
IN
US 20200142752A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0142752 A1

Mullender et al . (43) Pub . Date : May 7 , 2020

(54) PHYSICAL PARTITIONING OF COMPUTING
RESOURCES FOR SERVER
VIRTUALIZATION

(71) Applicant : Cisco Technology , Inc. , San Jose , CA
(US)

(52) U.S. CI .
CPC G06F 9/5077 (2013.01) ; G06F 370644

(2013.01) ; G06F 9/4411 (2013.01) ; G06F
9/4406 (2013.01) ; GO6F 37067 (2013.01) ;

G06F 2009/45583 (2013.01) ; G06F 370613
(2013.01) ; G06F 9/45558 (2013.01) ; G06F

9/5061 (2013.01) ; G06F 2009/45579
(2013.01) ; G06F 370664 (2013.01) (72) Inventors : Sape Mullender , Amsterdam (NL) ;

David Richard Barach , Mount Dora ,
FL (US) ; Jim McKie , Murray Hill , NJ
(US) ; Peter Bosch , Aalsmeer (NL) (57) ABSTRACT

(21) Appl . No .: 16 / 730,430

(22) Filed : Dec. 30 , 2019

Related U.S. Application Data
(63) Continuation of application No. 15 / 617,190 , filed on

Jun . 8 , 2017 , now Pat . No. 10,521,273 .

A baseboard management controller (BMC) can physically
partition the computing resources of a physical host into
different resource groups for concurrently running a differ
ent operating system per resource group . The BMC can
allocate a first processor of the host to a first resource group
and a second processor of the host to a second resource
group . The BMC can separate the memory of the host into
a first memory range for the first processor and a second
memory range for the second processor , and the BMC can
limit access to the first memory range to the first processor
and limit access to the second memory range to the second
processor . The BMC can also distribute physical or virtual
peripheral devices of the host between the first processor and
the second processor .

Publication Classification

(51) Int . Cl .
G06F 9/50
G06F 3/06
G06F 9/4401
GO6F 9/455

(2006.01)
(2006.01)
(2006.01)
(2006.01)

$ 100
SAN
102a

LAN
104

MGMT
106

SAN
102b

108a 108b
P

P P P P

? ?

P N N

P
SWITCH / ROUTER SWITCH / ROUTER

PORT
EXTENDER

114a
S M S

PORT
EXTENDER

114b

CHASSIS 110 116c

118a 116b 118b N

116a ADAPTER ADAPTER B ADAPTER

PROCESSING 120a PROCESSING 120b

MEMORY 122a MEMORY 122b

1/0 124a I / O 124b

LOCAL STORAGE 126a LOCAL STORAGE 126b

BOOT 128a BOOT 128b

SERVER 112a SERVER 1126

Patent Application Publication May 7 , 2020 Sheet 1 of 6 US 2020/0142752 A1

$ 100
SAN
102a

LAN
104

MGMT
106

SAN
102b

108a 108b
P ?

P P ? ?

? X

P N N ?

P ?
SWITCH / ROUTER SWITCH / ROUTER

PORT
EXTENDER

114a
S M M S I

PORT
EXTENDER

114b

CHASSIS 110 116c

118a 1166 118b
116a ADAPTER B ADAPTER B ADAPTER

PROCESSING 120a PROCESSING 120b

MEMORY 122a MEMORY 122b

I / O 124a 1/0 124b

LOCAL STORAGE 126a LOCAL STORAGE 126b

BOOT 128a BOOT 128b

SERVER 112a SERVER 112b

FIG . 1

D

HE

D

D ?

200

QPI

D

D

PROCESSOR 202a

PROCESSOR 2026

D

Patent Application Publication

2 206a

D

D

D

206b

QPI

206c

QPI

DMI

I / O HUB 204

ICH 208

BOOT 220

May 7 , 2020 Sheet 2 of 6

210

216a

X4 PCle

2166

X16 PCle

2166

X1 PCle

LOCAL STORAGE CONTROLLER 212

MEZZANINE CARD 214

BMC 218

US 2020/0142752 A1

FIG . 2A

D

D

D

D

SMB 258a

SMB 258C

D

D

D

D

QPI

PROCESSOR 252a

PROCESSOR 252b

D

D

D

D

SMB 258b

254a 254C

SMB 258d

Patent Application Publication

D

D

D

D

254b

QPI

254e

QPI

D

D

D

SMB 258e

254d

D

SMB 2589

D

QPI

PROCESSOR 252c

PROCESSOR 252d

D

D

D

D

SMB 258f

254f

SMB 258h

D

D

D

254g

QPI

254h

QPI

May 7 , 2020 Sheet 3 of 6

260

EFI

I / O HUB 256

ICH 268

BOOT 276

262a

250

FIG . 2B

X4 PCle

262b

x16 PCle

262c

x16 PCle

270

LOCAL STORAGE CONTROLLER 266

MEZZANINE CARD 264a

MEZZANINE CARD 264b

BMC 272

FRONT PANEL 274

US 2020/0142752 A1

Patent Application Publication May 7 , 2020 Sheet 4 of 6 US 2020/0142752 A1

300 Start

MULTIPLE PROCESSORS ?

YES

ALLOCATE FIRST PROCESSOR OF A PHYSICAL HOST TO A
FIRST RESOURCE GROUP AND SECOND PROCESSOR TO A

SECOND RESOURCE GROUP
304

LOAD ONE OR MORE BOOT IMAGES
(E.G. , BIOS , UEFI , ETC.) FOR INITIALIZING HOST

HARDWARE
306

LIMIT ACCESS OF FIRST RANGE OF MEMORY TO
THE FIRST PROCESSOR AND SECOND RANGE OF

MEMORY TO THE SECOND PROCESSOR
308

PROVIDE EACH PROCESSOR ACCESS TO ONE OR
MORE PERIPHERAL DEVICES 310 NO

LOAD FIRST OPERATING SYSTEM INTO FIRST
RANGE AND SECOND OPERATING SYSTEM INTO

SECOND RANGE
312

EXECUTE FIRST OPERATING SYSTEM USING FIRST
PROCESSOR AND SECOND OPERATING SYSTEM

USING SECOND PROCESSOR
314

End
FIG . 3

Patent Application Publication May 7 , 2020 Sheet 5 of 6 US 2020 / 0142752Al

400 406a 40b

?

D
D IMC

404a 402a 402b
IMC
404b

D ??
D ?????

?? s
IMC
404c 402c 402d

IMC
404d ?

? FIG . 4A 406c 406d

426a

420 .

- ~ CORE
430a

CORE
430b

D IMC
424a 428a

D HE --

}

~ CORE
430c

CORE
430d

- ~

?
- ~

D

428b IMC
424b - ~

:
CORE
430e

CORE
43of - ~

422
42b FIG . 4B

Patent Application Publication May 7 , 2020 Sheet 6 of 6 US 2020/0142752 A1

440

446a
442a 5

1

448a IMC
444a

CORE
470a

CORE
470b 0902

39-1 CORE
470C

CORE
470d 448b

448c mm CORE
470e

CORE
470f D

IMC
444b 1

CORE
470g

CORE
470h

448d
D

? 442b
446b

FIG . 4C

US 2020/0142752 A1 May 7 , 2020
1

PHYSICAL PARTITIONING OF COMPUTING
RESOURCES FOR SERVER

VIRTUALIZATION

a baseboard management controller of the system in accor
dance with an embodiment ; and
[0008] FIG . 4A , FIG . 4B , and FIG . 4C illustrate examples
of physically partitioned computing systems in accordance
with some embodiments . CROSS - REFERENCE TO RELATED

APPLICATION
DESCRIPTION OF EXAMPLE EMBODIMENTS [0001] This application is a continuation of U.S. patent

application Ser . No. 15 / 617,190 filed on Jun . 8 , 2017 , the
contents of which is incorporated by reference in its entirety . Overview

TECHNICAL FIELD

[0002] The subject matter of this disclosure relates in
general to the field of server virtualization , and more spe
cifically to techniques for physically partitioning resources
of a computing system via a baseboard management con
troller of the system .

