0-7/036072 A1 |0 0 0 0 OO0

—
o

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f d”Ij

International Bureau

(43) International Publication Date
5 April 2007 (05.04.2007)

) IO O T R OO OO

(10) International Publication Number

WO 2007/036072 Al

(51) International Patent Classification:
GOGF 9/00 (2006.01)

(21) International Application Number:
PCT/CN2005/001623

(22) International Filing Date:
29 September 2005 (29.09.2005)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LING, Xiaofeng
[CN/CN]; Room 302, No. 264 South Shanxi Road, Shang-
hai 200000 (CN). LIU, Pingping [CN/CN]; Room 201,
#90, Lane 35 Guipingzhi Road, Shanghai 200000 (CN).

(74) Agent: SHANGHAI PATENT & TRADEMARK LAW
OFFICE, LLC; 435 Guiping Road, Shanghai 200233
(CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: APPARATUS AND METHOD FOR EXPEDITED VIRTUAL MACHINE (VM) LAUNCH IN VM CLUSTER ENVI-

RONMENT

GUEST] |GUEST] |GUEST GUEST] [GUEST JGUEST GUEST] JGUEST] JGUEST
0St {] 081 || O%1 0S8t 1] 081 [0St 081 |} 081 || 081
2204 || 2202 | | 2203 320-1 | [3202 | | 320-3 4204 |} 4202 | 1420:3
VM1 VM1 VM1
230 330 430
HMW 260 HW 360 Hw 460
(CPUMEMORYNQ DEVICES) (CPUMEMORYIO DEVICES) (CPUMEMORYNO DEVICES)
PLATFORM 200 PLATFORM 300 PLATFORM 400
110
GIGA-BYTE ETHERNET/FIBER CHANNEL
100

(57) Abstract: Method and apparatus for expedited virtual machine (VM) launch in VM cluster environment. In one embodiment,
at least one VM is launched within a host platform. Once initialized, a VM may issue a hypercall to a VM monitor (VMM) of a VM
host platform. In response, the VMM may capture a runtime image of the VM. In one embodiment, the VMM loads the runtime
image of the VM within a node of the host platform as a child VM. In an alternative embodiment, the VMM issues a VM clone
command to a VMM of a next host platform including the runtime image of the VM. In response, the VMM of the next platform
loads the runtime image of the first VM within a node of the second host platform as a cloned VM. Other embodiments are described
and claimed.

WO 2007/036072 PCT/CN2005/001623

APPARATUS AND METHOD FOR EXPEDITED

RTUAL MACHI LA HIN VM
LUSTER ENVIR T
FIELD
[0001] One or more embodiments relate generally to the field of computer

system design. More particularly, one or more of the embodiments relate to a
method and apparatus for expedited virtual machine (VM) launch in VM cluster

environment.

BACKGROUND
[0002] A virtual machine architecture logically partitions a physical machine,
such that the underlying hardware of the machine is time-shared and appears as one
or more independently operating virtual machines (VMs). A virtual machine
monitor (VMM) creates the VM and runs on a computer to facilitate for other
software the abstraction of one or more VMs. Each VM may function as a self-
contained platform, running its own operating system (OS) and application software.
The software running in a VM is collectively referred to herein as “guest software.”
[0003] The guest software expects to operate as if it were running on a
dedicated computer rather than in a VM. That is, the guest software expects to
control various events and have access to hardware resources on the computer (e.g.,
physical machine). The hardware resources of the physical machine may include
one or more processors, resources resident on the processors (e.g., control registers,
caches and others), memory (instructions residing in memory, e.g., descriptor tables),
and other resources (e.g., input/output devices) that reside in the physical machine.
The events may include interrupts, exceptions, platform events (e.g., initialization)
(INIT) or system management interrupts (SMIs), and the like.
[0004] Hence, a VMM presents to other software (“guest software,”
“guests” or simpiy “guest”) the abstraction of one or more VMs. The VMM can
provide the same or different abstractions to the various guests. Each guest expects
the full facilities of the hardware platform presented in the VM to be available for its
use. For example, the guest expects to have access to all registers, caches, structures,
I/O devices, memory and the like according to the architecture of the processor and

platform presented in the VM. Further, each guest expects to handle various events,

1

NS

WO 2007/036072 PCT/CN2005/001623

such as exceptions, interrupts and platform events (e.g., initialization) (INIT) and
system management interrupts (SMIs).

[0005] Some of these resources and events are privileged because they are
managed by the VMM to ensure proper operation of VMs and to protect the VMM
and other VMs. For the privileged resources and events, the VMM facilitates
functionality desired by guest software, while retaining ultimate control over these
resources and events. The act of facilitating the functionality for the guest software
may include a wide variety of activities on the part of the VMM. The activities of
the VMM, as well as its characteristics, do not limit the scope of various

embodiments described herein.

WO 2007/036072 PCT/CN2005/001623

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The various embodiments of the present invention are illustrated by
way of example, and not by way of limitation, in the figures of the accompanying
drawings and in which:
[0007] FIG. 1 is a block diagram illustrating a virtual machine (VM) cluster
environment, in accordance with one embodiment. |
[0008] FIG. 2 is a block diagram further illustrating the VM cluster
environment of FIG. 1 with expedited VM launch, in accordance with one
embodiment.
[0009] FIG. 3 is a block diagram illustrating the sharing of physical memory
between parent and child VMs, in accordance with one embodiment.
[00010] FIG. 4 is a block diagram illustrating alternative platform
configurations of the host platforms illustrated in FIGS. 1 and 2, in accordance with
one embodiment.
[00011] FIG. 5 is a flowchart illustrating a method for expedited VM launch
in a VM cluster environment, in accordance with one embodiment.
[00012] FIG. 6 is a flowchart illustrating a method for launching a guest
operating system (OS), in accordance with one embodiment.
[00013] FIG. 7 is a flowchart illustrating a method for capturing a runtime
image of a hybrid VM, in accordance with one embodiment.
[00014] FIG. 8 is a flowchart illustrating a method for sharing of memory
between a parent VM and a child VM, in accordance with one embodiment.
[00015] FIG. 9 is a flowchart illustrating a method for a copy-on-write
technique employed on memory shared between a parent VM and a child VM, in
accordance with one embodiment.
[00016] FIG. 10 is a block diagram illustrating a computer platform that may
be implemented as a platform within the VM cluster environment illustrated in FIGS.
1 and 2, in accordance with one embodiment.
[00017] FIG. 11 is a block diagram illustrating a chip multiprocessor (CMP)

computer system, which may implemented as a platform within the VM cluster

anuviranment ilhigtratnd in BI2CQ 1 and 2 in ansardancs urith ana amhadimant
Wi VAILNJIZARINGALIL AR VALDLIAAVWGLE AL UL AN W s A RALIVE e il UIWWULAGGILLIWW YY LULLL Vllw WALIUUNGLLLIW LRV,

