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(57) ABSTRACT

A hybrid storage system is described having a mixture of
different types of storage devices comprising rotational
drives, flash devices, SDRAM, and SRAM. The rotational
drives are used as the main storage, providing lowest cost
per unit of storage memory. Flash memory is used as a
higher-level cache for rotational drives. Methods for man-
aging multiple levels of cache for this storage system is
provided having a very fast Level 1 cache which consists of
volatile memory (SRAM or SDRAM), and a non-volatile
Level 2 cache using an array of flash devices. It describes a
method of distributing the data across the rotational drives to
make caching more efficient. It also describes efficient
techniques for flushing data from L1 cache and [.2 cache to
the rotational drives, taking advantage of concurrent flash
devices operations, concurrent rotational drive operations,
and maximizing sequential access types in the rotational
drives rather than random accesses which are relatively
slower. Methods provided here may be extended for systems
that have more than two cache levels.
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where:
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L15ate |L2State |Sub-State EVENT L1 State {L25Mte [SubState
HOST COMPLETES WRITING TO LI '

1S036HNVLD | INWLD M25  [datasive equal or greater than cache fine. VED VLD | NCP

15037 data size less than cache liee yeCh INVED [ NQP

1503BHNVLD veCD H35  {duta size soual or greater than cache line VF INVED | NOP

ara size lass than cache fine and doss not overlap with

15039 all disty data in {2 VPO VECD NOP
data size less than cache Bine but overtags with alt diny

15040 dataint? VPCD INGLD | NOP

150471 HNVLD VEC H2S  |dais size ecual ar greater than cache ling VED INVLD | NGP

15042 rasa size feys then cache fine Yo VPLC NGP

$SQ4SHNVID | VRCPD | H2S  |dutasize equal or greater than cache ling VEDY INVLD | NOP
dava size tess than cache fine and does not pverlap with -

15044 allditydatainl2 vPCh VRCD NQP
data size fess than cache fine but averlaps with all dirty

15048 detainll yeCh YPCC NP

15046 HINVLD VED HIS  jdats size equal or greater than cache ling V2 VLD | NOP

15047 data size less than cache fine YECD VPCD  [NOP

1SO4QINVLD VPCC H2S  |data size equel or greater then cache lina VED INVLD | NCP
data size tess than cache line and does not overdap with

15049 Ceandatainl2 yPCo VeCC NOP
data sive boss than ¢acha fine hut ovarlaps with aff clean

15050 datainl2 veCD INVLD NOP

15053 {vPCh INVLD H2S  idata size ecual or qreater than cache fine VED VLD NP
data size foss thar cache ting, and iled-up all ure-filled

15052 and clean cache bytes YFD INVLD | NGP
diata size leys than cache fing, and did act fill-up alt un-

15053 filled cache bytes VPCD INVLD NOP
dala siza less than cache fine, and filed-up aff un-filled

15054 cache bytes but did not i 2 clean bytes VECPD  |INVID)  [NOP

15055{VPCh VRECD H2S  |datasize equal or greater than cache line YED INVLD | NOP

data size lass than cache fine, and filad-up af un-lfed
and clesn cache bytas In L1, and does not overap with
15058 distybytesin {2 VED VPCD NOP
data size less than cache ling, and flled-up all uncfilled
and clean cache bytes in L, and overtaps with ol dinty
15057 bytesin L2 VD INVLD | NOP
deta size dess then cache line, and did not fil-up aliun-
filted cache bytas in L3, and does not overdap with &
15088 dirty byresin L2 VPCD VPCD NOP
data size fass than cache Bne, and did notfillup alivn
filled cache bytes in LY, and overlaps with all ginty bytes
13059 ink? VECE INVLD NOP

data size less than cache fine, and Siled-up sl un-fifed

vies but did not & aft clean bytosin L " .
15060 cache bytes but did not 8 aft clean bytesin VEEPD  livin NOP

15061{VPCD VEC HAS  iNA4
FIG. 15B
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15062[WPCD {VFCPD | W25 data siee ecal or greater than cache fine VED INVLD | NOP
data size less than cache ting, and filled up afl un-flled

15083 cache bites and all clean byles VFD yP(D | NOP
data size less than cache ling, and flted-up &l yn-fllad

15054 and dirty cache bytes but not ali clean byles VFCRD  JWPCC NP
data size less than cache fing, and flfed-up at un-filed

15055 and ciean czche bytes but nol alt ciry bytes VED YP(D | NOP
data dze loss than cache fing, and did net fhup aff un-

15066 fited cache bvtes but flled all dinty bytes YPCD  VRCC I INOP
data size loss than cache fing, and did ot fllup aff un-

15067 filfed cache bytes but fled all clean bites YRCD (VD I NOP

15068}WPCD  {VID H3S  idata size equal or grester than cache fine VFD INVLD 1 NOP
data size less than cache fing, and fltad-up &il un-flled

15059 cache bytas YD YD | NCP
data <iee less than cache fing, and did ot fll-up alf un-

15070 fifed cache bytes YPCH  JVRCD jNOP

1S7TVPCE {VPCC | KBS data siee ecual or greater than cache fing VED INVLD | NOP
dasa size less than cache ling, and filed-up il un-flled

15072 cache bites and all cissa bytes VD INVLD | NOP
data size fess shan cache line, 2ad flled-up ol un-flled

15073 and diry cache bytes hut not alf clean bigtes VFCRG  {VRCC {NGP
data size less thas cache fing, and flted-up all un-flled

15074 and ciean cache bytes but ot all diry bytes VD VLD | NOP
data sizeless than cache ling, and did not flup al

15075 filled cache bvtes but led all cirty bytes VPO JVRCC  [NOP
data size less than cache fing, and did net fll-up aff un-

15076 ted cache bytes but &led all clean bytes VPCD  {INVLD | NOP

TSOTTNEC . JINULD T FOs et s ecvel o qreater than cache line VD | INVID | NOP

15078 data size loss than cache fne VECPG  {INVLD | NOP

15079 1VEC VPCD | HIS NA-

15080 |VFC YFC HXS 1ot shee ecual or graster than cacheline VFD INALD | NOP

15081 data size less than cacheine VRCPD VRCC [ROP

15082 \VFC VECRD | H2S NA-}

15083 VFC YD H2S A

15084 VFC VPCC | H2S Jaa size cqual or irexter than cachefine VFD INVLD | NOP

T ) MATCH LINE TOFIG 15C; T .
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MATCH LINE TO FIG 15C1
B data size ess Than cache fne anc cvenites 41 data i T
15085 12 VECPD JINVLD | NOP
data size less than cache fine bt do not overwrite af
15086 dtain2 VECPD  VBCC [NOP
15087 (\WeCPO [INVID | H2S datasize el or greater than cacheline VD LD | NOP
' data sze foss than cache line, and flledhup al clean
15088 cache dytas VD LD | NOP
datasize loss than cache fine, and did not Allup al
15089 dlean cachs bytes YFCPD  HINVED I NOP
15090 WFCPD IVPCD | HRS data dize squal or greater than cache line VED VLD | NOP
data size iess than cache fine, and lledwip ol cloan
15091 bites VFD WD | NOP
' data oe less than cache fine, and flledup il dirty
15052 cache bytes but not all clean bytes VFCBD  JWPCC [NOP
data size ioss than cache fine, and flled-up &l lean
15053 cachs bytes bus not all diny bytes VD VPCB | NOP
15084 WFCPD {VFC H2S NA-4
15085 WECRD  [WWCPD | H2S data size equal ar grezter than cache e VFD VLD | ROP
data size iess than cache fine, and flled-up afl dean
15096 cache bytes VED LD | NOP
data size tess than cache ling. and did not fll-up af
15047 ddean cache byles VECPD  VRCC [NOP
data size bess than cachefine, and did not fbup o diny
15098 zache bytes VFCPD VPO RCP
15099 WFCPD  VED H2S NA-2
1S100VFCPD  [VPCC [ H2S data size el or greater thancache fine VED VLD | KOP
- gata dize tess thay cache fing, and flled-gp afl clesn
1518 cache hytes VFD YLD | NOP
data size loss than cache fine, and did not &ilup al
clexn cache bytes fn L4, and do not overlep with all data
15102 L2 YRCPD  [VPCC  INOP
dota iz fess than cache ine, and did not A up al
15763 clean cache bytes in LY, but ovariaps withall dtain 12 wen w | uop

FIG. 15Cy
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15104 VFD VLD | HIS  fhost completes witihg to Lt Ve [INWLD | NOP
15105 VFD VPCD | H2S data overlaps with all datain L2 VED [ INWD | NOP
15106 data do nos ovetlap with alf data in L2 VRO JVRCD | NOP

15107 {VFD YEC H2S NA4
15188 VFD VFCPD | H2S NA-3

151084VFD YED H25 ta size equal ov greater than cache fne VED  [INVLD § NOR

15110 data size Jess than cathe fine VFED VPO | NOP

UMD [ VPCC | H2S (N3 f

ISTIZWPCC TRWVED | H2S data size equal or greater than cache iine VFD INVLD | NOP
data size fess than cache e, and Sllad-ug ¥ unfilled z

15113 cache bytes VFCFD  [INVLD | NOF
data siza less than cache ling, and did not fff-up &ff un-

15114 filted cache bytes YPCD (INVLD | NOP

1IS1ISIYPCC [VPCD | H2S sa size aoulal v greater than cache fine VED [INVLD | NCP
chata size loss than cache line, and flfed-up ail uirfilled _

15116 cache bytes VFCPD  {INVID | NOP

data size less than cache line, and did not fillup sl un-
filled cache bytes in LY, and does not overfap with all i
15117 dirty bytes inl2 YPCh JVRCD | NOP

ata size Joss than cache line, and did ot fillup alf un-

fifted cache bytes in L3, and does not overlap with all -
15118 desnbytesinl2 VPCD (VPLC {NOP

IBUOPCC  TVIC H2s 2% sive agual ot greater than cache fine VED INVLD | NOP
chata size fess than cache ine, and flfed-up & un-filled ]
13120 cache bytes VECPD  HINVID | NOP
$a size fess than cache Hine, and did not fill-up & un-
15121 fitled cache bytes VBCD  {YPCC | NCP

15122 3CC VECPD | H2S NA-1
15123PCC | VFD H2S KA'] |
13124 0WPCC [VPCC T HES data size equal or greater than cachefine VED INVLD | NOP

data size fess than cache line, and flled-uy ail un-flled ]
15128 cache bytes, and overtaps with alt Satain L2 VECPD  [INVED | NOP

data sizaess than cache line, and flled-up af un-filld

cache bytes, and Soes not overlap with afi data in L2
15126 YIES, BND DOSS oL Deriap wich 3 Gale wepp  vpce {Noe

data stz fess than cache fing, and did not fillup aff un-

filted cache bytes, and overdaps with afl dats fn L2 5
18127 ache Bytes, and ovecap ¢ YPCD  |INWLD | NOP

data size fess than cache fine, and did nat fltup all ur-

filted cache bytes, and does not overtap with all data in
15328 {2 YPCD  VPCC | NOP

FIG. 15D
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£ Sate {12 Siate {Sub-State EVENT L1 S2te {12 Siate SubStte
PATA IRANSHER R L: O Mooy

16000HNWD | INAD | NOP NS
16001 INVAD | vPCD NQOP 8A-5
16002JINLD | VFC NOP NA-S
IGO0 INVAD | VRCPD | NOP NA-S
1004 HRVID | VFD NOP  NAS
IBH0S INVID | VLG NOP NA-S

160UGIVPCD [ INVED | NOP  jhostreadsdata HONREES
16007 IVPCD | VECD | NOP  jhostreadsdata VWD [VRCD IS
16008 VPCD | VFC NOP  INA<

16000IVRCO [ VECPD | NOP  [hostrsadsdata YLD IVFCRD  iSaH
16010IVPCD | VFD NOP  {hostraads daia WD {VFD SH
16011 IVPCD | VRCC | NOP  [hostadsdss ‘ WO {VRCC (%M
16012 IVFC VLD NOP hostreasls dete YFC VLD iS5
1601 3JVFC VRCD | NOP  INa

16018 IFC VFC NOP host reads data VFC YFC S

1601 SIVFC VECPD | NOP NA-
16016 VFC VED NOP NA-1

16017 {VFC VB(C NOP host readts dsts ¥FC Yo S
160ISIVFCRD  [INVLD | NOR hastseads dats VFCPD  {IRAD 1S2M
COMNFCPD [ VPCD NOP hostseads data VECPD (VD 52
160N VFCPD | VFC NOP P-4

WBOITIVFCPD | VFCRY | NQOP host reads data YFCPD  VFCPD  iSaH
16022IVECPO | VFD NCP N2

WOI3IVFCPD | VPCC NGP host rpads 381 VECPD JVRCC SH
16024 PYFD INVLD | NOP host reads dats VED INVLD 1 S28
16025 VFD VeCD NOP host reads date VFD VRCD S2H

16025 VFD VEC NOP NA-4
16027 WFD VECPD | NOP MA-3

16028IVFD | VFD NOP  |nostreadsdota VD VD | 5K
16029 VFD VACC | NOP  [Na3

16030IVRCC  [INVED | NOP  [hostreads s VRO JINVED 15H
16031IVPCC | VPCD | NOP host r2ads dsis v VRCC  JVRCh  ISH
16032fWPCL VL NOP  (hostroeds dsis Ve BV <24

16033fVPCC | VFCPD | NOP NA-1
18034 PCC (VFD NCP NA-1
PISO3SPPCC VRKL NOF host reass data LA SO L A O 5

NA-1- 17 s full clean, L2 cannoni be dirty. Its sither ciean also or invalid.

NA-2 -1 cannot be fuby cached and partially dirty i L2 is full dirty. Either L1 s full dirty slso or L1 is partialiy dirty and L2 I invalid
NA-3 - Full dirty L1 invalidates £2

NAS - I 115 dirty, 12 cannot be fuil dean,

NA-S - Invalidd so there's no datis tc transfer

NA-6 - Samea dats

NA-7 - L1 is consistent with L2, no need for sdramifiash

NA-8 - Dinty L1712 miust be flushed to HDS first {fua) or get data from L2 instesd (romma! access)

FIG. 16A
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LtState 125t PubState LVENT LiStte (L2 5t [SubShte
HOST COMPLETES READING FROM L1

16036 }HINVLD INVLD S2H  INAS

16037HNVLD | VPCD S2H NAS

160381 INVLD | WFC S2H  {NAS

16033HNVLD VFCPD Y} S2H NA-S

160401INVLD | VFD §2H  [NAS

1604 1HINVLD yrCC S NA-S

V04 IVECU ] INVLD | SIH . [0S COMPIEtes reaging ot VPCD - [INVLD | NOP
160431 VPCD VPCD S2H  |host completes reading from L veCD  {VPCD | NOP
160441 VPCD YFC S2H NA4

160451VBCD VFCPD | S2H host completes reading from L VPCD | VFCRD | NO®
160461 VPCD YFD §2H  {host completes reading from L VRCD  (VFD NOP
160471VECD | VPCC S2H  jhost completes reading from L1 VPCD  JVPCC | NOP
160481 VIC INVLD S2H  host completes reading from L ViC INVID | NOP
16048 VFC VPCD S2H  NAT

16050 VFC VFC S  |hostcompletas reading from L VEC VFC NOP
1603 1{VFC VFCPD | S2H  INAL

16082} VFC VED SH AT

160534 VFC Yeeg 52H host completes reading from L VFC YPCC NOP
{60SEIVFCRD | INVLD | S2M ot complates reading from L1 VECPD  {INVID | NOP
16055 VFCPD | VPCD S2H hist corpletes reading from L1 VFCPD  {VPCD NOP
160581 VFCPD | VFC 524 NA-¢

16057IVFCPD | VFCPD | S2H host completes reading from L VFCPD  |VFCPD | NOP
160581 VFCPD | VID S2H {NA2

160581VFCPD | VPLC S2H host completes reading from L1 VFCPD  {VRCC | NOP
600 VED INVED | S2H  {host completes reading from Li VFD VLD | NOP
16051VFD vPCD SaH  {host completes reading from L} VFD VPCD | NOP
16062{VFD VFC SZH (NA4

16063 VFD VFCPO{ S2H  {NA3

160641 VFD VFD 524 lhostcompletes reading from L VFD VFD NOP
16055 VFD VPCC SZH  NA3

16066{VPCC INVLD | S2H  jhostcomplatesreading from L VPCC  (INVLD | NOP
16067|VPCC | VPCD | S2H  {host complates reading from Lt yPCC  {VPCD | NOP
160681 VPCC VEC S2H host completes reading from U VPCC VG NOP
16059} VPCC VFCPD | SH NA-Y

160704 VPCC VED S2H NA-1

16071}vPCC VeCC S2H host completes reading from U VPCC  {YPCC [ NQP

FIG. 168
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LiStsie jL2 8@t SubState EVENT L1 State {L25tate {Sub-State
SATATIANSFER FROM L2 TG LY
17CHG HNVLD INVLD NOP NA-5

172C01 HNLD VPCD NOP start of transier fom L2 o L1 INVLD YPCD £25
1262 HNVLD VIC NOP start of transier from L2 o L1 INVLD VFC Fas
17003 INVLD VFCPIY § NOP start of transfer from L2 to L VLD VFCPDY | F35

17004 INVLD VFD NOP start of transfer from L2 to L INVLD VFD F25
17005 INVLD VPCC NOP start of transfer fram L2to L} INVLD vPCC F25

17006 (WPCh INVLD NOP NAS

17007 {(VPCD VPO NOP start of transfer from L2 to L VPCD VPCD £25

17008 (VPCD VFC NOP NA-S

17009 VB CD VECPD | NOP start of ransfer from L2 to U ¥PCD VECPD | F2§

17010VECD VFD NOP start of transfer from Lito L YPCD 333 £28
17011 vPCh VPLC NOP stant of transfer from {2 to L1 VPCD VPLO | F28

V70 2 VEC INVLL | NOP  |NAS '

TFO3IVEC VPCD NOF NA-Y

17014 VFC VFC NQP NA-G

1AB15VIRC VFCPD | NOP NA-Y

P36 IVEC ViD NOP NA-

17017 (VFC VPCC NOP NAS

17CI8VFCPD  HINVLD NOP NA-S
17QISIVECPD | VPCD NOFP NAS
17020{VECPD | VEC NOP NA-4
17021 (VFCPD | VFCPD | NOP NAS
17022 {VFCPD | VED NOP NA-2
17023 (VECPD | VPLT NOP NAS

{7004 D INVLD NOP NA-5
17025 IVFD VPCD NOP NA-§
170264VFD VFC NQP NA-4

17027 WED VECPD | NOP NA-3
17028 IVED VFD NOP NAS
17028 IVED VPCC NOP NA3
17030 jVPCC INVLD NOP NA-S

7031 IWPCC vPCD NOP start of transfer fram L2 to L) B YeCC YRCD | F25
17032 ][WPCC VEC NOP start of transfer fram L2 1oL} VPCC VFC F28
17033 (WPCC VFCPD | NOP NA-Y
17034 veCC ViR NOP NA-3
17035 IVPCC VPCC NOP start of transfer from {2 to L VRCC YRCC F2$

NA-1 - #f L1 is full clean, L2 cannont be dirty, it's either dean also or invalid,