BACKGROUND

[0003] Virtualization is an important technology used in a
modern data center . Virtualization can allow an operator of
the data center to consolidate workloads ; raise utilization
levels ; reduce operating , capital , space , power , and cooling
expenses ; move workloads dynamically within a virtualiza
tion pool to increase the flexibility to take servers offline or
bring new ones online ; manage the relationship of virtual
instances to physical machines to optimize performance and
maintain service levels ; scale existing applications or deploy
new ones by creating more virtual instances using an exist
ing pool of resources ; and deploy high - availability and
disaster - recovery features of a virtualization platform to
overcome localized and geographic failures , among other
benefits .
[0004] Two common approaches to virtualizing a data
center are hypervisor - based virtualization and container
based virtualization . In hypervisor - based virtualization , soft
ware emulates the hardware of a physical computer so that
an entire , unmodified operating system can run with the
emulated or virtual environment (i.e. , a virtual machine
(VM)) . A single physical server can run several VMs at
once , and a hypervisor or virtual machine monitor (VMM)
can manage the VMs and allocate the resources of the server
among them . Hypervisor - based virtualization , however , can
introduce additional overhead because a server implement
ing this approach must replicate true hardware behaviors for
each VM running on the server . Containers do not require an
additional layer of virtual hardware . Instead , a system imple
menting containers attempts to provide self - contained
execution environments by isolating applications that rely
on the same kernel . Thus , containers within a server all run
on a single operating system kernel , and that kernel must be
capable of supporting all applications and software running
within the containers . Container - based virtualization there
fore typically does not allow a server to run different
operating systems or different versions of the same operating
system .

[0009] Systems and methods in accordance with various
embodiments of the present disclosure may overcome one or
more of the foregoing or other deficiencies experienced in
conventional approaches for hypervisor - based and con
tainer - based virtualization . A baseboard management con
troller (BMC) can physically partition the computing
resources (e.g. , processing , memory , input / output (I / O) , and /
or storage) of a server into two or more resource groups for
concurrently running a different operating system and one or
more applications per resource group . For example , the
BMC can allocate at least a first processor (e.g. , a pair of
processors of a four - socket server , a multi - core processor , a
single core of a multi - core processor , etc.) of a physical host
to a first resource group and a second processor of the
physical host to a second resource group . The BMC can load
one or more boot images (e.g. , basic input / output system
(BIOS) , Unified Extensible Firmware Interface (UEFI) boot
manager , boot loader , bootstrap , or other software / firmware
executed prior to loading of an operating system) and / or
other configuration data from a storage area network (SAN)
(or other remote storage) or a storage device embedded on
the physical host (e.g. , read - only memory (ROM) , flash
memory , or other non - volatile memory) for initializing the
hardware of the physical host .
[0010] In some embodiments , the BMC / boot image (s) can
partition the memory of the physical host into at least a first
memory range for exclusive use by the first processor and a
second memory range for exclusive use by the second
processor . For example , the first memory range can com
prise a first set of (one or more) dual in - line memory
modules (DIMMs) mounted on the physical host and the
second memory range can comprise a second set of one or
more) DIMMs mounted on the physical host . The BMC / boot
image (s) can generate a first memory map that maps the first
memory range to the first set of DIMMs and a second
memory map that maps the second memory range to the
second set of DIMMs . Alternatively or in addition , the
BMC / boot image (s) can limit access to the memory con
troller (s) of the first set of DIMMs to the first processor and
limit access to the memory controller (s) of the second set of
DIMMs to the second processor .
[0011] In some embodiments , the BMC / boot image (s) can
also distribute physical or virtual peripheral devices of the
physical host between the first processor and the second
processor . For example , the BMC / boot image (s) can expose /
hide one or more I / O ports from one of the resources groups .
Alternatively or in addition , the BMC / boot image (s) can
generate a Peripheral Component Interconnect Express
(PCIe) address memory map for one of the resource groups
that gives that resource group access to a particular periph
eral device and denies access to a different peripheral device .
Alternatively or in addition , the BMC / boot image (s) can
configure a peripheral device to be a bus master , and that
peripheral device can act on I / O requests from a particular
processor and ignore I / O requests from a different processor .

BRIEF DESCRIPTION OF THE FIGURES
[0005] FIG . 1 illustrates an example of a network envi
ronment in accordance with an embodiment ;
[0006] FIG . 2A and FIG . 2B illustrate examples of com
puting systems in accordance with some embodiments ;
[0007] FIG . 3 illustrates an example of a process for
physically partitioning resources of a computing system via

US 2020/0142752 A1 May 7 , 2020
2

DESCRIPTION

[0012] FIG . 1 illustrates an example of a network envi
ronment 100 in accordance with an embodiment . One of
ordinary skill in the art will understand that , for the network
environment 100 and any system discussed in the present
disclosure , there can be additional or fewer nodes , devices ,
links , networks , or components in similar or alternative
configurations . Various embodiments may include different
numbers and / or types of clients , networks , nodes , cloud
components , servers , software components , devices , virtual
or physical resources , configurations , topologies , services ,
appliances , deployments , network devices , etc. The illustra
tions and examples provided in the present disclosure are for
conciseness and clarity .
[0013] In this example , the network environment 100
includes storage area networks (SAN) 102a and 102b (col
lectively , “ 102 ”) , local area network (LAN) 104 , manage
ment network 106 , network devices 108a and 108b (collec
tively , “ 108 ”) , and server chassis 110. Server chassis 110 is
a computing infrastructure device used to interconnect serv
ers in various form factors (e.g. , rack servers , blade servers ,
and other high - density servers) with other network elements .
Server chassis 110 can provide power , cooling , connectivity ,
and mechanical support for servers , such as servers 112a and
112b (collectively , “ 112 ”) and network devices , such as
switches , routers , network appliances (e.g. , load balancers ,
deep packet inspectors , firewalls , etc.) , port extenders (e.g. ,
port extenders 114a and 114b (collectively , “ 114 ”)) , etc. An
example of an implementation of server chassis 110 is Cisco
Unified Computing SystemTM (Cisco UCS®) Blade Server
Chassis , provided by Cisco Systems , Inc. of San Jose ,
Calif . Server chassis 110 includes a number of slots (e.g. , 8
half - width slots , 4 full - width slots , or other capacities) for
receiving servers 112. Server chassis 110 can reduce the
number of physical components and the amount of cabling
relative to conventional rack or blade systems , integrate with
existing infrastructure for centralized management , and
operate more efficiently with respect to energy consumption
than conventional systems .
[0014] In FIG . 1 , server 112a is a half - width or half - slot
server and server 112b is a full - width or full - slot server .
Other embodiments may utilize servers having other types
of form factors , including some embodiments with servers
that do not require a chassis . For example , various embodi
ments can include a server that is a standalone device
communicatively coupled to server chassis 110 or to one or
more network devices 108. Various types of interconnec
tions and buses can provide the communicative coupling ,
including any wired or wireless interconnection line , net
work , connection , bundle , single bus , multiple buses , cross
bar network , single - stage network , multi - stage network , or
other conduction medium operable to carry data between
parts of a computing device or between computing devices .
[0015] Half - slot server 112a includes network adapter
116a , baseboard management controller (BMC) 118a , pro
cessing subsystem 120a , memory subsystem 122a , I / O
subsystem 124a , local storage subsystem 126a , and boot
subsystem 128a . Network adapter 116a (e.g. , a network
interface controller or card (NIC) , network adapter , LAN
adapter , etc.) connects server 112a to other physically sepa
rate and discrete network elements (e.g. , network adapters
116b and 116c , port extenders 114 , network devices 108 ,
SANs 102 , LAN 104 , management network 106 , etc.) and
logically separate elements of server 112a (e.g. , virtual