WO 2007/036072 PCT/CN2005/001623

DETAILED DESCRIPTION
[00018] A method and apparatus for expedited virtual machine (VM) launch
in VM cluster environment are described. In one embodiment, the method includes
the launch of at least one VM within a host platform. Once initialized, a VM may
issue a hypercall to a VM monitor (VMM) of the VM host platform. As described
herein, the host platform including the VM that issued the hypercall, may be
referred to herein as the “VM host platform.” In response to detection of a hypercall
issued by the VM, in one embodiment, the VMM may capture a runtime image of
the VM. In one embodiment, the VMM may load the runtime image of the VM
within at least the VM host platform of a VM cluster environment. In one
embodiment, the VMM may issue a VM clone command to a VMM of a next host
platform including the runtime image of the VM. In response to the VM clone
command, the VMM of the next host platform may load the runtime image of the
VM as a cloned VM. In one embodiment, a copy-on-write technique is used to
manage shared memory between a parent VM and a child VM.
[00019] In the following description, numerous specific details such as logic
implementations, sizes and names of signals and buses, types and interrelationships
of system components, and logic partitioning/integration choices are set forth in
order to provide a more thorough understanding. It will be appreciated, however, by
one skilled in the art that the invention may be practiced without such specific
details. In other instances, control structures and gate level circuits have not been
shown in detail to avoid obscuring the invention. Those of ordinary skill in the art,
with the included descriptions, will be able to implement appropriate logic circuits
without undue experimentation.
System
[00020] FIG. 1 is a block diagram illustrating a virtual machine (VM) cluster
environment 100, in accordance with one embodiment. In one embodiment, a
method for expedited VM launch in VM cluster environment 100 illustrated in FIGS.
1 and 2 is described. As described herein, “VM launch” is based on a guest
operating system (OS) creation time, which encompasses a time required for booting
the guest OS, a time required for initialization of the guest OS and an application

launching time. As described herein, “expedited VM launch” minimizes guest OS

4

WO 2007/036072 PCT/CN2005/001623

creation time required for VM launch by eliminating the time required for booting
the guest OS, initialization of the guest OS and application loading.

[00021] Accordingly, the expedited VM launch of the various VMs within a
VM cluster environment provides enhanced availability by reducing the amount of
time required for VM launch. However, it should be recognized by those skilled in
the art that the techniques for expedited VM launch, as described herein, may be
applied to standalone platforms in which multiple VMs may operate, as well as chip
multiprocessor (CMP) systems, which may support the simultaneous operation of
multiple guest operating systems.

[00022] Referring again to FIG. 1, VM cluster environment 100 may include
host platform 200, host platform 300 and host platform 400, which may be referred
to as “host platform clusters.” In the embodiments described, VM cluster
environment 100 may include any number of host platforms as desired, according to
the final system configuration. Representatively, host platforms 200, 300 and 400
are coupled together via a communications link 110. In one embodiment, the
communications link may include, but is not limited to, gigabit (GB) Ethernet, fiber
channel, or other like communications link. Representatively, host platform clusters
200/300/400 are illustrated according to a standalone virtual machine monitor
(VMM) configuration, including VMMs 230, 330 and 430 within host platform
clusters 200, 300 and 400, respectively, of VM cluster environment 100.

[00023] As shown in FIG. 1, VM cluster environment 100 is illustrated as a
nine node VM cluster environment, wherein each platform includes three nodes for
loading guest operating systems 220, 320 and 420. Representatively, guest OS 220
(220-1, 220-2, 220-3) are loaded within host platform 200; guest OS 320 (320-1,
320-2, 320-3) are loaded within host platform 300; and guest OS 420 (420-1, 420-2,
420-3) are loaded within host platform 400. As will be recognized by those skilled
in the art, the embodiments described for the expedited VM launch are not limited to
the nine node VM cluster environment 100, as shown in FIGS. 1 and 2, and may
include any number of nodes while remaining within the scope of the described
embodiments.

[00024] As described herein, in one embodiment, the configuration of VM

cluster environment 100 is based on the following presumptions: (1) VMM

WO 2007/036072 PCT/CN2005/001623

230/330/430 can be different, but at least comply with the same VMM application
programming interface (API) and provide the same hypercall interfaces for the
various guest operating systems (OS); (2) the VM interface for the clustered guest
OSs 220/320/420 is the same; (3) clustered guest OS kernel and software
configurations are identical for the guest OS 220/320/420; and (4) the VMs in one
cluster have the same usage; and therefore, operate as VM workers, in accordance
with one embodiment.

[00025] In VM cluster environments, for example, as shown in FIGS. 1 and 2,
the creation time for loading the VMs, including guest OS 220/320/420 and other
required applications can vary depending on the cluster size and specifically, the
number of nodes within the VM cluster environment. Generally, the creation time
for a VM may include the time required for booting the guest OS, initialization of
the guest OS, and any application launched by the guest OS or other required
services. In one embodiment, as shown in FIG. 2, a VMM hypercall interface of
VMMs 230/330/430 is modified to support a VM fork () hypercall. As described
herein, a hypercall may refer to a command issued by a VM, such as a guest OS, to
request a host platform service or access a host platform resource.

[00026] Referring again to FIG. 2, VMM 230 launches guest OS on platform
200. After the necessary initialization, guest OS 220-1 may issue a VM fork ()
hypercall to the hypercall interface of VMM 230, as indicated by arrow 102. In
response to the VM fork () hypercall issued by guest OS 220-1, VMM 230 may
capture a runtime image of guest OS 220-1. By using the runtime image of guest
OS 220-1, expedited VM launch of, for example, guest OS 220-2, is achieved by
minimizing the guest OS creation time; specifically, the time required for booting of
the guest OS, initialization of the guest OS and application launch of the guest OS is
eliminated.