A&-2 -1} cannot be Rully cached and partiatly dinty if 12 is Rl clirty. Bithar L1 is full dinty afso or L s partisfly dicy snd L2 is invalid
NA-3 - Full dinty L1 nwvalidates L2

NA-4 -1 L3 i dirty, L2 cannot be tull clean,

NASS - {nvalid 5o there's o data (o transfer

NAS -Same data

NA-7 -L1is consistent with L2, no need for sdram2flash

NA-§ - Dirty L1AL2 must be flushed to HDD firat fua) or gat data from L2 instead (normal access)

FIG. 17A
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L3 8iate jL25tate |Sub-Siste EVENRY L1 State jL3State {Sub-State
1 COMPLETIONOF L2TG LY

F170361INVLD INVLD F35s NA-S
117037 INVLD VRCD F35 completion of transfer fom L2 to 1} VPCH vecD NOPR
$17038HNVLD VEC F25 data transferred Bils entire L VFC WYFC NOP
117030 data transferred does not il entire L1 YPCC VFC NOP
17040 INVLD VECPD | F25 data transferred fils entire L3 VECRD  JVFCPD | NOP
17041 data transfarred does not fill entire L1 VPCh VECPD | NOP
17042 INVLD VFD Fa5  jdata wransferred fills entire L1 VD VED NOP
17{M43 data rransforred does not fill entirg L3 vPCD YED NOP
17044 1 INVLD VPCC K28 comptetion of transfer rom 2 il viLC VECC NOP
TI045 [VECD | IMVLDY §E25 . INAG
170481 ¥PCD VECD F25 L1 plus dats transferred fills entire L1 VFCFD  [VPCD NOP
17047 LY plus data transferred does not fll entire L1 §WPCD VPCD NCOP
17048 ¥PCD VEC Fas NA-4
17M48IVECD VECPD | F2S situncaches bvtes in L1 are ginty ind 2 VED YFCPD | NQv
17050 not all uncached bytes in b 1 are disty in {2 VPCD VECRD | NOP
1705 1VRCD VED F25 L plus dats transferses pits entie L ViR VED NOPR
17052 LY plus data ransferred does not Bl entire L §VBCD VFD NGP
§170S31VvPCR VPCC F25 L1 plus dass transferred fils entire L1 VECPD  [VPCC NOP
; _1:1158, L1 plus data taansfereed does rot flientire L1 {VPCD WPCT NOP
PI7S5IVEC INVED F235 NA-5
170SE{VFC veCD F2s NA-1
TISTIVEC VF( F25 NA-6
17058 |VFC VECPD F2s MNA-
1705 VFC VFD Fas NA-1
T7080{VEC VPCC F25 NA-

TFORTIVECPD | INVLD 1 F25 NA-S
7062 IvFCPD | VPCD 1 F25 NAS

17063 IVECPD WFC F25 NA-4
12054 VFLPD VECPD £3S NA-G
17065 {VECPD | VFD F2s - NA-2
17066 |VECPD | WPCC F2s N~

RN INVED | F25  INAS
17068{VFD VPCD 28 NA-S
TTRERIVED YEC F25 NA
T7070VFD VFCPD F25 NA-3
17071 {VFD VED F28 NAG
VFH723VED VRCC F28 NA-3

1073 IVECe ] VRO 1 F25 . INAD
17074 vPCC VPCD Fi5 Li phes data transferred fiils emire 43 VECPD  JVRCD NOP
17075 LY plus dat transfersed does not fill entire L3 (VPCD VRCD
$707GIVPCC WFC Fas L1 plus data ransfered Bils entire 1) VFC VEC NOP
17G77 L3 phus date transferved does not fll entiee L1 VPCC VFC
170783vRCC VFCPD | F2§ NA-1
170794 ¥PCC VFD F3s NA-3

117080 VRCC VeCC F28 L1 plus data transferred fills entire L1 VEC vPCC NOP
17081 L1 plus data ransferred doss not fill entire L. {VPCC VPCC NOP

FIG. 17B
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iS5 L2 State  iSub-Statw EVENT $1State {12 Swte | Sub-Ste
DATATRANSFER FROM LI TOL2
1000 {INVLD INVLD | NOP  [NAS
TR00T{INVED | VPRCD NOP  INAS
180021INVLD | VFC NOP  iNAS
18003{INVID | VFCPD | NOP A5
TR00${INVLD | VFD NOP  [NAS
1B00S{INVLD | VPCC NOP NAS
18006 {VPCH WNVLD | NOP  [startoflitoil VPCD WD | SF
18007 {VPCD VPCD NOP  Istertoflifoi YPCD VPCD S2F
1800&{VPCO YFC NOP [NA4
18003{VPCD VFCPD | NOP NA-7
18010{VPCO VFD NOP INAY
18011 {VPCD vPCC NOP startof L1tol2 ¥RCD ypPCC S2F
18012{VEC INVLD NOP  [startofLitoil VEC INVLD | SOF
18013{VFC wPCD NOP O NAY
18014 }VFC VFC NOP  [NAT
18015 {VFC YFCPD | NOP NA-1
18018 {VEC VFD NOP  INA-1
18017 IVFC ViRCC NOP NA7
180IR{VFCPD | INVLD NOP startot L1 t012 VECPD | INVLD | SIF
18019{VECPD | VPCD NOP startef L1012 VECPD | VRCD S2F
18020]VFCPD | VFC NOP NA-4
18021 IVFCPD | VFCPD | NOP NA-7
18022{VFCPD | VFD NOP  [NA4
TRO2IIVFCPD | VRCC NOP Istartofll fol2 VICRD | VPCC SeF
18024 {VFD INVID | NOP  |stanefiliei2 VED INVED | SOF
18025 {VFD VPLD NOP  Jstartoflitol2 VFD VeCD S2F
18026{VFD VFC NOP  [NA-4
18027 IVED VECPD | NOP  [NA3
18028{VFD VFD NOP  [NAY
18020{VFD VPCC NOP A3
18030{VPCC INVLD NOP startcfL1%o L2 VP INVLD | Sa2F
18031 {VPCC yPCD NOP startof L1 to 2 VPCC yPeD SaF
18032{¥PCC VEC NOP NA-7
18033 {VRCC VECPD | NOP NA-T
18034 VPCC YFD NOF A1
18035 |WPCC wPCC NOP st ol L1082 VYPCC VPLL S23F

NA-1 - 1f L1 s full clean, L2 cannont be dirty, It's either clean also or invalid,

NA-2 - L1 cannot be fisiy cachad and partially diry i L2 is full diry. Either L1 is full dirty also or L s partially dirty and L2is invalid
NA-3 - Full dinty L invalidates L2

NA-4 - if L1 s dirty, L2 caanot be full clean.

NA-S - Invalid 50 there’s no data to transfer

NA-6-5Same dats

NA-T-L1is consistent with L2, no need for sdramlach

NA-8 - Dirty L1L2 must be flushed so HDD first (fua) or get data from L2 instead (horme! access)

FIG. 18A
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L3 State 12 State | Sub-State EVENT £1State{ L2 5tate | Sub-State
CORPTEOR o Yot

180361 INVLD INVLD S2F RA-§
18037 HNVLD VPCD S3F N&-5

18038HNVID | VFC S2F NA-S
180301INVLD | VECPD | SaF Na-5
18040HNVLD | VFD §2F N&-S

18041 HNVLD VPCC S2F N&-S
18042 {VACD INVLD | S2F comypletion of transfer from L1 to 12 VPCr  1VPCD | NOP

18043 1VRCD YPCD SIF L oot e ully YPCD  {VPCD | NOP
18044 L2 filled fully VPCD | VFD NOP
18045 VRCD VEC S2F N&-4

18046 1VPCD | VFCPD | S2F NAT
1BM47IVPCD | VFD S2F NA-7

180481VPCD VPCC S53F 1.2 not filled fully VPCD VPCD NOP
18049 U Wed aly VPCD | VFCPD | NOP
TBORG (URC INVLD S2F completion of transter from L1 tod2 VFC VEC NOP
18051 VFC VPCOD §2F Mae
18052 |VFC VFC S2F NA-7
18083 VFC VECPD | S2F NA-t
18054 VFC VED S2F NA-}

1805 VFC VPCC S2F NA-
18056 IVECPD ] INVLD SaF compietion of transfer from L1 1o L2 VFCPD IVFCRD | NOP
18057 IVFCPD | VPCD $IF COMBIENoN 0 Urans ef oML 1oL VFCPD IVFCPD | NOP

1B058IVFCPD | VFC SaF NA-G

1BOSOIVFCPD | VFCPD | SOF Na-7

18050} VFCPD | VFD S3F hA-4

18061 IVECPD | WPCC | S2F completion o trans & romb ok VFCPD  TVFCPD | NOP
18062 IVFD INVLD | S2F completion of transfer from L 12 VFD VFD NOP
18083 VFD VRCD | S2F completion o Mans er romi tol VFD VFD NOP
18064 [VFD VEC S2F NA-4

18065 [VFD VECPD | S2F NA-2

18066 VD VED 53F  INAT

18067 [VFD VPCC | SIF S T .
TRa00 [YPCC INVED | S2F corapletion of transfer from Li to L2 VPCC {YPCC | NOP
180691VPCC | YPCD 52F T ot Mleg ully VPCC  |VFCPD | NOP
18070} L2 filled fully VPCC {VFCPD | NOP
18071IVPCC | VFC S2F &7

18072[VRCC | VFCPD | SoF NA-7

1RO73IVPCC | VFD S2F NA-1

18074IVPCC | VPCC | S2F L2 not hiled fully VPCC  {YPCC I NOP
18075 [ Wed ully VPCC  {VFC NOP

FI1G. 18B
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LiState {L2 5tate {Sub-State EVENT £1State {L2State (Sub-State
DATA TRANSFER FROMHDD TGO L

1SO00 BNVLD INVLD NQP start of HRD to L1 transter INVLD INVILD HOD2S
13001 HNVLD VPCD NOP star of HRD 1o L1 transfer INVLD VPCD HEDIS
19002 EENVLD VFC NOP start of HOD 1o LY transter INVLD VFC HDD2S
19003 NVLD VFCPDY | NOP start of HDI o L1 transfes INVLD VFCPDr | HDD2S
19004 HNVLD VFD NGP NA-B
19005 HNVLD YPLC NOP start of HRD to L1 transfer INVLD VPCC HDD2S
19006 VPCD INVLD NOP start of HDU o LY tanster VPCD INVLD HOD2S
19007 (VPCD VRCD NOP start of HOD to L1 transfer VPCD VPCD HDD2S
19008 (VPCD VFC NOP NA-4
19009 WPCD VFCPD | NOP NA-8
15010 VPCD VED NOP NA-R
13011 WPCD VPCC NOP start of HOD to L1 transter VPCD VPCC HDD2S
18012 WRC INVLD NOP occuts on Read FUA commang VFC INVLD HDD25
19013 VEC VeCh NQP NA-1
19014 VFC VFC NOP occurs on ftead FUA coramand VEC VFC HDD2S
19015 VFC VECPDY | NOP HA-
19016 (VFC VFD NOP NA-
19017 WFC VPLC NOP seturs on Read FUA command VFC WPCC ROD2S
G018 VFCPD  {INVLD NOP gecurs on Read FUA command VIFCRD  {INVLD HDOD2S
1ODISVECPD  JVPCD NOF occurs an Read FUA convmand VFCPD  JVPCD HDD2S
1S IVFCPD | VFC NQP pccurs on Read FUA command VFCPD  IVEC HDD23
18021 WFCPD | VFCPD | ROP occurs on Read FUA command VFCPD  SVFCRD  § HDD2S
10022 VFCPD | VFD NOpP NA-2
18023 WVFCPD | VPCC NOP occurs on Read FUA command VECRD  JVPCC HDD2S
TU0JA WEL) VLD ] NOB — JNAS
19025 WFD VPCH NOP NA-S
19026 VFD YFC NOQP NA4
19027 WFD VFCPD | NOP NA-3
1028 IVFD VFD NOP NA-B
19029 VFD WP CC NOP NA3
TOOIO NPCT  TINVED T NOB o ctar of D to L1 transter HVPCC TINVLDY | HDDZS
19031 (VPCC YPCD NOP start of HDD to L1 transfer VPCC vyPCD HDD2S
19032 WRCC VEC NQP occurs on Read FUA command VPCC VFC HDD2S
13033 {yPCC VECPD | NOP pik-1
16034 VPCC VFD NQP NA-3
19035 \vPCC VPCC NOP start of HED to 1.1 transfer YPCC VPCC HODAS

NA-1 -H LY is Redl clean, L2 cannont be dirty, It's either cloan siso or invaiid,
NA-2 - L1 cannot be fully cached snd partially disty # L2 ts full cirty. Sither LY is Ralf disty 3iso or £1 s partially diny snd L2 s invalid

NA-3 - Fufl dirty L) invalidates £2

NA-4 - LT is divty, 1.2 cannot be full claar,
NA-S - [nvalid so there's no data to transfer
NA-E - Same dats

RA-? - L1 15 consistant with L2, no need for sdiamflash

NA-R - Dirty L1/ must b Qushed to HOD first ifua) or gat data from L2 instead {normal sconss)

FIG. 19A
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L1 State [L2State {Sub-Siate BVENT L1 %3ate {L2State [Subd-Siate
COMPLETION OF HOD TO L1

I9038HNVED HNVLD  (HDD2S data did not fill entive cache VPCC INVLD  [NOP
19037 data fllad entire cache VFC VLD INOP
19038 HINVLD wW{D HODIS $M0O0 1o L1 compleatad VPCC VPCE NOP
19032HNVLD VFC HDD2S data did not fill entire cache VPCC VFC NOP
15040 data Silled entite cache VEC VR NOP
19041 {INVLD VECPES HDO2S §Hi00w L completed VPLC VECPD  {NGP
19042 ENVLD  {WFD HODZS  INAB

19043 HNVLD ¥PCL HDD2S data did not filt entiee cache VECC ¥PCC NG?P
16044 data filled ontire cache VEC VRCC NOP
130458VPCD INVLD  {HDD2S data did not filt antite cache VeCD INVLD NOP
19046 data Giled entire cache YFCPD INVLD NGP
19047 {VPCD VPCD {HDD2S data did not fill entire cache VPCD VPCD NOF
19048 data Slled entire cashe YFCPD  [VRCD NOP
19040 {VPCD VFC HOD2S NA-4

19050 jvP(D VECPD (RDDIS NA-8

19051 VPLD VD H02S NA-8

180521veCD VRCC HOD2S data did not (8 entire cache YPCD VeCC NOR
19053 data $iled entire cache VFCPD  (VPRCC NO®
19054 TVEC VLD HDD2S  THODto L1 completed VFC INVED  NOP
18055 FVFC vECh HOD2S NA-1

19056 {VEC VEC  [HDD2S HOD to L1 completed VEC VEC NOP
19057 §VFC VECBD  [HDD2S NA-1

19058 jVFC \F HDD2S MA-1

JR05% FVFL VECC HDD2S HRD to L1 complated VFC VRCC NOP
19060 fVFCPD  INVLD RDD2S DD to L1 completed VFCPD  INVLD NOP
19061 fvECPD  IVPCD HDDZS HOD o L1 complatad VECPD  (VPCD NOP
19062 IVECPD  [VFC HDD2S  {HODto L1 completed VFCPD  VFC NOP
19063 JVECPD  [VFCPD  {HDD3IS HOD 10 L1 completas VECPD  VRCPD NOP
19064 IVFCPD VD HDDIS NA-2

19065 WECPD  IWPCT HDDS HDD to L1 completed VFCPD VRCC KOP
18086 1VFD VLD HIIRS NA-§

19067 {VFD VeCD HOD2ZS NA-R

10088 §VFD VFC HDD25 NA

19069 {VFD VECPD HDDRS NA-3

19070 [ VFD VED HDO2S NA-B

19071 [VFD VBCC HOD2S NA-3

19072 {VPLC iINVLD  [HDD2S data did not fifl entire cache YPLL INVLD NOP
19073 data flled entive cache VEC INVLD NOP
19074 WPCC VPLD HIX2S HOD 1011 completar VP YECD NO®
19075 WP VEC HD03IS dam did aot N entire cache VPCC VEC NGP
19076 data §lled entire cache VFC i NOP
19077 fWRCCT VECPD  (HDDZS NA

18078 JVECC VD HOD2S NA-1

19079 VPCC VPCC HDD2RS data did not fill enﬁre cache VPCL VECC NOP
18080 data flled entite cad VFC veCC NOP

FIG. 198
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LyState {L2SBte {SubState EVENT £1State {L2 State {Sub-State
DATATRANSFER FROM L1 TORDD
20000 INVLD INVLD NOP NASS
20001 HNVLD VPCD NOP NA-S
20002 HINVLD VFEC NOP NA-5
20003 INVLD VFCPD | NOP NA-S
20004 HNVLD VFD NOP NA-S
20005 HNVLD VPCC NOP NA-S
J00081VPCD INVLD NOP stari of L1120 HED - flushing orwrite fua JVPCD INVLD S2HDD
20007 IVRCD VRCD NOP startof LT to HOD YPCD VRCD S2HDD
20008VPLD VFC NOP NA-4
200091VPCD VECPD | NOP startof L1 (0 MDD - fuching orwrite fu JWPCD VRCPD | SZHDD
20610VPCD VFD NOP NA-8

0601 IVPCO {VWPCC | NOP starto L HDD VPCD  {YPCC | S2HDD
20012 [VFC INVID | NOP startof L to HOD - write fua VFC INVLD | S2HDD
20003 [VFE vech | NOP NA-1

20014 |VEC VFC NOP stast of L1 to HOD - write fua VFC VEC S2HDD

20015 jVFC VFCPD | NOP NA-t
20018{VFC VrD NOP NA-1

20017 ]ViC vPLC NOF start of L1 Lo HDD - werite fua VIC VPLC S2HOD
20018IVFCPD (WD NOP St of L1 to HOD VFCPD  {INVID SIHDD
20019{VFCPD  {VPCD NOP stat of LT to MDD VFCRD  {VPCD S2HDD
200201VECPD  {VFC NOP NA-4

200TIVECPD  JVFCPD | NOP stat of L} o HOD VFCPD  {VFCRD | 53HDD
200221VFCPD VED NQOP Na-2

20023IVFCPD {VPCC NOP statof L1 to HOD VECPD  [VRCC SZHDO
20024 IVED INVLD NOP stat of L1 to MDD VFD INVLD S2HOD
200254VFD VPCD NOP stast of L1 to HRD VFD VPCD SZHDD

200264VFD VEC NOP NA-¢
20027 VFD VECPD | NOP NA-3

20028{VED VD NOP star of L1 to MDD YD ED DD
200291VFD YPCC NOP Na-3

260304VPLC INVLD NOP startof L1 to HDD - wilte fud YPCC INVLD S2HDD

200311vPCC YRCD NOP stat of L1 to HDD - write fua VP YPCD SZHOD

20032 1¢PCC VFC NQP start of L1 to BDD - write fua VRCC VEC SAHDD

20033 yPCC VFCPD | NOP NA-1
20034 jVECC VED NOP N&-1
20035{VPCC VPCC NOF start of L1 to HDD - wrrite fua YPCC VPCL S2HRD

NA-Y -1 L1 is fulf clean, L2 cannont be dirty. 18's either ciean alsa or favalid,

NA-2 -1 1 cannot be fully cached and partially dirty 1€ 1.2 is full dirty, Bither LT is Rall dirty afso or L1 is partially dirty and 1215 invalid
NA-3 - Full dirty L1 invaflgates L2

NA-S -3 L1 is dirty, L2 cannot be full cdearn.

