+» UK Patent Application ..GB «,2 115 963 A

(21) Application No 8304709 (72) Inventors (54) Binding memory contents into
(22) Date offiling 21 Feb 1983 David Roger Ditzel, machine registers
(30) Priority data Hubert Rae McLellan.
(31) 351656 (74) Agent and/or Address for (67) The local variables of procedures
(32) 24 Feb 1982) ge""'ce . are automatically mapped from main
(33) ::J"s";ed States of America w:s'tgz'g:kmc memory 1 of a computer into a circular
(43) Application published Company Limited, buffer comprising machine registers 18
14 Sep 1983 5 Mornington Road, or 19. As instructions are fetched from
(51) INTCL® Woodford Green, the main memory, the instructions are
GO6F 9/34 Essex 1G8 0TU. partially decoded at 2 by adding the
(52) Domestic classification stack pointer to the offset and then
G4A 13M 15A2 2E PP stored in an instruction cache 3. In
(56) Documents cited cases where the sum of the memory
GB A 2016753 locations required by the procedures
GB 1443778 exceed available register memory, the
G'Blc1144f3777 N contents of the registers nearest the
(58) S:A ofsearc maximum stack pointer are flushed
(71) Applicants back to main memory.
Western Electric
Company Incorporated,
(USA-New York),
222 Broadway,
New York,
NY 10038,
United States of America.
FlG 2) Stet g?IEP;TER 0
2 I
. _%l e —— : f 12 i Jll
' - SaY INSTRUCTION , ;NSTRUCH"OA':‘D) WAXINUK
PREFETCH AND REFETC COMPARATOR STACK POINTER
DECODE UNIT UNIT
L= -
: I:G
1 _ i | R | i |
' | BT % | T} 3
MAIN TAG LEFT RIGHT
MEMORY STACK ADDRESS INSTRUCTION ADDRESS
ADRESS | poinTen FIELD 0PCODE FIELD
3 N4 25 1. .
8 K 2 21
, 28 (|8 2 |9')
- . - - — - v € - i
s A i By i STACK STk =1 s
22 ExgcuTion STACK CACHE CAGHE |3
CONTROL e CACHE REGISTERS REGISTERS
UNIT
36 31
PROGRAN CONTROL 29/] 3l
COUNTER UNIT 20 2
! 23 oark I I K
>\ ALY

V €96 GLL Z 9D

PREVIOUS LOGATION

OF STACK POINTER

PRESENT LOCATION

—_—

OF STACK POINTER

2115963

172

I

FIG. [/
INSTRUCTION
PREFETCH AND

5*
DECODE UNIT

MEMORY | 6

g3

INSTRUCTION
CACHE

I/a l/_?fi

EXECUTION UNIT AND REGISTERS

FIG. 3
STACK FRAME LAYOUT OF MAIN MEMORY

VW

INCOMING ARGUMENT n
INCOMING ARGUMENT n-|

INCOMING ARGUMENT |

SAVED PROGRAM COUNTER OF CALLER

LOCAL VARIABLE n
LOCAL VARIABLE n-1I

LOCAL VARIABLE |

TEMPORARIES

QUTGOING ARGUMENT n
QUTGOING ARGUMENT n-|

OUTGOING ARGUMENT 1

EMPTY (PROGRAM COUNTER SAVE AREA)

w

HIGHER MEMORY

DIRECTION OF
STACK GROWTH

|

LOWER MEMORY

2115963

212

4315193y

HIINIOd WOVLS

NOWIXVN

:w

H3INIOd ¥OVIS

o]

ny ¥e
6 8¢ mm/ \oc
R 02 LIND ¥3INN0)
1€ E E 6¢ J041N0) WYH904d
1 9g
W LINA
_ SH31S193Y SH31193Y s z%%%m_ _
_J YVIS | a¢
7 |] : L] - - e e s
6l N K
¢ I I I
I P I N AV
]
12 0 |] !
] i] G~ TN TN
_ 034 01314 ¥ALNIOd
SSN 3000d0 SO0y ovs | Ssauaay .
1HOW NOLLONYLSNI L7 : N3N
vl NIVI
w7 - T
s&&ﬁs@ L 300240 .
|l_ HOLYHYANO) O 1030001 cumcumm%ﬂa !
g NOILONYLSNI . g ;
o] M e) e
¥315193Y l

GB 2115963 A 1

10

15

20

25

30

35

40

45

50

56

60

65

SPECIFICATION
Binding memory contents into machine registers

Technical field
This invention relates to digital computers.

