wo 20227218280 A1 |0 0000 KO0 0 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
International Bureau /
(43) International Publication Date ——’/
20 October 2022 (20.10.2022) WIRPO |

(10) International Publication Number

WO 2022/218280 Al
PCT

(51) International Patent Classification:
HO4N 19/169 (2014.01)

(21) International Application Number:
PCT/CN2022/086236

(22) International Filing Date:
12 April 2022 (12.04.2022)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
PCT/CN2021/086535
12 April 2021 (12.04.2021) CN

(71) Applicants: BEIJING BYTEDANCE NETWORK
TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035, 2/
F, No.3 Building, No.30, Shixing Road, Shijingshan Dis-
trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US];
12655 West Jefferson Boulevard, Sixth Floor, Suite No.
137, Los Angeles, California 90066 (US).

(72) Inventors: ZHANG, Kai; 12655 West Jefferson Boule-
vard, Sixth Floor, Suite No. 137, Los Angeles, California
90066 (US). ZHANG, Li; 12655 West Jefferson Boulevard,
Sixth Floor, Suite No. 137, Los Angeles, California 90066
(US). DENG, Zhipin; Jinritoutiao Post Office, China Satel-
lite Communications Tower, No.63, Zhichun Road, Haidi-
an District, Beijing 100080 (CN).

(74) Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build-
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080
(CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JM, JO, JP, KE, KG, KH,
KN, KP, KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW. SA, SC, SD, SE. SG. SK, SL, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of'inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

(54) Title: TRANSFORMS AND SIGN PREDICTION

700
Previmfsly recqnstructed Po,2 [PL2 (P22 | P22
neighbor pixels
\ Po-1 | Pi1 | P21 | Pz
P20 | P-1,0 Poo | P1o | P2o | P36
P21 | P11 Po,1
P22 | P12 Po.2
P23 (P13 Po3
Hypothesis /
reconstruction
FIG. 7

(57) Abstract: A mechanism for processing video data is disclosed. A
sign prediction usage for one or more residual coefficients in a block
is determined based on dimensions of the block. A conversion is then
performed between a visual media data and a bitstream based on the
residual coefficients in the block.

WO 2022/218280 PCT/CN2022/086236

Transforms and Sign Prediction

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims the benefit of International Application No.
PCT/CN2021/086535 filed April 12, 2021 by Kai Zhang, et al., and titled “Transforms and Sign
Prediction In Video Coding” which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] This patent document relates to generation, storage, and consumption of digital audio
video media information in a file format.

BACKGROUND

[0003] Digital video accounts for the largest bandwidth used on the Internet and other digital
communication networks. As the number of connected user devices capable of receiving and
displaying video increases, the bandwidth demand for digital video usage is likely to continue to

SrOwW.

SUMMARY

[0004] A first aspect relates to a method for processing video data comprising: determining, for
a conversion between a block of a video and a bitstream of the video, sign prediction usage for one
or more residual coefficients in the block based on dimensions of the block; and performing the
conversion based on the residual coefficients in the block.

[0005] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that sign prediction is disallowed for the block when the block is non-dyadic.

[0006] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that sign prediction is applied to a dyadic sized set of the residual coefficients in the block
when the block is non-dyadic.

[0007] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that sign prediction is disallowed for the block when a dimension of the block is not evenly
divisible by M, where M is an integer value.

[0008] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that sign prediction is disallowed for the block when a dimension of the block is equal to

M, where M is an integer value.

WO 2022/218280 PCT/CN2022/086236

[0009] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that a syntax element describing sign prediction for the block is omitted from the bitstream
when sign prediction is disallowed for the block.

[0010] Optionally, in any of the preceding aspects, another implementation of the aspect
provides determining a set of hypothesis reconstructed sample values for the block based on a
prediction hypothesis, wherein the block has dimensions including a width (W) and a height (H).
[0011] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that at least one of W or H is non-dyadic.

[0012] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the set hypothesis reconstructed sample values for the block is determined based on a
pattern of the residual coefficients in the block.

[0013] Optionally, in any of the preceding aspects, another implementation of the aspect
provides determining the set of hypothesis reconstructed sample values includes determining a first
set of hypothesis reconstructed sample values and determining a second set of hypothesis
reconstructed sample values, and wherein each set of hypothesis reconstructed sample values
correspond to a specific residual coefficient.

[0014] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first set of hypothesis reconstructed sample values and the second set of hypothesis
reconstructed sample values are collectively used to determine a cost for the pattern of the residual
coefficients in the block.

[0015] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that a first table stores all sets of hypothesis reconstructed sample values in entries, and
wherein a second table indicates indices for the entries in the first table.

[0016] Optionally, in any of the preceding aspects, another implementation of the aspect
provides determining sign information for the residual coefficients in the block based on the sets of
hypothesis reconstructed sample values.

[0017] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the block includes a first sign and a second sign, and wherein the first sign is predicted
according to a first rule and the second sign is predicted according to a second rule that is different

from the first rule.

WO 2022/218280 PCT/CN2022/086236

[0018] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the block includes a first sign and a second sign, and wherein a prediction of the second
sign is dependent of a prediction of the first sign.

[0019] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that a maximum number of predicted signs is determined based on a location of the block,
a block dimension, a block type, or combinations thereof.

[0020] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that sign prediction is determined based on coding information including a quantization
parameter (QP), a prediction mode, a coding tool, motion information, a color component, a color
format, a temporal layer, a slice type, a neighboring block information, a coding tree depth, the
residual coefficients of the block, a transform type, a residual coding mode, a partition tree type, or
combinations thereof.

[0021] Optionally, in any of the preceding aspects, another implementation of the aspect
provides determining whether to signal a low frequency non-separable secondary transform
(LFNST) index based on a first variable, wherein the first variable 1s modified by at least one of
color component of the block, coding structure of the block, or block type of the block.

[0022] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first variable is a LENST direct current (DC) only (LfnstDcOnly) flag or a LENST
zero out sign coefficient flag (LfnstZeroOutSigCoeffFlag).

[0023] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first variable is dependent on a transform skip flag.

[0024] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first variable is not modified when parsing a residual block of a first color
component when single-tree coding structure is applied.

[0025] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first variable is modified when parsing a residual block of a first color component
when a dual-tree coding structure is applied.

[0026] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the first variable is modified when parsing a residual block of a first color component

when a dual-tree coding structure is applied.

WO 2022/218280 PCT/CN2022/086236

[0027] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the determination whether to signal the LFNST index is based on a modified value in
the first variable.

[0028] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the conversion includes encoding the block into the bitstream.

[0029] Optionally, in any of the preceding aspects, another implementation of the aspect
provides that the conversion includes decoding the block from the bitstream.

[0030] A second aspect relates to a non-transitory computer readable medium comprising a
computer program product for use by a video coding device, the computer program product
comprising computer executable instructions stored on the non-transitory computer readable
medium such that when executed by a processor cause the video coding device to perform the
method of any of the preceding aspects.

[0031] A third aspect relates to an apparatus for processing video data comprising: a processor;
and a non-transitory memory with instructions thereon, wherein the instructions upon execution by
the processor, cause the processor to perform the method of any of the preceding aspects.

[0032] A fourth aspect relates to a non-transitory computer-readable recording medium storing
a bitstream of a video which is generated by a method performed by a video processing apparatus,
wherein the method comprises: determining sign prediction usage for one or more residual
coefficients in a block based on dimensions of the block; and generating the bitstream based on
the determining,

[0033] A fifth aspect relates to a method for storing bitstream of a video, comprising:
determining sign prediction usage for one or more residual coefficients in a block based on
dimensions of the block; generating the bitstream based on the determining; and storing the
bitstream in a non-transitory computer-readable recording medium.

[0034] For the purpose of clarity, any one of the foregoing embodiments may be combined with
any one or more of the other foregoing embodiments to create a new embodiment within the scope
of the present disclosure.

[0035] These and other features will be more clearly understood from the following detailed

description taken in conjunction with the accompanying drawings and claims.

WO 2022/218280 PCT/CN2022/086236

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] For a more complete understanding of this disclosure, reference is now made to the
following brief description, taken in connection with the accompanying drawings and detailed
description, wherein like reference numerals represent like parts.
[0037] FIG. 1 1s a schematic diagram of an example Non-Separable Secondary Transform
(NSST) process.
[0038] FIG. 2 is a schematic diagram of an example reduced secondary transform (RST)
process.
[0039] FIG. 3 is a schematic diagram of another example of residual transformation.
[0040] FIG. 4 is a schematic diagram of an example luma block and a corresponding chroma
block.
[0041] FIG. 5 is a schematic diagram of an example forward LENTS 8x8 process witha 16 x 48
matrix.
[0042] FIG. 6 is a schematic diagram of example 1/4 Unsymmetric Binary Tree (UBT)
partitioning structures.
[0043] FIG. 7 is a schematic diagram of a mechanism for determining costs for a sign prediction
hypothesis at a reconstructed border.
[0044] FIG. 8 is a block diagram showing an example video processing system.
[0045] FIG. 9 is a block diagram of an example video processing apparatus.
[0046] FIG. 10 1s a flowchart for an example method of video processing.
[0047] FIG. 11 is a block diagram that illustrates an example video coding system.
[0048] FIG. 12 is a block diagram that illustrates an example encoder.
[0049] FIG. 13 is a block diagram that illustrates an example decoder.
[0050] FIG. 14 is a schematic diagram of an example encoder.

DETAILED DESCRIPTION
[0051] It should be understood at the outset that although an illustrative implementation of one
or more embodiments are provided below, the disclosed systems and/or methods may be
implemented using any number of techniques, whether currently known or yet to be developed. The
disclosure should in no way be limited to the illustrative implementations, drawings, and techniques

illustrated below, including the exemplary designs and implementations illustrated and described

WO 2022/218280 PCT/CN2022/086236

herein, but may be modified within the scope of the appended claims along with their full scope of
equivalents.

[0052] This document is related to video coding technologies, and more particularly to
transforms and sign prediction in video coding. The disclosed mechanisms may be applied to the
video coding standards such as High Efficiency Video Coding (HEVC) and/or Versatile Video
Coding (VVC). Such mechanisms may also be applicable to other image/video coding standards
and/or video codecs.

[0053] Video coding standards have evolved primarily through the development of the
International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
and International Organization for Standardization (ISO)/ International Electrotechnical
Commission (IEC) standards. The ITU-T produced a H 261 standard and a H.263 standard, ISO/IEC
produced Motion Picture Experts Group (MPEG) phase one (MPEG-1) and MPEG phase four
(MPEG-4) Visual standards, and the two organizations jointly produced the H.262/ MPEG phase
two (MPEG-2) Video standard, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, and
the H.265/High Efficiency Video Coding (HEVC) standard. Since H.262, the video coding standards
are based on a hybrid video coding structure that utilizes a temporal prediction plus a transform
coding. To explore video coding technologies beyond HEVC, the Joint Video Exploration Team
(JVET) was jointly founded by VCEG and MPEG. Further, methods have been adopted by JVET
and included into a reference software known as Joint Exploration Model (JEM). The JVET
announced VVC, which is coding standard is targeting at fifty percent bitrate reduction as compared
to HEVC. The VVC employs a VVC test model (VIM).

[0054] The present disclosure relates to video coding. In video coding, pictures are partitioned
into blocks. The blocks are matched to reference blocks. This allows an encoder to encode a block
by reference to a reference block according to a process called prediction. Prediction can include
matching to reference blocks in the same picture and matching to reference blocks in different
picture(s), known as intra prediction and inter prediction, respectively. Any difference between a
current block and a reference block is known as residual, residual data, and/or residue. The encoder
encodes both the prediction and the residual into a bitstream. In order to reconstruct a current block,
a decoder obtains the prediction and residual data from the bitstream and, adds the prediction to the
residual data. More specifically, an encoder can code the residual data by applying a transform to

the residual. This converts the residual data from samples (e.g., pixel values) to coefficients. The

WO 2022/218280 PCT/CN2022/086236

encoder can also apply quantization to remove certain coefficients from the transformed residual
data. Quantization applies further compression at the cost of losing some residual data. The encoder
can then encode the transformed and quantized residual into the bitstream. At the decoder, the
residual 1s obtained from the bitstream and dequantized. An inverse transform is also applied in
order to reconstruct the residual data. The decoder can then reconstruct a block by applying the
reconstructed residual data. The present disclosure relates to the process of transforming residual
for use in conjunction with prediction for code and decode blocks of pictures in video.

[0055] FIG. 1 is a schematic diagram 100 of an example Non-Separable Secondary Transform
(NSST) process, as applied in JEM. At an encoder, a forward primary transform is applied to a block
of residual data. Then a secondary transform is applied prior to quantization. The result is coded
into the bitstream. At the decoder, de-quantization is performed. Then an inverse secondary
transform 1s applied prior to application of an inverse primary transform, which reconstructs the
residual for use in decoding the block. In schematic diagram 100, a 4x4 or 8x8 secondary transform
is performed depending on the block size. For example, a 4x4 secondary transform is applied for
small blocks (e.g., min (width, height) < 8) and 8x8 secondary transform 1s applied for larger blocks
(e.g., min (width, height) > 4) per 8x8 block.

[0056] Application of a non-separable transform is described as follows using input as an

example. To apply the non-separable transform, the 4x4 input block X:

is first represented as a vector X as follows:
X_\:
[Xoo Xo1 Xoz Xos Xio X11 X1z Xz Xao Xox X2z Xaz Xzo Xa1 Xz Xass]®

[0057] The non-separable transform is calculated as F =T - X, where F indicates the transform

coefficient vector, and T is a 16x16 transform matrix. The 16x1 coefficient vector F is subsequently
re-organized as 4x4 block using the scanning order for that block (horizontal, vertical, or diagonal).
The coefficients with smaller index are placed with the smaller scanning index in the 4x4 coefficient
block. There are 35 transform sets in total, and three non-separable transform matrices (kernels) per

transform set are used. The mapping from the intra prediction mode to the transform set is pre-

WO 2022/218280 PCT/CN2022/086236

defined. For each transform set, the selected non-separable secondary transform candidate is further
specified by the explicitly signaled secondary transform index. The index is signaled in a bit-stream
once per intra CU after transform coefficients.

[0058] A reduced secondary transform (RST), also known as a low frequency non-separable
transform (LFNST) is now discussed. The RST may employ a four transform set (instead of 35
transform sets). 16x64 (may be further reduced to 16x48) and 16x16 matrices are employed for 8x8
and 4x4 blocks, respectively. For notational convenience, the 16x64 (may further be reduced to
16x48) transform is denoted as RST8x8 and the 16x16 one as RST4x4.

[0059] FIG. 2 is a schematic diagram 200 of an example RST process that employs a reduced
secondary transform. At an encoder, a forward primary transform is applied to a block of residual
data. Then a secondary transform is applied prior to quantization. The result is coded into the
bitstream. At the decoder, de-quantization is performed. Then an inverse secondary transform is
applied prior to application of an inverse primary transform, which reconstructs the residual for use
in decoding the block. In schematic diagram 200, 16 coefficients result from a 4x4 forward reduced
secondary transform, and 64 coefficients result from a 8x8 forward reduced secondary transform.
Further, a 4x4 or an 8x8 inverse reduced secondary transform is applied to 8 or 16 coefficients,
respectively.

[0060] RST computation is now discussed. The idea of a Reduced Transform (RT) is to map an
N dimensional vector to an R dimensional vector in a different space, where R/N (R < N) 1s the

reduction factor. The RT matrix 1s an RxN matrix as follows:

ti1 tiz tiz o Uw

T _ |t tap trz e Gon
RxN — N N N .. N

tri tr2 tpz - lpy

where the R rows of the transform are R bases of the N dimensional space. The inverse transform
matrix for RT is the transpose of the corresponding forward transform. The forward and inverse RT
are depicted in FIG. 3.

[0061] FIG. 3 is a schematic diagram 300 of another example of residual transformation, for
example as used in VVC. The residual can be transformed by a reduced transform T and quantized
at an encoder to creates coefficients, which represent the residual data in a compressed form. A

dequantization and inverse transform T* with a reduced inverse transform can be applied at a decoder

WO 2022/218280 PCT/CN2022/086236

to convert the coefficients back into the residual data. The residual data can then be applied to the
prediction to reconstruct the coded block for display.

[0062] In an example, the RST 8x8 with a reduction factor of 4 (1/4 size) is applied. Hence,
instead of 64x64, which results from a 8x8 non-separable transform matrix size, a 16x64 direct
matrix is used. In other words, the 64x16 inverse RST matrix is used at the decoder side to generate
core (primary) transform coefficients in the 8x8 top-left regions. The forward RST8x8 uses 16x64
(or 8x64 for 8x8 block) matrices so that the transform produces non-zero coefficients only in the
top-left 4x4 region within the given 8x8 region. In other words, when RST is applied the 8x8 region
except the top-left 4x4 region has only zero coefficients. For RST4x4, 16x16 (or 8x16 for 4x4 block)
direct matrix multiplication is applied.

[0063] Aninverse RST is conditionally applied when the following two conditions are satisfied:
block size is greater than or equal to the given threshold (W>=4 && H>=4), and transform skip
mode flag is equal to zero. If both W and H of a transform coefficient block is greater than 4, then
the RST8x8 is applied to the top-left 8x8 region of the transform coefficient block. Otherwise, the
RST4x4 is applied on the top-left min(8, W) x min(8, H) region of the transform coefficient block.
If RST index is equal to 0, RST is not applied. Otherwise, RST is applied, with a kernel chosen
based on the RST index. The RST selection method and coding of the RST index are explained
below. Furthermore, RST is applied for intra CUs, in both intra and inter slices, and for both luma
and chroma components. If a dual tree is enabled, RST indices for luma and chroma components
are signaled separately. For inter slice (the dual tree is disabled), a single RST index is signaled and
used for both luma and chroma components.

