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PHYSICAL PARTITIONING OF COMPUTING 
RESOURCES FOR SERVER 

VIRTUALIZATION 

a baseboard management controller of the system in accor 
dance with an embodiment ; and 
[ 0008 ] FIG . 4A , FIG . 4B , and FIG . 4C illustrate examples 
of physically partitioned computing systems in accordance 
with some embodiments . CROSS - REFERENCE TO RELATED 

APPLICATION 
DESCRIPTION OF EXAMPLE EMBODIMENTS [ 0001 ] This application is a continuation of U.S. patent 

application Ser . No. 15 / 617,190 filed on Jun . 8 , 2017 , the 
contents of which is incorporated by reference in its entirety . Overview 

TECHNICAL FIELD 

[ 0002 ] The subject matter of this disclosure relates in 
general to the field of server virtualization , and more spe 
cifically to techniques for physically partitioning resources 
of a computing system via a baseboard management con 
troller of the system . 

BACKGROUND 

[ 0003 ] Virtualization is an important technology used in a 
modern data center . Virtualization can allow an operator of 
the data center to consolidate workloads ; raise utilization 
levels ; reduce operating , capital , space , power , and cooling 
expenses ; move workloads dynamically within a virtualiza 
tion pool to increase the flexibility to take servers offline or 
bring new ones online ; manage the relationship of virtual 
instances to physical machines to optimize performance and 
maintain service levels ; scale existing applications or deploy 
new ones by creating more virtual instances using an exist 
ing pool of resources ; and deploy high - availability and 
disaster - recovery features of a virtualization platform to 
overcome localized and geographic failures , among other 
benefits . 
[ 0004 ] Two common approaches to virtualizing a data 
center are hypervisor - based virtualization and container 
based virtualization . In hypervisor - based virtualization , soft 
ware emulates the hardware of a physical computer so that 
an entire , unmodified operating system can run with the 
emulated or virtual environment ( i.e. , a virtual machine 
( VM ) ) . A single physical server can run several VMs at 
once , and a hypervisor or virtual machine monitor ( VMM ) 
can manage the VMs and allocate the resources of the server 
among them . Hypervisor - based virtualization , however , can 
introduce additional overhead because a server implement 
ing this approach must replicate true hardware behaviors for 
each VM running on the server . Containers do not require an 
additional layer of virtual hardware . Instead , a system imple 
menting containers attempts to provide self - contained 
execution environments by isolating applications that rely 
on the same kernel . Thus , containers within a server all run 
on a single operating system kernel , and that kernel must be 
capable of supporting all applications and software running 
within the containers . Container - based virtualization there 
fore typically does not allow a server to run different 
operating systems or different versions of the same operating 
system . 

[ 0009 ] Systems and methods in accordance with various 
embodiments of the present disclosure may overcome one or 
more of the foregoing or other deficiencies experienced in 
conventional approaches for hypervisor - based and con 
tainer - based virtualization . A baseboard management con 
troller ( BMC ) can physically partition the computing 
resources ( e.g. , processing , memory , input / output ( I / O ) , and / 
or storage ) of a server into two or more resource groups for 
concurrently running a different operating system and one or 
more applications per resource group . For example , the 
BMC can allocate at least a first processor ( e.g. , a pair of 
processors of a four - socket server , a multi - core processor , a 
single core of a multi - core processor , etc. ) of a physical host 
to a first resource group and a second processor of the 
physical host to a second resource group . The BMC can load 
one or more boot images ( e.g. , basic input / output system 
( BIOS ) , Unified Extensible Firmware Interface ( UEFI ) boot 
manager , boot loader , bootstrap , or other software / firmware 
executed prior to loading of an operating system ) and / or 
other configuration data from a storage area network ( SAN ) 
( or other remote storage ) or a storage device embedded on 
the physical host ( e.g. , read - only memory ( ROM ) , flash 
memory , or other non - volatile memory ) for initializing the 
hardware of the physical host . 
[ 0010 ] In some embodiments , the BMC / boot image ( s ) can 
partition the memory of the physical host into at least a first 
memory range for exclusive use by the first processor and a 
second memory range for exclusive use by the second 
processor . For example , the first memory range can com 
prise a first set of ( one or more ) dual in - line memory 
modules ( DIMMs ) mounted on the physical host and the 
second memory range can comprise a second set of one or 
more ) DIMMs mounted on the physical host . The BMC / boot 
image ( s ) can generate a first memory map that maps the first 
memory range to the first set of DIMMs and a second 
memory map that maps the second memory range to the 
second set of DIMMs . Alternatively or in addition , the 
BMC / boot image ( s ) can limit access to the memory con 
troller ( s ) of the first set of DIMMs to the first processor and 
limit access to the memory controller ( s ) of the second set of 
DIMMs to the second processor . 
[ 0011 ] In some embodiments , the BMC / boot image ( s ) can 
also distribute physical or virtual peripheral devices of the 
physical host between the first processor and the second 
processor . For example , the BMC / boot image ( s ) can expose / 
hide one or more I / O ports from one of the resources groups . 
Alternatively or in addition , the BMC / boot image ( s ) can 
generate a Peripheral Component Interconnect Express 
( PCIe ) address memory map for one of the resource groups 
that gives that resource group access to a particular periph 
eral device and denies access to a different peripheral device . 
Alternatively or in addition , the BMC / boot image ( s ) can 
configure a peripheral device to be a bus master , and that 
peripheral device can act on I / O requests from a particular 
processor and ignore I / O requests from a different processor . 

BRIEF DESCRIPTION OF THE FIGURES 
[ 0005 ] FIG . 1 illustrates an example of a network envi 
ronment in accordance with an embodiment ; 
[ 0006 ] FIG . 2A and FIG . 2B illustrate examples of com 
puting systems in accordance with some embodiments ; 
[ 0007 ] FIG . 3 illustrates an example of a process for 
physically partitioning resources of a computing system via 
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DESCRIPTION 

[ 0012 ] FIG . 1 illustrates an example of a network envi 
ronment 100 in accordance with an embodiment . One of 
ordinary skill in the art will understand that , for the network 
environment 100 and any system discussed in the present 
disclosure , there can be additional or fewer nodes , devices , 
links , networks , or components in similar or alternative 
configurations . Various embodiments may include different 
numbers and / or types of clients , networks , nodes , cloud 
components , servers , software components , devices , virtual 
or physical resources , configurations , topologies , services , 
appliances , deployments , network devices , etc. The illustra 
tions and examples provided in the present disclosure are for 
conciseness and clarity . 
[ 0013 ] In this example , the network environment 100 
includes storage area networks ( SAN ) 102a and 102b ( col 
lectively , “ 102 ” ) , local area network ( LAN ) 104 , manage 
ment network 106 , network devices 108a and 108b ( collec 
tively , “ 108 ” ) , and server chassis 110. Server chassis 110 is 
a computing infrastructure device used to interconnect serv 
ers in various form factors ( e.g. , rack servers , blade servers , 
and other high - density servers ) with other network elements . 
Server chassis 110 can provide power , cooling , connectivity , 
and mechanical support for servers , such as servers 112a and 
112b ( collectively , “ 112 ” ) and network devices , such as 
switches , routers , network appliances ( e.g. , load balancers , 
deep packet inspectors , firewalls , etc. ) , port extenders ( e.g. , 
port extenders 114a and 114b ( collectively , “ 114 ” ) ) , etc. An 
example of an implementation of server chassis 110 is Cisco 
Unified Computing SystemTM ( Cisco UCS® ) Blade Server 
Chassis , provided by Cisco Systems , Inc. of San Jose , 
Calif . Server chassis 110 includes a number of slots ( e.g. , 8 
half - width slots , 4 full - width slots , or other capacities ) for 
receiving servers 112. Server chassis 110 can reduce the 
number of physical components and the amount of cabling 
relative to conventional rack or blade systems , integrate with 
existing infrastructure for centralized management , and 
operate more efficiently with respect to energy consumption 
than conventional systems . 
[ 0014 ] In FIG . 1 , server 112a is a half - width or half - slot 
server and server 112b is a full - width or full - slot server . 
Other embodiments may utilize servers having other types 
of form factors , including some embodiments with servers 
that do not require a chassis . For example , various embodi 
ments can include a server that is a standalone device 
communicatively coupled to server chassis 110 or to one or 
more network devices 108. Various types of interconnec 
tions and buses can provide the communicative coupling , 
including any wired or wireless interconnection line , net 
work , connection , bundle , single bus , multiple buses , cross 
bar network , single - stage network , multi - stage network , or 
other conduction medium operable to carry data between 
parts of a computing device or between computing devices . 
[ 0015 ] Half - slot server 112a includes network adapter 
116a , baseboard management controller ( BMC ) 118a , pro 
cessing subsystem 120a , memory subsystem 122a , I / O 
subsystem 124a , local storage subsystem 126a , and boot 
subsystem 128a . Network adapter 116a ( e.g. , a network 
interface controller or card ( NIC ) , network adapter , LAN 
adapter , etc. ) connects server 112a to other physically sepa 
rate and discrete network elements ( e.g. , network adapters 
116b and 116c , port extenders 114 , network devices 108 , 
SANs 102 , LAN 104 , management network 106 , etc. ) and 
logically separate elements of server 112a ( e.g. , virtual 