[00027] Referring again to FIG. 2, once VMM 230 has captured a runtime
VM image of guest OS 220-1, VMM 230 has the option (Option 1 as indicated by
arrow 104) of launching a clone VM of guest OS 220-1 within another platform,
such as platform 300, or loading a child VM (Option 2 as indicated by arrow 108)
according to the runtime image of guest OS 220-1 within a next node of platform

200. In accordance with Option 1, the launch of a VM on another platform is

WO 2007/036072 PCT/CN2005/001623

performed, in one embodiment, by VMM 230 issuing a VMM API VM clone
command to another platform, such as platform 300, as shown in FIG. 2 and
indicated by arrow 106.

[00028] In one embodiment, the VM clone command issued to host platform
300 includes the runtime image of guest OS 220-1 from host platform 200.
Accordingly, in response to detection of a VM clone command issued by another
platform, platform 300 will launch a VM clone, such as guest OS 320-1 according to
the runtime VM image of guest OS 220-1. As described herein, “VM clone” may
refer to a VM that is created according to a runtime image of a VM loaded within a
different host platform cluster.

[00029] In one embodiment, the expedited launch of a VM child within a
node of host platform 200 (see arrow labeled 108) may result in the sharing of
memory between the parent VM 220-1 and the child VM 220-2. In other words,
because child VM 220-2 is loaded with the runtime image of parent VM 220-1,
parent VM 220-1 and child VM 220-2 share the same VMM configuration, the same
VM definition, the same kernel definition, the same software configuration and the
same runtime configuration. As a result, parent VM 220-1 and child VM 220-2
share memory 272 as parent/child processes do. In one embodiment, the VM fork ()
hypercall process is supplemented by a copy-on-write technique, for example, as
illustrated in FIG. 3.

[00030] FIG. 3 is a block diagram illustrating the sharing of physical memory
270 between parent VM 220-1 and child VM 220-2. As part of the sharing of
memory, in one embodiment, a portion of physical memory 274 is allocated to
parent VM 220-1 and a portion of physical memory is allocated as private memory
276 for child VM 220-1. In one embodiment, as described in further detail below,
when a write is detected to shared memory 272, a trigger-on-write technique
relocates the data to the allocated portion of private memory 274/276.

[00031] In one embodiment, pages may be shared between a parent VM 220-
1 and a child VM 220-2. In one embodiment, a read/write (R/W) attribute in each
page table (for x86 environment) or a R/W attribute in TLB (for Itanium platform)
may be used to protect shared pages, as manufactured by the Intel® Corporation.

However, implementation details for the sharing of page tables between parent and

7

WO 2007/036072 PCT/CN2005/001623

child processes will vary depending on the central processing unit (CPU)
architecture selected for the VM cluster environment 100 (FIGS. 1 and 2). Hence,
other architecture attributes may be employed to facilitate the copy-on-write
technique.

[00032] FIG. 4 is a block diagram illustrating various configurations for host
platforms 200/300/400, as shown in FIGS. 1 and 2. As illustrated in FIGS. 1 and 2,
host platforms are shown according to a standalone VMM model. In a standalone
VMM model, the VMM runs directly on top of hardware resources, such as
hardware resources 260/360/460. However, the various configurations for host
platforms 200/300/400 are not limited to the standalone VMM model illustrated in
FIGS. 1, 2 and 4. In one embodiment, the host platforms may be configured
according to a host VMM configuration 200/300/400, as shown in FIG. 4.

[00033] Representatively, the host VMM model 300 includes VMM 330,
which runs on top of host operating system (OS) 340. In a further embodiment, one
or more of the host platforms 200/300/400 of VM cluster environment 100, as
shown in FIGS. 1 and 2, may be configured according to a hybrid VMM model 400,
as shown in FIG. 4. Representatively, hybrid VMM model 400 is comprised of
service OS 440 and micro-hypervisor (basic VMM) 430, including optimized API
432. According to the hybrid VMM model 400, micro-hypervisor 430 may be
responsible for CPU/memory resource virtualization and domain scheduling.
Service OS may be responsible for VM management and device
virtualization/simulation. In accordance with the embodiments illustrated in FIG. 4,
expedited VM launch according to a VM hypercall may be performed according to
any of the host platform configuration 200/300/400 shown in FIG. 4 or other like
configurations, to reduce or minimize the creation time of a VM process by

eliminating the OS launch process and application initialization.

WO 2007/036072 PCT/CN2005/001623

TABLE 1

Hypercall VM fork pseudo code:
VM_fork(VM_type)
{
if ('VM_launched(calling)VM))
error():
VM_block(calling_VM); // in order to get stable VM state.
target_pf = get_target_pf(VM_type); // check load balancing kind of
policy to get platform.
if (target_pf ! = current_pf) {
save_VM_state(calling_VM, state_pointer);
remote_VM_clone(target_pf, state_pointer);
}if else {
if (child_VM=VM_fork(calling VM)) {
wait until launched (child_VM);
VM_unblock(calling_VM);

else{
Vmunblock(child_VM};

WO 2007/036072 PCT/CN2005/001623

TABLE 2

VM_clone(source_platform, state_capsule) /* this is the counterpart of
remote_VM_clone() on the target platform */

{

if (check_platform_compatiblity(source_platform, state_capsule))
error ("this state capsule is not supported on VMM %d", self_platform); /*
check whether the state_capsule is understandable on this platform */

prepare_device_model_state(state_capsule);
prepare_CPU_state(state_capsule);
prepare_bootstrap_memory(state_capsule);
new_VM = create_ VM_descriptor(state_capsule);
enter_run_queue(new_VM);

