
US 20200151098A1
IN

(19) United States
(12) Patent Application Publication Publication (10) Pub . No .: US 2020/0151098 A1

Bruce et al . (43) Pub . Date : May 14 , 2020

(54) WRITE BUFFERING Publication Classification

(71) Applicant : BITMICRO LLC , RESTON , VA (US)

(72) Inventors : Rolando H. Bruce , South San
Francisco , CA (US) ; Elmer Paule Dela
Cruz , Pasay City (PH) ; Mark Ian
Alcid Arcedera , Paranaque (PH)

(73) Assignee : BITMICRO LLC , RESTON , VA (US)

(21) Appl . No .: 16 / 601,327

(22) Filed : Oct. 14 , 2019

(51) Int . Ci .
GOOF 12/0831 (2006.01)
G06F 12/08 75 (2006.01)

(52) U.S. CI .
CPC G06F 12/0833 (2013.01) ; G06F 2212/452

(2013.01) ; GOOF 2212/62 (2013.01) ; G06F
12/0875 (2013.01)

(57) ABSTRACT
A hybrid storage system is described having a mixture of
different types of storage devices comprising rotational
drives , flash devices , SDRAM , and SRAM . The rotational
drives are used as the main storage , providing lowest cost
per unit of storage memory . Flash memory is used as a
higher - level cache for rotational drives . Methods for man
aging multiple levels of cache for this storage system is
provided having a very fast Level 1 cache which consists of
volatile memory (SRAM or SDRAM) , and a non - volatile
Level 2 cache using an array of flash devices . It describes a
method of distributing the data across the rotational drives to
make caching more efficient . It also describes efficient
techniques for flushing data from L1 cache and L2 cache to
the rotational drives , taking advantage of concurrent flash
devices operations , concurrent rotational drive operations ,
and maximizing sequential access types in the rotational
drives rather than random accesses which are relatively
slower . Methods provided here may be extended for systems
that have more than two cache levels .

Related U.S. Application Data
(63) Continuation of application No. 15 / 665,321 , filed on

Jul . 31 , 2017 , now Pat . No. 10,445,239 , which is a
continuation of application No. 14 / 689,045 , filed on
Apr. 16 , 2015 , now Pat . No. 9,734,067 , which is a
continuation - in - part of application No. 14 / 217,436 ,
filed on Mar. 17 , 2014 , now Pat . No. 9,430,386 .

(60) Provisional application No. 61 / 980,561 , filed on Apr.
16 , 2014 , provisional application No. 61 / 801,422 ,
filed on Mar. 15 , 2013 .

112 103
HOST 116

115

L2 Cache HYBRID
STORAGE
DEVICE

109
110 . -711

DMA Paths Flash
Interface Engine FLASH FLASH
Contoler 10 Interface Engine

Controller
Engine FLASH FLASH

2214

SRAM
Lo Cache L1 Cache

SDRAM
Controller SDRAM

105
10 Interface
OMA

Controle CPU

HDD1 O Interface
DMA

Controle
ROM

HDDO
113 Control Path

STORAGE CONTROLLER 106
2102 2101

Patent Application Publication May 14 , 2020 Sheet 1 of 36 US 2020/0151098 A1

112 103

HOST 115
108) www .

L2 Cache -109 HYBRID
STORAGE
DEVICE 110

107 DMA Paths Flash
Interface Engine FLASH FLASH
Controler 10 Interface

DMA
Controller

Engine
FLASH FLASH

Engine
SRAM L1 Cache 104

SDRAM
Controller SDRAM

05

10 Interface
DMA

Controle CPU

O Interface
DMA

Controller ? ROM
HDDO

713 Control Path
STORAGE CONTROLLER 106

101 -102

Hybrid Storage Device connected directly to a host
and to hard disk drives via 10 interfaces

FIG . 1

Patent Application Publication May 14 , 2020 Sheet 2 of 36 US 2020/0151098 A1

202 -201
HOST

HYBRID STORAGE DEVICE
DMA Paths Flash

Inerface Engine
Controler FLASH FLASH

Interface Ergne

Ergne
FLASH FLASH

Erone SRAM

SDRAM
Controller SDRAM 203

Interface HDD1
CPU 206

207
Interface

ROM

Control Path STORAGE CONTROLLER

FLASH FLASH
10 Interface FLASH

Interfaca FLASH FLASH 204

SRAM + SORAM
Controller SDRAM

205 IO Interface
CPU

HDD1
10 Interface

ROM
STORAGE CONTROLLER HDDO

Hybrid Storage Device that is part of the host and
connected directly or indirectly to hard disk drives via

10 interfaces

FIG . 2

Patent Application Publication May 14 , 2020 Sheet 3 of 36 US 2020/0151098 A1

HYBRID STORAGE DEVICE
302 FLASH FLASH

HOST 10 Interface FLASH
Interface FLASH FLASH

SRAM SDRAN
Controller SORAM

o Interface 303 CPU
O Interface

ROM Hybrid Storage Device connected indirectly to the
host and indirectly to the hard disk drives via 10

interfaces
STORAGE CONTROLLER

HYBRID STORAGE DEVICE
DMA Paths Flash

Interface Engine
Controler

10 Engine Interface
FLASH FLASH

Engine FLASH FLASH

SRAM Engine

SDRAM
Controller

SDRAM 305

10
Interface HDD1

CPU
10

Interface ROM
Control Path STORAGE CONTROLLER

HYBRID STORAGE DEVICE
FLASH FLASH

0 Interface FLASHI FLASH 304 FLASH
Interface
SORAM

Controller SRAM

Ho Interface CPU
Ho interface HDD1

ROM
HDDO STORAGE CONTROLLER

FIG . 3

Patent Application Publication May 14 , 2020 Sheet 4 of 36 US 2020/0151098 A1

403

HOST

NETWORK

HYBRID STORAGE DEVICE
DMA Pattis

FLASH FLASH
Flash

Interface 10
Interface

FLASH FLASH

SRAM

SDRAM
Controller SDRAM

Interface
CPU

HOD1
10

Interface
ROM

HDD
Control Path STORAGE CONTROLLER

Hybrid Storage Device connected directly to a network
and to hard disk drives via 10 interfaces

FIG . 4

Patent Application Publication May 14 , 2020 Sheet 5 of 36 US 2020/0151098 A1

STRP 00

STRP 01

STRP 02

STRP N - 1

HDDO

Striping in a singe drive ,
where :

N = total number of stripes

FIG . 5A

STRP DO STRP N STRP 2N STRP NA - 1)
STRP 01 STRP N1 STRP 2N + 1 STRP NA - 1)
STRP 02 STRPN + 2 STRP 2N + 2 STRP . NM182

STRP N - 1 STRP 2N - 1 STRP 3N STRP W

3 HDDO HD01 HDD2 HDD MI

Striping across multiple drives -sequential split ,
Where :

N = number of stripes per HDD
M = number of HDD

FIG 5B

Patent Application Publication May 14 , 2020 Sheet 6 of 36 US 2020/0151098 A1

STRP 00 STRP 01 STRP O2 STRP M1

STRPM STRP + 1 STRP M + 2 STRP 211-

STRP 2M STRP 2M + 1 STRP 2M + 2 STRP 3M - 1

STRP MN - 1) + STRP MN - 1) STRP MAN - 1 } + STRP MN - 1
1 2

HDDO HDD1 HDO2 HDDM 1

Distributed striping across multiple drives ,
where :

N = number of stripes per HDD
M - number of HDD

FIG . 5C

PAR O STRP 00 STRP 01 STRP 12

STRP M - 1 PAR 01 STRPM STRP 20-3

STRP 2M - 2 STRP 2M - 1 PAR 02 STRP 3M

STRP MN - 1 STRP N - 1) STRP MIN - 11
{ N - 2 PARN1

5 CHADDE HDDO HDD1 HDD2 HDD M1
Distributed striping across multiple drives (with parity) ,
Where :

N = number of stripes per HDD including panty stripes
M = number of HDD

FIG . 5D

Patent Application Publication

602

601

HLBA00

HLBA 01

HLBA 02

HLBA 03

HLBA 14

HLBA 05

HLBA 06

HLBA07

HLBA 08

HLBA 09

HLBA 10

HLBA 11

HLBA 12

HLBA 13

HUBA 14

HLBA 15

16KB Cache Line for 512 - byte LBA

HLBA 16

HLBA 17

HLBA 18

HLBA 19

HLBA 20

HLBA 21

HLBA22

HLBA 23

May 14 , 2020 Sheet 7 of 36

HLBA 24

HLBA 25

HLBA 26

HLBA 27

HLBA 28

HLBA 29

HLBA30

HLBA 31

FIG . 6

US 2020/0151098 A1

Patent Application Publication May 14 , 2020 Sheet 8 of 36 US 2020/0151098 A1

START : Data
Striping

Initialize los

False Local Virtualization
ON ? ***

The

Discover attached
HDDs

Read L2 (Flash)
section size

Set Stripe Size =
Flash Section Size

False False Number of HDD >
2 ?

Number of HDD
2 ? www

True True

HDD capacities Fase
equal ?

True

False RAIDS Support ==
ON ?

True
Assign Data and
Parity Stripes Assign Data Stripes

END : Data Striping)
FIG . 7

START : Initialization Prefetch

Patent Application Publication

Initialize los

Fase

False

Fase

Host pinned data in L2 ?

Prefetch Mode RANDOM ?

Prefetch Mode SEQUENTIAL ?

True

True

True

May 14 , 2020 Sheet 9 of 36

Locate and prefetch pinned data from L2 to L1

Apply random data prefetching algo

Apply sequential data prefetching algo

END : Initialization Prefetch

US 2020/0151098 A1

FIG . 8

Patent Application Publication May 14 , 2020 Sheet 10 of 36 US 2020/0151098 A1

FDEV 00 FDEV 04 FDEV 08 FDEV 12 FDEV 16 FDEV 20 FDEV 24 FDEV 28 HDDO

FDEV 01 FDEV 05 FDEV 09 FDEV 13 FDEV 17 FDEV 21 FDEV 25 FDEV 29 HDD1

FDEV 02 FDEV 06 FDEV 10 FDEV 14 FDEV 18 FDEV 22 FDEV 26 FDEV 30 HDD2

FDEV 03 FDEV 07 FDEV 11 FDEV 15 FDEV 19 FDEV 23 FDEV 27 FDEV 31 HDD3

Set - Associative L2 Cache

FIG . 9A

FDEV 00 HDDO

FDEV 01 HDD1

FDEV 02 HDD2

FDEV 13 HDD3

Directly - Mapped L2 Cache

FIG . 9B

Patent Application Publication

FDEV OO

HODO

FDEV 00

HDDO

FDEV 00

HODO

FDEV 01

HDD1

FDEV 01

HDD1

FDEV 01

HDD1

FDEV 02

HDD2

FDEV 02

HDD2

FDEV 02

HDD2

FDEV 03

FDEV 03

FDEV 03

HDD3

HDD3

HOD3

May 14 , 2020 Sheet 11 of 36

At T1 , FDEVOO is associated with HDD2

Each FDEVOx can be associated to any of the 4
HDD

Full - Associative L2 Cache FIG.9C

US 2020/0151098 A1

HDD D

HDD LBA

L1 Address

L2 Address

L1 Cache State

L2 Cache State

Cache Sub
State

Patent Application Publication

0 1 2

Entry for L1ldx0 Entry for Li ldx 1 Entry for L1 ldx 2

3 4 5 6

May 14 , 2020 Sheet 12 of 36

ESFOTTEET

FIG . 10

US 2020/0151098 A1

Patent Application Publication May 14 , 2020 Sheet 13 of 36 US 2020/0151098 A1

START : Read
Command Processing ,

A
Find Cache Control

Block index
(idx)

False True
Cache [ldx] .L1 Valid ? Cache.L1Fu ? Free L1

Trie Fase

Fase

Cachelldx) .L2Valid ? Cache { idxl.L1StartLBA TægetStartLBA ?

False Transfer from HDD to 11 :
Cache { ldx] .SubStatus

HDD2SDRAM

True
True

Transfer from L2 to 11 :
Cachefldx1.SubStatus =

FLASH2SDRAM

Cache [Idx] .L 1 Valid = True
Cachefldx] .SubStatus = NOP

Wwwwwwww

Transfer from L1 to Host :
Cachefldx] .SubStatus =

SDRAM2HOST

Clear SubStatus :
Cachelldx] .SubStatus

NOP

END : Read
Command Processing

FIG . 11A

Patent Application Publication May 14 , 2020 Sheet 14 of 36 US 2020/0151098 A1

HOST

HYBRID STORAGE DEVICE

FLASH FLASH
Flash

Interface
2

Intentace
FLASH FLASH

SDRAM
Controller SDRAM

System Bus 3

Interface CPU

HDD1

Interface
ROM

HDDO

STORAGE CONTROLLER

READ COMMAND - RELATED DATA FLOWS

FIG . 11B

Patent Application Publication May 14 , 2020 Sheet 15 of 36 US 2020/0151098 A1

START : Write
Command Processing

Find Cache Control
Block index

(Idx)

False True
Cache (ldx] .L1 Valid ? Cache . L1Ful ? NI Free L1

True Fase

Fase Cachelldxl.L1StartLBA ** TargetStartLBA ? @ A
True

Transfer from Host to L1 :
Cachefldx) .SubStatus =

HOST2SDRAM

Clear SubStatus :
Cachefldx] .SubStatus

NOP

END : Write
Command Processing ,

FIG . 12A

Patent Application Publication May 14 , 2020 Sheet 16 of 36 US 2020/0151098 A1

HOST

???

HYBRID STORAGE DEVICE

FLASH FLASH
Flash

Interface 10
Interface FLASH FLASH

2

SDRAM
Controller

SDRAM

3

10

CPU Interface System Bus
HDD1

10

Interface 4
ROM

HDDO

STORAGE CONTROLLER

WRITE COMMAND - RELATED DATA FLOWS

FIG . 12B

Patent Application Publication May 14 , 2020 Sheet 17 of 36 US 2020/0151098 A1

START : Freeing of L1

Idx
Associated
Cache Line

Index

Fase Fase False Retum Eviction of
Shared Cache ?

Eviction due to
cache - full during 10 ?

Background
Flushing ? Error

True True True

Transfer from L1 to HDD :
Cache [ldx] . SubStatus

SDRAM2HDD

True FreeCache
FreeCache Threshold ?

False

False
Cache ldx .L1Clean ?

Transfer from L1 to 12 :
Cachelldxi.SubStatus =

SDRAM2FLASH

True

Cachelldxl.Free = True

END : Freeing of L1

FIG . 13

Dirty Block

II

Clean or Unused Block

BLK 00

BLK 04

BLK 08 :

BLK 12

BLKO

BLK 04

BLK 18

BLK 12

Patent Application Publication

BLK 13

BLK 017

BLK 05

BLK 03

BLK 09

BLK01 BLK 05

BLK 13

BLK 10

BLKOZ

BLK 10

BLK 14

BLK 06

BLK 14

BLK O2 BLKO BLKO ELK07

BLK 03

BLK 07

BLK 15

BLK 15

BLK 11

BLK 11

MODO

BLKO

BLK 04 BLK OS SLK 12 BLK05 KBLK 08 BLK 13

FDEV 00

FDEV 02

BLK 01

HDD1

SLK 14

FDEV 01

FDEV 03

BLK 02 BLK 067BLK 10 BLK 037 BLKO BLK11

May 14 , 2020 Sheet 18 of 36

BLK 15

BLK DO BLK 01 BLK BLK 12
BLK 05

BLK 13

BLK 02 BLKOS BLK 10

BLK 14

BLK 07 BIKT BLK 157

FIG . 14

US 2020/0151098 A1

Patent Application Publication May 14 , 2020 Sheet 19 of 36 US 2020/0151098 A1

Lo State 1.2 State Sub - State EVENT 1 1 Sota 125tater Sub - state
DATA TRANSFER FRON HOST OF

INVLD H2S 15000 INVIO
15001 NVID
15002 SVD

VPCD

VFCPO
VFO
VFCC

HZS
HZS VFO

VFCC 15005 NLD

start of most to 1.1 transfer
start af host toli transfer
stanol nost to li transier
start of host to transfer
start of host toi transfer
start of host toll transfer
start of host tolltagsfer
start of host tol) transfer
NA 4
start of nost tolt transfer
start a host to li transfer
startarost oli transfer
stunt of lost toll taster

INVLD
35007 VPCD

VECPD H2S

INVID
15013 VC
15014 VEC
15015 VEC

start of asto11 transfer

NA
IVPCC NOP H2S 15017 VFC

15018 VFCPD NOP
start of this to l.1 transfer
stan od most tolltagster
start or host toll taster

VFCPD HZS

15020 VFOPD NOP 125 VFC
VFCPD start of host tolltransfer VECPD

15022 VFCPO
15023 VECO VECPD H2S

tUNI

NO .
start or host toli transfer
start of most loli taasfer
Stan ofnost toltaster

25024 VFD
15025 VFD

INVLO M25
H25 VPCD NOP

15027 VFD
15028 VFO
15029 VED

VFD VFO
VPCC

15030 VACC

stari : first io li transfer
INA - 3
start of 195 { { oli transfer
start of most io li transfer
start or host to li transfer

VPCC 25
H2S VPCC

15032 VPCC VEC H2S

15034 VCC
15035 VCC start oosttoli transfer
NA - L - is tuil clean , 12 cansiont be dirty . It's either clean also or invalid . NA L1 canciot be fully cached and partially dirty ill is full dirly . Eithas Liis full dirty also orli is partially dirty and L2 is invalid
NA- Full dirty Li invalidates 12
NA { fL1 is dirty ; L2 cannot be full clean .
NA) - { 13 } ld so there's no data so transfer
NA_Saria data
NA - 3 - L1 is consistent with , no need for surandflash
NA - 3 . Dirty L3 / 1.2 must be flushed to HDD first (wa or get dista froxy : 12 instead (normal attes)

FIG . 15A

Patent Application Publication May 14 , 2020 Sheet 20 of 36 US 2020/0151098 A1

11 State 12 State Sub - State L } State 02 State Sub stala

15036 INVLO M25 VFD
{ ???? NOP 15037

3 : 5038 INVID VPCD H25

15039 VPCD VOP

$ 25
15040
35043 INVLD
15114 ?
35043 | INVID

VPCD
VED
VPCD

NOP
VON
NOP VPCC .

25

SO4G VPCD VOP

VOCO NOP

VED
1535
15046 INVIO
15047
15048 INVLO

VPCD
INVLD VACC M25 VFD

15019 VPCO VPCC NOP

EVENT
HOST COMPLETES WRITING TO 11

data size equal or greater than cache line
data sive less thanCit : lice
dito size eaux : I or greater then cache line
dara size less than cache line and does not overlap with
all dirty data is : 12
data size less than cache Bie But overlaps with all cliny
data in 12
data size caual or greater than cache ling ?
data size less than cache line
data size equal or greater than cache ling
dara size less than cache line and does not overfsp win
all dirty data in 12
data size less time cache line but overlaps with all diri
daca in 12
dat3 size equal or greater than cache linge
data size less than cache line
deta size equal or greater than cache line
datl? size less than cache line and does not overlap with
clean data in 12

data size . less than cache line ful ovarlars with all clean
data in 12
data size equal or greater than cache line
data size less than cacly line , and file - up all un - filled
and clean cache bytes
data size less than cache line , and did not - up all in
illed came bytes
data siza less than cache line , and illed - up al wn - filled
cache bytes but did not fill all clean bytes
data size Equal or greater than cache line
data size less than cache line , and filed - up all wn - filled
and clean cache bytes in L1 and does not Overlan with
dirty Bytes ir : 12
data size less than cache lins , and file - up all un - filled
and clean cache bytes in 11 , and overlaps with all dirty
bytes in L2
daca size less than cache line , and did not ha - upali un
illed cache bytes in li , and does not overlap with all
dirty tytex in L2
datz size less time cache line , and did not find aliun .
filled cache bytes in , and overlass with al dirty bytes
in L2

15050
15053VPCD # 25 VED NVID

33052 IND

13053 VPCD NOP

15055 VPCD VPCD VFO

15050 YFD VPCD

15057 INVO

35058 VCD VPCD

15059

data size less than cache line , and oiled - up all wi - fillede
cxle bytes but did not it all clean tytas ir 61 VFCPO NOP 15060

35061VPCD VFC HZS

FIG . 15B

Patent Application Publication May 14 , 2020 Sheet 21 of 36 US 2020/0151098 A1

15062 VCD VFCPO 125 NOP

15063

15064 NOO

15065 NOP

15056

15067
15088 VPCD VFD H2S NOP

data size equalor greater than cache line VED INVLO

data size less than cache line and filled - up alun - filled
cache bytes and all clean bytes VPCD
dara size less than cache line , and filled - up alun - filled
and dirty cache bytes but not all dean bytes IVECPD VPCC
data size less than cache line and filled - up alun - filled
and cean cache bytes out noi al dny bytes IVED

data size less than cache lines and did not fill up all un
filed Cache bytes but illed all dirty bytes VPC VPCC
data size less than cache line and did not fill - up all un
filled cache bytas bat filed allocan bytes IVRO VACD
data size equal or greater than cache line IVFD INVLO

data size less than cache lines , and illed - up alun - filled
cache bytes IVFD VPCD

data size less than cache line , and did not fill - up all us
hled cache bytes VPCO VAXD

data size equal or greater than cache line VFD INVLO

data size less than cache ling and filled - up alun - illed
cache bytes and al cean bytes IVFD

daca size less than cache ling and filed - up alun - hilled
and dirty cache bytes but not ali cean bytes VFCPD VCC
data size less than cache line and filled - up ail un - filled
and clean cache bytes but not all dirty bytes
dara size less than cache line and did not ill - up all un
filed cache bytes tuit filled all dirty bytes VACC

daia size less than cache line , and did not fill - up all un
fied cache bytes butled all cean bytes ????