machines , containers , or other partitions) . A person of ordi
nary skill will appreciate that some of these elements are
combinable (e.g. , an 1/0 subsystem typically includes a
network interface) or further divisible (e.g. , cache memory
is distinguishable from main memory) but server 112a
includes the above subsystems for purposes of simplicity
and clearness .
[0016] BMC 118a monitors and manages the physical
state of server 112a . BMC 118a includes a specialized
service processor (not shown) and firmware (not shown) to
provide management and monitoring capabilities indepen
dently from processing subsystem 120a . BMC 118a is
reachable even when processing subsystem 120a is powered
off or non - operational . In some embodiments , BMC 118a
supports the standards defined in the Intelligent Platform
Management Interface (IPMI) specification . An example of
an implementation of BMC 118a is the Cisco® Integrated
Management Controller (CIMC) . CIMC is compliant with
the IPMI specification but also provides additional function
ality for providing unified monitoring and management of
multiple computing systems . Diagnostic and health moni
toring features provided with CIMC include support for
Simple Network Management Protocol (SNMP) ; extensible
mark - up language (XML) application programming inter
face (API) event subscription and configurable alerts ; sys
tem event logging ; audit logging ; monitoring of field - re
placeable units (FRUS) , hard disk drive (HDD) faults , dual
inline memory module (DIMM) faults , NIC media access
control (MAC) address , CPU , and thermal faults ; configu
rable alerts and thresholds ; watchdog timer , redundant array
of independent disks (RAID) configuration and monitoring ;
predictive failure analysis of HDD and DIMM ; support for
converged network adapters (CNAs) ; and support for Net
work Time Protocol (NTP) .
[0017] In some embodiments , CIMC can operate in a
standalone mode to provide users with full control of the
server , allowing an administrator to perform server manage
ment tasks including powering on , powering off , power
cycling , resetting , and shutting down the server ; toggling the
locator light - emitting diode (LED) ; configuring the server
boot order ; viewing server properties and sensors ; config
uring out - of - band storage ; managing remote presence ; man
aging firmware ; creating and managing local user accounts
and enabling authentication through Active Directory and
Lightweight Directory Access Protocol (LDAP) ; configur
ing network - related settings , including NIC properties ,
Internet Protocol (IP) version 4 (IPv4) , IP version 6 (IPv6) ,
virtual local area networks (VLANs) , and network security ;
configure communication services , including Hypertext
Transfer Protocol (HTTP) , secure shell (SSH) , and IPMI
over LAN ; managing certificates ; configuring platform
event filters ; and monitoring faults , alarms , and server
status .

[0018] In some embodiments , CIMC may also provide
features such as a hypertext mark - up language version 5
(HTMLS) and keyboard , video , and mouse (KVM) user
interface (UI) ; Redfish support ; and XML API transactional
support . HTMLS and KVM can provide users with a sim
plified UI , and can eliminate the need for Java to use CIMC .
Redfish is an open industry standard specification and
schema that specifies a restful stateful transfer (REST)
interface and uses Javascript Object Notation (JSON) and
Open Data Protocol (OData) to help customers integrate
solutions within their existing tool chains . XML API trans

US 2020/0142752 A1 May 7 , 2020
3

actional support enables configuration of multiple managed
objects in a single transaction , allowing for quicker , simpler
deployments .
[0019] In some embodiments , BMC 118a can perform
configuration and management services while server 112a is
in a low - power state , such as a standby state . In contrast ,
processing subsystem 120a , memory subsystem 122a , local
storage subsystem 126a , etc. , may require server 112a to be
in a relatively high power state . In general , a low - power state
may include a state where server 112a is not completely
powered on and does not provide all or substantially all of
its full functionality , whereas a high - power state is a state
where server 112a is powered on and provides all or
substantially all of its capabilities , less capabilities that are
specifically disabled for purposes of management and con
figuration .
[0020] Processing subsystem 120a connects to other ele
ments of server 112a via one or more interconnects or buses ,
and can directly perform instructions stored in memory
subsystem 122a and indirectly perform instructions stored in
local storage subsystem 126a , SANs 102 , and / or other
memory locations . Processing subsystem 120a can include
any combination of hardware , software , and / or firmware providing programmable logic . Examples of implementa
tions of processing subsystem 120a include the Advanced
RISC Machine (ARM) architecture provided by ARM Hold
ings plc of Cambridge , England , United Kingdom ; the
Microprocessor without Interlocked Pipeline Stages (MIPS)
architecture provided by MIPS Technologies , Inc. of Sunny
vale , Calif .; the Power architecture provided by IBM of
Armonk , North Castle , N.Y .; the Scalable Processor Archi
tecture (SPARC) provided by Sun Microsystems of Menlo
Park , Calif .; and the x86 architecture provided by Intel Corp.
of Santa Clara , Calif . , Advanced Micro Devices (AMD) ,
Inc. of Sunnyvale , Calif . , or VIA Technologies Inc. of New
Taipei City , Taiwan , Republic of China .
[0021] Memory subsystem 122a comprises a collection of
random access memories (RAMs) , integrated circuits (ICs)
that generally allow for access to data stored in the ICs in
any order , in constant time , regardless of the data's physical
location . RAMs can include static RAMs (SRAMs) ;
dynamic RAMS (DRAMs) ; and synchronous DRAMS
(SDRAMs) . SRAMs are generally very fast but typically
have a smaller capacity (e.g. , a few megabytes) than
DRAMs . SRAMs are static because they have a chip struc
ture that maintains data as long as there is power to the
SRAMs . However , SRAMs are generally not large enough
to operate as the main memory of a server . Instead , main
memory typically comprises DRAMs . DRAMs store data on
capacitors within an integrated circuit . DRAMs are dynamic
because capacitors can discharge over time due to leakage
currents and may require recharging to avoid data loss .
[0022] SDRAMs have a synchronous interface , meaning
that their operation synchronizes with a clock signal . The
clock can drive an internal finite state machine that " pipe
lines ” memory accesses (i.e. , SDRAM can accept a new
memory access before it has finished processing the previ
ous one) . Pipelining can improve the performance of
SDRAMs relative to conventional DRAMs . The first imple
mentation of SDRAM , single data rate (SDR) , specified
transfer of a single unit of data per clock cycle . The next
implementation of SDRAM , double data rate (DDR) , could
achieve nearly twice the bandwidth of SDR by transferring
data on the rising and falling edges of a clock signal , without

increasing clock frequency . DDR evolved into second gen
eration DDR (DDR2) and third generation DDR (DDR3) .
DDR2 is capable of operating the external data bus at twice
the data rate of DDR by improved bus signaling . DDR3
improves upon DDR2 by reducing operating voltage ,
increasing memory density , and increasing memory band
width .
[0023] In some embodiments , memory subsystem 122a
can include multiple memory chips assembled together on
small boards known as dual inline memory modules
(DIMMs) . A DIMM can have a rank , an arrangement of
chips that produce a specified number of bits of useful data
(e.g. , 64 , 128 , etc.) . Thus , a DIMM can be single - rank ,
double - rank , quad - rank , etc. A memory controller can select
a memory rank by chip select instead of by address bits . A
typical memory controller can include up to eight separate
chip selects and are therefore capable of supporting up to
eight ranks .
[0024] SDRAM DIMMs can include unbuffered DIMMs
(UDIMMs) and registered DIMMs (RDIMMs) . In
UDIMMs , the memory chips directly connect to the address
and control buses , without any intermediate component .
RDIMMs have additional components , registers , placed
between the incoming address and control buses and the
SDRAM components . These registers can add one clock
cycle of delay but can reduce the electrical load on the
memory controller and allow more DIMMs per memory
controller .
[0025] I / O subsystem 124a includes peripheral devices
(other than network adapter 116a) and the interfaces for
connecting the peripheral devices to server 112a . I / O sub
system 124a is generally responsible for moving data from
memory subsystem 122a to accessible peripheral devices
and vice versa . Historically , computing systems provided
I / O using buses compatible with the Peripheral Component
Interconnect (PCI) standard , a standard developed to inter
connect peripheral devices to a computing system . Various
embodiments support a version of PCI , PCI Express (PCIe) .
PCIe specifies point - to - point connectivity resulting in a tree
structure topology with a single root complex . The root
complex can be responsible for system configuration , enu
meration of PCIe resources , and management of interrupts
and errors for the PCIe tree . A root complex and its end
points can share a single address space and communicate
through memory reads and writes , and interrupts . PCIe
connects two components with a point - to - point link . Links
comprise N lanes (i.e. , a by - N link comprises N lanes) , and
each lane can include two pairs of wires : one pair for
transmission and one pair for reception . Each lane connects
to a PCIe endpoint , PCIe switch , or a PCIe to PCI bridge .
[0026] Local storage subsystem 126a comprises non - vola
tile memory and can be a hard disk drive (HDD) , solid state
device (SSD) , or other type of computer readable media
which can store data that is accessible by a computing
system , such as Universal Serial Bus (USB) flash memory
drives , flash memory cards or sticks , optical disks , magnetic
tape , standalone RAM disks , read only memory (ROM) , and
hybrids thereof .
[0027] Boot subsystem 128a includes software and / or
firmware for performing hardware initialization upon server
112a powering on or booting up , and to provide runtime
services for operating systems and applications . Boot sub
system 128a may initialize and test the hardware compo
nents of server 112a . Boot subsystem 128a can also load one