machines , containers , or other partitions ) . A person of ordi 
nary skill will appreciate that some of these elements are 
combinable ( e.g. , an 1/0 subsystem typically includes a 
network interface ) or further divisible ( e.g. , cache memory 
is distinguishable from main memory ) but server 112a 
includes the above subsystems for purposes of simplicity 
and clearness . 
[ 0016 ] BMC 118a monitors and manages the physical 
state of server 112a . BMC 118a includes a specialized 
service processor ( not shown ) and firmware ( not shown ) to 
provide management and monitoring capabilities indepen 
dently from processing subsystem 120a . BMC 118a is 
reachable even when processing subsystem 120a is powered 
off or non - operational . In some embodiments , BMC 118a 
supports the standards defined in the Intelligent Platform 
Management Interface ( IPMI ) specification . An example of 
an implementation of BMC 118a is the Cisco® Integrated 
Management Controller ( CIMC ) . CIMC is compliant with 
the IPMI specification but also provides additional function 
ality for providing unified monitoring and management of 
multiple computing systems . Diagnostic and health moni 
toring features provided with CIMC include support for 
Simple Network Management Protocol ( SNMP ) ; extensible 
mark - up language ( XML ) application programming inter 
face ( API ) event subscription and configurable alerts ; sys 
tem event logging ; audit logging ; monitoring of field - re 
placeable units ( FRUS ) , hard disk drive ( HDD ) faults , dual 
inline memory module ( DIMM ) faults , NIC media access 
control ( MAC ) address , CPU , and thermal faults ; configu 
rable alerts and thresholds ; watchdog timer , redundant array 
of independent disks ( RAID ) configuration and monitoring ; 
predictive failure analysis of HDD and DIMM ; support for 
converged network adapters ( CNAs ) ; and support for Net 
work Time Protocol ( NTP ) . 
[ 0017 ] In some embodiments , CIMC can operate in a 
standalone mode to provide users with full control of the 
server , allowing an administrator to perform server manage 
ment tasks including powering on , powering off , power 
cycling , resetting , and shutting down the server ; toggling the 
locator light - emitting diode ( LED ) ; configuring the server 
boot order ; viewing server properties and sensors ; config 
uring out - of - band storage ; managing remote presence ; man 
aging firmware ; creating and managing local user accounts 
and enabling authentication through Active Directory and 
Lightweight Directory Access Protocol ( LDAP ) ; configur 
ing network - related settings , including NIC properties , 
Internet Protocol ( IP ) version 4 ( IPv4 ) , IP version 6 ( IPv6 ) , 
virtual local area networks ( VLANs ) , and network security ; 
configure communication services , including Hypertext 
Transfer Protocol ( HTTP ) , secure shell ( SSH ) , and IPMI 
over LAN ; managing certificates ; configuring platform 
event filters ; and monitoring faults , alarms , and server 
status . 

[ 0018 ] In some embodiments , CIMC may also provide 
features such as a hypertext mark - up language version 5 
( HTMLS ) and keyboard , video , and mouse ( KVM ) user 
interface ( UI ) ; Redfish support ; and XML API transactional 
support . HTMLS and KVM can provide users with a sim 
plified UI , and can eliminate the need for Java to use CIMC . 
Redfish is an open industry standard specification and 
schema that specifies a restful stateful transfer ( REST ) 
interface and uses Javascript Object Notation ( JSON ) and 
Open Data Protocol ( OData ) to help customers integrate 
solutions within their existing tool chains . XML API trans 
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actional support enables configuration of multiple managed 
objects in a single transaction , allowing for quicker , simpler 
deployments . 
[ 0019 ] In some embodiments , BMC 118a can perform 
configuration and management services while server 112a is 
in a low - power state , such as a standby state . In contrast , 
processing subsystem 120a , memory subsystem 122a , local 
storage subsystem 126a , etc. , may require server 112a to be 
in a relatively high power state . In general , a low - power state 
may include a state where server 112a is not completely 
powered on and does not provide all or substantially all of 
its full functionality , whereas a high - power state is a state 
where server 112a is powered on and provides all or 
substantially all of its capabilities , less capabilities that are 
specifically disabled for purposes of management and con 
figuration . 
[ 0020 ] Processing subsystem 120a connects to other ele 
ments of server 112a via one or more interconnects or buses , 
and can directly perform instructions stored in memory 
subsystem 122a and indirectly perform instructions stored in 
local storage subsystem 126a , SANs 102 , and / or other 
memory locations . Processing subsystem 120a can include 
any combination of hardware , software , and / or firmware providing programmable logic . Examples of implementa 
tions of processing subsystem 120a include the Advanced 
RISC Machine ( ARM ) architecture provided by ARM Hold 
ings plc of Cambridge , England , United Kingdom ; the 
Microprocessor without Interlocked Pipeline Stages ( MIPS ) 
architecture provided by MIPS Technologies , Inc. of Sunny 
vale , Calif .; the Power architecture provided by IBM of 
Armonk , North Castle , N.Y .; the Scalable Processor Archi 
tecture ( SPARC ) provided by Sun Microsystems of Menlo 
Park , Calif .; and the x86 architecture provided by Intel Corp. 
of Santa Clara , Calif . , Advanced Micro Devices ( AMD ) , 
Inc. of Sunnyvale , Calif . , or VIA Technologies Inc. of New 
Taipei City , Taiwan , Republic of China . 
[ 0021 ] Memory subsystem 122a comprises a collection of 
random access memories ( RAMs ) , integrated circuits ( ICs ) 
that generally allow for access to data stored in the ICs in 
any order , in constant time , regardless of the data's physical 
location . RAMs can include static RAMs ( SRAMs ) ; 
dynamic RAMS ( DRAMs ) ; and synchronous DRAMS 
( SDRAMs ) . SRAMs are generally very fast but typically 
have a smaller capacity ( e.g. , a few megabytes ) than 
DRAMs . SRAMs are static because they have a chip struc 
ture that maintains data as long as there is power to the 
SRAMs . However , SRAMs are generally not large enough 
to operate as the main memory of a server . Instead , main 
memory typically comprises DRAMs . DRAMs store data on 
capacitors within an integrated circuit . DRAMs are dynamic 
because capacitors can discharge over time due to leakage 
currents and may require recharging to avoid data loss . 
[ 0022 ] SDRAMs have a synchronous interface , meaning 
that their operation synchronizes with a clock signal . The 
clock can drive an internal finite state machine that " pipe 
lines ” memory accesses ( i.e. , SDRAM can accept a new 
memory access before it has finished processing the previ 
ous one ) . Pipelining can improve the performance of 
SDRAMs relative to conventional DRAMs . The first imple 
mentation of SDRAM , single data rate ( SDR ) , specified 
transfer of a single unit of data per clock cycle . The next 
implementation of SDRAM , double data rate ( DDR ) , could 
achieve nearly twice the bandwidth of SDR by transferring 
data on the rising and falling edges of a clock signal , without 