MIMI
daia size equal or greater than cache line VFD INVLD

data size less than cache line VFCPO INVID

NOP 15070
15071 VCD HZS NOP

15072

15073

15074

15075 NOP

15076 NOP
NOP 15077 VFC

15078
15079 VFC
15080 VFC

VPCD H2S
H2S data size equal or greater than cache line

data size less than cache line
VED
IVFCPO VOCC

H25 15082 IVEC
15083 (VFC M2S
15084 VFC H2S IVFD INVLD daca size equal or greater than cache line

MATCH LINE TO FIG 15C2
FIG . 15C1

Patent Application Publication May 14 , 2020 Sheet 22 of 36 US 2020/0151098 A1

Wuuuwwwwvwwwvwwvvwvwwwwwwwwwwwwwwwwwvvwvvwvwwwvwwwvwwwvwwwwwwwwwwwwwwww www my
MATCH LINE TO FIG 15C1

data size less than cache line and overwytes all data in
12 15085 VFCPO IND NOP

data size less than cache line but do not overwrite all
15086 VFCPO VPCC

15087 VFCPO INVLO NOP

15080 IVO INVLD NOP

15089 NOP VFCPD IND
INVLO 15050 VECPD VPCD H2S NOP

data size equal or greater than cache line
data size less than cache line and filled - up all clean
cache bytes
data sze less than cache line , and did not fil - up al
dean cachy bytes
data size equal or greater than cache line
data size less than cache line , and filled - up al clean
bytes
data size less than cache line and filled - up all dirty
cache bytes but not aldean bytes
data size less than cache line , and filled - up all clean
cache dytes but not al dirty bytes

15091 VFD NOP

15092 NOP

NOP

HZS 150MA VECPD IVFC
15095 VECPD VECPD H2S

VED INVLD

VFCPD VPCC

15098 VFCPO VPCD NOP

data size equal or greater than cache line
data size less than cache line and filled - up all dean
cache bytes
data size less than cache line and did not fil - up all
dean cache bries
data size less than cache line and did not fil - ip ali dirty
cache Dytes
NA 2

data size sual or greater than cache line
data size less than cache line and filled - up all clear
cache bytes
data size less than cache line and did not fil - up all
dean cache bytes in Li , and do not overlap with all data
in L2

H2S 15099 VFCPO
15100 VECPOVPCC INVLO NOP

15101 VFD NOP

15102 VRCP3 VPCC NOP

data size less than cache line , and did not hil - up al
dean cache bytes in L1 , but overtaps with all data in 12 15103 VFCPD IND

FIG . 15C2

Patent Application Publication May 14 , 2020 Sheet 23 of 36 US 2020/0151098 A1

NOP H2S
H2S

host completes writing toll
daca Oxerisps with all data in 12
data do not overlap with all data in L2

VFD
VFD INVLD

VPCD NOP

VFC . 12S

15104 VFD
15105 VED
15106
15107 VFD
115108VFD
15109VFO
15110
15111 VFD

H2S
H25 NOP NLD

VPCD VFD
VPCC H2S

15112 VPCC INVLD # 25 INVLD

15113 VFCPO INVLD NOP

VPCD NOP 19114
15115 VPCC VFD INVLD NOP

15116

NA3
data size equal y creater ihan cache line
deca size less than cache line
NA 3
data size equal or greater than cache line
data size less than fixte line , and flee - up all un - filled
cache bytes
data siza less than caheline and did not fill - up all una
files cache bytes
data size equal or greater than cache line
data size less than cache line , and fled - uc al un - alkidi
cacha bytex
data size less than cahe line and did not fill - up allun
filled cache bytes in Li , and does not overlap with all
dirty bytes in L2
data size less than cache line and did not fill - up al un
filled cache bytes in li , and does not overlap with all
dean bytes in L2
data size equal cr greater than cache line
data size less than cache line , and filled - up all un - filled
cache bytes
data size less than exhe line , and dd not fill - up all un
filled cache bytes

VECPD INVLD NOP

15117 VPCD NOP

15118
15119 VACC

VPCC
INVLD VFC H2S VED NOP

VECPD NOP

VPCC
VFCPD

15121
15122VACC
15123 VPCC
15124 VPCC

H2S
425
H2S VPCC VED INVLD NOP data size equal or greater than cache line

data size less than cache line , and filled - up all un - filled
cache bytes , and overlaps with all data in L2 15125 VAPO NOP

data size less titan cache line , and filled - up alun - filled
cache bytes , and does not overlap with all data in L VFCPD VPCC

daia size less than cahe line and did not fillo alum
filled cache bytes , and overlaps with all data la : 2 15127
data size less than the line , and did not fil - up allun
filled cache bytes , and does not overlap with all data in

15128 VPCO VPCC

FIG . 15D

Patent Application Publication May 14 , 2020 Sheet 24 of 36 US 2020/0151098 A1

L ! Siate 12 State Sun - stage 11 Site L2 State Suple EVENT
ÜRIA TRANSFER FROMURO HOST

NOP
NOR

160102 AVID NA - S
VICO
VFC
VFCPO
VFD
VPCC . 16 : 305 INV.D NOP
INVLO $ 2 } NOP

NOP
hestreads data
host reads data

VECPO host raads data
Thosi reacis dara VPCO VFD

16007 VPCO
16008 VPCD
16009 VPCO
16010 } VPCD
16011 VPCD
10012 VFC
16013 VFC
16014 VEC
16015VFC

S ?
S2H
52H i hostess

hosty 385 data INVIO SCH

host reads dates S2H
VFCPD

16017 | VFC NOP 10st es : 13 SZH
16018 VFCPD INVLD NOP hastsuds data VECPO S2H
16019 VFCHD hostisos data VFCPO VACD S2H
16020 VFCPO VEC
18071 VFCPO VFCPD NOP Biostreads data FCPO VECPO SH

16022 VFCPO NOP
16023 VECPD VPCC VACC

10024 VFD host roads and $ 21
16025 VFD VPCD Thost teads to VPCD 528
16020 VFD NOP
16027 VFD VFCPO NOM
16028 VFD hostinds data VFO 52h
10029 VFD VPCC NOP
16930 VFCL INVO NOP VPCC 52H

VPCD NOS kostudis dels VAC VPOO S2H
18032 VPC VFC VACC $ 2 4
18033 VPCC VFCPO NOP
18034 VPCC
18035 VPCC host regas dalis VPCC $ 24

NA - L - If L1 is full ciman , L2 cannoni be dirty.It's either clean also or invalid .
NA : 2 - L1 cannot be fully cached and partially dirty if L2 is full dirty . Either Ll is full dirty also orl1 is partially dirty and L2 is invalid
N4-3 . Full dirty L1 invalidates 12
NA ! 11 is dirty , 12 cannot be full clean ,
NA - 5 - iinvalid so there's no data tc : transfer
NA - Samne ciata
NA - 1-17 is consistent with 12 , no need for sarammash
NA - 8 - Dirty L1 / L2 must be flushed to HDD hrst { fua , or get chia from L2 instead (normal access)

FIG . 16A

Patent Application Publication May 14 , 2020 Sheet 25 of 36 US 2020/0151098 A1

Li State 12 State Sub - State EVENT L1 State L2 State Sub - Sute
HOST COMPLETES READING FROML :

INVLO 16036 | INVLD
16037 INVLO
16038 | NVLD
16039 INVLD

S2H
S2H
S2H

NA - 5
NAS
NA - 5 VEC

VFCPD S2H NAS
S2H NA - S

16041 NVLO VPCC NA.S
S24 INVLD NOP INVLO

VPCD
VPCD
VPCD S2H VPCD NOP

16042 VPCD
16443 | VPCD
1604A VPCD
16045 | VPCD
16046VPCD

VFC S2H

VFCPD S2H VPCD VFCPD
S2H

host completes reading fran
host completes reading hom 11
NA
host completes reading from 1
host completes reading from o
host completes reading from u
host completes reading from 1
NA
host completes reading from i

NOP
NOP VPCC SZH VPCD VPCC

INVLD 524 VEC NOP 16048 VFC
16049 VFC
16050 VFC

VPOD
VEC VFC

S2H
526
$ 2H
$ 2H

VFCPD
VFD 16052 VFC

16053 VFC VPCC S2H VFC VPCC NOP

10054 VFCPU INVLD S2H
host completes reading from
host completes reading from u1
host completes reading hon i

IVFCPD NOP INVLD
VPCD VPCD VFCPD NOP

VFC
VFCPD

SZH
52H
S2H
S2H

VFCPD VFCPD NOP

VPCC 524

host completes reading from 1
NA - 2
host completes reading from 1
host completes reading from !
host completes reading from

VFCPD

16055 VFCPD
16056 VFCPD
16057 VFCPD
160581 VFCPD
16059 VFCPD
10060 / VFO
16061 VED
16062 VFD
16063 VFD
10064 | VFD
18055 { VFD

VPCC

INVLD VED NOP

VPCD VED VPCD NOP S24
$ 2H
S2H

VFD VED NOP 52H
S2H

NA - 3
host completes reading from
NA
host completes reading from u
host completes reading from u
host completes reading from u

INVLD $ 2H VACC INVLD NOP 16066 VPCC
16057 VPCC
16068 | VPCC

S2H VPCD NOP VPCC
VPCC VFC . SH

SCH VECPD 16069 VPCC
16070 VPCC
16071 | VPCC

$ 24
VPCC host completes reading from 11 VPCC NOP

FIG . 16B

Patent Application Publication May 14 , 2020 Sheet 26 of 36 US 2020/0151098 A1

Li $ tzie 12 State Sub - state EVENT 11 State 125tate Sub - State
DATA TRANSFER FROM 2 TOLI

17000 INVLO INVLO NA - S
17001 INVLD VPOD NOR start of transfer from L ? 10L1 VPCD F2S
17002 INVIO VEC start of transier fronti (2 1011 INV.D
17003 INVLO VFCPO stant of transier from 2011 INV.D
17004 INVO NOS stänt of transfer from L210L1 INVLDI 125
17045 INVO VPCC start of transies from 12 toli VPCC F25

17006 VCD INVLO NOP NA - S
17007 VPCD VPCD NOP start of transfer from 12 toli VPCD VPCD F2S
17008 V CD VFC NOP NAU
17009 VPCD VFCPO NOP start of transfer from L21011 VPCD VFCED FZS
17010 VECO VFD NOP start of transfer from 12 toli VPCD F25
17011 VPCO VPCC NOM start of transfer fram 12 toli VPCD VPCC FZS

INVLL NOP
17013 VFC NON
17014.VFC NOP NAS

VFCPO NOP
17016VFO VFD
17017 | VFC VPCC NOP NA
17018 VFCPD INVIO NOP NA.S
17019 VECPD VPCD NOR
17020 VFCPD VFC
17021 VFCPD VFCPO NOP
17022 IVFCPD NOP NA - 2
37023 VFCPD VPCC NOP NA
VURAVEL NOP

17025 VFQ VPCD NOP
17026 VFD VFC NOP NA
17027 VFD VFCPO NA - 3
17028 VFD NOP
17029 VED VPCC NOP
17030VPCC INVLD NOP
17031 VPCC VPCD start of transfer from 12 tol ! VPCC 225
17032VPCC NOP start of transfer fron 12 toll VPCC VFC F2S
17033 VPCC VFCPD NOP
17034 VPCC NOP
17035 VPCC VPC.C. NOP start of transier from 12 toL1 VPCC : FZS
NA - } - { { Llis full clean , 12 cannont be disty . It's either clean also or invalid ,
NA - 2.1 cannot be filly cached and partially dirty if 1.2 is full dirty . Either . 1 is ívil dirty also or 1.1 is krairtially diriyiki { . ? is invalia
NA - 3- Full dirty Li Invalidates 12
NAJL1 is dirty , 12 cannot be full clean .
NA - 5 - Invalid so there's no data io transte !
NA - Sane data
NA.7 - L ! is consistent with L2 , no need for sdram2flash
NA - S - Diny L1 / L2 must be fiushed to HDD first (fuai or get data from 12 instead (normal access !

FIG . 17A

Patent Application Publication May 14 , 2020 Sheet 27 of 36 US 2020/0151098 A1

L3 State L2 State Sub - Site LI Stade L2 State Sub - State EVENT
COMPLENON OF L2 TOL1

WWS

FS
FRS
25 NOM VEC

VPCC
VFCPD VFCPD F25

17036 INVO
17037 INVLO
17036 INVLO
17039
170WONINVLD
17041
170 ? | INVID
7743
17044 | INVLO
37048XVPCD

cornpletion of transfer torni 1.210 1.1
data transferred Nils entireli
data transferred does not fill entire 11
data transferred hills entire 11
data transferred does not fill entire L '
data transferred fills Antire 11
data transferred does not fir entire L1
completion of transfer from 12 1041

VFC
VFCPD
VFCPD NOB

F2S
VED
VPCC F25

SNVLO F25
F25 NOP Li plus daia transferred fills entire L1

Li plus data transferred does not ill entire LI VPCO
VPCD
VPCO

VFCPD F25 VFCPO

17047
17048XVPCD
17049 VECO
17050
17051 VPCO
17052
17053VPCO
3705

425

3ll uncacha bytes in l.1 are dirty in L ?
not all circuched bytes in l . 1 3re dirty in 1.2 VPCD
L ! plus dati transferred his entirell
Li plus data transferred does not all entirell VPCD
Li plus data transferred tils entirelt VECPD
u plus t3 trinstere does not fill entire I VPCD

VFO
VFD
VPCC
VPCC

VPCC NOP
NOP

VPCD
VEC

ES
F25
F2S

17056 | VFC
17057 VFC
17058 VECTOR
17050 / VEC
17060 { VEC

F2S VFO
VPCC

NA
NA

INVLD
17062 | VFCPO
17063 { VECPD
1704 VFCPD
17065 VECPD
17066 VFCPO

VFC
VFCPO
VFO
VPCC

NA - 2

VLO
17058 / VFD

F35
$ 25
25
F2S
Fys
F25
f25
F2S
F25
F2S
25
725
F2S

NAG
VFC
VECPO

INAD
NA - 3
NA - G

VECC NA3

17070 VED
17071 VFD
17072XVED
17073 VECC
17074 / VCC
17075
17078 / VPCC

1. plus data transferred fills truire : 1.1 VECPD
Li plus dan transferred dux not fill entire LI VPCD
Lulus data transferred fills entirely
Li plus dais transferred does not fill entire .I VPCC

VFC F25
VFC

17078XVPCC
17079 VPCC
17080 (VACC
17081

VECPD
VFD
VPCC

F2S
FIS
25

NA : }
Li plus data transferred his entireli
L ! plus data transferi dosis not fill entire L VPCC

VPCC

FIG . 17B

Patent Application Publication May 14 , 2020 Sheet 28 of 36 US 2020/0151098 A1

12 State Sub - Stall 11 State (. ? Stute Sub Suite
DATA TRANSFER FRON LI TOL2

18000 INVLD NOP

NOP
NOR
NOM
NOP INAS

INVLD
VACO
VFC
VFCPO
VFD
VPCE
INVID
VPCD
VFC
VFCPD
VFD
VPCE

18002 INVO
18003 INVLD
18004 INVLD
18005 INVLD
18006 VPCD
18007 VPCD
1800 & VPCO
18009 VCD
18010VPCD
18011 VPC9

NOS start of 11 10 12
start of Li 1012

528
S2F

NOP
NOM

VPCC $ 2F start of 11 10 12
start of 11 10 12 18012 VFC S2F INVLD

VPCO
11801 * VEC
18035VEC

NOP
NOP
NOP
NOP
NOP
NOP

VFCPD
VFD

start of L1101 ?
start of 1.1 to 1.2

VFCPO
VFCPD

INVLO
VACD

SZF
S2F VPCD

VFC
VFCPD
VFD

NON
NOP
NOP
NOP

stäit of L1012
start of i . 1902
start of 11 103

VFD
VFD

VPCC
INVLD
VPCD

$ 2F
S2F
52F VPCD

18017 VFC
18018 VFCPD
18019 VECPD
18020 VF PO
18021 VFCPD
18022 VECPD
18023 VECPO
1802 VFO
18025VFO
16020 IVED
18027 VED
18028 VFD
16029 VFD
18030VPCC
16031VPCC
18032 VPCC
18033 VACC
180 : 34 VCC
18035 VPCC

NON
NOP
NOP
NOP
NOP

VECPO

OPTIUNIR
VPCC S2F IND

VPCD

NA .
start of 11 10 12
sort of 1.1 to 12
NA 7

INVLO
VPCO $ 2F NOP

NOP

MA .
start of 1.1 0.2 VPCC NOP VPCC VPCC

TA117
SZE

NA- - ifll is full clean , L2 cannont he dirty . It's either clean also or invalid .
NA - 2-11 cannot be fully cached and partially dirty if L2 is full diry . Either UI is full dirty also orliis partially dirty and L2 is invalid
NA - 3- Full dirty L1 invalidates 12
NA - fllis dirty , 12 cannot be full clean .
NA - 5 - Invalid so there's no data to transfer
NA - 6 - Same data
NA7 - L1 is consistent with L2.no need for sdrammilash
NA # -Dirty L1 / L2 must be fushed to HDD first (fua) or get data from LZ instead normal access)

FIG . 18A

Patent Application Publication May 14 , 2020 Sheet 29 of 36 US 2020/0151098 A1

Li State 1.2 State Sub - State L1 State | 12 State Sub - State
COMPLETION OF TOL2

INVLD 52F 18036 INVLO
18037 INVID

VEC
VECPD

S2F
52F

18038 | INVLD
18039 | INVLD
18040 INVLD
1824 1 INVLD
18042 VACD
18043 VACD

NA - S
NAS VPCC

52F
SZF
S2F
5 ? F

NVID completion of transfer from 17 to L2 VPCD
VPCD

VPCD
VPCD NOP

VPCD VFD NOP L2 filled fully
NA . 18045 VPCO SZF

VFCPD
VFD

S2F
52F

VPCC SZF NOP 1.2 not filled fully
Lilled any
completion of transfar frony LI OL ?