US 2020/0142752 A1 May 7 , 2020
4

or more operating systems from local storage subsystem
126a or SANS 102 into memory subsystem 122a . In addi
tion , boot subsystem 128a can discover and setup one or
more peripheral devices for access by processing subsystem
120a . In some embodiments , server 112a may store boot
subsystem 128a as one or more boot images in a peripheral
memory device connected to server 112a . Alternatively or in
addition , SANs 102 may store one or more boot images from
which server 112a can retrieve the boot image (s) . Multiple
boot images can represent different hardware , software (e.g. ,
operating systems , applications , etc.) , and / or firmware con
figurations for server 112a . Examples of implementations of
boot subsystem 128a include basic input / output system
(BIOS) for the x86 architecture or the Unified Extensible
Firmware Interface (UEFI) or a bootloader for the ARM
architecture .
[0028] In some embodiments , BMC 118a may program
and / or execute boot subsystem 128a to configure two physi
cal Ethernet links to combine them into one double - capacity
Ethernet interface that can mask link failures (at the cost of
halving capacity) ; configure an Ethernet link to split it into
an out - of - band management Ethernet interface with its own
MAC address for exclusive use by BMC 118a and one or
more in - band Ethernet interfaces with different MAC
addresses ; configure a group of disks to organize them as a
RAID configuration to form one or more fault - tolerant disks ;
configure PCIe devices to expose them or hide them from
one or more operating systems of server 112a ; and monitor
and manage power supplies , voltages , clocks , CPU speed ,
temperatures , and fans .
[0029] In some embodiments , BMC 118a may also pro
gram and / or execute boot subsystem 128a to configure
memory controllers to limit access to certain portions or
ranges of memory subsystem 122a to certain processors of
processing subsystem 120a . For example , server 112a may
include multiple memory controllers and multiple proces
sors (e.g. , multiple sockets and / or multiple cores per pro
cessor) . BMC 118a may program and / or execute boot sub
system 128a to limit the access of certain processors to
particular sections of memory to effectively partition the
memory among the processors . Alternatively or in addition ,
BMC 118a can program and / or execute boot subsystem
128a to limit the access of certain cores to specific portions
of memory and control whether the cores can interrupt one
another . In some embodiments , BMC 118a may also pro
gram and / or execute boot subsystem 128a to control
whether certain virtual or physical peripheral devices are
accessible to specific processors or cores . In some embodi
ments , BMC 118a can load different boot images for each
partition of processors and / or cores and thereby each parti
tion can bootstrap independently . In this manner , BMC 118a
can create a number of segregated resource groups with each
group comprising one or more processors or cores , a
memory range , and one or more accessible peripheral
devices (and / or a PCIe address range) . Thus , BMC 118a can
perform operations similar to a conventional hypervisor
without the overhead that may come with operating a host
operating system and a guest operating system . This
approach is also an improvement upon containerization
because server 112a is no longer limited to a single operating
system .
[0030] Full - slot server 112b includes network adapters
116b and 116c , BMC 118b , processing subsystem 120b ,
memory subsystem 122b , 1/0 subsystem 124b , local storage

subsystem 126b , and boot subsystem 128b . One of ordinary
skill in the art will appreciate that full - slot server is in many
respects similar to full - slot server 112b . However , full - slot
server 112b includes more overall resources than half - slot
server 112a . For example , full - slot server 112b can include
more processors (and / or cores) , more DIMMs , and more I / O
interfaces (including network interfaces) , thus providing
greater processing power , memory , and networking capa
bilities relative to half - slot server 112a .
[0031] Servers 112 connect to port extender 114 via net
work adapters 116a and 116b . A port extender , standardized
by the Institute of Electrical and Electronics Engineers
(IEEE) 802.1Qbh protocol , can operate as an access device
for use in NICs , blade switches , top - of - rack (TOR) switches ,
hypervisors , single root I / O virtualization (SR - IOV) adapt
ers , virtual switches , etc. A port extender can attach to a
MAC port of an 802.1Q bridge (i.e. , a controlling bridge) to
provide additional MAC ports (downlink interfaces) that are
logical ports of the 802.1Q bridge to which the port extender
attaches . Packets can flow from a port extender through the
controlling bridge to allow consistent forwarding and policy
enforcement for traffic . The controlling bridge can operate as
a logically centralized management point for its collection of
port extenders . Examples of implementations of port extend
ers 114 include Cisco® Fabric Extender (FEX) Technology ,
such as the Cisco Nexus® Fabric Extenders (FEX) for
providing additional ports for TOR switches , Cisco UCS®
Fabric Extenders for providing additional ports for the Cisco
UCS? Blade Server Chassis , Cisco® Adapter Fabric
Extender (Adapter FEX) for providing additional ports for a
server , and the Cisco® Data Center Virtual Machine Fabric
Extender (VM - FEX) for providing additional ports for vir
tual machines .
[0032] Port extenders 114 can each include interconnect
infrastructure I , chassis manager M , and chassis manage
ment switch S. Interconnect infrastructure I can operate as a
bridge between servers 112 and switch / routers 108 and
implement the data plane of the port extenders 114 .
Examples of implementations of interconnect infrastructure
I are Cisco® FEX ASICs , such as Redwood and Woodside .
Chassis manager M can interact with network - wide manager
N in switch / routers 108 and BMC 118 in servers 112 .
Chassis manager M can perform server discovery and
sequencing , power management , temperature monitoring ,
and fan control looping . In some embodiments , when there
are multiple port extenders 114 in server chassis 110 , as in
the example of FIG . 1 , chassis managers M may form a
cluster with one manager in an active state and another in an
inactive state according to a high - availability algorithm . For
example , there can be a serial interface between chassis
managers M for receiving heartbeats between the two man
agers . Failover can occur either by failure to detect a
heartbeat or unplugging of the active chassis manager .
Network - manager N may also force a fail - over . Examples of
implementations of chassis managers M include Cisco®
Chassis Management Controller (CMC) ASICs . Chassis
manager switch S can provide connectivity to BMC 118
present on each server 112. Examples of implementations of
chassis manager switch S include Cisco® Chassis Manage
ment Switch (CMS) ASICs .
[0033] Port extenders 114 connect server chassis 110 to
switches / routers 108a and 1086 (collectively , “ 108 ”) .
Switches / routers 108 can operate as spine switches in a
spine - and - leaf topology ; aggregation / distribution switches