Background of the invention

Digital computers have for many years employed
registers as the lowest level in the heirarchy of
computer storage devices. Registers have faster
access time than main memory, but, because of cost,
are few in number. The use of registers was at one
time controlled directly by the machine language
programmer. The use of registers is now controlled
principally by another computer program, the com-
piler. The compiler transforms an easier to under-
stand high level source language into the lower level
object language of the machine. part of this transfor-
mation task performed by the compiler is to place
currently active data items in registers as much as
possible. In this fashion, references to main memory
are reduced, leading to faster overall performance.
This task, called register allocation, is burdensome
to the compiler program, resulting in compilers that
are large and complex, awkward to maintain, and
costly to prepare.

Computer instructions specify the data operands
to be used in an arithmetic or logical operation
through the use of addressing modes. An address is
the common term used to describe the location in
storage of a particular piece of data or an instruction.
An addressing mode may, for example, specify that
the data is to be found in a register, at an address
specified in the instruction, or at an address con-
tained in a particular register specified in the instruc-
tion. A particularly common addressing mode, cal-
led “relative addressing’’ and found in many compu-
ters, is to form the address of an operand by adding
the contents of a register to a constant specified in
the instruction. This addressing mode is frequently
used in the implementation of what is called a stack
data structure. Because of this common use, the
term “stack relative addressing” is frequently em-
ployed, and the particular register is called the stack
pointer register.

Stack relative addressing is commonly used by
compilers, using a data structure called a stack to
allocate space in the computer’'s memory for local
program variables, parameters, and temporary stor-
age. Allocating space on a stack is advantageous
because it provides a very simple and efficient
technique for allocating space. The details of such a
stack and how it is used by the compiler will not be
discussed in more detail here; such details are
common enough to be found in nearly any text on
compiler design. One such book is “Principles of
Compiler Design”, by Messrs. A.V. Aho and J.D.
Ullman, Addison-Wesley Publishing Co., (1977).

Local variables for a procedure (i.e. variables to be
used only in that procedure) are usually allocated on
a stack. For a computer with registers, it is the job of
the compiler program to move variables from the
main memory into registers whenever possible to
improve computer speed. Such register allocation is

70

75

80

85

90

95

100

105

110

115

120

125

130

a difficult task for a compiler program and often
requires more than one pass through a source
program to allocate registers efficiently. Furth-
ermore, when one procedure is in the process of
being executed and it is necessary to call another
procedure, because the registers are limited in
number, the contents of the registers must be saved
in the main memory before the other procedure can
be called. This process is called register saving.
Similarly, registers must be restored when returning
to the calling procedure. Compiler program design
would be greatly simplified if such register allocation
was not required.

Computers without registers already exist and are
known as memory-to-memory computers. A compu-
ter without such registers, however, incurs a penalty
of reduced execution speed.

Summary of the invention

In the claimed invention, both speed advantages
of register-oriented computers and the compiler
simplifications resulting from memory-to-memory
oriented computers may be realized in a single
machine. Memory contents are automatically map-
ped into machine registers during program execu-
tion. This process called “’binding"”’, was performed
in the prior art during compilation of the program
and not during execution.

In a preferred embodiment most local variables
will be allocated to registers, providing a significant
improvement over prior art compiler programs
which assign only some of the local variables to
registers. In addition, the need for register saving
and restoring for procedure calls, required by prior
art register oriented machines, is usually eliminated.

More particularly, as instructions are prefetched
from the main computer memory, instructions are
partially decoded before being placed in an instruc-
tion cache. As part of this decoding, operand
identifiers with stack relative addresses, i.e. the
value of a stack pointer plus an offset, are operated
upon to form an absolute memory address. This
memory address is stored in the instruction cache.
These operand addresses in the instruction cache
are checked to see if they fall within the range of
addresses for which the corresponding data are
currently stored in the register set. If so, then the
addressing mode is changed so that the address
may be used as a register index. In this fashion,
registers are automatically allocated by hardware,
rather than by traditional compiler methods.

The registers in the preferred embodiment take
the form of a circular buffer in order that the lower
order bits of the absolute memory address can also
be used as the register address in the buffer.

Brief description of the drawing

Figure 1is a block diagram of relevant parts of a
digital computer and useful in describing the present
invention;

Figure 2 is a more detailed block diagram of the
relevant parts of a digital computer disclosed in
Figure 1; and

Figure 3 is a graphical representation of a stack
frame of the main memory of the digital computer of

2

GB 2115963 A

10

15

20

25

30

35

40

45

50

55

60

65

Figure 1.