NA-S - invalid so there's no data to transfer

NA-§ - Sane data

NA-7 - L1 ig consistent with L2, no need for sdram2fiash

NA-8 - Dirty L1/42 must be fiushed to HOD first {fua) o get data from L2 instead (normal access)

FIG. 20A
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L1 Swate {12 Gwie {Sub-State EVENT L1 State (L2 Siate j3ub-Gmle

SRRSO RIS

036 PNVLED INVLD hRiginie] N&-5

20037 %lNVt.D VPCD SZHDD MA-5

20038 le‘/‘LD VELZ 52HDD NA-§

20039 leVLD VECPD 52HOD NA-S

20040 INVLD VR SIBD WAS

20041 INVLD [ VPCC S IHDD NA-S

20042 VPTD ML SIHDD flushed afl diny bytes VPCC INVLD NOP

20043 did not Aush ol dinty tretes VPCD INVLD NOF
L% and L2 bas same data and alf dirty bytes were

20034 VPCD Yecn Q200 flushed YPCC Nies NOP
13 arwd L2 haw samme dats and not all dirty bytes

20045 were Rushed VPCD VRCE NOP
L% and 12 has gifferent dasta snd ail dirty bytesin

20048 Liwese Jushed YPCC VPCD NOP
T and L2 has dilierent date and 1ol all dirty bytes

20047 in L1 were flushed VPCD VRCD MOID

20048 MPCD VI SZHDD NA-4

20049 MRCE YEFCPD S 2HDD flushed all disty bytes inLl and L2 VP WFC NOP

JLO5¢ did not Qush sk dirty bytes VEZD VECPD | NOP

0051 fishsedd ol dirty bytes in LY but natin 1.2 VRO YFCRFO | NOP

20052 HPCO VD SZHDD A8

20053 PPCHD VP 52H00 flushad all disty byres V(O veCr NOP

20054 did not flush alt dirty bytas VECD YPCC NOP

QOS5 PFC VLD S2HOD completion of {1 1o HDO - write fua VEC INVED NQOP

28X458 NEC VICD SAHDD NA-1

20057 NEC VFC SZHDO completion of L1 10 HOD - write fus VEC VFC NOP

20058 NFC VECRD SAH00 NA-1

20059 NFC VED K2H00D PN~

28060 (VEC Ve SZHDD completion of L1 o HOD ~ write fus VEC VECC WNOP

0061 WECPD | NLD | [GaHD flushed all ditty Dytes VFC TNVLD | NOP

2006 dict ot Hush ol dinty bytes VECPD INVLD NJF

QORI PECPD VPR K 2100 flushed atl divty bytes inf.1 VEC VICET NOP

200064 did ot Alush aff dirty butes VFCPD VPCD NOP

20055 PFCPD VEC SRHDD NA-4

20068 NMECPD IWFCED Wightul fluzhed ail dirty bytes VFC VG NOP

20067 did rot Aush ot dirty byies VECPD VECPD NQOP

20068 VECPD VED S2HOD NA-2

20062 NFCPD  (VPCC L2H D hiuahed ol dinty bytes YEC VPCC NOP

26070 didd ot Aush af ity ytes VECPD VPO NOP

20071 WD VLD ] 52900 [flushed all Qity bytes e INLD | NOP

20072 dig not Aush aH dirty Bytes VECPD INVLD NP

0073 ED VD 52100 fhashses ol dirty bytes VFC VPCL

200749 did not Aush 2k dinty bytes but coversd L2 contenty PWECPD SPEC HoO»
did rat Hish it dirty ey and did nG cover L2

2G07S coments VECPD  PVPLD NQP

20076 PVFR VEC S2H00D [4A-4

2077 PFD VFCPD S IO NA-3

20078 MED VED S5IHDD flushed sl dirty bytes VFC VEC NOP

20079 dict not Hush alf dirty tivies VICPD  VPLD NO®

20080 NFD \ia&a SZHED NA-3

5081 NPT INVED SARD completson of LY o HOD - write fux veCo INVLD NGP

20X382 MO YPCD S IO completion of LY to HOD - write fus VPCE VPCD NOP

20083 VINIC VF( G200 comletion of Ui 1o HDO - weite fus VPCC VEC NQP

JCORY PCT VECED D 2HOD NA- 1

Q00RS MPCT VFD SEHDD NA-1

20086 pPLC VPG H2MOD completion of L3110 BN - write fus VIO VPCT NOP

FIG. 20B
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WRITE BUFFERING

CROSS-REFERENCE(S) TO RELATED
APPLICATIONS

[0001] This application is a continuation of application
Ser. No. 15/665,321, filed Jul. 31, 2017 and issuing Oct. 15,
2019 as U.S. Pat. No. 10,445,239, which is a continuation of
application Ser. No. 14/689,045, filed Apr. 16, 2015 and
issued as U.S. Pat. No. 9,734,067 on Aug. 15, 2017, which
claims the benefit of and priority to U.S. Provisional App.
No. 61/980,561, filed Apr. 16, 2014. This U.S. Provisional
Application 61/980,561 is hereby fully incorporated herein
by reference. U.S. application Ser. No. 14/689,045 is a
continuation-in-part of application Ser. No. 14/217,436,
filed Mar. 17, 2014 and issued as U.S. Pat. No. 9,430,386 on
Aug. 30, 2016, which claims the benefit of and priority to
App. No. 61/801,422, filed Mar. 15, 2013. U.S. application
Ser. Nos. 15/665,321 and 14/689,045 and 14/217,436 and
U.S. Provisional Application 61/801,422 are each hereby
fully incorporated by reference herein.

BACKGROUND

Field

[0002] This invention relates to the management of data in
a storage system having both volatile and non-volatile
caches. It relates more specifically to the methods and
algorithms used in managing multiple levels of caches for
improving the performance of storage systems that make use
of Flash devices as higher-level cache.

Description of Related Art

[0003] Typical storage systems comprising multiple stor-
age devices usually assign a dedicated rotational or solid
state drive as cache to a larger number of data drives. In such
systems, the management of the drive cache is clone by the
host and the overhead brought about by this contributes to
degradation of the caching performance of the storage
system. Prior approaches to improving the caching perfor-
mance focus on the cache replacement policy being used.
The most common replacement policy or approach to select-
ing victim data in a cache is the Least Recently Used (LRU)
algorithm. Other solutions consider the frequency of access
to the cached data, replacing less frequently used data first.
Still other solutions keep track of the number of times the
data has been written while in cache so that it is only flushed
to the media once it reaches a certain write threshold. Others
even separate read cache from write cache offering the
possibility for parallel read and write operations.

[0004] The use of non-volatile storage as cache has also
been described in prior art, declaring that response time for
such storage systems approaches that of a solid state storage
rather than a mechanical drive. However, prior solutions that
made use of non-volatile memory as cache did not take
advantage of the architecture of the non-volatile memories
that could have further increased the caching performance of
the system. The storage system does not make any distinc-
tion between a rotational drive and a solid-state drive cache
thus failing to recognize possible improvements that can be
brought about by the architecture of the solid-state drive.
Accordingly, there is a need for a cache management method
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for hybrid storage system that takes advantage of the char-
acteristic of flash memory and the architecture of the solid-
state drive.

SUMMARY

[0005] The present invention describes cache management
methods for a hybrid storage device having volatile and
non-volatile caches. Maximizing concurrent data transfer
operations to and from the different cache levels especially
to and from flash-based L2 cache results in increased
performance over conventional methods. Distributed strip-
ing is implemented across the rotational drives maximizing
parallel operations on multiple drives. The use of Fastest-
To-Fetch and Fastest-To-Flush victim data selection algo-
rithms side-by-side with the LRU algorithm results in fur-
ther improvements in performance.

[0006] Flow of data to and from the caches and the storage
medium is managed using a cache state-based algorithm
allowing the firmware application to choose the necessary
state transitions that produces the most efficient data flow.
[0007] The present invention is described in several exem-
plary hybrid storage systems illustrated in FIGS. 1, 2, 3, and
4. The present invention is applicable to additional hybrid
storage device architectures, wherein more details can be
found in U.S. Pat. No. 7,613,876, entitled “Hybrid Multi-
Tiered Caching Storage System”, which is incorporated
herein by reference.

[0008] The methods through which read and write opera-
tions to the flash devices are improved are discussed in U.S.
Pat. No. 7,506,098, entitled “Optimized Placement Policy
for Solid State Storage Devices,” which is incorporated
herein by reference. The present invention uses such access
optimizations in caching.

BRIEF DESCRIPTION OF DRAWINGS

[0009] FIG. 1 is a diagram illustrating a hybrid storage
device connected directly to the host and to the rotational
drives through the storage controller’s available 1O inter-
faces according to an embodiment of the present invention.
[0010] FIG. 2 is a diagram illustrating a hybrid storage
device that is part of the host and connected directly or
indirectly to hard disk drives through its IO interfaces
according to an embodiment of the present invention.
[0011] FIG. 3 is a diagram illustrating a hybrid storage
device connected indirectly to the host and indirectly to the
hard disk drives though its IO interfaces according to an
embodiment of the present invention.

[0012] FIG. 4 is a diagram illustrating a hybrid storage
device connected indirectly to the host through a network
and directly to the hard disk drives through its 1O interfaces
according to an embodiment of the present invention.
[0013] FIG. 5A shows data striping in a single drive
storage system according to an embodiment of the present
invention.

[0014] FIG. 5B shows data striping in a multiple drive
storage system using sequential split without implementing
parity checking according to an embodiment of the present
invention.

[0015] FIG. 5C shows data striping in a multiple drive
storage system using distributed stripes without implement-
ing parity checking according to an embodiment of the
present invention.
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[0016] FIG. 5D shows data striping in a multiple drive
storage system using distributed stripes and implementing
parity checking according to an embodiment of the present
invention.

[0017] FIG. 6 shows a cache line consisting of a collection
ot host LBA units according to an embodiment of the present
invention.

[0018] FIG. 7 shows a process flow for initializing a
hybrid storage device supporting data striping according to
an embodiment of the present invention.

[0019] FIG. 8 shows a process flow for initializing a
hybrid storage device supporting pre-fetch of data at boot-up
according to an embodiment of the present invention.
[0020] FIG. 9A is a diagram illustrating a set-associative
L2 cache according to an embodiment of the present inven-
tion.

[0021] FIG. 9B is a diagram illustrating a directly-mapped
L2 cache according to an embodiment of the present inven-
tion.

[0022] FIG. 9C is a diagram illustrating a full-associative
L2 cache according to an embodiment of the present inven-
tion.

[0023] FIG. 10 shows a cache line information table
according to an embodiment of the present invention.
[0024] FIG. 11A shows a process flow for servicing host
read commands according to an embodiment of the present
invention.

[0025] FIG. 11B is a diagram illustrating host read com-
mand-related data flows according to an embodiment of the
present invention.

[0026] FIG. 12A shows a process flow for servicing host
write commands according to an embodiment of the present
invention.

[0027] FIG. 12B is a diagram illustrating write command-
related data flows according to an embodiment of the present
invention.

[0028] FIG. 13 shows a process flow for freeing [.1 cache
according to an embodiment of the present invention.
[0029] FIG. 14 shows a diagram illustrating optimized
fetching of data from [.2 and flushing to HDD according to
an embodiment of the present invention.

[0030] FIGS. 15A, 15B, 15C,, 15C,, 15D show the cache
state transition table for Host to [.1 data transfer according
to an embodiment of the present invention.

[0031] FIGS. 16A and 16B show the cache state transition
table for L1 to Host data transfer according to an embodi-
ment of the present invention.

[0032] FIGS. 17A and 17B show the cache state transition
table for [.2 to [.1 data transfer according to an embodiment
of the present invention.

[0033] FIGS. 18A and 18B show the cache state transition
table for [.1 to [.2 data transfer according to an embodiment
of the present invention.

[0034] FIGS. 19A and 19B show the cache state transition
table for hard disk drive to [.1 data transfer according to an
embodiment of the present invention.

[0035] FIGS. 20A and 20B show the cache state transition
table for .1 to hard disk drive data transfer according to an
embodiment of the present invention.

[0036] FIG. 21A shows an example initial state of .1 and
L2 during normal operation before a power loss occurs.
[0037] FIG. 21B illustrates the step of flushing valid dirty
data from .1 to L2 upon detection of external power loss,
using a backup power source.
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[0038] FIG. 21C shows the state of L1 and L2 before the
backup power source is completely used up.

[0039] FIG. 21D shows the state of .1 and [.2 upon next
boot-up coming from an external power interruption. It also
shows the step of copying valid dirty data from [.2 to L1 in
preparation for flushing to rotational drives or transferring to
host.

[0040] FIG. 21E shows the state of L1 and L2 after the
valid dirty data from L2 have been copied to L1.

[0041] FIG. 22 illustrates a hybrid storage device con-
nected directly to the host and to the rotational drives
through the storage controller’s available 10 interface DMA
controllers, in accordance with an embodiment of the inven-
tion.

DETAILED DESCRIPTION

[0042] Cache line is an unit of cache memory identified by
a unique tag. A cache line consists of a number of host
logical blocks identified by host logical block addresses
(LBAs). Host LBA is the address of a unit of storage as seen
by the host system. The size of a host logical block unit
depends on the configuration set by the host. The most
common size of a host logical block unit is 512 bytes, in
which case the host sees storage in units of 512 bytes. The
Cache Line Index is the sequential index of the cache line to
which a specific LBA is mapped.

[0043] HDD LBA (Hard-Disk Drive LBA) is the address
of'a unit of storage as seen by the hard disk. In a system with
a single drive, there is a one-to-one correspondence between
the host LBA and the HOD LBA. In the case of multiple
drives, host LBAs are usually distributed across the hard
drives to take advantage of concurrent IO operations.
[0044] HDD Stripe is the unit of storage by which data are
segmented across the hard drives. For example, if 32 block
data striping is implemented across 4 hard drives, the first
stripe (32 logical blocks) is mapped to the first drive, the
second stripe is mapped to the second drive, and so on.
[0045] A Flash Section is a logical allocation unit in the
flash memory which can be relocated independently. The
section size is the minimum amount of allocation which can
be relocated.

[0046] Directly-mapped, set-associative, and full-associa-
tive caching schemes can be used for managing the multiple
cache levels. A cache line information table is used to store
the multi-level cache states and to track valid locations of
data. The firmware implements a set of cache state transition
guidelines that dictates the sequences of data movements
during host reads, host writes, and background operations.
[0047] FIG. 1 illustrates a hybrid storage device 101
connected directly to the host 112 and to the rotational drives
105 through the storage controller’s available 1O interface
DMA controllers 107 and 106 respectively. The rotational
drives 105 are connected to one or more 1O interface DMA
controllers 106 capable of transferring data between the
drives 105 and the high-speed L1 cache (SDRAM) 104.
Another set of 10 interface DMA controllers 107 is con-
nected to the host 112 for transferring data between the host
112 and the L1 cache 104. The Flash interface controller 108
on the other hand, is capable of transferring data between the
L1 cache 104 and the 1.2 cache (flash devices) 103.
[0048] Multiple DMA controllers can be activated at the
same time both in the storage 1O interface and the Flash
interface sides. Thus, it is possible to have simultaneous
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operations on multiple flash devices, and simultaneous
operations on multiple rotational drives.

[0049] Data is normally cached in L1 104, being the
fastest among the available cache levels. The 10 interface
DMA engine 107 connected between the host 112 and the
DMA buses 110 and 111 is responsible for high-speed
transfer of data between the host 112 and the L1 cache 104.
There can be multiple IO interface ports connected to a
single host and there can be multiple 10 interface ports
connected to different hosts. In the presence of multiple 10
interface to host connections, dedicated engines are avail-
able in each IO interface ports allowing simultaneous data
transfer operations between hosts and the hybrid device. The
engines operate directly on the [.1 cache memory eliminat-
ing the need for temporary buffers and the extra data transfer
operations associated with them.

[0050] Foreach level of cache, the firmware keeps track of
the number of cache lines available for usage. It defines a
maximum threshold of unused cache lines, which when
reached causes it to either flush some of the used cache lines
to the medium or copy them to a different cache level which
has more unused cache lines available. When the system
reaches that pre-defined threshold of unused L1 cache, it
starts moving data from [.1 104 to 1.2 cache 103. .2 cache
is slower than .1 but usually has greater capacity. [.2 cache
103 consists of arrays of flash devices 109. Flash interface
108 consists of multiple DMA engines 115 and connected to
multiple buses 116 connected to the flash devices. Multiple
operations on different or on the same flash devices can be
triggered in the flash interface. Each engine operation
involves a source and a destination memory. For L1 to [.2
data movements, the flash interface engines copy data
directly from the memory location of the source L1 cache to
the physical flash blocks of the destination flash. For L2 to
L1 data movements, the flash interface engines copy data
directly from the physical flash blocks of the source flash to
the memory location of the destination .1 cache.

[0051] Transfers of data from [.1 104 to hard disk drives
105 and vice versa are handled by the DMA controllers of
the 1O interfaces 106 connected to the hard disk drives 105.
These DMA controllers operate directly on the [.1 cache
memories, again eliminating the need for temporary buffers.
Data transfers between L.2 103 and the hard disk drives 105
always go through [.1 104. This requires synchronization
between 1.2 and L1 be built into the caching scheme.
[0052] Although FIG. 1 shows a system where the rota-
tional drives 105 are outside the hybrid storage device 101
connected via IO interfaces 106, slightly different architec-
tures can also be used. For example, the rotational drives 105
can be part of the hybrid storage device 101 itself, connected
to the storage controller 102 via a disk controller. Another
option is to connect the rotational drives 105 to an IO
controller connected to the hybrid storage controller 102
through one if its IO interfaces 106. Similarly, the connec-
tion to the host is not in any way limited to what is shown
in FIG. 1. The hybrid storage device can also attach to the
host through an external IO controller. It can also be attached
directly to the host’s network domain. More details of these
various configurations can be found in FIGS. 1, 3, 4, 7, and
9 of U.S. Pat. No. 7,613,876, entitled “Hybrid Multi-Tiered
Caching Storage System”.

[0053] In FIG. 2, the hybrid storage device 201 is part of
the host system 202, acting as cache for a group of storage
devices 203 and 205. In the example given, one of the 10
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interfaces 206 is connected directly to a hard disk drive 203.
Another 10 interface 207 is connected to another hybrid
device 204 which is connected directly to another set of hard
disk drives 205. Contrary to the example in FIG. 1 where the
hybrid storage device is a slave device receiving 1O com-
mands from the host and translating them to subcommands
delivered to the hard disk drives, and handling the caching
in between these processes, FIG. 2 shows a host hybrid
device doing caching of data on the host side using its own
dedicated [L1 and L2 caches. An example of this is a
multi-ported HBA (Host Bus Adapter) with integrated L1
and L2 caches. In the HBA’s point of view, it is connected
to, and thus capable of caching multiple storage devices
regardless of whether or not the attached storage devices are
also doing caching internally. The hybrid device intercepts
10 requests coming from the host application and utilizes its
built-in caches as necessary.