[0064] Intra Sub-Partitions (ISP) is an example intra prediction mode. When ISP mode 1s
selected, RST is disabled and the RST index is not signaled. This is because performance
improvements are marginal even when RST is applied to every feasible partition block in this case.
Furthermore, disabling RST for ISP-predicted residual reduces encoding complexity.

[0065] RST selection is now discussed. A RST matrix is chosen from four transform sets, each
of which comprises two transforms. Which transform set is applied is determined from intra
prediction mode as the follows. When one of three CCLM modes is indicated, transform set O 1s

selected. Otherwise, the transform set selection is performed according to the table below.

IntraPredMode Transform set index

IntraPredMode < 0 1

WO 2022/218280 PCT/CN2022/086236

0 <= IntraPredMode <=1 0
2 <= IntraPredMode <= 12 1

13 <= IntraPredMode <=23 |2
24 <=IntraPredMode <=44 |3
45 <=IntraPredMode <=55 |2
56 <= IntraPredMode 1

[0066] The indices to access the Table, denoted as IntraPredMode, have a range of [-14, 83],
which is a transformed mode index used for wide angle intra predictions.

[0067] Further, the RST set selection for chroma blocks coded in CCLM mode can be modified
to be based on a variable intra prediction mode cross component linear model
(IntraPredMode CCLM). The IntraPredMode CCLM has a range of [-14, 80]. The
IntraPredMode CCLM is determined by the co-located luma intra prediction mode and the
dimension of the current chroma block.

[0068] FIG. 4 is a schematic diagram 400 of an example luma block, on the left, and a
corresponding chroma block, on the right, split by a dual tree partition. When dual tree is enabled,
the block (e.g., prediction unit (PU)) covering the corresponding luma sample of the top-left chroma
sample in the current chroma block is defined as the co-located luma block. Schematic diagram 400
shows such an example with a co-located position denoted at the top left corner of the luma block.
[0069] RST matrices of reduced dimension is now discussed. FIG. 5 is a schematic diagram
500 of an example forward LENTS 8x8 process with a 16 x 48 matrix. As shown, a block of N x M
residual (where N and M are greater than or equal to 8) is obtained as a difference between a
prediction block and a current block. A two dimensional (2D) forward primary transform is applied
to the NxM residual to create a block of M x N primary coefficients. Reference is particularly made
to the top left corner coefficients from the block of M x N primary coefficients. These coefficients
are grouped in three blocks of 4x4 primary coefficients. In contrast with other processes, application
of the secondary transform includes application of 16x48 matrices instead of 16x64 with the same
transform set configuration, denoted as the kernel. Each of the matrices takes a 48 x 1 vector as
input data. The 48 x 1 vector is created from three blocks of 4x4 primary coefficients from the top-
left 8x8 block from the M x N primary coefficients. This excludes the right-bottom 4x4 block as

shown in schematic diagram 500. Accordingly, application of the forward secondary transform

10

WO 2022/218280 PCT/CN2022/086236

results in a 4 x 4 block of secondary coefficients, two 4 x 4 blocks of zero coefficients, a M-8 x 8
block of top-right primary coefficients, a 8x(IN-8) block of bottom-left primary coefficients, and a
block of (M-8) x (N-8) bottom-right primary coefficients. The 4 x 4 block of secondary coefficients
is generated from a 16 x 1 vector created by applying the 16 x 48 matrices to the 48 x 1 vector from
the top left group of 4 x 4 primary coefficients.

[0070] Low frequency non-separable transform (LFNST) as used in VVC is developed from
RST. An example of LFNST coding syntax as used in VVC is as follows.

coding_unit(x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType) { Descriptor

if(sh_slice type == 1 && (cbWidth > 64 || cbHeight > 64))

modeType = MODE_TYPE_INTRA

chType = treeType == DUAL_TREE CHROMA 71 :0

if(sh_slice type != 1 || sps_ibc_enabled flag) {

if(treeType '= DUAL TREE CHROMA &&
((!(cbWidth == 4 && cbHeight == 4) &&
modeType !'= MODE TYPE INTRA) ||
(sps_ibc_enabled flag && cbWidth <= 64 && cbHeight <= 64)))

cu_skip flag| x0][v0] ac(v)

if(cu_skip flag[x0][y0] == 0 && sh_slice type = 1 &&
'(cbWidth == 4 && cbHeight == 4) && modeType ==
MODE TYPE ALL)

pred_mode flag ae(v)

if(((sh_slice type == 1 && cu_skip flag[x0][y0]==0) ||

(sh_slice type '= 1 && (CuPredMode| chType |[x0][y0] !=
MODE_INTRA ||

(((cbWidth == 4 && cbHeight == 4) || modeType ==
MODE_TYPE INTRA)

&& cu_skip flag[x0][y0] == 0)))) &&

cbWidth <= 64 && cbHeight <= 64 && modeType =
MODE _TYPE INTER &&

sps_ibc_enabled flag && treeType '= DUAL TREE CHROMA)

pred mode_ibc_flag ac(v)

11

WO 2022/218280 PCT/CN2022/086236

}

if(CuPredMode[chType |[x0 [[y0] == MODE INTRA &&
sps_palette_enabled flag &&

cbWidth <= 64 && cbHeight <= 64 && cu_skip flag[x0][y0] ==
&&

modeType '= MODE TYPE INTER && ((cbWidth * cbHeight) >

(treeType !'= DUAL TREE CHROMA 7 16 : 16 * SubWidthC * SubHeightC
)) &&

(modeType !'= MODE TYPE INTRA || treeType !=
DUAL TREE CHROMA))

pred_mode plt flag ac(v)

if(CuPredMode[chType |[x0 [[y0] == MODE INTRA &&
sps_act_enabled flag &&
treeType == SINGLE TREE)

cu_act_enabled flag ae(v)

if(CuPredMode[chType J[x0 [[y0] == MODE INTRA ||
CuPredMode| chType |[x0][y0] == MODE _PLT) {

if(treeType == SINGLE TREE || treeType == DUAL TREE LUMA) {

if(pred_mode plt flag)

palette_coding(x0, y0, cbWidth, cbHeight, treeType)

else {

if(sps_bdpcm_enabled flag &&
cbWidth <= MaxTsSize && cbHeight <= MaxTsSize)

mtra_bdpcm_luma_flag ae(v)

if(intra_bdpcm_luma flag)

mtra_bdpcm_luma_dir flag ac(v)

else {

if(sps_mip_enabled flag)

mtra_mip_flag ae(v)

if(intra_mip_flag) {

12

WO 2022/218280 PCT/CN2022/086236

mtra_mip_transposed flag| x0][y0] ac(v)
mtra_mip_mode[x0][yO | ac(v)
}else {
if(sps_mrl_enabled flag && ((y0 % CtbSizeY)>0))
intra_luma_ref idx ac(v)
if(sps_isp_enabled flag && intra luma ref idx == 0 &&
(cbWidth <= MaxTbSizeY && cbHeight <= MaxTbSizeY)
&&
(cbWidth * cbHeight > MinTbSizeY * MinTbSizeY) &&
'cu_act_enabled flag)
intra_subpartitions_mode flag ac(v)
if(intra_subpartitions mode flag == 1)
intra_subpartitions_split_flag ac(v)
if(intra_luma ref idx == 0)
intra_luma mpm_flag| x0][y0] ac(v)
if(intra_luma mpm_flag| x0][y0]) ¢
if(intra_luma ref idx == 0)
mtra_luma not planar flag| x0][y0 | ac(v)
if(intra_luma not planar flag| x0][v0])
mtra_luma mpm_idx[x0][y0] ac(v)
} else
intra_luma mpm_remainder| x0][yO | ac(v)
¥
¥
¥
¥
if((treeType == SINGLE TREE || treeType == DUAL TREE CHROMA)
&&
sps_chroma_format_idc != 0) {

13

WO 2022/218280 PCT/CN2022/086236

if(pred_mode plt flag && treeType == DUAL TREE CHROMA)

palette_coding(x0, y0, cbWidth / SubWidthC, cbHeight / SubHeightC,
treeType)

else if(!pred mode plt flag) {

if(!cu_act _enabled flag) {

if(cbWidth / SubWidthC <= MaxTsSize && cbHeight / SubHeightC <=
MaxTsSize
&& sps_bdpcm_enabled flag)

mtra_bdpcm_chroma flag ac(v)

if(intra_bdpcm_chroma_flag)

mtra_bdpcm_chroma dir flag ac(v)
else {
if(CclmEnabled)
cclm_mode flag ac(v)

if(cclm_mode flag)

cclm_mode idx ac(v)
else
intra_chroma_pred mode ac(v)
¥
¥
¥
¥
} else if(treeType '= DUAL TREE CHROMA) { /* MODE_INTER or
MODE IBC */

if(cu_skip flag[x0][v0] == 0)

general _merge flag| x0][y0 | ac(v)

if(general merge flag[x0][y0])

merge_data(x0, y0, cbWidth, cbHeight, chType)

else if(CuPredMode| chType |[x0][y0] == MODE IBC) {

14

WO 2022/218280 PCT/CN2022/086236

mvd_coding(x0,y0, 0,0)

if(MaxNumIbcMergeCand > 1)

mvp_ 10 flag[x0][yO] ac(v)

if(sps_amvr_enabled flag &&
(MvdLO[xO J[vOJ[O] '= 0 || MvdLO[x0 J[y0][1] = 0))

amvr_precision_idx[x0][y0] ac(v)

}else {

if(sh_slice type == B)

mter_pred idc[x0][yO] ac(v)

if(sps_affine_enabled flag && cbWidth >= 16 && cbHeight >= 16) {

mter_affine flag| x0][y0] ac(v)

if(sps_6param_affine _enabled flag && inter affine flag| x0][y0)

cu_affine type flag| x0][v0] ac(v)

}

if(sps_smvd_enabled flag && 'ph mvd 11 zero flag &&
mter_pred idc[x0 [[y0] == PRED BI &&
linter_affine flag| x0][y0] && RefldxSymL0 >—-1 && RefldxSymL1
>-1)

sym_mvd_flag] x0][y0] ac(v)

if(inter_pred idc[x0][y0] !'= PRED L1){

if(NumRefldxActive[0 | > 1 && !sym_mvd flag] x0][y0])

ref idx 10] x0][y0] ae(v)

mvd_coding(x0,v0,0,0)

if(MotionModellde[x0 [[y0]>0)

mvd_coding(x0,v0,0,1)

if(MotionModelldc| x0][y0 [>1)

mvd_coding(x0, v0, 0, 2)

mvp_ 10 flag[x0][yO] ac(v)

}else {

15

WO 2022/218280 PCT/CN2022/086236

MvdLO[x0][y0][0]=0

MvdLO[x0][y0][1]=0

}

if(inter_pred idc[x0][y0] !'= PRED L0){

if(NumRefldxActive[1 | > 1 && !sym mvd flag[x0 |[y0])

ref idx 11[x0][y0] ae(v)

if(ph_mvd 11 _zero flag && inter pred idc[x0 J[y0] == PRED BI) {

MvdL1[x0][y0][0]=0

MvdL1[x0][y0][1]=0

MvdCpL1[x0][yO][0][0]=0

MvdCpL1[x0][y0][0][1]=0

MvdCpL1[x0][y0][1][0]=0

MvdCpL1[x0][yO][1][1]=0

MvdCpL1[x0][y0][2][0]=0

MvdCpL1[x0][y0][2][1]=0

}else {

if(sym_mvd flag| x0 |[y0]) {

MvdL1[x0 J[y0][0]=-MvdLO[x0][y0][0]

MvdL1[x0 J[yO][1]=-MvdLO[xO][yO][1]

} else

mvd_coding(x0,v0,1,0)

if(MotionModellde[x0 [[y0][> 0)

mvd_coding(x0,v0,1,1)

if(MotionModelldc[x0][y0O [> 1)

mvd_coding(x0,v0,1,2)

}

mvp_ 11 _flag[x0][yO] ac(v)

}else {

16

WO 2022/218280 PCT/CN2022/086236

MvdLI1[x0][y0][0]=0

MvdLI[x0][y0][1]=0

}

if((sps_amvr_enabled flag && inter affine flag[x0 J[y0] == 0 &&

(MvdLO[xO J[vOJ[O] '= 0 || MvdLO[xO |[yO][1] = 0 ||

MvdL1[xO [[vOJ[0] '= 0 || MvdL1[xO][yO][1] = 0)) ||

('sps_affine amvr enabled flag && inter affine flag| x0 J[y0] == 1
&&

(MvdCpLO[x0][yO][O][O] = 0 || MvdCpLO[xO J[yO]J[O][1] =
011

MvdCpL1[x0 |[yO][O][O] = 0 || MvdCpLI[xO J[yO][O][1] !'= 0

MvdCpLO[x0][yO][1][0] !'= 0 || MvdCpLO[x0][yO][1][1] != 0

MvdCpL1[x0][yO][1][0] '= 0 || MvdCpL1[x0J[yO][1][1] = 0

MvdCpLO[x0][yO][2][0] !'= 0 || MvdCpLO[x0][y0][2][1] != 0

MvdCpL1[x0][y0][2][0] = 0 || MvdCpL1[x0][vy0][2][1] !=
0))){

amvr_flag| x0][v0] ae(v)

if(amvr_flag[x0][y0])

amvr_precision_idx| x0][yO | ac(v)

}

if(sps_becw_enabled flag && inter pred idc| x0][y0] == PRED BI &&
luma weight 10 flag[ref 1dx 10[x0][y0]] == 0 &&
luma weight 11 flag[ref Wdx 11 [x0][y0]] == 0 &&
chroma weight 10 flag[ref 1dx 10[x0][y0]] == 0 &&
chroma weight 11 flag[ref idx 11 [x0][y0]] == 0 &&
cbWidth * cbHeight >= 256)

bew _1dx[x0][yO0] ac(v)

17

WO 2022/218280 PCT/CN2022/086236

}

if(CuPredMode[chType][x0 |[y0] !'= MODE INTRA && !pred mode plt flag
&&
general _merge flag| x0 J[y0] == 0)

cu_coded flag ae(v)

if(cu_coded _flag) {

if(CuPredMode[chType |[x0][v0 | == MODE_INTER &&
sps_sbt_enabled flag &&
lciip_flag[x0][y0] && cbWidth <= MaxTbSizeY &&
cbHeight <= MaxTbSizeY) {

allowSbtVerH = cbWidth >= 8

allowSbtVerQ = cbWidth >= 16

allowSbtHorH = cbHeight >= 8

allowSbtHorQ = cbHeight >= 16

if(allowSbtVerH || allowSbtHorH)

cu_sbt flag ae(v)

if(cu_sbt flag) {

if((allowSbtVerH || allowSbtHorH) && (allowSbtVerQ ||
allowSbtHorQ))

cu_sbt quad flag ae(v)

if((cu_sbt_quad flag && allowSbtVerQ && allowSbtHorQ) ||
(!cu_sbt_quad flag && allowSbtVerH && allowSbtHorH))

cu_sbt _horizontal flag ae(v)

cu_sbt pos flag ae(v)

}

if(sps_act_enabled flag && CuPredMode[chType J[x0 [[y0] !'=
MODE_INTRA &&
treeType == SINGLE TREE)

cu_act_cnabled flag ae(v)

LfnstDcOnly = 1

18

WO 2022/218280 PCT/CN2022/086236

LfnstZeroOutSigCoeffFlag = 1

MtsDcOnly =1

MtsZeroOutSigCoceffFlag = 1

transform_tree(x0, y0, cbWidth, cbHeight, treeType, chType)

IftnstWidth = (treeType == DUAL _TREE CHROMA) ? cbWidth / SubWidthC :
((IntraSubPartitionsSplitType == ISP_VER SPLIT) ?
cbWidth / NumlIntraSubPartitions : cbWidth)

IfnstHeight = (treeType ==
DUAL_TREE CHROMA) ? cbHeight / SubHeightC :
((IntraSubPartitionsSplitType == ISP HOR_SPLIT) ?
cbHeight / NumIntraSubPartitions : cbHeight)

lfnstNotTsFlag = (treeType == DUAL TREE CHROMA ||
'tu v _coded flag[x0][y0] ||
transform_skip flag[x0 J[y0][0] == 0) &&

(treeType == DUAL TREE LUMA ||

((tu_cb_coded flag[x0 [v0] ||
transform_skip flag[x0 J[y0][1] == 0) &&
('tu_cr _coded flag[x0][v0] ||
transform_skip flag[x0 J[y0][2] == 0)))

if(Min(IfnstWidth, IfnstHeight) >= 4 && sps_Ifnst_enabled flag == 1 &&
CuPredMode[chType || x0 |[y0] == MODE INTRA && lfnstNotTsFlag
==1 &&
(treeType == DUAL _TREE CHROMA || !IntraMipFlag| x0][yO | ||
Min(IfnstWidth, IfnstHeight) >= 16) &&
Max(cbWidth, cbHeight) <= MaxTbSizeY) {

if((IntraSubPartitionsSplitType != ISP_NO SPLIT || LfnstDcOnly == 0)
&&
LfnstZeroOutSigCoeffFlag == 1)

Ifnst_idx ae(v)