increasing clock frequency . DDR evolved into second gen 
eration DDR ( DDR2 ) and third generation DDR ( DDR3 ) . 
DDR2 is capable of operating the external data bus at twice 
the data rate of DDR by improved bus signaling . DDR3 
improves upon DDR2 by reducing operating voltage , 
increasing memory density , and increasing memory band 
width . 
[ 0023 ] In some embodiments , memory subsystem 122a 
can include multiple memory chips assembled together on 
small boards known as dual inline memory modules 
( DIMMs ) . A DIMM can have a rank , an arrangement of 
chips that produce a specified number of bits of useful data 
( e.g. , 64 , 128 , etc. ) . Thus , a DIMM can be single - rank , 
double - rank , quad - rank , etc. A memory controller can select 
a memory rank by chip select instead of by address bits . A 
typical memory controller can include up to eight separate 
chip selects and are therefore capable of supporting up to 
eight ranks . 
[ 0024 ] SDRAM DIMMs can include unbuffered DIMMs 
( UDIMMs ) and registered DIMMs ( RDIMMs ) . In 
UDIMMs , the memory chips directly connect to the address 
and control buses , without any intermediate component . 
RDIMMs have additional components , registers , placed 
between the incoming address and control buses and the 
SDRAM components . These registers can add one clock 
cycle of delay but can reduce the electrical load on the 
memory controller and allow more DIMMs per memory 
controller . 
[ 0025 ] I / O subsystem 124a includes peripheral devices 
( other than network adapter 116a ) and the interfaces for 
connecting the peripheral devices to server 112a . I / O sub 
system 124a is generally responsible for moving data from 
memory subsystem 122a to accessible peripheral devices 
and vice versa . Historically , computing systems provided 
I / O using buses compatible with the Peripheral Component 
Interconnect ( PCI ) standard , a standard developed to inter 
connect peripheral devices to a computing system . Various 
embodiments support a version of PCI , PCI Express ( PCIe ) . 
PCIe specifies point - to - point connectivity resulting in a tree 
structure topology with a single root complex . The root 
complex can be responsible for system configuration , enu 
meration of PCIe resources , and management of interrupts 
and errors for the PCIe tree . A root complex and its end 
points can share a single address space and communicate 
through memory reads and writes , and interrupts . PCIe 
connects two components with a point - to - point link . Links 
comprise N lanes ( i.e. , a by - N link comprises N lanes ) , and 
each lane can include two pairs of wires : one pair for 
transmission and one pair for reception . Each lane connects 
to a PCIe endpoint , PCIe switch , or a PCIe to PCI bridge . 
[ 0026 ] Local storage subsystem 126a comprises non - vola 
tile memory and can be a hard disk drive ( HDD ) , solid state 
device ( SSD ) , or other type of computer readable media 
which can store data that is accessible by a computing 
system , such as Universal Serial Bus ( USB ) flash memory 
drives , flash memory cards or sticks , optical disks , magnetic 
tape , standalone RAM disks , read only memory ( ROM ) , and 
hybrids thereof . 
[ 0027 ] Boot subsystem 128a includes software and / or 
firmware for performing hardware initialization upon server 
112a powering on or booting up , and to provide runtime 
services for operating systems and applications . Boot sub 
system 128a may initialize and test the hardware compo 
nents of server 112a . Boot subsystem 128a can also load one 



US 2020/0142752 A1 May 7 , 2020 
4 

or more operating systems from local storage subsystem 
126a or SANS 102 into memory subsystem 122a . In addi 
tion , boot subsystem 128a can discover and setup one or 
more peripheral devices for access by processing subsystem 
120a . In some embodiments , server 112a may store boot 
subsystem 128a as one or more boot images in a peripheral 
memory device connected to server 112a . Alternatively or in 
addition , SANs 102 may store one or more boot images from 
which server 112a can retrieve the boot image ( s ) . Multiple 
boot images can represent different hardware , software ( e.g. , 
operating systems , applications , etc. ) , and / or firmware con 
figurations for server 112a . Examples of implementations of 
boot subsystem 128a include basic input / output system 
( BIOS ) for the x86 architecture or the Unified Extensible 
Firmware Interface ( UEFI ) or a bootloader for the ARM 
architecture . 
[ 0028 ] In some embodiments , BMC 118a may program 
and / or execute boot subsystem 128a to configure two physi 
cal Ethernet links to combine them into one double - capacity 
Ethernet interface that can mask link failures ( at the cost of 
halving capacity ) ; configure an Ethernet link to split it into 
an out - of - band management Ethernet interface with its own 
MAC address for exclusive use by BMC 118a and one or 
more in - band Ethernet interfaces with different MAC 
addresses ; configure a group of disks to organize them as a 
RAID configuration to form one or more fault - tolerant disks ; 
configure PCIe devices to expose them or hide them from 
one or more operating systems of server 112a ; and monitor 
and manage power supplies , voltages , clocks , CPU speed , 
temperatures , and fans . 
[ 0029 ] In some embodiments , BMC 118a may also pro 
gram and / or execute boot subsystem 128a to configure 
memory controllers to limit access to certain portions or 
ranges of memory subsystem 122a to certain processors of 
processing subsystem 120a . For example , server 112a may 
include multiple memory controllers and multiple proces 
sors ( e.g. , multiple sockets and / or multiple cores per pro 
cessor ) . BMC 118a may program and / or execute boot sub 
system 128a to limit the access of certain processors to 
particular sections of memory to effectively partition the 
memory among the processors . Alternatively or in addition , 
BMC 118a can program and / or execute boot subsystem 
128a to limit the access of certain cores to specific portions 
of memory and control whether the cores can interrupt one 
another . In some embodiments , BMC 118a may also pro 
gram and / or execute boot subsystem 128a to control 
whether certain virtual or physical peripheral devices are 
accessible to specific processors or cores . In some embodi 
ments , BMC 118a can load different boot images for each 
partition of processors and / or cores and thereby each parti 
tion can bootstrap independently . In this manner , BMC 118a 
can create a number of segregated resource groups with each 
group comprising one or more processors or cores , a 
memory range , and one or more accessible peripheral 
devices ( and / or a PCIe address range ) . Thus , BMC 118a can 
perform operations similar to a conventional hypervisor 
without the overhead that may come with operating a host 
operating system and a guest operating system . This 
approach is also an improvement upon containerization 
because server 112a is no longer limited to a single operating 
system . 
[ 0030 ] Full - slot server 112b includes network adapters 
116b and 116c , BMC 118b , processing subsystem 120b , 
memory subsystem 122b , 1/0 subsystem 124b , local storage 