Detailed description

Referring to Figure 1, there is shown a block
diagram of the relevant parts of a digital computer
which are useful in implementing the present inven-
tion. Data and instructions are stored in main
memory 1. Data operands are fetched from memory
1 under control of the execution unit 4 over bus 8
and stored in the execution unit 4, to be described
more fully below. Instructions are fetched from
memory 1 over bus 5 by the instruction prefetch and
decode unit 2, We partially decode the instructions
as will be described more fully below, in the prefetch
the decode unit 2. The partially decoded instructions
are then placed in the instruction cache 3 over bus 6.
From instruction cache 3, the partially decoded
instructions are read by the execution unit 4 over bus
7. The instructions are executed in the execution unit
4 using the aforesaid operands.

Referring to Figure 2, there is shown a more
detailed block diagram of the relevant parts of Figure
1. Instructions are fetched from main memory 1 over
bus 5 under control of the instruction prefetch and
decode control unit 12 in association with instruction
prefetch and decode unit 2. Stack pointer register 10
performs the traditional function of delimiting the
boundary between free and used space in the
allocation of program variables. Stack pointer regis-
ter 10 with the maximum stack pointer register 11
also perform the functions of head and tail pointers,
respectively, in implementing traditional circular
buffers which contain the top data elements of the
stack. The data for the circular buffers is contained in
stack caches 18 and 19, these stack caches being
memory register devices. Stack pointer in register 10
points to the lowest address of data currently
maintained in stack caches 18 and 19. The maximum
stack pointer in register 11 points to the highest
address of data currently maintained in stack caches
18 and 19.

Instruction cache 3 is a conventional cache mem-
ory device which saves the most recently used
instructions. The instruction cache 3 may hold many
instructions, and for each instruction there exist
several fields: the instruction opcode field 16, the left
address field 15, the right address field 17, and the
tag which is composed of the instruction address
field 13 and the value of the stack pointer associated
with the particular instruction 14. The left address
field 15 and the right address field 17 hold the
addresses for accessing the operands which may be
sent to the left and right inputs, respectively, to the
ALU 24. The addressing mode, e.g. main memory 1
or stack caches 18 and 19, of each operand is held in
the instruction opcode field 16 of the cache. In most
computers with a cache, a prefetch unit would fetch
instructions from memory 1 and place them directly
in instruction cache 3 without any intervening con-
versions. In our computer the prefetch and decode
unit 2 will decode stack relative addressing modes
before proceeding to place the instruction in instruc-
tion cache 3. This method is possible because the
calling sequence and instruction set, as will be
described more fully below, quarantee that the stack

70

75

80

85

920

95

AN
100

105

110

115

120

125

130

pointer in register 10 will not change except at
procedure call and return.

When an instruction with a stack relative addres-
sing mode is fetched by the prefetch and decode unit
2, the value of the stack pointer in register 10 is
added to the value of the offset specified in the
instruction to form the absolute memory address of
the opperand. This modified instruction, using the
computed memory address of the operand, will be
placed in the instruction cache 3 in the left or right
address field 15 or 17, respectively. When the
prefetch and decode unit 2 converts a stack relative
address to that of a memory address, that memory
address is also checked to see if the data resides in
the stack cache registers 18 and 19 or in main
memory 1. This check is accomplished by compar-
ing, in comparator 9, the memory address to the
stack pointer in register 10 and the maximum stack
pointer in register 11. If the memory address lies
between the value of the stack pointer in register 10
and the value in maximum stack pointer register 11,
inclusive, then the data will be resident in stack
caches 18 and 19 and the addressing mode of the
instruction is changed to the register addressing
mode. If the memory address does not lie between
the address of the stack pointer 10 and the maximum
stack pointer 11, inclusive, the the data will be
resident in main memory 1, and the addressing
mode of the instruction is changed to main memory
address mode.

Under control of execution control unit 22, such as
a programmable logic array, instructions from in-
struction cache 3 are transmitted to the execution
unit 4. More particularly, the left operand for the
arithmetic and logic unit 24 is obtained by addres-
sing memory over bus 25. If the addressing mode of
the left operand is that of a main memory address,
then the address sent over bus 25 will cause main
memory 1to send the requested operand to the left
ALU input over bus 32. If the addressing mode of the
left operand is that of a register, then the low order
bits of the word part of the address from bus 25 is
sent to stack cache registers 18 over bus 28 and the
datais presented on bus 36. The word part of the
address is that part which contains no bits for
addressing bytes within a memory word. The exact
number of lines of bus 28 for the low order bits of the
word part of the address from bus 25 is the base two
logarithm of the number of the stack cache registers
18. The size of registers 18 and 19 should be a power
of two. For example, if 1024 registers were to be
provided, then bus 28 would consist of 10 signal
lines.