US 2020/0142752 A1 May 7 , 2020
5

and / or core switches in three - tier , multi - tier , or fat tree
topologies ; a Level 1+ switch in a BCube network topology ;
or other switch / router in a suitable network topology (e.g. ,
DCell , CamCube , FiConn , Jellyfish , Scafida , etc.) .
Examples of implementations of switch / routers 108 include
Cisco UCS® Fabric Interconnects , Cisco Catalyst®
switches , Cisco Nexus® switches , Cisco® Industrial Ether
net switches , Cisco MerakiTM or Meraki® switches / routers ,
Cisco® Integrated Services Routers (ISR) , Cisco Network
Convergence System (NCS) routers , Cisco® Aggregation
Services Routers (ASR) , Cisco Industrial ISR , and Cisco®
Connected Grid Routers , among others .
[0034] Switches / routers 108 include port controller ASICS
P , crossbar fabric ASIC X , and network - wide manager N.
Port controller ASICs P control a small group of ports (e.g. ,
4 , 8 , 16 , etc.) for processing packets upon egress or egress
for managed ports . Port controller ASICs P can also handle
forwarding decisions between ports . Examples of imple
mentations of port controller ASICs P include Cisco®
Unified Port Controller (UPC) ASICs .
[0035] Crossbar fabric ASIC X operates as a bridge
between port controllers P , and can manage packet switching
and scheduling . That is , crossbar fabric ASIC X can couple
a port controller for an ingress port to the port controller for
an egress port to enable traffic flow between the ports .
Examples of implementations of crossbar fabric ASIC X
include Cisco® Unified Crossbar Fabric (UCF) ASICs .
[0036] Network - wide manager N can include hardware ,
software , and / or firmware for monitoring and managing
server , network , and storage infrastructure of network envi
ronment 100. Network - wide manager N can provision
server , fabric , and storage resources as well as perform
device discovery , inventory , configuration , diagnostics ,
monitoring , fault detection , auditing , and statistics collec
tion . For example , network - wide manager N can automati
cally detect , inventory , manage , and provision system com
ponents added to or changed in network environment 100 .
Network - wide manager N can also manage clustering ,
switch redundancy , and otherwise ensure high availability
for server , network , and storage resources in a data center
and / or a remote network or cloud . Examples of implemen
tations of network - wide manager N include Cisco UCS®
Central , Cisco UCS® Director , Cisco UCS? Manager ,
Cisco UCS® Performance Manager , Cisco® IMC Supervi
sor , Cisco® Application Policy Infrastructure Controller
(APIC) , Cisco ONETM Enterprise Cloud , Cisco® Intelligent
Automation , Cisco® Intercloud Fabric , Cisco Network
Services Data Center Network Manager , Cisco Prime®
Network Services Controller , or other system for monitoring
and managing multiple servers , the network fabric , and / or
server storage .
[0037] Switches / routers 108 can support various types of
traffic and include various types of ports and port controllers
for connecting servers 112 to other networks , such as SANS
102 , LAN 104 , management network 106 , or any commu
nicative platform operable to exchange data or information
within or between computing systems (e.g. , Internet , ad - hoc
local network , packet data network (PDN) , LAN , metro
politan area network (MAN) , wide area network (WAN) ,
wireless local area network (WLAN) , virtual private net
work (VPN) , intranet , or any other appropriate architecture
or system that facilitates electronic communications) . For
example , switches / routers 108 can include a number of 40
Gbps (Quad Small Form - Factor Pluggable) (QSFP) or

QSFP + ports that can operate at native - 40 - Gbps speed , or
that can operate as four 10 - Gbps ports (e.g. , by inserting a
QSFP - to - 4 small form factor plus pluggable (SFP +) break
out cable) for handling Ethernet / IP traffic (e.g. , traffic
to / from LAN 104) , Fibre Channel (FC) or Fibre Channel on
Ethernet (FCOE) ports for handling block storage traffic
(e.g. , traffic to / from SANs 102) , and serial ports for handling
management traffic (e.g. , traffic to / from management net
work 106) and inter - process communications (IPC) (e.g. ,
high availability , clustering , virtualization platform services ,
etc.) .
[0038] FIG . 2A and FIG . 2B illustrate computing systems
200 and 250. In some embodiments , computing systems 200
and 250 can be respective implementations of servers 112a
and 1126 of FIG . 1. This disclosure provides additional
details regarding each of the components in FIG . 2A and
FIG . 2B in more detail below . However , one skilled in art
will understand that computing systems 200 and 250 are
each simply one possible configuration and that other con
figurations with more or fewer components are also pos
sible .
[0039] Computing system 200 is a half - slot , two - socket
server including processors 202a and 2026 (collectively ,
“ 202 ") . Sockets are mounting / interconnection structures for
installing processors on a printed circuit board (PCB) or
mother board of a computing system . Multiple sockets can
provide for customization of a server motherboard by
enabling mounting of processors using different clock
speeds and / or amounts of power . Each processor 202 can
include one or more cores (e.g. , 2 , 4 , 6 , 8 , etc.) (not shown) ,
each of which can replicate a basic central processing unit
(CPU) . Each core may be associated with a level 1 (L1)
cache (not shown) . Caches are small fast memories that can
reduce the average time to access main memory . The cores
generally share a larger level 2 (L2) or level 3 (L3) cache ,
a bus or interconnection interface , and external die connec
tions . The number of processors of a computing system is
the product of the number of sockets and the number of
cores per socket . For example , computing system 200
includes two sockets and can include four cores per socket
for a total of eight processors . An example of an implemen
tation of processor 202a or 202b is the Xeon Processor
provided by Intel Corp. of Santa Clara , Calif .
[0040] Processors 202 connect to one another and to I / O
hub 204 by interconnections 206a , 206b , and 206c (collec
tively , “ 206 ”) . In this example , processors 202 and inter
connections 206 implement the QuickPath Interconnect
(QPI) architecture provided by Intel . QPI utilizes multiple
high - speed uni - directional links for interconnecting proces
sors and a chipset or similar computing system element and
integrating multiple distributed memory controllers for mul
tiple cores of the processor chip . In this example , the cores
inside a socket may share integrated memory controllers
(IMCs) (not shown) that have multiple memory interfaces
(i.e. , memory buses) . The IMCs may have various external
connections , such as DDR3 memory (or other suitable
memory) channels for connecting processors 202 to DDR3
(or other suitable memory) DIMMs D. IMCs and cores in
different sockets can talk to one another using QPI . Proces
sors implementing QPI may also have full access to the
memory of every other processor while maintaining cache
coherency using a cache - coherent Non - Uniform Memory
Architecture (NUMA) . However , various embodiments may
limit the memory range each processor 202 can access as

US 2020/0142752 A1 May 7 , 2020
6

discussed further below . A computing system that imple
ments QPI can achieve global memory reachability (or
reachability by one socket to memory of another socket)
using an internal crossbar router in the socket . This route
through capability may allow for computing systems with
out a fully connected topology . Other embodiments may
implement interconnections 206 using other types of buses
or interconnections , such as front - side buses (FSBs) , dual
independent buses (DIB) , Dedicated High - Speed Intercon
nect (DHSI) , etc.
[0041] 1/0 hub 204 (sometimes referred to as a chipset)
connects processors 202 to I / O controller hub (ICH) 208
using interconnection 210 , local storage controller 212 using
interconnection 216a , and mezzanine card 214 using inter
connection 216b . An example of an implementation of I / O
hub 204 is the X58 chip provided by Intel . In this example ,
interconnection 210 implements the Direct Media Interface
(DMI) provided by Intel , and interconnections 216a and
216b are a PCIe x4 link and a PCIe x16 link , respectively .
[0042] Local storage controller 212 connects computing
system 200 to local storage devices (e.g. , HDD , SSD , etc.) .
Local storage controller 212 (sometimes referred to as a
SAS controller) can support Serial Attached Small Com
puter System Interface (SAS) and Serial Advanced Tech
nology Attachment (SATA) transfer rates , and integrate
mirroring and striping functions to provide different RAID
availability levels for internal drives . An example of an
implementation of local storage controller 212 is the 1064e
storage processor provided by LSI Corp. of San Jose , Calif .
[0043] Mezzanine card 214 (i.e. , a network adapter) is a
PCB assembly that combines the electrical characteristics of
the PCI bus (e.g. , IEEE P1386.1) with the mechanical
characteristics of the Common Mezzanine Card (CMC)
format (e.g. , IEEE 1386) . Mezzanine card 214 can include
a number of bus connectors (not shown) , such as for
connecting to one or more 32 - bit PCI buses , 64 - bit PCI
buses , or other non - specified , non - standardized , and / or pro
prietary I / O bus . Other card standards supported can include
the PCI Mezzanine Card (PMC) eXtended (PMC - X) , Pro
cessor PMC (PPMC) , conduction - cooled PMC (CCPMC) ,
Switched Mezzanine Card (XMC) , or FMC - FPGA Mez
zanine Card standards .