subsystem 126b , and boot subsystem 128b . One of ordinary 
skill in the art will appreciate that full - slot server is in many 
respects similar to full - slot server 112b . However , full - slot 
server 112b includes more overall resources than half - slot 
server 112a . For example , full - slot server 112b can include 
more processors ( and / or cores ) , more DIMMs , and more I / O 
interfaces ( including network interfaces ) , thus providing 
greater processing power , memory , and networking capa 
bilities relative to half - slot server 112a . 
[ 0031 ] Servers 112 connect to port extender 114 via net 
work adapters 116a and 116b . A port extender , standardized 
by the Institute of Electrical and Electronics Engineers 
( IEEE ) 802.1Qbh protocol , can operate as an access device 
for use in NICs , blade switches , top - of - rack ( TOR ) switches , 
hypervisors , single root I / O virtualization ( SR - IOV ) adapt 
ers , virtual switches , etc. A port extender can attach to a 
MAC port of an 802.1Q bridge ( i.e. , a controlling bridge ) to 
provide additional MAC ports ( downlink interfaces ) that are 
logical ports of the 802.1Q bridge to which the port extender 
attaches . Packets can flow from a port extender through the 
controlling bridge to allow consistent forwarding and policy 
enforcement for traffic . The controlling bridge can operate as 
a logically centralized management point for its collection of 
port extenders . Examples of implementations of port extend 
ers 114 include Cisco® Fabric Extender ( FEX ) Technology , 
such as the Cisco Nexus® Fabric Extenders ( FEX ) for 
providing additional ports for TOR switches , Cisco UCS® 
Fabric Extenders for providing additional ports for the Cisco 
UCS? Blade Server Chassis , Cisco® Adapter Fabric 
Extender ( Adapter FEX ) for providing additional ports for a 
server , and the Cisco® Data Center Virtual Machine Fabric 
Extender ( VM - FEX ) for providing additional ports for vir 
tual machines . 
[ 0032 ] Port extenders 114 can each include interconnect 
infrastructure I , chassis manager M , and chassis manage 
ment switch S. Interconnect infrastructure I can operate as a 
bridge between servers 112 and switch / routers 108 and 
implement the data plane of the port extenders 114 . 
Examples of implementations of interconnect infrastructure 
I are Cisco® FEX ASICs , such as Redwood and Woodside . 
Chassis manager M can interact with network - wide manager 
N in switch / routers 108 and BMC 118 in servers 112 . 
Chassis manager M can perform server discovery and 
sequencing , power management , temperature monitoring , 
and fan control looping . In some embodiments , when there 
are multiple port extenders 114 in server chassis 110 , as in 
the example of FIG . 1 , chassis managers M may form a 
cluster with one manager in an active state and another in an 
inactive state according to a high - availability algorithm . For 
example , there can be a serial interface between chassis 
managers M for receiving heartbeats between the two man 
agers . Failover can occur either by failure to detect a 
heartbeat or unplugging of the active chassis manager . 
Network - manager N may also force a fail - over . Examples of 
implementations of chassis managers M include Cisco® 
Chassis Management Controller ( CMC ) ASICs . Chassis 
manager switch S can provide connectivity to BMC 118 
present on each server 112. Examples of implementations of 
chassis manager switch S include Cisco® Chassis Manage 
ment Switch ( CMS ) ASICs . 
[ 0033 ] Port extenders 114 connect server chassis 110 to 
switches / routers 108a and 1086 ( collectively , “ 108 ” ) . 
Switches / routers 108 can operate as spine switches in a 
spine - and - leaf topology ; aggregation / distribution switches 
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and / or core switches in three - tier , multi - tier , or fat tree 
topologies ; a Level 1+ switch in a BCube network topology ; 
or other switch / router in a suitable network topology ( e.g. , 
DCell , CamCube , FiConn , Jellyfish , Scafida , etc. ) . 
Examples of implementations of switch / routers 108 include 
Cisco UCS® Fabric Interconnects , Cisco Catalyst® 
switches , Cisco Nexus® switches , Cisco® Industrial Ether 
net switches , Cisco MerakiTM or Meraki® switches / routers , 
Cisco® Integrated Services Routers ( ISR ) , Cisco Network 
Convergence System ( NCS ) routers , Cisco® Aggregation 
Services Routers ( ASR ) , Cisco Industrial ISR , and Cisco® 
Connected Grid Routers , among others . 
[ 0034 ] Switches / routers 108 include port controller ASICS 
P , crossbar fabric ASIC X , and network - wide manager N. 
Port controller ASICs P control a small group of ports ( e.g. , 
4 , 8 , 16 , etc. ) for processing packets upon egress or egress 
for managed ports . Port controller ASICs P can also handle 
forwarding decisions between ports . Examples of imple 
mentations of port controller ASICs P include Cisco® 
Unified Port Controller ( UPC ) ASICs . 
[ 0035 ] Crossbar fabric ASIC X operates as a bridge 
between port controllers P , and can manage packet switching 
and scheduling . That is , crossbar fabric ASIC X can couple 
a port controller for an ingress port to the port controller for 
an egress port to enable traffic flow between the ports . 
Examples of implementations of crossbar fabric ASIC X 
include Cisco® Unified Crossbar Fabric ( UCF ) ASICs . 
[ 0036 ] Network - wide manager N can include hardware , 
software , and / or firmware for monitoring and managing 
server , network , and storage infrastructure of network envi 
ronment 100. Network - wide manager N can provision 
server , fabric , and storage resources as well as perform 
device discovery , inventory , configuration , diagnostics , 
monitoring , fault detection , auditing , and statistics collec 
tion . For example , network - wide manager N can automati 
cally detect , inventory , manage , and provision system com 
ponents added to or changed in network environment 100 . 
Network - wide manager N can also manage clustering , 
switch redundancy , and otherwise ensure high availability 
for server , network , and storage resources in a data center 
and / or a remote network or cloud . Examples of implemen 
tations of network - wide manager N include Cisco UCS® 
Central , Cisco UCS® Director , Cisco UCS? Manager , 
Cisco UCS® Performance Manager , Cisco® IMC Supervi 
sor , Cisco® Application Policy Infrastructure Controller 
( APIC ) , Cisco ONETM Enterprise Cloud , Cisco® Intelligent 
Automation , Cisco® Intercloud Fabric , Cisco Network 
Services Data Center Network Manager , Cisco Prime® 
Network Services Controller , or other system for monitoring 
and managing multiple servers , the network fabric , and / or 
server storage . 
[ 0037 ] Switches / routers 108 can support various types of 
traffic and include various types of ports and port controllers 
for connecting servers 112 to other networks , such as SANS 
102 , LAN 104 , management network 106 , or any commu 
nicative platform operable to exchange data or information 
within or between computing systems ( e.g. , Internet , ad - hoc 
local network , packet data network ( PDN ) , LAN , metro 
politan area network ( MAN ) , wide area network ( WAN ) , 
wireless local area network ( WLAN ) , virtual private net 
work ( VPN ) , intranet , or any other appropriate architecture 
or system that facilitates electronic communications ) . For 
example , switches / routers 108 can include a number of 40 
Gbps ( Quad Small Form - Factor Pluggable ) ( QSFP ) or 