[0054] FIG. 3 is another variation of the architecture. In
this case, a hybrid storage device 301 acts as a caching
switch/bridge connected to the host 302 via another hybrid
storage device 303, which is shown as a HBA. The hybrid
storage device 301 is connected to a hybrid storage device
304 also a plain rotational drive 305. In this example, all
three devices 301, 303, and 304 are capable of L.1 and 1.2
caching.

[0055] In FIG. 4, the hybrid storage device 401 is directly
connected to the network 402 where the host 403 is also
connected to. In this mode, the hybrid storage device can be
a network-attached storage or a network-attached cache to
other more remote storage devices. If it is used as a pure
cache, it can implement up to three levels of caches, L1
(SDRAM), L2 (Flash), and L3 (HDD).

[0056] In the example architectures illustrated such as
FIG. 1, the host can configure the hybrid storage device to
handle virtualization locally. The hybrid storage device
presents the whole storage system to the host as a single
large storage without the host knowing the number and exact
geometry of the attached rotational drives.

[0057] A firmware application running inside the hybrid
storage device is responsible for the multi-level cache man-
agement.

[0058] Data Striping

[0059] If virtualization is implemented locally in the
hybrid storage device, the device firmware can control the
mapping of data across one or more rotational drives.
Initially at first boot-up, the firmware will initialize the 10
interfaces and detect the number and capacity of attached
hard drives. It then selects the appropriate host LBA to HDD
LBA mapping that will most likely improve the performance
of the system. In its simplest form, the mapping could be a
straightforward sequential split of the host LBA among the
drives. FIG. 5A shows division of data into stripes in a single
rotational drive. FIG. 5B shows sequential division of stripes
among multiple rotational drives. In this mapping scheme,
given for example, 3 drives with 80 GB capacity each, the
first 80 GB seen by the host will be mapped to the first drive,
the second 80 GB to the second drive, and the last 80 GB
mapped to the third drive.

[0060] This mapping scheme is simplest but not too effi-
cient. A better mapping would spread the data across the
drives to maximize the possibility of concurrent operations.
In this type of mapping, the firmware will distribute the
stripes across the drives such that sequential stripes are
stored in multiple drives. FIG. 5C, shows distributed stripes
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across multiple hard drives. In a system with 3 or more hard
drives, distributed parity can be added for a RAIDS-like
implementation as shown in FIG. 5D.

[0061] The size of each stripe is configured at first boot-
up. An example configuration is setting stripe size equal to
the cache line size and setting cache line size equal to the
native flash block size or to the flash section size. A system
with host LBU of X bytes, and with flash devices with block
size of Y bytes, a data stripe and a cache line will consist of
Y divided by X number of host logical blocks. FIG. 6 shows
an example cache line for a 16 KB flash section and 512 byte
LBU.

[0062] FIG. 7 is a flowchart for the initialization part of
data striping in the hybrid storage device. If local virtual-
ization is active, firmware initiates discovery of attached
hard drives, and gets the flash section size to be used as
reference size for the stripe. If the number of detected drives
is greater than two and the drives have equal capacities and
RAIDS feature is set to on, RAIDS configuration is selected
and parity stripes are assigned in addition to data stripes. If
there are only two drives, plain striping is implemented.
[0063] Pre-Fetching

[0064] At initialization, the hybrid storage device firm-
ware offers the option to pre-fetch data from the rotational
drives to L1 cache. Since rotational drives are slow on
random accesses, firmware by default may choose to pre-
fetch from random areas in rotational drives. A more flexible
option is for the firmware to provide an external service in
the form of a vendor-specific interface command to allow
the host to configure the pre-fetching method to be used by
the firmware at boot-up.

[0065] If the system is being used for storing large con-
tents such as video, the firmware can be configured to
pre-fetch sequential data. If the system is being used for
database applications, it can be configured to pre-fetch
random data. If fastest boot-up time is required, pre-fetch
may also be disabled.

[0066] In another possible configuration, the system may
support a host-controlled Non-Volatile Cache command set.
This allows the host to lock specific data in the non-volatile
L2 cache so that they are immediately available at boot-up
time. When the firmware detects that data was pinned by the
host in the L2 non-volatile cache, it automatically pre-
fetches those data.

[0067] FIG. 8 shows the flowchart for doing data pre-
fetching at boot-up time.

[0068] Caching Mode

[0069] InFIG. 1, the rotational drives 105 have the largest
storage capacity. The flash devices 103, acting as second
level cache, may have less capacity. The SDRAM 104,
acting as first level cache, may have the least capacity. Both
L1 cache and L2 cache can either be fully-associative,
set-associative, or directly-mapped. In a full-associative
cache, data from any address can be stored to any of the
cache lines. In a set-associative cache, data from a specific
address can be mapped to a certain set of cache lines. In a
directly-mapped cache, each address in storage can be
cached only to one specific cache line.

[0070] FIG. 9A shows an illustration of a set-associative
L2 cache, where the flash devices are divided among the
rotational drives. Data from HDDO can be cached to any of
the 8 flash devices assigned to HDDO (FDEV 00, FDEV 04,
FDEV 08, FDEV 12, FDEV 16, FDEV20, FDEV24, and
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FDEV28), data from HDD1 can be cached to any of the 8
flash devices assigned to HDDI1, and so on.

[0071] FIG. 9B shows an illustration of a directly-mapped
L2 cache. In this setup, each of the four hard drives has
dedicated flash devices where their data can be cached. In
this example, data from HDDO can only be cached in
FDEV00, HDD1 in FDEVO01, and so on.

[0072] FIG. 9C is an illustration of a full-associative 1.2
cache. In this setup, data from any of the four drives can be
cached to any of the four flash devices.

[0073] Full-associative caching has the advantage of
cache usage efficiency since all cache lines will be used
regardless of the locations of data being accessed. In the
full-associative caching scheme, the firmware keeps cache
line information for each set of available storage. In a system
with N number of cache lines, where N is computed as the
available cache memory divided by the size of each cache
line, the firmware will store information for M number of
cache lines, where M is computed as the total storage
capacity of the system divided by the cache line size. This
information is used to keep track of the state of each storage
stripe.

[0074] FIG. 10 shows an example table for storing cache
line information in a full-associative caching system. Since
each storage stripe has its own entry in the table, firmware
can easily determine a stripe’s caching state and location.
[0075] L1 Index is the cache line/cache control block
number. HDD ID is the sequential index of the rotational
drive where the data resides. HDD LBA is the first hard-disk
LBA assigned to the cache line. L1 Address is the actual
memory address where data resides in L1, and 1.2 Address
is the physical address of the location of data in L.2.
[0076] The HDD ID and HDD LBA can be derived at
runtime to minimize memory usage of the table. .1 Cache
State and 1.2 Cache State specify whether the SDRAM
and/or the flash contain valid data. If valid, it also specifies
if data is clean or dirty. A dirty cache contains a more
up-to-date copy of data than the one in the actual storage
media, which in this case is the rotational drive. Cache
Sub-State specifies whether cache is locked because of
on-going transfer between SDRAM and Host (sdramZ2host
or host2sdram), SDRAM and Flash (sdram2flash or
flash2sdram), or SDRAM and rotational drive (sdram2hdd
or hdd2sdram).

[0077] Direct-mapping is less efficient in terms of cache
memory usage, but takes less storage for keeping cache line
information. In a system with N number of cache lines,
where N is computed as the available cache memory divided
by the size of each cache line, the firmware can store
information for as few as N number of cache lines. When
checking for cache hits, firmware derives the cache line
index from the host LBA, and looks directly to the assigned
cache line information. Firmware compares the cache-
aligned host LBA to the start of the currently cached LBA
range and declares a hit if they are the same.

[0078] At initialization, firmware allocates memory for
storing the cache information. The amount of memory
required for this depends on the caching method used as
discussed above.

[0079] Address Translation

[0080] Cache states stored in the cache line information or
cache control block outlined in FIG. 10 specify the validity
of data copy in L1 and 1.2 caches. After inspection of cache
states, the next step in processing an 10 command is to
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locate the exact address of the target data, which is stored
also in the cache line table in FIG. 10. If data is neither in
L1 nor in L2, a HostLBA2HDDLBA translation formula is
used to derive the addresses of the hard disk logical blocks
where the data is stored.

[0081] The host LBA size is usually smaller than the flash
block of 1.2, thus a set of logical blocks is addressed by a
single physical block. For example, given a 512-byte host
LBA and 16 KB flash block, 32 LBAs will fit into one flash
block. Therefore, only one entry in the table is needed for
each set of 32 host logical blocks.

[0082] The cache information table is stored in non-
volatile memory and fetched at boot-up time. In systems
with very large storage capacities, it might not be practical
to copy the entire table to volatile memory at boot-up time
clue to boot-up speed requirement and limitation of avail-
able volatile memory. At boot-up only a small percentage of
the table is copied to volatile memory. In effect, the cache
control block table is also cached. If the table entry associ-
ated with an IO command being serviced is not in volatile
memory, it will be fetched from the non-volatile memory
and will replace a set of previously cached entries.

[0083] The HostLBA2HDDLBA translation formula
depends on the mapping method used to distribute the host
logical blocks across the rotational drives. For example, if
host data is striped across 4 rotational drives and parity is not
implemented, the formula would look like the following:

HDDLBA=StripeSz*(NumHDD/SDRAMIdx )+
HostLBA % StripeSz.

[0084] The index to the rotational drive can be derived
through the formula:

HDDIdx=SDRAMIdx % NumHDD

[0085] In the first equation, StripeSz is specified in terms
of logical block units.

[0086] Cache State Transitions

[0087] The firmware keeps track of data in the [.1 and [.2
caches using a set of cache states which specifies the validity
and span of data in each cache line. The cache state
information is part of the cache information table in FIG. 10.
Each cache level has its own cache state, and in addition, the
field cache sub-state specifies whether the cache line is
locked due to an ongoing data transfer between caches,
between the medium and a cache, or between the host and
a cache. Although the cache states are presented in the table
as one data field, the representation in the actual implemen-
tation is not restricted to using a single variable for each
cache state. For example, it may be a collection of flags and
page bitmaps but when treated collectively still equate to
one of the possible distinct states. The page bitmap is the
accurate representation of which parts of the cache line are
valid and which are dirty. As an example, the cache line 601
of FIG. 6 has 32 host LBAs and the state of each LBA
(whether valid, invalid, clean, or dirty) can be tracked by
using two 32-bit bitmap ValidBitmap and DirtyBitmap.
Each bit in the two variables represents one LBA in the
cache line. For ValidBitmap, a bit set to one means the data
in the corresponding L. BA is valid. For DirtyBitmap, a bit set
to one means the data in the corresponding LBA is more up
to date than what is stored in the medium. The six possible
cache states are: Invalid, Valid Partially Cached Dirty, Valid
Fully Cached Partial Dirty, Valid Full Dirty, Valid Full
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Clean, and Valid Partially Cached Clean. The seven possible
cache sub-states are: NOP, H2S, S2H, F2S, S2F, HDD2S
and S2HDD.

[0088] A sub-state of NOP (No Operation) indicates that
the cache is idle. H2S indicates that the cache line is locked
clue to an ongoing transfer of data from the host to L.1. S2H
indicates that the cache line is locked clue to an ongoing
transfer of data from L1 to host. F2S indicates that the cache
line is locked clue to an ongoing transfer from [.2 to L1. S2F
indicates that the cache line is locked clue to an ongoing
transfer from L1 to L2. HDD2S indicates that the cache line
is locked clue to an ongoing transfer from the hard disk to
L1. Finally, S2HDD indicates the cache line is locked clue
to an ongoing transfer from L1 to the hard disk drive.

[0089] An Invalid cache line does not contain any data or
contains stale data. Initially, all caches are invalid until
filled-up with data during pre-fetching or processing of host
read and write commands. A cache line is invalidated when
a more up-to-date copy of data is written to a lower-level
cache thus making the copy of the data in higher level caches
invalid (15038, 15040, 15041, 15043, 15046, 15048, 15050,
15055, 15057, 15059, 15060, 15062, 15068, 15071, 15072,
15074, 15076, 15080, 15084, 15085, 15090, 15095, 15096,
15100, 15101, 15103, 15105, 15109, 15115, 15116, 15119,
15120, 15124, 15125, 15127, 17049 and 17050). For
example if a dirty cache line in L1 is copied to L.2 so that L1
can be freed up during an L1 cache full condition, and later
new version of that data is written to L1 by host, the copy
in L2 becomes old and unusable, so the firmware invalidates
the cache line in L2. From an invalid state, a write to an L1
cache line by host will result to switching of state to either
Valid Partially Cached Dirty (15037, 15039, 15040, 15042,
15044, 15045, 15047, 15049 and 15050) or Valid Full Dirty
(15036, 15038, 15041, 15043, 15046 and 15048), depending
on whether the data spans the entire cache line or not. On the
other hand, a read from the medium to L1 makes an Invalid
cache line either Valid Partially Cached Clean (19036,
19038, 19039, 19041 and 19043) or Valid Full Clean
(19037, 19040 and 19044). Finally, a read from [.2 to an
invalid .1 could result to inheritance of [.2’s state by L1
(17037, 17038, 17040, 17042 and 17044). However, if the
data from L2 is not enough to fill the entire [.1 cache line,
the resulting state of .1 would either be Valid Partially
Cached Clean (17039) or Valid Partially Cached Dirty
(17041 and 17043). From an invalid state, a write to an [.2
cache line will result to inheritance of state from L1 to L2
(18042, 18050, 18056, 18062, and 18068).

[0090] Valid Partially Cached Dirty state indicates that the
cache line is partially filled with data and some or all of these
data are dirty. A dirty copy of data is more up-to-date than
what is stored in the actual medium. An example sequence
that will result to this state is a partial Write FUA command
to an Invalid cache line followed by a partial normal Write
command. The Write FUA command partially fills the .1
cache line with clean data (19036, 19038, 19039, 19041 and
19043), and the normal Write command makes the partial [.1
cache line dirty (15114, 15117, 15118, 15121, 15127 and
15128). L1 cache will take on a Valid Partially Cached Dirty
state whenever new data transferred from the host or L2
cache is not enough to fill its entire cache line (15037,
15039, 15040, 15042, 15044, 15045, 15047, 15049, 15050,
15053, 15058, 15059, 15066, 15067, 15070, 15075, 15076,
15114, 15117, 15118, 15121, 15127, 15128, 17037, 17041,
17043, 17047, 17052, 17054 and 17075). Transfer of data
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from hard disk drive or from [.2 to a Valid Partially Cached
Dirty L1 occurs when the firmware wants to fill-up the
un-cached portions of the L1 cache. When the transfer
completes, the [.1 cache either becomes Valid Full Dirty
(17049 and 17051) or Valid Fully Cached Partial Dirty
(17046, 17050, 17053, 19046, 19048 and 19053), depending
on whether the entire cache line became dirty or not.
However, for cases wherein data transferred from the hard
disk drive or L2 cache is not enough to fill all un-cached
portion of the L1 cache, its state remains in Valid Partially
Cached Dirty (17047, 17052, 17054, 19045, 19047 and
19052). Flushing of dirty bytes from a Valid Partially
Cached Dirty L1 to the medium will either cause its state to
change to Valid Partially Cached Clean (20042, 20044,
20046, 20049, 20051 and 20053) or stay in Valid Partially
Cached Dirty (20043, 20045, 20047, 20050 and 20054)
depending on whether all dirty bytes were flushed to the
medium or just a portion of it. A host write to a Valid
Partially Cached Dirty L1, either makes it Valid Full Dirty,
Valid Fully Cached Partial Dirty, or leave it as Valid Partially
Cached Dirty, depending on the span of data written by the
host. If the new data covers the entire cache, it naturally
becomes Valid Full Dirty (15051, 15055, 15062, 15068, and
15071). If the new data fills all un-cached bytes and all clean
bytes, L1 still becomes Valid Full Dirty (15052, 15056,
15057, 15063, 15065, 15069, 15072 and 15074). If the new
data fills all un-cached bytes but some bytes remained clean,
L1 becomes Valid Fully Cached Partial Dirty (15054, 15060,
15064 and 15073). Finally, if the new data does not fill all
un-cached, [.1 stays as Valid Partially Cached Dirty (15053,
15058, 15059, 15066, 15067, 15070, 15075 and 15076). 1.2
will switch to Valid Partially Cached Dirty state if a Valid
Partially Cached Dirty L1 is copied to it (18042, 18043 and
18048) and copied data does not fill the entire cache line of
L2. Data transfer from the host to L1 could invalidate some
of the data in [.2 effectively causing [.2°s state to switch to
Valid Partially Cached Dirty (15044, 15047, 15063, 15065,
15067, 15069, 15070, 15098 and 15110). L2 will likewise
switch to Valid Partially Cached Dirty if it shares the same
set of data with LI, and some of the dirty bytes in .1 were
flushed to the medium (20079). When new data is written by
the host to L1 overlaps with the data in L2, the L2 copy
becomes invalid (15038, 15040, 15055, 15057, 15059,
15060, 15090, 15105, 15115 and 15116) or Valid Partially
Cached Clean (15092 and 15118), otherwise it will stay in
its Valid Partially Cached Dirty state (15039, 15056, 15058,
15091, 15093, 15106 and 15117). A transfer from [.1 to L2
could also change 1.2°s state from Valid Partially Cached
Dirty to Valid Full Dirty (18044 and 18063) or Valid Fully
Cached Partial Dirty (18057, 18069 and 18070), depending
on whether the entire cache line became dirty or not as a
result of the data transfer. If the dirty bytes in L.1 is flushed
to the medium incidentally coincides with the dirty bytes in
L2, the L2 copy becomes Valid Partially Cached Clean
(20044, 20062, 20072 and 20073.

[0091] A Valid Full Clean state indicates that the entire
cache line is filled with data that is identical to what is stored
in the actual medium. This happens when un-cached data is
read from the medium to L1 (19037, 19040, 19044, 19073,
19076 and 19080), or when data in L1 is flushed to the
medium (20049, 20060, 20062, 20065, 20068, 20070,
20072 and 20077). A data transfer from L1 could also result
to a Valid Full Clean state for 1.2 if data copied to 1.2
matches what is stored in the hard disk (18050 and 18075).
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Likewise, L1 will switch to a Valid Full Clean state (17038,
17076 and 17080) following a transfer from L2, if cached
data in L2 matches what is stored in the hard disk and
transferred data from .2 is enough to fill the entire L1 cache
line. When written with new data, a Valid Full Clean either
becomes Valid Full Dirty (15077, 15080, and 15084) or
Valid Fully Cached Partial Dirty (15078, 15081, 15085 and
15086), depending on whether the new data spans the entire
cache line or not. A Valid Full Clean L.2 could become Valid
Partially Cached Clean (15042, 15081 and 15121) or could
be invalidated (15041, 15080, 15119 and 15120) depending
on whether new data written to LI by the host invalidates a
portion or the entire content of L.2.