}

[00034] Pseudo-code for implementing the VM fork () hypercall is shown in
Table 1. Table 2 illustrates pseudo-code for the VMM API VM clone command.
As indicated by the pseudo-code for implementing the VM hypercall as shown in
TABLE 1, the VM fork hypercall directs the VMM to capture the runtime image of
the calling VM. As illustrated by the pseudo-code for the VMM API VM clone
command, the creation of the VM clone may require preparation of a device model
state, a CPU state and a bootstrapping of memory, which are stored within a state
capsule. From such state capsule, a new VM may be created and entered into a run
queue for loading the cloned VM. Procedural flowcharts for implementing methods
for expedited VM launch within a VM cluster environment are now described.
Operation ~

[00035] Turning now to FIG. 5, the particular methods associated with
embodiments of the invention are described in terms of computer software and
hardware with reference to a flowchart. The methods to be performed by a
computing device (e.g., a VMM) may constitute state machines or computer
programs made up of computer-executable instructions. The computer-executable
instructions may be written in a computer program and programming language or
embodied in firmware logic. If written in a programming language conforming to a
recognized standard, such instructions can be executed in a variety of hardware

platforms and for interface to a variety of operating systems.

i

o1 « P - B, Iy Nyt RS B

TIL101] 4TS 1id ICNCTIDE0 Wiiil

reference to any particular programming language. It will be appreciated that a
10

WO 2007/036072 PCT/CN2005/001623

variety of programming languages may be used to implement embodiments of the
invention as described herein. Furthermore, it is common in the art to speak of
software, in one form or another (e.g., program, procedure, process, application,
etc.), as taking an action or causing a result. Such expressions are merely a
shorthand way of saying that execution of the software by a computing device
causes the device to perform an action or produce a result.

[00037] FIG. 5 is a flowchart illustrating a method 500 for expedited virtual
machine (VM) launch in a VM cluster environment, in accordance with one
embodiment. In the embodiments described, examples of the described
embodiments will be made with reference to FIGS. 1-5. However, the described
embodiments should not be limited to the examples provided to limit the scope
provided by the appended claims.

[00038] Referring again to FIG. 5, at process block 502, at least one virtual
machine (VM) is launched within a host platform by, for example, a VM monitor
(VMM) of a host platform, for example, as shown in FIG. 2. Once initialized, a VM
may issue a hypercall to a virtual machine monitor (VMM) of a VM host platform.
As described herein, the host platform including the VM that issued the hypercall,
may be referred to herein as the “VM host platform.” In one embodiment, the
hypercall is a VM fork () hypercall. In response to detection of, for example a VM
fork () hypercall, the VMM of the VM host platform may capture a runtime image
of the VM according to the hypercall issued by the VM.

[00039] Once the VMM of the VM host platform has captured the runtime
image of the VM, in one embodiment, the VMM decides whether to launch the VM
within the VM host platform or a next host platform of a VM cluster environment.
Accordingly, at process block 550, it is determined whether the VMM selects the
VM host platform to load the runtime image of the VM as a child VM. When the
VM host platform is selected, at process block 580, the VMM loads the runtime
image of the VM within a node of the VM host platform as a child VM, with the
VM that issued the VM fork () hypercall as a parent VM of the child VM.
Otherwise, at process block 560, the VMM of the first host platform may issue a call

to a VMM of a next host platform of the cluster environment.

11

WO 2007/036072 PCT/CN2005/001623

[00040] In one embodiment, the call is a VMM application program interface
(API) VM clone command. Accordingly, in response to issuance or receipt of a VM
clone command, a next platform or other platform within the VM cluster
environment, for example, as shown in FIGS. 1 and 2, will load the runtime image
received with the VM clone command within the next host platform.

[00041] As will be recognized, as described herein, the term “expedited VM
launch” refers to the ability to load a VM, such as, for example, a guest operating
system (OS) or creation of such guest OS with the creation time of the guest OS
minimized since the OS launch process and application initialization process can be
avoided. In one embodiment, when the VMM loads the runtime image as a child
VM on the same platform, the expedited VM launch process can be further
shortened by a copy-on-write technique, for example, as shown in FIG. 3.

[00042] FIG. 6 is a flowchart illustrating a method 510 for loading the VM of
process block 502 of FIG. 4, in accordance with one embodiment. At process block
512, a guest OS is booted within a first node of the first host platform of a VM
cluster environment, such as, for example, shown in FIGS. 1 and 2, in accordance
with one embodiment. Once the guest OS is loaded, the guest OS may issue a VM
fork hypercall to the VMM of the first host platform. As indicated above, detection
of the VM fork hypercall by the VMM monitor requires the VMM to select a node
within the first host platform in which to load a child VM or select a next host
platform in the cluster to issue a VM clone command so that the next host platform
cluster may expedite VM launch by loading a VM clone within a node of the next
host platform in the cluster.

[00043] FIG. 7 is a flowchart illustrating a method 540 for capturing the one-
time image of the first VM. In the embodiment illustrated in FIG. 7, the first VM is
configured according to a hybrid VMM module, such as hybrid VMM model 400,
as shown in FIG. 4. Conversely, for the hypervisor VMM model 200, as shown in
FIG. 4, and hosted VMM model 300, shown in FIG. 4, the host OS and hypervisor
are able to control/manage each guest VM state. In doing so, the host OS and
hypervisor are able to provide VM state isolation, which renders capturing of the

VM state straightforward.

12

WO 2007/036072 PCT/CN2005/001623

[00044] Conversely, for hybrid VMM model 400, as shown in FIG. 4, at
process block 542, an in-hypervisor state and an in-device model state of the first
VM are synchronized to form a synchronized state. Once synchronized, at process
block 544, the synchronized state is sealed into a packet to form the runtime image
of the first VM, which may be either loaded within a node of the current host
platform or provided with a VM clone command to a selected next host platform
cluster.

[00045] FIG. 8 is a flowchart illustrating a method 582 for operation of parent
and child VMs, for example, as shown in FIG. 3, which are required to share
memory. To enable the sharing of memory, at process block 584, a virtual memory
space of the parent VM, for example, as shown in FIG. 3, is initialized. At process
block 586, a virtual memory space of the child VM is initialized. In one
embodiment, a virtual address to physical address mapping is provided to enable a
copy-on-write technique, for example, as described in FIG. 9. Finally, at process
block 588, the sharing of a portion of memory between the child VM and the parent
VM is enabled.