VPCD
VPCD

18046VPCO
1847 VPCO
18048 IVPCD
1804
18050 VFC
18051 VFC
18052 VFC .
18053 VFC

VPCD
VFCPO

VEC INVLD
VPCD

SZE
52F

VEC
VECPD

$ 2F
S2F

NA
VPCC
INVLD

52F
$ 2F
$ 2F
SZF

1805S VFC
118056 VFUPD
18057 | VFCPD
18058 VFCPD
18059 VFCPD

NOP completion of transfer from L1 to L2
Complet1010 1 315 er roin LOL

VFCPO
VFCPD

VFCPD
VECPD

VFCPD S2F IN

18050 VFCPD
18061 VFCPD

VFD
VPCC

SZF
SZF VECPD VFCPO

IATELLITETITosuwu

18062 IVFO
18002 IVFO

INVLD
VPCD

$ 25
S2F

completios o Vans Ef rom oL
completion of transfer froml] 10 12
completio : 0 orans er man . You

NON
NOP VFD

18064 VFO
18065 VFD

VFC
VFCPD

S2F
$ 2F

18066 VFD 52F
$ 2F

completion of transfer hom li tol ? NOP 18068 | VPCC
18069 VPCC

$ 25
52F

VPCC
VPCC

VPCC
VFCPD VPCD

L2 filled fully VFCPD 18070
18071 VPCC S2F VFC

VFCPD 18072 VACC
18073 VPCC
18074 VPCC
18075

VPCC S2F NOP L2 not filled fully
Hled ully

VPCC
VPCC

VPCC
VFC

FIG . 18B

Patent Application Publication May 14 , 2020 Sheet 30 of 36 US 2020/0151098 A1

Lo State L2 State Sub - State 11 State L2 State Sur - state

IND 39000 INVID
19001 INVLO
19002INVLD
19003 INVLD
INC INVLO

DATA TRANSFER FKQM HOD TOU
star of HDD toli transfer
start of HDD to ul transfer
start of HDD 10 L1 transfer
start of HDDIOL i transfer

INVIO
INVLD
INVLD
INVLD

HOO2S
HDD25
HOD2S
HDO2S

VFC
VFCPD

NOP
NOP

VEC
VECPD

VPCC NOP HDOKS
190016 VPKO
19007 VPCD
19008 VPCD

stan of HDD 1011 transfer
start of HODIOL1 tiansfer
start of HODIOL1 transter

INVLD
VPCD
VPCD

VPCC
INVLO
VPCO

HODIS
HDOZS NOP

NOP NA VFC
VFCPD

NOP
NOP 13011 VPCD VPCC VPCO VPCC start of HOD 101 ? transter

occurs on Read FUA comand
HOOZS
HOD2S 19012 VEC INVLO VFC INVLD

NOP
Joccurs on lead FUA coriand VFC VFC HDOIS

19015 VFC
19016 VFC NOP VED

VPCC VEC VPCC HDOZS
INVLD
VPCD NOS

1918 VFCPD
19019 VFCPD
19020 VFCPO
19021 VFCPO
19022 VFCPD
19023 VFCPD

OCCUPS on Read FUA command
Occurs on Head FUA command
Occurs on Read FIA command
Occurs on Read FUA cominaid
occurs on Read FUA command

NVLD
VPCD
VFC
VFCPO

VECPD
VFCPD
VFCPO
VFCPO

HDOIS
HDD25
HOO2S
HOO25

VPCC NOR occurs on Read FUA command VFCPD HDD25

19014 VHD INVLO
19025 VFD VPCO
19026 VFO VFC NOP
19027 IVFD VECPD NOP NA - 3

NOR
19029 VFD NA - 3
W30 VOL NOS start of HDD to L1 transtes VPCC HOOZS

19031 VPCC NOP start of HOD 10l1 transfer VPCC HDD25
19032 VPCC NOP occurs on Read FUA command VPCC VEC H0O2S
19033 VPCC VECPO
9034 VPOC VFD

19035 VPCC NOP start of HDD to 1.1 transfer VPCC VPCC HO025
NA - I - fl .) is hill cean , 12 canront be dirty . It's either clean 3.5 or invalid .
NA - 2-61 cannot be fully cacher and partially di : ty i L2 is full csiity wither } is full dirty also or Liis partially dirty and L2 is invalid
NAS- Full dirty L1 invalidates 12
NAG - 11.3 is dirty . 1.2 cannot be full clean .
NA - 5 - írvalid so there's no data to transfer
NA - O - Same data
WA ? .61 is consistent with 12 , no need for sdtamm3.h
NAA ?. DirtyL1 / 12 must be fushexi to 4093 first fua) or get data from L2 insies (normat acces }

FIG . 19A

Patent Application Publication May 14 , 2020 Sheet 31 of 36 US 2020/0151098 A1

L3 State La State Sub - State 11 Slate 12 State Sud - State

19030 INVLD INVIO HDDZS NO ?
NOP

EVENT
COMPLENON OF HOO TOLI
data did not fili entire cache

(data alled entire cache
HODIOL.1 completed
data did noi fil entire cache
data Klled entire coche
HOO toll completext

INVLO
INVLD
VPCD
VFC

19038 INVLD
19039 INVLD

VPCC
VEC
VPCC
VPCC
VEC
VPOC

HODAS
HO025 NOS

VECPO VFCPO 1941 INVLD
3902 INVLD
19043 INVLO

HO025
HODZS

VPCC NOP VPCC
VCC

1904.5 VPCD INVID HOD25

Idata did nox fill entire cache
data filles entire cache
data did not fils entire cache
dat? Alled entire cache
dats did not fijl entire cache
data flled entire cache
NAN

INVLD
VPCD
VFCPD
VPCD
VFCPD

VPCD HOD2S
NOP

19047 VPCD
1848
19049 VPCD
19050 VPCD
1.805 ! VPCD
1905 ? VPCD
19993

VEC
VFCPO

HDD2S
H0025
HDD2S

{ DOWS VPCC VPCD
VFCPO

VPCC
VPCC NOP

19954 VEC . INVID

NAS
data did not fil entire che
data Slled entire cache
HDD to 11 completed
NA - 1
HDD to li completed
NA - 1

VFC INVID NOP

VFC
39057 VFC
19058 VFC
1905 VEC VPCC VPCC

INVLD 1990 VFCPO
1961 VECPD
19062 VFCPD
19063 VECPD
1954 VFCPD
196265 VECPD

NOP
NOP

HDD2S
H0025
HDD25
HOD25
HDD2S
HO025
HDD2S
MOD2S
HODZS
H00 ? S
HOOZS
HOOS
H3025
HO025
HDD2S
HDO2S
HDD25
HODZS
HDD2S

VFC
VFCPD
VEOPO
VECPO
VECPO

VFC
VECPD
VFO

HDOTOlt completexi
HDD to 11 completed
HODIOL1 coriplates
HDD tollaleiki
HOD 10 11 complete
NA - 2
HDD to il completexi

VFC
VECPO

VICPD VPCC AOP

VPCO NA
1908 VFO
1969 VFO VFCPD NA3

NA
1907 VFD VPCC

INVLD VPCC
NA3
data did not fijl entire cache
data Klled entire cache
HOD 1911 corsipleti
dan olisi soteatre cache
data Klled entire cache

INVLO
INVID
VPCO
VRE

HOUS NOO VPCO
VFC

39072 VPCC
19073
19074 VPCC
19075 VPCC
19076
19077 VACC
19078 VECC
19079 VPCC

Vpci
VPCC NOP

INOP

VECPD
VFO
VPCC

HDOZS
HDD25
HDD2S dan did not fill endre cache

data Klled entire coche VFC VPCC

FIG . 19B

Patent Application Publication May 14 , 2020 Sheet 32 of 36 US 2020/0151098 A1

L Sute 125tle Sub - 5 taie EVENT LI State L2 State Sub - State
DATA TRANSFER FROM LI TO HDO

20000 INVLO NA - 5
20001 INVO VPCD INAS
20002 INVID VFC NOP NAS
20003 INVLD VFCPD NOP N4-5
20004 INVID
2000SIMO VPCE NOP NA - S
20006 VPCO INVLD NOP stari oli ta KDO . flushing or write fua VPCO INVLQ SZHDD
20007 | VPCO VPCD NOP start of 11 to MOD VPCD 52HOD
20008 VPCD INA
20009 VPCO VFCPD NOP start of 11 to MDO . fiusting or write fua VPCD S2H00
20010 VOCO VFD NOP N4-8
20011 VPCO VPCC NOR starto 1. OHOD SZHOD
20012 VFC NVLD NOP start of ll IOHDO . Write fua VFC INLD SZHOD
20013 VF
20014 VFC VFC NOP start of L1 IQ HQO - wie huwa VFC VFC SZHDD
20019 VFC VFCPO
20016 VFC VFD NA
2001 ? VFC VPCC NOR start of LI IO HDD- wie fula VPCC S2HOD
20018 VFCPD NOP start of 11 to MOD VFCPD S2HDD
20019 VFCPO stant of li to HDO VFCPD VPOD SZHDO
20020VFCPD VEC NA
20021 VFCPD VFCPD start of LI IOHDO VFCPO VECPD SZHDD
20022 VECPD NOP NA - 2
20023VFCPD VPCC NOP start of li to HDD VFCPO VPCC $ 2 $ 100

20024 / VED start of li to HDO VFD INVLD $ 2HOD
20025 VFD VPCD start of L1 IO HDO VED VPCO SZHDD
20020VFQ VFC NOP NA - e
20027 VFD VFCPO NON NA - 3
20028 | VED VFD NOP start of li to HDD VFD 52HDD
20029 | VFD VPCC NOP NA3
20030VPCC NOR start of li to HOO- write fua SZHOD
20031 VPCC NOP start of li to HDD . write füü VOCC VPCO S2HOD
20032VPCC VFC start ofl.1 IOHDD , write fua VPCC VFC S2HDD
20033VPCC VFCPO
20034 V CC NOA
20035 VACC VPCC NOP start of LI IOHDO . write fua VPCC VPCC S2HOD
NA- -- ** L } is tust clean , 12 Cannont be dirty . It's either clean also ar invalid ,
NA - 2-41 caminst be fially cached and partially dirty if 1.2 is fill dirty . Eitherl , ? is an il dirty also or 1.1 is partially dirty and (2 is invalid
NA - 3 - Full dirty 11 invalidates L.
NA - * - } fu1 is viry . L2 cannot be full cleari ,
NA - S- Invalid so there's no data to transfer
NA.fj - Santa
NA.LT is consistens with L2 . no need for sdraw2tlash
NAH . Dirty L1 / L2 must be fiusneT TO MOD first (tual or get dara torn L2 iristead (normal accessi

FIG . 20A

Patent Application Publication May 14 , 2020 Sheet 33 of 36 US 2020/0151098 A1

1.1 State 1.2.5 1.6 Sun.State EVENT 1.1 State 1.2 State ! 5463.5 rate

INA - 5
NAS

20736 VID
20X337 INVIO
20038 NLD
W39 INVLO
20740 NYLO

INVO
VPCD
VRAS
VROPOS

SZHDO
SZ400
S2 } { OD
Säh00

VPLC SZH0D
SZHOD 22 -

2043
hamiec 31 dinty bytes
did not flush all dirty krvies
Land 12 Mas sme data and sil dirty bytes were

VPCC
VPCD INVID

20X384 VAD VPCD S249 VPCC VPCC NOP

20X195 VPCD VPCO NOP
19 ore 12 lias saine dätä siirtoli dirty bytes
were usine
Land 12 has different dists and all dirty bytes !
LIWESSusie
Larid 12 las diferent data and 101 all dirty tyles
in l .: wire ilustes

2X20166 VRC

VPCD) NOP 24,37
20448 VEXO
28849 VXD
2050

VFC
VFOD

SZHDO
$ 2H00 Vpce

NA
Aushed all dirty bytes in 11 and 12
did not ilush all dirty bytes
Austurs il dirtyboytus in l .) but not in 1.2

VFL
VECPD
VFCPO

20052 VPCD
20053 VPCD

VED
VPCC .

S2800
62400

2X354
Flished aš diisy bytes
did not lunali dirty bytes
cornpleten of 1.1 to HEO wife fua

VY.C
VPCD
VEC

VPCC
VPCC
INVO

VECO
VFC completion of li to HDX3 . write 137 VFC NOP

20055 VEC
23X150 V
20x57 VFC
20058 VEC
20X353 VEC
20067 VFT .
2X163 VECPTS

VFCPO
VFN

52H0D
5200
S2H00
S280
52MIN
SZH0D
S2H2O INVLO INV.O

INVLD
VECE
VPCD

VPC $ 21 : 00) 20063 VCPD
2004
2005 VFCPO

NOA
NOF
NOS

$ 240X2
VECPD

20887 VECPD NOP

2008 VECO
2899 VFCPO

VFO
VPC

S2H00
62HDD

completion of L1 (OH00 . Write tus
flushed al dirty bytes VFC .
did notilusir dirty hyse : VFCC
flushed ali dirty bytes is 1.1 VFC
did not flssch : dirty brytes VECPD
N.
flushed 3 : 1 Birty byse
did not flush all dirty Lovies VECPD
NA : 2
flialec all sirty bytes
did not flush all dirty pies VECPD
fleshed all dirty bytes VFC
did not flush 3if dirty byres
flisstser 311 Sirty tytos VEC
did not flush all dirty byies but covered in Coritents VECTO
Vid riitt : shan diriy spies and did nu cover 2
C. 1nts IVECPD

NON

20X371 VFB VID) 5240n
VPC
INV.D
INVLO

NOP
NOR

22073 VPXL S2 } { DD

VPD
$ 2401

VFCPO
5x100

2075
2776 VFO
26077 VFD
2X878 VFD
208079
2080 V
2003 PCC
2X182 C.

VEC
VICPD

VFC
VPCD

VAX
INVID

SZHDO
$ 71003

NA : 3
flushed 3 : 1 diny bytes
did not ilush a } } dity tryies
NA - 3
< inpletion of 1,000 . Write list
coinpletion of ISO : 00 - write ?ua
Completions or 90 - wsits : fua

VEC INV1.3 NOY

S2H0D NOP

208S VAC
20060 VPCC

VECPU
VFD
VPCT

S2H00
62X9D Cotiplerions ! 10 Hop- wsite furs VEXE VCC NOP

FIG . 20B

Patent Application Publication May 14 , 2020 Sheet 34 of 36 US 2020/0151098 A1

Halil Manory SRAM SDRAM Volatile Memory (ISRANAM

Care State Info

11 ----

Valid Dirty
Valid Dirty

Dirty

Valid Oity Valid liny
Valid Dirty

force may Non - volatie Memory Flash

Cache State into

Valid bin 12
Halo Diny

Halid Dirty
Vald Dirty
Wald Dirty
Vald Dirty
Valid Diny

Initial condition before power loss . Some 12 and
someli have dirty cache lines .

Upon external power loss , the backup power
will be used to flush dirty L1 data to non - volatile
12 .

FIG . 21B FIG . 21A

Patent Application Publication May 14 , 2020 Sheet 35 of 36 US 2020/0151098 A1

Volatile Memory (SRAMISDRAM Volatile Memory (SRAM SDRAM) Volatile Memory (SRAWSDRAM)
Cache State Info Cache State Info Cache State Info

Invalid L1 Invalid L1 Invalid L1
Invalid Invalid Valid Dirty
Invalid Invalid Valid Dirty
Invalid Invalid Valid Dirty
Invalid Invalid

Invalid Invalid
Valid Dirty
Valid Dirty
Valid Dirty Invalid Invalid

Invalid Invalid Valid Dirty

Non - Volatile Memory (Flash) Non - Volatile Memory (Flash) Non - Volatie Memory (Flash)
Cache State Info Cache State Intel Cache State Info

2 Valid Dirty 12 Valid Dirty
Valid Dirty

Valid Dirty
Valid Dirty

Valid Dirty
Valid Dirty
Valid Dirty
Valid Dirty

Vald Dirty

Valid Dirty
Valid Dirty
Valid Dirty

Valid Dirty
Valid Dirty
Valid Dirty

Valid Dirty
Valid Dirty
Valid Dirty
Valid Dirty Valid Dirty

Invalid Invalid Invalid

Before the backup power is completely lost
also , all dirty cached data have been copied
to non - volatile memory . The copy of the
Cache State Info in non - volatile memory has
been updated also .
FIG . 21C

Upon next boot up (resumption of external After the transfer from 12 toli , firmware
power) , when host requests data whose latest can transfer data from L1 to host
copy is in L2 cache , firmware retrieves the data
from non - volatile L2 .

FIG . 21D FIG . 21E

Patent Application Publication May 14 , 2020 Sheet 36 of 36 US 2020/0151098 A1

103

HOST
116

115
108

L2 Cache HYBRID
STORAGE
DEVICE 110

107 DMA Paths Flash
Interface Erane
Controler

FLASH FLASH
0 Interface
DMA

Controles
Engine FLASH FLASH

2214
Engine

SRAM
Lo Cache L1 Cache

SDRAM
Controller SDRAM

105
10 Interface

DMA
Controle CPU

HOD1 10 Interface
DMA

Controller or ROM
HDDO

1934 Control Path
STORAGE CONTROLLER -106

2101 -2102

FIG . 22

US 2020/0151098 A1 May 14 , 2020

WRITE BUFFERING for hybrid storage system that takes advantage of the char
acteristic of flash memory and the architecture of the solid
state drive . CROSS - REFERENCE (S) TO RELATED

APPLICATIONS
SUMMARY

[0001] This application is a continuation of application
Ser . No. 15 / 665,321 , filed Jul . 31 , 2017 and issuing Oct. 15 ,
2019 as U.S. Pat . No. 10,445,239 , which is a continuation of
application Ser . No. 14 / 689,045 , filed Apr. 16 , 2015 and
issued as U.S. Pat . No. 9,734,067 on Aug. 15 , 2017 , which
claims the benefit of and priority to U.S. Provisional App .
No. 61 / 980,561 , filed Apr. 16 , 2014. This U.S. Provisional
Application 61 / 980,561 is hereby fully incorporated herein
by reference . U.S. application Ser . No. 14 / 689,045 is a
continuation - in - part of application Ser . No. 14 / 217,436 ,
filed Mar. 17 , 2014 and issued as U.S. Pat . No. 9,430,386 on
Aug. 30 , 2016 , which claims the benefit of and priority to
App . No. 61 / 801,422 , filed Mar. 15 , 2013. U.S. application
Ser . Nos . 15 / 665,321 and 14 / 689,045 and 14 / 217,436 and
U.S. Provisional Application 61 / 801,422 are each hereby
fully incorporated by reference herein .

[0005] The present invention describes cache management
methods for a hybrid storage device having volatile and
non - volatile caches . Maximizing concurrent data transfer
operations to and from the different cache levels especially
to and from flash - based L2 cache results in increased
performance over conventional methods . Distributed strip
ing is implemented across the rotational drives maximizing
parallel operations on multiple drives . The use of Fastest
To - Fetch and Fastest - To - Flush victim data selection algo
rithms side - by - side with the LRU algorithm results in fur
ther improvements in performance .
[0006] Flow of data to and from the caches and the storage
medium is managed using a cache state - based algorithm
allowing the firmware application to choose the necessary
state transitions that produces the most efficient data flow .
[0007] The present invention is described in several exem
plary hybrid storage systems illustrated in FIGS . 1 , 2 , 3 , and
4. The present invention is applicable to additional hybrid
storage device architectures , wherein more details can be
found in U.S. Pat . No. 7,613,876 , entitled “ Hybrid Multi
Tiered Caching Storage System ” , which is incorporated
herein by reference .
[0008] The methods through which read and write opera
tions to the flash devices are improved are discussed in U.S.
Pat . No. 7,506,098 , entitled “ Optimized Placement Policy
for Solid State Storage Devices , ” which is incorporated
herein by reference . The present invention uses such access
optimizations in caching .

BACKGROUND

Field

[0002] This invention relates to the management of data in
a storage system having both volatile and non - volatile
caches . It relates more specifically to the methods and
algorithms used in managing multiple levels of caches for
improving the performance of storage systems that make use
of Flash devices as higher - level cache .

Description of Related Art
BRIEF DESCRIPTION OF DRAWINGS [0003] Typical storage systems comprising multiple stor

age devices usually assign a dedicated rotational or solid
state drive as cache to a larger number of data drives . In such
systems , the management of the drive cache is clone by the
host and the overhead brought about by this contributes to
degradation of the caching performance of the storage
system . Prior approaches to improving the caching perfor
mance focus on the cache replacement policy being used .
The most common replacement policy or approach to select
ing victim data in a cache is the Least Recently Used (LRU)
algorithm . Other solutions consider the frequency of access
to the cached data , replacing less frequently used data first .
Still other solutions keep track of the number of times the
data has been written while in cache so that it is only flushed
to the media once it reaches a certain write threshold . Others
even separate read cache from write cache offering the
possibility for parallel read and write operations .
[0004] The use of non - volatile storage as cache has also
been described in prior art , declaring that response time for
such storage systems approaches that of a solid state storage
rather than a mechanical drive . However , prior solutions that
made use of non - volatile memory as cache did not take
advantage of the architecture of the non - volatile memories
that could have further increased the caching performance of
the system . The storage system does not make any distinc
tion between a rotational drive and a solid - state drive cache
thus failing to recognize possible improvements that can be
brought about by the architecture of the solid - state drive .
Accordingly , there is a need for a cache management method

[0009] FIG . 1 is a diagram illustrating a hybrid storage
device connected directly to the host and to the rotational
drives through the storage controller's available IO inter
faces according to an embodiment of the present invention .
[0010] FIG . 2 is a diagram illustrating a hybrid storage
device that is part of the host and connected directly or
indirectly to hard disk drives through its 10 interfaces
according to an embodiment of the present invention .
[0011] FIG . 3 is a diagram illustrating a hybrid storage
device connected indirectly to the host and indirectly to the
hard disk drives though its 10 interfaces according to an
embodiment of the present invention .
[0012] FIG . 4 is a diagram illustrating a hybrid storage
device connected indirectly to the host through a network
and directly to the hard disk drives through its 10 interfaces
according to an embodiment of the present invention .
[0013] FIG . 5A shows data striping in a single drive
storage system according to an embodiment of the present
invention .
[0014] FIG . 5B shows data striping in a multiple drive
storage system using sequential split without implementing
parity checking according to an embodiment of the present
invention .
[0015] FIG . 5C shows data striping in a multiple drive
storage system using distributed stripes without implement
ing parity checking according to an embodiment of the
present invention .

US 2020/0151098 A1 May 14 , 2020
2

[0038] FIG . 21C shows the state of L1 and L2 before the
backup power source is completely used up .
[0039] FIG . 21D shows the state of L1 and L2 upon next
boot - up coming from an external power interruption . It also
shows the step of copying valid dirty data from L2 to L1 in
preparation for flushing to rotational drives or transferring to
host .
[0040] FIG . 21E shows the state of L1 and L2 after the
valid dirty data from L2 have been copied to L1 .
[0041] FIG . 22 illustrates a hybrid storage device con
nected directly to the host and to the rotational drives
through the storage controller's available IO interface DMA
controllers , in accordance with an embodiment of the inven
tion .