[0092] The Valid Fully Cached Partial Dirty state indicates
that the entire cache line is filled up with data and some of
the data are dirty. An example sequence that will result to
such state is a Read FUA command of the entire cache line
followed by a partial Write command. The Read FUA
command copies the data from the medium to L1, making
L1 Valid Full Clean (19037, 19040, 19044, 19054, 19056,
19059, 19073, 19076 and 19080), and the following partial
Write command makes some of the data in the cache line
dirty (15078, 15081, 15085 and 15086). Writing data to
un-cached portions of a partially filled LI could likewise
result to a Valid Fully Cached Partial Dirty state (15054,
15060, 15064, 15073, 15113, 15116, 15120, 15125, 15126,
17046, 17050, 17053, 17074, 19046, 19048 and 19053).
Writing this LI cache line to [.2 in turn, makes [.2 inherit the
state of LI as Valid Fully Cached Partial Dirty (18056, 18057
and 18061). Similarly, copying a Valid Fully Cached Partial
Dirty 1.2 to L1 will make .1 inherit the state of L2 (17040
and 17050). Transferring data from L.1 to un-filled portions
of L2 would likewise cause L2’s state to switch to Valid
Fully Cached Partial Dirty (18049, 18069 and 18070). A
Valid Fully Cached Partial Dirty [.1 will remain in this state
until a portion of the dirty bytes in L1 were flushed to the
medium after which it would shift to a Valid Full Clean state
(20061, 20063, 20066 and 20069). Furthermore, when the
host writes new data to the L1 cache, .1 either stays as Valid
Fully Cached Partial Dirty (15089, 15092, 15097, 15098,
15102 and 15103) or becomes Valid Full Dirty (15087,
15088, 15090, 15091, 15093, 15095, 15096, 15100 and
15101). A Valid Fully Cached Partial Dirty [.2 cache, on the
other hand, either gets invalidated (15043, 15062, 15095 and
15096), switches to Valid Partially Cached Dirty state
(15044, 15063, 15065, 15067 and 15098) or changes state to
Valid Partially Cached Clean (15045, 15064, 15066 and
15097) following a transfer from the host to 1. Copying
data from a Valid Fully Cached Partial Dirty [.2 to L1 would
likewise invalidate the contents of L2 (17049 and 17050).
Flushing all cached dirty bytes from [.1 will cause [.2’s state
to change from Valid Fully Cached Partial Dirty to Valid Full
Clean (20049 and 20065), otherwise, 1.2 stays in Valid Fully
Cached Partial Dirty state (20050, 20051 and 20067).

[0093] The Valid Full Dirty state indicates that the entire
cache line contains newer data than what is stored in the
medium. [.1 may become Valid Full Dirty from any state
(i.e. Invalid: 15036, 15038, 15041, 15043, 15046 and 15048;
VPCD: 15051, 15052, 15055, 15056, 15057, 15062, 15063,
15065, 15068, 15069, 15071, 15072 and 15074; VFCPD:
15087, 15088, 15090, 15091, 15093, 15095, 15096, 15100
and 15101; VFD: 15104, 15105, 15106, 15109 and 15110;
VFC: 15077,15080 and 15084; VPCC: 15112, 15115, 15119
and 15124) once the host writes enough data to it to make
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all its data dirty. Aside from this, a Valid Full Dirty L1 may
also be a result of a previously empty or Valid Partially
Cached Dirty L1 that has been filled up with dirty bytes from
L2 (17042, 17049 and 17051). A Valid Full Dirty L1 will
stay at this state until flushed out to the medium, after which
it will become Valid Full Clean (20071, 20073 and 20078)
or Valid Fully Cached Partial Dirty (20072, 20074, 20075
and 20079). A Valid Full Dirty L2 is a result of data transfer
from a Valid Full Dirty [.1 to L.2 (18062 and 18063) or when
new data copied from L1 is enough to fill all portions of 1.2
(18044). 1.2 will stay at this state until the host writes new
data to L1 which effectively invalidates portions or the entire
data in L2. If only a portion of cached data in L2 is
invalidated a Valid Full Dirty L2 switches to Valid Partially
Cached Dirty state (15047, 15069, 15070 and 15110), oth-
erwise it switches to Invalid state (15046, 15068 and 15109).
The state of L2 could also change from Valid Full Dirty to
Valid Partially Cached Dirty (20079) or Valid Full Clean
(20078) depending on whether all or just a portion of the
dirty bytes in [.1 was flushed to the medium.

[0094] The Valid Partially Cached Clean state indicates
that the cache is partially filled with purely clean data. For
L1, this may be a result of a partial Write FUA (20081,
20082, 20083 and 20086), or partial Read FUA command
(19036, 19038, 19039, 19041, 19043, 19072, 19074, 19075
and 19079), or flushing of a partially cached dirty L1 to the
hard disk drive (20042, 20044, 20046, 20049, 20051 and
20053) or data transferred from [.2 to [.1 cache did not fill
entire L1 cache line (17039, 17044, 17077 and 17081). A
Valid Partially Cached Clean will transition to Valid Full
Clean if remaining un-cached data are read from the medium
(19073, 19076 and 19080) or from L.2 (17076 and 17080) to
L1. When host writes to a Valid Partially Cached Clean L1,
the L1 state will transition to Valid Full Dirty, Valid Fully
Cached Partial Dirty, or Valid Partially Cached Dirty. If the
written data covers the entire cache line, the L1 becomes
Valid Full Dirty (15112, 15115, 15119 and 15124). If the
new data does not cover the entire cache line, L1 becomes
Valid Partially Cached Dirty (15114, 15117, 15118, 15121,
15127 and 15128). If the new data does not cover the entire
cache line but was able to fill all un-cached data, I.1 becomes
Valid Fully Cached Partial Dirty (15113, 15116, 15120,
15125 and 15126). When data from .2 is copied to a Valid
Partially Cached Clean L1, it could likewise transition to
Valid Partially Cached Dirty state (17075), Valid Fully
Cached Partial Dirty (17074), Valid Full Clean (17076 and
17080), or Valid Partially Cached Clean (17077 and 17081).
A Valid Partially Cached Clean 1.2 is the result of a Valid
Partially Cached Clean .1 being written to L2 (18068 and
18074), or a Valid Partially Cached Dirty L1 being flushed
out to the medium (20044, 20053 and 20054). A Valid
Partially Cached Clean [.2 could likewise result from a host
to L1 transfer whenever some of the data in [.2 gets
invalidated (15042, 15045, 15064, 15066, 15081, 15092,
15097, 15118 and 15121). When host writes to L1, the entire
contents of a Valid Partially Cached Clean 1.2 would be
invalidated if the data transferred by the host overlaps with
the contents of L2 (15038, 15040, 15055, 15057, 15059,
15060, 15090, 15085, 15105, 15115 and 15116) otherwise it
stays in Valid Partially Cached Clean state (15092 and
15118). Transferring new data bytes from L1 will cause a
transition of [.2’s state from Valid Partially Cached Clean to
Valid Partially Cached Dirty state (18048) or Valid Fully
Cached Partial Dirty state (18049 and 18061) depending on
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whether copied data from L1 fills the entire .2 cache line or
not. A Valid Partially Cached Clean L2 could also transition
to Valid Full Clean (18075) if data transferred from L1 fills
empty cache bytes of L2, otherwise, L2 stays in Valid
Partially Cached Clean state (18074).

[0095] FIGS. 15A, 15B 15C,, 15C,, and 15B, FIGS. 16 A
and 16B, FIGS. 17A and 17B, FIGS. 18A and 18B, FIGS.
19A and 19B and FIGS. 20A and 20B show the complete
tables showing the state transitions that occur in a hybrid
storage system with two levels of cache. For systems with
more than two cache levels, the additional table entries can
easily be derived using the same concepts used in the
existing table.

[0096] Read Command

[0097] The succeeding paragraphs discuss in details, the
processing of a Read command by a hybrid storage device
as described by the flow chart illustrated in FIG. 11A. The
process performs different types of cache operations which
make use of different cache transition tables. The cache
transition tables used are also discussed.

[0098] When the firmware receives a Read command from
the host, it derives the cache control block index (SDRAM
Index) based on the host LBA. Then it checks the designated
cache control block if the requested LBA is in L1 cache.
[0099] If L1 cache is valid and the associated cache
control block entry is for the requested block, firmware starts
data transfer from L1 cache to host and updates cache
sub-status to S2H (SDRAM to host). Note that there are 5
defined valid cache states (valid full clean (VFC), valid full
dirty (VFD), valid partially cached clean (VPCC), valid
partially cached dirty (VPCD), and valid fully cached partial
dirty (VFCPD)), and before firmware can initiate .1 cache
to host data transfer and update the cache sub-state to S2H,
it must check first if there is an ongoing locked cache
operation. Should there be any ongoing locked cache opera-
tion, the firmware will wait until the operation is finished (or
current cache sub-state becomes NOP) before initiating the
data transfer from L1 cache to host. FIGS. 16A and 16B lists
the 5 defined valid states for [.1 cache (and other states) and
the combination with L2 cache state and cache sub-state
values for allowable and non-allowable data transfer from
L1 cache to host. As an example, assuming the requested
data being targeted by the received Read command from the
host is LBA 0-99 and is determined to be in L1 cache based
on the cache line information table. Based on FIGS. 16A and
16B, firmware may execute read from L1 cache to host
provided that current cache sub-state is NOP. Note also that
S2H operation can be initiated regardless of the valid current
state of L2 cache since content of the .1 cache is always the
latest or most updated copy.

[0100] IfL1 cache is valid but a different entry is stored in
the associated cache control block (for the case of directly
mapped cache), the firmware initiates the freeing of that
cache. If that cache is clean, it can be freed instantly without
any flush operation. But if the cache is dirty, firmware gets
the associated flash physical location of data from cache
control info and initiates copying of data to L2 cache after
determining that there is enough space for the L1 cache
content to be flushed, which is faster than flushing to
rotational drive. Then it updates sub-status to sdram2flush
(S2F). Refer to “movement from L1 cache to L2 cache” for
detailed discussion on this cache operation. FIGS. 18A and
18B lists the cache state transition for L1 cache to L2 cache
data transfer.
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[0101] However, if L2 cache is full, flushing to rotational
drive will be initiated instead, and sub-status will be set to
S2HDD (SDRAM to hard disk drive). Flushing of L.2 cache
to rotational drives can also be done in the background when
firmware is not busy servicing host commands. After flush-
ing of L1, firmware proceeds with the steps below as if data
is not in L1 cache. Refer to “flushing of .1 cache” subsec-
tion of this document for a detailed discussion on the
flushing of [.1 cache mentioned in the Read operation. FIGS.
20A and 20B lists the cache state transition for L.1 cache to
rotational drive data transfer.

[0102] Ifdataisnotin L1 cache, firmware checks state of
L2 cache.
[0103] If L2 cache is valid, firmware gets the physical

location of data based on the L2 address field of the cache
control info table and starts transfer from [.2 cache to L1
cache, and updates sub-status to F2S (flash to SDRAM).
FIGS. 17A and 17B lists the current L1 cache state, L2 cache
state, and cache sub-state condition requirements for F2S
operation. Based on the table, F2S operation can be initiated
when current cache sub-state is NOP and current L1 cache
state can be INVLD, VPCD, or VPCC. The same as the
previously mentioned cache operations, F2S can only be
initiated by firmware if there is no ongoing locked cache
operation. If there is no available [.1 cache (L1 cache full),
firmware selects an [.1 cache victim. If the selected victim
is clean, or if it is dirty but consistent with the copy in .2
cache, it is freed instantly. Otherwise, it is flushed to the
rotational drive. The cache is then invalidated and assigned
to the current command being serviced. For example, the
read command is requesting LBA 20-25 which is located in
L2 cache.

[0104] Assuming the configuration is 10 LBAs per L1
cache line or index, the requested LBAs are mapped to L.1
index #2 of the cache control information table. To start the
transfer of the data from L2 cache to L1 cache, firmware
checks L1 cache state if it is not yet full. If not full, firmware
searches for an available L1 address (ex. 0x0000_3000),
assigned it to L1 index #2, and set the cache sub-state value
from NOP to F2S. However, if current L1 cache is full
(VEC, VFD, or VFCPD), an L1 address is selected. Assum-
ing the selected L1 address is 0x0001_0000, firmware
checks from the L1 segment bitmap if the content of this
address is clean or dirty. If clean, then the address is
invalidated. If dirty, firmware flushes to the rotational drive
if needed, before invalidating the selected .1 address. Once
invalidated, firmware initiates LBA 20-29 transfer from 1.2
cache to L1 cache address 0x0001_0000 once the current
cache sub-state is NOP. After completing the data transfer,
firmware updates the L1 cache state and sets cache sub-state
back to NOP.

[0105] If L2 cache is invalid, the firmware determines
physical location of data in rotational drives, starts transfer
of data from rotational drive to L1 cache, and updates
sub-status to HDD2S (hard disk drive to SDRAM). For
example, LBA 100-199 is being requested by a received
Read command from the host, and based on the cache
control information table, this LBA range is not in the cache
(L1 and L.2). After determining, the physical location in the
hard disk using the HostLBA2HDDIBA translation for-
mula, firmware selects a free L1 cache address and initiates
the data transfer from the hard disk to the selected L1 cache
address when no L1 cache operation is happening.
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[0106] Note that HDD2S cache operation can also be
initiated for other values of L2 cache state. FIG. 19 lists L1
cache state, L2 cache state, and cache sub-state current
values, the allowable event for each cache combinations,
and the resulting states per event. Based on the figure,
HDD2S can be initiated when—(1) current L.1 or L.2 cache
states is not full dirty, (2) current [.1 cache state is VPCD and
current [.2 cache state is valid full, (3) current L1 cache state
is VFC and current L2 cache state is dirty, (4) current .1
cache state is VFCPD and current L2 cache state is VFD, (5)
current L1 cache state is VPCC and current L2 cache state
is VFCPD or VFP, and (6) there’s no ongoing cache opera-
tion. The case when current L1 cache state is VFC and
VFCPD, and HDD?2S is initiated, is applicable only when
the received command is Read FUA where clean data is read
directly from the hard disk regardless if there’s a cache hit
or not. Note also that if [.1 cache is full, flushing of .1 cache
is done before fetching from HDD can occur.

[0107] Upon completion of S2H, firmware clears cache
sub-status (NOP), sends command status to host, and com-
pletes command. FIGS. 16A and 16B also lists the cache
state transitions when completing the data transfer from L1
cache to host. The figure details the corresponding next .1
and L2 cache states based on their current states after
finishing the data transfer. Based on the figure, .1 cache and
L2 cache states are retained even after the host completed
reading from .1 cache (16042, 16403, 16045-16048, 16050,
16053-16055, 16057, 16059-16061, 16064, 16066-16068,
and 16071). However, cache sub-state transitions to NOP
after the operation.

[0108] Upon completion of F28S, firmware updates cache
control block (L1 cache is now valid) and starts transfer
from L1 cache to host. Sub-status is marked as S2H. FIGS.
17A and 17B also lists the cache state transitions when
completing the data transfer from [.2 cache to L1 cache. The
figure details the corresponding next [.1 and L2 cache states
based on their current states after finishing the data transfer.
As illustrated in the figure, cache sub-state always transi-
tions to NOP after the operation.

[0109] Ifcurrent L1 cache state is invalid, its next state is
set depending on the current [.2 cache state and the type of
L2 to L1 data transfer. If current L2 cache state is VPCD or
VPCC, the L1 cache state is also set to the L2 cache state
after the operation (17037 and 17044). If current .2 cache
state is VFC, VFCPD, or VFD, current L1 cache state is set
depending on the 2 type of L.2 to L1 data transfer event—(1)
entire [.1 cache is filled after transferring the data from [.2
cache and (2) L1 cache is not filled after the data transfer. If
(1), L1 cache is set to the [.2 cache state (17038, 17040, and
17042). If (2), L1 cache state is set to VPCC if current [.2
cache state is VFC (17039), set to VPCD if current L2 cache
state is VFCPD (17041), or set to VPCD is current [.2 cache
state is VFD (17043).

[0110] If current L1 cache state is VPCD, its next state is
set depending on the current 1.2 cache state. If current [.2
cache state is also VPCD, L1 cache state is set based on the
2 events described on the previous paragraph. If (1), L1
cache state is set to VFCPD (17046). If (2), L1 cache state
is set to VPCD (17047). If current [.2 cache state is VFCPD,
L1 cache state is set based on another 2 L2 to L1 data
transfer events—(1) all un-cached bytes in [.1 are dirty in 1.2
and (2) not all un-cached bytes in [.1 are dirty in .2. (1), L1
cache state is set to VFD (17049). If (2), L1 cache state is
set to VFCPD (17050). For the 2 cases, [.2 cache state is set



US 2020/0151098 Al

to INVLD after F2S operation. If current L2 cache state is
VFD, LI cache is set based on the former 2 events—(1)
entire L1 cache is filled after the operation and (2) L.1 cache
is not filled after the operation. If (1), L1 cache state is set
to VED (17051). If (2), LI cache state is set to VPCD
(17052). If current L.2 cache state is VPCC, L1 cache state
is set based also on the 2 previous events. If (1), L1 cache
state is set to VFCPD (17053). If (2), L1 cache state is set
to VPCD (17054).

[0111] If current L1 cache state is VPCC, its next state is
set to VFCPD or VFC if current L2 cache state is VPCD or
valid clean, respectively (17074 or 17076/17080) for the
case when the entire L1 cache is filled after the data transfer.
L1 cache state is set to VPCD or VPCC if current L1 cache
state is VPCD or valid clean (17075 or 17077/17081) for the
case the entire L1 cache is not filled after the data transfer.

[0112] Upon completion of HDD2S, firmware updates
cache control block (I.1 cache is now valid) and starts
transfer from L1 cache to host. FIGS. 19A and 19B also lists
the cache state transitions when completing the data transfer
from rotational disks to .1 cache. The figure-details the
corresponding next L1 and 1.2 cache states based on their
current states after finishing the data transfer. Cache sub-
state always transitions to NOP after the operation. Note that
although L2 cache state is not affected since the operation
only involves the L1 cache and the rotational drive, its
current state affects the [.1 cache succeeding cache state as
listed in the figures.

[0113] Ifcurrent L1 cache state is INVLD, its next state is
set depending on the current L1 cache state. If current 1.2
cache state is INVLD, VFC, or VPCC, L1 cache state is set
based on 2 events—(1) data from the hard drive did not fill
the entire cache and (2) data from the hard drive filled the
entire cache. If (1), L1 cache state is set to VPCC (19036,
19039, and 19043). If (2), L1 cache state is set to VFC
(19037, 19040, and 19044). If current 1.2 cache state is
VPCD, L1 cache state is set to VPCC (19038). If current 1.2
cache state is VFCPD, L1 cache state is set to VPCC
(19041).

[0114] If current L1 cache state is VPCD and current 1.2
cache state is INVLD, VPCD, or VPCC, the L1 cache state
is set based also on the 2 events discussed on the previous
paragraph. If (1), L1 cache state is set to VPCD (19045,
19047, and 19052). If (2), L1 cache state is set to VFCPD
(19046, 19048, and 19053).

[0115] If current L1 cache state is VFC or VFCPD, the
state is retained after the operation (19054, 19056, 19059-
19063, and 19065).