[0044] I / O controller hub 208 (sometimes referred to as a
Southbridge) connects computing system 200 to relatively
low - speed peripheral devices (not shown) (e.g. , USB
devices or other devices slower than mezzanine card 214) ,
BMC 218 , and boot subsystem 220. An example of an
implementation of I / O controller hub 208 is the ICH10 I / O
controller hub provided by Intel® . In this example , inter
connection 216c between ICH 208 and BMC 218 is a PCIe
x4 link . BMC 218 provides management access to comput
ing system 200 prior to the loading of an operating system ,
and can operate as an aggregation point for server hardware .
In some embodiments , BMC 218 can have two integrated
Ethernet connections (not shown) connected in a redundant
manner to management components of access devices (e.g. ,
chassis management switches S) . BMC 118 of FIG . 1 is an
example of an implementation of BMC 218 .
[0045] Boot subsystem 220 includes software or firmware
for initializing hardware upon powering on or booting up
computing system 200 (e.g. , BIOS , UEFI , bootloader , etc.)
or other management software and / or firmware executed
prior to loading of one or more operating systems of

computing system 200. Boot subsystem 128 is an example
of an implementation of boot subsystem 220 .
[0046] Computing system 250 is a full - slot , four - socket
server including processors 252a , 2525 , 252c , and 252d
(collectively , “ 252 ”) . Each processor 252 can include one or
more cores (e.g. , 4 , 6 , 8 , etc.) (not shown) , each of which
represents a discrete processing element . In this example ,
each processor 252 can include 4 cores such that the CPU of
computing system 250 includes a total of 16 processors .
Examples of implementations of processors 252 include the
Xeon 7500 series CPUs provided by Intel . Processors 252
are fully interconnected with one another using intercon
nections 254a , 254 , 2540 , 254d , 254e , and 254f (collec
tively , “ 254 ”) . Processors 252c and 252d also connect to I / O
hub 256 using interconnections 254g and 254h , respectively .
In this example , processors 252a and 252b may connect to
I / O hub 256 through core - to - core QPI links . In other
embodiments , processors 252a and 252b may connect to a
second I / O hub symmetrical that enable such a computing
system to include additional memory and / or PCIe slots . In
this example , interconnections 254 are QPI links but other
embodiments may utilize other types of buses or intercon
nections as discussed elsewhere .
[0047] Each processor 252 also connects to one or more
serial memory buffers (SMBs) 258 using Serial Memory
Interface (SMI) links 260. Each SMB 258 can connect to
one or more DIMMs D (e.g. , DDR3 DIMM) . In an embodi
ment , a computing system can include four sockets with
each socket connected to four SMBs and each SMB con
nected to two DIMMs providing a total of 32 DIMMs .
[0048] Interconnections 2625 and 262c (collectively ,
“ 262 ”) are the two main I / O paths toward mezzanine cards
264a and 264b (collectively , “ 264 ”) , respectively . In this
example , interconnections 2626 and 262c are PCIe x16
links . Mezzanine cards 264 (e.g. , network adapters 116 of
FIG . 1) can provide connections to access devices (e.g. , port
extenders 114 of FIG . 1) . Local storage controller 266 (e.g. ,
an embedded 6G SAS RAID controller connects to I / O hub
256 through a PCIe x4 link .
[0049] ICH 268 also connects to I / O hub 256 by intercon
nection 270 (e.g. , an Enhanced Function Interface (EFI)
bus) . ICH 268 provides connections to BMC 272 , Front
panel 274 , and boot subsystem 276. Front panel 274 can
include one or more USB ports and / or ports for other
low - speed peripheral devices (not shown) . One of ordinary
skill in the art will appreciate that computing system 200 is
in many respects similar to computing system 250. How
ever , computing system 250 is a full - slot server that includes
more overall resources than computing system 200 , a half
slot server . For example , computing system 250 includes
more sockets and cores than computing system 200 , and thus
the CPU of computing system 250 includes more processors
than the CPU of computing system 200 , more DIMMs and
thus more main memory , and more I / O interfaces (including
mezzanine cards) . Thus , computing system 250 has greater
processing power , memory , and networking capabilities than
computing system 200. Although computing systems 200
and 250 illustrate examples of the x86 architecture , other
embodiments may utilize other server architectures (e.g. ,
ARM , MIPS , Power , SPARC , other Reduced Instruction Set
Computer (RISC) architectures , and / or other Complex
Instruction Set Computer (CISC) architectures) , and one of
ordinary skill in the art could readily apply the principles
disclosed in this disclosure to these other architectures .

US 2020/0142752 A1 May 7 , 2020
7

[0050] FIG . 3 illustrates an example of process 300 for
physically partitioning resources of a computing system via
a baseboard management controller of the system . One of
ordinary skill will understood that , for any method discussed
herein , there can be additional , fewer , or alternative steps
performed in similar or alternative orders , or in parallel ,
within the scope of the various embodiments unless other
wise stated . In some embodiments , a network , and particu
larly a network - wide manager (e.g. , network - wide manager
N of FIG . 1) or other system for monitoring and managing
multiple servers , the network fabric , and / or server storage
can communicate with a baseboard management controller
to perform process 300. In other embodiments , a standalone
baseboard management controller can perform process 300 .
Process 300 may begin with a physical server or host
powering on and plugging into a network (e.g. , from an off
state , after reset , after plug - in into a chassis / rack , after
insertion as a card into a slot , etc.) .
[0051] At step 302 , a baseboard management controller
(BMC) (e.g. , BMC 118a or 118b) can determine the avail
ability of multiple processors of the host of the BMC for
provisioning to an end user . A processor may include a
single - socket central processing unit (CPU) , a pair of CPUs
or processors of a four - socket server , a multi - core processor ,
a single core of a multi - core processor , or other discrete
physical device capable of executing the instructions of a
computer program by performing the basic arithmetic , logi
cal , control , and input / output (1/0) operations specified by
the instructions . If there are no processors available , process
300 can come to an end . Otherwise , process 300 can
continue onto step 304 at which the BMC can allocate at
least a first processor of the physical host to a first resource
group and a second processor of the physical host to a
second resource group .
[0052] Proceeding to step 306 , the BMC can load one or
more boot images (e.g. , BIOS , UEFI boot manager , boot
loader , bootstrap , etc.) and / or other configuration data from
a SAN (e.g. , SAN 102a or 102b of FIG . 1) or other remote
source or a storage device embedded on the physical host
(e.g. , ROM , flash memory , or other non - volatile memory)
(e.g. , boot subsystem 128a or 128b , boot subsystem 220 of
FIG . 2A , or boot subsystem 276 of FIG . 2B) for initializing
the hardware of the physical host . In some embodiments , the
BMC can receive a single boot image for configuring
multiple physical partitions of the host . In other embodi
ments , the BMC may receive multiple boot images , includ
ing at least one unique boot image for each different resource
group . In this manner , each resource group can boot - up
independently from one another and apply different pro
grammable code - signing keys for giving the BMC control
over which operating system each resource group may load .
[0053] After loading the boot image (s) , at step 308 the
BMC / boot image (s) can partition the main memory (i.e. ,
primary storage , internal memory , RAM , etc.) of the physi
cal host into at least a first memory range for exclusive use
by the first processor and a second memory range for
exclusive use by the second processor . For example , the first
memory range can comprise a first set of DIMMs and the
second memory range can comprise a second set of DIMMs .
The BMC / boot image (s) can generate a first memory map
that maps the first memory range to the first set of DIMMs
and excludes mappings to other DIMMs . The BMC / boot
image (s) can also generate a second memory map that maps
the second memory range to the second set of DIMMs and