19

WO 2022/218280 PCT/CN2022/086236

if(treeType '= DUAL TREE CHROMA && lfnst idx == 0 &&
transform_skip flag[x0][y0][0] == 0 && Max(cbWidth, cbHeight)
<= 32 &&
IntraSubPartitionsSplitType == ISP_NO_SPLIT && cu_sbt flag == 0
&&
MtsZeroOutSigCoeffFlag == 1 && MtsDcOnly == 0) {

if(((CuPredMode[chType][x0 J[y0] == MODE INTER &&
sps_explicit_mts_inter_enabled flag) ||
(CuPredMode| chType][x0]| yO | == MODE INTRA &&
sps_explicit_mts_intra_enabled flag)))

mts idx ae(v)

[0071] An example of residual coding syntax is as follows.

residual _coding(x0, y0, log2TbWidth, log2TbHeight, cldx) { Descriptor

if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth == 5 && log2TbHeight <6)

log2ZoTbWidth = 4

else

log2ZoTbWidth = Min(log2TbWidth, 5)

if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth < 6 && log2TbHeight == 5)

log2ZoTbHeight = 4

else

log2ZoTbHeight = Min(log2TbHeight, 5)

if(log2 TbWidth > 0)

last_sig_coeff x prefix ac(v)

20

WO 2022/218280 PCT/CN2022/086236

if(log2 TbHeight > 0)

last_sig_coeff y prefix ac(v)

if(last_sig coeff x prefix >3)

last_sig_coeff x suffix ae(v)

if(last_sig_coeff y prefix >3)

last_sig_coeff v suffix ac(v)

log2TbWidth = log2ZoTbWidth

log2 TbHeight = log2ZoTbHeight

remBinsPass] = ((1 << (1log2TbWidth + log2TbHeight)) * 7) >> 2

log2SbW = (Min(log2TbWidth, log2TbHeight) <271 :2)

log2SbH = 10g2SbW

if(log2 TbWidth + log2 TbHeight > 3)

if(log2 TbWidth <2) {

log2SbW = log2 TbWidth

log2SbH = 4 — log2SbW

} else if(log2TbHeight <2) {

log2SbH = log2 TbHeight

log2SbW =4 —log2SbH

}

numSbCoeff =1 << (1log2SbW + log2SbH)

lastScanPos = numSbCoeff

lastSubBlock = (1 << (log2TbWidth + log2TbHeight — (log2SbW +10g2SbH))
)—-1

do {

if(lastScanPos == 0) {

lastScanPos = num SbCoeff

lastSubBlock— —

21

WO 2022/218280 PCT/CN2022/086236

lastScanPos— —

xS = DiagScanOrder| 1og2TbWidth — log2SbW][log2TbHeight — log2SbH |
[lastSubBlock][0 |

yS = DiagScanOrder| log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[lastSubBlock]| 1]

xC=(xS << log2SbW) +
DiagScanOrder[log2SbW][log2SbH][lastScanPos |[0]

yC=(yS << log2SbH) +
DiagScanOrder[log2SbW][log2SbH][lastScanPos |[1]

} while((xC !'= LastSignificantCoeffX) || (yC != LastSignificantCoeffY))

if(lastSubBlock == 0 && log2TbWidth >= 2 && log2TbHeight >= 2 &&
'transform_skip flag[x0 |[y0][cldx | && lastScanPos > 0)

LfnstDcOnly =0

if((lastSubBlock > 0 && log2TbWidth >= 2 && log2TbHeight >= 2) ||
(lastScanPos > 7 && (log2TbWidth == 2 || log2TbWidth == 3) &&
log2TbWidth == log2TbHeight))

LfnstZeroOutSigCoeffFlag = 0

if((lastSubBlock > 0 || lastScanPos >0) && cldx==10)

MtsDcOnly =0

QState =0

for(1=lastSubBlock;1 >= 0;1——) {

startQStateSb = QState

xS = DiagScanOrder| 1og2TbWidth — log2SbW][log2TbHeight — log2SbH |
[1][0]

yS = DiagScanOrder| log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[1][1]

inferSbDcSigCocffFlag = 0

if(1 <lastSubBlock && 1>0) {

sb_coded flag| xS][¥S | ae(v)

inferSbDcSigCoeffFlag = 1

22

WO 2022/218280 PCT/CN2022/086236

}

if(sb_coded flag[xS][yS] && (xS>3 || yS>3) && cldx == 0)

MtsZeroOutSigCoeffFlag = 0

firstSigScanPosSb = numSbCoeff

lastSigScanPosSb = —1

firstPosMode0 = (1 == lastSubBlock ? lastScanPos : numSbCoeff — 1)

firstPosModel = firstPosMode(

for(n = firstPosMode0; n >= 0 && remBinsPassl >= 4;n——) {

xC = (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW [log2SbH J[n [1]

if(sb_coded flag[xS |[yS] && (n >0 || !inferSbDcSigCoeffFlag) &&
(xC != LastSignificantCoeffX || yC != Last SignificantCoeffY)) {

sig_coeff flag[xC |[yC | ac(v)

remBinsPass]1— —

if(sig_coeff flag[xC [yC])

inferSbDcSigCoeffFlag = 0

}

if(sig_coeff flag] xC][yC]) {

abs_level gtx flag[n][0] ae(v)

remBinsPass]1— —

if(abs_level gtx flag[n][01]) {

par_level flag[n | ae(v)
remBinsPass]— —
abs_level gtx flag[n][1] ae(v)
remBinsPass]— —

¥

if(lastSigScanPosSb == —1)

lastSigScanPosSb =n

23

WO 2022/218280 PCT/CN2022/086236

firstSigScanPosSb = n

}

AbsLevelPassl[xC [yC] = sig_coeff flag[xC][yC | + par_level flag| n]+
abs_level gtx flag[n][0]+2 * abs level gtx flag[n][1]

if(sh_dep quant_used flag)

QState = QStateTransTable[QState || AbsLevelPassl[xC [[yC | & 1]

firstPosModel =n—1

}

for(n = firstPosMode0; n > firstPosModel; n——) {

xC = (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW [log2SbH J[n [1]

if(abs_level gtx flag[n][1])

abs_remainder[n | ae(v)

AbsLevel] xC][yC] = AbsLevelPass1[xC |[yC | +2 * abs_remainder[n |

}

for(n = firstPosModel; n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW [log2SbH J[n [1]

if(sb_coded flag[xS [[¥S])

dec_abs level[n] ae(v)

if(AbsLevel[xC][vC]>0) {

if(lastSigScanPosSb == —1)

lastSigScanPosSb =n

firstSigScanPosSb = n

}

if(sh_dep quant_used flag)

QState = QStateTransTable| QState || AbsLevel] xC |[yC] & 1]

24

WO 2022/218280 PCT/CN2022/086236

signHiddenFlag = sh_sign _data_hiding used flag &&
(lastSigScanPosSb — firstSigScanPosSb >3 ?1:0)

for(n = numSbCoeff —1;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW [log2SbH J[n [1]

if((AbsLevel[xC [[yC][> 0) &&
(!signHiddenFlag || (n != firstSigScanPosSb)))

coeff sign flag[n | ae(v)

}

if(sh_dep quant used flag) {

QState = startQStateSb

for(n =numSbCoeff — 1I;n >= 0;n——) {

xC= (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW |[log2SbH J[n][1]

if(AbsLevel[xC][yC1>0)

TransCoeffLevel[x0][yO][cldx][xC][vC] =
(2 * AbsLevel[xC J[yC]-(QState>171:0))*
(1—2*coeff sign flag[n])

QState = QStateTransTable| QState || AbsLevel] xC |[yC] & 1]

}else {

sumAbsLevel =0

for(n =numSbCoeff — 1I;n >= 0;n——) {

xC= (xS << log2SbW) + DiagScanOrder[log2SbW][log2SbH][n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW |[log2SbH J[n][1]

if(AbsLevel[xC [[yC > 0) {

TransCoeffLevel[x0 [y0 [cldx [[xC][vC] =
AbsLevel| xC][yC] * (1 —2 * coeff_sign flag[n])

if(signHiddenFlag) {

sumAbsLevel += AbsLevel[xC][yC |

25

WO 2022/218280 PCT/CN2022/086236

if((n == firstSigScanPosSb) && (sumAbsLevel %2) == 1))
TransCoeffLevel[x0 [y0O][cldx [[xC][yC] =
~TransCoeffLevel] x0][yO || cldx][xC][yC |
¥
¥
¥
¥
¥
¥
[0072] As noted above, a picture is partitioned into blocks prior to prediction and translation of

residual. For example, a picture can be split into coding tree units (CTUs). A partition trees is then
applied to each CTU to split the CTU into blocks. A partition tree can make use of several different
types of splits such as quad tree (QT), horizontal binary tree (BT), vertical BT, horizontal triple tree
(TT), vertical TT, etc. Unsymmetric binary tree (UBT) as discussed below is another example
partition scheme that can be employed in a partition tree.

[0073] FIG. 6 1s a schematic diagram 600 of example 1/4 UBT partitioning structures, which
includes vertical UBT (UBT-V) partitions and horizontal UBT (UBT-H) partitions. A block of
dimensions WxH can be split into two sub-blocks dimensions W1xH1 and W2xH2, where one of
the sub-blocks is a dyadic block and the other is a non-dyadic block. Such a split is named as
Unsymmetric Binary Tree (UBT) split. In one example, W1 =a x W, W2 = (1-a) x W, and H1=
H2=H. In such as case, the partition may be called a vertical UBT (UBT-V). In one example, a
may be smaller than 1/2, such as 1/4, 1/8, 1/16, 1/32, 1/64, etc. In such a case, the partition may be
called a Type 0 UBT-V, an example of which is shown as split 601. In one example, @ may be larger
than 1/2, such as 3/4, 7/8, 15/16, 31/32, 63/64, etc. In such a case, the partition is called a Type 1
UBT-V, an example of which is shown as split 603. In one example, Hl =a x H, H2 = (1-a) x H,
WI1= W2=W. In such as case, the partition may be called a horizontal UBT (UBT-H). In one
example, @ may be smaller than 1/2, such as 1/4, 1/8, 1/16, 1/32, 1/64, etc. In such a case, the
partition is called a Type 0 UBT-H, an example of which is shown as split 605. In one example, a
may be larger than 1/2, such as 3/4, 7/8, 15/16, 31/32, 63/64, etc. In such a case, the partition may
be called a Type 1 UBT-H, an example of which is shown as split 607.

26

WO 2022/218280 PCT/CN2022/086236

[0074] A mechanism for sign prediction for the signs of luma residual coefficients is now
discussed. A number of signs per transform unit (TU) can be predicted as limited by a configuration
parameter and the number of coefficients present. When predicting n signs in a TU, the encoder and
decoder each perform n+1 partial inverse transformations and 2n border reconstructions
corresponding to the 2n sign combination hypotheses. A border-cost measure is also employed for
each. These costs are examined to determine sign prediction values. The encoder transmits a sign
residual for each predicted sign indicating whether the prediction for that sign is correct or not using
two additional context adaptive binary arithmetic coding (CABAC) contexts. The decoder reads
these sign residuals and uses them during reconstruction to determine the correct signs to based on
the decoder’s predictions.

[0075] Sign prediction at the encoder is now discussed. Prior to encoding coefficients ina TU,
the encoder determines which signs to predict, and predicts them. Hypothesis processing as
described below is performed during rate distortion optimization (RDO) decision making. The
prediction results are stored as correct or incorrect, per sign being predicted, in the CU for use in
later encoding. During the final encoding stage, this stored data is used to reproduce the final
bitstream containing sign residues.

[0076] Hypothesis generation is now discussed. The encoder initially dequantizes the TU and
then chooses n coefficients for signs are to be predicted. The coefficients are scanned in raster-scan
order. Dequantized values over a defined threshold are preferred over values lower than that
threshold when collecting the n coefficients. With these n values, 2n simplified border
reconstructions are performed as described below. This includes one reconstruction per unique
combination of signs for the n coefficients.

[0077] For a particular reconstruction, only the leftmost and topmost pixels of a block are
recreated from the inverse transformation added to the block prediction. Although the first (e.g.,
vertical) inverse transform is complete, the second (e.g., horizontal) inverse transform only has to
create the leftmost and topmost pixel outputs. Hence, the second inverse transform is faster than the
first. A top left (topLeft) flag is added to inverse transform functions to allow for this mechanism.
[0078] In addition, the number of inverse transform operations performed is reduced by using a
system of templates. In this way, only ntl inverse transform operations are performed when
predicting n signs in a block. For example, a single inverse transform can be employed operating on

the dequantized coefficients, where the values of all signs being predicted are set to positive. Once

27

WO 2022/218280 PCT/CN2022/086236

added to the prediction of the current block, this corresponds to the border reconstruction for the first
hypothesis. For each of the n coefficients having their signs predicted, an inverse transform
operation is performed on an otherwise empty block containing the corresponding dequantized (and
positive) coefficient as the corresponding only non-null element. The leftmost and topmost border
values are saved in what is termed a template for use during later reconstructions.

[0079] Border reconstruction for a later hypothesis begins by taking a saved reconstruction of a
previous hypothesis. In an example, the saved reconstruction only needs a single predicted sign to
be changed from positive to negative in order to construct the desired current hypothesis. This
change of sign is then approximated by the doubling and subtraction from the hypothesis border of
the template corresponding to the sign being predicted. The border reconstruction, after costing, 1s

then saved, if known, to be reused for constructing later hypotheses.

Template Name How to Create
T0O1 inv xform single +ve 1% sign-hidden coeff
TO10 inv xform single +ve 2" sign-hidden coeff
T100 inv xform single +ve 3" sign-hidden coeff
Hypothesis | How to Create Store for later reuse as
HO00 inv xform all coeffs | HO00

add to pred
HOO01 HO000 — 2*T001
HO10 HO00 — 2*T010 HO10
HO11 HO010 —2*T001
H100 HO00 — 2*T100 H100
H101 H100 —2*T001
H110 H100 - 2*T010 H110
H111 H110 -2*T001

Table showing save/restore and template application for 3 sign 8 entry case
[0080] These approximations may only be during the process of sign prediction and not during

final reconstruction.

28

WO 2022/218280 PCT/CN2022/086236

[0081] FIG. 7 is a schematic diagram 700 of a mechanism for determining costs for a sign
prediction hypothesis at a reconstructed border, which may also be referred to as hypothesis costing.
There is a cost associated with each hypothesis that corresponds to the concept of image continuity
at the block border. Sign prediction values are found by minimizing this cost. As shown in schematic
diagram 700, a linear prediction is performed for each reconstructed pixel poy at the left side of a
reconstructed block. The linear prediction is performed for each of the left boundary blocks using
the two pixels to the left of the corresponding block to obtain a prediction in the form of predoy =
(2p-1y - p-2y), where y 1s a corresponding vertical coordinate of the pixel p. The absolute difference
between this prediction and the reconstructed pixel, denoted as poy, is added to the cost of the
hypothesis. Similar processing occurs for pixels in the top row of the reconstructed block. For
example, the absolute differences of each prediction predxo= (2px-1— px-2) and reconstructed pixel,
denoted as pxo, are summed, where x 1s a corresponding horizontal coordinate of the pixel p. As

such, the sign prediction hypothesis cost can be determined as follows:

w-1 h-1
cost = Z |(2px,—1 - Px,—z) - px,O | + Z |(2p—1,y - p—2,y) - pO,y |
x=0 y=0

where cost is the sign prediction hypothesis cost, p indicates a pixel, x and y are horizontal and
vertical coordinate components, h is a block height, and w 1s a block width. In the foregoing
equation, (pr.—l — px,_z) and (Zp_lly — p_z,y) are the prediction and the p, o and pg,, are the
hypothesis reconstruction.

[0082] Prediction of multiple signs is now discussed. For each sign to be predicted, the encoder
searches for the hypothesis having the lowest cost that agrees with the true values of the signs already
transmitted. Initially, when no sign residues have been determined, this result corresponds to the
lowest cost hypothesis. The predicted value of the current sign is taken from this hypothesis. When
the prediction corresponds to the true value of the sign, a zero 1s used as the sign residue. Otherwise
a one 1s used.

[0083] Final signaling of the sign prediction is now discussed. One of two CABAC contexts are
used when signaling a particular sign prediction residue. The CABAC context to use is determined
by whether or not the associated dequantized coefficient is lower or higher than a threshold.
Prediction residues for higher-valued coefficients are sent through a CABAC context initialized to

expect a higher probability of a correct prediction (e.g., a higher probability of expecting a zero

29

WO 2022/218280 PCT/CN2022/086236

residue). In an example, the context initializations are around 58% that are lower than threshold and
around 74% that are equal to or higher than the threshold.

[0084] Other bitstream changes related to sign hypothesis signaling are now discussed. It should
be noted that, as part of the software modifications applied to JEM version three (JEM3), the
signaling of signs of all coefficients, including luma, chroma, predicted, and non-predicted blocks,
has been moved to the end of the TU block. Accordingly, signs may not be signaled per coding
group (CG). This supports proper decoding for luma. The decoder may need access to all coefficient
values in the TU in order to determine the signs that are predicted and that, accordingly, have only
their prediction residues in the bitstream. Although not strictly necessary for chroma, as signs may
not be predicted for chroma, moving chroma signs to the end of the TU avoids having two different
logic paths.