The use of the same address for both stack caches
18 and 19, and main memory 1 is a distinct
advantage because no intervening converions are
necessary which would cause loss of efficiency.
Thus, the address on bus 28 functions as an
automatically computed register addresss to resis-
ters 18. Byte addressing, for example with a four
byte wordsize, is provided by sending the low two
bits of the byte address from bus 25 to multiplexer
20 over bus 29. In this fashion, full words, half-
words, or bytes may be read, though full words and
half-words may not cross word boundaries. Multi-

5

3 GB2115963 A 3
plexor 20 provides the necessary alignment and sign If there exists insufficient free space to hold the
extension of operands for byte addressing. _ entire new stack, the entries nearest the address

Pursuant to register mode addressing, the data is pointed to by the maximum stack pointer in register
supplied to the left ALU input over bus 38. Similarly, 11 of stack caches 18 and 19 are flushed back to
5 the right operands are developed in a symmetric 70 memory 1 over bus 32 under the control of stack
fashion to the left operands with registers 19, cache control unit 23. When the size of the new stack
multiplexor 21, busses 30 and 31. The advantage of frame is less than the size of stack caches 18 and 19,
duplicating the registers 18 and 19, and the multiple- only the size of the new stack frame minus the
xors 20 and 21, resides in permitting faster access to number of free entries must be flushed back to

10 both left and right ALU operands through parallel- 75 memory 1. When the size of the new stack frame is
ism. When the ALU 24 has computed the result, the greater than the size of the entire stack cache 18 or
result is sent via bus 32 back to either registers 18 19, all active entries then preexisting in stack cache
and 19 or to main memory 1, in accordance with the registers 18 and 19 are flushed back to memory 1
addressing mode specified for the destination. under control of stack cache control unit 23 over bus

16 Execution control unit 22 operates based upon the 80 32. Furthermore, only the part of the new frame
value of the program counter 40 and the instruction nearest the address pointed to by the stack pointerin
presented on bus 26. The logically sequential in- register 10, that is, the top entries, is kept in the stack
struction from the instruction cache 3 is requested caches 18 and 19.
from execution control unit 22 over bus 33. Upon procedure return, it is not known how many

20 Unlike traditional caches, the registers in stack 85 entries from stack caches 18 and 19 had to be
cache 18 and 19 hold contiguous words of memory, flushed to memory 1 since the call. Accordingly,
and are far less costly to implement in terms of some entries may need to be restored from memory
complexity and circuit density than traditional 1. The argument of the CATCH instruction specifies
caches. Re-entrancy for cached instructions is the number of entries from stack cache 18 and 19

25 guaranteed by including the stack pointer in field 14 90 that must be available therein before the flow of
and the instruction address in field 13 as part of the execution can résume.
tag in the instruction cache 3. The use of the CATCH instruction is the guarantee

that stack cache references can be bound to register
Instruction set numbers and accessed as would be traditional

30 Four program instructions must be used for 95 registers without having to check to see if the data is
maintaining the stack cache registers 18 and 19: actually resident in the stack caches 18 and 19.
CALL, RETURN, ENTER, and CATCH. Of all machine Unlike normal caches, but like general purpose
instructions, only ENTER and RETURN are allowed registers, a stack cache reference will never miss. An
to modify the stack pointer in register 10. advantage of the present invention is that the access

35 The CALL instruction takes the return address, 100 time of stack cache registers 18 and 19 will be
usually, the value of the program counter 40, and substantially equal to that of registers in a general
saves it on the stack, then branches to the target register machine (not shown).
address. For ease in visualization, stack frame we The phrase ‘stack cache’ has been used, as
use is shown in Figure 3. described above, to name the circular buffer regis-

40 Thetarget of a CALL instruction is an ENTER 105 ters 18 and 19 because of the early binding of stack
instruction. The ENTER instruction is used to allocate offsets and in assigning register numbers automatic-
space for the new procedure’s stack frame by ally. There is no restriction from using a similar
subtracting its operand, that is, the size of the new mechanism to “cache’” any other particular piece of
stack frame in machine words, from the stack pointer memory. Substantial benefits can be gained from