DETAILED DESCRIPTION

[0016] FIG . 5D shows data striping in a multiple drive
storage system using distributed stripes and implementing
parity checking according to an embodiment of the present
invention .
[0017] FIG . 6 shows a cache line consisting of a collection
of host LBA units according to an embodiment of the present
invention .
[0018] FIG . 7 shows a process flow for initializing a
hybrid storage device supporting data striping according to
an embodiment of the present invention .
[0019] FIG . 8 shows a process flow for initializing a
hybrid storage device supporting pre - fetch of data at boot - up
according to an embodiment of the present invention .
[0020] FIG . 9A is a diagram illustrating a set - associative
L2 cache according to an embodiment of the present inven
tion .
[0021] FIG.9B is a diagram illustrating a directly - mapped
L2 cache according to an embodiment of the present inven
tion .
[0022] FIG . 9C is a diagram illustrating a full - associative
L2 cache according to an embodiment of the present inven
tion .
[0023] FIG . 10 shows a cache line information table
according to an embodiment of the present invention .
[0024] FIG . 11A shows a process flow for servicing host
read commands according to an embodiment of the present
invention .
[0025] FIG . 11B is a diagram illustrating host read com
mand - related data flows according to an embodiment of the
present invention .
[0026] FIG . 12A shows a process flow for servicing host
write commands according to an embodiment of the present
invention .
[0027] FIG . 12B is a diagram illustrating write command
related data flows according to an embodiment of the present
invention .
[0028] FIG . 13 shows a process flow for freeing L1 cache
according to an embodiment of the present invention .
[0029] FIG . 14 shows a diagram illustrating optimized
fetching of data from L2 and flushing to HDD according to
an embodiment of the present invention .
(0030) FIGS . 15A , 153 , 15C1 , 15C2 , 15D show the cache
state transition table for Host to L1 data transfer according
to an embodiment of the present invention .
[0031] FIGS . 16A and 16B show the cache state transition
table for L1 to Host data transfer according to an embodi
ment of the present invention .
[0032] FIGS . 17A and 17B show the cache state transition
table for L2 to L1 data transfer according to an embodiment
of the present invention .
[0033] FIGS . 18A and 18B show the cache state transition
table for L1 to L2 data transfer according to an embodiment
of the present invention .
[0034] FIGS . 19A and 19B show the cache state transition
table for hard disk drive to L1 data transfer according to an
embodiment of the present invention .
[0035] FIGS . 20A and 20B show the cache state transition
table for L1 to hard disk drive data transfer according to an
embodiment of the present invention .
[0036] FIG . 21A shows an example initial state of L1 and
L2 during normal operation before a power loss occurs .
[0037] FIG . 21B illustrates the step of flushing valid dirty
data from L1 to L2 upon detection of external power loss ,
using a backup power source .

[0042] Cache line is an unit of cache memory identified by
a unique tag . A cache line consists of a number of host
logical blocks identified by host logical block addresses
(LBAS) . Host LBA is the address of a unit of storage as seen
by the host system . The size of a host logical block unit
depends on the configuration set by the host . The most
common size of a host logical block unit is 512 bytes , in
which case the host sees storage in units of 512 bytes . The
Cache Line Index is the sequential index of the cache line to
which a specific LBA is mapped .
[0043] HDD LBA (Hard - Disk Drive LBA) is the address
of a unit of storage as seen by the hard disk . In a system with
a single drive , there is a one - to - one correspondence between
the host LBA and the HOD LBA . In the case of multiple
drives , host LBAs are usually distributed across the hard
drives to take advantage of concurrent IO operations .
[0044] HDD Stripe is the unit of storage by which data are
segmented across the hard drives . For example , if 32 block
data striping is implemented across 4 hard drives , the first
stripe (32 logical blocks) is mapped to the first drive , the
second stripe is mapped to the second drive , and so on .
[0045] A Flash Section is a logical allocation unit in the
flash memory which can be relocated independently . The
section size is the minimum amount of allocation which can
be relocated .
[0046] Directly - mapped , set - associative , and full - associa
tive caching schemes can be used for managing the multiple
cache levels . A cache line information table is used to store
the multi - level cache states and to track valid locations of
data . The firmware implements a set of cache state transition
guidelines that dictates the sequences of data movements
during host reads , host writes , and background operations .
[0047] FIG . 1 illustrates a hybrid storage device 101
connected directly to the host 112 and to the rotational drives
105 through the storage controller's available IO interface
DMA controllers 107 and 106 respectively . The rotational
drives 105 are connected to one or more IO interface DMA
controllers 106 capable of transferring data between the
drives 105 and the high - speed L1 cache (SDRAM) 104 .
Another set of 10 interface DMA controllers 107 is con
nected to the host 112 for transferring data between the host
112 and the L1 cache 104. The Flash interface controller 108
on the other hand , is capable of transferring data between the
Ll cache 104 and the L2 cache (flash devices) 103 .
[0048] Multiple DMA controllers can be activated at the
same time both in the storage IO interface and the Flash
interface sides . Thus , it is possible to have simultaneous

US 2020/0151098 A1 May 14 , 2020
3

operations on multiple flash devices , and simultaneous
operations on multiple rotational drives .
[0049] Data is normally cached in L1 104 , being the
fastest among the available cache levels . The 10 interface
DMA engine 107 connected between the host 112 and the
DMA buses 110 and 111 is responsible for high - speed
transfer of data between the host 112 and the L1 cache 104 .
There can be multiple 10 interface ports connected to a
single host and there can be multiple 10 interface ports
connected to different hosts . In the presence of multiple IO
interface to host connections , dedicated engines are avail
able in each IO interface ports allowing simultaneous data
transfer operations between hosts and the hybrid device . The
engines operate directly on the L1 cache memory eliminat
ing the need for temporary buffers and the extra data transfer
operations associated with them .
[0050] For each level of cache , the firmware keeps track of
the number of cache lines available for usage . It defines a
maximum threshold of unused cache lines , which when
reached causes it to either flush some of the used cache lines
to the medium or copy them to a different cache level which
has more unused cache lines available . When the system
reaches that pre - defined threshold of unused L1 cache , it
starts moving data from L1 104 to L2 cache 103. L2 cache
is slower than L1 but usually has greater capacity . L2 cache
103 consists of arrays of flash devices 109. Flash interface
108 consists of multiple DMA engines 115 and connected to
multiple buses 116 connected to the flash devices . Multiple
operations on different or on the same flash devices can be
triggered in the flash interface . Each engine operation
involves a source and a destination memory . For L1 to L2
data movements , the flash interface engines copy data
directly from the memory location of the source Ll cache to
the physical flash blocks of the destination flash . For L2 to
L1 data movements , the flash interface engines copy data
directly from the physical flash blocks of the source flash to
the memory location of the destination L1 cache .
[0051] Transfers of data from L1 104 to hard disk drives
105 and vice versa are handled by the DMA controllers of
the IO interfaces 106 connected to the hard disk drives 105 .
These DMA controllers operate directly on the L1 cache
memories , again eliminating the need for temporary buffers .
Data transfers between L2 103 and the hard disk drives 105
always go through L1 104. This requires synchronization
between L2 and L1 be built into the caching scheme .
[0052] Although FIG . 1 shows a system where the rota
tional drives 105 are outside the hybrid storage device 101
connected via IO interfaces 106 , slightly different architec
tures can also be used . For example , the rotational drives 105
can be part of the hybrid storage device 101 itself , connected
to the storage controller 102 via a disk controller . Another
option is to connect the rotational drives 105 to an IO
controller connected to the hybrid storage controller 102
through one if its IO interfaces 106. Similarly , the connec
tion to the host is not in any way limited to what is shown
in FIG . 1. The hybrid storage device can also attach to the
host through an external IO controller . It can also be attached
directly to the host’s network domain . More details of these
various configurations can be found in FIGS . 1 , 3 , 4 , 7 , and
9 of U.S. Pat . No. 7,613,876 , entitled “ Hybrid Multi - Tiered
Caching Storage System ” .
[0053] In FIG . 2 , the hybrid storage device 201 is part of
the host system 202 , acting as cache for a group of storage
devices 203 and 205. In the example given , one of the IO

interfaces 206 is connected directly to a hard disk drive 203 .
Another 10 interface 207 is connected to another hybrid
device 204 which is connected directly to another set of hard
disk drives 205. Contrary to the example in FIG . 1 where the
hybrid storage device is a slave device receiving 10 com
mands from the host and translating them to subcommands
delivered to the hard disk drives , and handling the caching
in between these processes , FIG . 2 shows a host hybrid
device doing caching of data on the host side using its own
dedicated L1 and L2 caches . An example of this is a
multi - ported HBA (Host Bus Adapter) with integrated L1
and L2 caches . In the HBA's point of view , it is connected
to , and thus capable of caching multiple storage devices
regardless of whether or not the attached storage devices are
also doing caching internally . The hybrid device intercepts
IO requests coming from the host application and utilizes its
built - in caches as necessary .
[0054] FIG . 3 is another variation of the architecture . In
this case , a hybrid storage device 301 acts as a caching
switch / bridge connected to the host 302 via another hybrid
storage device 303 , which is shown as a HBA . The hybrid
storage device 301 is connected to a hybrid storage device
304 also a plain rotational drive 305. In this example , all
three devices 301 , 303 , and 304 are capable of L1 and L2
caching .
[0055] In FIG . 4 , the hybrid storage device 401 is directly
connected to the network 402 where the host 403 is also
connected to . In this mode , the hybrid storage device can be
a network - attached storage or a network - attached cache to
other more remote storage devices . If it is used as a pure
cache , it can implement up to three levels of caches , L1
(SDRAM) , L2 (Flash) , and L3 (HDD) .
[0056] In the example architectures illustrated such as
FIG . 1 , the host can configure the hybrid storage device to
handle virtualization locally . The hybrid storage device
presents the whole storage system to the host as a single
large storage without the host knowing the number and exact
geometry of the attached rotational drives .
[0057] A firmware application running inside the hybrid
storage device is responsible for the multi - level cache man
agement .
[0058] Data Striping
[0059] If virtualization is implemented locally in the
hybrid storage device , the device firmware can control the
mapping of data across one or more rotational drives .
Initially at first boot - up , the firmware will initialize the IO
interfaces and detect the number and capacity of attached
hard drives . It then selects the appropriate host LBA to HDD
LBA mapping that will most likely improve the performance
of the system . In its simplest form , the mapping could be a
straightforward sequential split of the host LBA among the
drives . FIG . 5A shows division of data into stripes in a single
rotational drive . FIG . 5B shows sequential division of stripes
among multiple rotational drives . In this mapping scheme ,
given for example , 3 drives with 80 GB capacity each , the
first 80 GB seen by the host will be mapped to the first drive ,
the second 80 GB to the second drive , and the last 80 GB
mapped to the third drive .
[0060] This mapping scheme is simplest but not too effi
cient . A better mapping would spread the data across the
drives to maximize the possibility of concurrent operations .
In this type of mapping , the firmware will distribute the
stripes across the drives such that sequential stripes are
stored in multiple drives . FIG . 5C , shows distributed stripes

US 2020/0151098 A1 May 14 , 2020
4

across multiple hard drives . In a system with 3 or more hard
drives , distributed parity can be added for a RAID5 - like
implementation as shown in FIG . 5D .
[0061] The size of each stripe is configured at first boot
up . An example configuration is setting stripe size equal to
the cache line size and setting cache line size equal to the
native flash block size or to the flash section size . A system
with host LBU of X bytes , and with flash devices with block
size of Y bytes , a data stripe and a cache line will consist of
Y divided by X number of host logical blocks . FIG . 6 shows
an example cache line for a 16 KB flash section and 512 byte
LBU .
[0062] FIG . 7 is a flowchart for the initialization part of
data striping in the hybrid storage device . If local virtual
ization is active , firmware initiates discovery of attached
hard drives , and gets the flash section size to be used as
reference size for the stripe . If the number of detected drives
is greater than two and the drives have equal capacities and
RAID5 feature is set to on , RAID5 configuration is selected
and parity stripes are assigned in addition to data stripes . If
there are only two drives , plain striping is implemented .
[0063] Pre - Fetching
[0064] At initialization , the hybrid storage device firm
ware offers the option to pre - fetch data from the rotational
drives to L1 cache . Since rotational drives are slow on
random accesses , firmware by default may choose to pre
fetch from random areas in rotational drives . A more flexible
option is for the firmware to provide an external service in
the form of a vendor - specific interface command to allow
the host to configure the pre - fetching method to be used by
the firmware at boot - up .
[0065] If the system is being used for storing large con
tents such as video , the firmware can be configured to
pre - fetch sequential data . If the system is being used for
database applications , it can be configured to pre - fetch
random data . If fastest boot - up time is required , pre - fetch
may also be disabled .
[0066] In another possible configuration , the system may
support a host - controlled Non - Volatile Cache command set .
This allows the host to lock specific data in the non - volatile
L2 cache so that they are immediately available at boot - up
time . When the firmware detects that data was pinned by the
host in the L2 non - volatile cache , it automatically pre
fetches those data .
[0067] FIG . 8 shows the flowchart for doing data pre
fetching at boot - up time .
[0068] Caching Mode
[0069] In FIG . 1 , the rotational drives 105 have the largest
storage capacity . The flash devices 103 acting as second
level cache , may have less capacity . The SDRAM 104 ,
acting as first level cache , may have the least capacity . Both
L1 cache and L2 cache can either be fully - associative ,
set - associative , or directly - mapped . In a full - associative
cache , data from any address can be stored to any of the
cache lines . In a set - associative cache , data from a specific
address can be mapped to a certain set of cache lines . In a
directly - mapped cache , each address in storage can be
cached only to one specific cache line .
[0070] FIG . 9A shows an illustration of a set - associative
L2 cache , where the flash devices are divided among the
rotational drives . Data from HDDO can be cached to any of
the 8 flash devices assigned to HDDO (FDEV 00 , FDEV 04 ,
FDEV 08 , FDEV 12 , FDEV 16 , FDEV20 , FDEV24 , and

FDEV28) , data from HDD1 can be cached to any of the 8
flash devices assigned to HDD1 , and so on .
[0071] FIG . 9B shows an illustration of a directly - mapped
L2 cache . In this setup , each of the four hard drives has
dedicated flash devices where their data can be cached . In
this example , data from HDDO can only be cached in
FDEVOO , HDD1 in FDEVO1 , and so on .
[0072] FIG . 9C is an illustration of a full - associative L2
cache . In this setup , data from any of the four drives can be
cached to any of the four flash devices .
[0073] Full - associative caching has the advantage of
cache usage efficiency since all cache lines will be used
regardless of the locations of data being accessed . In the
full - associative caching scheme , the firmware keeps cache
line information for each set of available storage . In a system
with N number of cache lines , where N is computed as the
available cache memory divided by the size of each cache
line , the firmware will store information for M number of
cache lines , where M is computed as the total storage
capacity of the system divided by the cache line size . This
information is used to keep track of the state of each storage
stripe .
[0074] FIG . 10 shows an example table for storing cache
line information in a full - associative caching system . Since
each storage stripe has its own entry in the table , firmware
can easily determine a stripe's caching state and location .
[0075] L1 Index is the cache line / cache control block
number . HDD ID is the sequential index of the rotational
drive where the data resides . HDD LBA is the first hard - disk
LBA assigned to the cache line . L1 Address is the actual
memory address where data resides in Li , and L2 Address
is the physical address of the location of data in L2 .
[0076] The HDD ID and HDD LBA can be derived at
runtime to minimize memory usage of the table . L1 Cache
State and L2 Cache State specify whether the SDRAM
and / or the flash contain valid data . If valid , it also specifies
if data is clean or dirty . A dirty cache contains a more
up - to - date copy of data than the one in the actual storage
media , which in this case is the rotational drive . Cache
Sub - State specifies whether cache is locked because of
on - going transfer between SDRAM and Host (sdram2host
or host2sdram) , SDRAM and Flash (sdram2flash or
flash2sdram) , or SDRAM and rotational drive (sdram2hdd
or hdd2sdram) .
[0077] Direct - mapping is less efficient in terms of cache
memory usage , but takes less storage for keeping cache line
information . In a system with N number of cache lines ,
where N is computed as the available cache memory divided
by the size of each cache line , the firmware can store
information for as few as N number of cache lines . When
checking for cache hits , firmware derives the cache line
index from the host LBA , and looks directly to the assigned
cache line information . Firmware compares the cache
aligned host LBA to the start of the currently cached LBA
range and declares a hit if they are the same .
[0078] At initialization , firmware allocates memory for
storing the cache information . The amount of memory
required for this depends on the caching method used as
discussed above .
[0079] Address Translation
[0080] Cache states stored in the cache line information or
cache control block outlined in FIG . 10 specify the validity
of data copy in L1 and L2 caches . After inspection of cache
states , the next step in processing an 10 command is to

US 2020/0151098 A1 May 14 , 2020
5

locate the exact address of the target data , which is stored
also in the cache line table in FIG . 10. If data is neither in
L1 nor in L2 , a HostLBA2HDDLBA translation formula is
used to derive the addresses of the hard disk logical blocks
where the data is stored .
[0081] The host LBA size is usually smaller than the flash
block of L2 , thus a set of logical blocks is addressed by a
single physical block . For example , given a 512 - byte host
LBA and 16 KB flash block , 32 LBAs will fit into one flash
block . Therefore , only one entry in the table is needed for
each set of 32 host logical blocks .
[0082] The cache information table is stored in non
volatile memory and fetched at boot - up time . In systems
with very large storage capacities , it might not be practical
to copy the entire table to volatile memory at boot - up time
clue to boot - up speed requirement and limitation of avail
able volatile memory . At boot - up only a small percentage of
the table is copied to volatile memory . In effect , the cache
control block table is also cached . If the table entry associ
ated with an IO command being serviced is not in volatile
memory , it will be fetched from the non - volatile memory
and will replace a set of previously cached entries .
[0083] The HostLBA2HDDLBA translation formula
depends on the mapping method used to distribute the host
logical blocks across the rotational drives . For example , if
host data is striped across 4 rotational drives and parity is not
implemented , the formula would look like the following :

HDDLBA = StripeSz * (NumHDD / SDRAMIdx) +
HostLBA % StripeSz .

[0084] The index to the rotational drive can be derived
through the formula :

Clean , and Valid Partially Cached Clean . The seven possible
cache sub - states are : NOP , H2S , S2H , F2S , S2F , HDD2S
and S2HDD .
[0088] A sub - state of NOP (No Operation) indicates that
the cache is idle . H2S indicates that the cache line is locked
clue to an ongoing transfer of data from the host to L1 . S2H
indicates that the cache line is locked clue to an ongoing
transfer of data from L1 to host . F2S indicates that the cache
line is locked clue to an ongoing transfer from L2 to L1 . S2F
indicates that the cache line is locked clue to an ongoing
transfer from L1 to L2 . HDD2S indicates that the cache line
is locked clue to an ongoing transfer from the hard disk to
L1 . Finally , S2HDD indicates the cache line is locked clue
to an ongoing transfer from Ll to the hard disk drive .
[0089] An Invalid cache line does not contain any data or
contains stale data . Initially , all caches are invalid until
filled - up with data during pre - fetching or processing of host
read and write commands . A cache line is invalidated when
a more up - to - date copy of data is written to a lower - level
cache thus making the copy of the data in higher level caches
invalid (15038 , 15040 , 15041 , 15043 , 15046 , 15048 , 15050 ,
15055 , 15057 , 15059 , 15060 , 15062 , 15068 , 15071 , 15072 ,
15074 , 15076 , 15080 , 15084 , 15085 , 15090 , 15095 , 15096 ,
15100 , 15101 , 15103 , 15105 , 15109 , 15115 , 15116 , 15119 ,
15120 , 15124 , 15125 , 15127 , 17049 and 17050) . For
example if a dirty cache line in Ll is copied to L2 so that L1
can be freed up during an L1 cache full condition , and later
new version of that data is written to L1 by host , the copy
in L2 becomes old and unusable , so the firmware invalidates
the cache line in L2 . From an invalid state , a write to an L1
cache line by host will result to switching of state to either
Valid Partially Cached Dirty (15037 , 15039 , 15040 , 15042 ,
15044 , 15045 , 15047 , 15049 and 15050) or Valid Full Dirty
(15036 , 15038 , 15041 , 15043 , 15046 and 15048) , depending
on whether the data spans the entire cache line or not . On the
other hand , a read from the medium to L1 makes an Invalid
cache line either Valid Partially Cached Clean (19036 ,
19038 , 19039 , 19041 and 19043) or Valid Full Clean
(19037 , 19040 and 19044) . Finally , a read from L2 to an
invalid Ll could result to inheritance of L2's state by L1
(17037 , 17038 , 17040 , 17042 and 17044) . However , if the
data from L2 is not enough to fill the entire L1 cache line ,
the resulting state of L1 would either be Valid Partially
Cached Clean (17039) or Valid Partially Cached Dirty
(17041 and 17043) . From an invalid state , a write to an L2
cache line will result to inheritance of state from L1 to L2
(18042 , 18050 , 18056 , 18062 , and 18068) .
[0090] Valid Partially Cached Dirty state indicates that the
cache line is partially filled with data and some or all of these
data are dirty . A dirty copy of data is more up - to - date than
what is stored in the actual medium . An example sequence
that will result to this state is a partial Write FUA command
to an Invalid cache line followed by a partial normal Write
command . The Write FUA command partially fills the Li
cache line with clean data (19036 , 19038 , 19039 , 19041 and
19043) , and the normal Write command makes the partial L1
cache line dirty (15114 , 15117 , 15118 , 15121 , 15127 and
15128) . L1 cache will take on a Valid Partially Cached Dirty
state whenever new data transferred from the host or L2
cache is not enough to fill its entire cache line (15037 ,
15039 , 15040 , 15042 , 15044 , 15045 , 15047 , 15049 , 15050 ,
15053 , 15058 , 15059 , 15066 , 15067 , 15070 , 15075 , 15076 ,
15114 , 15117 , 15118 , 15121 , 15127 , 15128 , 17037 , 17041 ,
17043 , 17047 , 17052 , 17054 and 17075) . Transfer of data