[0085] Parsing at the decoder is now discussed. The decoder, as part of the decoder’s parsing
process, parses coefficients, signs, and sign residues. The signs and sign residues are parsed at the
end of the TU. At that point, the decoder can determine the absolute values of all coefficients. Thus,
the decoder can determine what signs are predicted and, for each predicted sign, the decoder can
determine the context to use to parse the sign prediction residue based on the dequantized coefficient
values. The knowledge of a correct or incorrect prediction is stored as part of the CU data of the
block being parsed. The real sign of the coefficient may not be known by the decoder at this point
when the CU data is parsed (e.g., decoder is unaware of the real sign until the TU is parsed).

[0086] Reconstruction at the decoder is now discussed. During reconstruction, the decoder
performs operations similar to the encoder (as described above for the encoder during the RDO).
For n signs being predicted in the TU, the decoder performs n+1 inverse transform operations, and
2n border reconstructions to determine hypothesis costs. The real sign to apply to a coefficient with
a predicted sign is determined by an exclusive-or operation on the predicted value of the sign and
the correct or incorrect data stored in the CU during bitstream parsing.

[0087] Interaction with sign data hiding is now discussed. In each TU where the sign of a
coefficient is hidden using the sign data giding mechanism, sign prediction treats such coefficient as
not available for further prediction technique. The sign prediction process uses only other non-
hidden sign coefficients for further prediction.

[0088] The following are example technical problems solved by disclosed technical solutions.

Some designs for the picture parameter set (PPS), picture header (PH), and slice header (SH) syntax

30

WO 2022/218280 PCT/CN2022/086236

have the following problems. For example, LFNST (described above as RST) is not applied on
chroma components for a single-tree in VVC. However, LFNST direct current (DC) only
(LfnstDcOnly) flag and the LENST zero out sign coefficient flag (LfnstZeroOutSigCoeffFlag) may
be set by a determination based on the chroma components. Accordingly, such flags may not be set
properly in some designs. Furthermore, the signaling of a LFNST index in the bitstream may depend
on the transform skip flag for all luma (YY), blue difference chroma (Cb), and red difference chroma
(Cr) components in single-tree. This may occur even though LENST would never be used for the
chroma components in single-tree in such designs (e.g., and hence should not depend on Cb and Cer.
In addition, some designs do not describe how sign prediction can be applied to non-dyadic blocks.
A non-dyadic block 1s a block with at least one dimension that cannot be expressed as a power of
two. Furthermore, interactions between sign prediction and other VVC coding tools such as
secondary transform (e.g., LFNST), dual tree partition, transform skip residual coding (e.g., TSRC),
joint Cb-Cr coding, and etc. are unclear in some designs.

[0089] The preceding problems are now summarized. For example, a sign prediction
mechanism, as discussed in schematic diagram 700, may be employed in some systems. For
example, the encoder encodes prediction and encodes residual remaining from prediction. The
encoder encodes the residual by transforming the residual into residual coefficients and applying
quantization. The encoder then signals signs for the residual coefficients via sign prediction. In sign
prediction, the encoder dequantized a block, selects residual coefficients for sign prediction, and
applies an inverse transform to the selected residual coefficients. For example, the encoder can select
a hypothesis function to project the sign for each of the selected residual coefficients. The samples
are then reconstructed based on the hypothesis function and the inverse transform. The encoder
employs a cost determination mechanism to select the hypothesis function that results in the least
difference between the reconstructed samples and the encoded samples. The encoder can then
encode the selected hypothesis function and any difference between the reconstructed samples and
the encoded samples. The decoder can then use the signaled hypothesis function, the inverse
transform, and the difference to reconstruct accurate samples. This approach allows coefficient signs
to be omitted from the bitstream and replaced by a hypothesis function and a difference between the
reconstructed samples and the encoded samples (e.g., a residual of the residual). The sign prediction

mechanism may be used in conjunction with transforms selected according to LENST, also known

31

WO 2022/218280 PCT/CN2022/086236

as RST, as discussed with respect to schematic diagram 200, 300, 400, and 500. The LFNST and
the sign prediction may not operate efficiently and/or correctly for certain blocks.

[0090] Disclosed herein are mechanisms to address one or more of the problems listed above.
In an example, the sign prediction mechanism is designed to operate on dyadic blocks, but may not
operate correctly on non-dyadic blocks. In an example, sign prediction may be disallowed for non-
dyadic blocks. Inanother example, sign prediction can be limited to a dyadic sized group of residual
coefficients within a non-dyadic block. Further, sign prediction can be disallowed for blocks with a
width (W) and/or a height (H) that meets certain predefined conditions. In cases where sign
prediction is disallowed, corresponding syntax can be omitted from the bitstream and the decoder
can determine the disallowance by inference. In another example, application of sign prediction for
a chroma component can be determined based on application of sign prediction to a luma component.
In some examples, samples reconstructed according to a hypothesis function can be determined and
stored in tables for use by a RDO process. In an example, the reconstructed samples can be grouped
into one or more sets, and the sets can be reconstructed based on corresponding residual coefficient(s)
according to one or more predetermined patterns. The reconstructed sample sets can then be used
to derive a final set of reconstructed samples for use in determining hypothesis costs for hypothesis
functions. In an example, a first table may store the reconstructed samples in entries, and a second
table may be used to derive indices into the first table. In an example, different rules can be applied
to signs for different coefficients within a block. In an example, signs for a second coefficient can
be dependent on a first coefficient. In an example, a maximum number of signs that can be predicted
for a block may depend on block position relative to a boundary. The maximum number of signs
that can be predicted for a block may be signaled in a bitstream or determined dynamically, for
example based on block size, block type, block location, and/or coded information for a neighboring
block. In an example, a sign prediction can be determined based on coding information for a block
such as a quantization parameter (QP), a prediction mode, a coding tool, motion information, a color
component, a color format, a temporal layer, a slice type, a neighboring block information, a coding
tree depth, the residual coefficients of the block, a transform type, a residual coding mode, a partition
tree type, or combinations thereof.

[0091] As noted, LFNST may also not operate correctly in some scenarios because LFNST uses
flags that depend on chroma components, but LENST may not be applied to chroma components in

some cases. In an example, this issue is address by determining whether to signal a LFNST index

32

WO 2022/218280 PCT/CN2022/086236

based on a first variable. The first variable is modified by at least one of color component of the
block, coding structure of the block, or block type of the block. For example, the variable may be a
LfnstDcOnly flag and/or a LfnstZeroOutSigCoeffFlag. Hence, the LFNST index may be signaled
based on whether there is only one DC non-zero coefficient in the residual block and/or based on a
range of non-zero coefficients in the residual block, respectively. In an example, the first variable
may be modified by a transform skip flag. In an example, the first variable may not be modified
when parsing a residual block of a first color component when single-tree coding structure is
applied. In an example, the first variable may be modified when parsing a residual block of a first
color component when a dual-tree coding structure is applied or when parsing a residual block of
a first color component when a dual-tree coding structure is applied. In an example, the
determination whether to signal the LENST index is based on a modified value in the first variable.
In an example, one or more of these changes can be applied to allow LFNST to operate with respect
to a non-dyadic block.

[0092] The detailed embodiments below should be considered as examples to explain general
concepts. These embodiments should not be interpreted in a narrow way. Furthermore, these
embodiments can be combined in any manner. In the following discussion, a block is a dyadic block
if both width and height is a dyadic number, which is in a form of a 2N with N being a positive
integer. In the following discussion, a block is a non-dyadic block if at least one of width and height
is a non-dyadic number, which cannot be represented in a form of a 2N with N being a positive
integer. In the following discussion, split and partitioning have the same meaning. In the following
discussion, a first sub-block width (W1) and a second sub-block width (W2) are related to a parent
block width (W). In one example, W1 is calculated as 1 < |log, W], W2 is calculated as 1 «
[log,W. Further, a first sub-block height (H1) and a second sub-block height (H2) are related to a
parent block height (H). In one example, H1 is calculated as 1 < |log,H| and H2 is calculated as
1 «< [log,H].

[0093] Example 1

[0094] In one example, the determination of whether to signal a syntax element related to
LFNST (e.g. LENTS index (Ifnst_i1dx) in VVC) may depend on a first variable. The first variable
may be modified depending on the color component and/or the coding structure or block types (e.g.,
dyadic or non-dyadic blocks). In one example, the first variable may be related to whether there is

only one DC non-zero coefficient in the residual block. For example, the first variable may be the

33

WO 2022/218280 PCT/CN2022/086236

LfnstDcOnly flag defined in VVC. In one exmaple, the first variable may be related to a range of
non-zero coefficients in the residual block. For example, the first variable may be the
LfnstZeroOutSigCoeffFlag defined in VVC. In one example, the first variable may be related to the
transform skip flag of a video unit, which may be a transform block (TB). In one example, the first
variable 1s not modified when parsing a residue block of a first color component when a single-tree
coding structure is applied. For example, a single tree coding structure is applied when luma and
chroma share the same coding tree structure. In one example, the first color component may be a
chroma component such as Cb or Cr.

[0095] In one example, the first variable may be modified when parsing a residue block of a first
color component when a dual-tree coding structure is applied. For example, a dual-tree coding
structure is applied when luma and chroma have individual coding tree structures. In one example,
the first color component may be a chroma component such as Cb or Cr. In one example, the first
variable may be modified when parsing a residue block of a first color component when a local dual-
tree coding structure is applied. For example, a dual-tree coding structure is applied when luma and
chroma have individual coding tree structures. In one example, the first color component may be a
chroma component such as Cb or Cr. In one example, the first variable may be modified when
parsing a residue block of a second color component. In one example, the second color component
may be a luma component. In any of these examples, the modified value may be used to determine
whether to signal the syntax element related to LFNST when the first variable is modified. In one
example, the examples above may be applied on a non-dyadic block.

[0096] Example 2

[0097] In one example, whether to and/or how to apply sign prediction on a block may depend
on dimensions of the block, where the dimensions of the block are width (W) and height (H). In an
example, whether to and/or how to apply sign prediction may depend on whether the block is dyadic
or non-dyadic. In one example, sign prediction is not applied for a non-dyadic block. In one
example, when sign prediction is applied for a non-dyadic block, only the first MxN residual
coefficients are considered. For example, M may be a dyadic number less than W. For example, N
may be a dyadic number less than H. In one example, sign prediction is not applied when W%M
=0 and/or when H%M != 0, wherein M is an integer such as 4 or 8, % is the modulo operator, and
I= indicates not equal to. In one example, sign prediction is not applied if W&M =0 and/or H&M

=0, wherein & is an and operation, and M is an integer such as 3 or 7.

34

WO 2022/218280 PCT/CN2022/086236

[0098] In one example, the syntax element(s) related to sign prediction for the block may be
conditionally signaled depending on dimensions of the block. For example, when a coding device
determines that sign prediction is not applied according to dimensions of the block, the syntax
element(s) related to sign prediction may not be signaled. In an example, the block may be a coding
unit (CU), a transform unit (TU), a coding block (CB), and/or a TB. In one example, the
determination of whether to and/or how to apply to a second color component may depend on the
block dimension of a first color component. In one example, the first color component is luma or
green (G), and the second color component 1s blue difference chroma (Cb), red difference chroma
(Cr), blue (B), and/or red (R).

[0099] Example 3

[00100] 1In one example, a first set of hypothesis reconstrued N samples at top and/or left
boundaries of a block may be stored when the block has dimensions WxH. In an example, N =
W+H-1. In one example, W and/or H may be non-dyadic number(s), where a non-dyadic number
1s a number that cannot be expressed as a power of two. In one example, the first set of hypothesis
reconstrued N samples may be corresponding to a pattern of coefficients. For example, the first set
may be set to be the reconstrued N samples when the all the coefficients in the block is set to be zero
except one coefficient at position (x0, y0) which is set to be non-zero. This may occur when the
residual includes a single coefficient at a coordinate denoted (x0, y0), where x0 and y0 are horizontal
and vertical components of a top left position of the block. For example, (x0, y0) is a position whose
sign value may be predicted.

[00101] In one example, K sets of hypothesis reconstrued N samples may be stored. In an
example, N = W+H-1. For example, each set of the hypothesis reconstrued N samples may
correspond to one specific coefficient whose sign value may be predicted. In an example, N=W-+H-
1. In one example, a combination of all or some of the K sets of hypothesis reconstrued N samples
may be used to derive a final set of estimated reconstrued N samples. The final set of estimated
reconstrued N samples may be used to calculate the cost for a possible pattern of predicted signs. In
an example, N = W+H-1. In one example, a first table (T) may be used to store all the sets of
hypothesis reconstrued N samples, and a second table (S) may be used to derive a index referring to
an entry in the first table. In an example, N = W+H-1. In one example, the second table is indexed
by an integer. In one example, S[(W>>p)-q] and S[(H>>p)-q] may be used to find an entry in the
first table, where S[] indicates a second table entry, W is block width, and H is block height. For

35

WO 2022/218280 PCT/CN2022/086236

example, p and/or q may be 0, 1, 2, 3, and/or 4. For example, p =1, ¢ =2. The stored samples may
be used to derive the sign information.

[00102] Example 4

[00103] Inone example, different rules may be applied when predicting two signs within a block.
In one example, a first rule may be applied for a coefficient located at (x0, yO) relative to the top-left
corner of the block. In one example, a second rule may be applied for a coefficient located at (x1,
y1) relative to the top-left corner of the block, where x0 is not equal to x1 and/or yO is not equal to
yl.

[00104] Example$S

[00105] In one example, the prediction of a sign for a second coefficient may be dependent on
the predicted sign of the first coefficient within a block.

[00106] Example 6

[00107] In one example, a number of signs to be predicted and/or a maximum number of signs to
be predicted may be different from one block to another block. In one example, a number/maximum
number of signs to be predicted may be dependent on the location of the block, for example based
on whether the block is located at a picture boundary, a slice boundary, and/or a picture boundary.
In one example, a number/maximum number of signs to be predicted may be dependent on coding
information, such as block dimension and/or block types.

[00108] Example 7

[00109] Inone example, a number/maximum number of signs to be predicted may be determined
on-the-fly. In one example, the number/maximum number of signs to be predicted may be dependent
on the location of the block, for example based on whether the block is located at a picture boundary,
a slice boundary, and/or a picture boundary. In one example, a number/maximum number of signs
to be predicted may be dependent on coding information, such as block dimension and/or block
types.

[00110] Example8

[00111] In an example, whether and/or how to apply sign prediction on a block may depend on
coding information. This may include how to determine calculation cost and/or how to determine
signs according to a given cost. Coding information may comprise: quantization parameter (QP);
prediction mode, such as inter mode or intra mode; coding tool, such as whether subblock-based

methods are applied or not; motion information; intra-prediction mode; color component; color

36

WO 2022/218280 PCT/CN2022/086236

format; temporal layer; slice type and/or picture type; information of neighboring block(s); and/or
coding tree depth.

[00112] In an example, coding information may comprise residual coefficients and/or transform
coefficients of the block and/or corresponding adjacent and/or non-adjacent neighboring blocks. In
one example, the sign prediction may be disabled when a number of non-zero coefficients is no
greater than or no smaller than a threshold. In one example, the determination may depend on the
last non-zero coefficient information, such as corresponding coefficient position and/or coefficient
values.

[00113] In an example, coding information may comprise transform type, such as primary
transform, secondary transform, transform skip or not, discrete cosine transform (DCT) type 2 (DCT-
II) or not, etc. In one example, sign prediction may be not applied to the secondary transformed
coefficients. In one example, sign prediction may be not applied to LENST coded blocks. In one
example, sign prediction may be applied to coefficient blocks regardless whether the block is primary
transform coded or secondary transform coded. In one example, sign prediction may be only applied
to a specific transform type for the video block. Such transform types may include DCT-II, discrete
sine transform (DST) type seven (DST-VII), DCT type three (DCT-III), etc. In an example, sign
prediction may be not applied to certain transform types.

[00114] In an example, coding information may comprise coefficient coding mode, such as
regular residual coding (RRC), transform skip residual coding (TSRC), and/or using joint coding of
chroma residual (JCCR) or not. In one example, sign prediction may be not applied to the transform
skipped blocks. In one example, sign prediction may be not applied to a video unit and/or block
coded with transform skip mode. In one example, sign prediction may be not applied to a video unit
and/or block coded with transform skip based residual coding (TSRC). In one example, sign
prediction may be not applied to a JCCR block.

[00115] In an example, coding information may comprise partition and/or coding tree type, such
as single tree or dual tree. In one example, sign prediction may be not applied when a dual coding
tree is used. In one example, sign prediction may be not applied in a local dual tree is used. In an
example, sign prediction may be applied regardless of the tree type.

[00116] Below are some example implementations for some of the example aspects summarized
above, which can be applied to the VVC specification. The changed texts are based on the VVC

text. Most relevant parts that have been added or modified are shown in bold underlined font.