[00046] In one embodiment, copy-on-write does not require the parent
process/VM to claim additional physical memory in response to the VM fork ()
hypercall because the parent has already mapped the needed memory. In one
embodiment, child process/VM shares physical memory with his parent by mapping
to the same piece of physical memory. As a result, physical memory allocation is
not required. In one embodiment, the system establishes the virtual address to
physical mapping for the child VM in response to the VM fork () hypercall.

[00047] FIG. 9 is a flowchart illustrating a method 590 for a copy-on-write
technique to enable sharing of memory between child VMs and parent VMs, in
accordance with one embodiment. At process block 592, it is determined whether a
detected write is issued to a portion of the memory shared between the parent VM
and the child VM. Once a write is detected to the shared memory, at process block
594, it is determined whether the write is issued by the parent VM. If the write is
issued by the parent VM, at process block 596, the detected write data issued to the
portion of shared memory is transferred from the portion of shared memory to the

portion of physical memory assigned to the parent VM. Otherwise, at process block

13

WO 2007/036072 PCT/CN2005/001623

598, the detected write data issued to the shared memory is transferred from the
portion of shared memory to the portion of physical memory assigned to the child
VM.

Host Platform Architecture

[00048] FIG. 10 is a block diagram illustrating a computer system 600 that
may operate as a host platform cluster within the VM cluster environment 100, as
shown in FIGS. 1 and 2, according to one embodiment. Initially, the guest OS 620,
the VMM 630 and other like components, such as host firmware 640, are stored
within the hard disk or disk memory 670, as shown in the computer system 600 of
FIG. 10. Hence, any host firmware 640 is initially stored in non-volatile memory
690. Accordingly, the guest firmware 640 is initially stored on hard disk 674. In
operation, the VMM 630 will load the guest firmware 640 from the hard disk 674
and copy the guest firmware 640 into a well-defined location, such as a
predetermined block of memory.

[00049] As shown in FIG. 10, firmware 640 includes three major components:
extensible firmware interface (EFI) 692 to provide guest OS software 620 access to
the firmware components. Representatively, the firmware components include
system abstraction layer (SAL) 696 and processor abstraction layer (PAL) 694. As
described herein, EFI 692, SAL 696 and PAL 694 are collectively referred to herein
as “host firmware.” In one embodiment, host/guest OS 630 interacts with host
firmware, specifically PAL 694 and SAL 696 via EFI interface 692, to provide an
environment in which applications can be executed by the CPU. SAL 696 is a
firmware layer that isolates an operating system and other higher level software
from implementation differences in the platform. PAL 694 provides a consistent
software interface to access the processor resources across different processor
implementations and encapsulates all processor model-specific hardware.

[00050] Representatively, computer system 600 may be, for example, a
personal computer system. Computer system 600 may include one or more
processors (e.g., processor 660), a memory controller 664, an input/output (I/O)
controller 670, and one or more BIOS (basic input/output system) memories (e.g.,
BIOS memory 670). In one embodiment, processor 660, memory controller 664,

/O controlier 680 and BIOS memory 690 may reside on a chipset 661. As

14

WO 2007/036072 PCT/CN2005/001623

described herein, the term “chipset” is used in a manner well known to those of
ordinary skill in the art to describe collectively, the various devices coupled to the
processor 660 to perform desired system functionality. In an alternative
embodiment, one or more of processor 660, memory controller 664, I/O controller
680 and BIOS memory 690 may reside on other types of component boards, for
example, a daughter board.

[00051] The memory controller 664 controls operations between processor
660 and a memory device 670, for example, memory modules comprised of random
access memory (RAM), dynamic RAM (DRAM), static RAM (SRAM),
synchronous DRAM (SDRAM), double data rate (DDR) SDRAM (DDR-SDRAM),
Rambus DRAM (RDRAM) or any device capable of supporting high-speed storage
of data. The I/O controller 680 may control operations between processor 660 and
one or more input/output (I/O) devices 685, for examples, a keyboard and a mouse
over a low pin count (LPC) bus 689. The I/O controller 680 may also control
operations between processor 660 and peripheral devices, for example, a drive 686
coupled to I/O controller 680 via an integrated drive electronics (IDE) interface 687.
Additional buses may also be coupled to I/O controller 680 for controlling other
devices, for examples, a peripheral component interconnect (PCI) bus 682, or follow
on bus (e.g., PCIx, PCI Express) and a universal serial bus (USB) 688. In one
embodiment, the memory controller 664 may be integrated into processor 660 or
integrated with I/O controller 680 into a single component.

[00052] In the embodiment illustrated, a driver controller 683 may be coupled
to PCI bus 682 and may control operations of hard disk drive 681. In one
embodiment, guest firmware 640, including guest EFI 692, guest SAL 696, guest
PAL 694, guest OS 620 and VMM 630, may be stored on the hard disk drive 681.
In this manner, the hard disk drive 681 may serve as the boot-up device including,
for example, a loader program to load the various host components as well as the
VMM 630 to load a VM as well as the various guest components, including guest
firmware and one or more guest OS 620 within the VMM 630.

[00053] BIOS memory 690 may be coupled to I/O controller 680 via bus 684.
BIOS memory 970 is a non-volatile programmable memory, for example, a flash

memory that retains the contents of data stored within it even after power is no

15

WO 2007/036072 PCT/CN2005/001623

longer supplied. Alternatively, BIOS memory 690 may be other types of
programmable memory devices, for examples, a programmable read only memory