45 in register 10. 110 allocating a small number of registers for global

The RETURN instruction deallocates the space for variables.
the current stack frame by adding its operand to the That is, in addition to registers in stack caches 18
stack pointer in register 10, then branching to the and 19 used for local variables, similar registers (not
return address on the stack. shown) may be used for mapping therein global

50 The CATCH instruction is always the next instruc- 115 variables from the memory 1. These registers would
tion executed following a RETURN instruction and is cover a static area of memory and therefore not
used to guarantee that the stack cache registers 18 require the use of circular buffers. Even large
and 19 are filled at ieast as deep as the number of programs tend to use relatively few scalar global
entries specified by the operand of the CATCH variables; a small percentage of these account for

55 instruction. 120 most of the dynamic usageof global variables.

ENTER and CATCH instructions are also used to Making the internal machine registers, that is,
handle the cases where the registers of stack caches registers 18 and 19, invisible to the compiler has
18 and 19 are not large enough to hold the entire several advantages. Object program code genera-
stack. When a procedure is entered, the ENTER tion is considerably eased because no register

60 instruction attempts to allocate a new set of registers 125 allocation is required. As stated earlier herein, in
in the stack caches 18 and 19 equal to the size of the many cases only a single one pass compiler is
new stack frame. If free register space exists in the needed; a large optimizing compiler requiring sever-
stack caches 18 and 19 for the entire new stack al passes is not required for the efficient allocation of
frame, all that needs to done is to modify the stack local variables to registers. Because only a single

65 pointerin register 10. 130 pass compiler is required, the compiler will run

4

GB 2115963 A

10

15

20

25

30

35

40

45

50

55

60

65

faster. The compiler will be smaller and easier to

write and thereby more likely to be free from “bugs”.

A major architectural concern in designing a very
large scale integrated (VLSI) microprocessor (not
shown) is to reduce off chip memory access time.
While switching speeds of individual transistors are
increasing, the relatively constant off chip speeds
will adversely affect any processor that has to make
many external references. Improvements in proces-
sing technology will only make the gap wider. The
reduction in memory references gained with the
registers in stack caches 18 and 19 is particularly
attractive for use with a VLSI processor. Because the
registers are invisible to the compiler, implementa-
tions with different numbers of registers create no
compatibility problems. As VLSI processing technol-
ogy improves, more registers may be added to stack
caches 18 and 19 without requiring a change in
either the compiler or the set of instructions.

CLAIMS

1. Acomputer comprising a main memory, a
stack cache for holding variables of a procedure, and
means for automatically binding said variables from
said main memory to said stack cache.

2. The computer according to claim 1 wherein
said stack cache comprises a circular buffer.

3. The computer according to claim 2 wherein
said circular buffer comprises a plurality of machine
registers.

4. The computer according to claim 1 wherein
said binding means comprises means for fetching
instructions from said main memory and for partially
decoding said instructions.

5. The computer according to claims 2 or 4
wherein said fetching and decoding means further
comprises a stack point (SP) register, and a max-
imum stack pointer (MSP) register, said SP register
and said MSP register being used for storing the SP
and the MSP, said SP and said MSP being used for
partially decoding said instructions and for provid-
ing the lower and upper bounds respectively, of said
procedure variables in said stack cache.

6. The computer according to claim 5 wherein
said stack cache address comprises the low order
bits of the address fro said main memory.

7. The computer according to claim 5 further
comprising means for flushing a plurality of vari-
ables from said stack cache to said main memory in
response to a determination that the storage space
required for said procedure variables exceed the
available storage capacity of said stack cache.

8. The computer according to claim 5 further
comprising an instruction cache for storing said
instructions.

9. Acomputer as claimed in claim 8, including
means for automatically mapping procedure vari-
ables from said main memory to said stack cache.

10. Ina computer having a main memory, a
method of using machine registers for storing
procedure variables comprising the steps of 1)
automatically transferring said procedure variables
between said main memory and said machine
registers during the execution of an object program,

2) using a stack pointer (SP) and a maximum stack
pointer (MSP) to delimit the lower and upper

. locations of storage within said circular buffer, 3)

70

partially decoding instructions by adding offsets to
said SP, and 4) utilizing said partially decoded
instructions to ascertain whether said procedure
variables are stored in said main memory or in said
machine registers.

_ Printed for Her Majesty’s Stationery Office, by Croydon Printing Company

Limited, Croydon, Surrey, 1983.
Published by The Patent Office, 25 Southampton Buildings, London,
WC2A 1AY, from which copies may be obtained.