HDDIdx = SDRAMIdx % NumHDD

[0085] In the first equation , StripeSz is specified in terms
of logical block units .
[0086] Cache State Transitions
[0087] The firmware keeps track of data in the L1 and L2
caches using a set of cache states which specifies the validity
and span of data in each cache line . The cache state
information is part of the cache information table in FIG . 10 .
Each cache level has its own cache state , and in addition , the
field cache sub - state specifies whether the cache line is
locked due to an ongoing data transfer between caches ,
between the medium and a cache , or between the host and
a cache . Although the cache states are presented in the table
as one data field , the representation in the actual implemen
tation is not restricted to using a single variable for each
cache state . For example , it may be a collection of flags and
page bitmaps but when treated collectively still equate to
one of the possible distinct states . The page bitmap is the
accurate representation of which parts of the cache line are
valid and which are dirty . As an example , the cache line 601
of FIG . 6 has 32 host LBAs and the state of each LBA
(whether valid , invalid , clean , or dirty) can be tracked by
using two 32 - bit bitmap ValidBitmap and DirtyBitmap .
Each bit in the two variables represents one LBA in the
cache line . For ValidBitmap , a bit set to one means the data
in the corresponding LBA is valid . For DirtyBitmap , a bit set
to one means the data in the corresponding LBA is more up
to date than what is stored in the medium . The six possible
cache states are : Invalid , Valid Partially Cached Dirty , Valid
Fully Cached Partial Dirty , Valid Full Dirty , Valid Full

US 2020/0151098 A1 May 14 , 2020
6

from hard disk drive or from L2 to a Valid Partially Cached
Dirty Ll occurs when the firmware wants to fill - up the
un - cached portions of the Ll cache . When the transfer
completes , the L1 cache either becomes Valid Full Dirty
(17049 and 17051) or Valid Fully Cached Partial Dirty
(17046 , 17050 , 17053 , 19046 , 19048 and 19053) , depending
on whether the entire cache line became dirty or not .
However , for cases wherein data transferred from the hard
disk drive or L2 cache is not enough to fill all un - cached
portion of the L1 cache , its state remains in Valid Partially
Cached Dirty (17047 , 17052 , 17054 , 19045 , 19047 and
19052) . Flushing of dirty bytes from a Valid Partially
Cached Dirty L1 to the medium will either cause its state to
change to Valid Partially Cached Clean (20042 , 20044 ,
20046 , 20049 , 20051 and 20053) or stay in Valid Partially
Cached Dirty (20043 , 20045 , 20047 , 20050 and 20054)
depending on whether all dirty bytes were flushed to the
medium or just a portion of it . A host write to a Valid
Partially Cached Dirty Li , either makes it Valid Full Dirty ,
Valid Fully Cached Partial Dirty , or leave it as Valid Partially
Cached Dirty , depending on the span of data written by the
host . If the new data covers the entire cache , it naturally
becomes Valid Full Dirty (15051 , 15055 , 15062 , 15068 , and
15071) . If the new data fills all un - cached bytes and all clean
bytes , Ll still becomes Valid Full Dirty (15052 , 15056 ,
15057 , 15063 , 15065 , 15069 , 15072 and 15074) . If the new
data fills all un - cached bytes but some bytes remained clean ,
L1 becomes Valid Fully Cached Partial Dirty (15054 , 15060 ,
15064 and 15073) . Finally , if the new data does not fill all
un - cached , L1 stays as Valid Partially Cached Dirty (15053 ,
15058 , 15059 , 15066 , 15067 , 15070 , 15075 and 15076) . L2
will switch to Valid Partially Cached Dirty state if a Valid
Partially Cached Dirty L1 is copied to it (18042 , 18043 and
18048) and copied data does not fill the entire cache line of
L2 . Data transfer from the host to Ll could invalidate some
of the data in L2 effectively causing L2's state to switch to
Valid Partially Cached Dirty (15044 , 15047 , 15063 , 15065 ,
15067 , 15069 , 15070 , 15098 and 15110) . L2 will likewise
switch to Valid Partially Cached Dirty if it shares the same
set of data with LI , and some of the dirty bytes in L1 were
flushed to the medium (20079) . When new data is written by
the host to L1 overlaps with the data in L2 , the L2 copy
becomes invalid (15038 , 15040 , 15055 , 15057 , 15059 ,
15060 , 15090 , 15105 , 15115 and 15116) or Valid Partially
Cached Clean (15092 and 15118) , otherwise it will stay in
its Valid Partially Cached Dirty state (15039 , 15056 , 15058 ,
15091 , 15093 , 15106 and 15117) . A transfer from L1 to L2
could also change L2's state from Valid Partially Cached
Dirty to Valid Full Dirty (18044 and 18063) or Valid Fully
Cached Partial Dirty (18057 , 18069 and 18070) , depending
on whether the entire cache line became dirty or not as a
result of the data transfer . If the dirty bytes in L1 is flushed
to the medium incidentally coincides with the dirty bytes in
L2 , the L2 copy becomes Valid Partially Cached Clean
(20044 , 20062 , 20072 and 20073 .
[0091] A Valid Full Clean state indicates that the entire
cache line is filled with data that is identical to what is stored
in the actual medium . This happens when un - cached data is
read from the medium to L1 (19037 , 19040 , 19044 , 19073 ,
19076 and 19080) , or when data in L1 is flushed to the
medium (20049 , 20060 , 20062 , 20065 , 20068 , 20070 ,
20072 and 20077) . A data transfer from L1 could also result
to a Valid Full Clean state for L2 if data copied to L2
matches what is stored in the hard disk (18050 and 18075) .

Likewise , L1 will switch to a Valid Full Clean state (17038 ,
17076 and 17080) following a transfer from L2 , if cached
data in L2 matches what is stored in the hard disk and
transferred data from L2 is enough to fill the entire L1 cache
line . When written with new data , a Valid Full Clean either
becomes Valid Full Dirty (15077 , 15080 , and 15084) or
Valid Fully Cached Partial Dirty (15078 , 15081 , 15085 and
15086) , depending on whether the new data spans the entire
cache line or not . A Valid Full Clean L2 could become Valid
Partially Cached Clean (15042 , 15081 and 15121) or could
be invalidated (15041 , 15080 , 15119 and 15120) depending
on whether new data written to LI by the host invalidates a
portion or the entire content of L2 .
[0092] The Valid Fully Cached Partial Dirty state indicates
that the entire cache line is filled up with data and some of
the data are dirty . An example sequence that will result to
such state is a Read FUA command of the entire cache line
followed by a partial Write command . The Read FUA
command copies the data from the medium to L1 , making
L1 Valid Full Clean (19037 , 19040 , 19044 , 19054 , 19056 ,
19059 , 19073 , 19076 and 19080) , and the following partial
Write command makes some of the data in the cache line
dirty (15078 , 15081 , 15085 and 15086) . Writing data to
un - cached portions of a partially filled LI could likewise
result to a Valid Fully Cached Partial Dirty state (15054 ,
15060 , 15064 , 15073 , 15113 , 15116 , 15120 , 15125 , 15126 ,
17046 , 17050 , 17053 , 17074 , 19046 , 19048 and 19053) .
Writing this LI cache line to L2 in turn , makes L2 inherit the
state of LI as Valid Fully Cached Partial Dirty (18056 , 18057
and 18061) . Similarly , copying a Valid Fully Cached Partial
Dirty L2 to Ll will make L1 inherit the state of L2 (17040
and 17050) . Transferring data from L1 to un - filled portions
of L2 would likewise cause L2's state to switch to Valid
Fully Cached Partial Dirty (18049 , 18069 and 18070) . A
Valid Fully Cached Partial Dirty L1 will remain in this state
until a portion of the dirty bytes in L1 were flushed to the
medium after which it would shift to a Valid Full Clean state
(20061 , 20063 , 20066 and 20069) . Furthermore , when the
host writes new data to the L1 cache , L1 either stays as Valid
Fully Cached Partial Dirty (15089 , 15092 , 15097 , 15098 ,
15102 and 15103) or becomes Valid Full Dirty (15087 ,
15088 , 15090 , 15091 , 15093 , 15095 , 15096 , 15100 and
15101) . A Valid Fully Cached Partial Dirty L2 cache , on the
other hand , either gets invalidated (15043 , 15062 , 15095 and
15096) , switches to Valid Partially Cached Dirty state
(15044 , 15063 , 15065 , 15067 and 15098) or changes state to
Valid Partially Cached Clean (15045 , 15064 , 15066 and
15097) following a transfer from the host to L1 . Copying
data from a Valid Fully Cached Partial Dirty L2 to L1 would
likewise invalidate the contents of L2 (17049 and 17050) .
Flushing all cached dirty bytes from L1 will cause L2's state
to change from Valid Fully Cached Partial Dirty to Valid Full
Clean (20049 and 20065) , otherwise , L2 stays in Valid Fully
Cached Partial Dirty state (20050 , 20051 and 20067) .
[0093] The Valid Full Dirty state indicates that the entire
cache line contains newer data than what is stored in the
medium . L1 may become Valid Full Dirty from any state
(i.e. Invalid : 15036 , 15038 , 15041 , 15043 , 15046 and 15048 ;
VPCD : 15051 , 15052 , 15055 , 15056 , 15057 , 15062 , 15063 ,
15065 , 15068 , 15069 , 15071 , 15072 and 15074 ; VFCPD :
15087 , 15088 , 15090 , 15091 , 15093 , 15095 , 15096 , 15100
and 15101 ; VFD : 15104 , 15105 , 15106 , 15109 and 15110 ;
VFC : 15077 , 15080 and 15084 ; VPCC : 15112 , 15115 , 15119
and 15124) once the host writes enough data to it to make

US 2020/0151098 A1 May 14 , 2020
7

all its data dirty . Aside from this , a Valid Full Dirty L1 may
also be a result of a previously empty or Valid Partially
Cached Dirty L1 that has been filled up with dirty bytes from
L2 (17042 , 17049 and 17051) . A Valid Full Dirty L1 will
stay at this state until flushed out to the medium , after which
it will become Valid Full Clean (20071 , 20073 and 20078)
or Valid Fully Cached Partial Dirty (20072 , 20074 , 20075
and 20079) . A Valid Full Dirty L2 is a result of data transfer
from a Valid Full Dirty L1 to L2 (18062 and 18063) or when
new data copied from L1 is enough to fill all portions of L2
(18044) . L2 will stay at this state until the host writes new
data to Ll which effectively invalidates portions or the entire
data in L2 . If only a portion of cached data in L2 is
invalidated a Valid Full Dirty L2 switches to Valid Partially
Cached Dirty state (15047 , 15069 , 15070 and 15110) , oth
erwise it switches to Invalid state (15046 , 15068 and 15109) .
The state of L2 could also change from Valid Full Dirty to
Valid Partially Cached Dirty (20079) or Valid Full Clean
(20078) depending on whether all or just a portion of the
dirty bytes in Ll was flushed to the medium .
[0094] The Valid Partially Cached Clean state indicates
that the cache is partially filled with purely clean data . For
Li , this may be a result of a partial Write FUA (20081 ,
20082 , 20083 and 20086) , or partial Read FUA command
(19036 , 19038 , 19039 , 19041 , 19043 , 19072 , 19074 , 19075
and 19079) , or flushing of a partially cached dirty L1 to the
hard disk drive (20042 , 20044 , 20046 , 20049 , 20051 and
20053) or data transferred from L2 to L1 cache did not fill
entire Ll cache line (17039 , 17044 , 17077 and 17081) . A
Valid Partially Cached Clean will transition to Valid Full
Clean if remaining un - cached data are read from the medium
(19073 , 19076 and 19080) or from L2 (17076 and 17080) to
L1 . When host writes to a Valid Partially Cached Clean Li ,
the L1 state will transition to Valid Full Dirty , Valid Fully
Cached Partial Dirty , or Valid Partially Cached Dirty . If the
written data covers the entire cache line , the L1 becomes
Valid Full Dirty (15112 , 15115 , 15119 and 15124) . If the
new data does not cover the entire cache line , L1 becomes
Valid Partially Cached Dirty (15114 , 15117 , 15118 , 15121 ,
15127 and 15128) . If the new data does not cover the entire
cache line but was able to fill all un - cached data , L1 becomes
Valid Fully Cached Partial Dirty (15113 , 15116 , 15120 ,
15125 and 15126) . When data from L2 is copied to a Valid
Partially Cached Clean L1 , it could likewise transition to
Valid Partially Cached Dirty state (17075) , Valid Fully
Cached Partial Dirty (17074) , Valid Full Clean (17076 and
17080) , or Valid Partially Cached Clean (17077 and 17081) .
A Valid Partially Cached Clean L2 is the result of a Valid
Partially Cached Clean L1 being written to L2 (18068 and
18074) , or a Valid Partially Cached Dirty L1 being flushed
out to the medium (20044 , 20053 and 20054) . A Valid
Partially Cached Clean L2 could likewise result from a host
to L1 transfer whenever some of the data in L2 gets
invalidated (15042 , 15045 , 15064 , 15066 , 15081 , 15092 ,
15097 , 15118 and 15121) . When host writes to L1 , the entire
contents of a Valid Partially Cached Clean L2 would be
invalidated if the data transferred by the host overlaps with
the contents of L2 (15038 , 15040 , 15055 , 15057 , 15059 ,
15060 , 15090 , 15085 , 15105 , 15115 and 15116) otherwise it
stays in Valid Partially Cached Clean state (15092 and
15118) . Transferring new data bytes from L1 will cause a
transition of L2's state from Valid Partially Cached Clean to
Valid Partially Cached Dirty state (18048) or Valid Fully
Cached Partial Dirty state (18049 and 18061) depending on

whether copied data from L1 fills the entire L2 cache line or
not . A Valid Partially Cached Clean L2 could also transition
to Valid Full Clean (18075) if data transferred from L1 fills
empty cache bytes of L2 , otherwise , L2 stays in Valid
Partially Cached Clean state (18074) .
[0095] FIGS . 15A , 15B 15C1 , 15C2 , and 15B , FIGS . 16A
and 16B , FIGS . 17A and 17B , FIGS . 18A and 18B , FIGS .
19A and 19B and FIGS . 20A and 20B show the complete
tables showing the state transitions that occur in a hybrid
storage system with two levels of cache . For systems with
more than two cache levels , the additional table entries can
easily be derived using the same concepts used in the
existing table .
[0096] Read Command
[0097] The succeeding paragraphs discuss in details , the
processing of a Read command by a hybrid storage device
as described by the flow chart illustrated in FIG . 11A . The
process performs different types of cache operations which
make use of different cache transition tables . The cache
transition tables used are also discussed .
[0098] When the firmware receives a Read command from
the host , it derives the cache control block index (SDRAM
Index) based on the host LBA . Then it checks the designated
cache control block if the requested LBA is in L1 cache .
[0099] If L1 cache is valid and the associated cache
control block entry is for the requested block , firmware starts
data transfer from L1 cache to host and updates cache
sub - status to S2H (SDRAM to host) . Note that there are 5
defined valid cache states (valid full clean (VFC) , valid full
dirty (VFD) , valid partially cached clean (VPCC) , valid
partially cached dirty (VPCD) , and valid fully cached partial
dirty (VFCPD)) , and before firmware can initiate Ll cache
to host data transfer and update the cache sub - state to S2H ,
it must check first if there is an ongoing locked cache
operation . Should there be any ongoing locked cache opera
tion , the firmware will wait until the operation is finished (or
current cache sub - state becomes NOP) before initiating the
data transfer from L1 cache to host . FIGS . 16A and 16B lists
the 5 defined valid states for L1 cache (and other states) and
the combination with L2 cache state and cache sub - state
values for allowable and non - allowable data transfer from
L1 cache to host . As an example , assuming the requested
data being targeted by the received Read command from the
host is LBA 0-99 and is determined to be in L1 cache based
on the cache line information table . Based on FIGS . 16A and
16B , firmware may execute read from L1 cache to host
provided that current cache sub - state is NOP . Note also that
S2H operation can be initiated regardless of the valid current
state of L2 cache since content of the L1 cache is always the
latest or most updated copy .
[0100] If L1 cache is valid but a different entry is stored in
the associated cache control block (for the case of directly
mapped cache) , the firmware initiates the freeing of that
cache . If that cache is clean , it can be freed instantly without
any flush operation . But if the cache is dirty , firmware gets
the associated flash physical location of data from cache
control info and initiates copying of data to L2 cache after
determining that there is enough space for the L1 cache
content to be flushed , which is faster than flushing to
rotational drive . Then it updates sub - status to sdram2flush
(S2F) . Refer to “ movement from L1 cache to L2 cache " for
detailed discussion on this cache operation . FIGS . 18A and
18B lists the cache state transition for L1 cache to L2 cache
data transfer .

US 2020/0151098 A1 May 14 , 2020
8

[0101] However , if L2 cache is full , flushing to rotational
drive will be initiated instead , and sub - status will be set to
S2HDD (SDRAM to hard disk drive) . Flushing of L2 cache
to rotational drives can also be done in the background when
firmware is not busy servicing host commands . After flush
ing of L1 , firmware proceeds with the steps below as if data
is not in L1 cache . Refer to “ flushing of L1 cache ” subsec
tion of this document for a detailed discussion on the
flushing of L2 cache mentioned in the Read operation . FIGS .
20A and 20B lists the cache state transition for L1 cache to
rotational drive data transfer .
[0102] If data is not in L1 cache , firmware checks state of
L2 cache .

[0103] If L2 cache is valid , firmware gets the physical
location of data based on the L2 address field of the cache
control info table and starts transfer from L2 cache to L1
cache , and updates sub - status to F2S (flash to SDRAM) .
FIGS . 17A and 17B lists the current Ll cache state , L2 cache
state , and cache sub - state condition requirements for F2S
operation . Based on the table , F2S operation can be initiated
when current cache sub - state is NOP and current L1 cache
state can be INVLD , VPCD , or VPCC . The same as the
previously mentioned cache operations , F2S can only be
initiated by firmware if there is no ongoing locked cache
operation . If there is no available L1 cache (L1 cache full) ,
firmware selects an L1 cache victim . If the selected victim
is clean , or if it is dirty but consistent with the copy in L2
cache , it is freed instantly . Otherwise , it is flushed to the
rotational drive . The cache is then invalidated and assigned
to the current command being serviced . For example , the
read command is requesting LBA 20-25 which is located in
L2 cache .

[0104] Assuming the configuration is 10 LBAs per Li
cache line or index , the requested LBAs are mapped to L1
index # 2 of the cache control information table . To start the
transfer of the data from L2 cache to L1 cache , firmware
checks L1 cache state if it is not yet full . If not full , firmware
searches for an available L1 address (ex . Ox0000_3000) ,
assigned it to L1 index # 2 , and set the cache sub - state value
from NOP to F2S . However , if current L1 cache is full
(VFC , VFD , or VFCPD) , an L1 address is selected . Assum
ing the selected Li address is 0x0001_0000 , firmware
checks from the L1 segment bitmap if the content of this
address is clean or dirty . If clean , then the address is
invalidated . If dirty , firmware flushes to the rotational drive
if needed , before invalidating the selected L1 address . Once
invalidated , firmware initiates LBA 20-29 transfer from L2
cache to L1 cache address Ox0001_0000 once the current
cache sub - state is NOP . After completing the data transfer ,
firmware updates the L1 cache state and sets cache sub - state
back to NOP .

[0105] If L2 cache is invalid , the firmware determines
physical location of data in rotational drives , starts transfer
of data from rotational drive to L1 cache , and updates
sub - status to HDD2S (hard disk drive to SDRAM) . For
example , LBA 100-199 is being requested by a received
Read command from the host , and based on the cache
control information table , this LBA range is not in the cache
(L1 and L2) . After determining , the physical location in the
hard disk using the HostLBA2HDDLBA translation for
mula , firmware selects a free Ll cache address and initiates
the data transfer from the hard disk to the selected L1 cache
address when no L1 cache operation is happening .