37

WO 2022/218280 PCT/CN2022/086236
[00117] An example transform unit syntax is as follows.
transform_unit(x0, y0, tbWidth, tbHeight, trecType, subTulndex, chType) { Descriptor

if(IntraSubPartitionsSplitType !'= ISP NO_SPLIT &&
treeType == SINGLE _TREE && subTulndex ==
NumlIntraSubPartitions — 1) {

xC = CbPosX] chType][x0][v0]

yC = CbPosY|[chType][x0][y0]

wC = CbWidth[chType][x0][0 |/ SubWidthC

hC = CbHeight[chType][x0][v0] / SubHeightC

}else {

xC =x0

yC=y0

wC = tbWidth / SubWidthC

hC = tbHeight / SubHeightC

}

chromaAvailable = treeType '= DUAL TREE LUMA &&
sps_chroma format idc '= 0 &&
(IntraSubPartitionsSplitType == ISP_NO SPLIT ||
(IntraSubPartitionsSplitType != ISP_NO_SPLIT &&
subTulndex == NumlntraSubPartitions — 1))

&&
sps_chroma format idc '= 0 &&

((subTulndex ==0 && cu_sbt pos flag) ||
(subTulndex ==1 && !cu_sbt pos flag)))) ||

(IntraSubPartitionsSplitType != ISP_NO_SPLIT &&
(subTulndex == NumlIntraSubPartitions —1)))) {

if((treeType == SINGLE TREE || treeType == DUAL TREE CHROMA)

((IntraSubPartitionsSplitType == ISP_NO _SPLIT && !(cu_sbt flag &&

tu_cb _coded flag] xC][yC]

ac(v)

tu_cr_coded flag[xC |[yC |

ac(v)

38

WO 2022/218280 PCT/CN2022/086236

if(treeType == SINGLE_TREE || treeType == DUAL_TREE LUMA) {

if((IntraSubPartitionsSplitType == ISP_NO SPLIT && !(cu_sbt flag &&
((subTulndex ==0 && cu_sbt pos flag) ||
(subTulndex ==1 && !cu_sbt pos flag))) &&
((CuPredMode| chType |[x0 || yO | == MODE_INTRA &&
'cu_act _enabled flag[x0][y0]) ||
(chromaAvailable && (tu_cb _coded flag| xC [[vC] ||
tu_cr_coded flag[xC J[yC 1)) ||
CbWidth[chType J[x0][y0] > MaxTbSizeY | |
CbHeight[chType][x0][y0 | > MaxTbSizeY)) ||
(IntraSubPartitionsSplitType !'= ISP NO_SPLIT &&
(subTulndex < NumlIntraSubPartitions —1 || !InferTuCbfLuma)))

tu_y_coded flag[x0][y0] ac(v)

if(IntraSubPartitionsSplitType !'= ISP_NO_SPLIT)

InferTuCbfLuma = InferTuCbfLuma && !tu_y coded flag[x0][v0]

}

if((CbWidth[chType [[x0][y0] > 64 || CbHeight[chType [[x0][v0] > 64 ||
tu_y_coded flag[x0 J[y0] || (chromaAvailable && (
tu_cb _coded flag[xC |[vC] ||
tu_cr_coded flag[xC |[yC])) && treeType '= DUAL TREE CHROMA
&&
pps_cu_qp_delta _enabled flag && !'IsCuQpDeltaCoded) {

cu_qgp_delta_abs ac(v)

if(cu_qp_delta_abs)

cu_qgp_delta_sign flag ac(v)

}

if((CbWidth[chType [[x0][y0] > 64 || CbHeight[chType [[x0][v0] > 64 ||
(chromaAvailable && (tu_cb_coded flag] xC |[vC] ||
tu_cr_coded flag[xC J[vC]))) &&
treeType '= DUAL TREE LUMA &&
sh_cu chroma qp offset enabled flag &&
"sCuChromaQpOffsetCoded) {

39

WO 2022/218280 PCT/CN2022/086236

cu_chroma qp_offset flag ac(v)

if(cu_chroma qp offset flag && pps_chroma qgp offset list len_minusl > 0)

cu_chroma qp_offset_idx ac(v)

}

if(sps_joint_cber enabled flag && ((CuPredMode| chType J[x0 J[y0] ==
MODE_INTRA

&& (tu_cb _coded flag] xC][yC] || tu_cr coded flag]| xC][vC])) ||

(tu_cb_coded flag[xC |[yC] && tu_cr coded flag] xC][vyC])) &&

chromaAvailable)

tu_joint_cber_residual flag] xC][yC] ac(v)

if(tu_y_coded flag[x0][yO] && treeType '= DUAL TREE CHROMA) {

if(sps_transform_skip enabled flag && !'BdpcmPFlag| x0 J[y0][0] &&
tbWidth <= MaxTsSize && tbHeight <= MaxTsSize &&
(IntraSubPartitionsSplitType == ISP_NO SPLIT) && !cu_sbt flag)

transform_skip flag] x0][vO][O] ac(v)

if(!transform_skip flag[x0][y0][O] || sh_ts_residual coding disabled flag)

residual coding(x0, y0, Log2(tbWidth), Log2(tbHeight), 0, treeTvype)

else

residual _ts coding(x0, y0, Log2(tbWidth), Log2(tbHeight), 0)

}

if(tu_cb_coded flag[xC [yC] && treeType !'= DUAL _TREE LUMA) {

if(sps_transform_skip enabled flag && !'BdpcmFlag| x0 J[y0][1] &&
wC <= MaxTsSize && hC <= MaxTsSize && !cu sbt flag)

transform_skip flag| xC][vC][1] ac(v)

if(!transform_skip flag] xC J[yC][1] || sh_ts_residual coding_disabled flag)

residual coding(xC, yC, Log2(wC), Log2(hC), 1, treeType)

else

residual ts_coding(xC, yC, Log2(wC), Log2(hC), 1)

40

WO 2022/218280 PCT/CN2022/086236

if(tu_cr_coded flag[xC |[yC | && treeType '= DUAL TREE LUMA &&
'(tu_cb_coded flag[xC][yC] && tu_joint_cber_residual flag] xC][vC1]))
{
if(sps_transform_skip enabled flag && !'BdpcmFlag| x0 J[y0][2] &&
wC <= MaxTsSize && hC <= MaxTsSize && !cu_sbt flag)
transform_skip flag]| xC][vC]| 2 | ac(v)
if(!transform_skip flag] xC J[yC][2] || sh_ts_residual coding_disabled flag)
residual coding(xC, yC, Log2(wC), Log2(hC), 2, treeType)
else
residual ts_coding(xC, yC, Log2(wC), Log2(hC), 2)
¥
¥
[00118] An example residual coding syntax is as follows.
residual coding(x0, y0, log2 TbWidth, log2TbHeight, cldx, treeType) { Descriptor
if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth == 5 && log2TbHeight < 6)
log2ZoTbWidth = 4
else
log2ZoTbWidth = Min(log2 TbWidth, 5)
if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth <6 && log2TbHeight == 5)
log2ZoTbHeight = 4
else
log2ZoTbHeight = Min(log2TbHeight, 5)
if(log2TbWidth > 0)
last sig_coeff x prefix ac(v)
if(log2TbHeight > 0)
last sig_coeff y_prefix ac(v)

41

WO 2022/218280 PCT/CN2022/086236

if(last _sig_coeff x prefix>3)

last sig_coeff x suffix ac(v)

if(last _sig_coeff y prefix>3)

last sig_coeff y_suffix ac(v)

log2TbWidth = log2ZoTbWidth

log2 TbHeight = log2ZoTbHeight

remBinsPass] = ((1 << (1og2TbWidth + log2TbHeight)) * 7) >> 2

log2SbW = (Min(log2TbWidth, log2TbHeight) <2?1:2)

log2SbH = log2SbW

if(log2TbWidth + log2TbHeight > 3)

if(log2TbWidth <2) {

log2SbW = log2TbWidth

log2SbH = 4 — log2SbW

} else if(log2TbHeight <2) {

log2SbH = log2TbHeight

log2SbW = 4 —log2SbH

}

numSbCoeff=1 << (log2SbW + log2SbH)

lastScanPos = numSbCoeff

lastSubBlock = (1 << (log2TbWidth +log2TbHeight — (1og2SbW +10g2SbH))
)—-1

do {

if(lastScanPos == 0) {

lastScanPos = numSbCoeff

lastSubBlock— —

}

lastScanPos— —

xS = DiagScanOrder| log2TbWidth — log2SbW || log2TbHeight — log2SbH |
[lastSubBlock][0]

42

WO 2022/218280 PCT/CN2022/086236

yS = DiagScanOrder[log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[lastSubBlock][1]

xC= (xS << log2SbW)+
DiagScanOrder| 1og2SbW][log2SbH |[lastScanPos][0]

yC=(yS << log2SbH) +
DiagScanOrder| 1og2SbW][log2SbH |[lastScanPos][1]

} while((xC != LastSignificantCoeffX) || (yvC != LastSignificantCoeffY))

if(lastSubBlock == 0 && log2TbWidth >= 2 && log2TbHeight >= 2 &&
'transform_skip flag[x0 |[y0][cldx | && lastScanPos > 0 && !(cldx >0
&& treeType == SINGLE TREE))

LfnstDcOnly = 0

if(((lastSubBlock > 0 && log2TbWidth >= 2 && log2TbHeight >= 2) ||
(lastScanPos > 7 && (log2TbWidth == 2 || log2TbWidth == 3) &&
log2TbWidth == log2TbHeight)) && !(cldx > 0 & & treeType ==
SINGLE TREE))

LfnstZeroOutSigCoeffFlag = 0

if((lastSubBlock > 0 || lastScanPos > 0) && cldx==10)

MtsDcOnly =0

QState =0

for(1= lastSubBlock;1 >= 0;1——) {

startQStateSb = QState

xS = DiagScanOrder| log2TbWidth — log2SbW || log2TbHeight — log2SbH |
[1][0]

yS = DiagScanOrder[log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[1][1]

inferSbDcSigCoeffFlag = 0

if(1 <lastSubBlock && 1>0) {

sb_coded flag| xS][¥S | ac(v)

inferSbDcSigCoeffFlag = 1

43

WO 2022/218280 PCT/CN2022/086236

if(sb_coded flag[xS |[yS] && (xS>3 || yS>3) && cldx == 0)

MtsZeroOutSigCoeffFlag = 0

firstSigScanPosSb = numSbCoeff

lastSigScanPosSb = —1

firstPosMode0 = (1 == lastSubBlock ? lastScanPos : numSbCoeff — 1)

firstPosModel = firstPosMode(

for(n = firstPosMode0; n >= 0 && remBinsPassl >= 4;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(sb_coded flag[xS [[yS] && (n>0 || !inferSbDcSigCoeffFlag) &&
(xC != LastSignificantCoeffX || yC != Last SignificantCoeffY)) {

sig_coeff flag[xC][yC | ac(v)

remBinsPass1— —

if(sig_coeff flag| xC][vyC])

inferSbDcSigCoeffFlag = 0

}

if(sig_coeff flag[xC J[vyC]) ¢

abs_level gtx flag[n][0] ac(v)

remBinsPass1— —

if(abs_level gix flag[n][0]) {

par_level flag| n | ac(v)
remBinsPass1— —
abs_level gtx flag[n][1] ac(v)
remBinsPass1— —

¥

if(lastSigScanPosSb == —1)

lastSigScanPosSb = n

firstSigScanPosSb =n

44

WO 2022/218280 PCT/CN2022/086236

}

AbsLevelPass1[xC || yC] = sig_coeff flag| xC |[yC | + par_level flag[n]+
abs_level gtx flag[n [0]+ 2 * abs_level gtx flag[n][1]

if(sh_dep quant used flag)

QState = QStateTransTable| QState |[AbsLevelPass1[xC |[yC] & 1]

firstPosModel =n—1

}

for(n = firstPosMode0; n > firstPosModel; n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(abs_level gtx flag[n][1])

abs_remainder[n | ac(v)

AbsLevel[xC][yC] = AbsLevelPass1[xC][yC | +2 * abs_remainder[n]

}

for(n = firstPosModel; n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(sb_coded flag[xS |[yS])

dec_abs level[n | ac(v)

if(AbsLevel[xC][yC]>0){

if(lastSigScanPosSb == —1)

lastSigScanPosSb = n

firstSigScanPosSb =n

}

if(sh_dep quant used flag)

QState = QStateTransTable[QState || AbsLevel[xC [[yC | & 1]

}

signHiddenFlag = sh sign _data_hiding used flag &&
(lastSigScanPosSb — firstSigScanPosSb>3?1:0)

45

WO 2022/218280 PCT/CN2022/086236

for(n = numSbCoeff — 1;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if((AbsLevel[xC [[yC]>0) &&
(!signHiddenFlag || (n !'= firstSigScanPosSb)))

coeff sign_flag| n | ac(v)

}

if(sh_dep_quant used flag) {

QState = startQStateSb

for(n = numSbCoeff — I;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| log2SbW |[log2SbH J[n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(AbsLevel[xC |[yC]>0)

TransCoeffLevel] x0 [yO][cldx [[xC |[vC | =
(2* AbsLevel[xC [[yC]—-(QState>171:0))*
(1—2* coeff _sign flag|n])

QState = QStateTransTable[QState || AbsLevel[xC [[yC | & 1]

}else {

sumAbsLevel =0

for(n = numSbCoeff — I;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| log2SbW |[log2SbH J[n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(AbsLevel[xC J[yC]1>0){

TransCoeffLevel[x0 [yO][cldx [[xC][yC] =
AbsLevel[xC][yC] * (1 —2 * coeff_sign_flag|n])

if(signHiddenFlag) {

sumAbsLevel += AbsLevel] xC][yC]

if((n == firstSigScanPosSb) && (sumAbsLevel %2) == 1))

46

WO 2022/218280 PCT/CN2022/086236

TransCoeffLevel[x0 [y0 [cldx [[xC][vC] =
~TransCoeffLevel[x0][y0]| cldx][xC][yC]

[00119] An example transform unit syntax is as follows.

transform_unit(x0, y0, tbWidth, tbHeight, treeType, subTulndex, chType) { Descriptor

if(IntraSubPartitionsSplitType != ISP NO SPLIT &&
treeType == SINGLE_TREE && subTulndex ==
NumlIntraSubPartitions — 1) {

xC = CbPosX][chType J[x0][yO]

yC = CbPosY[chType][x0][yO]

wC = CbWidth[chType][x0][v0 |/ SubWidthC

hC = CbHeight| chType [x0][y0] / SubHeightC

}else {

xC =x0

yC=y0

wC = tbWidth / SubWidthC

hC = tbHeight / SubHeightC

}

chromaAvailable = treeType '= DUAL TREE LUMA &&
sps_chroma format idc '= 0 &&
(IntraSubPartitionsSplitType == ISP_NO SPLIT ||
(IntraSubPartitionsSplitType !'= ISP NO_SPLIT &&
subTulndex == NumlIntraSubPartitions — 1))

47

WO 2022/218280

PCT/CN2022/086236

if((treeType == SINGLE_TREE || treeType == DUAL TREE _CHROMA)

&&

sps_chroma format idc '= 0 &&

((IntraSubPartitionsSplitType == ISP_NO SPLIT && !(cu_sbt flag &&
((subTulndex ==0 && cu_sbt pos flag) ||

(subTulndex ==1 && !cu_sbt pos flag)))) ||

(IntraSubPartitionsSplitType != ISP NO_SPLIT &&

(subTulndex == NumlIntraSubPartitions —1)))) {

tu_cb_coded flag[xC |[yC |

ac(v)

tu_cr_coded flag[xC |[yC |

ac(v)

}

if(treeType == SINGLE_TREE || treeType == DUAL TREE LUMA) {

if((IntraSubPartitionsSplitType == ISP_NO _SPLIT && !(cu_sbt flag &&
((subTulndex ==0 && cu_sbt pos flag) ||
(subTulndex ==1 && !cu_sbt pos flag))) &&
((CuPredMode[chType || x0 || yO] == MODE_INTRA &&
'cu_act _enabled flag[x0][y0]) ||
(chromaAvailable && (tu_cb _coded flag| xC][vC] ||
tu_cr_coded flag[xC |[vC])) ||
CbWidth[chType][x0][0] > MaxTbSizeY ||
CbHeight[chType]| x0][y0 | > MaxTbSizeY)) ||
(IntraSubPartitionsSplitType !'= ISP NO_SPLIT &&
(subTulndex < NumlntraSubPartitions — 1 || !InferTuCbfLuma)))

tu_y_coded_flag[x0][yO]

ac(v)

if(IntraSubPartitionsSplitType !'= ISP_NO SPLIT)

InferTuCbfLuma = InferTuCbfLuma && !tu y_coded flag[x0][y0]

48

WO 2022/218280 PCT/CN2022/086236

if((CbWidth[chType][x0][y0] > 64 || CbHeight] chType][x0][y0] > 64 ||
tu_y_coded flag] x0 [[y0] || (chromaAvailable && (

tu_cb _coded flag[xC J[yC] ||
tu_cr_coded flag[xC |[yC])) && treeType !'= DUAL _TREE CHROMA

&&
pps_cu_qp_delta _enabled flag && !'IsCuQpDeltaCoded) {
cu_qp_delta_abs ac(v)
if(cu_qp_delta_abs)
cu_qgp_delta_sign_flag ac(v)
¥
if((CbWidth[chType][x0][y0] > 64 || CbHeight] chType][x0][y0] > 64 ||
(chromaAvailable && (tu_cb _coded flag| xC [[vC] ||
tu_cr_coded flag[xC[vC]))) &&
treeType '= DUAL TREE LUMA &&
sh_cu_chroma qp_offset enabled flag &&
'IsCuChromaQpOffsetCoded) {
cu_chroma qp_offset flag ac(v)
if(cu_chroma qp offset flag && pps_chroma qgp offset list len_minusl >0)
cu_chroma qp_offset idx ac(v)
¥
if(sps_joint_cber enabled flag && ((CuPredMode[chType |[x0 |[y0] ==
MODE_INTRA
&& (tu_cb _coded flag] xC J[yC] || tu_cr coded flag[xC][yC])) ||
(tu_cb_coded flag[xC [[yC] && tu_cr coded flag] xC][vyC])) &&
chromaAvailable)
tu_joint_cber_residual flag] xC][yC] ac(v)
if(tu_y_coded flag[x0][y0 | && treeType '= DUAL TREE CHROMA) {
if(sps_transform_skip enabled flag && !'BdpcmFlag[x0][y0][0] &&
tbWidth <= MaxTsSize && tbHeight <= MaxTsSize &&
(IntraSubPartitionsSplitType == ISP_NO_SPLIT) && !cu_sbt flag)
transform_skip flag] x0 [v0][0] ac(v)

if(1transform_skip flag][x0][y0][O] || sh_ts_residual coding disabled flag)