QSFP + ports that can operate at native - 40 - Gbps speed , or 
that can operate as four 10 - Gbps ports ( e.g. , by inserting a 
QSFP - to - 4 small form factor plus pluggable ( SFP + ) break 
out cable ) for handling Ethernet / IP traffic ( e.g. , traffic 
to / from LAN 104 ) , Fibre Channel ( FC ) or Fibre Channel on 
Ethernet ( FCOE ) ports for handling block storage traffic 
( e.g. , traffic to / from SANs 102 ) , and serial ports for handling 
management traffic ( e.g. , traffic to / from management net 
work 106 ) and inter - process communications ( IPC ) ( e.g. , 
high availability , clustering , virtualization platform services , 
etc. ) . 
[ 0038 ] FIG . 2A and FIG . 2B illustrate computing systems 
200 and 250. In some embodiments , computing systems 200 
and 250 can be respective implementations of servers 112a 
and 1126 of FIG . 1. This disclosure provides additional 
details regarding each of the components in FIG . 2A and 
FIG . 2B in more detail below . However , one skilled in art 
will understand that computing systems 200 and 250 are 
each simply one possible configuration and that other con 
figurations with more or fewer components are also pos 
sible . 
[ 0039 ] Computing system 200 is a half - slot , two - socket 
server including processors 202a and 2026 ( collectively , 
“ 202 " ) . Sockets are mounting / interconnection structures for 
installing processors on a printed circuit board ( PCB ) or 
mother board of a computing system . Multiple sockets can 
provide for customization of a server motherboard by 
enabling mounting of processors using different clock 
speeds and / or amounts of power . Each processor 202 can 
include one or more cores ( e.g. , 2 , 4 , 6 , 8 , etc. ) ( not shown ) , 
each of which can replicate a basic central processing unit 
( CPU ) . Each core may be associated with a level 1 ( L1 ) 
cache ( not shown ) . Caches are small fast memories that can 
reduce the average time to access main memory . The cores 
generally share a larger level 2 ( L2 ) or level 3 ( L3 ) cache , 
a bus or interconnection interface , and external die connec 
tions . The number of processors of a computing system is 
the product of the number of sockets and the number of 
cores per socket . For example , computing system 200 
includes two sockets and can include four cores per socket 
for a total of eight processors . An example of an implemen 
tation of processor 202a or 202b is the Xeon Processor 
provided by Intel Corp. of Santa Clara , Calif . 
[ 0040 ] Processors 202 connect to one another and to I / O 
hub 204 by interconnections 206a , 206b , and 206c ( collec 
tively , “ 206 ” ) . In this example , processors 202 and inter 
connections 206 implement the QuickPath Interconnect 
( QPI ) architecture provided by Intel . QPI utilizes multiple 
high - speed uni - directional links for interconnecting proces 
sors and a chipset or similar computing system element and 
integrating multiple distributed memory controllers for mul 
tiple cores of the processor chip . In this example , the cores 
inside a socket may share integrated memory controllers 
( IMCs ) ( not shown ) that have multiple memory interfaces 
( i.e. , memory buses ) . The IMCs may have various external 
connections , such as DDR3 memory ( or other suitable 
memory ) channels for connecting processors 202 to DDR3 
( or other suitable memory ) DIMMs D. IMCs and cores in 
different sockets can talk to one another using QPI . Proces 
sors implementing QPI may also have full access to the 
memory of every other processor while maintaining cache 
coherency using a cache - coherent Non - Uniform Memory 
Architecture ( NUMA ) . However , various embodiments may 
limit the memory range each processor 202 can access as 
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discussed further below . A computing system that imple 
ments QPI can achieve global memory reachability ( or 
reachability by one socket to memory of another socket ) 
using an internal crossbar router in the socket . This route 
through capability may allow for computing systems with 
out a fully connected topology . Other embodiments may 
implement interconnections 206 using other types of buses 
or interconnections , such as front - side buses ( FSBs ) , dual 
independent buses ( DIB ) , Dedicated High - Speed Intercon 
nect ( DHSI ) , etc. 
[ 0041 ] 1/0 hub 204 ( sometimes referred to as a chipset ) 
connects processors 202 to I / O controller hub ( ICH ) 208 
using interconnection 210 , local storage controller 212 using 
interconnection 216a , and mezzanine card 214 using inter 
connection 216b . An example of an implementation of I / O 
hub 204 is the X58 chip provided by Intel . In this example , 
interconnection 210 implements the Direct Media Interface 
( DMI ) provided by Intel , and interconnections 216a and 
216b are a PCIe x4 link and a PCIe x16 link , respectively . 
[ 0042 ] Local storage controller 212 connects computing 
system 200 to local storage devices ( e.g. , HDD , SSD , etc. ) . 
Local storage controller 212 ( sometimes referred to as a 
SAS controller ) can support Serial Attached Small Com 
puter System Interface ( SAS ) and Serial Advanced Tech 
nology Attachment ( SATA ) transfer rates , and integrate 
mirroring and striping functions to provide different RAID 
availability levels for internal drives . An example of an 
implementation of local storage controller 212 is the 1064e 
storage processor provided by LSI Corp. of San Jose , Calif . 
[ 0043 ] Mezzanine card 214 ( i.e. , a network adapter ) is a 
PCB assembly that combines the electrical characteristics of 
the PCI bus ( e.g. , IEEE P1386.1 ) with the mechanical 
characteristics of the Common Mezzanine Card ( CMC ) 
format ( e.g. , IEEE 1386 ) . Mezzanine card 214 can include 
a number of bus connectors ( not shown ) , such as for 
connecting to one or more 32 - bit PCI buses , 64 - bit PCI 
buses , or other non - specified , non - standardized , and / or pro 
prietary I / O bus . Other card standards supported can include 
the PCI Mezzanine Card ( PMC ) eXtended ( PMC - X ) , Pro 
cessor PMC ( PPMC ) , conduction - cooled PMC ( CCPMC ) , 
Switched Mezzanine Card ( XMC ) , or FMC - FPGA Mez 
zanine Card standards . 

[ 0044 ] I / O controller hub 208 ( sometimes referred to as a 
Southbridge ) connects computing system 200 to relatively 
low - speed peripheral devices ( not shown ) ( e.g. , USB 
devices or other devices slower than mezzanine card 214 ) , 
BMC 218 , and boot subsystem 220. An example of an 
implementation of I / O controller hub 208 is the ICH10 I / O 
controller hub provided by Intel® . In this example , inter 
connection 216c between ICH 208 and BMC 218 is a PCIe 
x4 link . BMC 218 provides management access to comput 
ing system 200 prior to the loading of an operating system , 
and can operate as an aggregation point for server hardware . 
In some embodiments , BMC 218 can have two integrated 
Ethernet connections ( not shown ) connected in a redundant 
manner to management components of access devices ( e.g. , 
chassis management switches S ) . BMC 118 of FIG . 1 is an 
example of an implementation of BMC 218 . 
[ 0045 ] Boot subsystem 220 includes software or firmware 
for initializing hardware upon powering on or booting up 
computing system 200 ( e.g. , BIOS , UEFI , bootloader , etc. ) 
or other management software and / or firmware executed 
prior to loading of one or more operating systems of 