[0106] Note that HDD2S cache operation can also be
initiated for other values of L2 cache state . FIG . 19 lists L1
cache state , L2 cache state , and cache sub - state current
values , the allowable event for each cache combinations ,
and the resulting states per event . Based on the figure ,
HDD2S can be initiated when (1) current L1 or L2 cache
states is not full dirty , (2) current Ll cache state is VPCD and
current L2 cache state is valid full , (3) current L1 cache state
is VFC and current L2 cache state is dirty , (4) current L1
cache state is VFCPD and current L2 cache state is VFD , (5)
current L1 cache state is VPCC and current L2 cache state
is VFCPD or VFP , and (6) there's no ongoing cache opera
tion . The case when current L1 cache state is VFC and
VFCPD , and HDD2S is initiated , is applicable only when
the received command is Read FUA where clean data is read
directly from the hard disk regardless if there's a cache hit
or not . Note also that if L1 cache is full , flushing of L1 cache
is done before fetching from HDD can occur .
[0107] Upon completion of S2H , firmware clears cache
sub - status (NOP) , sends command status to host , and com
pletes command . FIGS . 16A and 16B also lists the cache
state transitions when completing the data transfer from L1
cache to host . The figure details the corresponding next L1
and L2 cache states based on their current states after
finishing the data transfer . Based on the figure , L1 cache and
L2 cache states are retained even after the host completed
reading from L1 cache (16042 , 16403 , 16045-16048 , 16050 ,
16053-16055 , 16057 , 16059-16061 , 16064 , 16066-16068 ,
and 16071) . However , cache sub - state transitions to NOP
after the operation .
[0108] Upon completion of F2S , firmware updates cache
control block (L1 cache is now valid) and starts transfer
from L1 cache to host . Sub - status is marked as S2H . FIGS .
17A and 17B also lists the cache state transitions when
completing the data transfer from L2 cache to Ll cache . The
figure details the corresponding next L1 and L2 cache states
based on their current states after finishing the data transfer .
As illustrated in the figure , cache sub - state always transi
tions to NOP after the operation .
[0109] If current L1 cache state is invalid , its next state is
set depending on the current L2 cache state and the type of
L2 to L1 data transfer . If current L2 cache state is VPCD or
VPCC , the L1 cache state is also set to the L2 cache state
after the operation (17037 and 17044) . If current L2 cache
state is VFC , VFCPD , or VFD , current L1 cache state is set
depending on the 2 type of L2 to L1 data transfer event- (1)
entire L1 cache is filled after transferring the data from L2
cache and (2) L1 cache is not filled after the data transfer . If
(1) , L1 cache is set to the L2 cache state (17038 , 17040 , and
17042) . If (2) , L1 cache state is set to VPCC if current L2
cache state is VFC (17039) , set to VPCD if current L2 cache
state is VFCPD (17041) , or set to VPCD is current L2 cache
state is VFD (17043) .
[0110] If current L1 cache state is VPCD , its next state is
set depending on the current L2 cache state . If current L2
cache state is also VPCD , L1 cache state is set based on the
2 events described on the previous paragraph . If (1) , L1
cache state is set to VFCPD (17046) . If (2) , L1 cache state
is set to VPCD (17047) . If current L2 cache state is VFCPD ,
L1 cache state is set based on another 2 L2 to L1 data
transfer events— (1) all un - cached bytes in L1 are dirty in L2
and (2) not all un - cached bytes in L1 are dirty in L2 . (1) , L1
cache state is set to VFD (17049) . If (2) , L1 cache state is
set to VFCPD (17050) . For the 2 cases , L2 cache state is set

US 2020/0151098 A1 May 14 , 2020
9

to INVLD after F2S operation . If current L2 cache state is
VFD , LI cache is set based on the former 2 events— (1)
entire L2 cache is filled after the operation and (2) L1 cache
is not filled after the operation . If (1) , L1 cache state is set
to VFD (17051) . If (2) , LI cache state is set to VPCD
(17052) . If current L2 cache state is VPCC , L1 cache state
is set based also on the 2 previous events . If (1) , L1 cache
state is set to VFCPD (17053) . If (2) , L1 cache state is set
to VPCD (17054) .
[0111] If current L1 cache state is VPCC , its next state is
set to VFCPD or VFC if current L2 cache state is VPCD or
valid clean , respectively (17074 or 17076/17080) for the
case when the entire L1 cache is filled after the data transfer .
L1 cache state is set to VPCD or VPCC if current L1 cache
state is VPCD or valid clean (17075 or 17077/17081) for the
case the entire L1 cache is not filled after the data transfer .
[0112] Upon completion of HDD2S , firmware updates
cache control block (L1 cache is now valid) and starts
transfer from L1 cache to host . FIGS . 19A and 19B also lists
the cache state transitions when completing the data transfer
from rotational disks to Ll cache . The figure - details the
corresponding next L1 and L2 cache states based on their
current states after finishing the data transfer . Cache sub
state always transitions to NOP after the operation . Note that
although L2 cache state is not affected since the operation
only involves the L1 cache and the rotational drive , its
current state affects the Ll cache succeeding cache state as
listed in the figures .
[0113] If current L1 cache state is INVLD , its next state is
set depending on the current Ll cache state . If current L2
cache state is INVLD , VFC , or VPCC , L1 cache state is set
based on 2 events (1) data from the hard drive did not fill
the entire cache and (2) data from the hard drive filled the
entire cache . If (1) , L1 cache state is set to VPCC (19036 ,
19039 , and 19043) . If (2) , L1 cache state is set to VFC
(19037 , 19040 , and 19044) . If current L2 cache state is
VPCD , L1 cache state is set to VPCC (19038) . If current L2
cache state is VFCPD , L1 cache state is set to VPCC
(19041) .
[0114] If current Ll cache state is VPCD and current L2
cache state is INVLD , VPCD , or VPCC , the L1 cache state
is set based also on the 2 events discussed on the previous
paragraph . If (1) , L1 cache state is set to VPCD (19045 ,
19047 , and 19052) . If (2) , L1 cache state is set to VFCPD
(19046 , 19048 , and 19053) .
[0115] If current L1 cache state is VFC or VFCPD , the
state is retained after the operation (19054 , 19056 , 19059
19063 , and 19065) .
[0116] If current Ll cache state is VPCC its next state is
set depending on the current Ll cache state . If current L2
cache state is INVLD , VFC , or VPCC , the L1 cache state is
set based also on the 2 events discussed on a previous
paragraph . If (1) , L1 cache state is set to VPCC (19072 ,
19075 , and 19079) . If (2) , L1 cache state is set to VFC
(19073 , 19076 , and 19080) . If current L2 cache state is
VPCD , L1 cache state is set to retained (19074) .
[0117] In the background , when interface is not busy ,
firmware initiates copying if L1 cache to L2 cache , flushing
of L1 cache to rotational drives , and flushing of L2 cache to
rotational drives .
[0118] Note that when the received command is Read
FUA , the data is fetched from the rotational drive regardless
if there is a cache hit or not . If there is , however , a cache hit

for the Read FUA command and the cache is dirty , the cache
is flushed to the rotational drive before the data is fetched .
[0119] Write Command
[0120] When firmware receives a Write command from
the host , it derives the cache control block index (SDRAM
Index) based on the host LBA . Then it checks the designated
cache control block if requested LBA is in L1 cache .
[0121] If L1 cache state is invalid (INVLD) and there is no
ongoing locked operation (NOP) , firmware start transfer
from host to L1 cache and updates cache sub - status to H2S .
After completion of host2sdram transfer , firmware updates
cache sub - status to NOP . If the write data uses all of the
cache line space , L1 cache state becomes VFD (e.g. 15036) ,
otherwise L1 cache state becomes VPCD (e.g. 15037) . For
the case when write data uses all of the L1 cache line space ,
the copy in L2 cache becomes INVLD (e.g. 15038) .
[0122] If L1 cache state is valid (VPCD , VFC , VFCPD ,
VFD , VPCC) , there is no ongoing locked operation (NOP) ,
and the associated cache contains the correct set of data ,
firmware start transfer from host to L1 cache and updates
cache sub - status to host2sdram . After completion of
host2sdram transfer , firmware updates cache sub - status to
NOP .
[0123] If L1 previous cache state is VPCD , there are 4
options : (1) if write data uses all of the cache line space , L1
cache state becomes VFD (e.g. 15055) . (2) If write data is
less than the cache line space , there's no more free cache line
space , and there's no more clean cache area , L1 cache state
becomes VFD (e.g. 15057) . (3) If write data is less than the
cache line space and there's still some free cache line space ,
L1 cache state becomes VPCD (e.g. 15058) . (4) If write data
is less than the cache line space , there's no more free cache
line space , and there's still some clean cache area , L1 cache
state becomes VFCPD (e.g. 15060) .
[0124] If L1 previous cache state is VFC , there are 2
options : (1) if write data uses all of the cache line space , L1
cache state becomes VFD (e.g. 15080) , (2) if write data is
less than the cache line space , Ll cache state becomes
VFCPD (e.g. 15081) , since not all the cache data were over
written .
[0125] If L1 previous cache state is VFCPD , there are 3
options : (1) If write data uses all of the cache line space , L1
cache state becomes VFD (e.g. 15087) . (2) If write data is
less than the cache line space and there's no more clean
cache line space , L1 cache state becomes VFD (e.g. 15088) .
(3) If write data is less than the cache line space , and there's
still some clean cache area , L1 cache state becomes VFCPD
(e.g. 15089) .
[0126] If L1 previous cache state is VFD , there is only 1
option : (1) L1 cache state remains at VFD no matter what the
write data size is (e.g. 15105) .
[0127] If L1 previous cache state is VPCC , there are 3
options : (1) if write data uses all of the cache line space , L1
cache state becomes VFD (e.g. 15115) , (2) If write data is
less than the cache line space and there's still some free
cache line space , L1 cache state becomes VPCD (e.g.
15117) . (3) If write data is less than the cache line space ,
there's no more free cache line space , and there's still some
clean cache area , L1 cache state becomes VFCPD (e.g.
15116) .
[0128] If L1 cache state is valid but the associated cache
block does not contain the correct set of data (for the case of
a directly - mapped cache) , the firmware initiates freeing of
that cache block . If that cache is clean , it can be freed

US 2020/0151098 A1 May 14 , 2020
10

instantly without any flush operation . But if the cache is
dirty , firmware gets the associated flash physical location of
data from LBA2FlashPBA table and initiates copying of
data to L2 cache , which is faster than flushing to rotational
drive . Then it updates sub - status to sdram2flash . However ,
if L2 cache is full , flushing to rotational drive will be
initiated instead , and sub - status will be set to sdram2hdd .
Flushing of L2 cache to rotational drives can be done in the
background when firmware is not busy servicing host com
mands . After flushing of L1 , firmware proceeds with the
steps below as if data is not in Ll cache .
[0129] If data is not in L1 cache , firmware requests for
available L1 cache . If there is no available L1 cache (L1
cache full) , firmware selects an L1 cache victim . If the
selected victim is clean , or if it is dirty but consistent with
the copy in L2 cache , it is freed instantly . Otherwise , it is
flushed to the rotational drive . The cache is invalidated
(INVLD) and then assigned to the current command being
serviced . Processing of the firmware continues as if the L1
cache state is INVLD (see discussion above) .
[0130] After the Ll cache state is updated due to a
host - write (H2S) , L2 cache state is also updated . For the case
when write data occupies only a part of the L1 cache line
space and the write data did not cover all the copy in L2
cache , the copy in L2 cache becomes partially valid (VPCC ,
VPCD) , since some parts of the L2 cache copy is invalidated
(whether partially or fully dirty previously) (e.g. 15039) . For
the case when write data occupies only a part of the L1 cache
line space and the write data covered all the copy in L2
cache , the copy in L2 cache becomes INVLD (e.g. 15038) .
[0131] Upon completion of host2sdram (H2S) , firmware
sends command status to host and completes the command .
But if the write command is of the write FUA (first unit
access) type , host2sdram (H2S) and sdram2hdd (S2HDD) is
done first before the command completion status is sent to
the host . Once all L1 cache data is written to the HDD , L1
cache state becomes clean (VFC , VPCC) (e.g. 20060 ,
20042) .
[0132] In the background , when interface is not busy ,
firmware initiates flushing of L1 cache to L2 cache , L2
cache to rotational drives , and L1 cache to rotational drives .
[0133] Flushing Algorithm
[0134] For a full - associative cache implementing a write
back policy , flushing is usually done when there is new data
to be placed in cache , but the cache is full and the selected
victim data to be evicted from the cache is still dirty .
Flushing will clean the dirty cache and allow it to be
replaced with new data .
[0135] Flushing increases access latency due to the
required data transfer from L1 volatile cache to the much
slower rotational drive . The addition of L2 nonvolatile cache
allows faster transfers from L1 to L2 cache when the Li
cache is full , effectively postponing the flushing operation
and allowing it to be more optimized .
[0136] To reduce latency and enhance the cache perfor
mance , flushing can be done as a background operation . The
LRU and LFU are the usual algorithms used to identify the
victim data candidates , but the addition of a Fastest - to - Flush
algorithm takes advantage of the random access perfor
mance of the L2 cache . It optimizes the flushing operation
by selecting dirty victim data that can be written concur
rently to the L2 cache , and thus minimizing access time . The
overhead brought about by flushing of cache can then be
reduced by running concurrent flush operations whenever

possible . Depending on processor availability , flushing may
be scheduled regularly or during idle times when there are
no data transfers between the hybrid storage system and the
host or external device .
[0137] Flushing of LI Cache
[0138] Flushing of L2 cache will occur only if copy of data
in L1 cache is more updated than the copy in the rotational
drive . This may occur , for example , when a non FUA write
command hits the L1 cache .
[0139] Flushing of LI cache is triggered by the following
conditions :
[0140] 1. Eviction caused by shared cache lineIn set
associative or directly - mapped caching mode , if the cache or
cache set assigned to a specific address is valid but contains
another data , that old data must be evicted to give way to the
new data that needs to be cached . If the old data is clean , the
cache is simply overwritten . If the old data is dirty , the cache
is flushed first before writing the new data .
[0141] 2. L1 cache is full — If an IO command being
processed could not request for a cache due to a cache - full
condition , a victim must be selected to give way to the
current command . If the victim data is clean , the cache is
simply overwritten . If the victim data is dirty , the cache is
flushed first before writing the new data .
[0142] In either (1) or (2) , the victim data will be moved
to either L2 cache or rotational drive . Ideally in this case ,
firmware will move L1 cache data to L2 cache first , since
movement to L2 cache is faster . Refer to " Movement from
L1 Cache to L2 Cache ” for a detailed discussion . In case the
L2 Cache is full , firmware will have to move L1 cache data
to the rotational drive .
[0143] 3. Interface is not busy - Flushing may also be
done in the background when drive is not busy servicing
host commands . L1 cache is flushed directly to the rotational
drive first , then if number of available L1 caches has reached
a pre - defined threshold , data is also copied to L2 cache , in
anticipation for more flushing due to L1 cache full condition .
Refer to " Movement from L1 Cache to L2 Cache " for a
detailed discussion .
[0144] When moving data from L1 cache to rotational
drive , the firmware takes advantage of concurrent drive
operations by selecting cache lines that can be flushed in
parallel among the least recently used candidates . The
firmware also takes into consideration the resulting access
type to the destination drives . The firmware queues the
request according to the values of the destination addresses
such that the resulting access is a sequential type .
[0145] Before firmware can initiate the flushing operation
from L1 cache to rotational drive , it must check first if there
is an ongoing locked cache operation . If there is an ongoing
locked cache operation , the firmware will have to wait until
the operation is finished before initiating the data transfer .
When the current cache sub - state finally becomes NOP , it
will be changed back to S2HDD and the L1 cache flushing
will start . This change in cache sub - state indicates a new
locked cache operation . After the L1 cache is flushed , cache
sub - state goes back to NOP to indicate that the cache is
ready for another operation .
[0146] FIGS . 20A and 20B lists the valid combinations of
L1 and L2 cache states and cache sub - state values that will
allow data transfers from L1 cache to rotational drive . It also
shows the resulting cache states and cache sub - state values
when an Ll cache to rotational drive data transfer is initi
ated , and when it is completed . The L1 cache to rotational

US 2020/0151098 A1 May 14 , 2020
11

drive data transfer may be initiated by an Ll cache flushing
operation or write FUA operation . The succeeding discus
sion will focus on the L1 cache flushing operation .
[0147] The L1 cache flushing operation may be initiated
only for valid but dirty L1 cache states either VPCD (rows
2006 , 2007 , 2009 , 20011) , VFCPD (rows 20018 , 20019 ,
20021 , 20023) or VFD (rows 20024 , 20025 , 20028) . Upon
completion of the flushing operation , the Ll cache is
declared clean . If the flushing operation was not completed ,
the cache page bitmap is updated to reflect the dirty bytes
that were cleaned . The L2 cache state and cache page bitmap
are also updated accordingly .
[0148] In the first case 2006 L1 cache state is VPCD and
L2 cache state is INVLD . An example case is when the
partially cached data in L1 was updated by a write operation
and is now inconsistent with the data in the rotational drive ,
but there is no copy yet in the L2 cache . If all the dirty data
are flushed 20042 , L1 cache state is changed to VPCC to
indicate that the partially cached data is now consistent with
data in the rotational drive . However if not all dirty bytes
were flushed 20043 , L1 cache state stays at VPCD , with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned . L2 cache state stays INVLD .
[0149] In the second case 2007 both L1 and L2 cache state
is VPCD . An example case is when the partially cached dirty
data in L1 was initially evicted to L2 , then a cache miss
happens and data is partially cached in L1 . L1 was then
updated by a write operation . This will also occur when the
partially cached dirty data in Ll was initially evicted to L2 ,
then an L2 cache hit occurs and L2 data is copied back to L1 .
L1 and L2 can have the same data , but they can also have
different data if the L1 cache is subsequently updated by a
write operation . If L1 and L2 have the same data and all the
dirty data are flushed 20044 , both L1 and L2 cache states are
changed to VPCC to indicate that the partially cached data
is now consistent with data in the rotational drive . If L1 and
L2 have the same data but not all dirty bytes in L1 were
flushed 20045 , L1 and L2 cache state stays at VPCD , with
the cache page bitmap updated to reflect which pages were
cleaned . If L1 and L2 have different data and all the dirty
data are flushed 20046 , L1 cache state is changed to VPCC
to indicate that the partially cached data is now consistent
with data in the rotational drive . Since L2 cache contains
different data , L2 cache state stays at VPCD . If L1 and L2
have different data and not all dirty bytes were flushed
20047 , L1 cache state stays at VPCD but the cache page
bitmap is updated to reflect which dirty bytes were cleaned .
Since L2 cache contains different data , L2 cache state stays
at VPCD .
[0150] In the third case 2009 , L1 cache state is VPCD and
L2 cache state is VFCPD . An example case is when the fully
cached dirty data in L1 was initially evicted to L2 , then an
L2 cache hit occurs and some L2 cache data is copied back
to LI . LI dirty data can initially be the same as L2 dirty data ,
but they can have different dirty data if the L1 cache is
subsequently updated by a write operation . If all the dirty
data in L1 and L2 are flushed 20049 , L1 cache state is
changed to VPCC and L2 cache state is changed to VFC to
indicate that cached data in both locations are now consis
tent with data in the rotational drive . If not all dirty bytes in
L1 were flushed 20050 , L1 cache state stays at VPCD and
L2 cache state stays at VFCPD with the cache page bitmap
updated to reflect which dirty bytes were cleaned . If all dirty
bytes in L1 were flushed but does not cover all the dirty

bytes in L2 20051 , only the L1 cache state is changed to
VPCC . L2 cache state stays at VFCPD with cache page
bitmap updated to reflect which dirty bytes were cleaned .
[0151] In the fourth case 20011 , L2 cache state is VPCD
and L2 cache state is VPCC . An example case is when clean ,
partially cached data in L1 was initially evicted to L2 , then
an L2 cache hit occurs , L2 cache data is copied back to L1
and a subsequent write operation updated the data in L1
cache . This will also occur when a cache miss occurs , data
is partially cached in L1 , and a subsequent write operation
updated the data in L1 cache . If all the dirty data are flushed
20053 , L1 cache state is changed to VPCC to indicate that
the partially cached data is now consistent with data in the
rotational drive . However if not all dirty bytes were flushed
20054 , L1 cache state stays at VPCD with the cache page
bitmap updated to reflect which dirty bytes were cleaned . In
both cases , L2 cache state stays at VPCC since it is not
affected by the Ll cache flushing operation .
[0152] In the fifth case 20018 , L1 cache state is VFCPD
and L2 cache state is INVLD . An example case is when fully
cached data in Ll is updated by a write operation and is now
inconsistent with data in the rotational drive , but there is no
copy yet in the L2 cache . If all the dirty data are flushed
20061 , L1 cache state is changed to VFC to indicate that the
fully cached data is now consistent with data in the rotational
drive . If not all dirty bytes were flushed 20062 , L1 cache
state stays at VFCPD with the cache page bitmap updated to
reflect which dirty bytes were cleaned . L2 cache state stays
INVLD .
[0153] In the sixth case 20019 , L1 cache state is VFCPD
and L2 cache state is VPCD . An example case is when
partially cached dirty data in L1 was initially evicted to L2 ,
then an L2 cache hit occurs , L2 cache data is copied back to
L1 , and another read operation completes the cache line . A
subsequent write operation may also add more dirty bytes in
L1 . If all dirty bytes in L1 and L2 were flushed 20063 , L1
cache state is changed to VFC and L2 cache state is changed
to VPCC to indicate that the fully cached data is now
consistent with the data in the rotational drive . If all dirty
bytes in L1 were flushed but does not cover all dirty bytes
in L2 20064 , L1 cache state is changed to VFC but L2 cache
state stays at VPCD with the cache page bitmap updated to
reflect which dirty bytes were cleaned . If not all dirty bytes
were flushed 20065 , L1 cache state stays at VFCPD and L2
cache state stays at VPCD with the cache page bitmap
updated to reflect which dirty bytes were cleaned .
[0154] In the seventh case 20021 , both L1 and L2 cache
state is VFCPD . An example case is when fully cached
partially dirty data in L1 was initially evicted to L2 , and then
an L2 cache hit occurs , L2 cache data is copied back to L1 .
If all the dirty data are flushed 20066 , both L1 and L2 cache
states are changed to VFC to indicate that the fully cached
data is now consistent with the data in the rotational drive .
If not all dirty bytes were flushed 20066 , L1 and L2 cache
state becomes VPCD , with the cache page bitmap updated to
reflect the dirty bytes that were cleaned .
[0155] In the eighth case 20023 , L1 cache state is VFCPD
and L2 cache state is VPCC . An example case is when clean
partially cached was initially evicted to L2 , then a read
operation completed the Ll cache , and a subsequent write
operation made the L1 cache partially dirty . If all the dirty
data are flushed 20069 , the L1 cache state becomes VFC to
indicate that the fully cached data is now consistent with the
data in the rotational drive . If not all the dirty data are