49

WO 2022/218280 PCT/CN2022/086236

residual_coding(x0, y0, Log2(tbWidth), Log2(tbHeight), 0, treeType)

else

residual ts_coding(x0, y0, Log2(tbWidth), Log2(tbHeight), 0)

}

if(tu_cb_coded flag][xC [yC] && treeType != DUAL TREE LUMA) {

if(sps_transform_skip enabled flag && !'BdpcmFlag[x0][y0][1] &&
wC <= MaxTsSize && hC <= MaxTsSize && !cu sbt flag)

transform_skip flag] xC |[yC][1]

ac(v)

if(1transform_skip flag| xC][yC][1] || sh_ts_residual coding disabled flag)

residual coding(xC, yC, Log2(wC), Log2(hC), 1, treeType)

else

residual ts_coding(xC, yC, Log2(wC), Log2(hC), 1)

}

if(tu_cr_coded flag[xC [yC] && treeType != DUAL TREE LUMA &&
'(tu_cb_coded flag[xC [yC] && tu_joint _cber residual flag] xC][yC1]))

if(sps_transform_skip enabled flag && !'BdpcmFlag[x0][y0][2] &&
wC <= MaxTsSize && hC <= MaxTsSize && !cu sbt flag)

transform_skip flag] xC |[yC][2]

ac(v)

if(1transform_skip flag| xC J[yC][2] || sh_ts_residual coding disabled flag)

residual coding(xC, yC, Log2(wC), Log2(hC), 2, treeType)

else

residual ts_coding(xC, yC, Log2(wC), Log2(hC), 2)

[00120] An example residual coding syntax is as follows.

residual _coding(x0, y0, log2 TbWidth, log2TbHeight, cldx, treeTvype) {

Descriptor

if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth == 5 && log2TbHeight < 6)

50

WO 2022/218280

PCT/CN2022/086236

log2ZoTbWidth = 4

else

log2ZoTbWidth = Min(log2 TbWidth, 5)

if(sps_mts_enabled flag && cu_sbt flag && cldx == 0 &&
log2TbWidth <6 && log2TbHeight == 35)

log2ZoTbHeight = 4

else

log2ZoTbHeight = Min(log2TbHeight, 5)

if(log2 TbWidth > 0)

last sig_coeff x prefix

ae(v)

if(log2TbHeight > 0)

last sig_coeff y_prefix

ae(v)

if(last _sig_coeff x prefix>3)

last sig_coeff x suffix

ae(v)

if(last _sig_coeff y prefix>3)

last_sig_coeff y suffix

ae(v)

log2TbWidth = log2ZoTbWidth

log2 TbHeight = log2ZoTbHeight

remBinsPass] = ((1 << (1og2TbWidth + log2TbHeight)) * 7) >> 2

log2SbW = (Min(log2TbWidth, log2TbHeight) <2?1:2)

log2SbH = log2SbW

if(log2TbWidth + log2TbHeight > 3)

if(log2TbWidth <2) {

log2SbW = log2TbWidth

log2SbH = 4 — log2SbW

} else if(log2TbHeight <2) {

log2SbH = log2TbHeight

log2SbW = 4 —log2SbH

51

WO 2022/218280 PCT/CN2022/086236

}

numSbCoeff=1 << (log2SbW + log2SbH)

lastScanPos = numSbCoeff

lastSubBlock = (1 << (log2TbWidth +log2TbHeight — (1og2SbW +10g2SbH))
)—-1

do {

if(lastScanPos == 0) {

lastScanPos = numSbCoeff

lastSubBlock— —

}

lastScanPos— —

xS = DiagScanOrder| log2TbWidth — log2SbW || log2TbHeight — log2SbH |
[lastSubBlock][0]

yS = DiagScanOrder[log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[lastSubBlock][1]

xC= (xS << log2SbW)+
DiagScanOrder| 1og2SbW][log2SbH |[lastScanPos][0]

yC=(yS << log2SbH) +
DiagScanOrder| 1og2SbW][log2SbH |[lastScanPos][1]

} while((xC != LastSignificantCoeffX) || (yvC != LastSignificantCoeffY))

if(lastSubBlock == 0 && log2TbWidth >= 2 && log2TbHeight >= 2 &&
'transform_skip flag[x0 |[yO J[cldx | && lastScanPos > 0 && (cldx==0
|| treeTvpe != SINGLE TREE))

LfnstDcOnly = 0

if(((lastSubBlock > 0 && log2TbWidth >= 2 && log2TbHeight >= 2) ||
(lastScanPos > 7 && (log2TbWidth == 2 || log2TbWidth == 3) &&
log2TbWidth == log2TbHeight)) && (cldx == 0] | treeType !=
SINGLE TREE))

LfnstZeroOutSigCoeffFlag = 0

if((lastSubBlock > 0 || lastScanPos > 0) && cldx==10)

52

WO 2022/218280 PCT/CN2022/086236

MtsDcOnly =0

QState =0

for(1= lastSubBlock;1 >= 0;1——) {

startQStateSb = QState

xS = DiagScanOrder| log2TbWidth — log2SbW || log2TbHeight — log2SbH |
[1][0]

yS = DiagScanOrder[log2 TbWidth — log2SbW || log2TbHeight — log2SbH |
[1][1]

inferSbDcSigCoeffFlag = 0

if(1 <lastSubBlock && 1>0) {

sb_coded flag| xS][¥S | ae(v)

inferSbDcSigCoeffFlag = 1

}

if(sb_coded flag[xS |[yS] && (xS>3 || yS>3) && cldx == 0)

MtsZeroOutSigCoeffFlag = 0

firstSigScanPosSb = numSbCoeff

lastSigScanPosSb = —1

firstPosMode0 = (1 == lastSubBlock ? lastScanPos : numSbCoeff — 1)

firstPosModel = firstPosMode(

for(n = firstPosMode0; n >= 0 && remBinsPassl >= 4;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(sb_coded flag[xS [[yS] && (n>0 || !inferSbDcSigCoeffFlag) &&
(xC != LastSignificantCoeffX || yC != Last SignificantCoeffY)) {

sig_coeff flag[xC][yC | ac(v)

remBinsPass1— —

if(sig_coeff flag| xC][vyC])

inferSbDcSigCoeffFlag = 0

53

WO 2022/218280 PCT/CN2022/086236

if(sig_coeff flag[xC J[vyC]) ¢

abs_level gtx flag[n][0] ae(v)

remBinsPass1— —

if(abs_level gix flag[n][0]) {

par_level flag| n | ae(v)
remBinsPass1— —
abs_level gtx flag[n][1] ae(v)
remBinsPass1— —

¥

if(lastSigScanPosSb == —1)

lastSigScanPosSb = n

firstSigScanPosSb =n

}

AbsLevelPass1[xC || yC] = sig_coeff flag| xC |[yC | + par_level flag[n]+
abs_level gtx flag[n [0]+ 2 * abs_level gtx flag[n][1]

if(sh_dep quant used flag)

QState = QStateTransTable[QState || AbsLevelPass1[xC [yC] & 1]

firstPosModel =n—1

}

for(n = firstPosMode0; n > firstPosModel; n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(abs_level gtx flag[n][1])

abs_remainder[n | ae(v)

AbsLevel[xC][yC] = AbsLevelPass1[xC][yC | +2 * abs_remainder[n]

}

for(n = firstPosModel; n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

54

WO 2022/218280 PCT/CN2022/086236

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(sb_coded flag[xS |[yS])

dec_abs level[n | ae(v)

if(AbsLevel[xC][yC]>0){

if(lastSigScanPosSb == —1)

lastSigScanPosSb = n

firstSigScanPosSb =n

}

if(sh_dep quant used flag)

QState = QStateTransTable[QState || AbsLevel[xC [[yC | & 1]

}

signHiddenFlag = sh sign _data_hiding used flag &&
(lastSigScanPosSb — firstSigScanPosSb>3?1:0)

for(n = numSbCoeff — 1;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| 1og2SbW |[log2SbH J[n [[0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if((AbsLevel[xC [[yC]>0) &&
(!signHiddenFlag || (n !'= firstSigScanPosSb)))

coeff sign_flag| n | ae(v)

}

if(sh_dep_quant used flag) {

QState = startQStateSb

for(n = numSbCoeff — I;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| log2SbW |[log2SbH J[n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(AbsLevel[xC |[yC]>0)

TransCoeffLevel] x0 [yO][cldx [[xC |[vC | =
(2* AbsLevel[xC [[yC]—-(QState>171:0))*
(1—2* coeff _sign flag|n])

55

WO 2022/218280 PCT/CN2022/086236

QState = QStateTransTable[QState || AbsLevel[xC [[yC | & 1]

}else {

sumAbsLevel =0

for(n = numSbCoeff — 1;n >= 0;n——) {

xC = (xS << log2SbW) + DiagScanOrder| log2SbW |[log2SbH J[n][0]

yC=(yS << log2SbH) + DiagScanOrder| log2SbW][log2SbH [[n][1]

if(AbsLevel[xC J[yC]1>0){

TransCoeffLevel[x0 [yO][cldx [[xC][yC] =
AbsLevel[xC][yC] * (1 —2 * coeff_sign_flag|n])

if(signHiddenFlag) {

sumAbsLevel += AbsLevel] xC][yC]

if((n == firstSigScanPosSb) && (sumAbsLevel %2) == 1))

TransCoeffLevel[x0 [y0 [cldx [[xC][vC] =
—TransCoeffLevel[x0][y0]| cldx][xC][yC]

[00121] FIG. 8 s a block diagram showing an example video processing system 4000 in which
various techniques disclosed herein may be implemented. Various implementations may include
some or all of the components of the system 4000. The system 4000 may include input 4002 for
receiving video content. The video content may be received in a raw or uncompressed format, e.g.,
8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format. The input
4002 may represent a network interface, a peripheral bus interface, or a storage interface. Examples
of network interface include wired interfaces such as Ethernet, passive optical network (PON), etc.

and wireless interfaces such as Wi-Fi or cellular interfaces.

56

WO 2022/218280 PCT/CN2022/086236

[00122] The system 4000 may include a coding component 4004 that may implement the various
coding or encoding methods described in the present document. The coding component 4004 may
reduce the average bitrate of video from the input 4002 to the output of the coding component 4004
to produce a coded representation of the video. The coding techniques are therefore sometimes called
video compression or video transcoding techniques. The output of the coding component 4004 may
be either stored, or transmitted via a communication connected, as represented by the component
4006. The stored or communicated bitstream (or coded) representation of the video received at the
input 4002 may be used by a component 4008 for generating pixel values or displayable video that
is sent to a display interface 4010. The process of generating user-viewable video from the bitstream
representation is sometimes called video decompression. Furthermore, while certain video
processing operations are referred to as “coding” operations or tools, it will be appreciated that the
coding tools or operations are used at an encoder and corresponding decoding tools or operations
that reverse the results of the coding will be performed by a decoder.

[00123] Examples of a peripheral bus interface or a display interface may include universal serial
bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on. Examples of
storage interfaces include SATA (serial advanced technology attachment), PCI, IDE interface, and
the like. The techniques described in the present document may be embodied in various electronic
devices such as mobile phones, laptops, smartphones or other devices that are capable of performing
digital data processing and/or video display.

[00124] FIG. 9is a block diagram of an example video processing apparatus 4100. The apparatus
4100 may be used to implement one or more of the methods described herein. The apparatus 4100
may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on.
The apparatus 4100 may include one or more processors 4102, one or more memories 4104 and
video processing circuitry 4106. The processor(s) 4102 may be configured to implement one or more
methods described in the present document. The memory (memories) 4104 may be used for storing
data and code used for implementing the methods and techniques described herein. The video
processing circuitry 4106 may be used to implement, in hardware circuitry, some techniques
described in the present document. In some embodiments, the video processing circuitry 4106 may
be at least partly included in the processor 4102, e.g., a graphics co-processor.

[00125] FIG. 10 is a flowchart for an example method 4200 of video processing. The method

4200 includes determining sign prediction usage for one or more residual coefficients in a block

57

WO 2022/218280 PCT/CN2022/086236

based on dimensions of the block at step 4202. In an example, sign prediction can be disallowed for
the block when the block is non-dyadic. In an example, sign prediction can be applied to a dyadic
sized set of the residual coefficients in the block when the block is non-dyadic. In an example, sign
prediction can be disallowed for the block when a dimension of the block is not evenly divisible by
M, where M is an integer value. Inan example, sign prediction can be disallowed for the block when
a dimension of the block is equal to M, where M is an integer value. In an example, syntax element(s)
describing sign prediction for the block can be omitted from a bitstream when sign prediction is
disallowed for the block.

[00126] In an example, a maximum number of predicted signs can be determined based on a
location of the block, a block dimension, a block type, or combinations thereof. In an example,
sign prediction is determined based on coding information including a QP, a prediction mode, a
coding tool, motion information, a color component, a color format, a temporal layer, a slice type,
a neighboring block information, a coding tree depth, the residual coefficients of the block, a
transform type, a residual coding mode, a partition tree type, or combinations thereof.

[00127] When sign prediction is allowed, a set of hypothesis reconstructed sample values for the
block are determined based on a prediction hypothesis at step 4204. The block has dimensions
including a width (W) and a height (H). In an example, at least one of W or H 1s non-dyadic. Inan
example, the set hypothesis reconstructed sample values for the block can be determined based on
a pattern of the residual coefficients in the block. In an example, determining the set of hypothesis
reconstructed sample values includes determining a first set of hypothesis reconstructed sample
values and determining a second set of hypothesis reconstructed sample values. Each set of
hypothesis reconstructed sample values may correspond to a specific residual coefficient. In an
example, the first set of hypothesis reconstructed sample values and the second set of hypothesis
reconstructed sample values are collectively used to determine a cost for the pattern of the residual
coefficients in the block. In an example, a first table can be used to store all sets of hypothesis
reconstructed sample values in entries. Further, a second table may be used to indicates indices
for the entries in the first table.

[00128] At step 4206, sign information for the residual coefficients in the block are determined
based on the sets of hypothesis reconstructed sample values. In an example, the block includes a
first sign for a first residual coefficient and a second sign for a second residual coefficient. The

first sign can be predicted according to a first rule and the second sign can be 1s predicted according

58

WO 2022/218280 PCT/CN2022/086236

to a second rule that is different from the first rule. In an example, a prediction of the second sign
is dependent of a prediction of the first sign.

[00129] At step 4208, whether to signal a LFNST index is determined based on a first variable.
For example, the first variable can be modified by at least one of color component of the block,
coding structure of the block, or block type of the block. In an example, the first variable is a
LfnstDcOnly flag or a LfnstZeroOutSigCoeffFlag. In an example, the first variable is dependent
on a transform skip flag. In an example, the first variable is not modified when parsing a residual
block of a first color component when single-tree coding structure is applied. In an example, the
first variable 1s modified when parsing a residual block of a first color component when a dual-tree
coding structure is applied. In an example, the first variable is modified when parsing a residual
block of a first color component when a dual-tree coding structure is applied. In an example, he
determination whether to signal the LENST index is based on a modified value in the first variable.
[00130] At step 4210, a conversion is performed between a visual media data and a bitstream
based on the residual coefficients in the block. When the method 4200 is performed on an encoder,
the conversion comprises generating the bitstream according to the visual media data. The
conversion includes determining and encoding sign prediction and/or LENST related information
into the bitstream. When the method 4200 is performed on a decoder, the conversion comprises
parsing and decoding the bitstream to obtain the video units in the visual media data. The sign
predication and/or LENST information is read from the bitstream. The decoder can then determine
residual samples based on the sign prediction, the LEFNST, and differences between the samples
reconstructed according to the predicted sign and the original samples. The decoder can reconstruct
the samples based on the residual and prediction from the bitstream.

[00131] It should be noted that the method 4200 can be implemented in an apparatus for
processing video data comprising a processor and a non-transitory memory with instructions thereon,
such as video encoder 4400, video decoder 4500, and/or encoder 4600. In such a case, the
instructions upon execution by the processor, cause the processor to perform the method 4200.
Further, the method 4200 can be performed by a non-transitory computer readable medium
comprising a computer program product for use by a video coding device. The computer program
product comprises computer executable instructions stored on the non-transitory computer readable
medium such that when executed by a processor cause the video coding device to perform the

method 4200.

59

WO 2022/218280 PCT/CN2022/086236

[00132] FIG. 11 is a block diagram that illustrates an example video coding system 4300 that may
utilize the techniques of this disclosure. The video coding system 4300 may include a source device
4310 and a destination device 4320. Source device 4310 generates encoded video data which may
be referred to as a video encoding device. Destination device 4320 may decode the encoded video
data generated by source device 4310 which may be referred to as a video decoding device.