[0116] If current L1 cache state is VPCC its next state is
set depending on the current L1 cache state. If current 1.2
cache state is INVLD, VFC, or VPCC, the L1 cache state is
set based also on the 2 events discussed on a previous
paragraph. If (1), L1 cache state is set to VPCC (19072,
19075, and 19079). If (2), L1 cache state is set to VFC
(19073, 19076, and 19080). If current 1.2 cache state is
VPCD, L1 cache state is set to retained (19074).

[0117] In the background, when interface is not busy,
firmware initiates copying if [.1 cache to [.2 cache, flushing
of L1 cache to rotational drives, and flushing of [.2 cache to
rotational drives.

[0118] Note that when the received command is Read
FUA, the data is fetched from the rotational drive regardless
if there is a cache hit or not. If there is, however, a cache hit
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for the Read FUA command and the cache is dirty, the cache
is flushed to the rotational drive before the data is fetched.
[0119] Write Command

[0120] When firmware receives a Write command from
the host, it derives the cache control block index (SDRAM
Index) based on the host LBA. Then it checks the designated
cache control block if requested LBA is in [.1 cache.
[0121] IfL1 cache state is invalid (INVLD) and there is no
ongoing locked operation (NOP), firmware start transfer
from host to L1 cache and updates cache sub-status to H2S.
After completion of host2sdram transfer, firmware updates
cache sub-status to NOP. If the write data uses all of the
cache line space, L1 cache state becomes VFD (e.g. 15036),
otherwise L1 cache state becomes VPCD (e.g. 15037). For
the case when write data uses all of the L1 cache line space,
the copy in L2 cache becomes INVLD (e.g. 15038).
[0122] If L1 cache state is valid (VPCD, VFC, VFCPD,
VFD, VPCC), there is no ongoing locked operation (NOP),
and the associated cache contains the correct set of data,
firmware start transfer from host to L1 cache and updates
cache sub-status to host2sdram. After completion of
host2sdram transfer, firmware updates cache sub-status to
NOP.

[0123] If L1 previous cache state is VPCD, there are 4
options: (1) if write data uses all of the cache line space, [.1
cache state becomes VFD (e.g. 15055). (2) If write data is
less than the cache line space, there’s no more free cache line
space, and there’s no more clean cache area, [.1 cache state
becomes VFD (e.g. 15057). (3) If write data is less than the
cache line space and there’s still some free cache line space,
L1 cache state becomes VPCD (e.g. 15058). (4) If write data
is less than the cache line space, there’s no more free cache
line space, and there’s still some clean cache area, [.1 cache
state becomes VFCPD (e.g. 15060).

[0124] If L1 previous cache state is VFC, there are 2
options: (1) if write data uses all of the cache line space, [.1
cache state becomes VFD (e.g. 15080), (2) if write data is
less than the cache line space, L1 cache state becomes
VFCPD (e.g. 15081), since not all the cache data were over
written.

[0125] If L1 previous cache state is VFCPD, there are 3
options: (1) If write data uses all of the cache line space, [.1
cache state becomes VFD (e.g. 15087). (2) If write data is
less than the cache line space and there’s no more clean
cache line space, L1 cache state becomes VFD (e.g. 15088).
(3) If write data is less than the cache line space, and there’s
still some clean cache area, L.1 cache state becomes VFCPD
(e.g. 15089).

[0126] If L1 previous cache state is VFD, there is only 1
option: (1) L1 cache state remains at VFD no matter what the
write data size is (e.g. 15105).

[0127] If L1 previous cache state is VPCC, there are 3
options: (1) if write data uses all of the cache line space, [.1
cache state becomes VFD (e.g. 15115), (2) If write data is
less than the cache line space and there’s still some free
cache line space, L1 cache state becomes VPCD (e.g.
15117). (3) If write data is less than the cache line space,
there’s no more free cache line space, and there’s still some
clean cache area, L1 cache state becomes VFCPD (e.g.
15116).

[0128] If L1 cache state is valid but the associated cache
block does not contain the correct set of data (for the case of
a directly-mapped cache), the firmware initiates freeing of
that cache block. If that cache is clean, it can be freed
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instantly without any flush operation. But if the cache is
dirty, firmware gets the associated flash physical location of
data from LBA2FlashPBA table and initiates copying of
data to L2 cache, which is faster than flushing to rotational
drive. Then it updates sub-status to sdram2flash. However,
if L2 cache is full, flushing to rotational drive will be
initiated instead, and sub-status will be set to sdram2hdd.
Flushing of L2 cache to rotational drives can be done in the
background when firmware is not busy servicing host com-
mands. After flushing of L1, firmware proceeds with the
steps below as if data is not in L1 cache.

[0129] If data is not in L1 cache, firmware requests for
available [L1 cache. If there is no available L1 cache (L.1
cache full), firmware selects an L1 cache victim. If the
selected victim is clean, or if it is dirty but consistent with
the copy in L2 cache, it is freed instantly. Otherwise, it is
flushed to the rotational drive. The cache is invalidated
(INVLD) and then assigned to the current command being
serviced. Processing of the firmware continues as if the L1
cache state is INVLD (see discussion above).

[0130] After the L1 cache state is updated due to a
host-write (H2S), L.2 cache state is also updated. For the case
when write data occupies only a part of the L1 cache line
space and the write data did not cover all the copy in L2
cache, the copy in L2 cache becomes partially valid (VPCC,
VPCD), since some parts of the .2 cache copy is invalidated
(whether partially or fully dirty previously) (e.g. 15039). For
the case when write data occupies only a part of the [.1 cache
line space and the write data covered all the copy in L2
cache, the copy in L2 cache becomes INVLD (e.g. 15038).
[0131] Upon completion of host2sdram (H2S), firmware
sends command status to host and completes the command.
But if the write command is of the write FUA (first unit
access) type, host2sdram (H2S) and sdram2hdd (S2HDD) is
done first before the command completion status is sent to
the host. Once all L1 cache data is written to the HDD, L1
cache state becomes clean (VFC, VPCC) (e.g. 20060,
20042).

[0132] In the background, when interface is not busy,
firmware initiates flushing of .1 cache to L2 cache, [.2
cache to rotational drives, and L1 cache to rotational drives.
[0133] Flushing Algorithm

[0134] For a full-associative cache implementing a write-
back policy, flushing is usually done when there is new data
to be placed in cache, but the cache is full and the selected
victim data to be evicted from the cache is still dirty.
Flushing will clean the dirty cache and allow it to be
replaced with new data.

[0135] Flushing increases access latency due to the
required data transfer from L1 volatile cache to the much
slower rotational drive. The addition of L.2 nonvolatile cache
allows faster transfers from L1 to L2 cache when the L1
cache is full, effectively postponing the flushing operation
and allowing it to be more optimized.

[0136] To reduce latency and enhance the cache perfor-
mance, flushing can be done as a background operation. The
LRU and LFU are the usual algorithms used to identify the
victim data candidates, but the addition of a Fastest-to-Flush
algorithm takes advantage of the random access perfor-
mance of the [.2 cache. It optimizes the flushing operation
by selecting dirty victim data that can be written concur-
rently to the [.2 cache, and thus minimizing access time. The
overhead brought about by flushing of cache can then be
reduced by running concurrent flush operations whenever

May 14, 2020

possible. Depending on processor availability, flushing may
be scheduled regularly or during idle times when there are
no data transfers between the hybrid storage system and the
host or external device.

[0137] Flushing of LI Cache

[0138] Flushing of [.1 cache will occur only if copy of data
in L1 cache is more updated than the copy in the rotational
drive. This may occur, for example, when a non FUA write
command hits the L1 cache.

[0139] Flushing of LI cache is triggered by the following
conditions:
[0140] 1. Eviction caused by shared cache line—In set-

associative or directly-mapped caching mode, if the cache or
cache set assigned to a specific address is valid but contains
another data, that old data must be evicted to give way to the
new data that needs to be cached. If the old data is clean, the
cache is simply overwritten. If the old data is dirty, the cache
is flushed first before writing the new data.

[0141] 2. L1 cache is full—If an IO command being
processed could not request for a cache due to a cache-full
condition, a victim must be selected to give way to the
current command. If the victim data is clean, the cache is
simply overwritten. If the victim data is dirty, the cache is
flushed first before writing the new data.

[0142] In either (1) or (2), the victim data will be moved
to either [.2 cache or rotational drive. Ideally in this case,
firmware will move L1 cache data to L2 cache first, since
movement to L2 cache is faster. Refer to “Movement from
L1 Cache to L2 Cache” for a detailed discussion. In case the
L2 Cache is full, firmware will have to move L1 cache data
to the rotational drive.

[0143] 3. Interface is not busy—Flushing may also be
done in the background when drive is not busy servicing
host commands. .1 cache is flushed directly to the rotational
drive first, then if number of available L1 caches has reached
a pre-defined threshold, data is also copied to L.2 cache, in
anticipation for more flushing due to L1 cache full condition.
Refer to “Movement from L1 Cache to L2 Cache” for a
detailed discussion.

[0144] When moving data from L1 cache to rotational
drive, the firmware takes advantage of concurrent drive
operations by selecting cache lines that can be flushed in
parallel among the least recently used candidates. The
firmware also takes into consideration the resulting access
type to the destination drives. The firmware queues the
request according to the values of the destination addresses
such that the resulting access is a sequential type.

[0145] Before firmware can initiate the flushing operation
from L1 cache to rotational drive, it must check first if there
is an ongoing locked cache operation. If there is an ongoing
locked cache operation, the firmware will have to wait until
the operation is finished before initiating the data transfer.
When the current cache sub-state finally becomes NOP, it
will be changed back to S2HDD and the [.1 cache flushing
will start. This change in cache sub-state indicates a new
locked cache operation. After the [.1 cache is flushed, cache
sub-state goes back to NOP to indicate that the cache is
ready for another operation.

[0146] FIGS. 20A and 20B lists the valid combinations of
L1 and L2 cache states and cache sub-state values that will
allow data transfers from L1 cache to rotational drive. It also
shows the resulting cache states and cache sub-state values
when an L1 cache to rotational drive data transfer is initi-
ated, and when it is completed. The .1 cache to rotational
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drive data transfer may be initiated by an L1 cache flushing
operation or write FUA operation. The succeeding discus-
sion will focus on the L1 cache flushing operation.

[0147] The L1 cache flushing operation may be initiated
only for valid but dirty L1 cache states—either VPCD (rows
2006, 2007, 2009, 20011), VFCPD (rows 20018, 20019,
20021, 20023) or VFD (rows 20024, 20025, 20028). Upon
completion of the flushing operation, the L1 cache is
declared clean. If the flushing operation was not completed,
the cache page bitmap is updated to reflect the dirty bytes
that were cleaned. The L2 cache state and cache page bitmap
are also updated accordingly.

[0148] In the first case 2006 L1 cache state is VPCD and
L2 cache state is INVLD. An example case is when the
partially cached data in [.1 was updated by a write operation
and is now inconsistent with the data in the rotational drive,
but there is no copy yet in the .2 cache. If all the dirty data
are flushed 20042, L1 cache state is changed to VPCC to
indicate that the partially cached data is now consistent with
data in the rotational drive. However if not all dirty bytes
were flushed 20043, [.1 cache state stays at VPCD, with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned. L2 cache state stays INVLD.

[0149] In the second case 2007 both L1 and [.2 cache state
is VPCD. An example case is when the partially cached dirty
data in L1 was initially evicted to [.2, then a cache miss
happens and data is partially cached in LL1. L1 was then
updated by a write operation. This will also occur when the
partially cached dirty data in [.1 was initially evicted to L2,
then an L2 cache hit occurs and 1.2 data is copied back to L 1.
L1 and [.2 can have the same data, but they can also have
different data if the L1 cache is subsequently updated by a
write operation. If .1 and L2 have the same data and all the
dirty data are flushed 20044, both [.1 and [.2 cache states are
changed to VPCC to indicate that the partially cached data
is now consistent with data in the rotational drive. If L1 and
L2 have the same data but not all dirty bytes in L1 were
flushed 20045, L1 and .2 cache state stays at VPCD, with
the cache page bitmap updated to reflect which pages were
cleaned. If L1 and [.2 have different data and all the dirty
data are flushed 20046, L1 cache state is changed to VPCC
to indicate that the partially cached data is now consistent
with data in the rotational drive. Since L2 cache contains
different data, .2 cache state stays at VPCD. If L1 and [.2
have different data and not all dirty bytes were flushed
20047, L1 cache state stays at VPCD but the cache page
bitmap is updated to reflect which dirty bytes were cleaned.
Since 1.2 cache contains different data, [.2 cache state stays
at VPCD.

[0150] In the third case 2009, L1 cache state is VPCD and
L2 cache state is VFCPD. An example case is when the fully
cached dirty data in L1 was initially evicted to L2, then an
L2 cache hit occurs and some [.2 cache data is copied back
to LI. LI dirty data can initially be the same as 1.2 dirty data,
but they can have different dirty data if the L1 cache is
subsequently updated by a write operation. If all the dirty
data in L1 and L2 are flushed 20049, L1 cache state is
changed to VPCC and L2 cache state is changed to VFC to
indicate that cached data in both locations are now consis-
tent with data in the rotational drive. If not all dirty bytes in
L1 were flushed 20050, [.1 cache state stays at VPCD and
L2 cache state stays at VFCPD with the cache page bitmap
updated to reflect which dirty bytes were cleaned. If all dirty
bytes in [.1 were flushed but does not cover all the dirty
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bytes in L2 20051, only the L1 cache state is changed to
VPCC. L2 cache state stays at VFCPD with cache page
bitmap updated to reflect which dirty bytes were cleaned.
[0151] In the fourth case 20011, L1 cache state is VPCD
and [.2 cache state is VPCC. An example case is when clean,
partially cached data in [.1 was initially evicted to .2, then
an L2 cache hit occurs, 1.2 cache data is copied back to L.1
and a subsequent write operation updated the data in L1
cache. This will also occur when a cache miss occurs, data
is partially cached in .1, and a subsequent write operation
updated the data in L1 cache. If all the dirty data are flushed
20053, L1 cache state is changed to VPCC to indicate that
the partially cached data is now consistent with data in the
rotational drive. However if not all dirty bytes were flushed
20054, L1 cache state stays at VPCD with the cache page
bitmap updated to reflect which dirty bytes were cleaned. In
both cases, L.2 cache state stays at VPCC since it is not
affected by the L1 cache flushing operation.

[0152] In the fifth case 20018, L1 cache state is VFCPD
and [.2 cache state is INVLD. An example case is when fully
cached data in L1 is updated by a write operation and is now
inconsistent with data in the rotational drive, but there is no
copy yet in the [.2 cache. If all the dirty data are flushed
20061, L1 cache state is changed to VFC to indicate that the
fully cached data is now consistent with data in the rotational
drive. If not all dirty bytes were flushed 20062, I.1 cache
state stays at VFCPD with the cache page bitmap updated to
reflect which dirty bytes were cleaned. [.2 cache state stays
INVLD.

[0153] In the sixth case 20019, L1 cache state is VFCPD
and L2 cache state is VPCD. An example case is when
partially cached dirty data in [.1 was initially evicted to L2,
then an L2 cache hit occurs, .2 cache data is copied back to
L1, and another read operation completes the cache line. A
subsequent write operation may also add more dirty bytes in
L1. If all dirty bytes in .1 and .2 were flushed 20063, .1
cache state is changed to VFC and 1.2 cache state is changed
to VPCC to indicate that the fully cached data is now
consistent with the data in the rotational drive. If all dirty
bytes in L.1 were flushed but does not cover all dirty bytes
in .2 20064, [.1 cache state is changed to VFC but L2 cache
state stays at VPCD with the cache page bitmap updated to
reflect which dirty bytes were cleaned. If not all dirty bytes
were flushed 20065, L1 cache state stays at VFCPD and 1.2
cache state stays at VPCD with the cache page bitmap
updated to reflect which dirty bytes were cleaned.

[0154] In the seventh case 20021, both [.1 and 1.2 cache
state is VFCPD. An example case is when fully cached
partially dirty data in L1 was initially evicted to L2, and then
an L2 cache hit occurs, L2 cache data is copied back to LL1.
If all the dirty data are flushed 20066, both L1 and [.2 cache
states are changed to VFC to indicate that the fully cached
data is now consistent with the data in the rotational drive.
If not all dirty bytes were flushed 20066, [.1 and [.2 cache
state becomes VPCD, with the cache page bitmap updated to
reflect the dirty bytes that were cleaned.

[0155] In the eighth case 20023, L1 cache state is VFCPD
and L2 cache state is VPCC. An example case is when clean
partially cached was initially evicted to L2, then a read
operation completed the L1 cache, and a subsequent write
operation made the L1 cache partially dirty. If all the dirty
data are flushed 20069, the L1 cache state becomes VFC to
indicate that the fully cached data is now consistent with the
data in the rotational drive. If not all the dirty data are
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flushed 20070, L1 cache state becomes VPCD, with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned. L2 cache state stays at VPCC.

[0156] In the ninth case 20024, L.1 cache state is VFD and
L2 cache state is INVLD. An example case is when the fully
cached data in L1 becomes fully inconsistent with the
rotational drive due to a write operation, but there is no copy
yet in the L2 cache. If all the dirty data are flushed 20071,
the L1 cache state becomes VFC to indicate that the fully
cached data is now consistent with the data in the rotational
drive. If not all the dirty data are flushed 20072, L1 cache
state becomes VPCD, with the cache page bitmap updated to
reflect the dirty bytes that were cleaned. Since .2 is not
involved in the flushing operation, L2 cache state stays
INVLD.

[0157] In the tenth case 20025, L1 cache state is VFD and
L2 cache state is VPCD. An example case is when partially
cached dirty data was initially evicted to L2, and a subse-
quent write operation made the .1 cache completely dirty.
If all the dirty data are flushed 20073, the [.1 cache state
becomes VFC to and the L2 cache state becomes VPCC to
indicate that cached data is now consistent with the data in
the rotational drive. If not all the dirty cache data were
flushed 20074 20075, L1 cache state becomes VPCD, with
the cache page bitmap updated to reflect the dirty bytes that
were cleaned. If the L1 flushing operation did not cover all
L2 dirty data 20075, .2 cache state stays at VPCD, with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned. Otherwise if the L1 flushing operation cov-
ered all L.2 dirty data 20074, L2 cache state becomes VPCC.
[0158] In the eleventh case 20028, both L1 cache state is
VFD. An example case is when full dirty data was initially
evicted to L2, and then an L2 cache hit occurs, L2 cache data
is copied back to LL1. If all the dirty data are flushed 20078,
L1 and L2 cache state becomes VFC to indicate that the fully
cached data is now consistent with the data in the rotational
drive. If not all the dirty data are flushed 20079, L1 and [.2
cache state becomes VPCD, with the cache page bitmap
updated to reflect the dirty bytes that were cleaned.

[0159] Criteria for Choosing [.1 Cache Victims

[0160] 1. LRU—Least Recently Used data is most likely
to be invalidated first than more recently used ones.

[0161] 2. Fastest to Flush—Groups of data that can be
flushed to rotational drives concurrently, and will form
sequential type of accesses to rotational drives will be
prioritized. In moving data from LI to L2 cache, groups of
data that can be moved to 1.2 cache concurrently will be
prioritized.