' (PROM) and an erasable programmable read only memory (EPROM). Computer
system 600 may also include other BIOS memories in addition to BIOS memory
690.
[00054] Accordingly, as shown in FIG. 10, BIOS memory 690 may include
host platform firmware for initializing the computer system following system reset.
As described herein, the host firmware includes EFI 692, SAL 696 and PAL 694.
Accordingly, as described herein the guest firmware 640 is loaded during boot-up of
computer system 600 to provide a host platform. Following the boot-up, the host
platform will load VMM 630, which is responsible for loading the guest firmware
640, one or more guest OS 630 and other like components from hard disk 681.
[00055] FIG. 11 is a block diagram illustrating a symmetric multi-processing
(SMP) system 700, which may operate as host platform of VM cluster environment
100 (FIGS. 1 and 2), in accordance with one embodiment. Representatively, SMP
700 may contain a chip multi-processor (CMP) including a plurality of processor
cores 760 (760-1, . . ., 760-N), which are fabricated on the same die. As illustrated,
processor cores (CPU) 710 are coupled to interconnection network 780 to access
shared memory 770. In one embodiment, each CPU 710 includes a private core
cache hierarchy (not shown), which may be used for the temporary storage or
caching of data.
[00056] Representatively, CPUs 760 access shared memory 770 via
interconnection network 780. In one embodiment, shared memory 770 may include,
but is not limited to, a double-sided memory package including memory modules
comprised of random access memory (RAM), dynamic RAM (DRAM), static RAM
(SRAM), synchronous DRAM (SDRAM), double data rate (DDR) SDRAM (DDR-
SDRAM), Rambus DRAM (RDRAM) or any device capable of supporting high-
speed storage of data.
[00057] Accordingly, in the embodiments described, the expedited VM
launch process enables the loading of a child VM, or clone VM, within a respective
node of the VM cluster environment, for example, as shown in FIGS. 1 and 2, which

may inciude host platforms, such as computer system 600 (FIG. 10), CMP 700 (FIG.

16

WO 2007/036072 PCT/CN2005/001623

1) or other like computer architecture. This technique is referred to as an “expedited
VM launch” since the use of the VM fork () hypercall and new VM API
management VM clone command minimize the guest OS creation time of the
respective VM by eliminating the time required to boot the guest OS, initialization
of the guest OS and application launch required by the guest OS by the introduction
of the VM fork hypercall, as described herein.

[00058] Accordingly, by utilizing the VM fork () hypercall command and
VM clone command, an expedited VM launch process is provided, as compared to a
conventional VM launch, since the OS launch process required for creation of a
guest OS and application initialization process, as well as the application load
process, can be avoided. Furthermore, in the embodiments described, if a child VM
is loaded on the same platform, the process can be further expedited by providing a
copy-on-write technique, for example, as shown in FIG. 4, according to the
embodiments described. Accordingly, by using the expedited VM launch process,
enhanced high-availability of a VM cluster environment, such a VM cluster
environment 100 shown in FIGS. 1 and 2, is provided with increased availability
because the amount of time in which the VMs are unavailable is reduced.

[00059] Elements of embodiments of the present invention may also be
provided as a machine-readable medium for storing the machine-exef:utable
instructions. The machine-readable medium may include, but is not limited to, flash
memory, optical disks, compact disks-read only memory (CD-ROM), digital
versatile/video disks (DVD) ROM, random access memory (RAM), erasable
programmable read-only memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), magnetic or optical cards, propagation media or
other type of machine-readable media suitable for storing electronic instructions.
For example, embodiments described may be downloaded as a computer program
which may be transferred from a remote computer (e.g., a server) to a requesting
computer (e.g., a client) by way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., a modem or network
connection).

[00060] It should be appreciated that reference throughout this specification

to “one embodiment” or “an embodiment” means that a particular feature, structure

17

WO 2007/036072 PCT/CN2005/001623

or characteristic described in connection with the embodiment is included in at least
one embodiment of the present invention. Therefore, it is emphasized and should be
appreciated that two or more references to “an embodiment” or “one embodiment”
or “an alternative embodiment” in various portions of this specification are not
necessarily all referring to the same embodiment. Furthermore, the particular
features, structures or characteristics may be combined as suitable in one or more
embodiments of the invention.

[00061] In the above detailed description of various embodiments of the
invention, reference is made to the accompanying drawings, which form a part
hereof, and in which are shown by way of illustration, and not of limitation, specific
embodiments in which the invention may be practiced. In the drawings, like
numerals describe substantially similar components throughout the several views.
The embodiments illustrated are described in sufficient detail to enable those skilled
in to the art to practice the teachings disclosed herein. Other embodiments may be
utilized and derived therefrom, such that structural and logical substitutions and
changes may be made without departing from the scope of this disclosure. The
following detailed description, therefore, is not to be taken in a limiting sense, and
the scope of various embodiments of the invention is defined only by the appended
claims, along with the full range of equivalents to which such claims are entitled.
[00062] Having disclosed embodiments and the best mode, modifications and
variations may be made to the disclosed embodiments while remaining within the

scope of the embodiments as defined by the following claims.

18

WO 2007/036072 PCT/CN2005/001623

CLAIMS

What is claimed is:

1. A method comprising:

capturing a runtime image of a virtual machine (VM) according to a
hypercall issued by the VM and

loading the runtime image of the VM within at least one host platform of a

VM cluster environment.

2. The method of claim 1, wherein prior to capturing, the method
further comprises:

booting a guest operating system (OS) within a first node of a first host
platform of the VM cluster environment; and

issuing, by the guest OS, a VM fork hypercall to a VM monitor (VMM) of
the first host platform.

3. The method of claim 2, wherein loading the runtime image comprises:
selecting, by a VM monitor (VMM) of a VM host platform, a node of the
VM host platform to load the runtime image of the VM as a child VM.

4. The method of claim 1, wherein capturing the runtime image further
comprises:

synchronizing an in-hypervisor state and an in-device-model state of the VM
to form a synchronized state; and

sealing the synchronized state into a packet to form the runtime image of the
VM a5 2 captured VM state,

¥ oAV

19

WO 2007/036072 PCT/CN2005/001623

5. The method of claim 1, wherein loading the runtime image of the
VM further comprises:

detecting, by a VM monitor (VMM) of a VM host platform of the VM
cluster environment, the hypercall issued by the VM; and

loading, by the VMM, the runtime image of the VM within a node of the
VM host platform as a child VM with the VM that issued the hypercall as a parent
VM of the child VM.

6. The method of claim 1, wherein loading the runtime image further
comprises:

issuing a call to a VM monitor (VMM) of a next host platform within the
VM cluster environment, including the runtime image of the VM; and

loading, by the VMM of the next host platform, the runtime image of the
VM within the next host platform.

7. The method of claim 5, further comprising:

sharing, between the child VM and the parent VM, a portion of memory.

8. The method of claim 7, further comprising;:
initializing a virtual memory space of the parent VM; and

initializing a virtual memory space of the child VM.