[00133] Source device 4310 may include a video source 4312, a video encoder 4314, and an
input/output (I/O) interface 4316. Video source 4312 may include a source such as a video capture
device, an interface to receive video data from a video content provider, and/or a computer graphics
system for generating video data, or a combination of such sources. The video data may comprise
one or more pictures. Video encoder 4314 encodes the video data from video source 4312 to generate
a bitstream. The bitstream may include a sequence of bits that form a coded representation of the
video data. The bitstream may include coded pictures and associated data. The coded picture is a
coded representation of a picture. The associated data may include sequence parameter sets, picture
parameter sets, and other syntax structures. I/O interface 4316 may include a modulator/demodulator
(modem) and/or a transmitter. The encoded video data may be transmitted directly to destination
device 4320 via I/O interface 4316 through network 4330. The encoded video data may also be
stored onto a storage medium/server 4340 for access by destination device 4320.

[00134] Destination device 4320 may include an I/O interface 4326, a video decoder 4324, and a
display device 4322. 1/O interface 4326 may include a receiver and/or a modem. I/O interface 4326
may acquire encoded video data from the source device 4310 or the storage medium/ server 4340.
Video decoder 4324 may decode the encoded video data. Display device 4322 may display the
decoded video data to a user. Display device 4322 may be integrated with the destination device
4320, or may be external to destination device 4320, which can be configured to interface with an
external display device.

[00135] Video encoder 4314 and video decoder 4324 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard, Versatile Video
Coding (VVM) standard and other current and/or further standards.

[00136] FIG. 12 1s a block diagram illustrating an example of video encoder 4400, which may be
video encoder 4314 in the system 4300 illustrated in FIG. 11. Video encoder 4400 may be
configured to perform any or all of the techniques of this disclosure. The video encoder 4400

includes a plurality of functional components. The techniques described in this disclosure may be

60

WO 2022/218280 PCT/CN2022/086236

shared among the various components of video encoder 4400. In some examples, a processor may
be configured to perform any or all of the techniques described in this disclosure.

[00137] The functional components of video encoder 4400 may include a partition unit 4401, a
prediction unit 4402 which may include a mode select unit 4403, a motion estimation unit 4404, a
motion compensation unit 4405, an intra prediction unit 4406, a residual generation unit 4407, a
transform processing unit 4408, a quantization unit 4409, an inverse quantization unit 4410, an
inverse transform unit 4411, a reconstruction unit 4412, a buffer 4413, and an entropy encoding unit
4414,

[00138] In other examples, video encoder 4400 may include more, fewer, or different functional
components. In an example, prediction unit 4402 may include an intra block copy (IBC) unit. The
IBC unit may perform prediction in an IBC mode in which at least one reference picture is a picture
where the current video block is located.

[00139] Furthermore, some components, such as motion estimation unit 4404 and motion
compensation unit 4405 may be highly integrated, but are represented in the example of video
encoder 4400 separately for purposes of explanation.

[00140] Partition unit 4401 may partition a picture into one or more video blocks. Video encoder
4400 and video decoder 4500 may support various video block sizes.

[00141] Mode select unit 4403 may select one of the coding modes, intra or inter, e.g., based on
error results, and provide the resulting intra or inter coded block to a residual generation unit 4407
to generate residual block data and to a reconstruction unit 4412 to reconstruct the encoded block for
use as a reference picture. In some examples, mode select unit 4403 may select a combination of
intra and inter prediction (CIIP) mode in which the prediction is based on an inter prediction signal
and an intra prediction signal. Mode select unit 4403 may also select a resolution for a motion vector
(e.g., a sub-pixel or integer pixel precision) for the block in the case of inter prediction.

[00142] To perform inter prediction on a current video block, motion estimation unit 4404 may
generate motion information for the current video block by comparing one or more reference frames
from buffer 4413 to the current video block. Motion compensation unit 4405 may determine a
predicted video block for the current video block based on the motion information and decoded

samples of pictures from buffer 4413 other than the picture associated with the current video block.

61

WO 2022/218280 PCT/CN2022/086236

[00143] Motion estimation unit 4404 and motion compensation unit 4405 may perform different
operations for a current video block, for example, depending on whether the current video block 1s
in an I slice, a P slice, or a B slice.

[00144] In some examples, motion estimation unit 4404 may perform uni-directional prediction
for the current video block, and motion estimation unit 4404 may search reference pictures of list O
or list 1 for a reference video block for the current video block. Motion estimation unit 4404 may
then generate a reference index that indicates the reference picture in list O or list 1 that contains the
reference video block and a motion vector that indicates a spatial displacement between the current
video block and the reference video block. Motion estimation unit 4404 may output the reference
index, a prediction direction indicator, and the motion vector as the motion information of the current
video block. Motion compensation unit 4405 may generate the predicted video block of the current
block based on the reference video block indicated by the motion information of the current video
block.

[00145] In other examples, motion estimation unit 4404 may perform bi-directional prediction
for the current video block, motion estimation unit 4404 may search the reference pictures in list O
for a reference video block for the current video block and may also search the reference pictures in
list 1 for another reference video block for the current video block. Motion estimation unit 4404 may
then generate reference indexes that indicate the reference pictures in list O and list 1 containing the
reference video blocks and motion vectors that indicate spatial displacements between the reference
video blocks and the current video block. Motion estimation unit 4404 may output the reference
indexes and the motion vectors of the current video block as the motion information of the current
video block. Motion compensation unit 4405 may generate the predicted video block of the current
video block based on the reference video blocks indicated by the motion information of the current
video block.

[00146] In some examples, motion estimation unit 4404 may output a full set of motion
information for decoding processing of a decoder. In some examples, motion estimation unit 4404
may not output a full set of motion information for the current video. Rather, motion estimation unit
4404 may signal the motion information of the current video block with reference to the motion
information of another video block. For example, motion estimation unit 4404 may determine that
the motion information of the current video block is sufficiently similar to the motion information

of a neighboring video block.

62

WO 2022/218280 PCT/CN2022/086236

[00147] In one example, motion estimation unit 4404 may indicate, in a syntax structure
associated with the current video block, a value that indicates to the video decoder 4500 that the
current video block has the same motion information as another video block.

[00148] In another example, motion estimation unit 4404 may identify, in a syntax structure
associated with the current video block, another video block and a motion vector difference (MVD).
The motion vector difference indicates a difference between the motion vector of the current video
block and the motion vector of the indicated video block. The video decoder 4500 may use the
motion vector of the indicated video block and the motion vector difference to determine the motion
vector of the current video block.

[00149] As discussed above, video encoder 4400 may predictively signal the motion vector. Two
examples of predictive signaling techniques that may be implemented by video encoder 4400 include
advanced motion vector prediction (AMVP) and merge mode signaling.

[00150] Intra prediction unit 4406 may perform intra prediction on the current video block. When
intra prediction unit 4406 performs intra prediction on the current video block, intra prediction unit
4406 may generate prediction data for the current video block based on decoded samples of other
video blocks in the same picture. The prediction data for the current video block may include a
predicted video block and various syntax elements.

[00151] Residual generation unit 4407 may generate residual data for the current video block by
subtracting the predicted video block(s) of the current video block from the current video block. The
residual data of the current video block may include residual video blocks that correspond to different
sample components of the samples in the current video block.

[00152] In other examples, there may be no residual data for the current video block for the
current video block, for example in a skip mode, and residual generation unit 4407 may not perform
the subtracting operation.

[00153] Transform processing unit 4408 may generate one or more transform coefficient video
blocks for the current video block by applying one or more transforms to a residual video block
associated with the current video block.

[00154] After transform processing unit 4408 generates a transform coefficient video block
associated with the current video block, quantization unit 4409 may quantize the transform
coefficient video block associated with the current video block based on one or more quantization

parameter (QP) values associated with the current video block.

63

WO 2022/218280 PCT/CN2022/086236

[00155] Inverse quantization unit 4410 and inverse transform unit 4411 may apply inverse
quantization and inverse transforms to the transform coefficient video block, respectively, to
reconstruct a residual video block from the transform coefficient video block. Reconstruction unit
4412 may add the reconstructed residual video block to corresponding samples from one or more
predicted video blocks generated by the prediction unit 4402 to produce a reconstructed video block
associated with the current block for storage in the buffer 4413.

[00156] After reconstruction unit 4412 reconstructs the video block, the loop filtering operation
may be performed to reduce video blocking artifacts in the video block.

[00157] Entropy encoding unit 4414 may receive data from other functional components of the
video encoder 4400. When entropy encoding unit 4414 receives the data, entropy encoding unit 4414
may perform one or more entropy encoding operations to generate entropy encoded data and output
a bitstream that includes the entropy encoded data.

[00158] FIG. 13 is a block diagram illustrating an example of video decoder 4500 which may be
video decoder 4324 in the system 4300 illustrated in FIG. 11. The video decoder 4500 may be
configured to perform any or all of the techniques of this disclosure. In the example shown, the video
decoder 4500 includes a plurality of functional components. The techniques described in this
disclosure may be shared among the various components of the video decoder 4500. In some
examples, a processor may be configured to perform any or all of the techniques described in this
disclosure.

[00159] In the example shown, video decoder 4500 includes an entropy decoding unit 4501, a
motion compensation unit 4502, an intra prediction unit 4503, an inverse quantization unit 4504, an
inverse transformation unit 4505, a reconstruction unit 4506, and a buffer 4507. Video decoder 4500
may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described
with respect to video encoder 4400.

[00160] Entropy decoding unit 4501 may retrieve an encoded bitstream. The encoded bitstream
may include entropy coded video data (e.g., encoded blocks of video data). Entropy decoding unit
4501 may decode the entropy coded video data, and from the entropy decoded video data, motion
compensation unit 4502 may determine motion information including motion vectors, motion vector
precision, reference picture list indexes, and other motion information. Motion compensation unit

4502 may, for example, determine such information by performing the AMVP and merge mode.

64

WO 2022/218280 PCT/CN2022/086236

[00161] Motion compensation unit 4502 may produce motion compensated blocks, possibly
performing interpolation based on interpolation filters. Identifiers for interpolation filters to be used
with sub-pixel precision may be included in the syntax elements.

[00162] Motion compensation unit 4502 may use interpolation filters as used by video encoder
4400 during encoding of the video block to calculate interpolated values for sub-integer pixels of a
reference block. Motion compensation unit 4502 may determine the interpolation filters used by
video encoder 4400 according to received syntax information and use the interpolation filters to
produce predictive blocks.

[00163] Motion compensation unit 4502 may use some of the syntax information to determine
sizes of blocks used to encode frame(s) and/or slice(s) of the encoded video sequence, partition
information that describes how each macroblock of a picture of the encoded video sequence is
partitioned, modes indicating how each partition is encoded, one or more reference frames (and
reference frame lists) for each inter coded block, and other information to decode the encoded video
sequence.

[00164] Intra prediction unit 4503 may use intra prediction modes for example received in the
bitstream to form a prediction block from spatially adjacent blocks. Inverse quantization unit 4504
inverse quantizes, i.e., de-quantizes, the quantized video block coefficients provided in the bitstream
and decoded by entropy decoding unit 4501. Inverse transform unit 4505 applies an inverse
transform.

[00165] Reconstruction unit 4506 may sum the residual blocks with the corresponding prediction
blocks generated by motion compensation unit 4502 or intra prediction unit 4503 to form decoded
blocks. If desired, a deblocking filter may also be applied to filter the decoded blocks in order to
remove blockiness artifacts. The decoded video blocks are then stored in buffer 4507, which provides
reference blocks for subsequent motion compensation/intra prediction and also produces decoded
video for presentation on a display device.

[00166] FIG. 14 is a schematic diagram of an example encoder 4600. The encoder 4600 is
suitable for implementing the techniques of VVC. The encoder 4600 includes three in-loop filters,
namely a deblocking filter (DF) 4602, a sample adaptive offset (SAO) 4604, and an adaptive loop
filter (ALF) 4606. Unlike the DF 4602, which uses predefined filters, the SAO 4604 and the ALF
4606 utilize the original samples of the current picture to reduce the mean square errors between the

original samples and the reconstructed samples by adding an offset and by applying a finite impulse

65

WO 2022/218280 PCT/CN2022/086236

response (FIR) filter, respectively, with coded side information signaling the offsets and filter
coefficients. The ALF 4606 is located at the last processing stage of each picture and can be regarded
as a tool trying to catch and fix artifacts created by the previous stages.

[00167] The encoder 4600 further includes an intra prediction component 4608 and a motion
estimation/compensation (ME/MC) component 4610 configured to receive input video. The intra
prediction component 4608 is configured to perform intra prediction, while the ME/MC component
4610 1s configured to utilize reference pictures obtained from a reference picture buffer 4612 to
perform inter prediction. Residual blocks from inter prediction or intra prediction are fed into a
transform (T) component 4614 and a quantization (Q) component 4616 to generate quantized
residual transform coefficients, which are fed into an entropy coding component 4618. The entropy
coding component 4618 entropy codes the prediction results and the quantized transform coefficients
and transmits the same toward a video decoder (not shown). Quantization components output from
the quantization component 4616 may be fed into an inverse quantization (IQ) components 4620, an
inverse transform component 4622, and a reconstruction (REC) component 4624. The REC
component 4624 is able to output images to the DF 4602, the SAO 4604, and the ALF 4606 for
filtering prior to those images being stored in the reference picture buffer 4612 A listing of solutions
preferred by some examples is provided next.

[00168] The following solutions show examples of techniques discussed herein.

[00169] 1. A method of video processing (e.g., method 4200 shown in FIG. 10), comprising;
performing a conversion between a video block of a video and a bitstream of the video according to
a rule; wherein the rule specifies that whether a syntax element indicative of use of a low frequency
non-separable transform is applied to the video block depends on a coding condition associated with
the video block that is indicated by a variable.

[00170] 2. The method of solution 1, wherein the coding condition includes a color component
of the video block.

[00171] 3. The method of any of solutions 1-2, wherein the coding condition includes a coding
structure of the video block.

[00172] 4. The method of any of solutions 1-2, wherein the coding condition includes a type of
the block.

[00173] 5. The method of solution 4, wherein the type of the block is one of dyadic or non-dyadic.

66

WO 2022/218280 PCT/CN2022/086236

[00174] 6. The method of any of solutions 1-5, wherein the coding condition is related to a range
of non-zero coefficients in a residual block corresponding to the video block.

[00175] 7. The method of any of solutions 1-6, wherein the coding condition relates to whether
the video block is coded by skipping a non-identity transform operation.

[00176] 8. A method of video processing, comprising: determining, for a conversion between a
video block of a video and a bitstream representation of the video, whether a sign prediction of the
video block is enabled according to a rule; and performing the conversion according to the
determining; wherein the rule is based on a dimension of the video block of a coding information
of the video block.

[00177] 9. The method of solution 8, wherein the rule defines that the sign prediction is disabled
responsive to the dimension being non-dyadic.

[00178] 10. The method of solution 8, wherein the rule defines that the sign prediction is disabled
in case that W%M !=0 and/or H%M != 0, where W is a width of the video block in samples, H is a
height of the video block in samples and M is an integer.

[00179] 11. The method of any of solutions 8-10, wherein the rule specifies that a syntax element
related to the sign prediction is indicated based on the dimension.

[00180] 12. The method of solution 8, wherein the coding information comprises a quantization
parameter of the video block or a coding mode of the video block or a transform type of the video
block or a partition type of the video block.

[00181] 13. A method of video processing, comprising: storing, for a conversion between a video
block of a video and a bitstream of the video K sets of hypothesis corresponding to N reconstructed
samples at top or left boundaries of the video block, wherein the video block has a dimension W x
H; and performing the conversion based on the N hypothesis.

[00182] 14. The method of solution 13, wherein N = W-+H-1.

[00183] 15. The method of any of solutions 13-14, wherein the W or H is non-dyadic.

[00184] 16. The method of any of solutions 13-15, wherein K is greater than 1.

[00185] 17. The method of any of solutions 13-16, wherein the stored samples are used to derive
sign information for the video block.

[00186] 18. A method of video processing, comprising: performing, for a conversion between a
video block of a video and a bitstream of the video, predictions of signs of one or more coefficients

of the video block according to a rule; and using the prediction for the conversion.

67

WO 2022/218280 PCT/CN2022/086236

[00187] 19. The method of solution 18, wherein the rule specifies that different calculation rules
are applied to different positions of samples within the video block.

[00188] 20. The method of any of solutions 18-19, wherein the rule defines that a first prediction
of sign of a first coefficient depends on a predicted sign for a second coefficient in the video block.
[00189] 21. The method of solution 18, wherein the rule specifies a number of signs that are
predicted for the video block according to a coding condition of the video block.

[00190] 22. The method of solution 21, wherein the coding condition corresponds to whether the
video block 1s at a boundary of a video region, wherein the video region is a picture or a slice.
[00191] 23. The method of solution 21, wherein the coding condition comprises a quantization
parameter of the video block or a prediction mode of the video block or a transform type applied to
the video block or a partitioning mode of the video block.

[00192] 24 The method of any of solutions 1-23, wherein the video block comprises a coding
block, a transform block, a prediction block, a coding tree unit, a coding tree unit row or a slice.
[00193] 25. The method of any of solutions 1-24, wherein the conversion comprises generating
the video from the bitstream or generating the bitstream from the video.

[00194] 26. A method of storing a bitstream on a computer-readable medium, comprising
generating a bitstream according to a method recited in any one or more of solutions 1-25 and storing
the bitstream on the computer-readable medium.

[00195] 27. A computer-readable medium having a bitstream of a video stored thereon, the
bitstream, when processed by a processor of a video decoder, causing the video decoder to generate
the video, wherein the bitstream is generated according to a method recited in one or more of
solutions 1 to 26.

[00196] 28. A video decoding apparatus comprising a processor configured to implement a
method recited in one or more of solutions 1 to 26.

[00197] 29. A video encoding apparatus comprising a processor configured to implement a
method recited in one or more of solutions 1 to 26.