[0162] Flushing of .2 Cache

[0163] Flushing of .2 cache will occur only if copy of data
in L2 cache is more updated than the copy in the rotational
drive, and the copy in L.1 cache has been invalidated already.
This may occur for example when dirty data has been
evicted from the L1 cache and the firmware transferred it to
the faster L2 cache instead of the rotational drive. In moving
data from L2 cache to rotational drive the firmware will take
advantage of the data distribution among the flash chips and
among the rotational drives to maximize parallelism.

[0164] Rather than deciding plainly based on the LRU
algorithm, firmware will take into consideration the source
and target physical locations of the data that needs to be
moved from flash to rotational drive. As shown in FIG. 13,
moving data from L2 cache to rotational drive can be
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optimized by taking into account which data can be flushed
to rotational drive concurrently.

[0165] Similarly, the firmware also takes advantage of the
speed of rotational drives in sequential access. Therefore,
data movements are queued in such a way that writing them
to the rotational drives will be more in the form of sequential
accesses rather than random.

[0166] Flushing of the L.2 cache consists of a two-step data
transfer: transfer from L2 to L1, and transfer from L1 to
rotational drive.

[0167] FIGS. 17A and 17B lists the valid combinations of
L1 and L.2 cache states and cache sub-state values that will
allow data transfers from [.2 cache to L1 cache. It also shows
the resulting cache states and cache sub-state values when an
L2 cache to L1 cache data transfer is initiated, and when it
is completed. The .2 cache to L1 cache data transfer may be
initiated by an L2 cache flushing operation or an [.2 cache
hit. The succeeding discussion focuses on the data transfer
due to an L2 cache flushing operation.

[0168] A flushing operation is only done when .2 cache is
dirty (L2 cache state is VPCD, VFCD or VFD) and the dirty
bytes in [.2 cache does not correspond to the dirty bytes in
the L1 cache. Upon completion of the 1.2 cache to L1 cache
transfer of dirty data, the L1 cache will contain all dirty bytes
in L2 cache. The flushing operation is then completed by an
L1 to rotational drive transfer. The succeeding discussion
focuses on the L2 cache to L1 cache data transfer due to an
L2 cache flushing operation. See the section “Flushing of [.1
cache” for the detailed discussion of the L1 cache to
rotational drive data transfer.

[0169] Before firmware can initiate the flushing operation
by transferring data from 1.2 cache to L1 cache, it must
check first if there is an ongoing locked cache operation. If
there is an ongoing locked cache operation, the firmware
will have to wait until the operation is finished before
initiating the data transfer. When the current cache sub-state
finally becomes NOP, it will be changed back to F2S and the
L2 cache flushing will be initiated. This change in cache
sub-state indicates a new locked cache operation. After the
L2 cache to L1 cache data transfer is completed, cache
sub-state goes back to NOP to indicate that the cache is
ready for another operation.

[0170] In the first case 17001, L2 cache state is VPCD and
L1 cache state is INVLD. An example case is when partially
cached dirty data in L.1 was evicted to [.2. After dirty data
in L2 is transferred to L1, L1 cache state is changed to
VPCD 17037, with the cache page bitmap updated to reflect
the new dirty bytes in L.1. L2 cache state stays at VPCD.

[0171] Inthe second case 17003, L2 cache state is VFCPD
and .1 cache state is INVLD. An example case is when fully
cached partially dirty data in .1 was evicted to L2. After
dirty data in L2 is transferred to L1, L1 cache state is
changed to VPCD 17041, with the cache page bitmap
updated to reflect the new dirty bytes in L.1. .2 cache state
stays at VFCPD.

[0172] In the third case 17004, .2 cache state is VFD and
L1 cache state is INVLD. An example case is when full dirty
data in [.1 was evicted to L2. After all dirty data in [.2 is
transferred to LL1; .1 cache state is changed to VFD 17042.
If not all dirty data in L2 is transferred to L1, L1 cache state
is changed to VPCD 17041, with the cache page bitmap
updated to reflect the new dirty bytes in L.1. .2 cache state
stays at VPCD.
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[0173] In the fourth case 17007, both L1 and L2 cache
states are VPCD. An example case is when the partially
cached dirty data in L1 was initially evicted to L2, then a
cache miss happens and data is partially cached in L1. [L1
was then updated by a write operation. This results in some
dirty data in L2 that is not present in [.1. After dirty data in
L2 is transferred to L1, L1 cache state is still VPCD 17047,
with the cache page bitmap updated to reflect the new dirty
bytes in L1. L2 cache state stays at VPCD.

[0174] In the fifth case 17009, L2 cache state is VFCPD
and L1 cache state is VPCD. An example case is when fully
cached partially dirty data in L1 was initially evicted to .2,
and then a subsequent write operation created dirty bytes in
L1 that is not on [.2. After dirty data transferred from L1 to
L2 completes the [.1 cache line, .1 cache state becomes
VFD 17049. If the L1 cache line is not completed, L.1 cache
state becomes VFCPD 17050. L2 cache state becomes
INVLD in both cases.

[0175] In the sixth case 17010, L2 cache state is VFD and
L1 cache state is VPCD. An example case is when full dirty
data in L1 was initially evicted to .2, and then a subsequent
write operation created dirty bytes in L1 that is not on L.2.
After dirty data transferred from L1 to L2 completes the L1
cache line, L1 cache state becomes VFD 17051. If the L1
cache line is not completed, .1 cache state becomes VFCPD
17051. The cache page bitmap updated to reflect the new
dirty bytes in 1. .2 cache state remains VFD in both cases.
[0176] In the seventh case 17031, L2 cache state is VPCD
and L1 cache state is VPCC. An example case is when
partially cached dirty data in [.1 was initially evicted to L2,
and a cache miss occurs during a read operation. After dirty
data transferred from L1 to L2 completes the [.1 cache line,
L1 cache state becomes VFCPD 17074. If the L1 cache line
is not completed, L1 cache state becomes VPCD 17075. The
cache page bitmap updated to reflect the new dirty bytes in
L1. L2 cache state remains VCPD in both cases.

[0177] Criteria for Choosing .2 Cache Victims

[0178] 1. LRU—Least Recently Used data is most likely
to be invalidated first than more recently used ones.
[0179] 2. Fastest to Fetch—Groups of data that can be
fetched from flash devices concurrently therefore requiring
less time will be prioritized.

[0180] 3. Fastest to Flush—Groups of data that can be
flushed to rotational drives concurrently, and will form
sequential type of accesses to rotational drives will be
prioritized.

[0181] The drawing in FIG. 14 shows an example scenario
where four flash devices all have dirty blocks that need to be
flushed to the two rotational drives. The following are the
steps to flush the dirty L2 cache blocks to the rotational
drives using the “Fastest to fetch” and “Fastest to flush”
criteria.

[0182] 1. Allocate resources for the maximum number of
flash DMA engines that could simultaneously transfer data
from flash to SDRAM, given the list of dirty blocks.
[0183] 2. Among the groups of data that can be fetched
simultaneously from flash, choose the blocks that are
sequentially closer in the rotational drives. Start transferring
data from flash to SDRAM. Activate as many concurrent
operations as possible.

[0184] 3. When a transfer has completed, start moving
data from SDRAM to rotational drives.

[0185] For example, if FLASH2SDRAM transfer of
FDEV01:BLK03, FDEV02:BLKOI, and FDEV03:BLK02
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completed already, start SDRAM2HDD movement of
FDEVO01:BLKO03 and FDEV02:BLKO1 first since they are
going to separate rotational drives. We selected FDEVO01:
BLKO03 over FDEV03:BLKO02 because FDEV01:BLK03’s
location in HDDI1 is sequentially lower than FDEVO03:
BLKO02’s location, therefore achieving greater potential for
sequential type of access. Keep doing these every time a
transfer from flash to SDRAM completes.

[0186] Movement from L1 Cache to 1.2 Cache

[0187] Once the actual amount of storage being used by
the application has grown considerably, the chances of L1
cache hits will be lesser and the chances of I.1 cache being
full will be greater. This is the case where the presence of
data in L2 cache can significantly improve the performance
of'the system. When the firmware detects that the percentage
of used L1 cache has reached a pre-defined threshold, it
starts copying data to L2 cache in the background during idle
times. The more data there is in the L2 cache, the lesser the
chances that the firmware will have to access data in the
rotational drives.

[0188] If directly-mapped L1 caching scheme is used, it is
possible that only a small percentage of available [.1 is being
utilized, and some of the frequently accessed data blocks are
mapped to the same L1 cache entry, therefore requiring
frequent eviction of those associated cache blocks. In such
situations, it will also be helpful if those frequently accessed
and frequently evicted data are stored in [.2 cache for faster
access. A method to identify these blocks of data is to keep
track of the data access counts. If the access count of a block
belonging to the LRU list reaches a pre-defined threshold,
the firmware will copy it to L2 cache. This method is a
combination of the LRU and LFU (Least-Frequently Used)
algorithm, which implies that the most recently used and
most frequently used data, should be prioritized by the
caching scheme.

[0189] In moving data from L1 cache to [.2 cache, the
firmware takes advantage of concurrent flash device opera-
tions by selecting cache lines that can be flushed in parallel
among the candidates. As stated earlier the .1 cache to [.2
cache data movement is initiated by two possible conditions.
First, this operation is initiated during host read or writes to
data that is not cached in the L1 cache, specifically during
an L1 cache full condition. In this case, an L1 entry should
be freed and the firmware determines that the associated data
should be transferred to the L2 cache. The motivation for
opting to transfer first to the [.2 cache instead of flushing
back to the HDD in this situation is that L1 to L2 transfers
can be performed faster. Completing the transfer faster will
allow quicker freeing of [.1 space and improve response
time to the host read or write request. The second event that
triggers the [.1 cache to [.2 cache data movement is when it
is initiated by the background process that maintains the
threshold for the minimum number of available L1 cache
lines and the firmware determines that the associated data
should be transferred to the L2 cache. The motivation for
opting to transfer first to the [.2 cache instead of flushing
back to the HDD in this situation is if the associated data is
among the most frequently accessed data, but less recently
used than other such data. This avoids the cache full
condition but since the data is still frequently used, it is
preferable to keep a copy in the .2 cache so it can be
retrieved faster. For both conditions, the operation com-
mences with the selection of L1 cache lines that will next be
transferred to the L2 cache. The selection categories shall be
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applied only to those cache line information table entries
that have NOP sub-state or those that are not undergoing any
other data movement. They shall also only be applied if the
cache state table entry specifies that the data in the L1 cache
is a more updated copy than that in the [.2 cache or that the
data is cached only in L.1. Hence, there are eleven possible
initial cache states for table entries in the cache line infor-
mation table that will proceed with [.1 to L2 transfer.

[0190] In the first case 18012, the selected entry’s L1
cache state is VFC and its L2 cache state is INVLD. This
occurs if the data in the L1 cache had already been flushed
to the HDD but there is no copy in [.2 cache. To indicate that
L1 is being copied to L2, the cache sub-state will be changed
from NOP to S2F. Upon successful completion of the data
transfer 18050, the 1.2 copy is now consistent with the L1
copy and the 1.2 cache state will be changed to VFC also.
The cache sub-state will return to NOP to indicate that the
data is no longer in transit. The firmware may now opt to
free the L1 space for use by other entries and set the L1
cache state to invalid. In the second case 18006, the selected
entry’s L1 cache state is VPCD and its L2 cache state is
INVLD. In this case the data copy in L1 has had updates in
some parts and is now inconsistent with the data counterpart
in the HDD, but there is no copy yet in the [.2. To indicate
that L1 is being copied to L2, the cache sub-state will be
changed from NOP to S2F. Upon successful completion of
the data transfer 18042, the [.2 copy is now consistent with
the L1 copy and the .2 cache state will be changed to VPCD
also. The cache sub-date will return to NOP to indicate that
the data is no longer in transit. The firmware may now opt
to free the L1 space for use by other entries and set the L1
cache state to invalid.

[0191] In the third case 18007, the selected entry’s L1
cache state is VPCD and its L2 cache state is also VPCD.
This occurs when a partially dirty data exists in both [.2 and
L1 but they are not exactly the same parts so that data in [.1
is not consistent with data in [.2. To indicate that the updated
data parts in [.1 is being copied to the L2 cache the cache
sub-state will be changed from NOP to S2F. Upon successful
completion of the data transfer 18043, the .2 copy now also
contains the updates from the L1 copy. If the updates fill up
all unfilled bytes in the L2 cache then the L2 cache state is
changed to VFD. If not the L2 cache state is still to VPCD
but the [.2 cache contains the complete copy of the dirty
bytes. The cache sub-state will return to NOP to indicate that
the data is no longer in transit. The firmware may now opt
to free the L1 space for use by other entries and set the LI
cache state to invalid.

[0192] In the fourth case 18011, the selected entry’s L1
cache state is VPCD and its L2 cache state is VPCC. This
occurs when partial data is cached in [.1 and some or all
those data is dirty. Partial data is also cached in [.2 but the
data in L2 is consistent with that in the HDD. Hence all the
updated parts in L1 are not yet in L.2. To indicate that [.1 is
being copied to L2, the cache sub-state will be changed from
NOPto S2F. Upon successful completion of the data transfer
18048, the 1.2 copy now also contains the updates from the
L1 copy. If the updates fill up all unfilled bytes in the [.2
cache then the [.2 cache state is changed to VFCPD since the
L2 had formerly clean bytes but was filled up with some
dirty bytes from L1. If the updates do not fill up the L2
cache, the L2 cache state is still to VPCD but the L2 cache
contains the complete copy of the dirty bytes. The cache
sub-state will return to NOP to indicate that the data is no
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longer in transit. The firmware may now opt to free the L.1
space for use by other entries and set the L1 cache state to
invalid.

[0193] In the fifth case 18018, the selected entry’s L1
cache state is VFCPD and its L2 cache state is INVLD. In
this case the data is fully cached in L1 but has had updates
in some parts and is now inconsistent with the data coun-
terpart in the HDD. There is no valid copy in the .2 cache.
To indicate that .1 is being copied to L2, the cache sub-state
will be changed from NOP to S2F. Upon successtul comple-
tion of the data transfer 18056, the 1.2 copy is now consistent
with the L1 copy and the .2 cache state will be changed to
VFCPD also. The cache sub-date will return to NOP to
indicate that the data is no longer in transit. The firmware
may now opt to free the L1 space for use by other entries and
set the L1 cache state to invalid.

[0194] In the sixth 18019, the selected entry’s L1 cache
state is VFCPD and the L2 cache state is VPCD. In this case
the data is fully cached in L1 but has had updates in some
parts. The data is not fully cached in 1.2 but the some parts
in the [.2 data are updated. Some or all of the updated data
parts in .2 are not in L.1. To indicate that the inconsistent
data parts are being copied to L2, the cache sub-state is
changed from NOP to S2F. Upon successful completion of
the data transfer 18057, the [.2 copy is now consistent with
the L1 copy and the L2 cache state will be changed to
VFCPD also. The cache sub-date will return to NOP to
indicate that the data is no longer in transit. The firmware
may now opt to free the L1 space for use by other entries and
set the L1 cache state to invalid.

[0195] In the seventh case 18023, the selected entry’s L1
cache state is VFCPD and the L2 cache state is VPCC. The
data is fully cached in L.1 but has had updates in some parts.
The data is not fully cached in L2 but all data in the L2 cache
are clean. To indicate that the inconsistent data parts are
being copied to L2, the cache sub-state is changed from
NOPto S2F. Upon successful completion of the data transfer
18061, the 1.2 copy is now consistent with the L1 copy and
the .2 cache state will be changed to VFCPD also. The
cache sub-date will return to NOP to indicate that the data
is no longer in transit. The firmware may now opt to free the
L1 space for use by other entries and set the [.1 cache state
to invalid.

[0196] In the eighth case 18030, the [.1 cache state is
VPCC and the L2 cache state is INVLD. In this case the data
is fully cached in L1 but has had updates in some parts and
is now inconsistent with the data counterpart in the HDD.
There is no valid copy in the [.2 cache. To indicate that [.1
is being copied to .2, the cache sub-state will be changed
from NOP to S2F. Upon successful completion of the data
transfer 18056, the 1.2 copy is now consistent with the [.1
copy and the L2 cache state will be changed to VFCPD also.
The cache sub-date will return to NOP to indicate that the
data is no longer in transit. The firmware may now opt to
free the L1 space for use by other entries and set the L1
cache state to invalid.

[0197] In the ninth 18031 the selected entry’s L1 cache
state is VPCC and the L2 cache state is VPCD. In this case
the data is partially cached in L1 and the copy is clean. The
data is also not fully cached in [.2 but some or all parts in
the 1.2 data are updated. To indicate that the data in L1 but
not in .2 are being copied to L2, the cache sub-state is
changed from NOP to S2F. Upon successful completion of
the data transfer, if the updates from L1 did not fill all



US 2020/0151098 Al

unfilled bytes in [.2, then L2 state will remain at VPCD. If
the updates fill up all unfilled bytes in [.2 then [.2 state will
change to VFCPD. The cache sub-date will return to NOP to
indicate that the data is no longer in transit. The firmware
may now opt to free the L1 space for use by other entries and
set the L1 cache state to invalid.

[0198] In the tenth case 18035, the selected entry’s L1
cache state is VPCC and the L2 cache state is also VPCC.
This means the data is not fully cached in both .1 and [.2
but they contain different data and the data in both caches are
clean. To indicate that the data parts in L1 are being copied
to L2, the cache sub-state is changed from NOP to S2F.
Upon successful completion of data transfer 18073, if
updates from L1 did not fill all unfilled bytes in [.2, then 1.2
state will remain at VPCC. If the updates fill up all unfilled
bytes in L2 then [.2 state will change to VFC. The cache
sub-date will return to NOP to indicate that the data is no
longer in transit. The firmware may now opt to free the [.1
space for use by other entries and set the .1 cache state to
invalid.

[0199] In the eleventh case 18024, the L1 cache state is
VFD and the L2 cache state is INVLD. This occurs when the
data counterpart in the HDD was entirely updated in L1
cache but there is no copy yet in the L2 cache or that there
is a copy in the [.2 but it was invalidated because the data
was entirely replaced. To indicate that the data in L1 is being
copied to the .2 cache, the cache sub-state will be changed
from NOP to S2F. Upon successful completion of the data
transfer 18062, the 1.2 copy is now consistent with the L1
copy and the L2 cache state is changed to VFD also. The
cache sub-state will return to NOP to indicate that the data
is no longer in transit. The firmware may now opt to free the
L1 space for use by other entries and set the [.1 cache state
to invalid.