excludes mappings to other DIMMs , including the first set
of DIMMs . The BMC / boot image (s) can allocate the
resources of the computing system in a variety of configu
rations .
[0054] FIG . 4A , FIG . 4B , and FIG . 4C illustrate different
ways that a BMC can physically partition the processors and
main memory of a computing system . In particular , FIG . 4A
illustrates a computing system 400 having four sockets for
four CPUs 402a , 4026 , 402c , and 402d (collectively , “ 402 ”) .
Each processor 402 includes integrated memory controller
(IMC) 404 for accessing a respective set of DDR3 DIMMs
D. In this example , a BMC (not shown) partitions computing
system 400 into resource groups 406a , 406 , 406c , and 406d
(collectively , “ 406 ”) . Each resource group (e.g. , resource
group 406a) includes a subset of the processing resources of
computing system 400 (e.g. , processor 402a) ; a subset of the
memory controllers of computing system 400 (e.g. , IMC
404a) ; and a subset of memory or a range of the main
memory of computing system 400 (e.g. , DIMMs D directly
connected to IMC 404a) . Although FIG . 4A shows that each
resource group 406 includes one CPU , a resource group can
also include multiple CPUs . For example , in an embodi
ment , the BMC can partition computing system into three
resource groups , a first resource group including CPUs 402a
and 402b , a second resource group including CPU 402c , and
a third resource group including CPU 424c . A resource
group can also include a portion of a CPU (i.e. , one or more
cores of a multi - core processor) as shown in FIG . 4B and
discussed further below .
[0055] In some embodiments , computing system 400 can
implement cache coherency by default and disable cache
coherency under certain conditions (or vice versa , i.e. ,
disable cache coherency by default and activate cache
coherency under certain conditions) . A computing system
that implements cache coherency seeks uniformity of shared
data stored among multiple local caches . Common
approaches for achieving cache coherency include snooping
and directory - based cache coherency . In snooping , indi
vidual caches monitor address lines for access to cached
memory locations and invalidate or update a copy of a
snooped memory location on write to the corresponding
memory location in a different cache . In directory - based
cache coherency , each processor stores shared data to a
common directory that maintains the coherency between
caches . When an entry in the directory changes , the directory
either updates or invalidates the other caches . In the example
of FIG . 4A , actively maintaining cache coherency is unnec
essary because of the isolation between processors 402 and
their respective ranges of main memory . Thus , computing
system 400 may safely disable cache coherency for
improved performance by each resource group .
[0056] FIG . 4B illustrates computing system 420 includ
ing CPU 422 and DIMMs 428a and 428b (collectively ,
“ 428 ”) . CPU 422 includes six cores , processors 430a , 430b ,
430c , 430d , 430e , and 430f (collectively , “ 430 ”) , and IMCs
424a and 424b (collectively , “ 424 ”) . Computing system 420
may be a single - socket server including only CPU 422 or a
multi - socket server including CPU 422 and one or more
other CPUs . In this example , a BMC (not shown) separates
computing system 420 into at least two resource groups
426a and 426b (collectively , “ 426 ”) . Resource group 426a
includes cores 430a and 430b , IMC 424a , and DIMMs 428a .
Resource group 426b includes cores 430c , 430d , 430e , and
430f , IMC 424b , and DIMMs 428b .

US 2020/0142752 A1 May 7 , 2020
8

[0057] As shown in FIG . 4B , the BMC of computing
system 420 is capable of partitioning the cores of a multi
core processor into two or more resource groups with at least
one core in a first resource group and a second core in a
second resource group . That is , the BMC can limit the
memory accessible by cores 430a and 430b to DIMMs
428a ; and the BMC can limit the memory accessible by
cores 430c , 430d , 430e , and 430f to DIMMs 4286. In other
embodiments , the BMC can address memory differently for
each individual core . For example , in an embodiment , CPU
422 may include additional pins for encoding which core
430 is requesting a cache line in order to limit a particular
core to a particular range of memory . A person of ordinary
skill in the art will understand that other embodiments may
utilize other techniques for addressing memory differently
for each core of a multi - core processor .
[0058] FIG . 4B also shows that the BMC is capable of
allocating IMCs 424a and 424b among different resource
groups . IMCs 424a and 424b may be physically or logically
separate elements each associated with a memory map to
DIMMs 428a and 428b , respectively . In some embodiments ,
computing system 420 may disable cache coherency at least
between DIMMs 428a and 428b because of the physical
isolation between these memories and their respective pro
cessors .

[0059] In some embodiments , a resource group may also
be associated with various priority levels . The BMC may
configure whether one core may interrupt another core
residing in the same socket or whether one CPU may
interrupt another CPU mounted on the same motherboard
based on priority level .
[0060] FIG . 4C illustrates computing system 440 includ
ing at least CPUs 442a and 442b (collectively , “ 442 ”) and
DIMMs 448a , 448b , 448c , and 448d (collectively , “ 448 ”) .
CPU 442a includes four cores , processors 470a , 4706 , 470c ,
and 470d and IMC 444a . CPU 442b also includes four cores ,
processors 470e , 470f , 470g , and 470h and IMC 444b .
Although CPUs 442 include the same number of cores in
this example , other embodiments may include multi - core
multi - processors having different numbers of cores (e.g. , 2
and 4 cores , 4 and 6 cores , 2 and 6 cores , etc.) . In this
example , a BMC (not shown) partitions computing system
440 into at least two resource groups 446a and 446b
(collectively , “ 446 ") . Resource group 446a includes cores
470a and 470b , IMC 444a , and DIMMs 448a . Resource
group 446b includes cores 470c , 470d , 470e , 470f , 470g , and
470h , IMCs 444a and 444b , and DIMMs 448b , 448c , and
448d . In some embodiments , the BMC may logically par
tition IMC 444a into two virtual memory controllers with
one virtual controller dedicated to resource group 446a and
another virtual controller dedicated to resource group 446b .
[0061] As shown in FIG . 4C , the BMC of computing
system 440 can define a resource group including portions of
CPUs 442a and 442b (i.e. , at least one core from CPU 442a
and one core from CPU 442b) . In some embodiments , it may
also be possible to logically partition IMCs 444 into multiple
virtual memory controllers to limit the access of each
processor 442 to a specific memory range or set of DIMMs
448. In this example , computing system 440 may disable
cache coherency at least between DIMM 428a and other
DIMMs because of the physical isolation between these
memories and their respective processors but maintain cache
coherency at least between and among DIMMs 448b , 448c ,
and 448d .

[0062] Returning to FIG . 3 , process 300 can continue to
step 310 in which the BMC / boot image (s) can distribute
access to physical or virtual peripheral devices connected to
the physical host between and among the first processor and
the second processor . The peripheral devices can include
network adapters , graphic processing unit (GPU) adapters ,
Peripheral Component Interconnect Express (PCIe) Flash
adapters , Fibre Channel host bus adapters (HBAs) , disks ,
disk controllers , USB devices , etc. In some embodiments ,
the BMC / boot image (s) can expose one or more PCIe I / O
ports to one of the processors and / or hide one or more other
PCIe I / O ports from that processor . In some embodiments ,
the BMC / boot image (s) can map one or more peripheral
device's memories into one of the processors ' main memory
range to give that processor access to the peripheral device
(s) and / or deny that processor access to one or more other
peripheral devices by not mapping the other peripheral
devices ' memories into the processor's main memory . In
some embodiments , the BMC / boot image (s) can configure a
peripheral device to be a bus master , and that peripheral
device can act on I / O requests from one of the processors
and ignore I / O requests from another processor . In some
embodiments , the BMC / boot image (s) may utilize Single
Root I / O Virtualization (SR - IOV) to virtualize a physical
peripheral device to create multiple virtual peripheral
devices accessible by multiple operating systems and their
respective processors on a single - socket server . In some
embodiments , the BMC / boot image (s) may utilize Multi
Root 1/0 Virtualization (MR - IOV) to virtualize a physical
peripheral device to create multiple virtual peripheral
devices accessible by multiple operating systems and their
respective processors on a multi - socket server .
[0063] At step 312 , the BMC / boot image (s) can load a first
operating system into the first range of main memory
associated with the first processor and a second operating
system into the second range of main memory associated
with the second processor . The operating systems may be
different operating systems (e.g. , Microsoft Windows ,
UNIX , Linux , Mac OS X , etc.) or different versions of the
same operating system (e.g. , Microsoft Windows 7.0 and
Microsoft Windows 10.0) . As discussed elsewhere herein ,
the BMC / boot image (s) can retrieve or otherwise receive the
operating systems from a SAN or other remote storage or a
local mass storage device (e.g. , HDD , SDD , flash drive ,
etc.) . Process 300 may conclude at step 314 when the BMC
cedes control to the first processor to execute the first
operating system and to the second processor to execute the
second operating system .
[0064] For clarity of explanation , in some instances the
disclosure may present various embodiments as including
individual functional blocks comprising devices , device
components , steps or routines in a method embodied in
software or firmware , or combinations of hardware , firm
ware , and / or software .
[0065] In some embodiments , the computer - readable stor
age devices , mediums , and memories can include a cable or
wireless signal containing a bit stream and the like . How
ever , when mentioned , non - transitory computer - readable
storage media expressly exclude media such as energy ,
carrier signals , electromagnetic waves , and signals per se .
[0066] Computer - executable instructions , stored or other
wise available from computer readable media , can imple
ment methods according to the above - described examples .
Such instructions can comprise , for instance , instructions