US 2020/0151098 A1 May 14 , 2020
12

flushed 20070 , L1 cache state becomes VPCD , with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned . L2 cache state stays at VPCC .
[0156] In the ninth case 20024 , L1 cache state is VFD and
L2 cache state is INVLD . An example case is when the fully
cached data in L1 becomes fully inconsistent with the
rotational drive due to a write operation , but there is no copy
yet in the L2 cache . If all the dirty data are flushed 20071 ,
the L1 cache state becomes VFC to indicate that the fully
cached data is now consistent with the data in the rotational
drive . If not all the dirty data are flushed 20072 , L1 cache
state becomes VPCD , with the cache page bitmap updated to
reflect the dirty bytes that were cleaned . Since L2 is not
involved in the flushing operation , L2 cache state stays
INVLD .
[0157] In the tenth case 20025 , L1 cache state is VFD and
L2 cache state is VPCD . An example case is when partially
cached dirty data was initially evicted to L2 , and a subse
quent write operation made the L1 cache completely dirty .
If all the dirty data are flushed 20073 , the L1 cache state
becomes VFC to and the L2 cache state becomes VPCC to
indicate that cached data is now consistent with the data in
the rotational drive . If not all the dirty cache data were
flushed 20074 20075 , L1 cache state becomes VPCD , with
the cache page bitmap updated to reflect the dirty bytes that
were cleaned . If the L1 flushing operation did not cover all
L2 dirty data 20075 , L2 cache state stays at VPCD , with the
cache page bitmap updated to reflect the dirty bytes that
were cleaned . Otherwise if the L1 flushing operation cov
ered all L2 dirty data 20074 , L2 cache state becomes VPCC .
[0158] In the eleventh case 20028 , both Ll cache state is
VFD . An example case is when full dirty data was initially
evicted to L2 , and then an L2 cache hit occurs , L2 cache data
is copied back to L1 . If all the dirty data are flushed 20078 ,
L1 and L2 cache state becomes VFC to indicate that the fully
cached data is now consistent with the data in the rotational
drive . If not all the dirty data are flushed 20079 , L1 and L2
cache state becomes VPCD , with the cache page bitmap
updated to reflect the dirty bytes that were cleaned .
[0159] Criteria for Choosing L1 Cache Victims
[0160] 1. LRU — Least Recently Used data is most likely
to be invalidated first than more recently used ones .
[0161] 2. Fastest to Flush Groups of data that can be
flushed to rotational drives concurrently , and will form
sequential type of accesses to rotational drives will be
prioritized . In moving data from LI to L2 cache , groups of
data that can be moved to L2 cache concurrently will be
prioritized .
[0162] Flushing of L2 Cache
[0163] Flushing of L2 cache will occur only if copy of data
in L2 cache is more updated than the copy in the rotational
drive , and the copy in L1 cache has been invalidated already .
This may occur for example when dirty data has been
evicted from the L1 cache and the firmware transferred it to
the faster L2 cache instead of the rotational drive . In moving
data from L2 cache to rotational drive the firmware will take
advantage of the data distribution among the flash chips and
among the rotational drives to maximize parallelism .
[0164] Rather than deciding plainly based on the LRU
algorithm , firmware will take into consideration the source
and target physical locations of the data that needs to be
moved from flash to rotational drive . As shown in FIG . 13 ,
moving data from L2 cache to rotational drive can be

optimized by taking into account which data can be flushed
to rotational drive concurrently .
[0165] Similarly , the firmware also takes advantage of the
speed of rotational drives in sequential access . Therefore ,
data movements are queued in such a way that writing them
to the rotational drives will be more in the form of sequential
accesses rather than random .
[0166] Flushing of the L2 cache consists of a two - step data
transfer : transfer from L2 to L1 , and transfer from L1 to
rotational drive .
[0167] FIGS . 17A and 17B lists the valid combinations of
L1 and L2 cache states and cache sub - state values that will
allow data transfers from L2 cache to Ll cache . It also shows
the resulting cache states and cache sub - state values when an
L2 cache to L1 cache data transfer is initiated , and when it
is completed . The L2 cache to L1 cache data transfer may be
initiated by an L2 cache flushing operation or an L2 cache
hit . The succeeding discussion focuses on the data transfer
due to an L2 cache flushing operation .
[0168] A flushing operation is only done when L2 cache is
dirty (L2 cache state is VPCD , VFCD or VFD) and the dirty
bytes in L2 cache does not correspond to the dirty bytes in
the L1 cache . Upon completion of the L2 cache to Ll cache
transfer of dirty data , the L1 cache will contain all dirty bytes
in L2 cache . The flushing operation is then completed by an
Li to rotational drive transfer . The succeeding discussion
focuses on the L2 cache to L1 cache data transfer due to an
L2 cache flushing operation . See the section “ Flushing of Li
cache " for the detailed discussion of the L1 cache to
rotational drive data transfer .
[0169] Before firmware can initiate the flushing operation
by transferring data from L2 cache to Ll cache , it must
check first if there is an ongoing locked cache operation . If
there is an ongoing locked cache operation , the firmware
will have to wait until the operation is finished before
initiating the data transfer . When the current cache sub - state
finally becomes NOP , it will be changed back to F2S and the
L2 cache flushing will be initiated . This change in cache
sub - state indicates a new locked cache operation . After the
L2 cache to Ll cache data transfer is completed , cache
sub - state goes back to NOP to indicate that the cache is
ready for another operation .
[0170] In the first case 17001 , L2 cache state is VPCD and
L1 cache state is INVLD . An example case is when partially
cached dirty data in L1 was evicted to L2 . After dirty data
in L2 is transferred to L1 , L1 cache state is changed to
VPCD 17037 , with the cache page bitmap updated to reflect
the new dirty bytes in L1 . L2 cache state stays at VPCD .
[0171] In the second case 17003 , L2 cache state is VFCPD
and L1 cache state is INVLD . An example case is when fully
cached partially dirty data in L1 was evicted to L2 . After
dirty data in L2 is transferred to L1 , L1 cache state is
changed to VPCD 17041 , with the cache page bitmap
updated to reflect the new dirty bytes in L1 . L2 cache state
stays at VFCPD .
[0172] In the third case 17004 , L2 cache state is VFD and
L1 cache state is INVLD . An example case is when full dirty
data in L1 was evicted to L2 . After all dirty data in L2 is
transferred to L1 ; L2 cache state is changed to VFD 17042 .
If not all dirty data in L2 is transferred to L1 , L1 cache state
is changed to VPCD 17041 , with the cache page bitmap
updated to reflect the new dirty bytes in L1 . L2 cache state
stays at VPCD .

US 2020/0151098 A1 May 14 , 2020
13

[0173] In the fourth case 17007 , both L1 and L2 cache
states are VPCD . An example case is when the partially
cached dirty data in L1 was initially evicted to L2 , then a
cache miss happens and data is partially cached in L1 . L1
was then updated by a write operation . This results in some
dirty data in L2 that is not present in L1 . After dirty data in
L2 is transferred to L1 , L1 cache state is still VPCD 17047 ,
with the cache page bitmap updated to reflect the new dirty
bytes in L1 . L2 cache state stays at VPCD .
[0174] In the fifth case 17009 , L2 cache state is VFCPD
and Ll cache state is VPCD . An example case is when fully
cached partially dirty data in L1 was initially evicted to L2 ,
and then a subsequent write operation created dirty bytes in
L1 that is not on L2 . After dirty data transferred from L1 to
L2 completes the L1 cache line , L1 cache state becomes
VFD 17049. If the L1 cache line is not completed , L1 cache
state becomes VFCPD 17050. L2 cache state becomes
INVLD in both cases .
[0175] In the sixth case 17010 , L2 cache state is VFD and
L1 cache state is VPCD . An example case is when full dirty
data in L1 was initially evicted to L2 , and then a subsequent
write operation created dirty bytes in L1 that is not on L2 .
After dirty data transferred from L1 to L2 completes the L1
cache line , L1 cache state becomes VFD 17051. If the L1
cache line is not completed , L1 cache state becomes VFCPD
17051. The cache page bitmap updated to reflect the new
dirty bytes in L1 . L2 cache state remains VFD in both cases .
[0176] In the seventh case 17031 , L2 cache state is VPCD
and L1 cache state is VPCC . An example case is when
partially cached dirty data in L1 was initially evicted to L2 ,
and a cache miss occurs during a read operation . After dirty
data transferred from L1 to L2 completes the L1 cache line ,
L1 cache state becomes VFCPD 17074. If the Ll cache line
is not completed , L1 cache state becomes VPCD 17075. The
cache page bitmap updated to reflect the new dirty bytes in
L1 . L2 cache state remains VCPD in both cases .
[0177] Criteria for Choosing L2 Cache Victims
[0178] 1. LRU — Least Recently Used data is most likely
to be invalidated first than more recently used ones .
[0179] 2. Fastest to Fetch - Groups of data that can be
fetched from flash devices concurrently therefore requiring
less time will be prioritized .
[0180] 3. Fastest to Flush - Groups of data that can be
flushed to rotational drives concurrently , and will form
sequential type of accesses to rotational drives will be
prioritized .
[0181] The drawing in FIG . 14 shows an example scenario
where four flash devices all have dirty blocks that need to be
flushed to the two rotational drives . The following are the
steps to flush the dirty L2 cache blocks to the rotational
drives using the “ Fastest to fetch ” and “ Fastest to flush ”
criteria .
[0182] 1. Allocate resources for the maximum number of
flash DMA engines that could simultaneously transfer data
from flash to SDRAM , given the list of dirty blocks .
[0183] 2. Among the groups of data that can be fetched
simultaneously from flash , choose the blocks that are
sequentially closer in the rotational drives . Start transferring
data from flash to SDRAM . Activate as many concurrent
operations as possible .
[0184] 3. When a transfer has completed , start moving
data from SDRAM to rotational drives .
[0185] For example , if FLASH2SDRAM transfer of
FDEVO1 : BLK03 , FDEVO2 : BLK01 , and FDEVO3 : BLKO2

completed already , start SDRAM2HDD movement of
FDEVO1 : BLK03 and FDEVO2 : BLK01 first since they are
going to separate rotational drives . We selected FDEVO1 :
BLK03 over FDEVO3 : BLKO2 because FDEVO1 : BLKO3's
location in HDD1 is sequentially lower than FDEVO3 :
BLK02's location , therefore achieving greater potential for
sequential type of access . Keep doing these every time a
transfer from flash to SDRAM completes .
[0186] Movement from L1 Cache to L2 Cache
[0187] Once the actual amount of storage being used by
the application has grown considerably , the chances of L1
cache hits will be lesser and the chances of L1 cache being
full will be greater . This is the case where the presence of
data in L2 cache can significantly improve the performance
of the system . When the firmware detects that the percentage
of used Ll cache has reached a pre - defined threshold , it
starts copying data to L2 cache in the background during idle
times . The more data there is in the L2 cache , the lesser the
chances that the firmware will have to access data in the
rotational drives .
[0188] If directly - mapped L1 caching scheme is used , it is
possible that only a small percentage of available L1 is being
utilized , and some of the frequently accessed data blocks are
mapped to the same Ll cache entry , therefore requiring
frequent eviction of those associated cache blocks . In such
situations , it will also be helpful if those frequently accessed
and frequently evicted data are stored in L2 cache for faster
access . A method to identify these blocks of data is to keep
track of the data access counts . If the access count of a block
belonging to the LRU list reaches a pre - defined threshold ,
the firmware will copy it to L2 cache . This method is a
combination of the LRU and LFU (Least - Frequently Used)
algorithm , which implies that the most recently used and
most frequently used data , should be prioritized by the
caching scheme .
[0189] In moving data from L1 cache to L2 cache , the
firmware takes advantage of concurrent flash device opera
tions by selecting cache lines that can be flushed in parallel
among the candidates . As stated earlier the L1 cache to L2
cache data movement is initiated by two possible conditions .
First , this operation is initiated during host read or writes to
data that is not cached in the L1 cache , specifically during
an L1 cache full condition . In this case , an Ll entry should
be freed and the firmware determines that the associated data
should be transferred to the L2 cache . The motivation for
opting to transfer first to the L2 cache instead of flushing
back to the HDD in this situation is that L1 to L2 transfers
can be performed faster . Completing the transfer faster will
allow quicker freeing of L1 space and improve response
time to the host read or write request . The second event that
triggers the Ll cache to L2 cache data movement is when it
is initiated by the background process that maintains the
threshold for the minimum number of available L1 cache
lines and the firmware determines that the associated data
should be transferred to the L2 cache . The motivation for
opting to transfer first to the L2 cache instead of flushing
back to the HDD in this situation is if the associated data is
among the most frequently accessed data , but less recently
used than other such data . This avoids the cache full
condition but since the data is still frequently used , it is
preferable to keep a copy in the L2 cache so it can be
retrieved faster . For both conditions , the operation com
mences with the selection of L2 cache lines that will next be
transferred to the L2 cache . The selection categories shall be

US 2020/0151098 A1 May 14 , 2020
14

applied only to those cache line information table entries
that have NOP sub - state or those that are not undergoing any
other data movement . They shall also only be applied if the
cache state table entry specifies that the data in the L1 cache
is a more updated copy than that in the L2 cache or that the
data is cached only in L1 . Hence , there are eleven possible
initial cache states for table entries in the cache line infor
mation table that will proceed with L1 to L2 transfer .
[0190] In the first case 18012 , the selected entry's L1
cache state is VFC and its L2 cache state is INVLD . This
occurs if the data in the Ll cache had already been flushed
to the HDD but there is no copy in L2 cache . To indicate that
L1 is being copied to L2 , the cache sub - state will be changed
from NOP to S2F . Upon successful completion of the data
transfer 18050 , the L2 copy is now consistent with the L1
copy and the L2 cache state will be changed to VFC also .
The cache sub - state will return to NOP to indicate that the
data is no longer in transit . The firmware may now opt to
free the L1 space for use by other entries and set the Li
cache state to invalid . In the second case 18006 , the selected
entry's L1 cache state is VPCD and its L2 cache state is
INVLD . In this case the data copy in Li has had updates in
some parts and is now inconsistent with the data counterpart
in the HDD , but there is no copy yet in the L2 . To indicate
that L1 is being copied to L2 , the cache sub - state will be
changed from NOP to S2F . Upon successful completion of
the data transfer 18042 , the L2 copy is now consistent with
the L1 copy and the L2 cache state will be changed to VPCD
also . The cache sub - date will return to NOP to indicate that
the data is no longer in transit . The firmware may now opt
to free the L1 space for use by other entries and set the Li
cache state to invalid .
[0191] In the third case 18007 , the selected entry's L1
cache state is VPCD and its L2 cache state is also VPCD .
This occurs when a partially dirty data exists in both L2 and
L1 but they are not exactly the same parts so that data in Li
is not consistent with data in L2 . To indicate that the updated
data parts in L1 is being copied to the L2 cache the cache
sub - state will be changed from NOP to S2F . Upon successful
completion of the data transfer 18043 , the L2 copy now also
contains the updates from the Ll copy . If the updates fill up
all unfilled bytes in the L2 cache then the L2 cache state is
changed to VFD . If not the L2 cache state is still to VPCD
but the L2 cache contains the complete copy of the dirty
bytes . The cache sub - state will return to NOP to indicate that
the data is no longer in transit . The firmware may now opt
to free the L1 space for use by other entries and set the LI
cache state to invalid .
[0192] In the fourth case 18011 , the selected entry's L1
cache state is VPCD and its L2 cache state is VPCC . This
occurs when partial data is cached in L1 and some or all
those data is dirty . Partial data is also cached in L2 but the
data in L2 is consistent with that in the HDD . Hence all the
updated parts in L1 are not yet in L2 . To indicate that L1 is
being copied to L2 , the cache sub - state will be changed from
NOP to S2F . Upon successful completion of the data transfer
18048 , the L2 copy now also contains the updates from the
Ll copy . If the updates fill up all unfilled bytes in the L2
cache then the L2 cache state is changed to VFCPD since the
L2 had formerly clean bytes but was filled up with some
dirty bytes from L1 . If the updates do not fill up the L2
cache , the L2 cache state is still to VPCD but the L2 cache
contains the complete copy of the dirty bytes . The cache
sub - state will return to NOP to indicate that the data is no

longer in transit . The firmware may now opt to free the L1
space for use by other entries and set the Ll cache state to
invalid .
[0193] In the fifth case 18018 , the selected entry's L1
cache state is VFCPD and its L2 cache state is INVLD . In
this case the data is fully cached in L1 but has had updates
in some parts and is now inconsistent with the data coun
terpart in the HDD . There is no valid copy in the L2 cache .
To indicate that L1 is being copied to L2 , the cache sub - state
will be changed from NOP to S2F . Upon successful comple
tion of the data transfer 18056 , the L2 copy is now consistent
with the L1 copy and the L2 cache state will be changed to
VFCPD also . The cache sub - date will return to NOP to
indicate that the data is no longer in transit . The firmware
may now opt to free the L1 space for use by other entries and
set the Ll cache state to invalid .
[0194] In the sixth 18019 , the selected entry's L1 cache
state is VFCPD and the L2 cache state is VPCD . In this case
the data is fully cached in L1 but has had updates in some
parts . The data is not fully cached in L2 but the some parts
in the L2 data are updated . Some or all of the updated data
parts in L2 are not in L1 . To indicate that the inconsistent
data parts are being copied to L2 , the cache sub - state is
changed from NOP to S2F . Upon successful completion of
the data transfer 18057 , the L2 copy is now consistent with
the L1 copy and the L2 cache state will be changed to
VFCPD also . The cache sub - date will return to NOP to
indicate that the data is no longer in transit . The firmware
may now opt to free the L1 space for use by other entries and
set the L1 cache state to invalid .
[0195] In the seventh case 18023 , the selected entry's L1
cache state is VFCPD and the L2 cache state is VPCC . The
data is fully cached in Li but has had updates in some parts .
The data is not fully cached in L2 but all data in the L2 cache
are clean . To indicate that the inconsistent data parts are
being copied to L2 , the cache sub - state is changed from
NOP to S2F . Upon successful completion of the data transfer
18061 , the L2 copy is now consistent with the L1 copy and
the L2 cache state will be changed to VFCPD also . The
cache sub - date will return to NOP to indicate that the data
is no longer in transit . The firmware may now opt to free the
L1 space for use by other entries and set the L1 cache state
to invalid .
[0196] In the eighth case 18030 , the L1 cache state is
VPCC and the L2 cache state is INVLD . In this case the data
is fully cached in Li but has had updates in some parts and
is now inconsistent with the data counterpart in the HDD .
There is no valid copy in the L2 cache . To indicate that L1
is being copied to L2 , the cache sub - state will be changed
from NOP to S2F . Upon successful completion of the data
transfer 18056 , the L2 copy is now consistent with the L1
copy and the L2 cache state will be changed to VFCPD also .
The cache sub - date will return to NOP to indicate that the
data is no longer in transit . The firmware may now opt to
free the L1 space for use by other entries and set the L1
cache state to invalid .
[0197] In the ninth 18031 the selected entry's L1 cache
state is VPCC and the L2 cache state is VPCD . In this case
the data is partially cached in L1 and the copy is clean . The
data is also not fully cached in L2 but some or all parts in
the L2 data are updated . To indicate that the data in L1 but
not in L2 are being copied to L2 , the cache sub - state is
changed from NOP to S2F . Upon successful completion of
the data transfer , if the updates from L1 did not fill all

US 2020/0151098 A1 May 14 , 2020
15

unfilled bytes in L2 , then L2 state will remain at VPCD . If
the updates fill up all unfilled bytes in L2 then L2 state will
change to VFCPD . The cache sub - date will return to NOP to
indicate that the data is no longer in transit . The firmware
may now opt to free the L1 space for use by other entries and
set the L1 cache state to invalid .

[0198] In the tenth case 18035 , the selected entry's L1
cache state is VPCC and the L2 cache state is also VPCC .
This means the data is not fully cached in both L1 and L2
but they contain different data and the data in both caches are
clean . To indicate that the data parts in L1 are being copied
to L2 , the cache sub - state is changed from NOP to S2F .
Upon successful completion of data transfer 18073 , if
updates from L1 did not fill all unfilled bytes in L2 , then L2
state will remain at VPCC . If the updates fill up all unfilled
bytes in L2 then L2 state will change to VFC . The cache
sub - date will return to NOP to indicate that the data is no
longer in transit . The firmware may now opt to free the L1
space for use by other entries and set the L1 cache state to
invalid .