computing system 200. Boot subsystem 128 is an example 
of an implementation of boot subsystem 220 . 
[ 0046 ] Computing system 250 is a full - slot , four - socket 
server including processors 252a , 2525 , 252c , and 252d 
( collectively , “ 252 ” ) . Each processor 252 can include one or 
more cores ( e.g. , 4 , 6 , 8 , etc. ) ( not shown ) , each of which 
represents a discrete processing element . In this example , 
each processor 252 can include 4 cores such that the CPU of 
computing system 250 includes a total of 16 processors . 
Examples of implementations of processors 252 include the 
Xeon 7500 series CPUs provided by Intel . Processors 252 
are fully interconnected with one another using intercon 
nections 254a , 254 , 2540 , 254d , 254e , and 254f ( collec 
tively , “ 254 ” ) . Processors 252c and 252d also connect to I / O 
hub 256 using interconnections 254g and 254h , respectively . 
In this example , processors 252a and 252b may connect to 
I / O hub 256 through core - to - core QPI links . In other 
embodiments , processors 252a and 252b may connect to a 
second I / O hub symmetrical that enable such a computing 
system to include additional memory and / or PCIe slots . In 
this example , interconnections 254 are QPI links but other 
embodiments may utilize other types of buses or intercon 
nections as discussed elsewhere . 
[ 0047 ] Each processor 252 also connects to one or more 
serial memory buffers ( SMBs ) 258 using Serial Memory 
Interface ( SMI ) links 260. Each SMB 258 can connect to 
one or more DIMMs D ( e.g. , DDR3 DIMM ) . In an embodi 
ment , a computing system can include four sockets with 
each socket connected to four SMBs and each SMB con 
nected to two DIMMs providing a total of 32 DIMMs . 
[ 0048 ] Interconnections 2625 and 262c ( collectively , 
“ 262 ” ) are the two main I / O paths toward mezzanine cards 
264a and 264b ( collectively , “ 264 ” ) , respectively . In this 
example , interconnections 2626 and 262c are PCIe x16 
links . Mezzanine cards 264 ( e.g. , network adapters 116 of 
FIG . 1 ) can provide connections to access devices ( e.g. , port 
extenders 114 of FIG . 1 ) . Local storage controller 266 ( e.g. , 
an embedded 6G SAS RAID controller connects to I / O hub 
256 through a PCIe x4 link . 
[ 0049 ] ICH 268 also connects to I / O hub 256 by intercon 
nection 270 ( e.g. , an Enhanced Function Interface ( EFI ) 
bus ) . ICH 268 provides connections to BMC 272 , Front 
panel 274 , and boot subsystem 276. Front panel 274 can 
include one or more USB ports and / or ports for other 
low - speed peripheral devices ( not shown ) . One of ordinary 
skill in the art will appreciate that computing system 200 is 
in many respects similar to computing system 250. How 
ever , computing system 250 is a full - slot server that includes 
more overall resources than computing system 200 , a half 
slot server . For example , computing system 250 includes 
more sockets and cores than computing system 200 , and thus 
the CPU of computing system 250 includes more processors 
than the CPU of computing system 200 , more DIMMs and 
thus more main memory , and more I / O interfaces ( including 
mezzanine cards ) . Thus , computing system 250 has greater 
processing power , memory , and networking capabilities than 
computing system 200. Although computing systems 200 
and 250 illustrate examples of the x86 architecture , other 
embodiments may utilize other server architectures ( e.g. , 
ARM , MIPS , Power , SPARC , other Reduced Instruction Set 
Computer ( RISC ) architectures , and / or other Complex 
Instruction Set Computer ( CISC ) architectures ) , and one of 
ordinary skill in the art could readily apply the principles 
disclosed in this disclosure to these other architectures . 
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[ 0050 ] FIG . 3 illustrates an example of process 300 for 
physically partitioning resources of a computing system via 
a baseboard management controller of the system . One of 
ordinary skill will understood that , for any method discussed 
herein , there can be additional , fewer , or alternative steps 
performed in similar or alternative orders , or in parallel , 
within the scope of the various embodiments unless other 
wise stated . In some embodiments , a network , and particu 
larly a network - wide manager ( e.g. , network - wide manager 
N of FIG . 1 ) or other system for monitoring and managing 
multiple servers , the network fabric , and / or server storage 
can communicate with a baseboard management controller 
to perform process 300. In other embodiments , a standalone 
baseboard management controller can perform process 300 . 
Process 300 may begin with a physical server or host 
powering on and plugging into a network ( e.g. , from an off 
state , after reset , after plug - in into a chassis / rack , after 
insertion as a card into a slot , etc. ) . 
[ 0051 ] At step 302 , a baseboard management controller 
( BMC ) ( e.g. , BMC 118a or 118b ) can determine the avail 
ability of multiple processors of the host of the BMC for 
provisioning to an end user . A processor may include a 
single - socket central processing unit ( CPU ) , a pair of CPUs 
or processors of a four - socket server , a multi - core processor , 
a single core of a multi - core processor , or other discrete 
physical device capable of executing the instructions of a 
computer program by performing the basic arithmetic , logi 
cal , control , and input / output ( 1/0 ) operations specified by 
the instructions . If there are no processors available , process 
300 can come to an end . Otherwise , process 300 can 
continue onto step 304 at which the BMC can allocate at 
least a first processor of the physical host to a first resource 
group and a second processor of the physical host to a 
second resource group . 
[ 0052 ] Proceeding to step 306 , the BMC can load one or 
more boot images ( e.g. , BIOS , UEFI boot manager , boot 
loader , bootstrap , etc. ) and / or other configuration data from 
a SAN ( e.g. , SAN 102a or 102b of FIG . 1 ) or other remote 
source or a storage device embedded on the physical host 
( e.g. , ROM , flash memory , or other non - volatile memory ) 
( e.g. , boot subsystem 128a or 128b , boot subsystem 220 of 
FIG . 2A , or boot subsystem 276 of FIG . 2B ) for initializing 
the hardware of the physical host . In some embodiments , the 
BMC can receive a single boot image for configuring 
multiple physical partitions of the host . In other embodi 
ments , the BMC may receive multiple boot images , includ 
ing at least one unique boot image for each different resource 
group . In this manner , each resource group can boot - up 
independently from one another and apply different pro 
grammable code - signing keys for giving the BMC control 
over which operating system each resource group may load . 
[ 0053 ] After loading the boot image ( s ) , at step 308 the 
BMC / boot image ( s ) can partition the main memory ( i.e. , 
primary storage , internal memory , RAM , etc. ) of the physi 
cal host into at least a first memory range for exclusive use 
by the first processor and a second memory range for 
exclusive use by the second processor . For example , the first 
memory range can comprise a first set of DIMMs and the 
second memory range can comprise a second set of DIMMs . 
The BMC / boot image ( s ) can generate a first memory map 
that maps the first memory range to the first set of DIMMs 
and excludes mappings to other DIMMs . The BMC / boot 
image ( s ) can also generate a second memory map that maps 
the second memory range to the second set of DIMMs and 