[0200] In all cases during the state when the data is in
transit from L1 to L2, i.e. the cache sub-state is S2F; any
request from the host to update the data can still be accepted
by aborting the pending [.1 to L2 data transfers. To indicate
that the data from the host is being accepted, the cache
sub-state will be changed from S2F to H2S. If the host
updated the data in L1 entirely, then after accepting the data
the L1 cache state will be VFD and L2 cache state will be
invalidated. If the host did not update the data in L1 entirely
but any of those already data transferred to the [.2 cache
were among those updated, then 1.2 cache state will also be
invalidated and L1 cache state will be VFCPD or VPCD.
The sub-state can be changed from H2S to NOP after
accepting the update to indicate that there is no more data
transfer going on. If the firmware still opts to make a copy
of the data in L2 cache, the it will have to re-initiate the L1
to .2 data movement operation with the 1.2 cache state
initially INVLD and with L1 cache state VFD (case 11
18024) or VFCPD (case 5 18018) or VPCD (case 2 18006).
If the host updated those data parts in [.1 that have not been
transferred to L2 cache and those data parts that have been
copied to L2 were untouched, then the pending .1 to L2
transfers can actually proceed using the more updated data
parts in LL1. The sub-state can be changed from H2S back to
S2F and proceed with the previously aborted L1 to L2
transfer. As much as possible, the firmware avoids the
situation where an L1 to L2 transfer gets aborted by select-
ing least recently used entries for this transfer. This lessens
the probability that the host will update that particular data.
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[0201] Read Buffering

[0202] In some applications such as video streaming,
storage accesses are typically large sequential reads. In such
cases, it is more efficient to allocate a certain amount of
high-speed buffer that can be used to store data from the
flash media or the rotating drives for immediate forwarding
to the host through the host 10 interface. Every time the host
issues a read command, the firmware checks if the data is in
L1. If not, it checks if data is in L2. If data is in L2, the
firmware fetches it and stores it to the high-speed buffer and
immediately transfers it to the host. If data is not in L2, the
firmware fetches it from the rotating drives, stores it to the
buffer, and forwards it to the host. This scheme further
improves performance by creating a dependency link
between the DMA controllers, such that the completion of a
specific data transfer (e.g. flash to buffer) may trigger the
start of another data transfer (e.g. buffer to host), without
intervention from the local processors.

[0203] In FIG. 1, the Read Buffering scheme can be
implemented using the internal SRAM 114 which has a
dedicated data link to the flash interface 108 and the other 10
interfaces 106 and 107. Here, the SRAM 114 can be used as
the high-speed buffer for moving data from flash 109 to host
112 or from rotating drives 105 to host 112.

[0204] Power-Loss Data Recovery

[0205] For hybrid devices equipped with back-up power
such as those illustrated in FIG. 2 to FIG. 9 of U.S. Pat. No.
7,613,876, entitled “Hybrid Multi-Tiered Caching Storage
System”, the non-volatile L.2 cache will serve as temporary
storage for dirty data that haven’t been flushed to the hard
drives at the instant the power loss occurred. The limitations
in the speed of a hard drive and its high power requirement
makes it impractical to provide a back-up power supply
capable of keeping the device alive while flushing all dirty
data from L1 and L2 to the hard drives. The flash-based L2
requires less power and allows faster saving of data due to
its capability to execute simultaneous operations on multiple
flash devices.

[0206] FIG. 21A shows an example state of L1 and [.2
during normal 1O operations, before an external power loss
occurs. When the firmware detects the loss of external
power, any dirty copies of data in .1 will be moved to L2
and the corresponding cache line information indicating the
validity of the copy in L2 will be saved to non-volatile
memory accordingly as shown in FIG. 21B and FIG. 21C.
Similarly, dirty data in .2 that has no copy in [.1 will be kept
in .2 and the corresponding cache line information will be
saved also. The firmware assumes that the back-up power
supply has enough charge to allow completion of data
transfer operations from L1 to [.2. When external power
resumes, the device can proceed to its normal boot-up
sequence since the state of all data had been saved in the
cache line information. When the host tries to read data
whose latest copy is still in L2 after the previous power
interruption, the firmware will read the corresponding cache
line information from non-volatile memory and find out that
L2 cache is dirty, as shown in FIG. 21D. For example, if the
L2 cache is full dirty and host is trying to read the entire
cache line, the firmware will copy the data from L2 to L.1
(17042) and give that copy in L1 to the host (16064). If the
host sends a Read FUA command instead of a normal Read
command, the firmware will fetch the data from L2 to L1
(17042), flush it from L1 to hard drive (20078), and finally
read the copy in the hard drive that has just been updated and
send it to host (19056 followed by 16050).
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[0207] FIG. 22 illustrates a hybrid storage device 2101
connected directly to the host 112 and to the rotational drives
105 through the storage controller’s available 10 interface
DMA controllers 107 and 106 respectively, in accordance
with another embodiment of the invention. Components in
FIG. 22 that are similarly shown in FIG. 1 and/or other
drawings will have the same or similar functionalities as
described above and will not be repeated for purposes of
brevity.

[0208] The rotational drives 105 are connected to one or
more 10 interface DMA controllers 106 capable of trans-
ferring data between the drives 105 and the high-speed O
cache (SRAM) 2214 (write buffer 2214). Another set of 10
interface DMA controllers 107 is connected to the host 112
for transferring data between the host 112 and the LO cache
2214. The Flash interface controller 108 on the other hand,
is capable of transferring data between the LO cache 2214
and the [.2 cache (flash devices) 103.

[0209] Multiple DMA controllers can be activated at the
same time both in the storage 1O interface and the Flash
interface sides. Thus, it is possible to have simultaneous
operations on multiple flash devices, and simultaneous
operations on multiple rotational drives.

[0210] Data is normally cached in the 1O cache 2214,
being the fastest among the available cache levels. There-
fore, write buffering (write cache enable) is performed by
buffering the write data into the 1O cache 2214. In an
embodiment of the invention, the device 2101 may also
include the L1 cache 104 and/or L2 cache 103 as available
cache levels. The IO interface DMA engine 107 connected
between the host 112 and the DMA buses 110 and 111 is
responsible for high-speed transfer of data between the host
112 and the 1O cache 2214. There can be multiple 10
interface ports connected to a single host and there can be
multiple 10 interface ports connected to different hosts. In
the presence of multiple IO interface to host connections,
dedicated engines are available in each 1O interface ports
allowing simultaneous data transfer operations between
hosts and the hybrid device. The engines operate directly on
the LO cache memory 2214 eliminating the need for tem-
porary buffers and the extra data transfer operations asso-
ciated with them.

[0211] For each level of cache, the firmware keeps track of
the number of cache lines available for usage. It defines a
maximum threshold of unused cache lines, which when
reached causes it to either flush some of the used cache lines
to the medium or copy them to a different cache level which
has more unused cache lines available. When the system
reaches that pre-defined threshold of unused L.O cache, the
system starts moving data from 1.0 2214 to 12 cache 103.
The 12 cache is slower than the LO cache but usually has
greater capacity. The 12 cache 103 includes arrays of flash
devices 109. Flash interface 108 includes multiple DMA
engines 115 and connected to multiple buses 116 connected
to the flash devices 109. Multiple operations on different or
on the same flash devices can be triggered in the flash
interface. Each engine operation involves a source and a
destination memory. For L.O to L2 data movements, the flash
interface engines copy data directly from the memory loca-
tion of the source L.O cache to the physical flash blocks of the
destination flash. For L2 to LO data movements, the flash
interface engines 115 copy data directly from the physical
flash blocks of the source flash to the memory location of the
destination LO cache. For 12 to 11 data movements, the flash
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interface engines 115 copy data directly from the physical
flash blocks of the source flash to the memory location of the
destination cache.

[0212] Transfers of data from LO 2214 to hard disk drives
105 and vice versa are handled by the DMA controllers of
the IO interfaces 106 connected to the hard disk drives 105.
These DMA controllers operate directly on the O cache
memories, again eliminating the need for temporary buffers.
Data transfers between 12 103 and the hard disk drives 105
go through 1.0 2214. This requires synchronization between
and LO be built into the caching scheme.

[0213] Although FIG. 22 shows a system where the rota-
tional drives 105 are outside the hybrid storage device 2101
connected via 10 interfaces 106, slightly different architec-
tures can also be used. For example, the rotational drives 105
can be part of the hybrid storage device 2101 itself, con-
nected to the storage controller 2102 via a disk controller.
Another option is to connect the rotational drives 105 to an
10 controller connected to the hybrid storage controller 2102
through one of the 1O interfaces 106 of the controller 2101.
Similarly, the connection to the host is not in any way
limited to what is shown in FIG. 22. The hybrid storage
device 2101 can also attach to the host 112 through an
external 10O controller. The hybrid storage device 2101 can
also be attached directly to the host’s network domain. More
details of these various configurations can be found in, for
example, the figures of commonly-owned and commonly-
assigned U.S. Pat. Nos. 8,032,700 and 7,613,876, both
entitled “Hybrid multi-tiered caching storage system”.

[0214]

[0215] When firmware receives a Write command from
the host 112, the firmware derives the cache control block
index (SRAM Index) based on the host LBA. Then the
firmware checks the designated cache control block if
requested LBA is in L cache.

[0216] IfLOcache state is invalid (INVLD) and there is no
ongoing locked operation (NOP), the firmware start transfer
from host to LO cache and updates cache sub-status to H2S.
After completion of host2sram transfer, the firmware
updates cache sub-status to NOP. If the write data uses all of
the cache line space, LO cache state becomes VFD (e.g.
15036 in FIG. 15B but applicable to the L.O cache instead of
the 11 cache), otherwise LO the cache state becomes VPCD
(e.g. 15037). For write buffering into the LO cache, the 11
states in FIG. 15B will be LO states instead. For the case
when write data uses all of the L.O cache line space, the copy
in [.2 cache becomes INVLD (e.g. 15038).

[0217] If the LO cache state is valid (VPCD, VFC,
VFCPD, VFD, VPCC), there is no ongoing locked operation
(NOP), and the associated cache contains the correct set of
data, the firmware start transfer from host to LO cache and
updates cache sub-status to host2sram. After completion of
host2sram transfer, the firmware updates cache sub-status to
NOP.

[0218] If LO previous cache state is VPCD, there are 4
options: (1) if write data uses all of the cache line space, L.O
cache state becomes VFD (e.g. 15055). (2) If write data is
less than the cache line space, there’s no more free cache line
space, and there is no more clean cache area, the [.O cache
state becomes VFD (e.g. 15057). (3) If write data is less than
the cache line space and there is still some free cache line
space, the LO cache state becomes VPCD (e.g. 15058). (4)
If write data is less than the cache line space, there is no
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more free cache line space, and there is still some clean
cache area, the 1O cache state becomes VFCPD (e.g. 15060).
[0219] If the LO previous cache state is VFC, there are 2
options: (1) if write data uses all of the cache line space, the
LO cache state becomes VFD (e.g. 15080 in FIG. 15C), (2)
if write data is less than the cache line space, the L cache
state becomes VFCPD (e.g. 15081), since not all the cache
data were over written. For write buffering into the L0 cache,
the L1 states in FIG. 15C will be LO states instead.

[0220] If the 1O previous cache state is VFCPD, there are
3 options: (1) If write data uses all of the cache line space,
the L.O cache state becomes VFD (e.g. 15087). (2) If write
data is less than the cache line space and there is no more
clean cache line space, the L.O cache state becomes VFD
(e.g. 15088). (3) If write data is less than the cache line
space, and there is still some clean cache area, the LO cache
state becomes VFCPD (e.g. 15089).

[0221] Ifthe LO previous cache state is VFD, there is only
1 option: (1) the LO cache state remains at VFD no matter
what the write data size is (e.g. 15105 in FIG. 15D). For
write buffering into the L.O cache, the L1 states in FIG. 15D
will be LO states instead.

[0222] Ifthe L) previous cache state is VPCC, there are 3
options: (1) if write data uses all of the cache line space, the
LO cache state becomes VFD (e.g. 15115), (2) If write data
is less than the cache line space and there is still some free
cache line space, the LO cache state becomes VPCD (e.g.
15117). (3) If write data is less than the cache line space,
there is no more free cache line space, and there is still some
clean cache area, the L.O cache state becomes VFCPD (e.g.
15116).

[0223] If the LO cache state is valid but the associated
cache block does not contain the correct set of data (for the
case of a directly-mapped cache), the firmware initiates
freeing of that cache block.

[0224] If that cache is clean, it can be freed instantly
without any flush operation. But if the cache is dirty, the
firmware gets the associated flash physical location of data
from LBA2FlashPBA table and initiates copying of data to
the 1.2 cache, which is faster than flushing to rotational
drive. Then the firmware updates sub-status to sram2flash.
However, if the L.2 cache is full, flushing to rotational drive
will be initiated instead, and sub-status will be set to
sram2hdd. Flushing of the .2 cache to rotational drives can
be done in the background when firmware is not busy
servicing host commands. After flushing of the L0 cache, the
firmware proceeds with the steps below as if data is not in
the LO cache.

[0225] If data is not in the 1O cache, the firmware requests
for the available LO cache. If there is no available LO cache
(the LO cache is full), the firmware selects an LO cache
victim. If the selected victim is clean, or if it is dirty but
consistent with the copy in L2 cache, it is freed instantly.
Otherwise, it is flushed to the rotational drive. The cache is
invalidated (INVLD) and then assigned to the current com-
mand being serviced. Processing of the firmware continues
as if the LO cache state is INVLD (see discussion above).
[0226] After the LO cache state is updated due to a
host-write (H2S), the [.2 cache state is also updated. For the
case when write data occupies only a part of the LO cache
line space and the write data did not cover all the copy in .2
cache, the copy in L2 cache becomes partially valid (VPCC,
VPCD), since some parts of the .2 cache copy is invalidated
(whether partially or fully dirty previously) (e.g. 15039 in

May 14, 2020

FIG. 15B). For the case when the write data occupies only
a part of the LO cache line space and the write data covered
all the copy in L2 cache, the copy in L2 cache becomes
INVLD (e.g. 15038).

[0227] Upon completion of host2sram (H2S), the firm-
ware sends command status to host and completes the
command. But if the write command is of the write FUA
(first unit access) type, host2sram (H2S) and sram2hdd
(S2HDD) is done first before the command completion
status is sent to the host. Once all LO cache data is written
to the HDD, the LO cache state becomes clean (VFC, VPCC)
(e.g. 20060, 20042 in FIG. 20B).

[0228] In the background, when interface is not busy, the
firmware initiates flushing of L.O cache to L2 cache, [.2
cache to rotational drives, and L0 cache to rotational drives.
[0229] Flushing Algorithm

[0230] For a full-associative cache implementing a write-
back policy, flushing is usually done when there is new data
to be placed in cache, but the cache is full and the selected
victim data to be evicted from the cache is still dirty.
Flushing will clean the dirty cache and allow it to be
replaced with new data.

[0231] Flushing increases access latency due to the
required data transfer from LO volatile cache to the much
slower rotational drive. The addition of L2 nonvolatile cache
allows faster transfers from LO to L2 cache when the LO
cache is full, effectively postponing the flushing operation
and allowing it to be more optimized.

[0232] To reduce latency and enhance the cache perfor-
mance, flushing can be done as a background operation. The
LRU and LFU are the usual algorithms used to identity the
victim data candidates, but the addition of a Fastest-to-Flush
algorithm takes advantage of the random access perfor-
mance of the L2 cache. The Fastest-to-Flush algorithm
optimizes the flushing operation by selecting dirty victim
data that can be written concurrently to the [.2 cache, and
thus minimizing access time. The overhead brought about by
flushing of cache can then be reduced by running concurrent
flush operations whenever possible. Depending on processor
availability, flushing may be scheduled regularly or during
idle times when there are no data transfers between the
hybrid storage system and the host or external device.

[0233] Flushing of L.O Cache

[0234] In an embodiment of the invention, flushing of L.O
cache will occur only if copy of data in LO cache is more
updated than the copy in the rotational drive. This may
occur, for example, when a non FUA write command hits the
L cache.

[0235] Flushing of L.O cache is typically triggered by the
following conditions:

[0236] 1. Eviction caused by shared cache line—In set-
associative or directly-mapped caching mode, if the cache or
cache set assigned to a specific address is valid but contains
another data, that old data must be evicted to give way to the
new data that needs to be cached. If the old data is clean, the
cache is simply overwritten. If the old data is dirty, the cache
is flushed first before writing the new data.

[0237] 2. LO cache is full—If an IO command being
processed could not request for a cache due to a cache-full
condition, a victim must be selected to give way to the
current command. If the victim data is clean, the cache is
simply overwritten. If the victim data is dirty, the cache is
flushed first before writing the new data.
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[0238] Ineither (1) or (2) discussed above, the victim data
will be moved to either [.2 cache or rotational drive. Ideally
in this case, the firmware will move the LO cache data to the
L2 cache first, since movement to L2 cache is faster. In case
the L2 Cache is full, firmware will have to move the LO
cache data to the rotational drive.

[0239] 3. Interface is not busy—Flushing may also be
done in the background when drive is not busy servicing
host commands. The LO cache is flushed directly to the
rotational drive first, then if number of available LO caches
has reached a pre-defined threshold, data is also copied to 1.2
cache, in anticipation for more flushing due to the LO cache
full condition.

[0240] When moving data from the LO cache to rotational
drive, the firmware takes advantage of concurrent drive
operations by selecting cache lines that can be flushed in
parallel among the least recently used candidates. The
firmware also takes into consideration the resulting access
type to the destination drives. The firmware queues the
request according to the values of the destination addresses
such that the resulting access is a sequential type.

[0241] Before firmware can initiate the flushing operation
from the LO cache to rotational drive, the firmware must
check first if there is an ongoing locked cache operation. If
there is an ongoing locked cache operation, the firmware
will have to wait until the operation is finished before
initiating the data transfer. When the current cache sub-state
finally becomes NOP, the cache sub-state will be changed
back to S2HDD and the LO cache flushing will start. This
change in cache sub-state indicates a new locked cache
operation. After the L.O cache is flushed, cache sub-state goes
back to NOP to indicate that the cache is ready for another
operation.

[0242] In another embodiment of the invention, the rota-
tional drives HDD are omitted. Therefore, in this embodi-
ment, the flash devices 109 are the main storage or main
non-volatile storage and/or are the main storage and also can
be an .2 cache. The LO cache is coupled to the host and has
the same functionality as the L1 cache but the L.O cache is
faster.

[0243] The above discussion on the algorithm for perform-
ing the data flow from the host to [.1 to L.2 and .3 (and vice
versa) can also be applied to perform the data flow from the
host to LOto LL1 to L2 and .3 (and vice versa), or from the
host to L0 and [.2 (and vice versa) or form the host to LO to
L2 and to L3 (and vice versa).
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[0244] Foregoing described embodiments of the invention
are provided as illustrations and descriptions. They are not
intended to limit the invention to precise form described. In
particular, it is contemplated that functional implementation
of invention described herein may be implemented equiva-
lently in hardware, software, firmware, and/or other avail-
able functional components or building blocks, and that
networks may be wired, wireless, or a combination of wired
and wireless.
[0245] It is also within the scope of the present invention
to implement a program or code that can be stored in a
machine-readable or computer-readable medium to permit a
computer to perform any of the inventive techniques
described above, or a program or code that can be stored in
an article of manufacture that includes a computer readable
medium on which computer-readable instructions for carry-
ing out embodiments of the inventive techniques are stored.
Other variations and modifications of the above-described
embodiments and methods are possible in light of the
teaching discussed herein.
[0246] The above description of illustrated embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize.
[0247] These modifications can be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the
specification and the claims. Rather, the scope of the inven-
tion is to be determined entirely by the following claims,
which are to be construed in accordance with established
doctrines of claim interpretation.
We claim:
1. Apparatus for storing data comprising:
a write buffering scheme comprising a plurality of cache
devices,
wherein write data is moved from a first cache device to
a second cache device when a pre-defined threshold of
unused cache lines is reached in the first cache device;
wherein the second cache is slower than the first cache;
wherein the second cache has a greater storage capacity
than the first cache.
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