[0199] In the eleventh case 18024 , the L1 cache state is
VFD and the L2 cache state is INVLD . This occurs when the
data counterpart in the HDD was entirely updated in L1
cache but there is no copy yet in the L2 cache or that there
is a copy in the L2 but it was invalidated because the data
was entirely replaced . To indicate that the data in L1 is being
copied to the L2 cache , the cache sub - state will be changed
from NOP to S2F . Upon successful completion of the data
transfer 18062 , the L2 copy is now consistent with the L1
copy and the L2 cache state is changed to VFD also . The
cache sub - state will return to NOP to indicate that the data
is no longer in transit . The firmware may now opt to free the
L1 space for use by other entries and set the Ll cache state
to invalid .

[0200] In all cases during the state when the data is in
transit from L1 to L2 , i.e. the cache sub - state is S2F ; any
request from the host to update the data can still be accepted
by aborting the pending L1 to L2 data transfers . To indicate
that the data from the host is being accepted , the cache
sub - state will be changed from S2F to H2S . If the host
updated the data in L1 entirely , then after accepting the data
the L1 cache state will be VFD and L2 cache state will be
invalidated . If the host did not update the data in L1 entirely
but any of those already data transferred to the L2 cache
were among those updated , then L2 cache state will also be
invalidated and L1 cache state will be VFCPD or VPCD .
The sub - state can be changed from H2S to NOP after
accepting the update to indicate that there is no more data
transfer going on . If the firmware still opts to make a copy
of the data in L2 cache , the it will have to re - initiate the L1
to L2 data movement operation with the L2 cache state
initially INVLD and with L1 cache state VFD (case 11
18024) or VFCPD (case 5 18018) or VPCD (case 2 18006) .
If the host updated those data parts in L1 that have not been
transferred to L2 cache and those data parts that have been
copied to L2 were untouched , then the pending L1 to L2
transfers can actually proceed using the more updated data
parts in L1 . The sub - state can be changed from H2S back to
S2F and proceed with the previously aborted Li to L2
transfer . As much as possible , the firmware avoids the
situation where an Li to L2 transfer gets aborted by select
ing least recently used entries for this transfer . This lessens
the probability that the host will update that particular data .

[0201] Read Buffering
[0202] In some applications such as video streaming ,
storage accesses are typically large sequential reads . In such
cases , it is more efficient to allocate a certain amount of
high - speed buffer that can be used to store data from the
flash media or the rotating drives for immediate forwarding
to the host through the host IO interface . Every time the host
issues a read command , the firmware checks if the data is in
L1 . If not , it checks if data is in L2 . If data is in L2 , the
firmware fetches it and stores it to the high - speed buffer and
immediately transfers it to the host . If data is not in L2 , the
firmware fetches it from the rotating drives , stores it to the
buffer , and forwards it to the host . This scheme further
improves performance by creating a dependency link
between the DMA controllers , such that the completion of a
specific data transfer (e.g. flash to buffer) may trigger the
start of another data transfer (e.g. buffer to host) , without
intervention from the local processors .
[0203] In FIG . 1 , the Read Buffering scheme can be
implemented using the internal SRAM 114 which has a
dedicated data link to the flash interface 108 and the other IO
interfaces 106 and 107. Here , the SRAM 114 can be used as
the high - speed buffer for moving data from flash 109 to host
112 or from rotating drives 105 to host 112 .
[0204] Power - Loss Data Recovery
[0205] For hybrid devices equipped with back - up power
such as those illustrated in FIG . 2 to FIG.9 of U.S. Pat . No.
7,613,876 , entitled “ Hybrid Multi - Tiered Caching Storage
System ” , the non - volatile L2 cache will serve as temporary
storage for dirty data that haven't been flushed to the hard
drives at the instant the power loss occurred . The limitations
in the speed of a hard drive and its high power requirement
makes it impractical to provide a back - up power supply
capable of keeping the device alive while flushing all dirty
data from L1 and L2 to the hard drives . The flash - based L2
requires less power and allows faster saving of data due to
its capability to execute simultaneous operations on multiple
flash devices .
[0206] FIG . 21A shows an example state of L1 and L2
during normal 10 operations , before an external power loss
occurs . When the firmware detects the loss of external
power , any dirty copies of data in Ll will be moved to L2
and the corresponding cache line information indicating the
validity of the copy in L2 will be saved to non - volatile
memory accordingly as shown in FIG . 21B and FIG . 21C .
Similarly , dirty data in L2 that has no copy in L1 will be kept
in L2 and the corresponding cache line information will be
saved also . The firmware assumes that the back - up power
supply has enough charge to allow completion of data
transfer operations from L1 to L2 . When external power
resumes , the device can proceed to its normal boot - up
sequence since the state of all data had been saved in the
cache line information . When the host tries to read data
whose latest copy is still in L2 after the previous power
interruption , the firmware will read the corresponding cache
line information from non - volatile memory and find out that
L2 cache is dirty , as shown in FIG . 21D . For example , if the
L2 cache is full dirty and host is trying to read the entire
cache line , the firmware will copy the data from L2 to L1
(17042) and give that copy in Li to the host (16064) . If the
host sends a Read FUA command instead of a normal Read
command , the firmware will fetch the data from L2 to L1
(17042) , flush it from L1 to hard drive (20078) , and finally
read the copy in the hard drive that has just been updated and
send it to host (19056 followed by 16050) .

US 2020/0151098 A1 May 14 , 2020
16

[0207] FIG . 22 illustrates a hybrid storage device 2101
connected directly to the host 112 and to the rotational drives
105 through the storage controller's available IO interface
DMA controllers 107 and 106 respectively , in accordance
with another embodiment of the invention . Components in
FIG . 22 that are similarly shown in FIG . 1 and / or other
drawings will have the same or similar functionalities as
described above and will not be repeated for purposes of
brevity .
[0208] The rotational drives 105 are connected to one or
more 10 interface DMA controllers 106 capable of trans
ferring data between the drives 105 and the high - speed LO
cache (SRAM) 2214 (write buffer 2214) . Another set of IO
interface DMA controllers 107 is connected to the host 112
for transferring data between the host 112 and the LO cache
2214. The Flash interface controller 108 on the other hand ,
is capable of transferring data between the LO cache 2214
and the L2 cache (flash devices) 103 .
[0209] Multiple DMA controllers can be activated at the
same time both in the storage 10 interface and the Flash
interface sides . Thus , it is possible to have simultaneous
operations on multiple flash devices , and simultaneous
operations on multiple rotational drives .
[0210] Data is normally cached in the LO cache 2214 ,
being the fastest among the available cache levels . There
fore , write buffering (write cache enable) is performed by
buffering the write data into the LO cache 2214. In an
embodiment of the invention , the device 2101 may also
include the Ll cache 104 and / or L2 cache 103 as available
cache levels . The IO interface DMA engine 107 connected
between the host 112 and the DMA buses 110 and 111 is
responsible for high - speed transfer of data between the host
112 and the LO cache 2214. There can be multiple IO
interface ports connected to a single host and there can be
multiple 10 interface ports connected to different hosts . In
the presence of multiple IO interface to host connections ,
dedicated engines are available in each IO interface ports
allowing simultaneous data transfer operations between
hosts and the hybrid device . The engines operate directly on
the LO cache memory 2214 eliminating the need for tem
porary buffers and the extra data transfer operations asso
ciated with them .
[0211] For each level of cache , the firmware keeps track of
the number of cache lines available for usage . It defines a
maximum threshold of unused cache lines , which when
reached causes it to either flush some of the used cache lines
to the medium or copy them to a different cache level which
has more unused cache lines available . When the system
reaches that pre - defined threshold of unused LO cache , the
system starts moving data from LO 2214 to 12 cache 103 .
The 12 cache is slower than the LO cache but usually has
greater capacity . The 12 cache 103 includes arrays of flash
devices 109. Flash interface 108 includes multiple DMA
engines 115 and connected to multiple buses 116 connected
to the flash devices 109. Multiple operations on different or
on the same flash devices can be triggered in the flash
interface . Each engine operation involves a source and a
destination memory . For LO to L2 data movements , the flash
interface engines copy data directly from the memory loca
tion of the source LO cache to the physical flash blocks of the
destination flash . For L2 to LO data movements , the flash
interface engines 115 copy data directly from the physical
flash blocks of the source flash to the memory location of the
destination LO cache . For 12 to 11 data movements , the flash

interface engines 115 copy data directly from the physical
flash blocks of the source flash to the memory location of the
destination cache .
[0212] Transfers of data from LO 2214 to hard disk drives
105 and vice versa are handled by the DMA controllers of
the IO interfaces 106 connected to the hard disk drives 105 .
These DMA controllers operate directly on the LO cache
memories , again eliminating the need for temporary buffers .
Data transfers between 12 103 and the hard disk drives 105
go through LO 2214. This requires synchronization between
and LO be built into the caching scheme .
[0213] Although FIG . 22 shows a system where the rota
tional drives 105 are outside the hybrid storage device 2101
connected via 10 interfaces 106 , slightly different architec
tures can also be used . For example , the rotational drives 105
can be part of the hybrid storage device 2101 itself , con
nected to the storage controller 2102 via a disk controller .
Another option is to connect the rotational drives 105 to an
IO controller connected to the hybrid storage controller 2102
through one of the IO interfaces 106 of the controller 2101 .
Similarly , the connection to the host is not in any way
limited to what is shown in FIG . 22. The hybrid storage
device 2101 can also attach to the host 112 through an
external 10 controller . The hybrid storage device 2101 can
also be attached directly to the host's network domain . More
details of these various configurations can be found in , for
example , the figures of commonly - owned and commonly
assigned U.S. Pat . Nos . 8,032,700 and 7,613,876 , both
entitled “ Hybrid multi - tiered caching storage system " .
[0214] Write Command
[0215] When firmware receives a Write command from
the host 112 , the firmware derives the cache control block
index (SRAM Index) based on the host LBA . Then the
firmware checks the designated cache control block if
requested LBA is in L cache .
[0216] If LO cache state is invalid (INVLD) and there is no
ongoing locked operation (NOP) , the firmware start transfer
from host to LO cache and updates cache sub - status to H2S .
After completion of host2sram transfer , the firmware
updates cache sub - status to NOP . If the write data uses all of
the cache line space , LO cache state becomes VFD (e.g.
15036 in FIG . 15B but applicable to the LO cache instead of
the 11 cache) , otherwise LO the cache state becomes VPCD
(e.g. 15037) . For write buffering into the LO cache , the 11
states in FIG . 15B will be LO states instead . For the case
when write data uses all of the LO cache line space , the copy
in L2 cache becomes INVLD (e.g. 15038) .
[0217] If the LO cache state is valid (VPCD , VFC ,
VFCPD , VFD , VPCC) , there is no ongoing locked operation
(NOP) , and the associated cache contains the correct set of
data , the firmware start transfer from host to LO cache and
updates cache sub - status to host2sram . After completion of
host2sram transfer , the firmware updates cache sub - status to
NOP .

[0218] If LO previous cache state is VPCD , there are 4
options : (1) if write data uses all of the cache line space , LO
cache state becomes VFD (e.g. 15055) . (2) If write data is
less than the cache line space , there's no more free cache line
space , and there is no more clean cache area , the LO cache
state becomes VFD (e.g. 15057) . (3) If write data is less than
the cache line space and there is still some free cache line
space , the LO cache state becomes VPCD (e.g. 15058) . (4)
If write data is less than the cache line space , there is no

US 2020/0151098 A1 May 14 , 2020
17

more free cache line space , and there is still some clean
cache area , the LO cache state becomes VFCPD (e.g. 15060) .
[0219] If the LO previous cache state is VFC , there are 2
options : (1) if write data uses all of the cache line space , the
LO cache state becomes VFD (e.g. 15080 in FIG . 15C) , (2)
if write data is less than the cache line space , the L cache
state becomes VFCPD (e.g. 15081) , since not all the cache
data were over written . For write buffering into the LO cache ,
the L1 states in FIG . 15C will be LO states instead .
[0220] If the LO previous cache state is VFCPD , there are
3 options : (1) If write data uses all of the cache line space ,
the LO cache state becomes VFD (e.g. 15087) . (2) If write
data is less than the cache line space and there is no more
clean cache line space , the LO cache state becomes VFD
(e.g. 15088) . (3) If write data is less than the cache line
space , and there is still some clean cache area , the LO cache
state becomes VFCPD (e.g. 15089) .
[0221] If the LO previous cache state is VFD , there is only
1 option : (1) the LO cache state remains at VFD no matter
what the write data size is (e.g. 15105 in FIG . 15D) . For
write buffering into the LO cache , the L1 states in FIG . 15D
will be LO states instead .
[0222] If the L) previous cache state is VPCC , there are 3
options : (1) if write data uses all of the cache line space , the
LO cache state becomes VFD (e.g. 15115) , (2) If write data
is less than the cache line space and there is still some free
cache line space , the LO cache state becomes VPCD (e.g.
15117) . (3) If write data is less than the cache line space ,
there is no more free cache line space , and there is still some
clean cache area , the LO cache state becomes VFCPD (e.g.
15116) .
[0223] If the LO cache state is valid but the associated
cache block does not contain the correct set of data (for the
case of a directly - mapped cache) , the firmware initiates
freeing of that cache block .
[0224] If that cache is clean , it can be freed instantly
without any flush operation . But if the cache is dirty , the
firmware gets the associated flash physical location of data
from LBA2FlashPBA table and initiates copying of data to
the L2 cache , which is faster than flushing to rotational
drive . Then the firmware updates sub - status to sram2flash .
However , if the L2 cache is full , flushing to rotational drive
will be initiated instead , and sub - status will be set to
sram2hdd . Flushing of the L2 cache to rotational drives can
be done in the background when firmware is not busy
servicing host commands . After flushing of the LO cache , the
firmware proceeds with the steps below as if data is not in
the LO cache .
[0225] If data is not in the LO cache , the firmware requests
for the available LO cache . If there is no available LO cache
(the LO cache is full) , the firmware selects an LO cache
victim . If the selected victim is clean , or if it is dirty but
consistent with the copy in L2 cache , it is freed instantly .
Otherwise , it is flushed to the rotational drive . The cache is
invalidated (INVLD) and then assigned to the current com
mand being serviced . Processing of the firmware continues
as if the LO cache state is INVLD (see discussion above) .
[0226] After the LO cache state is updated due to a
host - write (H2S) , the L2 cache state is also updated . For the
case when write data occupies only a part of the LO cache
line space and the write data did not cover all the copy in L2
cache , the copy in L2 cache becomes partially valid (VPCC ,
VPCD) , since some parts of the L2 cache copy is invalidated
(whether partially or fully dirty previously) (e.g. 15039 in

FIG . 15B) . For the case when the write data occupies only
a part of the LO cache line space and the write data covered
all the copy in L2 cache , the copy in L2 cache becomes
INVLD (e.g. 15038) .
[0227] Upon completion of host2sram (H2S) , the firm
ware sends command status to host and completes the
command . But if the write command is of the write FUA
(first unit access) type , host2sram (H2S) and sram2hdd
(S2HDD) is done first before the command completion
status is sent to the host . Once all LO cache data is written
to the HDD , the LO cache state becomes clean (VFC , VPCC)
(e.g. 20060 , 20042 in FIG . 20B) .
[0228] In the background , when interface is not busy , the
firmware initiates flushing of Lo cache to L2 cache , L2
cache to rotational drives , and LO cache to rotational drives .
[0229] Flushing Algorithm
[0230] For a full - associative cache implementing a write
back policy , flushing is usually done when there is new data
to be placed in cache , but the cache is full and the selected
victim data to be evicted from the cache is still dirty .
Flushing will clean the dirty cache and allow it to be
replaced with new data .
[0231] Flushing increases access latency due to the
required data transfer from LO volatile cache to the much
slower rotational drive . The addition of L2 nonvolatile cache
allows faster transfers from LO to L2 cache when the LO
cache is full , effectively postponing the flushing operation
and allowing it to be more optimized .
[0232] To reduce latency and enhance the cache perfor
mance , flushing can be done as a background operation . The
LRU and LFU are the usual algorithms used to identify the
victim data candidates , but the addition of a Fastest - to - Flush
algorithm takes advantage of the random access perfor
mance of the L2 cache . The Fastest - to - Flush algorithm
optimizes the flushing operation by selecting dirty victim
data that can be written concurrently to the L2 cache , and
thus minimizing access time . The overhead brought about by
flushing of cache can then be reduced by running concurrent
flush operations whenever possible . Depending on processor
availability , flushing may be scheduled regularly or during
idle times when there are no data transfers between the
hybrid storage system and the host or external device .
[0233] Flushing of LO Cache
[0234] In an embodiment of the invention , flushing of LO
cache will occur only if copy of data in LO cache is more
updated than the copy in the rotational drive . This may
occur , for example , when a non FUA write command hits the
L cache .
[0235] Flushing of LO cache is typically triggered by the
following conditions :
[0236] 1. Eviction caused by shared cache line - In set
associative or directly - mapped caching mode , if the cache or
cache set assigned to a specific address is valid but contains
another data , that old data must be evicted to give way to the
new data that needs to be cached . If the old data is clean , the
cache is simply overwritten . If the old data is dirty , the cache
is flushed first before writing the new data .
[0237] 2. LO cache is full — If an 10 command being
processed could not request for a cache due to a cache - full
condition , a victim must be selected to give way to the
current command . If the victim data is clean , the cache is
simply overwritten . If the victim data is dirty , the cache is
flushed first before writing the new data .

US 2020/0151098 A1 May 14 , 2020
18

[0238] In either (1) or (2) discussed above , the victim data
will be moved to either L2 cache or rotational drive . Ideally
in this case , the firmware will move the LO cache data to the
L2 cache first , since movement to L2 cache is faster . In case
the L2 Cache is full , firmware will have to move the LO
cache data to the rotational drive .
[0239] 3. Interface is not busy - Flushing may also be
done in the background when drive is not busy servicing
host commands . The LO cache is flushed directly to the
rotational drive first , then if number of available LO caches
has reached a pre - defined threshold , data is also copied to L2
cache , in anticipation for more flushing due to the LO cache
full condition .
[0240] When moving data from the LO cache to rotational
drive , the firmware takes advantage of concurrent drive
operations by selecting cache lines that can be flushed in
parallel among the least recently used candidates . The
firmware also takes into consideration the resulting access
type to the destination drives . The firmware queues the
request according to the values of the destination addresses
such that the resulting access is a sequential type .
[0241] Before firmware can initiate the flushing operation
from the LO cache to rotational drive , the firmware must
check first if there is an ongoing locked cache operation . If
there is an ongoing locked cache operation , the firmware
will have to wait until the operation is finished before
initiating the data transfer . When the current cache sub - state
finally becomes NOP , the cache sub - state will be changed
back to S2HDD and the LO cache flushing will start . This
change in cache sub - state indicates a new locked cache
operation . After the LO cache is flushed , cache sub - state goes
back to NOP to indicate that the cache is ready for another
operation .
[0242] In another embodiment of the invention , the rota
tional drives HDD are omitted . Therefore , in this embodi
ment , the flash devices 109 are the main storage or main
non - volatile storage and / or are the main storage and also can
be an L2 cache . The LO cache is coupled to the host and has
the same functionality as the Ll cache but the LO cache is
faster .
[0243] The above discussion on the algorithm for perform
ing the data flow from the host to L1 to L2 and L3 (and vice
versa) can also be applied to perform the data flow from the
host to LO to L1 to L2 and L3 (and vice versa) , or from the
host to LO and L2 (and vice versa) or form the host to LO to
L2 and to L3 (and vice versa) .

[0244] Foregoing described embodiments of the invention
are provided as illustrations and descriptions . They are not
intended to limit the invention to precise form described . In
particular , it is contemplated that functional implementation
of invention described herein may be implemented equiva
lently in hardware , software , firmware , and / or other avail
able functional components or building blocks , and that
networks may be wired , wireless , or a combination of wired
and wireless .
[0245] It is also within the scope of the present invention
to implement a program or code that can be stored in a
machine - readable or computer - readable medium to permit a
computer to perform any of the inventive techniques
described above , or a program or code that can be stored in
an article of manufacture that includes a computer readable
medium on which computer - readable instructions for carry
ing out embodiments of the inventive techniques are stored .
Other variations and modifications of the above - described
embodiments and methods are possible in light of the
teaching discussed herein .
[0246] The above description of illustrated embodiments
of the invention , including what is described in the Abstract ,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed . While specific embodiments of ,
and examples for , the invention are described herein for
illustrative purposes , various equivalent modifications are
possible within the scope of the invention , as those skilled
in the relevant art will recognize .
[0247] These modifications can be made to the invention
in light of the above detailed description . The terms used in
the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the
specification and the claims . Rather , the scope of the inven
tion is to be determined entirely by the following claims ,
which are to be construed in accordance with established
doctrines of claim interpretation .
We claim :
1. Apparatus for storing data comprising :
a write buffering scheme comprising a plurality of cache

devices ,
wherein write data is moved from a first cache device to

a second cache device when a pre - defined threshold of
unused cache lines is reached in the first cache device ;

wherein the second cache is slower than the first cache ;
wherein the second cache has a greater storage capacity

than the first cache .