excludes mappings to other DIMMs , including the first set 
of DIMMs . The BMC / boot image ( s ) can allocate the 
resources of the computing system in a variety of configu 
rations . 
[ 0054 ] FIG . 4A , FIG . 4B , and FIG . 4C illustrate different 
ways that a BMC can physically partition the processors and 
main memory of a computing system . In particular , FIG . 4A 
illustrates a computing system 400 having four sockets for 
four CPUs 402a , 4026 , 402c , and 402d ( collectively , “ 402 ” ) . 
Each processor 402 includes integrated memory controller 
( IMC ) 404 for accessing a respective set of DDR3 DIMMs 
D. In this example , a BMC ( not shown ) partitions computing 
system 400 into resource groups 406a , 406 , 406c , and 406d 
( collectively , “ 406 ” ) . Each resource group ( e.g. , resource 
group 406a ) includes a subset of the processing resources of 
computing system 400 ( e.g. , processor 402a ) ; a subset of the 
memory controllers of computing system 400 ( e.g. , IMC 
404a ) ; and a subset of memory or a range of the main 
memory of computing system 400 ( e.g. , DIMMs D directly 
connected to IMC 404a ) . Although FIG . 4A shows that each 
resource group 406 includes one CPU , a resource group can 
also include multiple CPUs . For example , in an embodi 
ment , the BMC can partition computing system into three 
resource groups , a first resource group including CPUs 402a 
and 402b , a second resource group including CPU 402c , and 
a third resource group including CPU 424c . A resource 
group can also include a portion of a CPU ( i.e. , one or more 
cores of a multi - core processor ) as shown in FIG . 4B and 
discussed further below . 
[ 0055 ] In some embodiments , computing system 400 can 
implement cache coherency by default and disable cache 
coherency under certain conditions ( or vice versa , i.e. , 
disable cache coherency by default and activate cache 
coherency under certain conditions ) . A computing system 
that implements cache coherency seeks uniformity of shared 
data stored among multiple local caches . Common 
approaches for achieving cache coherency include snooping 
and directory - based cache coherency . In snooping , indi 
vidual caches monitor address lines for access to cached 
memory locations and invalidate or update a copy of a 
snooped memory location on write to the corresponding 
memory location in a different cache . In directory - based 
cache coherency , each processor stores shared data to a 
common directory that maintains the coherency between 
caches . When an entry in the directory changes , the directory 
either updates or invalidates the other caches . In the example 
of FIG . 4A , actively maintaining cache coherency is unnec 
essary because of the isolation between processors 402 and 
their respective ranges of main memory . Thus , computing 
system 400 may safely disable cache coherency for 
improved performance by each resource group . 
[ 0056 ] FIG . 4B illustrates computing system 420 includ 
ing CPU 422 and DIMMs 428a and 428b ( collectively , 
“ 428 ” ) . CPU 422 includes six cores , processors 430a , 430b , 
430c , 430d , 430e , and 430f ( collectively , “ 430 ” ) , and IMCs 
424a and 424b ( collectively , “ 424 ” ) . Computing system 420 
may be a single - socket server including only CPU 422 or a 
multi - socket server including CPU 422 and one or more 
other CPUs . In this example , a BMC ( not shown ) separates 
computing system 420 into at least two resource groups 
426a and 426b ( collectively , “ 426 ” ) . Resource group 426a 
includes cores 430a and 430b , IMC 424a , and DIMMs 428a . 
Resource group 426b includes cores 430c , 430d , 430e , and 
430f , IMC 424b , and DIMMs 428b . 
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[ 0057 ] As shown in FIG . 4B , the BMC of computing 
system 420 is capable of partitioning the cores of a multi 
core processor into two or more resource groups with at least 
one core in a first resource group and a second core in a 
second resource group . That is , the BMC can limit the 
memory accessible by cores 430a and 430b to DIMMs 
428a ; and the BMC can limit the memory accessible by 
cores 430c , 430d , 430e , and 430f to DIMMs 4286. In other 
embodiments , the BMC can address memory differently for 
each individual core . For example , in an embodiment , CPU 
422 may include additional pins for encoding which core 
430 is requesting a cache line in order to limit a particular 
core to a particular range of memory . A person of ordinary 
skill in the art will understand that other embodiments may 
utilize other techniques for addressing memory differently 
for each core of a multi - core processor . 
[ 0058 ] FIG . 4B also shows that the BMC is capable of 
allocating IMCs 424a and 424b among different resource 
groups . IMCs 424a and 424b may be physically or logically 
separate elements each associated with a memory map to 
DIMMs 428a and 428b , respectively . In some embodiments , 
computing system 420 may disable cache coherency at least 
between DIMMs 428a and 428b because of the physical 
isolation between these memories and their respective pro 
cessors . 

[ 0059 ] In some embodiments , a resource group may also 
be associated with various priority levels . The BMC may 
configure whether one core may interrupt another core 
residing in the same socket or whether one CPU may 
interrupt another CPU mounted on the same motherboard 
based on priority level . 
[ 0060 ] FIG . 4C illustrates computing system 440 includ 
ing at least CPUs 442a and 442b ( collectively , “ 442 ” ) and 
DIMMs 448a , 448b , 448c , and 448d ( collectively , “ 448 ” ) . 
CPU 442a includes four cores , processors 470a , 4706 , 470c , 
and 470d and IMC 444a . CPU 442b also includes four cores , 
processors 470e , 470f , 470g , and 470h and IMC 444b . 
Although CPUs 442 include the same number of cores in 
this example , other embodiments may include multi - core 
multi - processors having different numbers of cores ( e.g. , 2 
and 4 cores , 4 and 6 cores , 2 and 6 cores , etc. ) . In this 
example , a BMC ( not shown ) partitions computing system 
440 into at least two resource groups 446a and 446b 
( collectively , “ 446 " ) . Resource group 446a includes cores 
470a and 470b , IMC 444a , and DIMMs 448a . Resource 
group 446b includes cores 470c , 470d , 470e , 470f , 470g , and 
470h , IMCs 444a and 444b , and DIMMs 448b , 448c , and 
448d . In some embodiments , the BMC may logically par 
tition IMC 444a into two virtual memory controllers with 
one virtual controller dedicated to resource group 446a and 
another virtual controller dedicated to resource group 446b . 
[ 0061 ] As shown in FIG . 4C , the BMC of computing 
system 440 can define a resource group including portions of 
CPUs 442a and 442b ( i.e. , at least one core from CPU 442a 
and one core from CPU 442b ) . In some embodiments , it may 
also be possible to logically partition IMCs 444 into multiple 
virtual memory controllers to limit the access of each 
processor 442 to a specific memory range or set of DIMMs 
448. In this example , computing system 440 may disable 
cache coherency at least between DIMM 428a and other 
DIMMs because of the physical isolation between these 
memories and their respective processors but maintain cache 
coherency at least between and among DIMMs 448b , 448c , 
and 448d . 

[ 0062 ] Returning to FIG . 3 , process 300 can continue to 
step 310 in which the BMC / boot image ( s ) can distribute 
access to physical or virtual peripheral devices connected to 
the physical host between and among the first processor and 
the second processor . The peripheral devices can include 
network adapters , graphic processing unit ( GPU ) adapters , 
Peripheral Component Interconnect Express ( PCIe ) Flash 
adapters , Fibre Channel host bus adapters ( HBAs ) , disks , 
disk controllers , USB devices , etc. In some embodiments , 
the BMC / boot image ( s ) can expose one or more PCIe I / O 
ports to one of the processors and / or hide one or more other 
PCIe I / O ports from that processor . In some embodiments , 
the BMC / boot image ( s ) can map one or more peripheral 
device's memories into one of the processors ' main memory 
range to give that processor access to the peripheral device 
( s ) and / or deny that processor access to one or more other 
peripheral devices by not mapping the other peripheral 
devices ' memories into the processor's main memory . In 
some embodiments , the BMC / boot image ( s ) can configure a 
peripheral device to be a bus master , and that peripheral 
device can act on I / O requests from one of the processors 
and ignore I / O requests from another processor . In some 
embodiments , the BMC / boot image ( s ) may utilize Single 
Root I / O Virtualization ( SR - IOV ) to virtualize a physical 
peripheral device to create multiple virtual peripheral 
devices accessible by multiple operating systems and their 
respective processors on a single - socket server . In some 
embodiments , the BMC / boot image ( s ) may utilize Multi 
Root 1/0 Virtualization ( MR - IOV ) to virtualize a physical 
peripheral device to create multiple virtual peripheral 
devices accessible by multiple operating systems and their 
respective processors on a multi - socket server . 
[ 0063 ] At step 312 , the BMC / boot image ( s ) can load a first 
operating system into the first range of main memory 
associated with the first processor and a second operating 
system into the second range of main memory associated 
with the second processor . The operating systems may be 
different operating systems ( e.g. , Microsoft Windows , 
UNIX , Linux , Mac OS X , etc. ) or different versions of the 
same operating system ( e.g. , Microsoft Windows 7.0 and 
Microsoft Windows 10.0 ) . As discussed elsewhere herein , 
the BMC / boot image ( s ) can retrieve or otherwise receive the 
operating systems from a SAN or other remote storage or a 
local mass storage device ( e.g. , HDD , SDD , flash drive , 
etc. ) . Process 300 may conclude at step 314 when the BMC 
cedes control to the first processor to execute the first 
operating system and to the second processor to execute the 
second operating system . 
[ 0064 ] For clarity of explanation , in some instances the 
disclosure may present various embodiments as including 
individual functional blocks comprising devices , device 
components , steps or routines in a method embodied in 
software or firmware , or combinations of hardware , firm 
ware , and / or software . 
[ 0065 ] In some embodiments , the computer - readable stor 
age devices , mediums , and memories can include a cable or 
wireless signal containing a bit stream and the like . How 
ever , when mentioned , non - transitory computer - readable 
storage media expressly exclude media such as energy , 
carrier signals , electromagnetic waves , and signals per se . 
[ 0066 ] Computer - executable instructions , stored or other 
wise available from computer readable media , can imple 
ment methods according to the above - described examples . 
Such instructions can comprise , for instance , instructions 
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and data which cause or otherwise configure a general 
purpose computer , special purpose computer , or special 
purpose processing device to perform a certain function or 
group of functions . Portions of computer resources used can 
be accessible over a network . The computer - executable 
instructions may also include binaries , intermediate format 
instructions such as assembly language , firmware , or source 
code . Examples of computer - readable media for storing 
instructions , information used , and / or information created 
during methods according to described examples include 
magnetic or optical disks , flash memory , USB devices 
provided with non - volatile memory , networked storage 
devices , and so on . 
[ 0067 ] Devices implementing methods according to these 
disclosures can comprise hardware , firmware , and / or soft 
ware , and can take any of a variety of form factors . Typical 
examples of such form factors include servers ( e.g. , main 
frame servers , tower servers , rack - mount servers , blade 
servers , microservers , etc. ) , small form factor personal com 
puters , laptops , smart phones , personal digital assistants , and 
so on . Peripherals or add - in cards can also perform some of 
the functionality described herein . A circuit board including 
different chips or different processes executing in a single 
device can also perform some of the functionality , by way of 
further example . 
[ 0068 ] The instructions , media for conveying such instruc 
tions , computing resources for executing them , and other 
structures for supporting such computing resources are 
means for providing the functions described in these disclo 
sures . 