US 2020/0142752 A1 May 7 , 2020
9

and data which cause or otherwise configure a general
purpose computer , special purpose computer , or special
purpose processing device to perform a certain function or
group of functions . Portions of computer resources used can
be accessible over a network . The computer - executable
instructions may also include binaries , intermediate format
instructions such as assembly language , firmware , or source
code . Examples of computer - readable media for storing
instructions , information used , and / or information created
during methods according to described examples include
magnetic or optical disks , flash memory , USB devices
provided with non - volatile memory , networked storage
devices , and so on .
[0067] Devices implementing methods according to these
disclosures can comprise hardware , firmware , and / or soft
ware , and can take any of a variety of form factors . Typical
examples of such form factors include servers (e.g. , main
frame servers , tower servers , rack - mount servers , blade
servers , microservers , etc.) , small form factor personal com
puters , laptops , smart phones , personal digital assistants , and
so on . Peripherals or add - in cards can also perform some of
the functionality described herein . A circuit board including
different chips or different processes executing in a single
device can also perform some of the functionality , by way of
further example .
[0068] The instructions , media for conveying such instruc
tions , computing resources for executing them , and other
structures for supporting such computing resources are
means for providing the functions described in these disclo
sures .

[0069] Although a variety of examples and other informa
tion explain aspects within the scope of the appended claims ,
no limitation of the claims are implicit based on particular
features or arrangements in such examples as one of ordi
nary skill would be able to use these examples to derive a
wide variety of implementations . Further and although the
disclosure may describe some subject matter in language
specific to examples of structural features and / or method
steps , a person having ordinary skill in the art will under
stand that the subject matter defined in the appended claims
is not necessarily limited to these described features or acts .
For example , such functionality can be distributed differ
ently or performed in components other than those identified
herein . Rather , the described features and steps disclosed are
examples of components of systems and methods within the
scope of the appended claims .
What is claimed is :
1. A computer - implemented method comprising :
partitioning a portion of a memory for exclusive use by

one of a plurality of processors ;
mapping a peripheral device to the portion of the memory

to provide access to the one of the plurality of proces

other ranges of memory , the one or more other memory
controllers not having control over the portion of the
memory .

4. The computer - implemented method of claim 1 , further
comprising :

generating a memory map that maps the portion of the
memory to a first set of dual inline memory modules
(DIMMs) of a physical host and that excludes map
pings to other DIMMs of the physical host .

5. The computer - implemented method of claim 1 , further
comprising :

disabling cache coherency between the portion of the
memory and another portion of the memory .

6. The computer - implemented method of claim 1 , further
comprising :

receiving at least a first boot image including first instruc
tions for loading a first operating system and a second
boot image including second instructions for loading a
second operating system ;

loading the first boot image into the portion of the
memory and the second boot image into another por
tion of the memory ;

executing the first instructions for loading the first oper
ating system ; and

executing the second instructions for loading the second
operating system .

7. The computer - implemented method of claim 1 , further
comprising :

providing access to the one of the plurality of processors
to an input / output (I / O port by exposing the I / O port to
the one of the plurality of processors .

8. The computer - implemented method of claim 1 , further
comprising :
denying access to the one of the plurality of processors to

an I / O port by hiding the I / O port from the one of the
plurality of processors .

9. The computer - implemented method of claim 1 , further
comprising :
mapping memory of a peripheral device to the portion of

the memory to provide access to the one of the plurality
of processors to the peripheral device .

10. The computer - implemented method of claim 1 , fur
ther comprising :

denying access to a peripheral device by excluding a
mapping of memory of the peripheral device to the
portion of the memory .

11. The computer - implemented method of claim 1 , further
comprising :

sending , by the one of the plurality of processors , an I / O
request to a peripheral device connected to a physical
host ; and

receiving , by the one of the plurality of processors , an I / O
response from the peripheral device .

12. The computer - implemented method of claim 1 , fur
ther comprising :
sending , the one of the plurality of processors , an I / O

request to a peripheral device connected to a physical
host ; and

ignoring , by the peripheral device , the I / O request .

sors ; and
executing an operating system via the portion of the
memory .

2. The computer - implemented method of claim 1 ,
wherein one or more memory controllers are configured to
control the portion of the memory .

3. The computer - implemented method of claim 2 , further
comprising :

configuring one or more other memory controllers to deny
the access of the one of the plurality of processors to

US 2020/0142752 A1 May 7 , 2020
10

13. A server comprising :
a processor ; and
a memory including instructions that , upon execution by

the processor , cause the processor to :
partition a portion of a memory for exclusive use by

one of a plurality of processors ;
map a peripheral device to the portion of the memory

to provide access to the one of the plurality of
processors ; and
execute an operating system via the portion of the
memory .

14. The server of claim 13 ,
wherein ,

the one of the plurality of processors include a first
central processing unit (CPU) , and

one or more other processors of the plurality of pro
cessors include a second CPU .

15. The server of claim 13 ,
wherein ,

the one of the plurality of processors include a first core
of a multi - core processor , and

one or more other processors of the plurality of pro
cessors include a second core of the multi - core
processor .

16. The server of claim 13 ,
wherein ,

the one of the plurality of processors include a first core
of a first multi - core processor , and

one or more other processors of the plurality of pro
cessors include a second core of a second multi - core
processor .

17. A non - transitory computer - readable medium having
instructions that , upon execution by a processor , cause the
processor to :

partition a portion of a memory for exclusive use by one
of a plurality of processors ;

map a peripheral device to the portion of the memory to
provide access to the one of the plurality of processors ;
and

execute an operating system via the portion of the
memory .

18. The non - transitory computer - readable medium of
claim 17 , wherein the instructions upon execution further
cause the processor to :

virtualize a physical memory controller to create a first
virtual memory controller and a second virtual memory
controller ;

allocate the first virtual memory controller to a first
resource group ; and

allocate the second virtual memory controller to a second
resource group .

19. The non - transitory computer - readable medium of
claim 17 , wherein the instructions further cause the proces
sor to :

virtualize a physical peripheral device using Single Root
I / O Virtualization to create at least a first virtual periph
eral device and a second virtual peripheral device ;

allocate the first virtual peripheral device to a first
resource group ; and

allocate the second virtual peripheral device to a second
resource group .

20. The non - transitory computer - readable medium of
claim 17 , wherein the instructions further cause the proces
sor to :

virtualize a physical peripheral device using Multi I / O
Virtualization to create at least a first virtual peripheral
device and a second virtual peripheral device ;

allocate the first virtual peripheral device to a first
resource group ; and

allocate the second virtual peripheral device to a second
resource group .