0. The method of claim 1, further comprising;:
detecting a write issued to the portion of memory shared between a parent

VM and a child VM; and

20

WO 2007/036072 PCT/CN2005/001623

transferring detected write data from the portion of shared memory to one of

a portion of physical memory assigned to the parent VM and the child VM.

10. The method of claim 3, further comprises:
selecting a next host platform of the VM cluster environment to load a

cloned VM within a node of the next host platform.

11. A method comprising:

launching a parent virtual machine (VM) within a node of a host platform in
a cluster;

capturing a runtime image of the parent VM according to a hypercall issued
by the parent VM to a VM monitor (VMM) of the host platform in the cluster; and

loading, by the VMM, the runtime image of the parent VM within a next
node of the host platform in the cluster as a child VM of the parent VM.

12. The method of claim 11, further comprising:

issuing a call to a VM monitor (VMM) of a next host platform in the cluster,
including the runtime image of the first VM; and

loading, by the VMM of the next host platform in the cluster, the runtime

image of the first VM within a node of the next host platform in the cluster.

13. The method of claim 11, further comprising:
sharing, between the parent VM and the child VM, a portion of memory.

21

WO 2007/036072 PCT/CN2005/001623

14. The method of claim 13, further comprising:
initializing a virtual memory space of the parent VM and

initializing a virtual memory space of the child VM.

15. The method of claim 11, further comprising:

detecting a write issued to the portion of memory shared between the parent
VM and the child VM; and

transferring detected write data from the portion of shared memory to one of

the parent physical memory and the child physical memory.

16. A system comprising:
at least one host platform, the host platform including at least one node,
wherein the host platform includes:
a virtual machine monitor (VMM), the virtual machine monitor to
capture a runtime image of virtual machine (VM) within a node of the host platform,
according to a hypercall issued by the VM and to load the runtime image within at

least one host platform.

17. The system of claim 16, wherein at least one host platform further
comprises:

a plurality of host platforms, each host platform including a plurality of
nodes and coupled together via a communications link to form a VM cluster

environment.

18. The system of claim 17, wherein each host platform comprises:

22

WO 2007/036072 PCT/CN2005/001623

a VMM, each VMM including a hypercall interface to receive hypercalls
issued by a VM and a VMM interface to receive a VMM clone command issued by

a host platform.

19. The system of claim 16, wherein the host platform comprises:
a system memory coupled to an interconnection network; and
a chip multiprocessor comprising a plurality of processor cores, wherein-

each processor core to support a VMM at least two nodes, each loaded with a VM.

20. The system of claim 16, further comprising:

a next host platform including at least one node and coupled to the host
platform via a communications link to form a VM cluster environment, the host
platform including:

a VMM including a VMM interface to receive a VM clone command
issued by the host platform including the runtime image of a VM and to load the

runtime image of the VM within a node of the next host platform as a cloned VM.

23

PCT/CN2005/001623

WO 2007/036072

0}

JE

om(TANNYHO Y3814/ 13NaHLT 3LAGVOI
00y WHO4LY1d ‘ 008 WHOALY1d 00Z WHOALY1d
{S30IAIQ OVANOWIWNGD) (S30IA3A OVANOWININGD) (S391A30 OUANOWANINGD)
v MH 05 MH 0 MH
(1152 0¢e 067
LA VAIAA WA
g0cv | | T0cv | | 1-0c €0ct | | 20¢8 | | T0¢8 £0cc || 70ce | | T0ee
1SO || 180 || 1S0 180 || 180 |] 180 1SO || 180 || 1SO
18ans| [Lsansf |Lsan9 1s3ng| |Lsan9| |1san9 153n9f [183n9] [183n9

1710

PCT/CN2005/001623

WO 2007/036072

¢ 9l %)
_ INOTO WA
O 7 v N\
o ENHO S LSS 2AEVOID
007 WHOALY1d 008 WNOALYTd 00Z WHOAIYTd
(SI0IAI OVAHOWINNGD) (STOIA3T ONAONIWNED) (S301A30 OVANOWININD)
o MH W& MH 097 MH
07 OEg U 20
SIINA ZHINA LA
e | | 70z | | 7o w0z | | 702 | w0 |) 4
150 || 150 |1 150 150 || 180 \ 150 \ \
1sans| |1sans| |Lsane 153n9| |1sane| 7 539 7/ oamn
E\W\ \ : TIVOYIdAH

2/10

WO 2007/036072

SHARED MEMORY
272

PHYSICAL MEMORY
270

PRIVATE |
MEMORY FOR !
PARENT VM

PRIVATE |
MEMORY FOR |
CHLDVM |

-
-
n-.~~...-_~_
- —
—

FIG. 3

3/10

PCT/CN2005/001623

PARENT VM

VIRTUAL MACHINE
PHYSICAL MEMORY
220-1

CHILD VM

VIRTUAL MACHINE
PHYSICAL MEMORY
220-2

HOT ST ST o e i v e e e bt o ket vt e o o an o y. o o o

———

PCT/CN2005/001623

WO 2007/036072

¥ 'Old

00y
THAON QIEAH
4 o N
0
f ST0UNOSTY NALSAS ONY FHYMAYH)
4 o)
0% ——
\ WA OISVE Gy
(o 0% 0%y A
50 15319 501539 S0 F0IAY3S
.. S
00g 002
1300 G3LSOH 300N INOTV-ONVLS
“\ s ., N

SFUNOSIY WALSAS ANV IHYMAYYH

_J

— ™
e oce
SO 1SOH WIAA

__J/

<R 0%)
S0 1839 S0 183N9

SI0UN0SIY WILSAS ANV THYMAEYH

\.

~

[i[%4
WINA HOSINEEdAH

\§

-

o

N-Oce | 1-0¢cc
S0 1S3No SO 183N

4/10

WO 2007/036072 PCT/CN2005/001623

500

@ -

LAUNCH AT LEAST ONE VIRTUAL MACHINE (VM) }~ 392
WITHIN A HOST PLATFORM

o

b 4

| 520
M FORK(] NO
HYPERCALL

DETECTED?