[ 0069 ] Although a variety of examples and other informa 
tion explain aspects within the scope of the appended claims , 
no limitation of the claims are implicit based on particular 
features or arrangements in such examples as one of ordi 
nary skill would be able to use these examples to derive a 
wide variety of implementations . Further and although the 
disclosure may describe some subject matter in language 
specific to examples of structural features and / or method 
steps , a person having ordinary skill in the art will under 
stand that the subject matter defined in the appended claims 
is not necessarily limited to these described features or acts . 
For example , such functionality can be distributed differ 
ently or performed in components other than those identified 
herein . Rather , the described features and steps disclosed are 
examples of components of systems and methods within the 
scope of the appended claims . 
What is claimed is : 
1. A computer - implemented method comprising : 
partitioning a portion of a memory for exclusive use by 

one of a plurality of processors ; 
mapping a peripheral device to the portion of the memory 

to provide access to the one of the plurality of proces 

other ranges of memory , the one or more other memory 
controllers not having control over the portion of the 
memory . 

4. The computer - implemented method of claim 1 , further 
comprising : 

generating a memory map that maps the portion of the 
memory to a first set of dual inline memory modules 
( DIMMs ) of a physical host and that excludes map 
pings to other DIMMs of the physical host . 

5. The computer - implemented method of claim 1 , further 
comprising : 

disabling cache coherency between the portion of the 
memory and another portion of the memory . 

6. The computer - implemented method of claim 1 , further 
comprising : 

receiving at least a first boot image including first instruc 
tions for loading a first operating system and a second 
boot image including second instructions for loading a 
second operating system ; 

loading the first boot image into the portion of the 
memory and the second boot image into another por 
tion of the memory ; 

executing the first instructions for loading the first oper 
ating system ; and 

executing the second instructions for loading the second 
operating system . 

7. The computer - implemented method of claim 1 , further 
comprising : 

providing access to the one of the plurality of processors 
to an input / output ( I / O port by exposing the I / O port to 
the one of the plurality of processors . 

8. The computer - implemented method of claim 1 , further 
comprising : 
denying access to the one of the plurality of processors to 

an I / O port by hiding the I / O port from the one of the 
plurality of processors . 

9. The computer - implemented method of claim 1 , further 
comprising : 
mapping memory of a peripheral device to the portion of 

the memory to provide access to the one of the plurality 
of processors to the peripheral device . 

10. The computer - implemented method of claim 1 , fur 
ther comprising : 

denying access to a peripheral device by excluding a 
mapping of memory of the peripheral device to the 
portion of the memory . 

11. The computer - implemented method of claim 1 , further 
comprising : 

sending , by the one of the plurality of processors , an I / O 
request to a peripheral device connected to a physical 
host ; and 

receiving , by the one of the plurality of processors , an I / O 
response from the peripheral device . 

12. The computer - implemented method of claim 1 , fur 
ther comprising : 
sending , the one of the plurality of processors , an I / O 

request to a peripheral device connected to a physical 
host ; and 

ignoring , by the peripheral device , the I / O request . 

sors ; and 
executing an operating system via the portion of the 
memory . 

2. The computer - implemented method of claim 1 , 
wherein one or more memory controllers are configured to 
control the portion of the memory . 

3. The computer - implemented method of claim 2 , further 
comprising : 

configuring one or more other memory controllers to deny 
the access of the one of the plurality of processors to 
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13. A server comprising : 
a processor ; and 
a memory including instructions that , upon execution by 

the processor , cause the processor to : 
partition a portion of a memory for exclusive use by 

one of a plurality of processors ; 
map a peripheral device to the portion of the memory 

to provide access to the one of the plurality of 
processors ; and 
execute an operating system via the portion of the 
memory . 

14. The server of claim 13 , 
wherein , 

the one of the plurality of processors include a first 
central processing unit ( CPU ) , and 

one or more other processors of the plurality of pro 
cessors include a second CPU . 

15. The server of claim 13 , 
wherein , 

the one of the plurality of processors include a first core 
of a multi - core processor , and 

one or more other processors of the plurality of pro 
cessors include a second core of the multi - core 
processor . 

16. The server of claim 13 , 
wherein , 

the one of the plurality of processors include a first core 
of a first multi - core processor , and 

one or more other processors of the plurality of pro 
cessors include a second core of a second multi - core 
processor . 

17. A non - transitory computer - readable medium having 
instructions that , upon execution by a processor , cause the 
processor to : 

partition a portion of a memory for exclusive use by one 
of a plurality of processors ; 

map a peripheral device to the portion of the memory to 
provide access to the one of the plurality of processors ; 
and 

execute an operating system via the portion of the 
memory . 

18. The non - transitory computer - readable medium of 
claim 17 , wherein the instructions upon execution further 
cause the processor to : 

virtualize a physical memory controller to create a first 
virtual memory controller and a second virtual memory 
controller ; 

allocate the first virtual memory controller to a first 
resource group ; and 

allocate the second virtual memory controller to a second 
resource group . 

19. The non - transitory computer - readable medium of 
claim 17 , wherein the instructions further cause the proces 
sor to : 

virtualize a physical peripheral device using Single Root 
I / O Virtualization to create at least a first virtual periph 
eral device and a second virtual peripheral device ; 

allocate the first virtual peripheral device to a first 
resource group ; and 

allocate the second virtual peripheral device to a second 
resource group . 

20. The non - transitory computer - readable medium of 
claim 17 , wherein the instructions further cause the proces 
sor to : 

virtualize a physical peripheral device using Multi I / O 
Virtualization to create at least a first virtual peripheral 
device and a second virtual peripheral device ; 

allocate the first virtual peripheral device to a first 
resource group ; and 

allocate the second virtual peripheral device to a second 
resource group . 