[00198] 30. A computer program product having computer code stored thereon, the code, when
executed by a processor, causes the processor to implement a method recited in any of solutions 1 to
26.

[00199] 31. A computer readable medium on which a bitstream complying to a bitstream format

that i1s generated according to any of solutions 1 to 26.

68

WO 2022/218280 PCT/CN2022/086236

[00200] 32. A method, an apparatus, a bitstream generated according to a disclosed method or a
system described in the present document.

[00201] In the solutions described herein, an encoder may conform to the format rule by
producing a coded representation according to the format rule. In the solutions described herein, a
decoder may use the format rule to parse syntax elements in the coded representation with the
knowledge of presence and absence of syntax elements according to the format rule to produce
decoded video.

[00202] In the present document, the term “video processing” may refer to video encoding, video
decoding, video compression or video decompression. For example, video compression algorithms
may be applied during conversion from pixel representation of a video to a corresponding bitstream
representation or vice versa. The bitstream representation of a current video block may, for example,
correspond to bits that are either co-located or spread in different places within the bitstream, as 1s
defined by the syntax. For example, a macroblock may be encoded in terms of transformed and
coded error residual values and also using bits in headers and other fields in the bitstream.
Furthermore, during conversion, a decoder may parse a bitstream with the knowledge that some
fields may be present, or absent, based on the determination, as is described in the above solutions.
Similarly, an encoder may determine that certain syntax fields are or are not to be included and
generate the coded representation accordingly by including or excluding the syntax fields from the
coded representation.

[00203] The disclosed and other solutions, examples, embodiments, modules and the functional
operations described in this document can be implemented in digital electronic circuitry, or in
computer software, firmware, or hardware, including the structures disclosed in this document and
their structural equivalents, or in combinations of one or more of them. The disclosed and other
embodiments can be implemented as one or more computer program products, i.e., one or more
modules of computer program instructions encoded on a computer readable medium for execution
by, or to control the operation of, data processing apparatus. The computer readable medium can be
a machine-readable storage device, a machine-readable storage substrate, a memory device, a
composition of matter effecting a machine-readable propagated signal, or a combination of one or
more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines
for processing data, including by way of example a programmable processor, a computer, or multiple

processors or computers. The apparatus can include, in addition to hardware, code that creates an

69

WO 2022/218280 PCT/CN2022/086236

execution environment for the computer program in question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system, an operating system, or a combination
of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-
generated electrical, optical, or electromagnetic signal, that is generated to encode information for
transmission to suitable receiver apparatus.

[00204] A computer program (also known as a program, software, software application, script,
or code) can be written in any form of programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a computing environment. A computer
program does not necessarily correspond to a file in a file system. A program can be stored in a
portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup
language document), in a single file dedicated to the program in question, or in multiple coordinated
files (e.g., files that store one or more modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or on multiple computers that are located
at one site or distributed across multiple sites and interconnected by a communication network.
[00205] The processes and logic flows described in this document can be performed by one or
more programmable processors executing one or more computer programs to perform functions by
operating on input data and generating output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field
programmable gate array) or an ASIC (application specific integrated circuit).

[00206] Processors suitable for the execution of a computer program include, by way of example,
both general and special purpose microprocessors, and any one or more processors of any kind of
digital computer. Generally, a processor will receive instructions and data from a read only memory
or a random-access memory or both. The essential elements of a computer are a processor for
performing instructions and one or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively coupled to receive data from or transfer
data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical
disks, or optical disks. However, a computer need not have such devices. Computer readable media
suitable for storing computer program instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of example semiconductor memory devices,

e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-

70

WO 2022/218280 PCT/CN2022/086236

only memory (EEPROM), and flash memory devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto optical disks; and compact disc read-only memory (CD ROM) and Digital
versatile disc-read only memory (DVD-ROM) disks. The processor and the memory can be
supplemented by, or incorporated in, special purpose logic circuitry.

[00207] While this patent document contains many specifics, these should not be construed as
limitations on the scope of any subject matter or of what may be claimed, but rather as descriptions
of features that may be specific to particular embodiments of particular techniques. Certain features
that are described in this patent document in the context of separate embodiments can also be
implemented in combination in a single embodiment. Conversely, various features that are described
in the context of a single embodiment can also be implemented in multiple embodiments separately
or in any suitable subcombination. Moreover, although features may be described above as acting
in certain combinations and even initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combination, and the claimed combination may
be directed to a subcombination or variation of a subcombination.

[00208] Similarly, while operations are depicted in the drawings in a particular order, this should
not be understood as requiring that such operations be performed in the particular order shown or in
sequential order, or that all illustrated operations be performed, to achieve desirable results.
Moreover, the separation of various system components in the embodiments described in this patent
document should not be understood as requiring such separation in all embodiments.

[00209] Only a few implementations and examples are described and other implementations,
enhancements and variations can be made based on what is described and illustrated in this patent
document.

[00210] A first component is directly coupled to a second component when there are no
intervening components, except for a line, a trace, or another medium between the first component
and the second component. The first component is indirectly coupled to the second component when
there are intervening components other than a line, a trace, or another medium between the first
component and the second component. The term “coupled” and its variants include both directly
coupled and indirectly coupled. The use of the term “about” means a range including +£10% of the
subsequent number unless otherwise stated.

[00211] While several embodiments have been provided in the present disclosure, it should be

understood that the disclosed systems and methods might be embodied in many other specific forms

71

WO 2022/218280 PCT/CN2022/086236

without departing from the spirit or scope of the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the intention is not to be limited to the details given
herein. For example, the various elements or components may be combined or integrated in another
system or certain features may be omitted, or not implemented.

[00212] In addition, techniques, systems, subsystems, and methods described and illustrated in
the various embodiments as discrete or separate may be combined or integrated with other systems,
modules, techniques, or methods without departing from the scope of the present disclosure. Other
items shown or discussed as coupled may be directly connected or may be indirectly coupled or
communicating through some interface, device, or intermediate component whether electrically,
mechanically, or otherwise. Other examples of changes, substitutions, and alterations are
ascertainable by one skilled in the art and could be made without departing from the spirit and scope

disclosed herein.

72

WO 2022/218280 PCT/CN2022/086236

CLAIMS
What 1s claimed 1s:

1. A method for processing video data comprising:
determining, for a conversion between a block of a video and a bitstream of the video, sign
prediction usage for one or more residual coefficients in the block based on dimensions of the

block; and

performing the conversion based on the residual coefficients in the block.

2. The method of claim 1, wherein sign prediction is disallowed for the block when the block

1s non-dyadic.

3. The method of claims 1, wherein sign prediction is applied to a dyadic sized set of the

residual coefficients in the block when the block 1s non-dyadic.

4. The method of claim 1, wherein sign prediction is disallowed for the block when a

dimension of the block is not evenly divisible by M, where M is an integer value.

S. The method of claim 1, wherein sign prediction is disallowed for the block when a

dimension of the block is equal to M, where M is an integer value.

6. The method of any of claims 1-5, wherein a syntax element describing sign prediction for

the block i1s omitted from the bitstream when sign prediction is disallowed for the block.
7. The method of any of claims 1-6, further comprising determining a set of hypothesis
reconstructed sample values for the block based on a prediction hypothesis, wherein the block has

dimensions including a width (W) and a height (H).

8. The method of any of claims 1-7, wherein at least one of W or H is non-dyadic.

73

WO 2022/218280 PCT/CN2022/086236

9. The method of any of claims 1-8, wherein the set hypothesis reconstructed sample values

for the block 1s determined based on a pattern of the residual coefficients in the block.

10. The method of any of claims 1-9, wherein determining the set of hypothesis reconstructed
sample values includes determining a first set of hypothesis reconstructed sample values and
determining a second set of hypothesis reconstructed sample values, and wherein each set of

hypothesis reconstructed sample values correspond to a specific residual coefficient.

11. The method of any of claims 1-10, wherein the first set of hypothesis reconstructed sample
values and the second set of hypothesis reconstructed sample values are collectively used to

determine a cost for the pattern of the residual coefficients in the block.

12. The method of any of claims 1-11, wherein a first table stores all sets of hypothesis
reconstructed sample values in entries, and wherein a second table indicates indices for the entries

in the first table.

13. The method of any of claims 1-12, further comprising determining sign information for the

residual coefficients in the block based on the sets of hypothesis reconstructed sample values.

14. The method of any of claims 1-13, wherein the block includes a first sign and a second sign,
and wherein the first sign is predicted according to a first rule and the second sign is predicted

according to a second rule that is different from the first rule.

15. The method of any of claims 1-14, wherein the block includes a first sign and a second sign,

and wherein a prediction of the second sign is dependent of a prediction of the first sign.
16. The method of any of claims 1-15, wherein a maximum number of predicted signs is

determined based on a location of the block, a block dimension, a block type, or combinations

thereof.

74

WO 2022/218280 PCT/CN2022/086236

17. The method of any of claims 1-16, wherein sign prediction is determined based on coding
information including a quantization parameter (QP), a prediction mode, a coding tool, motion
information, a color component, a color format, a temporal layer, a slice type, a neighboring block
information, a coding tree depth, the residual coefficients of the block, a transform type, a residual

coding mode, a partition tree type, or combinations thereof.

18. The method of any of claims 1-17, further comprising determining whether to signal a low
frequency non-separable secondary transform (LFNST) index based on a first variable, wherein
the first variable is modified by at least one of color component of the block, coding structure of

the block, or block type of the block.

19. The method of any of claims 1-18, wherein the first variable is a LENST direct current (DC)
only (LfnstDcOnly) flag or a LENST zero out sign coefficient flag (LfnstZeroOutSigCoeffFlag).

20. The method of any of claims 1-19, wherein the first variable is dependent on a transform
skip flag.
21. The method of any of claims 1-20, wherein the first variable is not modified when parsing

a residual block of a first color component when single-tree coding structure is applied.

22. The method of any of claims 1-21, wherein the first variable is modified when parsing a

residual block of a first color component when a dual-tree coding structure is applied.

23. The method of any of claims 1-22, wherein the first variable is modified when parsing a

residual block of a first color component when a dual-tree coding structure is applied.

24, The method of any of claims 1-23, wherein the determination whether to signal the LFNST

index 1s based on a modified value in the first variable.

25. The method of any of claims 1-24, wherein the conversion includes encoding the block into

the bitstream.

75

WO 2022/218280 PCT/CN2022/086236

26. The method of any of claims 1-24, wherein the conversion includes decoding the block from

the bitstream.

27. A non-transitory computer readable medium comprising a computer program product for
use by a video coding device, the computer program product comprising computer executable
instructions stored on the non-transitory computer readable medium such that when executed by a

processor cause the video coding device to perform the method of claims 1-26.

28. An apparatus for processing video data comprising: a processor; and a non-transitory
memory with instructions thereon, wherein the instructions upon execution by the processor, cause

the processor to perform the method of claims 1-26.

29. A non-transitory computer-readable recording medium storing a bitstream of a video which
is generated by a method performed by a video processing apparatus, wherein the method
comprises:

determining sign prediction usage for one or more residual coefficients in a block based on
dimensions of the block; and

generating the bitstream based on the determining.

30. A method for storing bitstream of a video, comprising:

determining sign prediction usage for one or more residual coefficients in a block based on
dimensions of the block;

generating the bitstream based on the determining; and

storing the bitstream in a non-transitory computer-readable recording medium.

76

WO 2022/218280

100

\

Forward
Primary
Transform

1/10

Forward Secondary Transform

PCT/CN2022/086236

Inverse
Primary
Transform

Quantization

Bitstream

200

Forward
Primary
Transform

Inverse Secondary Transform

FIG. 1

Forward Secondary Transform

De-quantization

Inverse
Primary
Transform

Quantization

Bitstream

A

Inverse Secondary Transform

FIG. 2

De-quantization [€¢—

WO 2022/218280

300

Residual —»

PCT/CN2022/086236
2/10
Reduced
Reduced Inverse
Transform Transform
Tx [] > Coefficient Coefficient —» T'x [] —» Residual

400

FI1G. 3

Colocated Position

WO 2022/218280 PCT/CN2022/086236
3/10

500

0
N X M > M X N
Residual Primary
Coefficients
2D Forward Forward
Primary Secondary
Transform Transform
4x4 Primary Coeff.
4x4 Secondary Coeff.

(M-8)x8 Top-right Primary Coeff.

8x(N-8) Bottom-left Primary Coeft.

(M-8)x(N-8) Bottom-right Primary Coeff.

FIG. 5

WO 2022/218280

600

R

3W/4

4/10

v

W/4

3W/4

700

\

Previously reconstructed
neighbor pixels

N\

3W/4

W/4

FIG. 6

bd

PCT/CN2022/086236

>

Po,2

|)

P22

P22

Po.-1

P11

P21

P31

P20

P-1,0

P-2,1

P-1.1

Po,o

P10

P20

P30

P-22

P12

Po,1

P23

P-13

Po,2

Hypothesis
reconstruction

Po,3

FIG. 7

WO 2022/218280

4000

4002

4100

PCT/CN2022/086236
5/10
4010
4004 4006 4008
FIG. 8

4102

Processor
Video Processing
4104 Circuitry
4106

Memory

FIG. 9

WO 2022/218280

4200

PCT/CN2022/086236
6/10

!

4202 —

Determine sign prediction usage for one or more residual coefficients

in a block based on dimensions of the block.

l

4204—

Determine a set of hypothesis reconstructed sample values for the

block based on a prediction hypothesis.

y

4206 —

Determine sign information for the residual coefficients in the block

based on the sets of hypothesis reconstructed sample values.

l

4208~

Determine whether to signal a LFNST index based on a first variable.
The first variable is modified by at least one of color component of the

block, coding structure of the block, or block type of the block

l

4210 —

Performing a conversion between a visual media data and a bitstream

based on the residual coefficients in the block.

FIG. 10

PCT/CN2022/086236

WO 2022/218280

7/10

CI437
Q0BIISNL O/]

A

4457
IOpOO3P 03PIA

y

[443%
001A9p Ae[dsIp

0cer
90TAQ(] UOHRUNSA(]

1T DId

IOAIOS /WINIPIUL

orey

238eI0)S

137
Q0BHIUL O/]

q

14894
I3POOUD 09PTA

ﬂ

[45%7%
90INOS 09PIA

0LEr
90TAQ(] 90IN0S

00cY

PCT/CN2022/086236

WO 2022/218280

8/10

<

¢l "DId

vk un
wlojsuel]

asJaAu|

A

Olvy Iun
uoneziueny)
8SJoAU|

44744

A

A

Bmgwﬁ_n
papoou]

viyy un
Buipooug
Adosuz

A

60 HuN

uonez

Juenp

3

80¥Y

wn

wJojsuel]

Y.

199 44
layng

LOVY

A

90v¥ HuUN €0b IuN
uonoipald uono9les
equ| SPON
A
Sov IuN P
uonesuadwon N
UOHON _
YOvy WUN
A7 uonewns3
jlun uodipeid UOlIo\
(A0} 44
jun uoniued

<

Japoou3 o8pIA

ElED 09PIA

PCT/CN2022/086236

WO 2022/218280

9/10

¢l ‘DId

<
<

Blep 08PIA
pepooaq

L0SYy
layng

£0G1 3un
uondipald
ea|

AY
U

A

¢0sy un
uofjesuedwo)

uonow

G0Sy un ¥0Sy IuN
wiojsues) [¢ uoyezpuenp
8sIoAU| 9sJoAU|
A
L0SY Hun
< Buiposs(
Adosyug

00Sy
Japooa(0apIA

A

weaJs)iq
papooug

WO 2022/218280 PCT/CN2022/086236
10/10

4600

4608
C
!
Input Video Intra
» Prediction
N ME/MC
J 4 |
4610 |
—1 Rec | IT & 1
4624 Q |
¢ 53 |
|
T ” 4622 4620 |
Buffer [\ 4602 |
S v I
4612 - 4604 |
¢ » SAO i
|
v - 4608 i
— —» ALF f-——-———-----—---1
|

FIG. 14

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2022/086236

A. CLASSIFICATION OF SUBJECT MATTER
HO4N 19/169(2014.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, WPIL, EPODOC: video, predict+, dimension+, residual, coefficient+, co-efficient+, block, bitstream, conver+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2021032145 Al (BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.) 1-30
25 February 2021 (2021-02-25)
description, paragraphs [00362], [00365], and claims 1-111

A CN 110662050 A (BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.)07 1-30
January 2020 (2020-01-07)
the whole document

A US 2015264372 A1 (CANON KABUSHIKI KAISHA) 17 September 2015 (2015-09-17) 1-30
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
«A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
«g” earlier application or patent but published on or after the international «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«1» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

«p>» document published prior to the international filing date but later than . &

e] document member of the same patent famil;
the priority date claimed P Y

Date of the actual completion of the international search Date of mailing of the international search report
09 June 2022 01 July 2022
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing WANG,Yixuan
100088, China
Facsimile No. (86-10)62019451 Telephone No. 86-10-53961621

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2022/086236

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
WO 2021032145 Al 25 February 2021 KR 20220047770 A 19 April 2022
EP 4000266 Al 25 May 2022

CN 114258680 A 29 March 2022

CN 110662050 A 07 January 2020 uUsS 2021120233 Al 22 April 2021

WO 2020003268 A2 02 January 2020

™ 202002630 A 01 January 2020

us 2015264372 Al 17 September 2015 AU 2014201583 Al 01 October 2015

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - wo-search-report
	Page 89 - wo-search-report