CAPTURE A RUNTIME IMAGE OF A VM THAT | 530
ISSUED THE VM FORK() HYPERCALL AS A
CAPTURED VM STATE

ISSUEA CALLTO A ’\5/60

No | VMM OF ANEXT
HOST PLATFORM,
INCLUDING THE
CAPTURED VM STATE

SELECT THE VM
HOST PLATFORM TO LOAD THE
CAPTURED VM STATE?

k

580 ; 570
O LOAD, BY THE VMM OF [
LOAD BY THE YMM, THE CAPTURED| THE NEXT HOST
VM STATE WITHIN THE VM HOST PLATFORM, THE
PLATOFRM AS A CHILD VM CAPTURED VM
STATE
> i
A 4
END

5/10

WO 2007/036072 PCT/CN2005/001623

510
FROM -/
502
512

BOOT A GUEST OPERATING SYSTEMWITHINA |~>
FIRST NODE OF THE FIRST HOST PLATFORM OF
AVM CLUSTER ENVIRONMENT

v

ISSUE, BY THE GUEST OS, A VM FORK ’\5_34
HYPERCALL TO A VM MONITOR (VMM) OF
THE FIRST HOST PLATFORM

FIG. 6

540
FROM N
530

SYNCHRONIZE AN IN-HYPERVISOR STATE amp |2
AN IN-DEVICE-MODEL STATE OF THE FIRST VM
TO FORM A SYNCHRONIZED STATE

v

SEAL THE SYNCHRONIZED STATE INTO A ’\5_64
PACKET TO FORM THE RUNTIME IMAGE OF
THE FIRST WM

@ FIG. 7

6/10

WO 2007/036072

PCT/CN2005/001623

582

FROM -/
580

584
INITIALIZE PARENT VM’S [~
VIRTUAL MEMORY SPACE
v 586
INITIALIZE CHILD VM'S VIRTUAL (-
MEMORY SPACE
v 588
SHARE A PORTION OF MEMORY BETWEEN [~
THE PARENT VM AND THE CHILD VM

v

FIG. 8

7110

PCT/CN2005/001623

WO 2007/036072

865

an3

I~ AHL 0L AHOWIIN G5HVHS 40 NOILHOd
965

F

WA INFHYd JHL
Ol G3NDISSY AHO W3 N TW¥DISAHd 40 NOILYOd

3FHL WO¥H VLVQ JLIHM 03103130 HI4SNVHL

WA TIHO 3HL

OL GINDISSY AHOWIIN T¥IISAHd 40 NOILHOd
dH1 OL AMOWIW GIVHS 40 NOILHOd
JHL WOY4 VIVA 3LEm (3103130 ¥3ISNVHL

NA INJHVd
A8 Q3nss|
JLR-EIM

6 9Old

v65

WA dTIHO 3HL
aNY WA INJHYd 3HL N3IMI3E GIHVHS AHO IR
40 NOILHOd 3HL 01 43NSSI3LIMM Y 103130

26§ A

065

8/10

WO 2007/036072

661

~

PCT/CN2005/001623

H
i
|
]
H
600 660 i
\ 0 ’
!
PROCESSOR i
M_ \\ i
I AES ‘l l'
664 L
(J 870 =) 1
-
MEMORY E ﬂ
MEMORY
CONTROLLER SEITE 683
680 CONTROLLER
PCI BUS 582
o
(;86 s87 | |CONTROLLER
DE LPC
DRIVE USB | i
p 8 N
688 . | 690
602
EFI || -
PAL Ml DEVICES
SAL || 6%
9/10

WO 2007/036072

PCT/CN2005/001623

CPU CPU CPU vse CPU
760-1 760-2 760-3 760-N
| | |
INTERCONNECTION NETWORK
l
SHARED MEMORY
770
SMP 700

10/10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2005/001623

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/00 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOGF 9/00 (2006.01) i

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Chinese documents

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC,WPLPAI,CNPAT

virtual, machine, simulation,call,platform,expedit+,VM,clone,fork,guest,software,event,load

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

document

A US,A,5488713(DIGITAL EQUIP CORP)30.Jan 1996(30.01.1996), the whole document

A US,B1,6513158(ESPIAL GROUP INC) 28.Jan 2003(28.01.2003), the whole document
A CN,A,1249877(SIEMENS AG) 05.Apr 2000(05.04.2000), the whole document

A CN,A,1490724(SHANGHAI BELL CO LTD) 21.Apr 2004(21.04.2004), the whole

1-20

1-20
1-20

1-20

- [Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not

considered to be of particular relevance

“E” earlier application or patent but published on or after the
international filing date

“L” document which may throw doubts on priority claim (S) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0O” document referring to an oral disclosure, use, exhibition or
other means

“P» document published prior to the international filing date

but later than the priority date claimed

“T” later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X” document of particular relevance; the claimed invention
cannot be considered nove! or cannot be considered fo involve
an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such
documents, such combination being obvious to a person

skilled in the art
“&”document member of the same patent family

Date of the actual completion of the international search
28.May.2006(28.05.2006)

[5 - JUN2006 4 5

Date of mailing of the international search report

[Name and mailing address of the ISA/CN

1he State Inteliecival Property Office, the PR.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

Facsimile No. 86-10-62019451

062008

Antharizad nffiser)
Authorized officc: e
WANG) Nin,

Y ==

Telephone No. (86-10) 62985&

Form PCT/ISA /210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2005/001623
Patent Documents referred Publication Date Patent Family Publication Date
in the Report
US,A,5488713 30.Jan 1996(30.01.1996) NONE NONE
US,B1,6513158 28.Jan 2003(28.01.2003) NONE NONE
CN,A,1249877 05.Apr 2000(05.04.2000) WO0,A2,9908419 18.Dec 1999(18.02.1999)
CN,C,1119892 27.Aug 2003(27.08.2003)
EP,A2,1002409 05.Apr.2000(05.04.2000)
EPB1,1002409 22.0ct.2003(22.10.2003)
JP,T,2001513588T 04.Sep 2001(04.09.2001)
DE,D,59809978D 27.Nov 2003(27.11.2003)
US,B,6766366 20.Jul 2004(20.07.2004)
CN,A,1490724 21.Apr 2004(21.04.2004) . NONE NONE

Form PCT/ISA /210 (patent family annex) (April 2005)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

