant and service platform operated by an entity in
order to provide multiple tenants with a set of business
related applications , data storage , and functionality . These
applications and functionality may include ones that a
business uses to manage various aspects of its operations .

US 2021/0303165 A1 Sep. 30 , 2021
10

For example , the applications and functionality may include
providing web - based access to business information sys
tems , thereby allowing a user with a browser and an Internet
or intranet connection to view , enter , process , or modify
certain types of business information or any other type of
information .
[0087] In an embodiment , the described methods and / or
their equivalents may be implemented with computer
executable instructions . Thus , In an embodiment , a non
transitory computer readable / storage medium is configured
with stored computer executable instructions of an algo
rithm / executable application that when executed by a
machine (s) cause the machine (s) (and / or associated compo
nents) to perform the method . Example machines include
but are not limited to a processor , a computer , a server
operating in a cloud computing system , a server configured
in a Software as a Service (SaaS) architecture , a smart
phone , and so on) . In an embodiment , a computing device is
implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods .
[0088] It will be appreciated that processes , architectures
and / or procedures described herein can be implemented in
hardware , firmware and / or software . It will also be appre
ciated that the provisions set forth herein may apply to any
type of special - purpose computer (e.g. , file host , storage
server and / or storage serving appliance) and / or general
purpose computer , including a standalone computer or por
tion thereof , embodied as or including a storage system .
Moreover , the teachings herein can be configured to a
variety of storage system architectures including , but not
limited to , a network - attached storage environment and / or a
storage area network and disk assembly directly attached to
a client or host computer . Storage system should therefore be
taken broadly to include such arrangements in addition to
any subsystems configured to perform a storage function and
associated with other equipment or systems .
[0089] In some embodiments , methods described and / or
illustrated in this disclosure may be realized in whole or in
part on computer - readable media . Computer readable media
can include processor - executable instructions configured to
implement one or more of the methods presented herein , and
may include any mechanism for storing this data that can be
thereafter read by a computer system . Examples of computer
readable media include (hard) drives (e.g. , accessible via
network attached storage (NAS)) , Storage Area Networks
(SAN) , volatile and non - volatile memory , such as read - only
memory (ROM) , random - access memory (RAM) , electri
cally erasable programmable read - only memory (EEPROM)
and / or flash memory , compact disk read only memory
(CD - ROM) s , CD - Rs , compact disk re - writeable (CD - RW) s ,
DVDs , cassettes , magnetic tape , magnetic disk storage ,
optical or non - optical data storage devices and / or any other
medium which can be used to store data .
(0090] Although the subject matter has been described in
language specific to structural features or methodological
acts , it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above . Rather , the specific features
and acts described above are disclosed as example forms of
implementing at least some of the claims .
[0091] Various operations of embodiments are provided
herein . The order in which some or all of the operations are
described should not be construed to imply that these
operations are necessarily order dependent . Alternative

ordering will be appreciated given the benefit of this descrip
tion . Further , it will be understood that not all operations are
necessarily present in each embodiment provided herein .
Also , it will be understood that not all operations are
necessary in some embodiments .
[0092] Furthermore , the claimed subject matter is imple
mented as a method , apparatus , or article of manufacture
using standard application or engineering techniques to
produce software , firmware , hardware , or any combination
thereof to control a computer to implement the disclosed
subject matter . The term “ article of manufacture ” as used
herein is intended to encompass a computer application
accessible from any computer - readable device , carrier , or
media . Of course , many modifications may be made to this
configuration without departing from the scope or spirit of
the claimed subject matter .
[0093] As used in this application , the terms “ component ” ,
“ module , " " system ” , “ interface ” , and the like are generally
intended to refer to a computer - related entity , either hard
ware , a combination of hardware and software , software , or
software in execution . For example , a component includes a
process running on a processor , a processor , an object , an
executable , a thread of execution , an application , or a
computer . By way of illustration , both an application run
ning on a controller and the controller can be a component .
One or more components residing within a process or thread
of execution and a component may be localized on one
computer or distributed between two or more computers .
[0094] Moreover , “ exemplary ” is used herein to mean
serving as an example , instance , illustration , etc. , and not
necessarily as advantageous . As used in this application ,
“ or ” is intended to mean an inclusive “ or ” rather than an
exclusive “ or ” . In addition , “ a ” and “ an ” as used in this
application are generally be construed to mean " one or
more ” unless specified otherwise or clear from context to be
directed to a singular form . Also , at least one of A and B
and / or the like generally means A or B and / or both A and B.
Furthermore , to the extent that “ includes ” , “ having ” , “ has ” ,
" with ” , or variants thereof are used , such terms are intended
to be inclusive in a manner similar to the term " comprising ” .
[0095] Many modifications may be made to the instant
disclosure without departing from the scope or spirit of the
claimed subject matter . Unless specified otherwise , “ first , ”
“ second , ” or the like are not intended to imply a temporal
aspect , a spatial aspect , an ordering , etc. Rather , such terms
are merely used as identifiers , names , etc. for features ,
elements , items , etc. For example , a first set of information
and a second set of information generally correspond to set
of information A and set of information B or two different or
two identical sets of information or the same set of infor
mation .
[0096] Also , although the disclosure has been shown and
described with respect to one or more implementations ,
equivalent alterations and modifications will occur to others
skilled in the art based upon a reading and understanding of
this specification and the annexed drawings . The disclosure
includes all such modifications and alterations and is limited
only by the scope of the following claims . In particular
regard to the various functions performed by the above
described components (e.g. , elements , resources , etc.) , the
terms used to describe such components are intended to
correspond , unless otherwise indicated , to any component
which performs the specified function of the described
component (e.g. , that is functionally equivalent) , even

US 2021/0303165 A1 Sep. 30 , 2021
11

though not structurally equivalent to the disclosed structure .
In addition , while a particular feature of the disclosure may
have been disclosed with respect to only one of several
implementations , such feature may be combined with one or
more other features of the other implementations as may be
desired and advantageous for any given or particular appli
cation .
What is claimed is :
1. A method comprising :
allocating a first number of overlapping write managers as

available for managing overlapping writes targeting
files stored by a first computing environment , where the
overlapping writes are replicated to replicated files
stored by a second computing environment ;

configuring the overlapping write managers to acquire
range locks for ranges of files to be modified by
incoming writes ; and

dynamically modifying the first number of overlapping
write managers to a second number of overlapping
write managers .

2. The method of claim 1 , wherein the dynamically
modifying comprises :

allocating additional overlapping write managers based
upon a current allocation .

3. The method of claim 1 , wherein the dynamically
modifying comprises :

allocating additional overlapping write managers based
upon a threshold .

4. The method of claim 1 , wherein the dynamically
modifying comprises :

deallocating overlapping write managers until a number
of allocated overlapping write mangers is less than a
threshold .

5. The method of claim 1 , comprising :
in response to receiving an incoming write , allocating a
new overlapping write manager to process the incom
ing write .

6. The method of claim 5 , comprising :
using the new overlapping write manager to acquire a

range lock for executing the incoming write and rep
licating the incoming write for execution upon a rep
licated file at the second computing environment .

7. The method of claim 6 , comprising :
releasing the range lock based upon the incoming write

finishing execution upon the file and the replicated file .
8. The method of claim 1 , wherein a total number of

overlapping write managers is maintained within a pool , and
the method comprising :

reducing a number of allocated overlapping write man
agers from the pool to free computing resources .

9. A non - transitory machine readable medium comprising
instructions for performing a method , which when executed
by a machine , causes the machine to :

allocate a first number of overlapping write managers as
available for managing overlapping writes targeting
files stored by a first computing environment , where the
overlapping writes are replicated to replicated files
stored by a second computing environment ;

configure the overlapping write managers to acquire range
locks for ranges of files to be modified by incoming
writes ; and

dynamically modify the first number of overlapping write
managers to a second number of overlapping write
managers .

10. The non - transitory machine readable medium of claim
9 , wherein the instructions cause the machine to :

allocate additional overlapping write managers based
upon a current allocation .

11. The non - transitory machine readable medium of claim
9 , wherein the instructions cause the machine to :

allocate additional overlapping write managers based
upon a threshold .

12. The non - transitory machine readable medium of claim
9 , wherein the instructions cause the machine to :

deallocate overlapping write managers until a number of
allocated overlapping write mangers is less than a
threshold .

13. The non - transitory machine readable medium of claim
9 , wherein the instructions cause the machine to :

in response to receiving an incoming write , allocate a new
overlapping write manager to process the incoming
write .

14. The non - transitory machine readable medium of claim
13 , wherein the instructions cause the machine to :

use the new overlapping write manager to acquire a range
lock for executing the incoming write and replicating
the incoming write for execution upon a replicate filed
at the second computing environment .

15. The non - transitory machine readable medium of claim
14 , wherein the instructions cause the machine to :

release the range lock based upon the incoming write
finishing execution upon the file and the replicated file .

16. The non - transitory machine readable medium of claim
9 , wherein a total number of overlapping write managers is
maintained within a pool , and wherein the instructions cause
the machine to :

reduce a number of allocated overlapping write managers
from the pool to free computing resources .

17. A computing device comprising :
a memory comprising machine executable code ; and
a processor coupled to the memory , the processor con

figured to execute the machine executable code to
cause the processor to :
allocate a first number of overlapping write managers

as available for managing overlapping writes target
ing files stored by a first computing environment ,
where the overlapping writes are replicated to rep
licated files stored by a second computing environ
ment ;

configure the overlapping write managers to acquire
range locks for ranges of files to be modified by
incoming writes ; and

dynamically modify the first number of overlapping
write managers to a second number of overlapping
write managers .

18. The computing device of claim 17 , wherein the
machine executable code causes the processor to :

allocate additional overlapping write managers based
upon a current allocation .

19. The computing device of claim 17 , wherein the
machine executable code causes the processor to :

allocate additional overlapping write managers based
upon a threshold .

20. The computing device of claim 17 , wherein the
machine executable code causes the processor to :

US 2021/0303165 A1 Sep. 30 , 2021
12

deallocate overlapping write managers until a number of
allocated overlapping write mangers is less than a
threshold

*

